linux/drivers/staging/wlags49_h2/hcf.c
<<
>>
Prefs
   1/************************************************************************************************************
   2 *
   3 * FILE   :  HCF.C
   4 *
   5 * DATE    : $Date: 2004/08/05 11:47:10 $   $Revision: 1.10 $
   6 * Original: 2004/06/02 10:22:22    Revision: 1.85      Tag: hcf7_t20040602_01
   7 * Original: 2004/04/15 09:24:41    Revision: 1.63      Tag: hcf7_t7_20040415_01
   8 * Original: 2004/04/13 14:22:44    Revision: 1.62      Tag: t7_20040413_01
   9 * Original: 2004/04/01 15:32:55    Revision: 1.59      Tag: t7_20040401_01
  10 * Original: 2004/03/10 15:39:27    Revision: 1.55      Tag: t20040310_01
  11 * Original: 2004/03/04 11:03:37    Revision: 1.53      Tag: t20040304_01
  12 * Original: 2004/03/02 14:51:21    Revision: 1.50      Tag: t20040302_03
  13 * Original: 2004/02/24 13:00:27    Revision: 1.43      Tag: t20040224_01
  14 * Original: 2004/02/19 10:57:25    Revision: 1.39      Tag: t20040219_01
  15 *
  16 * AUTHOR :  Nico Valster
  17 *
  18 * SPECIFICATION: ........
  19 *
  20 * DESCRIPTION : HCF Routines for Hermes-II (callable via the Wireless Connection I/F or WCI)
  21 *               Local Support Routines for above procedures
  22 *
  23 *           Customizable via HCFCFG.H, which is included by HCF.H
  24 *
  25 *************************************************************************************************************
  26 *
  27 *
  28 * SOFTWARE LICENSE
  29 *
  30 * This software is provided subject to the following terms and conditions,
  31 * which you should read carefully before using the software.  Using this
  32 * software indicates your acceptance of these terms and conditions.  If you do
  33 * not agree with these terms and conditions, do not use the software.
  34 *
  35 * COPYRIGHT © 1994 - 1995   by AT&T.                All Rights Reserved
  36 * COPYRIGHT © 1996 - 2000 by Lucent Technologies.   All Rights Reserved
  37 * COPYRIGHT © 2001 - 2004   by Agere Systems Inc.   All Rights Reserved
  38 * All rights reserved.
  39 *
  40 * Redistribution and use in source or binary forms, with or without
  41 * modifications, are permitted provided that the following conditions are met:
  42 *
  43 * . Redistributions of source code must retain the above copyright notice, this
  44 *    list of conditions and the following Disclaimer as comments in the code as
  45 *    well as in the documentation and/or other materials provided with the
  46 *    distribution.
  47 *
  48 * . Redistributions in binary form must reproduce the above copyright notice,
  49 *    this list of conditions and the following Disclaimer in the documentation
  50 *    and/or other materials provided with the distribution.
  51 *
  52 * . Neither the name of Agere Systems Inc. nor the names of the contributors
  53 *    may be used to endorse or promote products derived from this software
  54 *    without specific prior written permission.
  55 *
  56 * Disclaimer
  57 *
  58 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  59 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
  60 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
  61 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
  62 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
  63 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  65 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  66 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
  67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  68 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  69 * DAMAGE.
  70 *
  71 *
  72 ************************************************************************************************************/
  73
  74
  75/************************************************************************************************************
  76 **
  77 ** Implementation Notes
  78 **
  79 * - a leading marker of //! is used. The purpose of such a sequence is to help to understand the flow
  80 *   An example is:  //!rc = HCF_SUCCESS;
  81 *   if this is superfluous because rc is already guaranteed to be 0 but it shows to the (maintenance)
  82 *   programmer it is an intentional omission at the place where someone could consider it most appropriate at
  83 *   first glance
  84 * - using near pointers in a model where ss!=ds is an invitation for disaster, so be aware of how you specify
  85 *   your model and how you define variables which are used at interrupt time
  86 * - remember that sign extension on 32 bit platforms may cause problems unless code is carefully constructed,
  87 *   e.g. use "(hcf_16)~foo" rather than "~foo"
  88 *
  89 ************************************************************************************************************/
  90
  91#include "hcf.h"                // HCF and MSF common include file
  92#include "hcfdef.h"             // HCF specific include file
  93#include "mmd.h"                // MoreModularDriver common include file
  94#include <linux/bug.h>
  95#include <linux/kernel.h>
  96
  97#if ! defined offsetof
  98#define offsetof(s,m)   ((unsigned int)&(((s *)0)->m))
  99#endif // offsetof
 100
 101
 102/***********************************************************************************************************/
 103/***************************************  PROTOTYPES  ******************************************************/
 104/***********************************************************************************************************/
 105HCF_STATIC int          cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 );
 106HCF_STATIC int          init( IFBP ifbp );
 107HCF_STATIC int          put_info( IFBP ifbp, LTVP ltvp );
 108HCF_STATIC int          put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp );
 109#if (HCF_TYPE) & HCF_TYPE_WPA
 110HCF_STATIC void         calc_mic( hcf_32* p, hcf_32 M );
 111void                    calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len );
 112void                    calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len );
 113HCF_STATIC int          check_mic( IFBP ifbp );
 114#endif // HCF_TYPE_WPA
 115
 116HCF_STATIC void         calibrate( IFBP ifbp );
 117HCF_STATIC int          cmd_cmpl( IFBP ifbp );
 118HCF_STATIC hcf_16       get_fid( IFBP ifbp );
 119HCF_STATIC void         isr_info( IFBP ifbp );
 120#if HCF_DMA
 121HCF_STATIC DESC_STRCT*  get_frame_lst(IFBP ifbp, int tx_rx_flag);
 122#endif // HCF_DMA
 123HCF_STATIC void         get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) );   //char*, byte count (usually even)
 124#if HCF_DMA
 125HCF_STATIC void         put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag );
 126#endif // HCF_DMA
 127HCF_STATIC void         put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) );
 128HCF_STATIC void         put_frag_finalize( IFBP ifbp );
 129HCF_STATIC int          setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type );
 130#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
 131static int fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp);
 132#endif // HCF_ASSERT_PRINTF
 133
 134HCF_STATIC int          download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp );
 135HCF_STATIC hcf_8        hcf_encap( wci_bufp type );
 136HCF_STATIC hcf_8        null_addr[4] = { 0, 0, 0, 0 };
 137#if ! defined IN_PORT_WORD          //replace I/O Macros with logging facility
 138extern FILE *log_file;
 139
 140#define IN_PORT_WORD(port)          in_port_word( (hcf_io)(port) )
 141
 142static hcf_16 in_port_word( hcf_io port ) {
 143        hcf_16 i = (hcf_16)_inpw( port );
 144        if ( log_file ) {
 145                fprintf( log_file, "\nR %2.2x %4.4x", (port)&0xFF, i);
 146        }
 147        return i;
 148} // in_port_word
 149
 150#define OUT_PORT_WORD(port, value)  out_port_word( (hcf_io)(port), (hcf_16)(value) )
 151
 152static void out_port_word( hcf_io port, hcf_16 value ) {
 153        _outpw( port, value );
 154        if ( log_file ) {
 155                fprintf( log_file, "\nW %2.02x %4.04x", (port)&0xFF, value );
 156        }
 157}
 158
 159void IN_PORT_STRING_32( hcf_io prt, hcf_32 FAR * dst, int n)    {
 160        int i = 0;
 161        hcf_16 FAR * p;
 162        if ( log_file ) {
 163                fprintf( log_file, "\nread string_32 length %04x (%04d) at port %02.2x to addr %lp",
 164                         (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst);
 165        }
 166        while ( n-- ) {
 167                p = (hcf_16 FAR *)dst;
 168                *p++ = (hcf_16)_inpw( prt );
 169                *p   = (hcf_16)_inpw( prt );
 170                if ( log_file ) {
 171                        fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *dst);
 172                }
 173                dst++;
 174        }
 175} // IN_PORT_STRING_32
 176
 177void IN_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * dst, int n) { //also handles byte alignment problems
 178        hcf_16 FAR * p = (hcf_16 FAR *)dst;                         //this needs more elaborate code in non-x86 platforms
 179        int i = 0;
 180        if ( log_file ) {
 181                fprintf( log_file, "\nread string_16 length %04x (%04d) at port %02.2x to addr %lp",
 182                         (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst );
 183        }
 184        while ( n-- ) {
 185                *p =(hcf_16)_inpw( prt);
 186                if ( log_file ) {
 187                        if ( i++ % 0x10 ) {
 188                                fprintf( log_file, "%04x ", *p);
 189                        } else {
 190                                fprintf( log_file, "\n%04x ", *p);
 191                        }
 192                }
 193                p++;
 194        }
 195} // IN_PORT_STRING_8_16
 196
 197void OUT_PORT_STRING_32( hcf_io prt, hcf_32 FAR * src, int n)   {
 198        int i = 0;
 199        hcf_16 FAR * p;
 200        if ( log_file ) {
 201                fprintf( log_file, "\nwrite string_32 length %04x (%04d) at port %02.2x",
 202                         (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF);
 203        }
 204        while ( n-- ) {
 205                p = (hcf_16 FAR *)src;
 206                _outpw( prt, *p++ );
 207                _outpw( prt, *p   );
 208                if ( log_file ) {
 209                        fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *src);
 210                }
 211                src++;
 212        }
 213} // OUT_PORT_STRING_32
 214
 215void OUT_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * src, int n)  {   //also handles byte alignment problems
 216        hcf_16 FAR * p = (hcf_16 FAR *)src;                             //this needs more elaborate code in non-x86 platforms
 217        int i = 0;
 218        if ( log_file ) {
 219                fprintf( log_file, "\nwrite string_16 length %04x (%04d) at port %04x", n, n, (hcf_16)prt);
 220        }
 221        while ( n-- ) {
 222                (void)_outpw( prt, *p);
 223                if ( log_file ) {
 224                        if ( i++ % 0x10 ) {
 225                                fprintf( log_file, "%04x ", *p);
 226                        } else {
 227                                fprintf( log_file, "\n%04x ", *p);
 228                        }
 229                }
 230                p++;
 231        }
 232} // OUT_PORT_STRING_8_16
 233
 234#endif // IN_PORT_WORD
 235
 236/************************************************************************************************************
 237 ******************************* D A T A    D E F I N I T I O N S ********************************************
 238 ************************************************************************************************************/
 239
 240#if HCF_ASSERT
 241IFBP BASED assert_ifbp = NULL;          //to make asserts easily work under MMD and DHF
 242#endif // HCF_ASSERT
 243
 244/* SNAP header to be inserted in Ethernet-II frames */
 245HCF_STATIC  hcf_8 BASED snap_header[] = { 0xAA, 0xAA, 0x03, 0x00, 0x00, //5 bytes signature +
 246                                          0 };                          //1 byte protocol identifier
 247
 248#if (HCF_TYPE) & HCF_TYPE_WPA
 249HCF_STATIC hcf_8 BASED mic_pad[8] = { 0x5A, 0, 0, 0, 0, 0, 0, 0 };      //MIC padding of message
 250#endif // HCF_TYPE_WPA
 251
 252#if defined MSF_COMPONENT_ID
 253CFG_IDENTITY_STRCT BASED cfg_drv_identity = {
 254        sizeof(cfg_drv_identity)/sizeof(hcf_16) - 1,    //length of RID
 255        CFG_DRV_IDENTITY,           // (0x0826)
 256        MSF_COMPONENT_ID,
 257        MSF_COMPONENT_VAR,
 258        MSF_COMPONENT_MAJOR_VER,
 259        MSF_COMPONENT_MINOR_VER
 260} ;
 261
 262CFG_RANGES_STRCT BASED cfg_drv_sup_range = {
 263        sizeof(cfg_drv_sup_range)/sizeof(hcf_16) - 1,   //length of RID
 264        CFG_DRV_SUP_RANGE,          // (0x0827)
 265
 266        COMP_ROLE_SUPL,
 267        COMP_ID_DUI,
 268        {{  DUI_COMPAT_VAR,
 269            DUI_COMPAT_BOT,
 270            DUI_COMPAT_TOP
 271        }}
 272} ;
 273
 274struct CFG_RANGE3_STRCT BASED cfg_drv_act_ranges_pri = {
 275        sizeof(cfg_drv_act_ranges_pri)/sizeof(hcf_16) - 1,  //length of RID
 276        CFG_DRV_ACT_RANGES_PRI,     // (0x0828)
 277
 278        COMP_ROLE_ACT,
 279        COMP_ID_PRI,
 280        {
 281                { 0, 0, 0 },                           // HCF_PRI_VAR_1 not supported by HCF 7
 282                { 0, 0, 0 },                           // HCF_PRI_VAR_2 not supported by HCF 7
 283                {  3,                                  //var_rec[2] - Variant number
 284                   CFG_DRV_ACT_RANGES_PRI_3_BOTTOM,        //       - Bottom Compatibility
 285                   CFG_DRV_ACT_RANGES_PRI_3_TOP            //       - Top Compatibility
 286                }
 287        }
 288} ;
 289
 290
 291struct CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_sta = {
 292        sizeof(cfg_drv_act_ranges_sta)/sizeof(hcf_16) - 1,  //length of RID
 293        CFG_DRV_ACT_RANGES_STA,     // (0x0829)
 294
 295        COMP_ROLE_ACT,
 296        COMP_ID_STA,
 297        {
 298#if defined HCF_STA_VAR_1
 299                {  1,                                  //var_rec[1] - Variant number
 300                   CFG_DRV_ACT_RANGES_STA_1_BOTTOM,        //       - Bottom Compatibility
 301                   CFG_DRV_ACT_RANGES_STA_1_TOP            //       - Top Compatibility
 302                },
 303#else
 304                { 0, 0, 0 },
 305#endif // HCF_STA_VAR_1
 306#if defined HCF_STA_VAR_2
 307                {  2,                                  //var_rec[1] - Variant number
 308                   CFG_DRV_ACT_RANGES_STA_2_BOTTOM,        //       - Bottom Compatibility
 309                   CFG_DRV_ACT_RANGES_STA_2_TOP            //       - Top Compatibility
 310                },
 311#else
 312                { 0, 0, 0 },
 313#endif // HCF_STA_VAR_2
 314// For Native_USB (Not used!)
 315#if defined HCF_STA_VAR_3
 316                {  3,                                  //var_rec[1] - Variant number
 317                   CFG_DRV_ACT_RANGES_STA_3_BOTTOM,        //       - Bottom Compatibility
 318                   CFG_DRV_ACT_RANGES_STA_3_TOP            //       - Top Compatibility
 319                },
 320#else
 321                { 0, 0, 0 },
 322#endif // HCF_STA_VAR_3
 323// Warp
 324#if defined HCF_STA_VAR_4
 325                {  4,                                  //var_rec[1] - Variant number
 326                   CFG_DRV_ACT_RANGES_STA_4_BOTTOM,        //           - Bottom Compatibility
 327                   CFG_DRV_ACT_RANGES_STA_4_TOP            //           - Top Compatibility
 328                }
 329#else
 330                { 0, 0, 0 }
 331#endif // HCF_STA_VAR_4
 332        }
 333} ;
 334
 335
 336struct CFG_RANGE6_STRCT BASED cfg_drv_act_ranges_hsi = {
 337        sizeof(cfg_drv_act_ranges_hsi)/sizeof(hcf_16) - 1,  //length of RID
 338        CFG_DRV_ACT_RANGES_HSI,     // (0x082A)
 339        COMP_ROLE_ACT,
 340        COMP_ID_HSI,
 341        {
 342#if defined HCF_HSI_VAR_0                   // Controlled deployment
 343                {  0,                                  // var_rec[1] - Variant number
 344                   CFG_DRV_ACT_RANGES_HSI_0_BOTTOM,        //           - Bottom Compatibility
 345                   CFG_DRV_ACT_RANGES_HSI_0_TOP            //           - Top Compatibility
 346                },
 347#else
 348                { 0, 0, 0 },
 349#endif // HCF_HSI_VAR_0
 350                { 0, 0, 0 },                           // HCF_HSI_VAR_1 not supported by HCF 7
 351                { 0, 0, 0 },                           // HCF_HSI_VAR_2 not supported by HCF 7
 352                { 0, 0, 0 },                           // HCF_HSI_VAR_3 not supported by HCF 7
 353#if defined HCF_HSI_VAR_4                   // Hermes-II all types
 354                {  4,                                  // var_rec[1] - Variant number
 355                   CFG_DRV_ACT_RANGES_HSI_4_BOTTOM,        //           - Bottom Compatibility
 356                   CFG_DRV_ACT_RANGES_HSI_4_TOP            //           - Top Compatibility
 357                },
 358#else
 359                { 0, 0, 0 },
 360#endif // HCF_HSI_VAR_4
 361#if defined HCF_HSI_VAR_5                   // WARP Hermes-2.5
 362                {  5,                                  // var_rec[1] - Variant number
 363                   CFG_DRV_ACT_RANGES_HSI_5_BOTTOM,        //           - Bottom Compatibility
 364                   CFG_DRV_ACT_RANGES_HSI_5_TOP            //           - Top Compatibility
 365                }
 366#else
 367                { 0, 0, 0 }
 368#endif // HCF_HSI_VAR_5
 369        }
 370} ;
 371
 372
 373CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_apf = {
 374        sizeof(cfg_drv_act_ranges_apf)/sizeof(hcf_16) - 1,  //length of RID
 375        CFG_DRV_ACT_RANGES_APF,     // (0x082B)
 376
 377        COMP_ROLE_ACT,
 378        COMP_ID_APF,
 379        {
 380#if defined HCF_APF_VAR_1               //(Fake) Hermes-I
 381                {  1,                                  //var_rec[1] - Variant number
 382                   CFG_DRV_ACT_RANGES_APF_1_BOTTOM,        //           - Bottom Compatibility
 383                   CFG_DRV_ACT_RANGES_APF_1_TOP            //           - Top Compatibility
 384                },
 385#else
 386                { 0, 0, 0 },
 387#endif // HCF_APF_VAR_1
 388#if defined HCF_APF_VAR_2               //Hermes-II
 389                {  2,                                  // var_rec[1] - Variant number
 390                   CFG_DRV_ACT_RANGES_APF_2_BOTTOM,        //           - Bottom Compatibility
 391                   CFG_DRV_ACT_RANGES_APF_2_TOP            //           - Top Compatibility
 392                },
 393#else
 394                { 0, 0, 0 },
 395#endif // HCF_APF_VAR_2
 396#if defined HCF_APF_VAR_3                       // Native_USB
 397                {  3,                                      // var_rec[1] - Variant number
 398                   CFG_DRV_ACT_RANGES_APF_3_BOTTOM,        //           - Bottom Compatibility !!!!!see note below!!!!!!!
 399                   CFG_DRV_ACT_RANGES_APF_3_TOP            //           - Top Compatibility
 400                },
 401#else
 402                { 0, 0, 0 },
 403#endif // HCF_APF_VAR_3
 404#if defined HCF_APF_VAR_4                       // WARP Hermes 2.5
 405                {  4,                                      // var_rec[1] - Variant number
 406                   CFG_DRV_ACT_RANGES_APF_4_BOTTOM,        //           - Bottom Compatibility !!!!!see note below!!!!!!!
 407                   CFG_DRV_ACT_RANGES_APF_4_TOP            //           - Top Compatibility
 408                }
 409#else
 410                { 0, 0, 0 }
 411#endif // HCF_APF_VAR_4
 412        }
 413} ;
 414#define HCF_VERSION  TEXT( "HCF$Revision: 1.10 $" )
 415
 416static struct /*CFG_HCF_OPT_STRCT*/ {
 417        hcf_16  len;                    //length of cfg_hcf_opt struct
 418        hcf_16  typ;                    //type 0x082C
 419        hcf_16   v0;                        //offset HCF_VERSION
 420        hcf_16   v1;                        // MSF_COMPONENT_ID
 421        hcf_16   v2;                        // HCF_ALIGN
 422        hcf_16   v3;                        // HCF_ASSERT
 423        hcf_16   v4;                        // HCF_BIG_ENDIAN
 424        hcf_16   v5;                        // /* HCF_DLV | HCF_DLNV */
 425        hcf_16   v6;                        // HCF_DMA
 426        hcf_16   v7;                        // HCF_ENCAP
 427        hcf_16   v8;                        // HCF_EXT
 428        hcf_16   v9;                        // HCF_INT_ON
 429        hcf_16  v10;                        // HCF_IO
 430        hcf_16  v11;                        // HCF_LEGACY
 431        hcf_16  v12;                        // HCF_MAX_LTV
 432        hcf_16  v13;                        // HCF_PROT_TIME
 433        hcf_16  v14;                        // HCF_SLEEP
 434        hcf_16  v15;                        // HCF_TALLIES
 435        hcf_16  v16;                        // HCF_TYPE
 436        hcf_16  v17;                        // HCF_NIC_TAL_CNT
 437        hcf_16  v18;                        // HCF_HCF_TAL_CNT
 438        hcf_16  v19;                        // offset tallies
 439        char    val[sizeof(HCF_VERSION)];
 440} BASED cfg_hcf_opt = {
 441        sizeof(cfg_hcf_opt)/sizeof(hcf_16) -1,
 442        CFG_HCF_OPT,                // (0x082C)
 443        ( sizeof(cfg_hcf_opt) - sizeof(HCF_VERSION) - 4 )/sizeof(hcf_16),
 444#if defined MSF_COMPONENT_ID
 445        MSF_COMPONENT_ID,
 446#else
 447        0,
 448#endif // MSF_COMPONENT_ID
 449        HCF_ALIGN,
 450        HCF_ASSERT,
 451        HCF_BIG_ENDIAN,
 452        0,                                  // /* HCF_DLV | HCF_DLNV*/,
 453        HCF_DMA,
 454        HCF_ENCAP,
 455        HCF_EXT,
 456        HCF_INT_ON,
 457        HCF_IO,
 458        HCF_LEGACY,
 459        HCF_MAX_LTV,
 460        HCF_PROT_TIME,
 461        HCF_SLEEP,
 462        HCF_TALLIES,
 463        HCF_TYPE,
 464#if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
 465        HCF_NIC_TAL_CNT,
 466        HCF_HCF_TAL_CNT,
 467        offsetof(IFB_STRCT, IFB_TallyLen ),
 468#else
 469        0, 0, 0,
 470#endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
 471        HCF_VERSION
 472}; // cfg_hcf_opt
 473#endif // MSF_COMPONENT_ID
 474
 475HCF_STATIC LTV_STRCT BASED cfg_null = { 1, CFG_NULL, {0} };
 476
 477HCF_STATIC hcf_16* BASED xxxx[ ] = {
 478        &cfg_null.len,                          //CFG_NULL                      0x0820
 479#if defined MSF_COMPONENT_ID
 480        &cfg_drv_identity.len,                  //CFG_DRV_IDENTITY              0x0826
 481        &cfg_drv_sup_range.len,                 //CFG_DRV_SUP_RANGE             0x0827
 482        &cfg_drv_act_ranges_pri.len,            //CFG_DRV_ACT_RANGES_PRI        0x0828
 483        &cfg_drv_act_ranges_sta.len,            //CFG_DRV_ACT_RANGES_STA        0x0829
 484        &cfg_drv_act_ranges_hsi.len,            //CFG_DRV_ACT_RANGES_HSI        0x082A
 485        &cfg_drv_act_ranges_apf.len,            //CFG_DRV_ACT_RANGES_APF        0x082B
 486        &cfg_hcf_opt.len,                       //CFG_HCF_OPT                   0x082C
 487        NULL,                                   //IFB_PRIIdentity placeholder   0xFD02
 488        NULL,                                   //IFB_PRISup placeholder        0xFD03
 489#endif // MSF_COMPONENT_ID
 490        NULL                                    //endsentinel
 491};
 492#define xxxx_PRI_IDENTITY_OFFSET    (ARRAY_SIZE(xxxx) - 3)
 493
 494
 495/************************************************************************************************************
 496 ************************** T O P   L E V E L   H C F   R O U T I N E S **************************************
 497 ************************************************************************************************************/
 498
 499/************************************************************************************************************
 500 *
 501 *.MODULE        int hcf_action( IFBP ifbp, hcf_16 action )
 502 *.PURPOSE       Changes the run-time Card behavior.
 503 *               Performs Miscellanuous actions.
 504 *
 505 *.ARGUMENTS
 506 *   ifbp                    address of the Interface Block
 507 *   action                  number identifying the type of change
 508 *    - HCF_ACT_INT_FORCE_ON enable interrupt generation by WaveLAN NIC
 509 *    - HCF_ACT_INT_OFF      disable interrupt generation by WaveLAN NIC
 510 *    - HCF_ACT_INT_ON       compensate 1 HCF_ACT_INT_OFF, enable interrupt generation if balance reached
 511 *    - HCF_ACT_PRS_SCAN     Hermes Probe Response Scan (F102) command
 512 *    - HCF_ACT_RX_ACK       acknowledge non-DMA receiver to Hermes
 513 *    - HCF_ACT_SCAN         Hermes Inquire Scan (F101) command (non-WARP only)
 514 *    - HCF_ACT_SLEEP        DDS Sleep request
 515 *    - HCF_ACT_TALLIES      Hermes Inquire Tallies (F100) command
 516 *
 517 *.RETURNS
 518 *   HCF_SUCCESS             all (including invalid)
 519 *   HCF_INT_PENDING         HCF_ACT_INT_OFF, interrupt pending
 520 *   HCF_ERR_NO_NIC          HCF_ACT_INT_OFF, NIC presence check fails
 521 *
 522 *.CONDITIONS
 523 * Except for hcf_action with HCF_ACT_INT_FORCE_ON or HCF_ACT_INT_OFF as parameter or hcf_connect with an I/O
 524 * address (i.e. not HCF_DISCONNECT), all hcf-function calls MUST be preceded by a call of hcf_action with
 525 * HCF_ACT_INT_OFF as parameter.
 526 * Note that hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
 527 * was called.
 528 *
 529 *.DESCRIPTION
 530 * hcf_action supports the following mode changing action-code pairs that are antonyms
 531 *    - HCF_ACT_INT_[FORCE_]ON / HCF_ACT_INT_OFF
 532 *
 533 * Additionally hcf_action can start the following actions in the NIC:
 534 *    - HCF_ACT_PRS_SCAN
 535 *    - HCF_ACT_RX_ACK
 536 *    - HCF_ACT_SCAN
 537 *    - HCF_ACT_SLEEP
 538 *    - HCF_ACT_TALLIES
 539 *
 540 * o HCF_ACT_INT_OFF: Sets NIC Interrupts mode Disabled.
 541 * This command, and the associated [Force] Enable NIC interrupts command, are only available if the HCF_INT_ON
 542 * compile time option is not set at 0x0000.
 543 *
 544 * o HCF_ACT_INT_ON: Sets NIC Interrupts mode Enabled.
 545 * Enable NIC Interrupts, depending on the number of preceding Disable NIC Interrupt calls.
 546 *
 547 * o HCF_ACT_INT_FORCE_ON: Force NIC Interrupts mode Enabled.
 548 * Sets NIC Interrupts mode Enabled, regardless off the number of preceding Disable NIC Interrupt calls.
 549 *
 550 * The disabling and enabling of interrupts are antonyms.
 551 * These actions must be balanced.
 552 * For each "disable interrupts" there must be a matching "enable interrupts".
 553 * The disable interrupts may be executed multiple times in a row without intervening enable interrupts, in
 554 * other words, the disable interrupts may be nested.
 555 * The interrupt generation mechanism is disabled at the first call with HCF_ACT_INT_OFF.
 556 * The interrupt generation mechanism is re-enabled when the number of calls with HCF_ACT_INT_ON matches the
 557 * number of calls with INT_OFF.
 558 *
 559 * It is not allowed to have more Enable NIC Interrupts calls than Disable NIC Interrupts calls.
 560 * The interrupt generation mechanism is initially (i.e. after hcf_connect) disabled.
 561 * An MSF based on a interrupt strategy must call hcf_action with INT_ON in its initialization logic.
 562 *
 563 *!  The INT_OFF/INT_ON housekeeping is initialized at 0x0000 by hcf_connect, causing the interrupt generation
 564 *   mechanism to be disabled at first. This suits MSF implementation based on a polling strategy.
 565 *
 566 * o HCF_ACT_SLEEP: Initiates the Disconnected DeepSleep process
 567 * This command is only available if the HCF_DDS compile time option is set. It triggers the F/W to start the
 568 * sleep handshaking. Regardless whether the Host initiates a Disconnected DeepSleep (DDS) or the F/W initiates
 569 * a Connected DeepSleep (CDS), the Host-F/W sleep handshaking is completed when the NIC Interrupts mode is
 570 * enabled (by means of the balancing HCF_ACT_INT_ON), i.e. at that moment the F/W really goes into sleep mode.
 571 * The F/W is wokenup by the HCF when the NIC Interrupts mode are disabled, i.e. at the first HCF_ACT_INT_OFF
 572 * after going into sleep.
 573 *
 574 * The following Miscellaneous actions are defined:
 575 *
 576 * o HCF_ACT_RX_ACK: Receiver Acknowledgement (non-DMA, non-USB mode only)
 577 * Acking the receiver, frees the NIC memory used to hold the Rx frame and allows the F/W to
 578 * report the existence of the next Rx frame.
 579 * If the MSF does not need access (any longer) to the current frame, e.g. because it is rejected based on the
 580 * look ahead or copied to another buffer, the receiver may be acked. Acking earlier is assumed to have the
 581 * potential of improving the performance.
 582 * If the MSF does not explicitly ack the receiver, the acking is done implicitly if:
 583 * - the received frame fits in the look ahead buffer, by the hcf_service_nic call that reported the Rx frame
 584 * - if not in the above step, by hcf_rcv_msg (assuming hcf_rcv_msg is called)
 585 * - if neither of the above implicit acks nor an explicit ack by the MSF, by the first hcf_service_nic after
 586 *   the hcf_service_nic that reported the Rx frame.
 587 * Note: If an Rx frame is already acked, an explicit ACK by the MSF acts as a NoOperation.
 588 *
 589 * o HCF_ACT_TALLIES: Inquire Tallies command
 590 * This command is only operational if the F/W is enabled.
 591 * The Inquire Tallies command requests the F/W to provide its current set of tallies.
 592 * See also hcf_get_info with CFG_TALLIES as parameter.
 593 *
 594 * o HCF_ACT_PRS_SCAN: Inquire Probe Response Scan command
 595 * This command is only operational if the F/W is enabled.
 596 * The Probe Response Scan command starts a scan sequence.
 597 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
 598 *
 599 * o HCF_ACT_SCAN: Inquire Scan command
 600 * This command is only supported for HII F/W (i.e. pre-WARP) and it is operational if the F/W is enabled.
 601 * The Inquire Scan command starts a scan sequence.
 602 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
 603 *
 604 * Assert fails if
 605 * - ifbp has a recognizable out-of-range value.
 606 * - NIC interrupts are not disabled while required by parameter action.
 607 * - an invalid code is specified in parameter action.
 608 * - HCF_ACT_INT_ON commands outnumber the HCF_ACT_INT_OFF commands.
 609 * - reentrancy, may be caused by calling hcf_functions without adequate protection against NIC interrupts or
 610 *   multi-threading
 611 *
 612 * - Since the HCF does not maintain status information relative to the F/W enabled state, it is not asserted
 613 *   whether HCF_ACT_SCAN, HCF_ACT_PRS_SCAN or HCF_ACT_TALLIES are only used while F/W is enabled.
 614 *
 615 *.DIAGRAM
 616 * 0: The assert embedded in HCFLOGENTRY checks against re-entrancy. Re-entrancy could be caused by a MSF logic
 617 *   at task-level calling hcf_functions without shielding with HCF_ACT_ON/_OFF. However the HCF_ACT_INT_OFF
 618 *   action itself can per definition not be protected this way. Based on code inspection, it can be concluded,
 619 *   that there is no re-entrancy PROBLEM in this particular flow. It does not seem worth the trouble to
 620 *   explicitly check for this condition (although there was a report of an MSF which ran into this assert.
 621 * 2:IFB_IntOffCnt is used to balance the INT_OFF and INT_ON calls.  Disabling of the interrupts is achieved by
 622 *   writing a zero to the Hermes IntEn register.  In a shared interrupt environment (e.g. the mini-PCI NDIS
 623 *   driver) it is considered more correct to return the status HCF_INT_PENDING if and only if, the current
 624 *   invocation of hcf_service_nic is (apparently) called in the ISR when the ISR was activated as result of a
 625 *   change in HREG_EV_STAT matching a bit in HREG_INT_EN, i.e. not if invoked as result of another device
 626 *   generating an interrupt on the shared interrupt line.
 627 *   Note 1: it has been observed that under certain adverse conditions on certain platforms the writing of
 628 *   HREG_INT_EN can apparently fail, therefore it is paramount that HREG_INT_EN is written again with 0 for
 629 *   each and every call to HCF_ACT_INT_OFF.
 630 *   Note 2: it has been observed that under certain H/W & S/W architectures this logic is called when there is
 631 *   no NIC at all. To cater for this, the value of HREG_INT_EN is validated. If the unused bit 0x0100 is set,
 632 *   it is assumed there is no NIC.
 633 *   Note 3: During the download process, some versions of the F/W reset HREG_SW_0, hence checking this
 634 *   register for HCF_MAGIC (the classical NIC presence test) when HCF_ACT_INT_OFF is called due to another
 635 *   card interrupting via a shared IRQ during a download, fails.
 636 *4: The construction "if ( ifbp->IFB_IntOffCnt-- == 0 )" is optimal (in the sense of shortest/quickest
 637 *   path in error free flows) but NOT fail safe in case of too many INT_ON invocations compared to INT_OFF).
 638 *   Enabling of the interrupts is achieved by writing the Hermes IntEn register.
 639 *    - If the HCF is in Defunct mode, the interrupts stay disabled.
 640 *    - Under "normal" conditions, the HCF is only interested in Info Events, Rx Events and Notify Events.
 641 *    - When the HCF is out of Tx/Notify resources, the HCF is also interested in Alloc Events.
 642 *    - via HCF_EXT, the MSF programmer can also request HREG_EV_TICK and/or HREG_EV_TX_EXC interrupts.
 643 *   For DMA operation, the DMA hardware handles the alloc events. The DMA engine will generate a 'TxDmaDone'
 644 *   event as soon as it has pumped a frame from host ram into NIC-RAM (note that the frame does not have to be
 645 *   transmitted then), and a 'RxDmaDone' event as soon as a received frame has been pumped from NIC-RAM into
 646 *   host ram.  Note that the 'alloc' event has been removed from the event-mask, because the DMA engine will
 647 *   react to and acknowledge this event.
 648 *6: ack the "old" Rx-event. See "Rx Buffer free strategy" in hcf_service_nic above for more explanation.
 649 *   IFB_RxFID and IFB_RxLen must be cleared to bring both the internal HCF house keeping and the information
 650 *   supplied to the MSF in the state "no frame received".
 651 *8: The HCF_ACT_SCAN, HCF_ACT_PRS_SCAN and HCF_ACT_TALLIES activity are merged by "clever" algebraic
 652 *   manipulations of the RID-values and action codes, so foregoing robustness against migration problems for
 653 *   ease of implementation. The assumptions about numerical relationships between CFG_TALLIES etc and
 654 *   HCF_ACT_TALLIES etc are checked by the "#if" statements just prior to the body of this routine, resulting
 655 *   in: err "maintenance" during compilation if the assumptions are no longer met. The writing of HREG_PARAM_1
 656 *   with 0x3FFF in case of an PRS scan, is a kludge to get around lack of specification, hence different
 657 *   implementation in F/W and Host.
 658 *   When there is no NIC RAM available, some versions of the Hermes F/W do report 0x7F00 as error in the
 659 *   Result field of the Status register and some F/W versions don't. To mask this difference to the MSF all
 660 *   return codes of the Hermes are ignored ("best" and "most simple" solution to these types of analomies with
 661 *   an acceptable loss due to ignoring all error situations as well).
 662 *   The "No inquire space" is reported via the Hermes tallies.
 663 *30: do not HCFASSERT( rc, rc ) since rc == HCF_INT_PENDING is no error
 664 *
 665 *.ENDDOC                END DOCUMENTATION
 666 *
 667 ************************************************************************************************************/
 668#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
 669#if CFG_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_SCAN
 670err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
 671#endif
 672#endif // HCF_TYPE_HII5
 673#if CFG_PRS_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_PRS_SCAN
 674err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
 675#endif
 676int
 677hcf_action( IFBP ifbp, hcf_16 action )
 678{
 679        int rc = HCF_SUCCESS;
 680
 681        HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
 682#if HCF_INT_ON
 683        HCFLOGENTRY( action == HCF_ACT_INT_FORCE_ON ? HCF_TRACE_ACTION_KLUDGE : HCF_TRACE_ACTION, action );                                                      /* 0 */
 684#if (HCF_SLEEP)
 685        HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE || action == HCF_ACT_INT_OFF,
 686                   MERGE_2( action, ifbp->IFB_IntOffCnt ) );
 687#else
 688        HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, action );
 689#endif // HCF_SLEEP
 690        HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFF ||
 691                   action == HCF_ACT_INT_OFF || action == HCF_ACT_INT_FORCE_ON,  action );
 692        HCFASSERT( ifbp->IFB_IntOffCnt <= 16 || ifbp->IFB_IntOffCnt >= 0xFFFE,
 693                   MERGE_2( action, ifbp->IFB_IntOffCnt ) ); //nesting more than 16 deep seems unreasonable
 694#endif // HCF_INT_ON
 695
 696        switch (action) {
 697#if HCF_INT_ON
 698                hcf_16  i;
 699        case HCF_ACT_INT_OFF:                     // Disable Interrupt generation
 700#if HCF_SLEEP
 701                if ( ifbp->IFB_IntOffCnt == 0xFFFE ) {  // WakeUp test  ;?tie this to the "new" super-LinkStat
 702                        ifbp->IFB_IntOffCnt++;                      // restore conventional I/F
 703                        OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC );        // set wakeup bit
 704                        OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC );        // set wakeup bit to counteract the clearing by F/W
 705                        // 800 us latency before FW switches to high power
 706                        MSF_WAIT(800);                              // MSF-defined function to wait n microseconds.
 707//OOR                   if ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_DS_OOR ) { // OutOfRange
 708//                              printk(KERN_NOTICE "ACT_INT_OFF: Deepsleep phase terminated, enable and go to AwaitConnection\n" );     //;?remove me 1 day
 709//                              hcf_cntl( ifbp, HCF_CNTL_ENABLE );
 710//                      }
 711//                      ifbp->IFB_DSLinkStat &= ~( CFG_LINK_STAT_DS_IR | CFG_LINK_STAT_DS_OOR); //clear IR/OOR state
 712                }
 713#endif // HCF_SLEEP
 714        /*2*/   ifbp->IFB_IntOffCnt++;
 715//!             rc = 0;
 716                i = IPW( HREG_INT_EN );
 717                OPW( HREG_INT_EN, 0 );
 718                if ( i & 0x1000 ) {
 719                        rc = HCF_ERR_NO_NIC;
 720                } else {
 721                        if ( i & IPW( HREG_EV_STAT ) ) {
 722                                rc = HCF_INT_PENDING;
 723                        }
 724                }
 725                break;
 726
 727        case HCF_ACT_INT_FORCE_ON:                // Enforce Enable Interrupt generation
 728                ifbp->IFB_IntOffCnt = 0;
 729                //Fall through in HCF_ACT_INT_ON
 730
 731        case HCF_ACT_INT_ON:                      // Enable Interrupt generation
 732        /*4*/   if ( ifbp->IFB_IntOffCnt-- == 0 && ifbp->IFB_CardStat == 0 ) {
 733                                                  //determine Interrupt Event mask
 734#if HCF_DMA
 735                        if ( ifbp->IFB_CntlOpt & USE_DMA ) {
 736                                i = HREG_EV_INFO | HREG_EV_RDMAD | HREG_EV_TDMAD | HREG_EV_TX_EXT;  //mask when DMA active
 737                        } else
 738#endif // HCF_DMA
 739                        {
 740                                i = HREG_EV_INFO | HREG_EV_RX | HREG_EV_TX_EXT;                     //mask when DMA not active
 741                                if ( ifbp->IFB_RscInd == 0 ) {
 742                                        i |= HREG_EV_ALLOC;                                         //mask when no TxFID available
 743                                }
 744                        }
 745#if HCF_SLEEP
 746                        if ( ( IPW(HREG_EV_STAT) & ( i | HREG_EV_SLEEP_REQ ) ) == HREG_EV_SLEEP_REQ ) {
 747                                // firmware indicates it would like to go into sleep modus
 748                                // only acknowledge this request if no other events that can cause an interrupt are pending
 749                                ifbp->IFB_IntOffCnt--;          //becomes 0xFFFE
 750                                OPW( HREG_INT_EN, i | HREG_EV_TICK );
 751                                OPW( HREG_EV_ACK, HREG_EV_SLEEP_REQ | HREG_EV_TICK | HREG_EV_ACK_REG_READY );
 752                        } else
 753#endif // HCF_SLEEP
 754                        {
 755                                OPW( HREG_INT_EN, i | HREG_EV_SLEEP_REQ );
 756                        }
 757                }
 758                break;
 759#endif // HCF_INT_ON
 760
 761#if (HCF_SLEEP) & HCF_DDS
 762        case HCF_ACT_SLEEP:                       // DDS Sleep request
 763                hcf_cntl( ifbp, HCF_CNTL_DISABLE );
 764                cmd_exe( ifbp, HCMD_SLEEP, 0 );
 765                break;
 766//      case HCF_ACT_WAKEUP:                      // DDS Wakeup request
 767//              HCFASSERT( ifbp->IFB_IntOffCnt == 0xFFFE, ifbp->IFB_IntOffCnt );
 768//              ifbp->IFB_IntOffCnt++;                  // restore conventional I/F
 769//              OPW( HREG_IO, HREG_IO_WAKEUP_ASYNC );
 770//              MSF_WAIT(800);                          // MSF-defined function to wait n microseconds.
 771//              rc = hcf_action( ifbp, HCF_ACT_INT_OFF );   /*bogus, IFB_IntOffCnt == 0xFFFF, so if you carefully look
 772//                                                           *at the #if HCF_DDS statements, HCF_ACT_INT_OFF is empty
 773//                                                           *for DDS. "Much" better would be to merge the flows for
 774//                                                           *DDS and DEEP_SLEEP
 775//                                                           */
 776//              break;
 777#endif // HCF_DDS
 778
 779        case HCF_ACT_RX_ACK:                      //Receiver ACK
 780        /*6*/   if ( ifbp->IFB_RxFID ) {
 781                        DAWA_ACK( HREG_EV_RX );
 782                }
 783                ifbp->IFB_RxFID = ifbp->IFB_RxLen = 0;
 784                break;
 785
 786  /*8*/ case  HCF_ACT_PRS_SCAN:                   // Hermes PRS Scan (F102)
 787                OPW( HREG_PARAM_1, 0x3FFF );
 788                //Fall through in HCF_ACT_TALLIES
 789        case HCF_ACT_TALLIES:                     // Hermes Inquire Tallies (F100)
 790#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
 791        case HCF_ACT_SCAN:                        // Hermes Inquire Scan (F101)
 792#endif // HCF_TYPE_HII5
 793                /*!! the assumptions about numerical relationships between CFG_TALLIES etc and HCF_ACT_TALLIES etc
 794                 *   are checked by #if statements just prior to this routine resulting in: err "maintenance"   */
 795                cmd_exe( ifbp, HCMD_INQUIRE, action - HCF_ACT_TALLIES + CFG_TALLIES );
 796                break;
 797
 798        default:
 799                HCFASSERT( DO_ASSERT, action );
 800                break;
 801        }
 802        //! do not HCFASSERT( rc == HCF_SUCCESS, rc )                                                       /* 30*/
 803        HCFLOGEXIT( HCF_TRACE_ACTION );
 804        return rc;
 805} // hcf_action
 806
 807
 808/************************************************************************************************************
 809 *
 810 *.MODULE        int hcf_cntl( IFBP ifbp, hcf_16 cmd )
 811 *.PURPOSE       Connect or disconnect a specific port to a specific network.
 812 *!!  ;???????????????? continue needs more explanation
 813 *               recovers by means of "continue" when the connect process in CCX mode fails
 814 *               Enables or disables data transmission and reception for the NIC.
 815 *               Activates static NIC configuration for a specific port at connect.
 816 *               Activates static configuration for all ports at enable.
 817 *
 818 *.ARGUMENTS
 819 *   ifbp        address of the Interface Block
 820 *   cmd         0x001F: Hermes command (disable, enable, connect, disconnect, continue)
 821 *                   HCF_CNTL_ENABLE     Enable
 822 *                   HCF_CNTL_DISABLE    Disable
 823 *                   HCF_CNTL_CONTINUE   Continue
 824 *                   HCF_CNTL_CONNECT    Connect
 825 *                   HCF_CNTL_DISCONNECT Disconnect
 826 *               0x0100: command qualifier (continue)
 827 *                   HCMD_RETRY          retry flag
 828 *               0x0700:  port number (connect/disconnect)
 829 *                   HCF_PORT_0          MAC Port 0
 830 *                   HCF_PORT_1          MAC Port 1
 831 *                   HCF_PORT_2          MAC Port 2
 832 *                   HCF_PORT_3          MAC Port 3
 833 *                   HCF_PORT_4          MAC Port 4
 834 *                   HCF_PORT_5          MAC Port 5
 835 *                   HCF_PORT_6          MAC Port 6
 836 *
 837 *.RETURNS
 838 *   HCF_SUCCESS
 839 *!! via cmd_exe
 840 *   HCF_ERR_NO_NIC
 841 *   HCF_ERR_DEFUNCT_...
 842 *   HCF_ERR_TIME_OUT
 843 *
 844 *.DESCRIPTION
 845 * The parameter cmd contains a number of subfields.
 846 * The actual value for cmd is created by logical or-ing the appropriate mnemonics for the subfields.
 847 * The field 0x001F contains the command code
 848 *  - HCF_CNTL_ENABLE
 849 *  - HCF_CNTL_DISABLE
 850 *  - HCF_CNTL_CONNECT
 851 *  - HCF_CNTL_DISCONNECT
 852 *  - HCF_CNTL_CONTINUE
 853 *
 854 * For HCF_CNTL_CONTINUE, the field 0x0100 contains the retry flag HCMD_RETRY.
 855 * For HCF_CNTL_CONNECT and HCF_CNTL_DISCONNECT, the field 0x0700 contains the port number as HCF_PORT_#.
 856 * For Station as well as AccessPoint F/W, MAC Port 0 is the "normal" communication channel.
 857 * For AccessPoint F/W, MAC Port 1 through 6 control the WDS links.
 858 *
 859 * Note that despite the names HCF_CNTL_DISABLE and HCF_CNTL_ENABLE, hcf_cntl does not influence the NIC
 860 * Interrupts mode.
 861 *
 862 * The Connect is used by the MSF to bring a particular port in an inactive state as far as data transmission
 863 * and reception are concerned.
 864 * When a particular port is disconnected:
 865 * - the F/W disables the receiver for that port.
 866 * - the F/W ignores send commands for that port.
 867 * - all frames (Receive as well as pending Transmit) for that port on the NIC are discarded.
 868 *
 869 * When the NIC is disabled, above list applies to all ports, i.e. the result is like all ports are
 870 * disconnected.
 871 *
 872 * When a particular port is connected:
 873 * - the F/W effectuates the static configuration for that port.
 874 * - enables the receiver for that port.
 875 * - accepts send commands for that port.
 876 *
 877 * Enabling has the following effects:
 878 * - the F/W effectuates the static configuration for all ports.
 879 *   The F/W only updates its static configuration at a transition from disabled to enabled or from
 880 *   disconnected to connected.
 881 *   In order to enforce the static configuration, the MSF must assure that such a transition takes place.
 882 *   Due to such a disable/enable or disconnect/connect sequence, Rx/Tx frames may be lost, in other words,
 883 *   configuration may impact communication.
 884 * - The DMA Engine (if applicable) is enabled.
 885 * Note that the Enable Function by itself only enables data transmission and reception, it
 886 * does not enable the Interrupt Generation mechanism. This is done by hcf_action.
 887 *
 888 * Disabling has the following effects:
 889 *!!  ;?????is the following statement really true
 890 * - it acts as a disconnect on all ports.
 891 * - The DMA Engine (if applicable) is disabled.
 892 *
 893 * For impact of the disable command on the behavior of hcf_dma_tx/rx_get see the appropriate sections.
 894 *
 895 * Although the Enable/Disable and Connect/Disconnect are antonyms, there is no restriction on their sequencing,
 896 * in other words, they may be called multiple times in arbitrary sequence without being paired or balanced.
 897 * Each time one of these functions is called, the effects of the preceding calls cease.
 898 *
 899 * Assert fails if
 900 * - ifbp has a recognizable out-of-range value.
 901 * - NIC interrupts are not disabled.
 902 * - A command other than Continue, Enable, Disable, Connect or Disconnect is given.
 903 * - An invalid combination of the subfields is given or a bit outside the subfields is given.
 904 * - any return code besides HCF_SUCCESS.
 905 * - reentrancy, may be caused by calling a hcf_function without adequate protection against NIC interrupts or
 906 *   multi-threading
 907 *
 908 *.DIAGRAM
 909 *   hcf_cntl takes successively the following actions:
 910 *2: If the HCF is in Defunct mode or incompatible with the Primary or Station Supplier in the Hermes,
 911 *   hcf_cntl() returns immediately with HCF_ERR_NO_NIC;? as status.
 912 *8: when the port is disabled, the DMA engine needs to be de-activated, so the host can safely reclaim tx
 913 *   packets from the tx descriptor chain.
 914 *
 915 *.ENDDOC                END DOCUMENTATION
 916 *
 917 ************************************************************************************************************/
 918int
 919hcf_cntl( IFBP ifbp, hcf_16 cmd )
 920{
 921        int rc = HCF_ERR_INCOMP_FW;
 922#if HCF_ASSERT
 923        {   int x = cmd & HCMD_CMD_CODE;
 924                if ( x == HCF_CNTL_CONTINUE ) x &= ~HCMD_RETRY;
 925                else if ( (x == HCMD_DISABLE || x == HCMD_ENABLE) && ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ) {
 926                        x &= ~HFS_TX_CNTL_PORT;
 927                }
 928                HCFASSERT( x==HCF_CNTL_ENABLE  || x==HCF_CNTL_DISABLE    || HCF_CNTL_CONTINUE ||
 929                           x==HCF_CNTL_CONNECT || x==HCF_CNTL_DISCONNECT, cmd );
 930        }
 931#endif // HCF_ASSERT
 932// #if (HCF_SLEEP) & HCF_DDS
 933//      HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, cmd );
 934// #endif // HCF_DDS
 935        HCFLOGENTRY( HCF_TRACE_CNTL, cmd );
 936        if ( ifbp->IFB_CardStat == 0 ) {                                                                 /*2*/
 937        /*6*/   rc = cmd_exe( ifbp, cmd, 0 );
 938#if (HCF_SLEEP) & HCF_DDS
 939                ifbp->IFB_TickCnt = 0;              //start 2 second period (with 1 tick uncertanty)
 940#endif // HCF_DDS
 941        }
 942#if HCF_DMA
 943        //!rlav : note that this piece of code is always executed, regardless of the DEFUNCT bit in IFB_CardStat.
 944        // The reason behind this is that the MSF should be able to get all its DMA resources back from the HCF,
 945        // even if the hardware is disfunctional. Practical example under Windows : surprise removal.
 946        if ( ifbp->IFB_CntlOpt & USE_DMA ) {
 947                hcf_io io_port = ifbp->IFB_IOBase;
 948                DESC_STRCT *p;
 949                if ( cmd == HCF_CNTL_DISABLE || cmd == HCF_CNTL_ENABLE ) {
 950                        OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_RESET);                     /*8*/
 951                        ifbp->IFB_CntlOpt &= ~DMA_ENABLED;
 952                }
 953                if ( cmd == HCF_CNTL_ENABLE ) {
 954                        OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_GO);
 955                        /* ;? by rewriting hcf_dma_rx_put you can probably just call hcf_dma_rx_put( ifbp->IFB_FirstDesc[DMA_RX] )
 956                         * as additional beneficiary side effect, the SOP and EOP bits will also be cleared
 957                         */
 958                        ifbp->IFB_CntlOpt |= DMA_ENABLED;
 959                        HCFASSERT( NT_ASSERT, NEVER_TESTED );
 960                        // make the entire rx descriptor chain DMA-owned, so the DMA engine can (re-)use it.
 961                        p = ifbp->IFB_FirstDesc[DMA_RX];
 962                        if (p != NULL) {   //;? Think this over again in the light of the new chaining strategy
 963                                if ( 1 )    { //begin alternative
 964                                        HCFASSERT( NT_ASSERT, NEVER_TESTED );
 965                                        put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX], DMA_RX );
 966                                        if ( ifbp->IFB_FirstDesc[DMA_RX] ) {
 967                                                put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX]->next_desc_addr, DMA_RX );
 968                                        }
 969                                } else {
 970                                        while ( p ) {
 971                                                //p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
 972                                                p->BUF_CNT |= DESC_DMA_OWNED;
 973                                                p = p->next_desc_addr;
 974                                        }
 975                                        // a rx chain is available so hand it over to the DMA engine
 976                                        p = ifbp->IFB_FirstDesc[DMA_RX];
 977                                        OUT_PORT_DWORD( (io_port + HREG_RXDMA_PTR32), p->desc_phys_addr);
 978                                }  //end alternative
 979                        }
 980                }
 981        }
 982#endif // HCF_DMA
 983        HCFASSERT( rc == HCF_SUCCESS, rc );
 984        HCFLOGEXIT( HCF_TRACE_CNTL );
 985        return rc;
 986} // hcf_cntl
 987
 988
 989/************************************************************************************************************
 990 *
 991 *.MODULE        int hcf_connect( IFBP ifbp, hcf_io io_base )
 992 *.PURPOSE       Grants access right for the HCF to the IFB.
 993 *               Initializes Card and HCF housekeeping.
 994 *
 995 *.ARGUMENTS
 996 *   ifbp        (near) address of the Interface Block
 997 *   io_base     non-USB: I/O Base address of the NIC (connect)
 998 *               non-USB: HCF_DISCONNECT
 999 *               USB:     HCF_CONNECT, HCF_DISCONNECT
1000 *
1001 *.RETURNS
1002 *   HCF_SUCCESS
1003 *   HCF_ERR_INCOMP_PRI
1004 *   HCF_ERR_INCOMP_FW
1005 *   HCF_ERR_DEFUNCT_CMD_SEQ
1006 *!! HCF_ERR_NO_NIC really returned ;?
1007 *   HCF_ERR_NO_NIC
1008 *   HCF_ERR_TIME_OUT
1009 *
1010 *   MSF-accessible fields of Result Block:
1011 *   IFB_IOBase              entry parameter io_base
1012 *   IFB_IORange             HREG_IO_RANGE (0x40/0x80)
1013 *   IFB_Version             version of the IFB layout
1014 *   IFB_FWIdentity          CFG_FW_IDENTITY_STRCT, specifies the identity of the
1015 *                           "running" F/W, i.e. tertiary F/W under normal conditions
1016 *   IFB_FWSup               CFG_SUP_RANGE_STRCT, specifies the supplier range of
1017 *                           the "running" F/W, i.e. tertiary F/W under normal conditions
1018 *   IFB_HSISup              CFG_SUP_RANGE_STRCT, specifies the HW/SW I/F range of the NIC
1019 *   IFB_PRIIdentity         CFG_PRI_IDENTITY_STRCT, specifies the Identity of the Primary F/W
1020 *   IFB_PRISup              CFG_SUP_RANGE_STRCT, specifies the supplier range of the Primary F/W
1021 *   all other               all MSF accessible fields, which are not specified above, are zero-filled
1022 *
1023 *.CONDITIONS
1024 * It is the responsibility of the MSF to assure the correctness of the I/O Base address.
1025 *
1026 * Note: hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
1027 * was called.
1028 *
1029 *.DESCRIPTION
1030 * hcf_connect passes the MSF-defined location of the IFB to the HCF and grants or revokes access right for the
1031 * HCF to the IFB. Revoking is done by specifying HCF_DISCONNECT rather than an I/O address for the parameter
1032 * io_base.  Every call of hcf_connect in "connect" mode, must eventually be followed by a call of hcf_connect
1033 * in "disconnect" mode. Calling hcf_connect in "connect"/"disconnect" mode can not be nested.
1034 * The IFB address must be used as a handle with all subsequent HCF-function calls and the HCF uses the IFB
1035 * address as a handle when it performs a call(back) of an MSF-function (i.e. msf_assert).
1036 *
1037 * Note that not only the MSF accessible fields are cleared, but also all internal housekeeping
1038 * information is re-initialized.
1039 * This implies that all settings which are done via hcf_action and hcf_put_info (e.g. CFG_MB_ASSERT, CFG_REG_MB,
1040 * CFG_REG_INFO_LOG) must be done again. The only field which is not cleared, is IFB_MSFSup.
1041 *
1042 * If HCF_INT_ON is selected as compile option, NIC interrupts are disabled.
1043 *
1044 * Assert fails if
1045 * - ifbp is not properly aligned ( ref chapter HCF_ALIGN in 4.1.1)
1046 * - I/O Base Address is not a multiple of 0x40 (note: 0x0000 is explicitly allowed).
1047 *
1048 *.DIAGRAM
1049 *
1050 *0: Throughout hcf_connect you need to distinguish the connect from the disconnect case, which requires
1051 *   some attention about what to use as "I/O" address when for which purpose.
1052 *2:
1053 *2a: Reset H-II by toggling reset bit in IO-register on and off.
1054 *   The HCF_TYPE_PRELOADED caters for the DOS environment where H-II is loaded by a separate program to
1055 *   overcome the 64k size limit posed on DOS drivers.
1056 *   The macro OPW is not yet useable because the IFB_IOBase field is not set.
1057 *   Note 1: hopefully the clearing and initializing of the IFB (see below) acts as a delay which meets the
1058 *   specification for S/W reset
1059 *   Note 2: it turns out that on some H/W constellations, the clock to access the EEProm is not lowered
1060 *   to an appropriate frequency by HREG_IO_SRESET. By giving an HCMD_INI first, this problem is worked around.
1061 *2b: Experimentally it is determined over a wide range of F/W versions that are waiting for the for Cmd bit in
1062 *   Ev register gives a workable strategy. The available documentation does not give much clues.
1063 *4: clear and initialize the IFB
1064 *   The HCF house keeping info is designed such that zero is the appropriate initial value for as much as
1065 *   feasible IFB-items.
1066 *   The readable fields mentioned in the description section and some HCF specific fields are given their
1067 *   actual value.
1068 *   IFB_TickIni is initialized at best guess before calibration
1069 *   Hcf_connect defaults to "no interrupt generation" (implicitly achieved by the zero-filling).
1070 *6: Register compile-time linked MSF Routine and set default filter level
1071 *   cast needed to get around the "near" problem in DOS COM model
1072 *   er C2446: no conversion from void (__near __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1073 *                           to   void (__far  __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1074 *8: If a command is apparently still active (as indicated by the Busy bit in Cmd register) this may indicate a
1075 *   blocked cmd pipe line.  To unblock the following actions are done:
1076 *    - Ack everything
1077 *    - Wait for Busy bit drop  in Cmd register
1078 *    - Wait for Cmd  bit raise in Ev  register
1079 *   The two waits are combined in a single HCF_WAIT_WHILE to optimize memory size. If either of these waits
1080 *   fail (prot_cnt becomes 0), then something is serious wrong. Rather than PANICK, the assumption is that the
1081 *   next cmd_exe will fail, causing the HCF to go into DEFUNCT mode
1082 *10:    Ack everything to unblock a (possibly blocked) cmd pipe line
1083 *   Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
1084 *   pending on non-initial calls
1085 *   Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
1086 *   Hermes Initialize
1087 *12:    Only H-II NEEDS the Hermes Initialize command. Due to the different semantics for H-I and H-II
1088 *   Initialize command, init() does not (and can not, since it is called e.g. after a download) execute the
1089 *   Hermes Initialize command. Executing the Hermes Initialize command for H-I would not harm but not do
1090 *   anything useful either, so it is skipped.
1091 *   The return status of cmd_exe is ignored. It is assumed that if cmd_exe fails, init fails too
1092 *14:    use io_base as a flag to merge hcf_connect and hcf_disconnect into 1 routine
1093 *   the call to init and its subsequent call of cmd_exe will return HCF_ERR_NO_NIC if appropriate. This status
1094 *   is (badly) needed by some legacy combination of NT4 and card services which do not yield an I/O address in
1095 *   time.
1096 *
1097 *.NOTICE
1098 *   On platforms where the NULL-pointer is not a bit-pattern of all zeros, the zero-filling of the IFB results
1099 *   in an incorrect initialization of pointers.
1100 *   The implementation of the MailBox manipulation in put_mb_info protects against the absence of a MailBox
1101 *   based on IFB_MBSize, IFB_MBWp and ifbp->IFB_MBRp. This has ramifications on the initialization of the
1102 *   MailBox via hcf_put_info with the CFG_REG_MB type, but it prevents dependency on the "NULL-"ness of
1103 *   IFB_MBp.
1104 *
1105 *.NOTICE
1106 *   There are a number of problems when asserting and logging hcf_connect, e.g.
1107 *    - Asserting on re-entrancy of hcf_connect by means of
1108 *    "HCFASSERT( (ifbp->IFB_AssertTrace & HCF_ASSERT_CONNECT) == 0, 0 )" is not useful because IFB contents
1109 *    are undefined
1110 *    - Asserting before the IFB is cleared will cause mdd_assert() to interpret the garbage in IFB_AssertRtn
1111 *    as a routine address
1112 *   Therefore HCFTRACE nor HCFLOGENTRY is called by hcf_connect.
1113 *.ENDDOC                END DOCUMENTATION
1114 *
1115 ************************************************************************************************************/
1116int
1117hcf_connect( IFBP ifbp, hcf_io io_base )
1118{
1119        int         rc = HCF_SUCCESS;
1120        hcf_io      io_addr;
1121        hcf_32      prot_cnt;
1122        hcf_8       *q;
1123        LTV_STRCT   x;
1124#if HCF_ASSERT
1125        hcf_16 xa = ifbp->IFB_FWIdentity.typ;
1126        /* is assumed to cause an assert later on if hcf_connect is called without intervening hcf_disconnect.
1127         * xa == CFG_FW_IDENTITY in subsequent calls without preceding hcf_disconnect,
1128         * xa == 0 in subsequent calls with preceding hcf_disconnect,
1129         * xa == "garbage" (any value except CFG_FW_IDENTITY is acceptable) in the initial call
1130         */
1131#endif // HCF_ASSERT
1132
1133        if ( io_base == HCF_DISCONNECT ) {                  //disconnect
1134                io_addr = ifbp->IFB_IOBase;
1135                OPW( HREG_INT_EN, 0 );      //;?workaround against dying F/W on subsequent hcf_connect calls
1136        } else {                                            //connect                               /* 0 */
1137                io_addr = io_base;
1138        }
1139
1140#if 0 //;? if a subsequent hcf_connect is preceded by an hcf_disconnect the wakeup is not needed !!
1141#if HCF_SLEEP
1142        OUT_PORT_WORD( .....+HREG_IO, HREG_IO_WAKEUP_ASYNC );       //OPW not yet useable
1143        MSF_WAIT(800);                              // MSF-defined function to wait n microseconds.
1144        note that MSF_WAIT uses not yet defined!!!! IFB_IOBase and IFB_TickIni (via PROT_CNT_INI)
1145        so be careful if this code is restored
1146#endif // HCF_SLEEP
1147#endif // 0
1148
1149#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0    //switch clock back for SEEPROM access  !!!
1150        OUT_PORT_WORD( io_addr + HREG_CMD, HCMD_INI );          //OPW not yet useable
1151        prot_cnt = INI_TICK_INI;
1152        HCF_WAIT_WHILE( (IN_PORT_WORD( io_addr +  HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1153        OUT_PORT_WORD( (io_addr + HREG_IO), HREG_IO_SRESET );   //OPW not yet useable                   /* 2a*/
1154#endif // HCF_TYPE_PRELOADED
1155        for ( q = (hcf_8*)(&ifbp->IFB_Magic); q > (hcf_8*)ifbp; *--q = 0 ) /*NOP*/;                     /* 4 */
1156        ifbp->IFB_Magic     = HCF_MAGIC;
1157        ifbp->IFB_Version   = IFB_VERSION;
1158#if defined MSF_COMPONENT_ID //a new IFB demonstrates how dirty the solution is
1159        xxxx[xxxx_PRI_IDENTITY_OFFSET] = NULL;      //IFB_PRIIdentity placeholder   0xFD02
1160        xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = NULL;    //IFB_PRISup placeholder        0xFD03
1161#endif // MSF_COMPONENT_ID
1162#if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
1163        ifbp->IFB_TallyLen = 1 + 2 * (HCF_NIC_TAL_CNT + HCF_HCF_TAL_CNT);   //convert # of Tallies to L value for LTV
1164        ifbp->IFB_TallyTyp = CFG_TALLIES;           //IFB_TallyTyp: set T value
1165#endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
1166        ifbp->IFB_IOBase    = io_addr;              //set IO_Base asap, so asserts via HREG_SW_2 don't harm
1167        ifbp->IFB_IORange   = HREG_IO_RANGE;
1168        ifbp->IFB_CntlOpt   = USE_16BIT;
1169#if HCF_ASSERT
1170        assert_ifbp = ifbp;
1171        ifbp->IFB_AssertLvl = 1;
1172#if (HCF_ASSERT) & HCF_ASSERT_LNK_MSF_RTN
1173        if ( io_base != HCF_DISCONNECT ) {
1174                ifbp->IFB_AssertRtn = (MSF_ASSERT_RTNP)msf_assert;                                          /* 6 */
1175        }
1176#endif // HCF_ASSERT_LNK_MSF_RTN
1177#if (HCF_ASSERT) & HCF_ASSERT_MB                //build the structure to pass the assert info to hcf_put_info
1178        ifbp->IFB_AssertStrct.len = sizeof(ifbp->IFB_AssertStrct)/sizeof(hcf_16) - 1;
1179        ifbp->IFB_AssertStrct.typ = CFG_MB_INFO;
1180        ifbp->IFB_AssertStrct.base_typ = CFG_MB_ASSERT;
1181        ifbp->IFB_AssertStrct.frag_cnt = 1;
1182        ifbp->IFB_AssertStrct.frag_buf[0].frag_len =
1183                ( offsetof(IFB_STRCT, IFB_AssertLvl) - offsetof(IFB_STRCT, IFB_AssertLine) ) / sizeof(hcf_16);
1184        ifbp->IFB_AssertStrct.frag_buf[0].frag_addr = &ifbp->IFB_AssertLine;
1185#endif // HCF_ASSERT_MB
1186#endif // HCF_ASSERT
1187        IF_PROT_TIME( prot_cnt = ifbp->IFB_TickIni = INI_TICK_INI );
1188#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
1189        //!! No asserts before Reset-bit in HREG_IO is cleared
1190        OPW( HREG_IO, 0x0000 );                     //OPW useable                                       /* 2b*/
1191        HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1192        IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) );
1193        IF_PROT_TIME( if ( prot_cnt ) prot_cnt = ifbp->IFB_TickIni );
1194#endif // HCF_TYPE_PRELOADED
1195        //!! No asserts before Reset-bit in HREG_IO is cleared
1196        HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF0 ) ); //just to proof that the complete assert machinery is working
1197        HCFASSERT( xa != CFG_FW_IDENTITY, 0 );       // assert if hcf_connect is called without intervening hcf_disconnect.
1198        HCFASSERT( ((hcf_32)(void*)ifbp & (HCF_ALIGN-1) ) == 0, (hcf_32)(void*)ifbp );
1199        HCFASSERT( (io_addr & 0x003F) == 0, io_addr );
1200                                                //if Busy bit in Cmd register
1201        if (IPW( HREG_CMD ) & HCMD_BUSY ) {                                                             /* 8 */
1202                //.  Ack all to unblock a (possibly) blocked cmd pipe line
1203                OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
1204                                                //.  Wait for Busy bit drop  in Cmd register
1205                                                //.  Wait for Cmd  bit raise in Ev  register
1206                HCF_WAIT_WHILE( ( IPW( HREG_CMD ) & HCMD_BUSY ) && (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1207                IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) ); /* if prot_cnt == 0, cmd_exe will fail, causing DEFUNCT */
1208        }
1209        OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
1210#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0                                                        /*12*/
1211        (void)cmd_exe( ifbp, HCMD_INI, 0 );
1212#endif // HCF_TYPE_PRELOADED
1213        if ( io_base != HCF_DISCONNECT ) {
1214                rc = init( ifbp );                                                                          /*14*/
1215                if ( rc == HCF_SUCCESS ) {
1216                        x.len = 2;
1217                        x.typ = CFG_NIC_BUS_TYPE;
1218                        (void)hcf_get_info( ifbp, &x );
1219                        ifbp->IFB_BusType = x.val[0];
1220                        //CFG_NIC_BUS_TYPE not supported -> default 32 bits/DMA, MSF has to overrule via CFG_CNTL_OPT
1221                        if ( x.len == 0 || x.val[0] == 0x0002 || x.val[0] == 0x0003 ) {
1222#if (HCF_IO) & HCF_IO_32BITS
1223                                ifbp->IFB_CntlOpt &= ~USE_16BIT;            //reset USE_16BIT
1224#endif // HCF_IO_32BITS
1225#if HCF_DMA
1226                                ifbp->IFB_CntlOpt |= USE_DMA;               //SET DMA
1227#else
1228                                ifbp->IFB_IORange = 0x40 /*i.s.o. HREG_IO_RANGE*/;
1229#endif // HCF_DMA
1230                        }
1231                }
1232        } else HCFASSERT(  ( ifbp->IFB_Magic ^= HCF_MAGIC ) == 0, ifbp->IFB_Magic ) /*NOP*/;
1233        /* of above HCFASSERT only the side effect is needed, NOP in case HCFASSERT is dummy */
1234        ifbp->IFB_IOBase = io_base;                                                                     /* 0*/
1235        return rc;
1236} // hcf_connect
1237
1238#if HCF_DMA
1239/************************************************************************************************************
1240 * Function get_frame_lst
1241 *  - resolve the "last host-owned descriptor" problems when a descriptor list is reclaimed by the MSF.
1242 *
1243 * The FrameList to be reclaimed as well as the DescriptorList always start in IFB_FirstDesc[tx_rx_flag]
1244 * and this is always the "current" DELWA Descriptor.
1245 *
1246 * If a FrameList is available, the last descriptor of the FrameList to turned into a new DELWA Descriptor:
1247 *  - a copy is made from the information in the last descriptor of the FrameList into the current
1248 *    DELWA Descriptor
1249 *  - the remainder of the DescriptorList is detached from the copy by setting the next_desc_addr at NULL
1250 *  - the DMA control bits of the copy are cleared to do not confuse the MSF
1251 *  - the copy of the last descriptor (i.e. the "old" DELWA Descriptor) is chained to the prev Descriptor
1252 *    of the FrameList, thus replacing the original last Descriptor of the FrameList.
1253 *  - IFB_FirstDesc is changed to the address of that replaced (original) last descriptor of the FrameList,
1254 *    i.e. the "new" DELWA Descriptor.
1255 *
1256 * This function makes a copy of that last host-owned descriptor, so the MSF will get a copy of the descriptor.
1257 * On top of that, it adjusts DMA related fields in the IFB structure.
1258 // perform a copying-scheme to circumvent the 'last host owned descriptor cannot be reclaimed' limitation imposed by H2.5's DMA hardware design
1259 // a 'reclaim descriptor' should be available in the HCF:
1260 *
1261 * Returns: address of the first descriptor of the FrameList
1262 *
1263 8: Be careful once you start re-ordering the steps in the copy process, that it still works for cases
1264 *   of FrameLists of 1, 2 and more than 2 descriptors
1265 *
1266 * Input parameters:
1267 * tx_rx_flag      : specifies 'transmit' or 'receive' descriptor.
1268 *
1269 ************************************************************************************************************/
1270HCF_STATIC DESC_STRCT*
1271get_frame_lst( IFBP ifbp, int tx_rx_flag )
1272{
1273
1274        DESC_STRCT *head = ifbp->IFB_FirstDesc[tx_rx_flag];
1275        DESC_STRCT *copy, *p, *prev;
1276
1277        HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag );
1278                                                //if FrameList
1279        if ( head ) {
1280                                                //.  search for last descriptor of first FrameList
1281                p = prev = head;
1282                while ( ( p->BUF_SIZE & DESC_EOP ) == 0 && p->next_desc_addr ) {
1283                        if ( ( ifbp->IFB_CntlOpt & DMA_ENABLED ) == 0 ) {   //clear control bits when disabled
1284                                p->BUF_CNT &= DESC_CNT_MASK;
1285                        }
1286                        prev = p;
1287                        p = p->next_desc_addr;
1288                }
1289                                                //.  if DMA enabled
1290                if ( ifbp->IFB_CntlOpt & DMA_ENABLED ) {
1291                                                //.  .  if last descriptor of FrameList is DMA owned
1292                                                //.  .  or if FrameList is single (DELWA) Descriptor
1293                        if ( p->BUF_CNT & DESC_DMA_OWNED || head->next_desc_addr == NULL ) {
1294                                                //.  .  .  refuse to return FrameList to caller
1295                                head = NULL;
1296                        }
1297                }
1298        }
1299                                                //if returnable FrameList found
1300        if ( head ) {
1301                                                //.  if FrameList is single (DELWA) Descriptor (implies DMA disabled)
1302                if ( head->next_desc_addr == NULL ) {
1303                                                //.  .  clear DescriptorList
1304                        /*;?ifbp->IFB_LastDesc[tx_rx_flag] =*/ ifbp->IFB_FirstDesc[tx_rx_flag] = NULL;
1305                                                //.  else
1306                } else {
1307                                                //.  .  strip hardware-related bits from last descriptor
1308                                                //.  .  remove DELWA Descriptor from head of DescriptorList
1309                        copy = head;
1310                        head = head->next_desc_addr;
1311                                                //.   .  exchange first (Confined) and last (possibly imprisoned) Descriptor
1312                        copy->buf_phys_addr = p->buf_phys_addr;
1313                        copy->buf_addr = p->buf_addr;
1314                        copy->BUF_SIZE = p->BUF_SIZE &= DESC_CNT_MASK;  //get rid of DESC_EOP and possibly DESC_SOP
1315                        copy->BUF_CNT = p->BUF_CNT &= DESC_CNT_MASK;    //get rid of DESC_DMA_OWNED
1316#if (HCF_EXT) & HCF_DESC_STRCT_EXT
1317                        copy->DESC_MSFSup = p->DESC_MSFSup;
1318#endif // HCF_DESC_STRCT_EXT
1319                                                //.  .  turn into a DELWA Descriptor
1320                        p->buf_addr = NULL;
1321                                                //.  .  chain copy to prev                                          /* 8*/
1322                        prev->next_desc_addr = copy;
1323                                                //.  .  detach remainder of the DescriptorList from FrameList
1324                        copy->next_desc_addr = NULL;
1325                        copy->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
1326                                                //.  .  save the new start (i.e. DELWA Descriptor) in IFB_FirstDesc
1327                        ifbp->IFB_FirstDesc[tx_rx_flag] = p;
1328                }
1329                                                //.  strip DESC_SOP from first descriptor
1330                head->BUF_SIZE &= DESC_CNT_MASK;
1331                //head->BUF_CNT &= DESC_CNT_MASK;  get rid of DESC_DMA_OWNED
1332                head->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
1333        }
1334                                                //return the just detached FrameList (if any)
1335        return head;
1336} // get_frame_lst
1337
1338
1339/************************************************************************************************************
1340 * Function put_frame_lst
1341 *
1342 * This function
1343 *
1344 * Returns: address of the first descriptor of the FrameList
1345 *
1346 * Input parameters:
1347 * tx_rx_flag      : specifies 'transmit' or 'receive' descriptor.
1348 *
1349 * The following list should be kept in sync with hcf_dma_tx/rx_put, in order to get them in the WCI-spec !!!!
1350 * Assert fails if
1351 * - DMA is not enabled
1352 * - descriptor list is NULL
1353 * - a descriptor in the descriptor list is not double word aligned
1354 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1355 * - the DELWA descriptor is not a "singleton" DescriptorList.
1356 * - the DELWA descriptor is not the first Descriptor supplied
1357 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1358 * - Possibly more checks could be added !!!!!!!!!!!!!
1359
1360 *.NOTICE
1361 * The asserts marked with *sc* are really sanity checks for the HCF, they can (supposedly) not be influenced
1362 * by incorrect MSF behavior
1363
1364 // The MSF is required to supply the HCF with a single descriptor for MSF tx reclaim purposes.
1365 // This 'reclaim descriptor' can be recognized by the fact that its buf_addr field is zero.
1366 *********************************************************************************************
1367 * Although not required from a hardware perspective:
1368 * - make each descriptor in this rx-chain DMA-owned.
1369 * - Also set the count to zero. EOP and SOP bits are also cleared.
1370 *********************************************************************************************/
1371HCF_STATIC void
1372put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag )
1373{
1374        DESC_STRCT  *p = descp;
1375        hcf_16 port;
1376
1377        HCFASSERT( ifbp->IFB_CntlOpt & USE_DMA, ifbp->IFB_CntlOpt); //only hcf_dma_tx_put must also be DMA_ENABLED
1378        HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag );
1379        HCFASSERT( p , 0 );
1380
1381        while ( p ) {
1382                HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p );
1383                HCFASSERT( (p->BUF_CNT & ~DESC_CNT_MASK) == 0, p->BUF_CNT );
1384                HCFASSERT( (p->BUF_SIZE & ~DESC_CNT_MASK) == 0, p->BUF_SIZE );
1385                p->BUF_SIZE &= DESC_CNT_MASK;                   //!!this SHOULD be superfluous in case of correct MSF
1386                p->BUF_CNT &= tx_rx_flag == DMA_RX ? 0 : DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF
1387                p->BUF_CNT |= DESC_DMA_OWNED;
1388                if ( p->next_desc_addr ) {
1389//                      HCFASSERT( p->buf_addr && p->buf_phys_addr  && p->BUF_SIZE && +/- p->BUF_SIZE, ... );
1390                        HCFASSERT( p->next_desc_addr->desc_phys_addr, (hcf_32)p->next_desc_addr );
1391                        p->next_desc_phys_addr = p->next_desc_addr->desc_phys_addr;
1392                } else {                                    //
1393                        p->next_desc_phys_addr = 0;
1394                        if ( p->buf_addr == NULL ) {            // DELWA Descriptor
1395                                HCFASSERT( descp == p, (hcf_32)descp );  //singleton DescriptorList
1396                                HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_FirstDesc[tx_rx_flag]);
1397                                HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]);
1398                                descp->BUF_CNT = 0; //&= ~DESC_DMA_OWNED;
1399                                ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
1400// part of alternative ifbp->IFB_LastDesc[tx_rx_flag] = ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
1401                                                // if "recycling" a FrameList
1402                                                // (e.g. called from hcf_cntl( HCF_CNTL_ENABLE )
1403                                                // .  prepare for activation DMA controller
1404// part of alternative descp = descp->next_desc_addr;
1405                        } else {                                //a "real" FrameList, hand it over to the DMA engine
1406                                HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag], (hcf_32)descp );
1407                                HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag], (hcf_32)descp );
1408                                HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr == NULL,
1409                                           (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr);
1410//                              p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
1411                                ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr = descp;
1412                                ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_phys_addr = descp->desc_phys_addr;
1413                                port = HREG_RXDMA_PTR32;
1414                                if ( tx_rx_flag ) {
1415                                        p->BUF_SIZE |= DESC_EOP;    // p points at the last descriptor in the caller-supplied descriptor chain
1416                                        descp->BUF_SIZE |= DESC_SOP;
1417                                        port = HREG_TXDMA_PTR32;
1418                                }
1419                                OUT_PORT_DWORD( (ifbp->IFB_IOBase + port), descp->desc_phys_addr );
1420                        }
1421                        ifbp->IFB_LastDesc[tx_rx_flag] = p;
1422                }
1423                p = p->next_desc_addr;
1424        }
1425} // put_frame_lst
1426
1427
1428/************************************************************************************************************
1429 *
1430 *.MODULE        DESC_STRCT* hcf_dma_rx_get( IFBP ifbp )
1431 *.PURPOSE       decapsulate a message and provides that message to the MSF.
1432 *               reclaim all descriptors in the rx descriptor chain.
1433 *
1434 *.ARGUMENTS
1435 *   ifbp        address of the Interface Block
1436 *
1437 *.RETURNS
1438 *   pointer to a FrameList
1439 *
1440 *.DESCRIPTION
1441 * hcf_dma_rx_get is intended to  return a received frame when such a frame is deposited in Host memory by the
1442 * DMA engine. In addition hcf_dma_rx_get can be used to reclaim all descriptors in the rx descriptor chain
1443 * when the DMA Engine is disabled, e.g. as part of a driver unloading strategy.
1444 * hcf_dma_rx_get must be called repeatedly by the MSF when hcf_service_nic signals availability of a rx frame
1445 * through the HREG_EV_RDMAD flag of IFB_DmaPackets. The calling must stop when a NULL pointer is returned, at
1446 * which time the HREG_EV_RDMAD flag is also cleared by the HCF to arm the mechanism for the next frame
1447 * reception.
1448 * Regardless whether the DMA Engine is currently enabled (as controlled via hcf_cntl), if the DMA controller
1449 * deposited an Rx-frame in the Rx-DescriptorList, this frame is detached from the Rx-DescriptorList,
1450 * transformed into a FrameList (i.e.  updating the housekeeping fields in the descriptors) and returned to the
1451 * caller.
1452 * If no such Rx-frame is available in the Rx-DescriptorList, the behavior of hcf_dma_rx_get depends on the
1453 * status of the DMA Engine.
1454 * If the DMA Engine is enabled, a NULL pointer is returned.
1455 * If the DMA Engine is disabled, the following strategy is used:
1456 * - the complete Rx-DescriptorList is returned. The DELWA Descriptor is not part of the Rx-DescriptorList.
1457 * - If there is no Rx-DescriptorList, the DELWA Descriptor is returned.
1458 * - If there is no DELWA Descriptor, a NULL pointer is returned.
1459 *
1460 * If the MSF performs an disable/enable sequence without exhausting the Rx-DescriptorList as described above,
1461 * the enable command will reset all house keeping information, i.e. already received but not yet by the MSF
1462 * retrieved frames are lost and the next frame will be received starting with the oldest descriptor.
1463 *
1464 * The HCF can be used in 2 fashions: with and without decapsulation for data transfer.
1465 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1466 * If appropriate, decapsulation is done by moving some data inside the buffers and updating the descriptors
1467 * accordingly.
1468 *!! ;?????where did I describe why a simple manipulation with the count values does not suffice?
1469 *
1470 *.DIAGRAM
1471 *
1472 *.ENDDOC                END DOCUMENTATION
1473 *
1474 ************************************************************************************************************/
1475
1476DESC_STRCT*
1477hcf_dma_rx_get (IFBP ifbp)
1478{
1479        DESC_STRCT *descp;  // pointer to start of FrameList
1480
1481        descp = get_frame_lst( ifbp, DMA_RX );
1482        if ( descp && descp->buf_addr ) {
1483
1484                                                //skip decapsulation at confined descriptor
1485#if (HCF_ENCAP) == HCF_ENC
1486                int i;
1487                DESC_STRCT *p = descp->next_desc_addr;  //pointer to 2nd descriptor of frame
1488                HCFASSERT(p, 0);
1489                // The 2nd descriptor contains (maybe) a SNAP header plus part or whole of the payload.
1490                //determine decapsulation sub-flag in RxFS
1491                i = *(wci_recordp)&descp->buf_addr[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
1492                if ( i == HFS_STAT_TUNNEL ||
1493                     ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&p->buf_addr[HCF_DASA_SIZE] ) != ENC_TUNNEL )) {
1494                        // The 2nd descriptor contains a SNAP header plus part or whole of the payload.
1495                        HCFASSERT( p->BUF_CNT == (p->buf_addr[5] + (p->buf_addr[4]<<8) + 2*6 + 2 - 8), p->BUF_CNT );
1496                        // perform decapsulation
1497                        HCFASSERT(p->BUF_SIZE >=8, p->BUF_SIZE);
1498                        // move SA[2:5] in the second buffer to replace part of the SNAP header
1499                        for ( i=3; i >= 0; i--) p->buf_addr[i+8] = p->buf_addr[i];
1500                        // copy DA[0:5], SA[0:1] from first buffer to second buffer
1501                        for ( i=0; i<8; i++) p->buf_addr[i] = descp->buf_addr[HFS_ADDR_DEST + i];
1502                        // make first buffer shorter in count
1503                        descp->BUF_CNT = HFS_ADDR_DEST;
1504                }
1505        }
1506#endif // HCF_ENC
1507        if ( descp == NULL ) ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_RDMAD;  //;?could be integrated into get_frame_lst
1508        HCFLOGEXIT( HCF_TRACE_DMA_RX_GET );
1509        return descp;
1510} // hcf_dma_rx_get
1511
1512
1513/************************************************************************************************************
1514 *
1515 *.MODULE        void hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1516 *.PURPOSE       supply buffers for receive purposes.
1517 *               supply the Rx-DELWA descriptor.
1518 *
1519 *.ARGUMENTS
1520 *   ifbp        address of the Interface Block
1521 *   descp       address of a DescriptorList
1522 *
1523 *.RETURNS       N.A.
1524 *
1525 *.DESCRIPTION
1526 * This function is called by the MSF to supply the HCF with new/more buffers for receive purposes.
1527 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1528 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1529 * As a consequence, some additional constraints apply to the number of descriptor and the buffers associated
1530 * with the first 2 descriptors. Independent of the encapsulation feature, the COUNT fields are ignored.
1531 * A special case is the supplying of the DELWA descriptor, which must be supplied as the first descriptor.
1532 *
1533 * Assert fails if
1534 * - ifbp has a recognizable out-of-range value.
1535 * - NIC interrupts are not disabled while required by parameter action.
1536 * - in case decapsulation by the HCF is selected:
1537 *     - The first databuffer does not have the exact size corresponding with the RxFS up to the 802.3 DestAddr
1538 *       field (== 29 words).
1539 *     - The FrameList does not consists of at least 2 Descriptors.
1540 *     - The second databuffer does not have the minimum size of 8 bytes.
1541 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1542 *!! them in the WCI-spec !!!!
1543 * - DMA is not enabled
1544 * - descriptor list is NULL
1545 * - a descriptor in the descriptor list is not double word aligned
1546 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1547 * - the DELWA descriptor is not a "singleton" DescriptorList.
1548 * - the DELWA descriptor is not the first Descriptor supplied
1549 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1550 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1551 *
1552 *.DIAGRAM
1553 *
1554 *
1555 *.ENDDOC                END DOCUMENTATION
1556 *
1557 ************************************************************************************************************/
1558void
1559hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1560{
1561
1562        HCFLOGENTRY( HCF_TRACE_DMA_RX_PUT, 0xDA01 );
1563        HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
1564        HCFASSERT_INT;
1565
1566        put_frame_lst( ifbp, descp, DMA_RX );
1567#if HCF_ASSERT && (HCF_ENCAP) == HCF_ENC
1568        if ( descp->buf_addr ) {
1569                HCFASSERT( descp->BUF_SIZE == HCF_DMA_RX_BUF1_SIZE, descp->BUF_SIZE );
1570                HCFASSERT( descp->next_desc_addr, 0 ); // first descriptor should be followed by another descriptor
1571                // The second DB is for SNAP and payload purposes. It should be a minimum of 12 bytes in size.
1572                HCFASSERT( descp->next_desc_addr->BUF_SIZE >= 12, descp->next_desc_addr->BUF_SIZE );
1573        }
1574#endif // HCFASSERT / HCF_ENC
1575        HCFLOGEXIT( HCF_TRACE_DMA_RX_PUT );
1576} // hcf_dma_rx_put
1577
1578
1579/************************************************************************************************************
1580 *
1581 *.MODULE        DESC_STRCT* hcf_dma_tx_get( IFBP ifbp )
1582 *.PURPOSE       DMA mode: reclaims and decapsulates packets in the tx descriptor chain if:
1583 *                - A Tx packet has been copied from host-RAM into NIC-RAM by the DMA engine
1584 *                - The Hermes/DMAengine have been disabled
1585 *
1586 *.ARGUMENTS
1587 *   ifbp        address of the Interface Block
1588 *
1589 *.RETURNS
1590 *   pointer to a reclaimed Tx packet.
1591 *
1592 *.DESCRIPTION
1593 * impact of the disable command:
1594 * When a non-empty pool of Tx descriptors exists (created by means of hcf_dma_put_tx), the MSF
1595 * is supposed to empty that pool by means of hcf_dma_tx_get calls after the disable in an
1596 * disable/enable sequence.
1597 *
1598 *.DIAGRAM
1599 *
1600 *.NOTICE
1601 *
1602 *.ENDDOC                END DOCUMENTATION
1603 *
1604 ************************************************************************************************************/
1605DESC_STRCT*
1606hcf_dma_tx_get( IFBP ifbp )
1607{
1608        DESC_STRCT *descp;  // pointer to start of FrameList
1609
1610        descp = get_frame_lst( ifbp, DMA_TX );
1611        if ( descp && descp->buf_addr ) {
1612                                                //skip decapsulation at confined descriptor
1613#if (HCF_ENCAP) == HCF_ENC
1614                if ( ( descp->BUF_CNT == HFS_TYPE )) {
1615                        // perform decapsulation if needed
1616                        descp->next_desc_addr->buf_phys_addr -= HCF_DASA_SIZE;
1617                        descp->next_desc_addr->BUF_CNT       += HCF_DASA_SIZE;
1618                }
1619#endif // HCF_ENC
1620        }
1621        if ( descp == NULL ) {  //;?could be integrated into get_frame_lst
1622                ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_TDMAD;
1623        }
1624        HCFLOGEXIT( HCF_TRACE_DMA_TX_GET );
1625        return descp;
1626} // hcf_dma_tx_get
1627
1628
1629/************************************************************************************************************
1630 *
1631 *.MODULE        void hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
1632 *.PURPOSE       puts a packet in the Tx DMA queue in host ram and kicks off the TxDma engine.
1633 *               supply the Tx-DELWA descriptor.
1634 *
1635 *.ARGUMENTS
1636 *   ifbp        address of the Interface Block
1637 *   descp       address of Tx Descriptor Chain (i.e. a single Tx frame)
1638 *   tx_cntl     indicates MAC-port and (Hermes) options
1639 *
1640 *.RETURNS       N.A.
1641 *
1642 *.DESCRIPTION
1643 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1644 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1645 *
1646 * Regardless of the HCF_ENCAP system constant, the descriptor list created to describe the frame to be
1647 * transmitted, must supply space to contain the 802.11 header, preceding the actual frame to be transmitted.
1648 * Basically, this only supplies working storage to the HCF which passes this on to the DMA engine.
1649 * As a consequence the contents of this space do not matter.
1650 * Nevertheless BUF_CNT must take in account this storage.
1651 * This working space to contain the 802.11 header may not be fragmented, the first buffer must be
1652 * sufficiently large to contain at least the 802.11 header, i.e. HFS_ADDR_DEST (29 words or 0x3A bytes).
1653 * This way, the HCF can simply, regardless whether or not the HCF encapsulates the frame, write the parameter
1654 * tx_cntl at offset 0x36 (HFS_TX_CNTL) in the first buffer.
1655 * Note that it is allowed to have part or all of the actual frame represented by the first descriptor as long
1656 * as the requirement for storage for the 802.11 header is met, i.e. the 802.3 frame starts at offset
1657 * HFS_ADDR_DEST.
1658 * Except for the Assert on the 1st buffer in case of Encapsualtion, the SIZE fields are ignored.
1659 *
1660 * In case the encapsulation feature is compiled in, there are the following additional requirements.
1661 * o The BUF_CNT of the first buffer changes from a minimum of 0x3A bytes to exactly 0x3A, i.e. the workspace
1662 *   to store the 802.11 header
1663 * o The BUF_SIZE of the first buffer is at least the space needed to store the
1664 *   - 802.11 header (29 words)
1665 *   - 802.3 header, i.e. 12 bytes addressing information and 2 bytes length field
1666 *   - 6 bytes SNAP-header
1667 *   This results in 39 words or 0x4E bytes or HFS_TYPE.
1668 *   Note that if the BUF_SIZE is larger than 0x4E, this surplus is not used.
1669 * o The actual frame begins in the 2nd descriptor (which is already implied by the BUF_CNT == 0x3A requirement) and the associated buffer contains at least the 802.3 header, i.e. the 14 bytes representing addressing information and length/type field
1670 *
1671 *   When the HCF does not encapsulates (i.e. length/type field <= 1500),  no changes are made to descriptors
1672 *   or buffers.
1673 *
1674 *   When the HCF actually encapsulates (i.e. length/type field > 1500), it successively writes, starting at
1675 *   offset HFS_ADDR_DEST (0x3A) in the first buffer:
1676 *     - the 802.3 addressing information, copied from the begin of the second buffer
1677 *     - the frame length, derived from the total length of the individual fragments, corrected for the SNAP
1678 *       header length and Type field and ignoring the Destination Address, Source Address and Length field
1679 *     - the appropriate snap header (Tunnel or 1042, depending on the value of the type field).
1680 *
1681 *    The information in the first two descriptors is adjusted accordingly:
1682 *     - the first descriptor count is changed from 0x3A to 0x4E (HFS_TYPE), which matches 0x3A + 12 + 2 + 6
1683 *     - the second descriptor count is decreased by 12, being the moved addressing information
1684 *     - the second descriptor (physical) buffer address is increased by 12.
1685 *
1686 * When the descriptors are returned by hcf_dma_tx_get, the transformation of the first two descriptors is
1687 * undone.
1688 *
1689 * Under any of the above scenarios, the assert BUF_CNT <= BUF_SIZE must be true for all descriptors
1690 * In case of encapsulation, BUF_SIZE of the 1st descriptor is asserted to be at least HFS_TYPE (0x4E), so it is NOT tested.
1691 *
1692 * Assert fails if
1693 * - ifbp has a recognizable out-of-range value.
1694 * - tx_cntl has a recognizable out-of-range value.
1695 * - NIC interrupts are not disabled while required by parameter action.
1696 * - in case encapsulation by the HCF is selected:
1697 *     - The FrameList does not consists of at least 2 Descriptors.
1698 *     - The first databuffer does not contain exactly the (space for) the 802.11 header (== 28 words)
1699 *     - The first databuffer does not have a size to additionally accommodate the 802.3 header and the
1700 *       SNAP header of the frame after encapsulation (== 39 words).
1701 *     - The second databuffer does not contain at least DA, SA and 'type/length' (==14 bytes or 7 words)
1702 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1703 *!! them in the WCI-spec !!!!
1704 * - DMA is not enabled
1705 * - descriptor list is NULL
1706 * - a descriptor in the descriptor list is not double word aligned
1707 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1708 * - the DELWA descriptor is not a "singleton" DescriptorList.
1709 * - the DELWA descriptor is not the first Descriptor supplied
1710 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1711 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1712 *.DIAGRAM
1713 *
1714 *.NOTICE
1715 *
1716 *.ENDDOC                END DOCUMENTATION
1717 *
1718 *
1719 *1: Write tx_cntl parameter to HFS_TX_CNTL field into the Hermes-specific header in buffer 1
1720 *4: determine whether encapsulation is needed and write the type (tunnel or 1042) already at the appropriate
1721 *   offset in the 1st buffer
1722 *6: Build the encapsualtion enveloppe in the free space at the end of the 1st buffer
1723 *   - Copy DA/SA fields from the 2nd buffer
1724 *   - Calculate total length of the message (snap-header + type-field + the length of all buffer fragments
1725 *     associated with the 802.3 frame (i.e all descriptors except the first), but not the DestinationAddress,
1726 *     SourceAddress and length-field)
1727 *     Assert the message length
1728 *     Write length. Note that the message is in BE format, hence on LE platforms the length must be converted
1729 *     ;? THIS IS NOT WHAT CURRENTLY IS IMPLEMENTED
1730 *   - Write snap header. Note that the last byte of the snap header is NOT copied, that byte is already in
1731 *     place as result of the call to hcf_encap.
1732 *   Note that there are many ways to skin a cat. To express the offsets in the 1st buffer while writing
1733 *   the snap header, HFS_TYPE is chosen as a reference point to make it easier to grasp that the snap header
1734 *   and encapsualtion type are at least relative in the right.
1735 *8: modify 1st descriptor to reflect moved part of the 802.3 header + Snap-header
1736 *   modify 2nd descriptor to skip the moved part of the 802.3 header (DA/SA
1737 *10: set each descriptor to 'DMA owned',  clear all other control bits.
1738 *   Set SOP bit on first descriptor. Set EOP bit on last descriptor.
1739 *12: Either append the current frame to an existing descriptor list or
1740 *14: create a list beginning with the current frame
1741 *16: remember the new end of the list
1742 *20: hand the frame over to the DMA engine
1743 ************************************************************************************************************/
1744void
1745hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
1746{
1747        DESC_STRCT  *p = descp->next_desc_addr;
1748        int         i;
1749
1750#if HCF_ASSERT
1751        int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
1752        HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl );
1753#endif // HCF_ASSERT
1754        HCFLOGENTRY( HCF_TRACE_DMA_TX_PUT, 0xDA03 );
1755        HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
1756        HCFASSERT_INT;
1757        HCFASSERT( ( ifbp->IFB_CntlOpt & (USE_DMA|DMA_ENABLED) ) == (USE_DMA|DMA_ENABLED), ifbp->IFB_CntlOpt);
1758
1759        if ( descp->buf_addr ) {
1760                *(hcf_16*)(descp->buf_addr + HFS_TX_CNTL) = tx_cntl;                                            /*1*/
1761#if (HCF_ENCAP) == HCF_ENC
1762                HCFASSERT( descp->next_desc_addr, 0 );                                   //at least 2 descripors
1763                HCFASSERT( descp->BUF_CNT == HFS_ADDR_DEST, descp->BUF_CNT );    //exact length required for 1st buffer
1764                HCFASSERT( descp->BUF_SIZE >= HCF_DMA_TX_BUF1_SIZE, descp->BUF_SIZE );   //minimal storage for encapsulation
1765                HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT );                  //at least DA, SA and 'type' in 2nd buffer
1766
1767                descp->buf_addr[HFS_TYPE-1] = hcf_encap(&descp->next_desc_addr->buf_addr[HCF_DASA_SIZE]);       /*4*/
1768                if ( descp->buf_addr[HFS_TYPE-1] != ENC_NONE ) {
1769                        for ( i=0; i < HCF_DASA_SIZE; i++ ) {                                                       /*6*/
1770                                descp->buf_addr[i + HFS_ADDR_DEST] = descp->next_desc_addr->buf_addr[i];
1771                        }
1772                        i = sizeof(snap_header) + 2 - ( 2*6 + 2 );
1773                        do { i += p->BUF_CNT; } while ( ( p = p->next_desc_addr ) != NULL );
1774                        *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = CNV_END_SHORT(i);   //!! this converts on ALL platforms, how does that relate to the CCX code
1775                        for ( i=0; i < sizeof(snap_header) - 1; i++) {
1776                                descp->buf_addr[HFS_TYPE - sizeof(snap_header) + i] = snap_header[i];
1777                        }
1778                        descp->BUF_CNT = HFS_TYPE;                                                                  /*8*/
1779                        descp->next_desc_addr->buf_phys_addr    += HCF_DASA_SIZE;
1780                        descp->next_desc_addr->BUF_CNT          -= HCF_DASA_SIZE;
1781                }
1782#endif // HCF_ENC
1783        }
1784        put_frame_lst( ifbp, descp, DMA_TX );
1785        HCFLOGEXIT( HCF_TRACE_DMA_TX_PUT );
1786} // hcf_dma_tx_put
1787
1788#endif // HCF_DMA
1789
1790/************************************************************************************************************
1791 *
1792 *.MODULE        hcf_8 hcf_encap( wci_bufp type )
1793 *.PURPOSE       test whether RFC1042 or Bridge-Tunnel encapsulation is needed.
1794 *
1795 *.ARGUMENTS
1796 *   type        (Far) pointer to the (Big Endian) Type/Length field in the message
1797 *
1798 *.RETURNS
1799 *   ENC_NONE        len/type is "len" ( (BIG_ENDIAN)type <= 1500 )
1800 *   ENC_TUNNEL      len/type is "type" and 0x80F3 or 0x8137
1801 *   ENC_1042        len/type is "type" but not 0x80F3 or 0x8137
1802 *
1803 *.CONDITIONS
1804 *   NIC Interrupts  d.c
1805 *
1806 *.DESCRIPTION
1807 * Type must point to the Len/Type field of the message, this is the 2-byte field immediately after the 6 byte
1808 * Destination Address and 6 byte Source Address.  The 2 successive bytes addressed by type are interpreted as
1809 * a Big Endian value.  If that value is less than or equal to 1500, the message is assumed to be in 802.3
1810 * format.  Otherwise the message is assumed to be in Ethernet-II format.  Depending on the value of Len/Typ,
1811 * Bridge Tunnel or RFC1042 encapsulation is needed.
1812 *
1813 *.DIAGRAM
1814 *
1815 *  1:   presume 802.3, hence preset return value at ENC_NONE
1816 *  2:   convert type from "network" Endian format to native Endian
1817 *  4:   the litmus test to distinguish type and len.
1818 *   The hard code "magic" value of 1500 is intentional and should NOT be replaced by a mnemonic because it is
1819 *   not related at all to the maximum frame size supported  by the Hermes.
1820 *  6:   check type against:
1821 *       0x80F3  //AppleTalk Address Resolution Protocol (AARP)
1822 *       0x8137  //IPX
1823 *   to determine the type of encapsulation
1824 *
1825 *.ENDDOC                END DOCUMENTATION
1826 *
1827 ************************************************************************************************************/
1828HCF_STATIC hcf_8
1829hcf_encap( wci_bufp type )
1830{
1831
1832        hcf_8   rc = ENC_NONE;                                                                                  /* 1 */
1833        hcf_16  t = (hcf_16)(*type<<8) + *(type+1);                                                             /* 2 */
1834
1835        if ( t > 1500 ) {                                                                                   /* 4 */
1836                if ( t == 0x8137 || t == 0x80F3 ) {
1837                        rc = ENC_TUNNEL;                                                                            /* 6 */
1838                } else {
1839                        rc = ENC_1042;
1840                }
1841        }
1842        return rc;
1843} // hcf_encap
1844
1845
1846/************************************************************************************************************
1847 *
1848 *.MODULE        int hcf_get_info( IFBP ifbp, LTVP ltvp )
1849 *.PURPOSE       Obtains transient and persistent configuration information from the Card and from the HCF.
1850 *
1851 *.ARGUMENTS
1852 *   ifbp        address of the Interface Block
1853 *   ltvp        address of LengthTypeValue structure specifying the "what" and the "how much" of the
1854 *               information to be collected from the HCF or from the Hermes
1855 *
1856 *.RETURNS
1857 *   HCF_ERR_LEN         The provided buffer was too small
1858 *   HCF_SUCCESS         Success
1859 *!! via cmd_exe ( type >= CFG_RID_FW_MIN )
1860 *   HCF_ERR_NO_NIC      NIC removed during retrieval
1861 *   HCF_ERR_TIME_OUT    Expected Hermes event did not occur in expected time
1862 *!! via cmd_exe and setup_bap (type >= CFG_RID_FW_MIN )
1863 *   HCF_ERR_DEFUNCT_... HCF is in defunct mode (bits 0x7F reflect cause)
1864 *
1865 *.DESCRIPTION
1866 * The T-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the RID wanted. The RID
1867 * information identified by the T-field is copied into the V-field.
1868 * On entry, the L-field specifies the size of the buffer, also called the "Initial DataLength". The L-value
1869 * includes the size of the T-field, but not the size of the L-field itself.
1870 * On return, the L-field indicates the number of words actually contained by the Type and Value fields.
1871 * As the size of the Type field in the LTV-record is included in the "Initial DataLength" of the record, the
1872 * V-field can contain at most "Initial DataLength" - 1 words of data.
1873 * Copying stops if either the complete Information is copied or if the number of words indicated by the
1874 * "Initial DataLength" were copied.  The "Initial DataLength" acts as a safe guard against Configuration
1875 * Information blocks that have different sizes for different F/W versions, e.g. when later versions support
1876 * more tallies than earlier versions.
1877 * If the size of Value field of the RID exceeds the size of the "Initial DataLength" -1, as much data
1878 * as fits is copied, and an error status of HCF_ERR_LEN is returned.
1879 *
1880 * It is the responsibility of the MSF to detect card removal and re-insertion and not call the HCF when the
1881 * NIC is absent. The MSF cannot, however, timely detect a Card removal if the Card is removed while
1882 * hcf_get_info is in progress.  Therefore, the HCF performs its own check on Card presence after the read
1883 * operation of the NIC data.  If the Card is not present or removed during the execution of hcf_get_info,
1884 * HCF_ERR_NO_NIC is returned and the content of the Data Buffer is unpredictable. This check is not performed
1885 * in case of the "HCF embedded" pseudo RIDs like CFG_TALLIES.
1886 *
1887 * Assert fails if
1888 * - ifbp has a recognizable out-of-range value.
1889 * - reentrancy, may be  caused by calling hcf_functions without adequate protection
1890 *   against NIC interrupts or multi-threading.
1891 * - ltvp is a NULL pointer.
1892 * - length field of the LTV-record at entry is 0 or 1 or has an excessive value (i.e. exceeds HCF_MAX_LTV).
1893 * - type field of the LTV-record is invalid.
1894 *
1895 *.DIAGRAM
1896 *   Hcf_get_mb_info copies the contents of the oldest MailBox Info block in the MailBox to PC RAM. If len is
1897 *   less than the size of the MailBox Info block, only as much as fits in the PC RAM buffer is copied. After
1898 *   the copying the MailBox Read pointer is updated to point to the next MailBox Info block, hence the
1899 *   remainder of an "oversized" MailBox Info block is lost. The truncation of the MailBox Info block is NOT
1900 *   reflected in the return status. Note that hcf_get_info guarantees the length of the PC RAM buffer meets
1901 *   the minimum requirements of at least 2, so no PC RAM buffer overrun.
1902 *
1903 *   Calling hcf_get_mb_info when their is no MailBox Info block available or when there is no MailBox at all,
1904 *   results in a "NULL" MailBox Info block.
1905 *
1906 *12:    see NOTICE
1907 *17: The return status of cmd_wait and the first hcfio_in_string can be ignored, because when one fails, the
1908 *   other fails via the IFB_DefunctStat mechanism
1909 *20: "HCFASSERT( rc == HCF_SUCCESS, rc )" is not suitable because this will always trigger as side effect of
1910 *   the HCFASSERT in hcf_put_info which calls hcf_get_info to figure out whether the RID exists at all.
1911
1912 *.NOTICE
1913 *
1914 *   "HCF embedded" pseudo RIDs:
1915 *   CFG_MB_INFO, CFG_TALLIES, CFG_DRV_IDENTITY, CFG_DRV_SUP_RANGE, CFG_DRV_ACT_RANGES_PRI,
1916 *   CFG_DRV_ACT_RANGES_STA, CFG_DRV_ACT_RANGES_HSI
1917 *   Note the HCF_ERR_LEN is NOT adequately set, when L >= 2 but less than needed
1918 *
1919 *   Remarks: Transfers operation information and transient and persistent configuration information from the
1920 *   Card and from the HCF to the MSF.
1921 *   The exact layout of the provided data structure depends on the action code. Copying stops if either the
1922 *   complete Configuration Information is copied or if the number of bytes indicated by len is copied.  Len
1923 *   acts as a safe guard against Configuration Information blocks which have different sizes for different
1924 *   Hermes versions, e.g. when later versions support more tallies than earlier versions. It is a conscious
1925 *   decision that unused parts of the PC RAM buffer are not cleared.
1926 *
1927 *   Remarks: The only error against which is protected is the "Read error" as result of Card removal. Only the
1928 *   last hcf_io_string need to be protected because if the first fails the second will fail as well. Checking
1929 *   for cmd_exe errors is supposed superfluous because problems in cmd_exe are already caught or will be
1930 *   caught by hcf_enable.
1931 *
1932 *   CFG_MB_INFO: copy the oldest MailBox Info Block or the "null" block if none available.
1933 *
1934 *   The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
1935 *     - during the pseudo-asynchronous Hermes commands (diagnose, download) only CFG_MB_INFO is acceptable
1936 *     - some codes (e.g. CFG_TALLIES) are explicitly handled by the HCF which implies that these codes
1937 *       are valid
1938 *     - all other codes in the range 0xFC00 through 0xFFFF are passed to the Hermes.  The Hermes returns an
1939 *       LTV record with a zero value in the L-field for all Typ-codes it does not recognize. This is
1940 *       defined and intended behavior, so HCF_ASSERT does not catch on this phenomena.
1941 *     - all remaining codes are invalid and cause an ASSERT.
1942 *
1943 *.CONDITIONS
1944 * In case of USB, HCF_MAX_MSG ;?USED;? to limit the amount of data that can be retrieved via hcf_get_info.
1945 *
1946 *
1947 *.ENDDOC                END DOCUMENTATION
1948 *
1949 ************************************************************************************************************/
1950int
1951hcf_get_info( IFBP ifbp, LTVP ltvp )
1952{
1953
1954        int         rc = HCF_SUCCESS;
1955        hcf_16      len = ltvp->len;
1956        hcf_16      type = ltvp->typ;
1957        wci_recordp p = &ltvp->len;     //destination word pointer (in LTV record)
1958        hcf_16      *q = NULL;              /* source word pointer  Note!! DOS COM can't cope with FAR
1959                                             * as a consequence MailBox must be near which is usually true anyway
1960                                             */
1961        int         i;
1962
1963        HCFLOGENTRY( HCF_TRACE_GET_INFO, ltvp->typ );
1964        HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
1965        HCFASSERT_INT;
1966        HCFASSERT( ltvp, 0 );
1967        HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, MERGE_2( ltvp->typ, ltvp->len ) );
1968
1969        ltvp->len = 0;                              //default to: No Info Available
1970        //filter out all specials
1971        for ( i = 0; ( q = xxxx[i] ) != NULL && q[1] != type; i++ ) /*NOP*/;
1972
1973#if HCF_TALLIES
1974        if ( type == CFG_TALLIES ) {                                                    /*3*/
1975                (void)hcf_action( ifbp, HCF_ACT_TALLIES );
1976                q = (hcf_16*)&ifbp->IFB_TallyLen;
1977        }
1978#endif // HCF_TALLIES
1979
1980        if ( type == CFG_MB_INFO ) {
1981                if ( ifbp->IFB_MBInfoLen ) {
1982                        if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) {
1983                                ifbp->IFB_MBRp = 0; //;?Probably superfluous
1984                        }
1985                        q = &ifbp->IFB_MBp[ifbp->IFB_MBRp];
1986                        ifbp->IFB_MBRp += *q + 1;   //update read pointer
1987                        if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) {
1988                                ifbp->IFB_MBRp = 0;
1989                        }
1990                        ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp];
1991                }
1992        }
1993
1994        if ( q != NULL ) {                      //a special or CFG_TALLIES or CFG_MB_INFO
1995                i = min( len, *q ) + 1;             //total size of destination (including T-field)
1996                while ( i-- ) {
1997                        *p++ = *q;
1998#if (HCF_TALLIES) & HCF_TALLIES_RESET
1999                        if ( q > &ifbp->IFB_TallyTyp && type == CFG_TALLIES ) {
2000                                *q = 0;
2001                        }
2002#endif // HCF_TALLIES_RESET
2003                        q++;
2004                }
2005        } else {                                // not a special nor CFG_TALLIES nor CFG_MB_INFO
2006                if ( type == CFG_CNTL_OPT ) {                                       //read back effective options
2007                        ltvp->len = 2;
2008                        ltvp->val[0] = ifbp->IFB_CntlOpt;
2009#if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2010                } else if ( type == CFG_PROD_DATA ) {  //only needed for some test tool on top of H-II NDIS driver
2011                        hcf_io      io_port;
2012                        wci_bufp    pt;                 //pointer with the "right" type, just to help ease writing macros with embedded assembly
2013                        OPW( HREG_AUX_PAGE, (hcf_16)(PLUG_DATA_OFFSET >> 7) );
2014                        OPW( HREG_AUX_OFFSET, (hcf_16)(PLUG_DATA_OFFSET & 0x7E) );
2015                        io_port = ifbp->IFB_IOBase + HREG_AUX_DATA;     //to prevent side effects of the MSF-defined macro
2016                        p = ltvp->val;                  //destination char pointer (in LTV record)
2017                        i = len - 1;
2018                        if (i > 0 ) {
2019                                pt = (wci_bufp)p;   //just to help ease writing macros with embedded assembly
2020                                IN_PORT_STRING_8_16( io_port, pt, i ); //space used by T: -1
2021                        }
2022                } else if ( type == CFG_CMD_HCF ) {
2023#define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2024                        HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd );       //only Hermes register access supported
2025                        if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
2026                                HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode );        //Check Register space
2027                                ltvp->len = min( len, 4 );                              //RESTORE ltv length
2028                                P->add_info = IPW( P->mode );
2029                        }
2030#undef P
2031#endif // HCF_EXT_NIC_ACCESS
2032#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2033                } else if (type == CFG_FW_PRINTF) {
2034                        rc = fw_printf(ifbp, (CFG_FW_PRINTF_STRCT*)ltvp);
2035#endif // HCF_ASSERT_PRINTF
2036                } else if ( type >= CFG_RID_FW_MIN ) {
2037//;? by using HCMD_BUSY option when calling cmd_exe, using a get_frag with length 0 just to set up the
2038//;? BAP and calling cmd_cmpl, you could merge the 2 Busy waits. Whether this really helps (and what
2039//;? would be the optimal sequence in cmd_exe and get_frag) would have to be MEASURED
2040                /*17*/  if ( ( rc = cmd_exe( ifbp, HCMD_ACCESS, type ) ) == HCF_SUCCESS &&
2041                                 ( rc = setup_bap( ifbp, type, 0, IO_IN ) ) == HCF_SUCCESS ) {
2042                                get_frag( ifbp, (wci_bufp)&ltvp->len, 2*len+2 BE_PAR(2) );
2043                                if ( IPW( HREG_STAT ) == 0xFFFF ) {                 //NIC removal test
2044                                        ltvp->len = 0;
2045                                        HCFASSERT( DO_ASSERT, type );
2046                                }
2047                        }
2048        /*12*/  } else HCFASSERT( DO_ASSERT, type ) /*NOP*/; //NOP in case HCFASSERT is dummy
2049        }
2050        if ( len < ltvp->len ) {
2051                ltvp->len = len;
2052                if ( rc == HCF_SUCCESS ) {
2053                        rc = HCF_ERR_LEN;
2054                }
2055        }
2056        HCFASSERT( rc == HCF_SUCCESS || ( rc == HCF_ERR_LEN && ifbp->IFB_AssertTrace & 1<<HCF_TRACE_PUT_INFO ),
2057                   MERGE_2( type, rc ) );                                                                /*20*/
2058        HCFLOGEXIT( HCF_TRACE_GET_INFO );
2059        return rc;
2060} // hcf_get_info
2061
2062
2063/************************************************************************************************************
2064 *
2065 *.MODULE        int hcf_put_info( IFBP ifbp, LTVP ltvp )
2066 *.PURPOSE       Transfers operation and configuration information to the Card and to the HCF.
2067 *
2068 *.ARGUMENTS
2069 *   ifbp        address of the Interface Block
2070 *   ltvp        specifies the RID (as defined by Hermes I/F) or pseudo-RID (as defined by WCI)
2071 *
2072 *.RETURNS
2073 *   HCF_SUCCESS
2074 *!! via cmd_exe
2075 *   HCF_ERR_NO_NIC      NIC removed during data retrieval
2076 *   HCF_ERR_TIME_OUT    Expected F/W event did not occur in time
2077 *   HCF_ERR_DEFUNCT_...
2078 *!! via download                CFG_DLNV_START <= type <= CFG_DL_STOP
2079 *!! via put_info                CFG_RID_CFG_MIN <= type <= CFG_RID_CFG_MAX
2080 *!! via put_frag
2081 *
2082 *.DESCRIPTION
2083 * The L-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the size of the buffer.
2084 * The L-value includes the size of the T-field, but not the size of the L-field.
2085 * The T- field specifies the RID placed in the V-field by the MSF.
2086 *
2087 * Not all CFG-codes can be used for hcf_put_info.  The following CFG-codes are valid for hcf_put_info:
2088 * o One of the CFG-codes in the group "Network Parameters, Static Configuration Entities"
2089 * Changes made by hcf_put_info to CFG_codes in this group will not affect the F/W
2090 * and HCF behavior until hcf_cntl_port( HCF_PORT_ENABLE) is called.
2091 * o One of the CFG-codes in the group "Network Parameters, Dynamic Configuration Entities"
2092 * Changes made by hcf_put_info to CFG_codes will affect the F/W and HCF behavior immediately.
2093 * o CFG_PROG.
2094 * This code is used to initiate and terminate the process to download data either to
2095 * volatile or to non-volatile RAM on the NIC as well as for the actual download.
2096 * o CFG-codes related to the HCF behavior.
2097 * The related CFG-codes are:
2098 *  - CFG_REG_MB
2099 *  - CFG_REG_ASSERT_RTNP
2100 *  - CFG_REG_INFO_LOG
2101 *  - CFG_CMD_NIC
2102 *  - CFG_CMD_DONGLE
2103 *  - CFG_CMD_HCF
2104 *  - CFG_NOTIFY
2105 *
2106 * All LTV-records "unknown" to the HCF are forwarded to the F/W.
2107 *
2108 * Assert fails if
2109 * - ifbp has a recognizable out-of-range value.
2110 * - ltvp is a NULL pointer.
2111 * - hcf_put_info was called without prior call to hcf_connect
2112 * - type field of the LTV-record is invalid, i.e. neither HCF nor F/W can handle the value.
2113 * - length field of the LTV-record at entry is less than 1 or exceeds MAX_LTV_SIZE.
2114 * - registering a MailBox with size less than 60 or a non-aligned buffer address is used.
2115 * - reentrancy, may be  caused by calling hcf_functions without adequate protection against
2116 *   NIC interrupts or multi-threading.
2117 *
2118 *.DIAGRAM
2119 *
2120 *.NOTICE
2121 *   Remarks:  In case of Hermes Configuration LTVs, the codes for the type are "cleverly" chosen to be
2122 *   identical to the RID. Hermes Configuration information is copied from the provided data structure into the
2123 *   Card.
2124 *   In case of HCF Configuration LTVs, the type values are chosen in a range which does not overlap the
2125 *   RID-range.
2126 *
2127 *20:
2128 *
2129 *.ENDDOC                END DOCUMENTATION
2130 *
2131 ************************************************************************************************************/
2132
2133int
2134hcf_put_info( IFBP ifbp, LTVP ltvp )
2135{
2136        int rc = HCF_SUCCESS;
2137
2138        HCFLOGENTRY( HCF_TRACE_PUT_INFO, ltvp->typ );
2139        HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
2140        HCFASSERT_INT;
2141        HCFASSERT( ltvp, 0 );
2142        HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, ltvp->len );
2143
2144                                                //all codes between 0xFA00 and 0xFCFF are passed to Hermes
2145#if (HCF_TYPE) & HCF_TYPE_WPA
2146        {
2147                hcf_16 i;
2148                hcf_32 FAR * key_p;
2149
2150                if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY || ltvp->typ == CFG_ADD_TKIP_MAPPED_KEY ) {
2151                        key_p = (hcf_32*)((CFG_ADD_TKIP_MAPPED_KEY_STRCT FAR *)ltvp)->tx_mic_key;
2152                        i = TX_KEY;     //i.e. TxKeyIndicator == 1, KeyID == 0
2153                        if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY ) {
2154                                key_p = (hcf_32*)((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tx_mic_key;
2155                                i = CNV_LITTLE_TO_SHORT(((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tkip_key_id_info);
2156                        }
2157                        if ( i & TX_KEY ) { /* TxKeyIndicator == 1
2158                                               (either really set by MSF in case of DEFAULT or faked by HCF in case of MAPPED ) */
2159                                ifbp->IFB_MICTxCntl = (hcf_16)( HFS_TX_CNTL_MIC | (i & KEY_ID )<<8 );
2160                                ifbp->IFB_MICTxKey[0] = CNV_LONGP_TO_LITTLE( key_p );
2161                                ifbp->IFB_MICTxKey[1] = CNV_LONGP_TO_LITTLE( (key_p+1) );
2162                        }
2163                        i = ( i & KEY_ID ) * 2;
2164                        ifbp->IFB_MICRxKey[i]   = CNV_LONGP_TO_LITTLE( (key_p+2) );
2165                        ifbp->IFB_MICRxKey[i+1] = CNV_LONGP_TO_LITTLE( (key_p+3) );
2166                }
2167#define P ((CFG_REMOVE_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)
2168                if ( ( ltvp->typ == CFG_REMOVE_TKIP_MAPPED_KEY )    ||
2169                     ( ltvp->typ == CFG_REMOVE_TKIP_DEFAULT_KEY &&
2170                       ( (ifbp->IFB_MICTxCntl >> 8) & KEY_ID ) == CNV_SHORT_TO_LITTLE(P->tkip_key_id )
2171                             )
2172                        ) { ifbp->IFB_MICTxCntl = 0; }      //disable MIC-engine
2173#undef P
2174        }
2175#endif // HCF_TYPE_WPA
2176
2177        if ( ltvp->typ == CFG_PROG ) {
2178                rc = download( ifbp, (CFG_PROG_STRCT FAR *)ltvp );
2179        } else switch (ltvp->typ) {
2180#if (HCF_ASSERT) & HCF_ASSERT_RT_MSF_RTN
2181                case CFG_REG_ASSERT_RTNP:                                         //Register MSF Routines
2182#define P ((CFG_REG_ASSERT_RTNP_STRCT FAR *)ltvp)
2183                        ifbp->IFB_AssertRtn = P->rtnp;
2184//                      ifbp->IFB_AssertLvl = P->lvl;       //TODO not yet supported so default is set in hcf_connect
2185                        HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF1 ) );   //just to proof that the complete assert machinery is working
2186#undef P
2187                        break;
2188#endif // HCF_ASSERT_RT_MSF_RTN
2189#if (HCF_EXT) & HCF_EXT_INFO_LOG
2190                case CFG_REG_INFO_LOG:                                            //Register Log filter
2191                        ifbp->IFB_RIDLogp = ((CFG_RID_LOG_STRCT FAR*)ltvp)->recordp;
2192                        break;
2193#endif // HCF_EXT_INFO_LOG
2194                case CFG_CNTL_OPT:                                                //overrule option
2195                        HCFASSERT( ( ltvp->val[0] & ~(USE_DMA | USE_16BIT) ) == 0, ltvp->val[0] );
2196                        if ( ( ltvp->val[0] & USE_DMA ) == 0 ) ifbp->IFB_CntlOpt &= ~USE_DMA;
2197                        ifbp->IFB_CntlOpt |=  ltvp->val[0] & USE_16BIT;
2198                        break;
2199
2200                case CFG_REG_MB:                                                  //Register MailBox
2201#define P ((CFG_REG_MB_STRCT FAR *)ltvp)
2202                        HCFASSERT( ( (hcf_32)P->mb_addr & 0x0001 ) == 0, (hcf_32)P->mb_addr );
2203                        HCFASSERT( (P)->mb_size >= 60, (P)->mb_size );
2204                        ifbp->IFB_MBp = P->mb_addr;
2205                        /* if no MB present, size must be 0 for ;?the old;? put_info_mb to work correctly */
2206                        ifbp->IFB_MBSize = ifbp->IFB_MBp == NULL ? 0 : P->mb_size;
2207                        ifbp->IFB_MBWp = ifbp->IFB_MBRp = 0;
2208                        ifbp->IFB_MBp[0] = 0;                                           //flag the MailBox as empty
2209                        ifbp->IFB_MBInfoLen = 0;
2210                        HCFASSERT( ifbp->IFB_MBSize >= 60 || ifbp->IFB_MBp == NULL, ifbp->IFB_MBSize );
2211#undef P
2212                        break;
2213                case CFG_MB_INFO:                                                 //store MailBoxInfoBlock
2214                        rc = put_info_mb( ifbp, (CFG_MB_INFO_STRCT FAR *)ltvp );
2215                        break;
2216
2217#if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2218                case CFG_CMD_NIC:
2219#define P ((CFG_CMD_NIC_STRCT FAR *)ltvp)
2220                        OPW( HREG_PARAM_2, P->parm2 );
2221                        OPW( HREG_PARAM_1, P->parm1 );
2222                        rc = cmd_exe( ifbp, P->cmd, P->parm0 );
2223                        P->hcf_stat = (hcf_16)rc;
2224                        P->stat = IPW( HREG_STAT );
2225                        P->resp0 = IPW( HREG_RESP_0 );
2226                        P->resp1 = IPW( HREG_RESP_1 );
2227                        P->resp2 = IPW( HREG_RESP_2 );
2228                        P->ifb_err_cmd = ifbp->IFB_ErrCmd;
2229                        P->ifb_err_qualifier = ifbp->IFB_ErrQualifier;
2230#undef P
2231                        break;
2232                case CFG_CMD_HCF:
2233#define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2234                        HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd );       //only Hermes register access supported
2235                        if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
2236                                HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode );        //Check Register space
2237                                OPW( P->mode, P->add_info);
2238                        }
2239#undef P
2240                        break;
2241#endif // HCF_EXT_NIC_ACCESS
2242
2243#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2244                case CFG_FW_PRINTF_BUFFER_LOCATION:
2245                        ifbp->IFB_FwPfBuff = *(CFG_FW_PRINTF_BUFFER_LOCATION_STRCT*)ltvp;
2246                        break;
2247#endif // HCF_ASSERT_PRINTF
2248
2249                default:                      //pass everything unknown above the "FID" range to the Hermes or Dongle
2250                        rc = put_info( ifbp, ltvp );
2251                }
2252        //DO NOT !!! HCFASSERT( rc == HCF_SUCCESS, rc )                                             /* 20 */
2253        HCFLOGEXIT( HCF_TRACE_PUT_INFO );
2254        return rc;
2255} // hcf_put_info
2256
2257
2258/************************************************************************************************************
2259 *
2260 *.MODULE        int hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
2261 *.PURPOSE       All: decapsulate a message.
2262 *               pre-HermesII.5: verify MIC.
2263 *               non-USB, non-DMA mode: Transfer a message from the NIC to the Host and acknowledge reception.
2264 *               USB: Transform a message from proprietary USB format to 802.3 format
2265 *
2266 *.ARGUMENTS
2267 *   ifbp        address of the Interface Block
2268 *   descp       Pointer to the Descriptor List location.
2269 *   offset      USB: not used
2270 *               non-USB: specifies the beginning of the data to be obtained (0 corresponds with DestAddr field
2271 *               of frame).
2272 *
2273 *.RETURNS
2274 *   HCF_SUCCESS         No WPA error ( or HCF_ERR_MIC already reported by hcf_service_nic)
2275 *   HCF_ERR_MIC         message contains an erroneous MIC ( HCF_SUCCESS is reported if HCF_ERR_MIC is already
2276 *                       reported by hcf_service_nic)
2277 *   HCF_ERR_NO_NIC      NIC removed during data retrieval
2278 *   HCF_ERR_DEFUNCT...
2279 *
2280 *.DESCRIPTION
2281 * The Receive Message Function can be executed by the MSF to obtain the Data Info fields of the message that
2282 * is reported to be available by the Service NIC Function.
2283 *
2284 * The Receive Message Function copies the message data available in the Card memory into a buffer structure
2285 * provided by the MSF.
2286 * Only data of the message indicated by the Service NIC Function can be obtained.
2287 * Execution of the Service NIC function may result in the availability of a new message, but it definitely
2288 * makes the message reported by the preceding Service NIC function, unavailable.
2289 *
2290 * in non-USB/non-DMA mode, hcf_rcv_msg starts the copy process at the (non-negative) offset requested by the
2291 * parameter offset, relative to HFS_ADDR_DEST, e.g offset 0 starts copying from the Destination Address, the
2292 * very begin of the 802.3 frame message. Offset must either lay within the part of the 802.3 frame as stored
2293 * by hcf_service_nic in the lookahead buffer or be just behind it, i.e. the first byte not yet read.
2294 * When offset is within lookahead, data is copied from lookahead.
2295 * When offset is beyond lookahead, data is read directly from RxFS in NIC with disregard of the actual value
2296 * of offset
2297 *
2298 *.NOTICE:
2299 * o at entry: look ahead buffer as passed with hcf_service_nic is still accessible and unchanged
2300 * o at exit: Receive Frame in NIC memory is released
2301 *
2302 * Description:
2303 * Starting at the byte indicated by the Offset value, the bytes are copied from the Data Info
2304 * Part of the current Receive Frame Structure to the Host memory data buffer structure
2305 * identified by descp.
2306 * The maximum value for Offset is the number of characters of the 802.3 frame read into the
2307 * look ahead buffer by hcf_service_nic (i.e. the look ahead buffer size minus
2308 * Control and 802.11 fields)
2309 * If Offset is less than the maximum value, copying starts from the look ahead buffer till the
2310 * end of that buffer is reached
2311 * Then (or if the maximum value is specified for Offset), the
2312 * message is directly copied from NIC memory to Host memory.
2313 * If an invalid (i.e. too large) offset is specified, an assert catches but the buffer contents are
2314 * undefined.
2315 * Copying stops if either:
2316 * o the end of the 802.3 frame is reached
2317 * o the Descriptor with a NULL pointer in the next_desc_addr field is reached
2318 *
2319 * When the copying stops, the receiver is ack'ed, thus freeing the NIC memory where the frame is stored
2320 * As a consequence, hcf_rcv_msg can only be called once for any particular Rx frame.
2321 *
2322 * For the time being (PCI Bus mastering not yet supported), only the following fields of each
2323 * of the descriptors in the descriptor list must be set by the MSF:
2324 * o buf_cntl.buf_dim[1]
2325 * o *next_desc_addr
2326 * o *buf_addr
2327 * At return from hcf_rcv_msg, the field buf_cntl.buf_dim[0] of the used Descriptors reflects
2328 * the number of bytes in the buffer corresponding with the Descriptor.
2329 * On the last used Descriptor, buf_cntl.buf_dim[0] is less or equal to buf_cntl.buf_dim[1].
2330 * On all preceding Descriptors buf_cntl.buf_dim[0] is equal to buf_cntl.buf_dim[1].
2331 * On all succeeding (unused) Descriptors, buf_cntl.buf_dim[0] is zero.
2332 * Note: this I/F is based on the assumptions how the I/F needed for PCI Bus mastering will
2333 * be, so it may change.
2334 *
2335 * The most likely handling of HCF_ERR_NO_NIC by the MSF is to drop the already copied
2336 * data as elegantly as possible under the constraints and requirements posed by the (N)OS.
2337 * If no received Frame Structure is pending, "Success" rather than "Read error" is returned.
2338 * This error constitutes a logic flaw in the MSF
2339 * The HCF can only catch a minority of this
2340 * type of errors
2341 * Based on consistency ideas, the HCF catches none of these errors.
2342 *
2343 * Assert fails if
2344 * - ifbp has a recognizable out-of-range value
2345 * - there is no unacknowledged Rx-message available
2346 * - offset is out of range (outside look ahead buffer)
2347 * - descp is a NULL pointer
2348 * - any of the descriptors is not double word aligned
2349 * - reentrancy, may be  caused by calling hcf_functions without adequate protection
2350 *   against NIC interrupts or multi-threading.
2351 * - Interrupts are enabled.
2352 *
2353 *.DIAGRAM
2354 *
2355 *.NOTICE
2356 * - by using unsigned int as type for offset, no need to worry about negative offsets
2357 * - Asserting on being enabled/present is superfluous, since a non-zero IFB_lal implies that hcf_service_nic
2358 *   was called and detected a Rx-message. A zero IFB_lal will set the BUF_CNT field of at least the first
2359 *   descriptor to zero.
2360 *
2361 *.ENDDOC                END DOCUMENTATION
2362 *
2363 ************************************************************************************************************/
2364int
2365hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
2366{
2367        int         rc = HCF_SUCCESS;
2368        wci_bufp    cp;                                     //char oriented working pointer
2369        hcf_16      i;
2370        int         tot_len = ifbp->IFB_RxLen - offset;     //total length
2371        wci_bufp    lap = ifbp->IFB_lap + offset;           //start address in LookAhead Buffer
2372        hcf_16      lal = ifbp->IFB_lal - offset;           //available data within LookAhead Buffer
2373        hcf_16      j;
2374
2375        HCFLOGENTRY( HCF_TRACE_RCV_MSG, offset );
2376        HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
2377        HCFASSERT_INT;
2378        HCFASSERT( descp, HCF_TRACE_RCV_MSG );
2379        HCFASSERT( ifbp->IFB_RxLen, HCF_TRACE_RCV_MSG );
2380        HCFASSERT( ifbp->IFB_RxLen >= offset, MERGE_2( offset, ifbp->IFB_RxLen ) );
2381        HCFASSERT( ifbp->IFB_lal >= offset, offset );
2382        HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADA );
2383
2384        if ( tot_len < 0 ) {
2385                lal = 0; tot_len = 0;               //suppress all copying activity in the do--while loop
2386        }
2387        do {                                    //loop over all available fragments
2388                // obnoxious hcf.c(1480) : warning C4769: conversion of near pointer to long integer
2389                HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp );
2390                cp = descp->buf_addr;
2391                j = min( (hcf_16)tot_len, descp->BUF_SIZE );    //minimum of "what's` available" and fragment size
2392                descp->BUF_CNT = j;
2393                tot_len -= j;                       //adjust length still to go
2394                if ( lal ) {                        //if lookahead Buffer not yet completely copied
2395                        i = min( lal, j );              //minimum of "what's available" in LookAhead and fragment size
2396                        lal -= i;                       //adjust length still available in LookAhead
2397                        j -= i;                         //adjust length still available in current fragment
2398                        /*;? while loop could be improved by moving words but that is complicated on platforms with
2399                         * alignment requirements*/
2400                        while ( i-- ) *cp++ = *lap++;
2401                }
2402                if ( j ) {  //if LookAhead Buffer exhausted but still space in fragment, copy directly from NIC RAM
2403                        get_frag( ifbp, cp, j BE_PAR(0) );
2404                        CALC_RX_MIC( cp, j );
2405                }
2406        } while ( ( descp = descp->next_desc_addr ) != NULL );
2407#if (HCF_TYPE) & HCF_TYPE_WPA
2408        if ( ifbp->IFB_RxFID ) {
2409                rc = check_mic( ifbp );             //prevents MIC error report if hcf_service_nic already consumed all
2410        }
2411#endif // HCF_TYPE_WPA
2412        (void)hcf_action( ifbp, HCF_ACT_RX_ACK );       //only 1 shot to get the data, so free the resources in the NIC
2413        HCFASSERT( rc == HCF_SUCCESS, rc );
2414        HCFLOGEXIT( HCF_TRACE_RCV_MSG );
2415        return rc;
2416} // hcf_rcv_msg
2417
2418
2419/************************************************************************************************************
2420 *
2421 *.MODULE        int hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
2422 *.PURPOSE       Encapsulate a message and append padding and MIC.
2423 *               non-USB: Transfers the resulting message from Host to NIC and initiates transmission.
2424 *               USB: Transfer resulting message into a flat buffer.
2425 *
2426 *.ARGUMENTS
2427 *   ifbp        address of the Interface Block
2428 *   descp       pointer to the DescriptorList or NULL
2429 *   tx_cntl     indicates MAC-port and (Hermes) options
2430 *                   HFS_TX_CNTL_SPECTRALINK
2431 *                   HFS_TX_CNTL_PRIO
2432 *                   HFS_TX_CNTL_TX_OK
2433 *                   HFS_TX_CNTL_TX_EX
2434 *                   HFS_TX_CNTL_TX_DELAY
2435 *                   HFS_TX_CNTL_TX_CONT
2436 *                   HCF_PORT_0               MAC Port 0 (default)
2437 *                   HCF_PORT_1 (AP only)     MAC Port 1
2438 *                   HCF_PORT_2 (AP only)     MAC Port 2
2439 *                   HCF_PORT_3 (AP only)     MAC Port 3
2440 *                   HCF_PORT_4 (AP only)     MAC Port 4
2441 *                   HCF_PORT_5 (AP only)     MAC Port 5
2442 *                   HCF_PORT_6 (AP only)     MAC Port 6
2443 *
2444 *.RETURNS
2445 *   HCF_SUCCESS
2446 *   HCF_ERR_DEFUNCT_..
2447 *   HCF_ERR_TIME_OUT
2448 *
2449 *.DESCRIPTION:
2450 * The Send Message Function embodies 2 functions:
2451 * o transfers a message (including MAC header) from the provided buffer structure in Host memory to the Transmit
2452 * Frame Structure (TxFS) in NIC memory.
2453 * o Issue a send command to the F/W to actually transmit the contents of the TxFS.
2454 *
2455 * Control is based on the Resource Indicator IFB_RscInd.
2456 * The Resource Indicator is maintained by the HCF and should only be interpreted but not changed by the MSF.
2457 * The MSF must check IFB_RscInd to be non-zero before executing the call to the Send Message Function.
2458 * When no resources are available, the MSF must handle the queuing of the Transmit frame and check the
2459 * Resource Indicator periodically after calling hcf_service_nic.
2460 *
2461 * The Send Message Functions transfers a message to NIC memory when it is called with a non-NULL descp.
2462 * Before the Send Message Function is invoked this way, the Resource Indicator (IFB_RscInd) must be checked.
2463 * If the Resource is not available, Send Message Function execution must be postponed until after processing of
2464 * a next hcf_service_nic it appears that the Resource has become available.
2465 * The message is copied from the buffer structure identified by descp to the NIC.
2466 * Copying stops if a NULL pointer in the next_desc_addr field is reached.
2467 * Hcf_send_msg does not check for transmit buffer overflow, because the F/W does this protection.
2468 * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2469 *
2470 * The Send Message Function activates the F/W to actually send the message to the medium when the
2471 * HFS_TX_CNTL_TX_DELAY bit of the tx_cntl parameter is not set.
2472 * If the descp parameter of the current call is non-NULL, the message as represented by descp is send.
2473 * If the descp parameter of the current call is NULL, and if the preceding call of the Send Message Function had
2474 * a non-NULL descp and the preceding call had the HFS_TX_CNTL_TX_DELAY bit of tx_cntl set, then the message as
2475 * represented by the descp of the preceding call is send.
2476 *
2477 * Hcf_send_msg supports encapsulation (see HCF_ENCAP) of Ethernet-II frames.
2478 * An Ethernet-II frame is transferred to the Transmit Frame structure as an 802.3 frame.
2479 * Hcf_send_msg distinguishes between an 802.3 and an Ethernet-II frame by looking at the data length/type field
2480 * of the frame. If this field contains a value larger than 1514, the frame is considered to be an Ethernet-II
2481 * frame, otherwise it is treated as an 802.3 frame.
2482 * To ease implementation of the HCF, this type/type field must be located in the first descriptor structure,
2483 * i.e. the 1st fragment must have a size of at least 14 (to contain DestAddr, SrcAddr and Len/Type field).
2484 * An Ethernet-II frame is encapsulated by inserting a SNAP header between the addressing information and the
2485 * type field.  This insertion is transparent for the MSF.
2486 * The HCF contains a fixed table that stores a number of types. If the value specified by the type/type field
2487 * occurs in this table, Bridge Tunnel Encapsulation is used, otherwise RFC1042 encapsulation is used.
2488 * Bridge Tunnel uses    AA AA 03 00 00 F8 as SNAP header,
2489 * RFC1042 uses  AA AA 03 00 00 00 as SNAP header.
2490 * The table currently contains:
2491 * 0 0x80F3  AppleTalk Address Resolution Protocol (AARP)
2492 * 0 0x8137  IPX
2493 *
2494 * The algorithm to distinguish between 802.3 and Ethernet-II frames limits the maximum length for frames of
2495 * 802.3 frames to 1514 bytes.
2496 * Encapsulation can be suppressed by means of the system constant HCF_ENCAP, e.g. to support proprietary
2497 * protocols with 802.3 like frames with a size larger than 1514 bytes.
2498 *
2499 * In case the HCF encapsulates the frame, the number of bytes that is actually transmitted is determined by the
2500 * cumulative value of the buf_cntl.buf_dim[0] fields.
2501 * In case the HCF does not encapsulate the frame, the number of bytes that is actually transmitted is not
2502 * determined by the cumulative value of the buf_cntl.buf_dim[DESC_CNTL_CNT] fields of the desc_strct's but by
2503 * the Length field of the 802.3 frame.
2504 * If there is a conflict between the cumulative value of the buf_cntl.buf_dim[0] fields and the
2505 * 802.3 Length field the 802.3 Length field determines the number of bytes actually transmitted by the NIC while
2506 * the cumulative value of the buf_cntl.buf_dim[0] fields determines the position of the MIC, hence a mismatch
2507 * will result in MIC errors on the Receiving side.
2508 * Currently this problem is flagged on the Transmit side by an Assert.
2509 * The following fields of each of the descriptors in the descriptor list must be set by the MSF:
2510 * o buf_cntl.buf_dim[0]
2511 * o *next_desc_addr
2512 * o *buf_addr
2513 *
2514 * All bits of the tx_cntl parameter except HFS_TX_CNTL_TX_DELAY and the HCF_PORT# bits are passed to the F/W via
2515 * the HFS_TX_CNTL field of the TxFS.
2516 *
2517 * Note that hcf_send_msg does not detect NIC absence.  The MSF is supposed to have its own -platform dependent-
2518 * way to recognize card removal/insertion.
2519 * The total system must be robust against card removal and there is no principal difference between card removal
2520 * just after hcf_send_msg returns but before the actual transmission took place or sometime earlier.
2521 *
2522 * Assert fails if
2523 * - ifbp has a recognizable out-of-range value
2524 * - descp is a NULL pointer
2525 * - no resources for PIF available.
2526 * - Interrupts are enabled.
2527 * - reentrancy, may be  caused by calling hcf_functions without adequate protection
2528 *   against NIC interrupts or multi-threading.
2529 *
2530 *.DIAGRAM
2531 *4: for the normal case (i.e. no HFS_TX_CNTL_TX_DELAY option active), a fid is acquired via the
2532 *   routine get_fid.  If no FID is acquired, the remainder is skipped without an error notification.  After
2533 *   all, the MSF is not supposed to call hcf_send_msg when no Resource is available.
2534 *7: The ControlField of the TxFS is written.  Since put_frag can only return the fatal Defunct or "No NIC", the
2535 *   return status can be ignored because when it fails, cmd_wait will fail as well.  (see also the note on the
2536 *   need for a return code below).
2537 *   Note that HFS_TX_CNTL has different values for H-I, H-I/WPA and H-II and HFS_ADDR_DEST has different
2538 *   values for H-I (regardless of WPA) and H-II.
2539 *   By writing 17, 1 or 2 ( implying 16, 0 or 1 garbage word after HFS_TX_CNTL) the BAP just gets to
2540 *   HFS_ADDR_DEST for H-I, H-I/WPA and H-II respectively.
2541 *10: if neither encapsulation nor MIC calculation is needed, splitting the first fragment in two does not
2542 *   really help but it makes the flow easier to follow to do not optimize on this difference
2543 *
2544 *   hcf_send_msg checks whether the frame is an Ethernet-II rather than an "official" 802.3 frame.
2545 *   The E-II check is based on the length/type field in the MAC header. If this field has a value larger than
2546 *   1500, E-II is assumed. The implementation of this test fails if the length/type field is not in the first
2547 *   descriptor.  If E-II is recognized, a SNAP header is inserted. This SNAP header represents either RFC1042
2548 *   or Bridge-Tunnel encapsulation, depending on the return status of the support routine hcf_encap.
2549 *
2550 *.NOTICE
2551 *   hcf_send_msg leaves the responsibility to only send messages on enabled ports at the MSF level.
2552 *   This is considered the strategy which is sufficiently adequate for all "robust" MSFs, have the least
2553 *   processor utilization and being still acceptable robust at the WCI !!!!!
2554 *
2555 *   hcf_send_msg does not NEED a return value to report NIC absence or removal during the execution of
2556 *   hcf_send_msg(), because the MSF and higher layers must be able to cope anyway with the NIC being removed
2557 *   after a successful completion of hcf_send_msg() but before the actual transmission took place.
2558 *   To accommodate user expectations the current implementation does report NIC absence.
2559 *   Defunct blocks all NIC access and will (also) be reported on a number of other calls.
2560 *
2561 *   hcf_send_msg does not check for transmit buffer overflow because the Hermes does this protection.
2562 *   In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2563 *   Note that this possibly results in the transmission of incomplete frames.
2564 *
2565 *   After some deliberation with F/W team, it is decided that - being in the twilight zone of not knowing
2566 *   whether the problem at hand is an MSF bug, HCF buf, F/W bug, H/W malfunction or even something else - there
2567 *   is no "best thing to do" in case of a failing send, hence the HCF considers the TxFID ownership to be taken
2568 *   over by the F/W and hopes for an Allocate event in due time
2569 *
2570 *.ENDDOC                END DOCUMENTATION
2571 *
2572 ************************************************************************************************************/
2573int
2574hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
2575{
2576        int         rc = HCF_SUCCESS;
2577        DESC_STRCT  *p /* = descp*/;        //working pointer
2578        hcf_16      len;                    // total byte count
2579        hcf_16      i;
2580
2581        hcf_16      fid = 0;
2582
2583        HCFASSERT( ifbp->IFB_RscInd || descp == NULL, ifbp->IFB_RscInd );
2584        HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADB );
2585
2586        HCFLOGENTRY( HCF_TRACE_SEND_MSG, tx_cntl );
2587        HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
2588        HCFASSERT_INT;
2589        /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
2590         * so skip */
2591        HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp );
2592#if HCF_ASSERT
2593        {   int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
2594                HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl );
2595        }
2596#endif // HCF_ASSERT
2597
2598        if ( descp ) ifbp->IFB_TxFID = 0;               //cancel a pre-put message
2599
2600        /* the following initialization code is redundant for a pre-put message
2601         * but moving it inside the "if fid" logic makes the merging with the
2602         * USB flow awkward
2603         */
2604#if (HCF_TYPE) & HCF_TYPE_WPA
2605        tx_cntl |= ifbp->IFB_MICTxCntl;
2606#endif // HCF_TYPE_WPA
2607        fid = ifbp->IFB_TxFID;
2608        if (fid == 0 && ( fid = get_fid( ifbp ) ) != 0 )        /* 4 */
2609                /* skip the next compound statement if:
2610                   - pre-put message or
2611                   - no fid available (which should never occur if the MSF adheres to the WCI)
2612                */
2613        {       // to match the closing curly bracket of above "if" in case of HCF_TYPE_USB
2614                                                //calculate total length ;? superfluous unless CCX or Encapsulation
2615                len = 0;
2616                p = descp;
2617                do len += p->BUF_CNT; while ( ( p = p->next_desc_addr ) != NULL );
2618                p = descp;
2619//;?            HCFASSERT( len <= HCF_MAX_MSG, len );
2620        /*7*/   (void)setup_bap( ifbp, fid, HFS_TX_CNTL, IO_OUT );
2621#if (HCF_TYPE) & HCF_TYPE_TX_DELAY
2622                HCFASSERT( ( descp != NULL ) ^ ( tx_cntl & HFS_TX_CNTL_TX_DELAY ), tx_cntl );
2623                if ( tx_cntl & HFS_TX_CNTL_TX_DELAY ) {
2624                        tx_cntl &= ~HFS_TX_CNTL_TX_DELAY;       //!!HFS_TX_CNTL_TX_DELAY no longer available
2625                        ifbp->IFB_TxFID = fid;
2626                        fid = 0;                                //!!fid no longer available, be careful when modifying code
2627                }
2628#endif // HCF_TYPE_TX_DELAY
2629                OPW( HREG_DATA_1, tx_cntl ) ;
2630                OPW( HREG_DATA_1, 0 );
2631
2632                HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT );
2633                                                /* assume DestAddr/SrcAddr/Len/Type ALWAYS contained in 1st fragment
2634                                                 * otherwise life gets too cumbersome for MIC and Encapsulation !!!!!!!!
2635                 if ( p->BUF_CNT >= 14 ) {   alternatively: add a safety escape !!!!!!!!!!!! }   */
2636
2637                CALC_TX_MIC( NULL, -1 );        //initialize MIC
2638        /*10*/  put_frag( ifbp, p->buf_addr, HCF_DASA_SIZE BE_PAR(0) ); //write DA, SA with MIC calculation
2639                CALC_TX_MIC( p->buf_addr, HCF_DASA_SIZE );      //MIC over DA, SA
2640                CALC_TX_MIC( null_addr, 4 );        //MIC over (virtual) priority field
2641
2642                                                //if encapsulation needed
2643#if (HCF_ENCAP) == HCF_ENC
2644                                                //write length (with SNAP-header,Type, without //DA,SA,Length ) no MIC calc.
2645                if ( ( snap_header[sizeof(snap_header)-1] = hcf_encap( &p->buf_addr[HCF_DASA_SIZE] ) ) != ENC_NONE ) {
2646                        OPW( HREG_DATA_1, CNV_END_SHORT( len + (sizeof(snap_header) + 2) - ( 2*6 + 2 ) ) );
2647                                                //write splice with MIC calculation
2648                        put_frag( ifbp, snap_header, sizeof(snap_header) BE_PAR(0) );
2649                        CALC_TX_MIC( snap_header, sizeof(snap_header) );    //MIC over 6 byte SNAP
2650                        i = HCF_DASA_SIZE;
2651                } else
2652#endif // HCF_ENC
2653                {
2654                        OPW( HREG_DATA_1, *(wci_recordp)&p->buf_addr[HCF_DASA_SIZE] );
2655                        i = 14;
2656                }
2657                                                //complete 1st fragment starting with Type with MIC calculation
2658                put_frag( ifbp, &p->buf_addr[i], p->BUF_CNT - i BE_PAR(0) );
2659                CALC_TX_MIC( &p->buf_addr[i], p->BUF_CNT - i );
2660
2661                                                //do the remaining fragments with MIC calculation
2662                while ( ( p = p->next_desc_addr ) != NULL ) {
2663                        /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
2664                         * so skip */
2665                        HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p );
2666                        put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) );
2667                        CALC_TX_MIC( p->buf_addr, p->BUF_CNT );
2668                }
2669                                                //pad message, finalize MIC calculation and write MIC to NIC
2670                put_frag_finalize( ifbp );
2671        }
2672        if ( fid ) {
2673        /*16*/  rc = cmd_exe( ifbp, HCMD_BUSY | HCMD_TX | HCMD_RECL, fid );
2674                ifbp->IFB_TxFID = 0;
2675                /* probably this (i.e. no RscInd AND "HREG_EV_ALLOC") at this point in time occurs so infrequent,
2676                 * that it might just as well be acceptable to skip this
2677                 * "optimization" code and handle that additional interrupt once in a while
2678                 */
2679// 180 degree error in logic ;? #if ALLOC_15
2680        /*20*/  if ( ifbp->IFB_RscInd == 0 ) {
2681                        ifbp->IFB_RscInd = get_fid( ifbp );
2682                }
2683// #endif // ALLOC_15
2684        }
2685//      HCFASSERT( level::ifbp->IFB_RscInd, ifbp->IFB_RscInd );
2686        HCFLOGEXIT( HCF_TRACE_SEND_MSG );
2687        return rc;
2688} // hcf_send_msg
2689
2690
2691/************************************************************************************************************
2692 *
2693 *.MODULE        int hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
2694 *.PURPOSE       Services (most) NIC events.
2695 *               Provides received message
2696 *               Provides status information.
2697 *
2698 *.ARGUMENTS
2699 *   ifbp        address of the Interface Block
2700 *  In non-DMA mode:
2701 *   bufp        address of char buffer, sufficiently large to hold the first part of the RxFS up through HFS_TYPE
2702 *   len         length in bytes of buffer specified by bufp
2703 *               value between HFS_TYPE + 2 and HFS_ADDR_DEST + HCF_MAX_MSG
2704 *
2705 *.RETURNS
2706 *   HCF_SUCCESS
2707 *   HCF_ERR_MIC message contains an erroneous MIC (only if frame fits completely in bufp)
2708 *
2709 *.DESCRIPTION
2710 *
2711 * MSF-accessible fields of Result Block
2712 * - IFB_RxLen           0 or Frame size.
2713 * - IFB_MBInfoLen       0 or the L-field of the oldest MBIB.
2714 * - IFB_RscInd
2715 * - IFB_HCF_Tallies     updated if a corresponding event occurred.
2716 * - IFB_NIC_Tallies     updated if a Tally Info frame received from the NIC.
2717 * - IFB_DmaPackets
2718 * - IFB_TxFsStat
2719 * - IFB_TxFsSwSup
2720 * - IFB_LinkStat        reflects new link status or 0x0000 if no change relative to previous hcf_service_nic call.
2721or
2722* - IFB_LinkStat        link status, 0x8000 reflects change relative to previous hcf_service_nic call.
2723*
2724* When IFB_MBInfoLen is non-zero, at least one MBIB is available.
2725*
2726* IFB_RxLen reflects the number of received bytes in 802.3 view (Including DestAddr, SrcAddr and Length,
2727* excluding MIC-padding, MIC and sum check) of active Rx Frame Structure. If no Rx Data s available, IFB_RxLen
2728* equals 0x0000.
2729* Repeated execution causes the Service NIC Function to provide information about subsequently received
2730* messages, irrespective whether a hcf_rcv_msg or hcf_action(HCF_ACT_RX) is performed in between.
2731*
2732* When IFB_RxLen is non-zero, a Received Frame Structure is available to be routed to the protocol stack.
2733* When Monitor Mode is not active, this is guaranteed to be an error-free non-WMP frame.
2734* In case of Monitor Mode, it may also be a frame with an error or a WMP frame.
2735* Erroneous frames have a non-zero error-sub field in the HFS_STAT field in the look ahead buffer.
2736*
2737* If a Receive message is available in NIC RAM, the Receive Frame Structure is (partly) copied from the NIC to
2738* the buffer identified by bufp.
2739* Copying stops either after len bytes or when the complete 802.3 frame is copied.
2740* During the copying the message is decapsulated (if appropriate).
2741* If the frame is read completely by hcf_service_nic (i.e. the frame fits completely in the lookahead buffer),
2742* the frame is automatically ACK'ed to the F/W and still available via the look ahead buffer and hcf_rcv_msg.
2743* Only if the frame is read completely by hcf_service_nic, hcf_service_nic checks the MIC and sets the return
2744* status accordingly.  In this case, hcf_rcv_msg does not check the MIC.
2745*
2746* The MIC calculation algorithm works more efficient if the length of the look ahead buffer is
2747* such that it fits exactly 4 n bytes of the 802.3 frame, i.e. len == HFS_ADDR_DEST + 4*n.
2748*
2749* The Service NIC Function supports the NIC event service handling process.
2750* It performs the appropriate actions to service the NIC, such that the event cause is eliminated and related
2751* information is saved.
2752* The Service NIC Function is executed by the MSF ISR or polling routine as first step to determine the event
2753* cause(s).  It is the responsibility of the MSF to perform all not directly NIC related interrupt service
2754* actions, e.g. in a PC environment this includes servicing the PIC, and managing the Processor Interrupt
2755* Enabling/Disabling.
2756* In case of a polled based system, the Service NIC Function must be executed "frequently".
2757* The Service NIC Function may have side effects related to the Mailbox and Resource Indicator (IFB_RscInd).
2758*
2759* hcf_service_nic returns:
2760* - The length of the data in the available MBIB (IFB_MBInfoLen)
2761* - Changes in the link status (IFB_LinkStat)
2762* - The length of the data in the available Receive Frame Structure (IFB_RxLen)
2763* - updated IFB_RscInd
2764* - Updated Tallies
2765*
2766* hcf_service_nic is presumed to neither interrupt other HCF-tasks nor to be interrupted by other HCF-tasks.
2767* A way to achieve this is to precede hcf_service_nic as well as all other HCF-tasks with a call to
2768* hcf_action to disable the card interrupts and, after all work is completed, with a call to hcf_action to
2769* restore (which is not necessarily the same as enabling) the card interrupts.
2770* In case of a polled environment, it is assumed that the MSF programmer is sufficiently familiar with the
2771* specific requirements of that environment to translate the interrupt strategy to a polled strategy.
2772*
2773* hcf_service_nic services the following Hermes events:
2774* - HREG_EV_INFO        Asynchronous Information Frame
2775* - HREG_EV_INFO_DROP   WMAC did not have sufficient RAM to build Unsolicited Information Frame
2776* - HREG_EV_TX_EXC      (if applicable, i.e. selected via HCF_EXT_INT_TX_EX bit of HCF_EXT)
2777* - HREG_EV_SLEEP_REQ   (if applicable, i.e. selected via HCF_DDS/HCF_CDS bit of HCF_SLEEP)
2778* ** in non_DMA mode
2779* - HREG_EV_ALLOC       Asynchronous part of Allocation/Reclaim completed while out of resources at
2780*                       completion of hcf_send_msg/notify
2781* - HREG_EV_RX          the detection of the availability of received messages
2782*                       including WaveLAN Management Protocol (WMP) message processing
2783* ** in DMA mode
2784* - HREG_EV_RDMAD
2785* - HREG_EV_TDMAD
2786*!! hcf_service_nic does not service the following Hermes events:
2787*!!     HREG_EV_TX          (the "OK" Tx Event) is no longer supported by the WCI, if it occurs it is unclear
2788*!!                         what the cause is, so no meaningful strategy is available. Not acking the bit is
2789*!!                         probably the best help that can be given to the debugger.
2790*!!     HREG_EV_CMD         handled in cmd_wait.
2791*!!     HREG_EV_FW_DMA      (i.e. HREG_EV_RXDMA, HREG_EV_TXDMA and_EV_LPESC) are either not used or used
2792*!!                         between the F/W and the DMA engine.
2793*!!     HREG_EV_ACK_REG_READY is only applicable for H-II (i.e. not HII.5 and up, see DAWA)
2794*
2795*   If, in non-DMA mode, a Rx message is available, its length is reflected by the IFB_RxLen field of the IFB.
2796*   This length reflects the data itself and the Destination Address, Source Address and DataLength/Type field
2797*   but not the SNAP-header in case of decapsulation by the HCF.  If no message is available, IFB_RxLen is
2798*   zero.  Former versions of the HCF handled WMP messages and supported a "monitor" mode in hcf_service_nic,
2799*   which deposited certain or all Rx messages in the MailBox. The responsibility to handle these frames is
2800*   moved to the MSF. The HCF offers as supports hcf_put_info with CFG_MB_INFO as parameter to emulate the old
2801*   implementation under control of the MSF.
2802*
2803* **Rx Buffer free strategy
2804*   When hcf_service_nic reports the availability of a non-DMA message, the MSF can access that message by
2805*   means of hcf_rcv_msg. It must be prevented that the LAN Controller writes new data in the NIC buffer
2806*   before the MSF is finished with the current message. The NIC buffer is returned to the LAN Controller
2807*   when:
2808*    - the complete frame fits in the lookahead buffer or
2809*    - hcf_rcv_msg is called or
2810*    - hcf_action with HCF_ACT_RX is called or
2811*    - hcf_service_nic is called again
2812*   It can be reasoned that hcf_action( INT_ON ) should not be given before the MSF has completely processed
2813*   a reported Rx-frame. The reason is that the INT_ON action is guaranteed to cause a (Rx-)interrupt (the
2814*   MSF is processing a Rx-frame, hence the Rx-event bit in the Hermes register must be active). This
2815*   interrupt will cause hcf_service_nic to be called, which will cause the ack-ing of the "last" Rx-event
2816*   to the Hermes, causing the Hermes to discard the associated NIC RAM buffer.
2817* Assert fails if
2818* - ifbp is zero or other recognizable out-of-range value.
2819* - hcf_service_nic is called without a prior call to hcf_connect.
2820* - interrupts are enabled.
2821* - reentrancy, may be  caused by calling hcf_functions without adequate protection
2822*   against NIC interrupts or multi-threading.
2823*
2824*
2825*.DIAGRAM
2826*1: IFB_LinkStat is cleared, if a LinkStatus frame is received, IFB_LinkStat will be updated accordingly
2827*   by isr_info.
2828or
2829*1: IFB_LinkStat change indication is cleared. If a LinkStatus frame is received, IFB_LinkStat will be updated
2830*   accordingly by isr_info.
2831*2: IFB_RxLen must be cleared before the NIC presence check otherwise:
2832*    -  this value may stay non-zero if the NIC is pulled out at an inconvenient moment.
2833*    -  the RxAck on a zero-FID needs a zero-value for IFB_RxLen to work
2834*    Note that as side-effect of the hcf_action call, the remainder of Rx related info is re-initialized as
2835*    well.
2836*4: In case of Defunct mode, the information supplied by Hermes is unreliable, so the body of
2837*   hcf_service_nic is skipped. Since hcf_cntl turns into a NOP if Primary or Station F/W is incompatible,
2838*   hcf_service_nic is also skipped in those cases.
2839*   To prevent that hcf_service_nic reports bogus information to the MSF with all - possibly difficult to
2840*   debug - undesirable side effects, it is paramount to check the NIC presence. In former days the presence
2841*   test was based on the Hermes register HREG_SW_0. Since in HCF_ACT_INT_OFF is chosen for strategy based on
2842*   HREG_EV_STAT, this is now also used in hcf_service_nic. The motivation to change strategy is partly
2843*   due to inconsistent F/W implementations with respect to HREG_SW_0 manipulation around reset and download.
2844*   Note that in polled environments Card Removal is not detected by INT_OFF which makes the check in
2845*   hcf_service_nic even more important.
2846*8: The event status register of the Hermes is sampled
2847*   The assert checks for unexpected events ;?????????????????????????????????????.
2848*    - HREG_EV_INFO_DROP is explicitly excluded from the acceptable HREG_EV_STAT bits because it indicates
2849*      a too heavily loaded system.
2850*    - HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
2851*
2852*
2853*   HREG_EV_TX_EXC is accepted (via HREG_EV_TX_EXT) if and only if HCF_EXT_INT_TX_EX set in the HCF_EXT
2854*   definition at compile time.
2855*   The following activities are handled:
2856*    -  Alloc events are handled by hcf_send_msg (and notify). Only if there is no "spare" resource, the
2857*       alloc event is superficially serviced by hcf_service_nic to create a pseudo-resource with value
2858*       0x001. This value is recognized by get_fid (called by hcf_send_msg and notify) where the real
2859*       TxFid is retrieved and the Hermes is acked and - hopefully - the "normal" case with a spare TxFid
2860*       in IFB_RscInd is restored.
2861*    -  Info drop events are handled by incrementing a tally
2862*    -  LinkEvent (including solicited and unsolicited tallies) are handled by procedure isr_info.
2863*   -   TxEx (if selected at compile time) is handled by copying the significant part of the TxFS
2864*       into the IFB for further processing by the MSF.
2865*       Note the complication of the zero-FID protection sub-scheme in DAWA.
2866*   Note, the Ack of all of above events is handled at the end of hcf_service_nic
2867*16: In case of  non-DMA ( either not compiled in or due to a run-time choice):
2868*   If an Rx-frame is available, first the FID of that frame is read, including the complication of the
2869*   zero-FID protection sub-scheme in DAWA. Note that such a zero-FID is acknowledged at the end of
2870*   hcf_service_nic and that this depends on the IFB_RxLen initialization in the begin of hcf_service_nic.
2871*   The Assert validates the HCF assumption about Hermes implementation upon which the range of
2872*   Pseudo-RIDs is based.
2873*   Then the control fields up to the start of the 802.3 frame are read from the NIC into the lookahead buffer.
2874*   The status field is converted to native Endianness.
2875*   The length is, after implicit Endianness conversion if needed, and adjustment for the 14 bytes of the
2876*   802.3 MAC header, stored in IFB_RxLen.
2877*   In MAC Monitor mode, 802.11 control frames with a TOTAL length of 14 are received, so without this
2878*   length adjustment, IFB_RxLen could not be used to distinguish these frames from "no frame".
2879*   No MIC calculation processes are associated with the reading of these Control fields.
2880*26: This length test feels like superfluous robustness against malformed frames, but it turned out to be
2881*   needed in the real (hostile) world.
2882*   The decapsulation check needs sufficient data to represent DA, SA, L, SNAP and Type which amounts to
2883*   22 bytes. In MAC Monitor mode, 802.11 control frames with a smaller length are received. To prevent
2884*   that the implementation goes haywire, a check on the length is needed.
2885*   The actual decapsulation takes place on the fly in the copying process by overwriting the SNAP header.
2886*   Note that in case of decapsulation the SNAP header is not passed to the MSF, hence IFB_RxLen must be
2887*   compensated for the SNAP header length.
2888*   The 22 bytes needed for decapsulation are (more than) sufficient for the exceptional handling of the
2889*   MIC algorithm of the L-field (replacing the 2 byte L-field with 4 0x00 bytes).
2890*30: The 12 in the no-WPA branch corresponds with the get_frag, the 2 with the IPW of the WPA branch
2891*32: If Hermes reported MIC-presence, than the MIC engine is initialized with the non-dummy MIC calculation
2892*   routine address and appropriate key.
2893*34: The 8 bytes after the DA, SA, L are read and it is checked whether decapsulation is needed i.e.:
2894*     - the Hermes reported Tunnel encapsulation or
2895*     - the Hermes reported 1042 Encapsulation and hcf_encap reports that the HCF would not have used
2896*       1042 as the encapsulation mechanism
2897*   Note that the first field of the RxFS in bufp has Native Endianness due to the conversion done by the
2898*   BE_PAR in get_frag.
2899*36: The Type field is the only word kept (after moving) of the just read 8 bytes, it is moved to the
2900*   L-field.  The original L-field and 6 byte SNAP header are discarded, so IFB_RxLen and buf_addr must
2901*   be adjusted by 8.
2902*40: Determine how much of the frame (starting with DA) fits in the Lookahead buffer, then read the not-yet
2903*   read data into the lookahead buffer.
2904*   If the lookahead buffer contains the complete message, check the MIC. The majority considered this
2905*   I/F more appropriate then have the MSF call hcf_get_data only to check the MIC.
2906*44: Since the complete message is copied from NIC RAM to PC RAM, the Rx can be acknowledged to the Hermes
2907*   to optimize the flow ( a better chance to get new Rx data in the next pass through hcf_service_nic ).
2908*   This acknowledgement can not be done via hcf_action( HCF_ACT_RX_ACK ) because this also clears
2909*   IFB_RxLEN thus corrupting the I/F to the MSF.
2910*;?: In case of DMA (compiled in and activated):
2911
2912
2913*54: Limiting the number of places where the F/W is acked (e.g. the merging of the Rx-ACK with the other
2914*   ACKs), is supposed to diminish the potential of race conditions in the F/W.
2915*   Note 1: The CMD event is acknowledged in cmd_cmpl
2916*   Note 2: HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
2917*   Note 3: The ALLOC event is acknowledged in get_fid (except for the initialization flow)
2918*
2919*.NOTICE
2920* The Non-DMA HREG_EV_RX is handled different compared with the other F/W events.
2921* The HREG_EV_RX event is acknowledged by the first hcf_service_nic call after the
2922* hcf_service_nic call that reported the occurrence of this event.
2923* This acknowledgment
2924* makes the next Receive Frame Structure (if any) available.
2925* An updated IFB_RxLen
2926* field reflects this availability.
2927*
2928*.NOTICE
2929* The minimum size for Len must supply space for:
2930* - an F/W dependent number of bytes of Control Info field including the 802.11 Header field
2931* - Destination Address
2932* - Source Address
2933* - Length field
2934* - [ SNAP Header]
2935* - [ Ethernet-II Type]
2936* This results in 68 for Hermes-I and 80 for Hermes-II
2937* This way the minimum amount of information is available needed by the HCF to determine whether the frame
2938* must be decapsulated.
2939*.ENDDOC                END DOCUMENTATION
2940*
2941************************************************************************************************************/
2942int
2943hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
2944{
2945
2946        int         rc = HCF_SUCCESS;
2947        hcf_16      stat;
2948        wci_bufp    buf_addr;
2949        hcf_16      i;
2950
2951        HCFLOGENTRY( HCF_TRACE_SERVICE_NIC, ifbp->IFB_IntOffCnt );
2952        HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic );
2953        HCFASSERT_INT;
2954
2955        ifbp->IFB_LinkStat = 0; // ;? to be obsoleted ASAP                                              /* 1*/
2956        ifbp->IFB_DSLinkStat &= ~CFG_LINK_STAT_CHANGE;                                                  /* 1*/
2957        (void)hcf_action( ifbp, HCF_ACT_RX_ACK );                                                       /* 2*/
2958        if ( ifbp->IFB_CardStat == 0 && ( stat = IPW( HREG_EV_STAT ) ) != 0xFFFF ) {                    /* 4*/
2959/*              IF_NOT_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
2960 *              IF_NOT_USE_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
2961 *              IF_USE_DMA( HCFASSERT( !( stat & ~( HREG_EV_BASIC_MASK ^ ( HREG_EV_...DMA.... ), stat ) )
2962 */
2963                                                                                                        /* 8*/
2964                if ( ifbp->IFB_RscInd == 0 && stat & HREG_EV_ALLOC ) { //Note: IFB_RscInd is ALWAYS 1 for DMA
2965                        ifbp->IFB_RscInd = 1;
2966                }
2967                IF_TALLY( if ( stat & HREG_EV_INFO_DROP ) { ifbp->IFB_HCF_Tallies.NoBufInfo++; } );
2968#if (HCF_EXT) & HCF_EXT_INT_TICK
2969                if ( stat & HREG_EV_TICK ) {
2970                        ifbp->IFB_TickCnt++;
2971                }
2972#if 0 // (HCF_SLEEP) & HCF_DDS
2973                if ( ifbp->IFB_TickCnt == 3 && ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) {
2974                        CFG_DDS_TICK_TIME_STRCT ltv;
2975                        // 2 second period (with 1 tick uncertanty) in not-connected mode -->go into DS_OOR
2976                        hcf_action( ifbp, HCF_ACT_SLEEP );
2977                        ifbp->IFB_DSLinkStat |= CFG_LINK_STAT_DS_OOR; //set OutOfRange
2978                        ltv.len = 2;
2979                        ltv.typ = CFG_DDS_TICK_TIME;
2980                        ltv.tick_time = ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_TIMER ) + 0x10 ) *64; //78 is more right
2981                        hcf_put_info( ifbp, (LTVP)&ltv );
2982                        printk(KERN_NOTICE "Preparing for sleep, link_status: %04X, timer : %d\n",
2983                                ifbp->IFB_DSLinkStat, ltv.tick_time );//;?remove me 1 day
2984                        ifbp->IFB_TickCnt++; //;?just to make sure we do not keep on printing above message
2985                        if ( ltv.tick_time < 300 * 125 ) ifbp->IFB_DSLinkStat += 0x0010;
2986
2987                }
2988#endif // HCF_DDS
2989#endif // HCF_EXT_INT_TICK
2990                if ( stat & HREG_EV_INFO ) {
2991                        isr_info( ifbp );
2992                }
2993#if (HCF_EXT) & HCF_EXT_INT_TX_EX
2994                if ( stat & HREG_EV_TX_EXT && ( i = IPW( HREG_TX_COMPL_FID ) ) != 0 /*DAWA*/ ) {
2995                        DAWA_ZERO_FID( HREG_TX_COMPL_FID );
2996                        (void)setup_bap( ifbp, i, 0, IO_IN );
2997                        get_frag( ifbp, &ifbp->IFB_TxFsStat, HFS_SWSUP BE_PAR(1) );
2998                }
2999#endif // HCF_EXT_INT_TX_EX
3000//!rlav DMA engine will handle the rx event, not the driver
3001#if HCF_DMA
3002                if ( !( ifbp->IFB_CntlOpt & USE_DMA ) ) //!! be aware of the logical indentations
3003#endif // HCF_DMA
3004                /*16*/  if ( stat & HREG_EV_RX && ( ifbp->IFB_RxFID = IPW( HREG_RX_FID ) ) != 0 ) { //if 0 then DAWA_ACK
3005                                HCFASSERT( bufp, len );
3006                                HCFASSERT( len >= HFS_DAT + 2, len );
3007                                DAWA_ZERO_FID( HREG_RX_FID );
3008                                HCFASSERT( ifbp->IFB_RxFID < CFG_PROD_DATA, ifbp->IFB_RxFID);
3009                                (void)setup_bap( ifbp, ifbp->IFB_RxFID, 0, IO_IN );
3010                                get_frag( ifbp, bufp, HFS_ADDR_DEST BE_PAR(1) );
3011                                ifbp->IFB_lap = buf_addr = bufp + HFS_ADDR_DEST;
3012                                ifbp->IFB_RxLen = (hcf_16)(bufp[HFS_DAT_LEN] + (bufp[HFS_DAT_LEN+1]<<8) + 2*6 + 2);
3013                        /*26*/  if ( ifbp->IFB_RxLen >= 22 ) {  // convenient for MIC calculation (5 DWs + 1 "skipped" W)
3014                                                                //.  get DA,SA,Len/Type and (SNAP,Type or 8 data bytes)
3015                                /*30*/  get_frag( ifbp, buf_addr, 22 BE_PAR(0) );
3016                                /*32*/  CALC_RX_MIC( bufp, -1 );        //.  initialize MIC
3017                                        CALC_RX_MIC( buf_addr, HCF_DASA_SIZE ); //.  MIC over DA, SA
3018                                        CALC_RX_MIC( null_addr, 4 );    //.  MIC over (virtual) priority field
3019                                        CALC_RX_MIC( buf_addr+14, 8 );  //.  skip Len, MIC over SNAP,Type or 8 data bytes)
3020                                        buf_addr += 22;
3021#if (HCF_ENCAP) == HCF_ENC
3022                                        HCFASSERT( len >= HFS_DAT + 2 + sizeof(snap_header), len );
3023                                /*34*/  i = *(wci_recordp)&bufp[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
3024                                        if ( i == HFS_STAT_TUNNEL ||
3025                                             ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&bufp[HFS_TYPE] ) != ENC_TUNNEL ) ) {
3026                                                                        //.  copy E-II Type to 802.3 LEN field
3027                                /*36*/  bufp[HFS_LEN  ] = bufp[HFS_TYPE  ];
3028                                                bufp[HFS_LEN+1] = bufp[HFS_TYPE+1];
3029                                                                        //.  discard Snap by overwriting with data
3030                                                ifbp->IFB_RxLen -= (HFS_TYPE - HFS_LEN);
3031                                                buf_addr -= ( HFS_TYPE - HFS_LEN ); // this happens to bring us at a DW boundary of 36
3032                                        }
3033#endif // HCF_ENC
3034                                }
3035                        /*40*/  ifbp->IFB_lal = min( (hcf_16)(len - HFS_ADDR_DEST), ifbp->IFB_RxLen );
3036                                i = ifbp->IFB_lal - ( buf_addr - ( bufp + HFS_ADDR_DEST ) );
3037                                get_frag( ifbp, buf_addr, i BE_PAR(0) );
3038                                CALC_RX_MIC( buf_addr, i );
3039#if (HCF_TYPE) & HCF_TYPE_WPA
3040                                if ( ifbp->IFB_lal == ifbp->IFB_RxLen ) {
3041                                        rc = check_mic( ifbp );
3042                                }
3043#endif // HCF_TYPE_WPA
3044                        /*44*/  if ( len - HFS_ADDR_DEST >= ifbp->IFB_RxLen ) {
3045                                        ifbp->IFB_RxFID = 0;
3046                                } else { /* IFB_RxFID is cleared, so  you do not get another Rx_Ack at next entry of hcf_service_nic */
3047                                        stat &= (hcf_16)~HREG_EV_RX;    //don't ack Rx if processing not yet completed
3048                                }
3049                        }
3050                // in case of DMA: signal availability of rx and/or tx packets to MSF
3051                IF_USE_DMA( ifbp->IFB_DmaPackets |= stat & ( HREG_EV_RDMAD | HREG_EV_TDMAD ) );
3052                // rlav : pending HREG_EV_RDMAD or HREG_EV_TDMAD events get acknowledged here.
3053        /*54*/  stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
3054//a positive mask would be easier to understand /*54*/  stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
3055                IF_USE_DMA( stat &= (hcf_16)~HREG_EV_RX );
3056                if ( stat ) {
3057                        DAWA_ACK( stat );   /*DAWA*/
3058                }
3059        }
3060        HCFLOGEXIT( HCF_TRACE_SERVICE_NIC );
3061        return rc;
3062} // hcf_service_nic
3063
3064
3065/************************************************************************************************************
3066 ************************** H C F   S U P P O R T   R O U T I N E S ******************************************
3067 ************************************************************************************************************/
3068
3069
3070/************************************************************************************************************
3071 *
3072 *.SUBMODULE     void calc_mic( hcf_32* p, hcf_32 m )
3073 *.PURPOSE       calculate MIC on a quad byte.
3074 *
3075 *.ARGUMENTS
3076 *   p           address of the MIC
3077 *   m           32 bit value to be processed by the MIC calculation engine
3078 *
3079 *.RETURNS       N.A.
3080 *
3081 *.DESCRIPTION
3082 * calc_mic is the implementation of the MIC algorithm. It is a monkey-see monkey-do copy of
3083 * Michael::appendByte()
3084 * of Appendix C of ..........
3085 *
3086 *
3087 *.DIAGRAM
3088 *
3089 *.NOTICE
3090 *.ENDDOC                END DOCUMENTATION
3091 *
3092 ************************************************************************************************************/
3093
3094#if (HCF_TYPE) & HCF_TYPE_WPA
3095
3096#define ROL32( A, n ) ( ((A) << (n)) | ( ((A)>>(32-(n)))  & ( (1UL << (n)) - 1 ) ) )
3097#define ROR32( A, n ) ROL32( (A), 32-(n) )
3098
3099#define L   *p
3100#define R   *(p+1)
3101
3102void
3103calc_mic( hcf_32* p, hcf_32 m )
3104{
3105#if HCF_BIG_ENDIAN
3106        m = (m >> 16) | (m << 16);
3107#endif // HCF_BIG_ENDIAN
3108        L ^= m;
3109        R ^= ROL32( L, 17 );
3110        L += R;
3111        R ^= ((L & 0xff00ff00) >> 8) | ((L & 0x00ff00ff) << 8);
3112        L += R;
3113        R ^= ROL32( L, 3 );
3114        L += R;
3115        R ^= ROR32( L, 2 );
3116        L += R;
3117} // calc_mic
3118#undef R
3119#undef L
3120#endif // HCF_TYPE_WPA
3121
3122
3123
3124#if (HCF_TYPE) & HCF_TYPE_WPA
3125/************************************************************************************************************
3126 *
3127 *.SUBMODULE     void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
3128 *.PURPOSE       calculate MIC on a single fragment.
3129 *
3130 *.ARGUMENTS
3131 *   ifbp        address of the Interface Block
3132 *   bufp        (byte) address of buffer
3133 *   len         length in bytes of buffer specified by bufp
3134 *
3135 *.RETURNS       N.A.
3136 *
3137 *.DESCRIPTION
3138 * calc_mic_rx_frag ........
3139 *
3140 * The MIC is located in the IFB.
3141 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3142 * hcf_rcv_msg.
3143 *
3144 *
3145 *.DIAGRAM
3146 *
3147 *.NOTICE
3148 *.ENDDOC                END DOCUMENTATION
3149 *
3150 ************************************************************************************************************/
3151void
3152calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
3153{
3154        static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine
3155        int i;
3156
3157        if ( len == -1 ) {                              //initialize MIC housekeeping
3158                i = *(wci_recordp)&p[HFS_STAT];
3159                /* i = CNV_SHORTP_TO_LITTLE(&p[HFS_STAT]); should not be neede to prevent alignment poroblems
3160                 * since len == -1 if and only if p is lookahaead buffer which MUST be word aligned
3161                 * to be re-investigated by NvR
3162                 */
3163
3164                if ( ( i & HFS_STAT_MIC ) == 0 ) {
3165                        ifbp->IFB_MICRxCarry = 0xFFFF;          //suppress MIC calculation
3166                } else {
3167                        ifbp->IFB_MICRxCarry = 0;
3168//* Note that "coincidentally" the bit positions used in HFS_STAT
3169//* correspond with the offset of the key in IFB_MICKey
3170                        i = ( i & HFS_STAT_MIC_KEY_ID ) >> 10;  /* coincidentally no shift needed for i itself */
3171                        ifbp->IFB_MICRx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i  ]);
3172                        ifbp->IFB_MICRx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i+1]);
3173                }
3174        } else {
3175                if ( ifbp->IFB_MICRxCarry == 0 ) {
3176                        x.x32 = CNV_LONGP_TO_LITTLE(p);
3177                        p += 4;
3178                        if ( len < 4 ) {
3179                                ifbp->IFB_MICRxCarry = (hcf_16)len;
3180                        } else {
3181                                ifbp->IFB_MICRxCarry = 4;
3182                                len -= 4;
3183                        }
3184                } else while ( ifbp->IFB_MICRxCarry < 4 && len ) {      //note for hcf_16 applies: 0xFFFF > 4
3185                                x.x8[ifbp->IFB_MICRxCarry++] = *p++;
3186                                len--;
3187                        }
3188                while ( ifbp->IFB_MICRxCarry == 4 ) {   //contrived so we have only 1 call to calc_mic so we could bring it in-line
3189                        calc_mic( ifbp->IFB_MICRx, x.x32 );
3190                        x.x32 = CNV_LONGP_TO_LITTLE(p);
3191                        p += 4;
3192                        if ( len < 4 ) {
3193                                ifbp->IFB_MICRxCarry = (hcf_16)len;
3194                        }
3195                        len -= 4;
3196                }
3197        }
3198} // calc_mic_rx_frag
3199#endif // HCF_TYPE_WPA
3200
3201
3202#if (HCF_TYPE) & HCF_TYPE_WPA
3203/************************************************************************************************************
3204 *
3205 *.SUBMODULE     void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
3206 *.PURPOSE       calculate MIC on a single fragment.
3207 *
3208 *.ARGUMENTS
3209 *   ifbp        address of the Interface Block
3210 *   bufp        (byte) address of buffer
3211 *   len         length in bytes of buffer specified by bufp
3212 *
3213 *.RETURNS       N.A.
3214 *
3215 *.DESCRIPTION
3216 * calc_mic_tx_frag ........
3217 *
3218 * The MIC is located in the IFB.
3219 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3220 * hcf_rcv_msg.
3221 *
3222 *
3223 *.DIAGRAM
3224 *
3225 *.NOTICE
3226 *.ENDDOC                END DOCUMENTATION
3227 *
3228 ************************************************************************************************************/
3229void
3230calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
3231{
3232        static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine
3233
3234                                                //if initialization request
3235        if ( len == -1 ) {
3236                                                //.  presume MIC calculation disabled
3237                ifbp->IFB_MICTxCarry = 0xFFFF;
3238                                                //.  if MIC calculation enabled
3239                if ( ifbp->IFB_MICTxCntl ) {
3240                                                //.  .  clear MIC carry
3241                        ifbp->IFB_MICTxCarry = 0;
3242                                                //.  .  initialize MIC-engine
3243                        ifbp->IFB_MICTx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[0]); /*Tx always uses Key 0 */
3244                        ifbp->IFB_MICTx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[1]);
3245                }
3246                                                //else
3247        } else {
3248                                                //.  if MIC enabled (Tx) / if MIC present (Rx)
3249                                                //.  and no carry from previous calc_mic_frag
3250                if ( ifbp->IFB_MICTxCarry == 0 ) {
3251                                                //.  .  preset accu with 4 bytes from buffer
3252                        x.x32 = CNV_LONGP_TO_LITTLE(p);
3253                                                //.  .  adjust pointer accordingly
3254                        p += 4;
3255                                                //.  .  if buffer contained less then 4 bytes
3256                        if ( len < 4 ) {
3257                                                //.  .  .  promote valid bytes in accu to carry
3258                                                //.  .  .  flag accu to contain incomplete double word
3259                                ifbp->IFB_MICTxCarry = (hcf_16)len;
3260                                                //.  .  else
3261                        } else {
3262                                                //.  .  .  flag accu to contain complete double word
3263                                ifbp->IFB_MICTxCarry = 4;
3264                                                //.  .  adjust remaining buffer length
3265                                len -= 4;
3266                        }
3267                                                //.  else if MIC enabled
3268                                                //.  and if carry bytes from previous calc_mic_tx_frag
3269                                                //.  .  move (1-3) bytes from carry into accu
3270                } else while ( ifbp->IFB_MICTxCarry < 4 && len ) {      /* note for hcf_16 applies: 0xFFFF > 4 */
3271                                x.x8[ifbp->IFB_MICTxCarry++] = *p++;
3272                                len--;
3273                        }
3274                                                //.  while accu contains complete double word
3275                                                //.  and MIC enabled
3276                while ( ifbp->IFB_MICTxCarry == 4 ) {
3277                                                //.  .  pass accu to MIC engine
3278                        calc_mic( ifbp->IFB_MICTx, x.x32 );
3279                                                //.  .  copy next 4 bytes from buffer to accu
3280                        x.x32 = CNV_LONGP_TO_LITTLE(p);
3281                                                //.  .  adjust buffer pointer
3282                        p += 4;
3283                                                //.  .  if buffer contained less then 4 bytes
3284                                                //.  .  .  promote valid bytes in accu to carry
3285                                                //.  .  .  flag accu to contain incomplete double word
3286                        if ( len < 4 ) {
3287                                ifbp->IFB_MICTxCarry = (hcf_16)len;
3288                        }
3289                                                //.  .  adjust remaining buffer length
3290                        len -= 4;
3291                }
3292        }
3293} // calc_mic_tx_frag
3294#endif // HCF_TYPE_WPA
3295
3296
3297#if HCF_PROT_TIME
3298/************************************************************************************************************
3299 *
3300 *.SUBMODULE     void calibrate( IFBP ifbp )
3301 *.PURPOSE       calibrates the S/W protection counter against the Hermes Timer tick.
3302 *
3303 *.ARGUMENTS
3304 *   ifbp        address of the Interface Block
3305 *
3306 *.RETURNS       N.A.
3307 *
3308 *.DESCRIPTION
3309 * calibrates the S/W protection counter against the Hermes Timer tick
3310 * IFB_TickIni is the value used to initialize the S/W protection counter such that the expiration period
3311 * more or less independent of the processor speed. If IFB_TickIni is not yet calibrated, it is done now.
3312 * This calibration is "reasonably" accurate because the Hermes is in a quiet state as a result of the
3313 * Initialize command.
3314 *
3315 *
3316 *.DIAGRAM
3317 *
3318 *1: IFB_TickIni is initialized at INI_TICK_INI by hcf_connect. If calibrate succeeds, IFB_TickIni is
3319 *   guaranteed to be changed. As a consequence there will be only 1 shot at calibration (regardless of the
3320 *   number of init calls) under normal circumstances.
3321 *2: Calibration is done HCF_PROT_TIME_CNT times. This diminish the effects of jitter and interference,
3322 *   especially in a pre-emptive environment. HCF_PROT_TIME_CNT is in the range of 16 through 32 and derived
3323 *   from the HCF_PROT_TIME specified by the MSF programmer. The divisor needed to scale HCF_PROT_TIME into the
3324 *   16-32 range, is used as a multiplicator after the calibration, to scale the found value back to the
3325 *   requested range. This way a compromise is achieved between accuracy and duration of the calibration
3326 *   process.
3327 *3: Acknowledge the Timer Tick Event.
3328 *   Each cycle is limited to at most INI_TICK_INI samples of the TimerTick status of the Hermes.
3329 *   Since the start of calibrate is unrelated to the Hermes Internal Timer, the first interval may last from 0
3330 *   to the normal interval, all subsequent intervals should be the full length of the Hermes Tick interval.
3331 *   The Hermes Timer Tick is not reprogrammed by the HCF, hence it is running at the default of 10 k
3332 *   microseconds.
3333 *4: If the Timer Tick Event is continuously up (prot_cnt still has the value INI_TICK_INI) or no Timer Tick
3334 *   Event occurred before the protection counter expired, reset IFB_TickIni to INI_TICK_INI,
3335 *   set the defunct bit of IFB_CardStat (thus rendering the Hermes inoperable) and exit the calibrate routine.
3336 *8: ifbp->IFB_TickIni is multiplied to scale the found value back to the requested range as explained under 2.
3337 *
3338 *.NOTICE
3339 * o Although there are a number of viewpoints possible, calibrate() uses as error strategy that a single
3340 *   failure of the Hermes TimerTick is considered fatal.
3341 * o There is no hard and concrete time-out value defined for Hermes activities. The default 1 seconds is
3342 *   believed to be sufficiently "relaxed" for real life and to be sufficiently short to be still useful in an
3343 *   environment with humans.
3344 * o Note that via IFB_DefunctStat time outs in cmd_wait and in hcfio_string block all Hermes access till the
3345 *   next init so functions which call a mix of cmd_wait and hcfio_string only need to check the return status
3346 *   of the last call
3347 * o The return code is preset at Time out.
3348 *   The additional complication that no calibrated value for the protection count can be assumed since
3349 *   calibrate() does not yet have determined a calibrated value (a catch 22), is handled by setting the
3350 *   initial value at INI_TICK_INI (by hcf_connect). This approach is considered safe, because:
3351 *     - the HCF does not use the pipeline mechanism of Hermes commands.
3352 *     - the likelihood of failure (the only time when protection count is relevant) is small.
3353 *     - the time will be sufficiently large on a fast machine (busy bit drops on good NIC before counter
3354 *       expires)
3355 *     - the time will be sufficiently small on a slow machine (counter expires on bad NIC before the end user
3356 *       switches the power off in despair
3357 *   The time needed to wrap a 32 bit counter around is longer than many humans want to wait, hence the more or
3358 *   less arbitrary value of 0x40000L is chosen, assuming it does not take too long on an XT and is not too
3359 *   short on a scream-machine.
3360 *
3361 *.ENDDOC                END DOCUMENTATION
3362 *
3363 ************************************************************************************************************/
3364HCF_STATIC void
3365calibrate( IFBP ifbp )
3366{
3367        int     cnt = HCF_PROT_TIME_CNT;
3368        hcf_32  prot_cnt;
3369
3370        HCFTRACE( ifbp, HCF_TRACE_CALIBRATE );
3371        if ( ifbp->IFB_TickIni == INI_TICK_INI ) {                                                  /*1*/
3372                ifbp->IFB_TickIni = 0;                                                                  /*2*/
3373                while ( cnt-- ) {
3374                        prot_cnt = INI_TICK_INI;
3375                        OPW( HREG_EV_ACK, HREG_EV_TICK );                                               /*3*/
3376                        while ( (IPW( HREG_EV_STAT ) & HREG_EV_TICK) == 0 && --prot_cnt ) {
3377                                ifbp->IFB_TickIni++;
3378                        }
3379                        if ( prot_cnt == 0 || prot_cnt == INI_TICK_INI ) {                              /*4*/
3380                                ifbp->IFB_TickIni = INI_TICK_INI;
3381                                ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIMER;
3382                                ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
3383                                HCFASSERT( DO_ASSERT, prot_cnt );
3384                        }
3385                }
3386                ifbp->IFB_TickIni <<= HCF_PROT_TIME_SHFT;                                               /*8*/
3387        }
3388        HCFTRACE( ifbp, HCF_TRACE_CALIBRATE | HCF_TRACE_EXIT );
3389} // calibrate
3390#endif // HCF_PROT_TIME
3391
3392
3393#if (HCF_TYPE) & HCF_TYPE_WPA
3394/************************************************************************************************************
3395 *
3396 *.SUBMODULE     int check_mic( IFBP ifbp )
3397 *.PURPOSE       verifies the MIC of a received non-USB frame.
3398 *
3399 *.ARGUMENTS
3400 *   ifbp        address of the Interface Block
3401 *
3402 *.RETURNS
3403 *   HCF_SUCCESS
3404 *   HCF_ERR_MIC
3405 *
3406 *.DESCRIPTION
3407 *
3408 *
3409 *.DIAGRAM
3410 *
3411 *4: test whether or not a MIC is reported by the Hermes
3412 *14: the calculated MIC and the received MIC are compared, the return status is set when there is a mismatch
3413 *
3414 *.NOTICE
3415 *.ENDDOC                END DOCUMENTATION
3416 *
3417 ************************************************************************************************************/
3418int
3419check_mic( IFBP ifbp )
3420{
3421        int     rc = HCF_SUCCESS;
3422        hcf_32 x32[2];              //* area to save rcvd 8 bytes MIC
3423
3424                                                            //if MIC present in RxFS
3425        if ( *(wci_recordp)&ifbp->IFB_lap[-HFS_ADDR_DEST] & HFS_STAT_MIC ) {
3426                //or if ( ifbp->IFB_MICRxCarry != 0xFFFF )
3427                CALC_RX_MIC( mic_pad, 8 );                  //.  process up to 3 remaining bytes of data and append 5 to 8 bytes of padding to MIC calculation
3428                get_frag( ifbp, (wci_bufp)x32, 8 BE_PAR(0));//.  get 8 byte MIC from NIC
3429                                                            //.  if calculated and received MIC do not match
3430                                                            //.  .  set status at HCF_ERR_MIC
3431        /*14*/  if ( x32[0] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[0]) ||
3432                     x32[1] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[1])     ) {
3433                        rc = HCF_ERR_MIC;
3434                }
3435        }
3436                                                            //return status
3437        return rc;
3438} // check_mic
3439#endif // HCF_TYPE_WPA
3440
3441
3442/************************************************************************************************************
3443 *
3444 *.SUBMODULE     int cmd_cmpl( IFBP ifbp )
3445 *.PURPOSE       waits for Hermes Command Completion.
3446 *
3447 *.ARGUMENTS
3448 *   ifbp        address of the Interface Block
3449 *
3450 *.RETURNS
3451 *   IFB_DefunctStat
3452 *   HCF_ERR_TIME_OUT
3453 *   HCF_ERR_DEFUNCT_CMD_SEQ
3454 *   HCF_SUCCESS
3455 *
3456 *.DESCRIPTION
3457 *
3458 *
3459 *.DIAGRAM
3460 *
3461 *2: Once cmd_cmpl is called, the Busy option bit in IFB_Cmd must be cleared
3462 *4: If Status register and command code don't match either:
3463 *    - the Hermes and Host are out of sync ( a fatal error)
3464 *    - error bits are reported via the Status Register.
3465 *   Out of sync is considered fatal and brings the HCF in Defunct mode
3466 *   Errors reported via the Status Register should be caused by sequence violations in Hermes command
3467 *   sequences and hence these bugs should have been found during engineering testing. Since there is no
3468 *   strategy to cope with this problem, it might as well be ignored at run time. Note that for any particular
3469 *   situation where a strategy is formulated to handle the consequences of a particular bug causing a
3470 *   particular Error situation reported via the Status Register, the bug should be removed rather than adding
3471 *   logic to cope with the consequences of the bug.
3472 *   There have been HCF versions where an error report via the Status Register even brought the HCF in defunct
3473 *   mode (although it was not yet named like that at that time). This is particular undesirable behavior for a
3474 *   general library.
3475 *   Simply reporting the error (as "interesting") is debatable. There also have been HCF versions with this
3476 *   strategy using the "vague" HCF_FAILURE code.
3477 *   The error is reported via:
3478 *    - MiscErr tally of the HCF Tally set
3479 *    - the (informative) fields IFB_ErrCmd and IFB_ErrQualifier
3480 *    - the assert mechanism
3481 *8: Here the Defunct case and the Status error are separately treated
3482 *
3483 *
3484 *.ENDDOC                END DOCUMENTATION
3485 *
3486 ************************************************************************************************************/
3487HCF_STATIC int
3488cmd_cmpl( IFBP ifbp )
3489{
3490
3491        PROT_CNT_INI;
3492        int     rc = HCF_SUCCESS;
3493        hcf_16  stat;
3494
3495        HCFLOGENTRY( HCF_TRACE_CMD_CPL, ifbp->IFB_Cmd );
3496        ifbp->IFB_Cmd &= ~HCMD_BUSY;                                                /* 2 */
3497        HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );                  /* 4 */
3498        stat = IPW( HREG_STAT );
3499#if HCF_PROT_TIME
3500        if ( prot_cnt == 0 ) {
3501                IF_TALLY( ifbp->IFB_HCF_Tallies.MiscErr++ );
3502                rc = HCF_ERR_TIME_OUT;
3503                HCFASSERT( DO_ASSERT, ifbp->IFB_Cmd );
3504        } else
3505#endif // HCF_PROT_TIME
3506        {
3507                DAWA_ACK( HREG_EV_CMD );
3508        /*4*/   if ( stat != (ifbp->IFB_Cmd & HCMD_CMD_CODE) ) {
3509                /*8*/   if ( ( (stat ^ ifbp->IFB_Cmd ) & HCMD_CMD_CODE) != 0 ) {
3510                                rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_CMD_SEQ;
3511                                ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
3512                        }
3513                        IF_TALLY( ifbp->IFB_HCF_Tallies.MiscErr++ );
3514                        ifbp->IFB_ErrCmd = stat;
3515                        ifbp->IFB_ErrQualifier = IPW( HREG_RESP_0 );
3516                        HCFASSERT( DO_ASSERT, MERGE_2( IPW( HREG_PARAM_0 ), ifbp->IFB_Cmd ) );
3517                        HCFASSERT( DO_ASSERT, MERGE_2( ifbp->IFB_ErrQualifier, ifbp->IFB_ErrCmd ) );
3518                }
3519        }
3520        HCFASSERT( rc == HCF_SUCCESS, rc);
3521        HCFLOGEXIT( HCF_TRACE_CMD_CPL );
3522        return rc;
3523} // cmd_cmpl
3524
3525
3526/************************************************************************************************************
3527 *
3528 *.SUBMODULE     int cmd_exe( IFBP ifbp, int cmd_code, int par_0 )
3529 *.PURPOSE       Executes synchronous part of Hermes Command and - optionally - waits for Command Completion.
3530 *
3531 *.ARGUMENTS
3532 *   ifbp        address of the Interface Block
3533 *   cmd_code
3534 *   par_0
3535 *
3536 *.RETURNS
3537 *   IFB_DefunctStat
3538 *   HCF_ERR_DEFUNCT_CMD_SEQ
3539 *   HCF_SUCCESS
3540 *   HCF_ERR_TO_BE_ADDED <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
3541 *
3542 *.DESCRIPTION
3543 * Executes synchronous Hermes Command and waits for Command Completion
3544 *
3545 * The general HCF strategy is to wait for command completion. As a consequence:
3546 * - the read of the busy bit before writing the command register is superfluous
3547 * - the Hermes requirement that no Inquiry command may be executed if there is still an unacknowledged
3548 *   Inquiry command outstanding, is automatically met.
3549 * The Tx command uses the "Busy" bit in the cmd_code parameter to deviate from this general HCF strategy.
3550 * The idea is that by not busy-waiting on completion of this frequently used command the processor
3551 * utilization is diminished while using the busy-wait on all other seldom used commands the flow is kept
3552 * simple.
3553 *
3554 *
3555 *
3556 *.DIAGRAM
3557 *
3558 *1: skip the body of cmd_exe when in defunct mode or when - based on the S/W Support register write and
3559 *   read back test - there is apparently no NIC.
3560 *   Note: we gave up on the "old" strategy to write the S/W Support register at magic only when needed. Due to
3561 *   the intricateness of Hermes F/W varieties ( which behave differently as far as corruption of the S/W
3562 *   Support register is involved), the increasing number of Hermes commands which do an implicit initialize
3563 *   (thus modifying the S/W Support register) and the workarounds of some OS/Support S/W induced aspects (e.g.
3564 *   the System Soft library at WinNT which postpones the actual mapping of I/O space up to 30 seconds after
3565 *   giving the go-ahead), the "magic" strategy is now reduced to a simple write and read back. This means that
3566 *   problems like a bug tramping over the memory mapped Hermes registers will no longer be noticed as side
3567 *   effect of the S/W Support register check.
3568 *2: check whether the preceding command skipped the busy wait and if so, check for command completion
3569 *
3570 *.NOTICE
3571 *.ENDDOC                END DOCUMENTATION
3572 *
3573 ************************************************************************************************************/
3574
3575HCF_STATIC int
3576cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 ) //if HCMD_BUSY of cmd_code set, then do NOT wait for completion
3577{
3578        int rc;
3579
3580        HCFLOGENTRY( HCF_TRACE_CMD_EXE, cmd_code );
3581        HCFASSERT( (cmd_code & HCMD_CMD_CODE) != HCMD_TX || cmd_code & HCMD_BUSY, cmd_code ); //Tx must have Busy bit set
3582        OPW( HREG_SW_0, HCF_MAGIC );
3583        if ( IPW( HREG_SW_0 ) == HCF_MAGIC ) {                                                      /* 1 */
3584                rc = ifbp->IFB_DefunctStat;
3585        }
3586        else rc = HCF_ERR_NO_NIC;
3587        if ( rc == HCF_SUCCESS ) {
3588                //;?is this a hot idea, better MEASURE performance impact
3589        /*2*/   if ( ifbp->IFB_Cmd & HCMD_BUSY ) {
3590                        rc = cmd_cmpl( ifbp );
3591                }
3592                OPW( HREG_PARAM_0, par_0 );
3593                OPW( HREG_CMD, cmd_code &~HCMD_BUSY );
3594                ifbp->IFB_Cmd = cmd_code;
3595                if ( (cmd_code & HCMD_BUSY) == 0 ) {    //;?is this a hot idea, better MEASURE performance impact
3596                        rc = cmd_cmpl( ifbp );
3597                }
3598        }
3599        HCFASSERT( rc == HCF_SUCCESS, MERGE_2( rc, cmd_code ) );
3600        HCFLOGEXIT( HCF_TRACE_CMD_EXE );
3601        return rc;
3602} // cmd_exe
3603
3604
3605/************************************************************************************************************
3606 *
3607 *.SUBMODULE     int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp )
3608 *.PURPOSE       downloads F/W image into NIC and initiates execution of the downloaded F/W.
3609 *
3610 *.ARGUMENTS
3611 *   ifbp        address of the Interface Block
3612 *   ltvp        specifies the pseudo-RID (as defined by WCI)
3613 *
3614 *.RETURNS
3615 *
3616 *.DESCRIPTION
3617 *
3618 *
3619 *.DIAGRAM
3620 *1: First, Ack everything to unblock a (possibly) blocked cmd pipe line
3621 *   Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
3622 *   pending
3623 *   Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
3624 *   Hermes Initialize
3625 *
3626 *
3627 *.ENDDOC                END DOCUMENTATION
3628 *
3629 ************************************************************************************************************/
3630HCF_STATIC int
3631download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp )                     //Hermes-II download (volatile only)
3632{
3633        hcf_16              i;
3634        int                 rc = HCF_SUCCESS;
3635        wci_bufp            cp;
3636        hcf_io              io_port = ifbp->IFB_IOBase + HREG_AUX_DATA;
3637
3638        HCFLOGENTRY( HCF_TRACE_DL, ltvp->typ );
3639#if (HCF_TYPE) & HCF_TYPE_PRELOADED
3640        HCFASSERT( DO_ASSERT, ltvp->mode );
3641#else
3642                                                //if initial "program" LTV
3643        if ( ifbp->IFB_DLMode == CFG_PROG_STOP && ltvp->mode == CFG_PROG_VOLATILE) {
3644                                                //.  switch Hermes to initial mode
3645        /*1*/   OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
3646                rc = cmd_exe( ifbp, HCMD_INI, 0 );  /* HCMD_INI can not be part of init() because that is called on
3647                                                     * other occasions as well */
3648                rc = init( ifbp );
3649        }
3650                                                //if final "program" LTV
3651        if ( ltvp->mode == CFG_PROG_STOP && ifbp->IFB_DLMode == CFG_PROG_VOLATILE) {
3652                                                //.  start tertiary (or secondary)
3653                OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) );
3654                rc = cmd_exe( ifbp, HCMD_EXECUTE, (hcf_16) ltvp->nic_addr );
3655                if (rc == HCF_SUCCESS) {
3656                        rc = init( ifbp );  /*;? do we really want to skip init if cmd_exe failed, i.e.
3657                                             *   IFB_FW_Comp_Id is than possibly incorrect */
3658                }
3659                                                //else (non-final)
3660        } else {
3661                                                //.  if mode == Readback SEEPROM
3662#if 0   //;? as long as the next if contains a hard coded 0, might as well leave it out even more obvious
3663                if ( 0 /*len is definitely not want we want;?*/ && ltvp->mode == CFG_PROG_SEEPROM_READBACK ) {
3664                        OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) );
3665                        OPW( HREG_PARAM_2, (hcf_16)((ltvp->len - 4) << 1) );
3666                                                //.  .  perform Hermes prog cmd with appropriate mode bits
3667                        rc = cmd_exe( ifbp, HCMD_PROGRAM | ltvp->mode, (hcf_16)ltvp->nic_addr );
3668                                                //.  .  set up NIC RAM addressability according Resp0-1
3669                        OPW( HREG_AUX_PAGE,   IPW( HREG_RESP_1) );
3670                        OPW( HREG_AUX_OFFSET, IPW( HREG_RESP_0) );
3671                                                //.  .  set up L-field of LTV according Resp2
3672                        i = ( IPW( HREG_RESP_2 ) + 1 ) / 2;  // i contains max buffer size in words, a probably not very useful piece of information ;?
3673/*Nico's code based on i is the "real amount of data available"
3674                        if ( ltvp->len - 4 < i ) rc = HCF_ERR_LEN;
3675                        else ltvp->len = i + 4;
3676*/
3677/* Rolands code based on the idea that a MSF should not ask for more than is available
3678                        // check if number of bytes requested exceeds max buffer size
3679                        if ( ltvp->len - 4 > i ) {
3680                                rc = HCF_ERR_LEN;
3681                                ltvp->len = i + 4;
3682                        }
3683*/
3684                                                //.  .  copy data from NIC via AUX port to LTV
3685                        cp = (wci_bufp)ltvp->host_addr;                     /*IN_PORT_STRING_8_16 macro may modify its parameters*/
3686                        i = ltvp->len - 4;
3687                        IN_PORT_STRING_8_16( io_port, cp, i );      //!!!WORD length, cp MUST be a char pointer // $$ char
3688                                                //.  else (non-final programming)
3689                } else
3690#endif //;? as long as the above if contains a hard coded 0, might as well leave it out even more obvious
3691                {                               //.  .  get number of words to program
3692                        HCFASSERT( ltvp->segment_size, *ltvp->host_addr );
3693                        i = ltvp->segment_size/2;
3694                                                //.  .  copy data (words) from LTV via AUX port to NIC
3695                        cp = (wci_bufp)ltvp->host_addr;                     //OUT_PORT_STRING_8_16 macro may modify its parameters
3696                                                //.  .  if mode == volatile programming
3697                        if ( ltvp->mode == CFG_PROG_VOLATILE ) {
3698                                                //.  .  .  set up NIC RAM addressability via AUX port
3699                                OPW( HREG_AUX_PAGE, (hcf_16)(ltvp->nic_addr >> 16 << 9 | (ltvp->nic_addr & 0xFFFF) >> 7 ) );
3700                                OPW( HREG_AUX_OFFSET, (hcf_16)(ltvp->nic_addr & 0x007E) );
3701                                OUT_PORT_STRING_8_16( io_port, cp, i );     //!!!WORD length, cp MUST be a char pointer
3702                        }
3703                }
3704        }
3705        ifbp->IFB_DLMode = ltvp->mode;                  //save state in IFB_DLMode
3706#endif // HCF_TYPE_PRELOADED
3707        HCFASSERT( rc == HCF_SUCCESS, rc );
3708        HCFLOGEXIT( HCF_TRACE_DL );
3709        return rc;
3710} // download
3711
3712
3713#if (HCF_ASSERT) & HCF_ASSERT_PRINTF
3714/**************************************************
3715 * Certain Hermes-II firmware versions can generate
3716 * debug information. This debug information is
3717 * contained in a buffer in nic-RAM, and can be read
3718 * via the aux port.
3719 **************************************************/
3720HCF_STATIC int
3721fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp)
3722{
3723        int rc = HCF_SUCCESS;
3724        hcf_16 fw_cnt;
3725//      hcf_32 DbMsgBuffer = 0x29D2, DbMsgCount= 0x000029D0;
3726//      hcf_16 DbMsgSize=0x00000080;
3727        hcf_32 DbMsgBuffer;
3728        CFG_FW_PRINTF_BUFFER_LOCATION_STRCT *p = &ifbp->IFB_FwPfBuff;
3729        ltvp->len = 1;
3730        if ( p->DbMsgSize != 0 ) {
3731                // first, check the counter in nic-RAM and compare it to the latest counter value of the HCF
3732                OPW( HREG_AUX_PAGE, (hcf_16)(p->DbMsgCount >> 7) );
3733                OPW( HREG_AUX_OFFSET, (hcf_16)(p->DbMsgCount & 0x7E) );
3734                fw_cnt = ((IPW( HREG_AUX_DATA) >>1 ) & ((hcf_16)p->DbMsgSize - 1));
3735                if ( fw_cnt != ifbp->IFB_DbgPrintF_Cnt ) {
3736//                      DbgPrint("fw_cnt=%d IFB_DbgPrintF_Cnt=%d\n", fw_cnt, ifbp->IFB_DbgPrintF_Cnt);
3737                        DbMsgBuffer = p->DbMsgBuffer + ifbp->IFB_DbgPrintF_Cnt * 6; // each entry is 3 words
3738                        OPW( HREG_AUX_PAGE, (hcf_16)(DbMsgBuffer >> 7) );
3739                        OPW( HREG_AUX_OFFSET, (hcf_16)(DbMsgBuffer & 0x7E) );
3740                        ltvp->msg_id     = IPW(HREG_AUX_DATA);
3741                        ltvp->msg_par    = IPW(HREG_AUX_DATA);
3742                        ltvp->msg_tstamp = IPW(HREG_AUX_DATA);
3743                        ltvp->len = 4;
3744                        ifbp->IFB_DbgPrintF_Cnt++;
3745                        ifbp->IFB_DbgPrintF_Cnt &= (p->DbMsgSize - 1);
3746                }
3747        }
3748        return rc;
3749};
3750#endif // HCF_ASSERT_PRINTF
3751
3752
3753/************************************************************************************************************
3754 *
3755 *.SUBMODULE     hcf_16 get_fid( IFBP ifbp )
3756 *.PURPOSE       get allocated FID for either transmit or notify.
3757 *
3758 *.ARGUMENTS
3759 *   ifbp        address of the Interface Block
3760 *
3761 *.RETURNS
3762 *   0   no FID available
3763 *   <>0 FID number
3764 *
3765 *.DESCRIPTION
3766 *
3767 *
3768 *.DIAGRAM
3769 *   The preference is to use a "pending" alloc. If no alloc is pending, then - if available - the "spare" FID
3770 *   is used.
3771 *   If the spare FID is used, IFB_RscInd (representing the spare FID) must be cleared
3772 *   If the pending alloc is used, the alloc event must be acknowledged to the Hermes.
3773 *   In case the spare FID was depleted and the IFB_RscInd has been "faked" as pseudo resource with a 0x0001
3774 *   value by hcf_service_nic, IFB_RscInd has to be "corrected" again to its 0x0000 value.
3775 *
3776 *   Note that due to the Hermes-II H/W problems which are intended to be worked around by DAWA, the Alloc bit
3777 *   in the Event register is no longer a reliable indication of the presence/absence of a FID. The "Clear FID"
3778 *   part of the DAWA logic, together with the choice of the definition of the return information from get_fid,
3779 *   handle this automatically, i.e. without additional code in get_fid.
3780 *.ENDDOC                END DOCUMENTATION
3781 *
3782 ************************************************************************************************************/
3783HCF_STATIC hcf_16
3784get_fid( IFBP ifbp )
3785{
3786
3787        hcf_16 fid = 0;
3788#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
3789        PROT_CNT_INI;
3790#endif // HCF_TYPE_HII5
3791
3792        IF_DMA( HCFASSERT(!(ifbp->IFB_CntlOpt & USE_DMA), ifbp->IFB_CntlOpt) );
3793
3794        if ( IPW( HREG_EV_STAT) & HREG_EV_ALLOC) {
3795                fid = IPW( HREG_ALLOC_FID );
3796                HCFASSERT( fid, ifbp->IFB_RscInd );
3797                DAWA_ZERO_FID( HREG_ALLOC_FID );
3798#if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
3799                HCF_WAIT_WHILE( ( IPW( HREG_EV_STAT ) & HREG_EV_ACK_REG_READY ) == 0 );
3800                HCFASSERT( prot_cnt, IPW( HREG_EV_STAT ) );
3801#endif // HCF_TYPE_HII5
3802                DAWA_ACK( HREG_EV_ALLOC );          //!!note that HREG_EV_ALLOC is written only once
3803// 180 degree error in logic ;? #if ALLOC_15
3804                if ( ifbp->IFB_RscInd == 1 ) {
3805                        ifbp->IFB_RscInd = 0;
3806                }
3807//#endif // ALLOC_15
3808        } else {
3809// 180 degree error in logic ;? #if ALLOC_15
3810                fid = ifbp->IFB_RscInd;
3811//#endif // ALLOC_15
3812                ifbp->IFB_RscInd = 0;
3813        }
3814        return fid;
3815} // get_fid
3816
3817
3818/************************************************************************************************************
3819 *
3820 *.SUBMODULE     void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
3821 *.PURPOSE       reads with 16/32 bit I/O via BAP1 port from NIC RAM to Host memory.
3822 *
3823 *.ARGUMENTS
3824 *   ifbp        address of the Interface Block
3825 *   bufp        (byte) address of buffer
3826 *   len         length in bytes of buffer specified by bufp
3827 *   word_len    Big Endian only: number of leading bytes to swap in pairs
3828 *
3829 *.RETURNS       N.A.
3830 *
3831 *.DESCRIPTION
3832 * process the single byte (if applicable) read by the previous get_frag and copy len (or len-1) bytes from
3833 * NIC to bufp.
3834 * On a Big Endian platform, the parameter word_len controls the number of leading bytes whose endianness is
3835 * converted (i.e. byte swapped)
3836 *
3837 *
3838 *.DIAGRAM
3839 *10: The PCMCIA card can be removed in the middle of the transfer. By depositing a "magic number" in the
3840 *   HREG_SW_0 register of the Hermes at initialization time and by verifying this register, it can be
3841 *   determined whether the card is still present. The return status is set accordingly.
3842 *   Clearing the buffer is a (relative) cheap way to prevent that failing I/O results in run-away behavior
3843 *   because the garbage in the buffer is interpreted by the caller irrespective of the return status (e.g.
3844 *   hcf_service_nic has this behavior).
3845 *
3846 *.NOTICE
3847 *   It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
3848 *   Assert on len is possible
3849 *
3850 *.ENDDOC                END DOCUMENTATION
3851 *
3852 ************************************************************************************************************/
3853HCF_STATIC void
3854get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
3855{
3856        hcf_io      io_port = ifbp->IFB_IOBase + HREG_DATA_1;   //BAP data register
3857        wci_bufp    p = bufp;                                   //working pointer
3858        int         i;                                          //prevent side effects from macro
3859        int         j;
3860
3861        HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp );
3862
3863/*1:    here recovery logic for intervening BAP access between hcf_service_nic and hcf_rcv_msg COULD be added
3864 *  if current access is RxInitial
3865 *  .  persistent_offset += len
3866 */
3867
3868        i = len;
3869                                                //if buffer length > 0 and carry from previous get_frag
3870        if ( i && ifbp->IFB_CarryIn ) {
3871                                                //.  move carry to buffer
3872                                                //.  adjust buffer length and pointer accordingly
3873                *p++ = (hcf_8)(ifbp->IFB_CarryIn>>8);
3874                i--;
3875                                                //.  clear carry flag
3876                ifbp->IFB_CarryIn = 0;
3877        }
3878#if (HCF_IO) & HCF_IO_32BITS
3879        //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
3880                                                //if buffer length >= 6 and 32 bits I/O support
3881        if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
3882                hcf_32 FAR  *p4; //prevent side effects from macro
3883                if ( ( (hcf_32)p & 0x1 ) == 0 ) {           //.  if buffer at least word aligned
3884                        if ( (hcf_32)p & 0x2 ) {            //.  .  if buffer not double word aligned
3885                                                            //.  .  .  read single word to get double word aligned
3886                                *(wci_recordp)p = IN_PORT_WORD( io_port );
3887                                                            //.  .  .  adjust buffer length and pointer accordingly
3888                                p += 2;
3889                                i -= 2;
3890                        }
3891                                                            //.  .  read as many double word as possible
3892                        p4 = (hcf_32 FAR *)p;
3893                        j = i/4;
3894                        IN_PORT_STRING_32( io_port, p4, j );
3895                                                            //.  .  adjust buffer length and pointer accordingly
3896                        p += i & ~0x0003;
3897                        i &= 0x0003;
3898                }
3899        }
3900#endif // HCF_IO_32BITS
3901                                                //if no 32-bit support OR byte aligned OR 1-3 bytes left
3902        if ( i ) {
3903                                                //.  read as many word as possible in "alignment safe" way
3904                j = i/2;
3905                IN_PORT_STRING_8_16( io_port, p, j );
3906                                                //.  if 1 byte left
3907                if ( i & 0x0001 ) {
3908                                                //.  .  read 1 word
3909                        ifbp->IFB_CarryIn = IN_PORT_WORD( io_port );
3910                                                //.  .  store LSB in last char of buffer
3911                        bufp[len-1] = (hcf_8)ifbp->IFB_CarryIn;
3912                                                //.  .  save MSB in carry, set carry flag
3913                        ifbp->IFB_CarryIn |= 0x1;
3914                }
3915        }
3916#if HCF_BIG_ENDIAN
3917        HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len );
3918        HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp );
3919        HCFASSERT( word_len <= len, MERGE2( word_len, len ) );
3920        //see put_frag for an alternative implementation, but be careful about what are int's and what are
3921        //hcf_16's
3922        if ( word_len ) {                               //.  if there is anything to convert
3923                hcf_8 c;
3924                c = bufp[1];                                //.  .  convert the 1st hcf_16
3925                bufp[1] = bufp[0];
3926                bufp[0] = c;
3927                if ( word_len > 1 ) {                       //.  .  if there is to convert more than 1 word ( i.e 2 )
3928                        c = bufp[3];                            //.  .  .  convert the 2nd hcf_16
3929                        bufp[3] = bufp[2];
3930                        bufp[2] = c;
3931                }
3932        }
3933#endif // HCF_BIG_ENDIAN
3934} // get_frag
3935
3936/************************************************************************************************************
3937 *
3938 *.SUBMODULE     int init( IFBP ifbp )
3939 *.PURPOSE       Handles common initialization aspects (H-I init, calibration, config.mngmt, allocation).
3940 *
3941 *.ARGUMENTS
3942 *   ifbp        address of the Interface Block
3943 *
3944 *.RETURNS
3945 *   HCF_ERR_INCOMP_PRI
3946 *   HCF_ERR_INCOMP_FW
3947 *   HCF_ERR_TIME_OUT
3948 *   >>hcf_get_info
3949 *       HCF_ERR_NO_NIC
3950 *       HCF_ERR_LEN
3951 *
3952 *.DESCRIPTION
3953 * init will successively:
3954 * - in case of a (non-preloaded) H-I, initialize the NIC
3955 * - calibrate the S/W protection timer against the Hermes Timer
3956 * - collect HSI, "active" F/W Configuration Management Information
3957 * - in case active F/W is Primary F/W: collect Primary F/W Configuration Management Information
3958 * - check HSI and Primary F/W compatibility with the HCF
3959 * - in case active F/W is Station or AP F/W: check Station or AP F/W compatibility with the HCF
3960 * - in case active F/W is not Primary F/W: allocate FIDs to be used in transmit/notify process
3961 *
3962 *
3963 *.DIAGRAM
3964 *2: drop all error status bits in IFB_CardStat since they are expected to be re-evaluated.
3965 *4: Ack everything except HREG_EV_SLEEP_REQ. It is very likely that an Alloc event is pending and
3966 *   very well possible that a Send Cmd event is pending. Acking HREG_EV_SLEEP_REQ is handled by hcf_action(
3967 *   HCF_ACT_INT_ON ) !!!
3968 *10: Calibrate the S/W time-out protection mechanism by calling calibrate(). Note that possible errors
3969 *   in the calibration process are nor reported by init but will show up via the defunct mechanism in
3970 *   subsequent hcf-calls.
3971 *14: usb_check_comp() is called to have the minimal visual clutter for the legacy H-I USB dongle
3972 *   compatibility check.
3973 *16: The following configuration management related information is retrieved from the NIC:
3974 *    - HSI supplier
3975 *    - F/W Identity
3976 *    - F/W supplier
3977 *    if appropriate:
3978 *    - PRI Identity
3979 *    - PRI supplier
3980 *    appropriate means on H-I: always
3981 *    and on H-II if F/W supplier reflects a primary (i.e. only after an Hermes Reset or Init
3982 *    command).
3983 *    QUESTION ;? !!!!!! should, For each of the above RIDs the Endianness is converted to native Endianness.
3984 *    Only the return code of the first hcf_get_info is used. All hcf_get_info calls are made, regardless of
3985 *    the success or failure of the 1st hcf_get_info. The assumptions are:
3986 *     - if any call fails, they all fail, so remembering the result of the 1st call is adequate
3987 *     - a failing call will overwrite the L-field with a 0x0000 value, which services both as an
3988 *       error indication for the values cached in the IFB as making mmd_check_comp fail.
3989 *    In case of H-I, when getting the F/W identity fails, the F/W is assumed to be H-I AP F/W pre-dating
3990 *    version 9.0 and the F/W Identity and Supplier are faked accordingly.
3991 *    In case of H-II, the Primary, Station and AP Identity are merged into a single F/W Identity.
3992 *    The same applies to the Supplier information. As a consequence the PRI information can no longer be
3993 *    retrieved when a Tertiary runs. To accommodate MSFs and Utilities who depend on PRI information being
3994 *    available at any time, this information is cached in the IFB. In this cache the generic "F/W" value of
3995 *    the typ-fields is overwritten with the specific (legacy) "PRI" values. To actually re-route the (legacy)
3996 *    PRI request via hcf_get_info, the xxxx-table must be set.  In case of H-I, this caching, modifying and
3997 *    re-routing is not needed because PRI information is always available directly from the NIC. For
3998 *    consistency the caching fields in the IFB are filled with the PRI information anyway.
3999 *18: mdd_check_comp() is called to check the Supplier Variant and Range of the Host-S/W I/F (HSI) and the
4000 *   Primary Firmware Variant and Range against the Top and Bottom level supported by this HCF.  If either of
4001 *   these tests fails, the CARD_STAT_INCOMP_PRI bit of IFB_CardStat is set
4002 *   Note: There should always be a primary except during production, so this makes the HCF in its current form
4003 *   unsuitable for manufacturing test systems like the FTS. This can be remedied by an adding a test like
4004 *   ifbp->IFB_PRISup.id == COMP_ID_PRI
4005 *20: In case there is Tertiary F/W and this F/W is Station F/W, the Supplier Variant and Range of the Station
4006 *   Firmware function as retrieved from the Hermes is checked against the Top and Bottom level supported by
4007 *   this HCF.
4008 *   Note: ;? the tertiary F/W compatibility checks could be moved to the DHF, which already has checked the
4009 *   CFI and MFI compatibility of the image with the NIC before the image was downloaded.
4010 *28: In case of non-Primary F/W: allocates and acknowledge a (TX or Notify) FID and allocates without
4011 *   acknowledge another (TX or Notify) FID (the so-called 1.5 alloc scheme) with the following steps:
4012 *   - execute the allocate command by calling cmd_exe
4013 *   - wait till either the alloc event or a time-out occurs
4014 *   - regardless whether the alloc event occurs, call get_fid to
4015 *     - read the FID and save it in IFB_RscInd to be used as "spare FID"
4016 *     - acknowledge the alloc event
4017 *     - do another "half" allocate to complete the "1.5 Alloc scheme"
4018 *     Note that above 3 steps do not harm and thus give the "cheapest" acceptable strategy.
4019 *     If a time-out occurred, then report time out status (after all)
4020 *
4021 *.ENDDOC                END DOCUMENTATION
4022 *
4023 ************************************************************************************************************/
4024HCF_STATIC int
4025init( IFBP ifbp )
4026{
4027
4028        int rc = HCF_SUCCESS;
4029
4030        HCFLOGENTRY( HCF_TRACE_INIT, 0 );
4031
4032        ifbp->IFB_CardStat = 0;                                                                         /* 2*/
4033        OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );                                             /* 4*/
4034        IF_PROT_TIME( calibrate( ifbp ) );                                                  /*10*/
4035#if 0 // OOR
4036        ifbp->IFB_FWIdentity.len = 2;                           //misuse the IFB space for a put
4037        ifbp->IFB_FWIdentity.typ = CFG_TICK_TIME;
4038        ifbp->IFB_FWIdentity.comp_id = (1000*1000)/1024 + 1;    //roughly 1 second
4039        hcf_put_info( ifbp, (LTVP)&ifbp->IFB_FWIdentity.len );
4040#endif // OOR
4041        ifbp->IFB_FWIdentity.len = sizeof(CFG_FW_IDENTITY_STRCT)/sizeof(hcf_16) - 1;
4042        ifbp->IFB_FWIdentity.typ = CFG_FW_IDENTITY;
4043        rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_FWIdentity.len );
4044/* ;? conversion should not be needed for mmd_check_comp */
4045#if HCF_BIG_ENDIAN
4046        ifbp->IFB_FWIdentity.comp_id       = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.comp_id );
4047        ifbp->IFB_FWIdentity.variant       = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.variant );
4048        ifbp->IFB_FWIdentity.version_major = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_major );
4049        ifbp->IFB_FWIdentity.version_minor = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_minor );
4050#endif // HCF_BIG_ENDIAN
4051#if defined MSF_COMPONENT_ID                                                                        /*14*/
4052        if ( rc == HCF_SUCCESS ) {                                                                      /*16*/
4053                ifbp->IFB_HSISup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1;
4054                ifbp->IFB_HSISup.typ = CFG_NIC_HSI_SUP_RANGE;
4055                rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_HSISup.len );
4056/* ;? conversion should not be needed for mmd_check_comp , BUT according to a report of a BE-user it is
4057 * should be resolved in the WARP release
4058 * since some compilers make ugly but unnecessary code of these instructions even for LE,
4059 * it is conditionally compiled */
4060#if HCF_BIG_ENDIAN
4061                ifbp->IFB_HSISup.role    = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.role );
4062                ifbp->IFB_HSISup.id      = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.id );
4063                ifbp->IFB_HSISup.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.variant );
4064                ifbp->IFB_HSISup.bottom  = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.bottom );
4065                ifbp->IFB_HSISup.top     = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.top );
4066#endif // HCF_BIG_ENDIAN
4067                ifbp->IFB_FWSup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1;
4068                ifbp->IFB_FWSup.typ = CFG_FW_SUP_RANGE;
4069                (void)hcf_get_info( ifbp, (LTVP)&ifbp->IFB_FWSup.len );
4070/* ;? conversion should not be needed for mmd_check_comp */
4071#if HCF_BIG_ENDIAN
4072                ifbp->IFB_FWSup.role    = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.role );
4073                ifbp->IFB_FWSup.id      = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.id );
4074                ifbp->IFB_FWSup.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.variant );
4075                ifbp->IFB_FWSup.bottom  = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.bottom );
4076                ifbp->IFB_FWSup.top     = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.top );
4077#endif // HCF_BIG_ENDIAN
4078
4079                if ( ifbp->IFB_FWSup.id == COMP_ID_PRI ) {                                              /* 20*/
4080                        int i = sizeof( CFG_FW_IDENTITY_STRCT) + sizeof(CFG_SUP_RANGE_STRCT );
4081                        while ( i-- ) ((hcf_8*)(&ifbp->IFB_PRIIdentity))[i] = ((hcf_8*)(&ifbp->IFB_FWIdentity))[i];
4082                        ifbp->IFB_PRIIdentity.typ = CFG_PRI_IDENTITY;
4083                        ifbp->IFB_PRISup.typ = CFG_PRI_SUP_RANGE;
4084                        xxxx[xxxx_PRI_IDENTITY_OFFSET] = &ifbp->IFB_PRIIdentity.len;
4085                        xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = &ifbp->IFB_PRISup.len;
4086                }
4087                if ( !mmd_check_comp( (void*)&cfg_drv_act_ranges_hsi, &ifbp->IFB_HSISup)                 /* 22*/
4088#if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
4089//;? the PRI compatibility check is only relevant for DHF
4090                     || !mmd_check_comp( (void*)&cfg_drv_act_ranges_pri, &ifbp->IFB_PRISup)
4091#endif // HCF_TYPE_PRELOADED
4092                        ) {
4093                        ifbp->IFB_CardStat = CARD_STAT_INCOMP_PRI;
4094                        rc = HCF_ERR_INCOMP_PRI;
4095                }
4096                if ( ( ifbp->IFB_FWSup.id == COMP_ID_STA && !mmd_check_comp( (void*)&cfg_drv_act_ranges_sta, &ifbp->IFB_FWSup) ) ||
4097                     ( ifbp->IFB_FWSup.id == COMP_ID_APF && !mmd_check_comp( (void*)&cfg_drv_act_ranges_apf, &ifbp->IFB_FWSup) )
4098                        ) {                                                                                  /* 24 */
4099                        ifbp->IFB_CardStat |= CARD_STAT_INCOMP_FW;
4100                        rc = HCF_ERR_INCOMP_FW;
4101                }
4102        }
4103#endif // MSF_COMPONENT_ID
4104
4105        if ( rc == HCF_SUCCESS && ifbp->IFB_FWIdentity.comp_id >= COMP_ID_FW_STA ) {
4106                PROT_CNT_INI;
4107                /**************************************************************************************
4108                 * rlav: the DMA engine needs the host to cause a 'hanging alloc event' for it to consume.
4109                 * not sure if this is the right spot in the HCF, thinking about hcf_enable...
4110                 **************************************************************************************/
4111                rc = cmd_exe( ifbp, HCMD_ALLOC, 0 );
4112// 180 degree error in logic ;? #if ALLOC_15
4113//              ifbp->IFB_RscInd = 1;   //let's hope that by the time hcf_send_msg isa called, there will be a FID
4114//#else
4115                if ( rc == HCF_SUCCESS ) {
4116                        HCF_WAIT_WHILE( (IPW( HREG_EV_STAT ) & HREG_EV_ALLOC) == 0 );
4117                        IF_PROT_TIME( HCFASSERT(prot_cnt, IPW( HREG_EV_STAT )) );
4118#if HCF_DMA
4119                        if ( ! ( ifbp->IFB_CntlOpt & USE_DMA ) )
4120#endif // HCF_DMA
4121                        {
4122                                ifbp->IFB_RscInd = get_fid( ifbp );
4123                                HCFASSERT( ifbp->IFB_RscInd, 0 );
4124                                cmd_exe( ifbp, HCMD_ALLOC, 0 );
4125                                IF_PROT_TIME( if ( prot_cnt == 0 ) rc = HCF_ERR_TIME_OUT );
4126                        }
4127                }
4128//#endif // ALLOC_15
4129        }
4130
4131        HCFASSERT( rc == HCF_SUCCESS, rc );
4132        HCFLOGEXIT( HCF_TRACE_INIT );
4133        return rc;
4134} // init
4135
4136/************************************************************************************************************
4137 *
4138 *.SUBMODULE     void isr_info( IFBP ifbp )
4139 *.PURPOSE       handles link events.
4140 *
4141 *.ARGUMENTS
4142 *   ifbp        address of the Interface Block
4143 *
4144 *.RETURNS       N.A.
4145 *
4146 *.DESCRIPTION
4147 *
4148 *
4149 *.DIAGRAM
4150 *1: First the FID number corresponding with the InfoEvent is determined.
4151 *   Note the complication of the zero-FID protection sub-scheme in DAWA.
4152 *   Next the L-field and the T-field are fetched into scratch buffer info.
4153 *2: In case of tallies, the 16 bits Hermes values are accumulated in the IFB into 32 bits values. Info[0]
4154 *   is (expected to be) HCF_NIC_TAL_CNT + 1. The contraption "while ( info[0]-- >1 )" rather than
4155 *   "while ( --info[0] )" is used because it is dangerous to determine the length of the Value field by
4156 *   decrementing info[0]. As a result of a bug in some version of the F/W, info[0] may be 0, resulting
4157 *   in a very long loop in the pre-decrement logic.
4158 *4: In case of a link status frame, the information is copied to the IFB field IFB_linkStat
4159 *6: All other than Tallies (including "unknown" ones) are checked against the selection set by the MSF
4160 *   via CFG_RID_LOG. If a match is found or the selection set has the wild-card type (i.e non-NULL buffer
4161 *   pointer at the terminating zero-type), the frame is copied to the (type-specific) log buffer.
4162 *   Note that to accumulate tallies into IFB AND to log them or to log a frame when a specific match occures
4163 *   AND based on the wild-card selection, you have to call setup_bap again after the 1st copy.
4164 *
4165 *.ENDDOC                END DOCUMENTATION
4166 *
4167 ************************************************************************************************************/
4168HCF_STATIC void
4169isr_info( IFBP ifbp )
4170{
4171        hcf_16  info[2], fid;
4172#if (HCF_EXT) & HCF_EXT_INFO_LOG
4173        RID_LOGP    ridp = ifbp->IFB_RIDLogp;   //NULL or pointer to array of RID_LOG structures (terminated by zero typ)
4174#endif // HCF_EXT_INFO_LOG
4175
4176        HCFTRACE( ifbp, HCF_TRACE_ISR_INFO );                                                               /* 1 */
4177        fid = IPW( HREG_INFO_FID );
4178        DAWA_ZERO_FID( HREG_INFO_FID );
4179        if ( fid ) {
4180                (void)setup_bap( ifbp, fid, 0, IO_IN );
4181                get_frag( ifbp, (wci_bufp)info, 4 BE_PAR(2) );
4182                HCFASSERT( info[0] <= HCF_MAX_LTV + 1, MERGE_2( info[1], info[0] ) );  //;? a smaller value makes more sense
4183#if (HCF_TALLIES) & HCF_TALLIES_NIC     //Hermes tally support
4184                if ( info[1] == CFG_TALLIES ) {
4185                        hcf_32  *p;
4186                /*2*/   if ( info[0] > HCF_NIC_TAL_CNT ) {
4187                                info[0] = HCF_NIC_TAL_CNT + 1;
4188                        }
4189                        p = (hcf_32*)&ifbp->IFB_NIC_Tallies;
4190                        while ( info[0]-- >1 ) *p++ += IPW( HREG_DATA_1 );  //request may return zero length
4191                }
4192                else
4193#endif // HCF_TALLIES_NIC
4194                {
4195                /*4*/   if ( info[1] == CFG_LINK_STAT ) {
4196                                ifbp->IFB_LinkStat = IPW( HREG_DATA_1 );
4197                        }
4198#if (HCF_EXT) & HCF_EXT_INFO_LOG
4199                /*6*/   while ( 1 ) {
4200                                if ( ridp->typ == 0 || ridp->typ == info[1] ) {
4201                                        if ( ridp->bufp ) {
4202                                                HCFASSERT( ridp->len >= 2, ridp->typ );
4203                                                ridp->bufp[0] = min((hcf_16)(ridp->len - 1), info[0] );     //save L
4204                                                ridp->bufp[1] = info[1];                        //save T
4205                                                get_frag( ifbp, (wci_bufp)&ridp->bufp[2], (ridp->bufp[0] - 1)*2 BE_PAR(0) );
4206                                        }
4207                                        break;
4208                                }
4209                                ridp++;
4210                        }
4211#endif // HCF_EXT_INFO_LOG
4212                }
4213                HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
4214        }
4215        return;
4216} // isr_info
4217
4218//
4219//
4220// #endif // HCF_TALLIES_NIC
4221// /*4*/    if ( info[1] == CFG_LINK_STAT ) {
4222//          ifbp->IFB_DSLinkStat = IPW( HREG_DATA_1 ) | CFG_LINK_STAT_CHANGE;   //corrupts BAP !! ;?
4223//          ifbp->IFB_LinkStat = ifbp->IFB_DSLinkStat & CFG_LINK_STAT_FW; //;? to be obsoleted
4224//          printk(KERN_ERR "linkstatus: %04x\n", ifbp->IFB_DSLinkStat );        //;?remove me 1 day
4225// #if (HCF_SLEEP) & HCF_DDS
4226//          if ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) {    //even values are disconnected etc.
4227//              ifbp->IFB_TickCnt = 0;              //start 2 second period (with 1 tick uncertanty)
4228//              printk(KERN_NOTICE "isr_info: AwaitConnection phase started, IFB_TickCnt = 0\n" );      //;?remove me 1 day
4229//          }
4230// #endif // HCF_DDS
4231//      }
4232// #if (HCF_EXT) & HCF_EXT_INFO_LOG
4233// /*6*/    while ( 1 ) {
4234//          if ( ridp->typ == 0 || ridp->typ == info[1] ) {
4235//              if ( ridp->bufp ) {
4236//                  HCFASSERT( ridp->len >= 2, ridp->typ );
4237//                  (void)setup_bap( ifbp, fid, 2, IO_IN );         //restore BAP for tallies, linkstat and specific type followed by wild card
4238//                  ridp->bufp[0] = min( ridp->len - 1, info[0] );  //save L
4239//                  get_frag( ifbp, (wci_bufp)&ridp->bufp[1], ridp->bufp[0]*2 BE_PAR(0) );
4240//              }
4241//              break; //;?this break is no longer needed due to setup_bap but lets concentrate on DDS first
4242//          }
4243//          ridp++;
4244//      }
4245// #endif // HCF_EXT_INFO_LOG
4246//  }
4247//  HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
4248//
4249//
4250//
4251//
4252//  return;
4253//} // isr_info
4254
4255
4256/************************************************************************************************************
4257 *
4258 *.SUBMODULE     void mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
4259 *.PURPOSE       filters assert on level and interfaces to the MSF supplied msf_assert routine.
4260 *
4261 *.ARGUMENTS
4262 *   ifbp        address of the Interface Block
4263 *   line_number line number of the line which caused the assert
4264 *   q           qualifier, additional information which may give a clue about the problem
4265 *
4266 *.RETURNS       N.A.
4267 *
4268 *.DESCRIPTION
4269 *
4270 *
4271 *.DIAGRAM
4272 *
4273 *.NOTICE
4274 * mdd_assert has been through a turmoil, renaming hcf_assert to assert and hcf_assert again and supporting off
4275 * and on being called from the MSF level and other ( immature ) ModularDriverDevelopment modules like DHF and
4276 * MMD.
4277 * !!!! The assert routine is not an hcf_..... routine in the sense that it may be called by the MSF,
4278 *      however it is called from mmd.c and dhf.c, so it must be external.
4279 *      To prevent namespace pollution it needs a prefix, to prevent that MSF programmers think that
4280 *      they are allowed to call the assert logic, the prefix HCF can't be used, so MDD is selected!!!!
4281 *
4282 * When called from the DHF module the line number is incremented by DHF_FILE_NAME_OFFSET and when called from
4283 * the MMD module by MMD_FILE_NAME_OFFSET.
4284 *
4285 *.ENDDOC                END DOCUMENTATION
4286 *
4287 ************************************************************************************************************/
4288#if HCF_ASSERT
4289void
4290mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
4291{
4292        hcf_16  run_time_flag = ifbp->IFB_AssertLvl;
4293
4294        if ( run_time_flag /* > ;?????? */ ) { //prevent recursive behavior, later to be extended to level filtering
4295                ifbp->IFB_AssertQualifier = q;
4296                ifbp->IFB_AssertLine = (hcf_16)line_number;
4297#if (HCF_ASSERT) & ( HCF_ASSERT_LNK_MSF_RTN | HCF_ASSERT_RT_MSF_RTN )
4298                if ( ifbp->IFB_AssertRtn ) {
4299                        ifbp->IFB_AssertRtn( line_number, ifbp->IFB_AssertTrace, q );
4300                }
4301#endif // HCF_ASSERT_LNK_MSF_RTN / HCF_ASSERT_RT_MSF_RTN
4302#if (HCF_ASSERT) & HCF_ASSERT_SW_SUP
4303                OPW( HREG_SW_2, line_number );
4304                OPW( HREG_SW_2, ifbp->IFB_AssertTrace );
4305                OPW( HREG_SW_2, (hcf_16)q );
4306                OPW( HREG_SW_2, (hcf_16)(q >> 16 ) );
4307#endif // HCF_ASSERT_SW_SUP
4308
4309#if (HCF_ASSERT) & HCF_ASSERT_MB
4310                ifbp->IFB_AssertLvl = 0;                                    // prevent recursive behavior
4311                hcf_put_info( ifbp, (LTVP)&ifbp->IFB_AssertStrct );
4312                ifbp->IFB_AssertLvl = run_time_flag;                        // restore appropriate filter level
4313#endif // HCF_ASSERT_MB
4314        }
4315} // mdd_assert
4316#endif // HCF_ASSERT
4317
4318
4319/************************************************************************************************************
4320 *
4321 *.SUBMODULE     void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
4322 *.PURPOSE       writes with 16/32 bit I/O via BAP1 port from Host memory to NIC RAM.
4323 *
4324 *.ARGUMENTS
4325 *   ifbp        address of the Interface Block
4326 *   bufp        (byte) address of buffer
4327 *   len         length in bytes of buffer specified by bufp
4328 *   word_len    Big Endian only: number of leading bytes to swap in pairs
4329 *
4330 *.RETURNS       N.A.
4331 *
4332 *.DESCRIPTION
4333 * process the single byte (if applicable) not yet written by the previous put_frag and copy len
4334 * (or len-1) bytes from bufp to NIC.
4335 *
4336 *
4337 *.DIAGRAM
4338 *
4339 *.NOTICE
4340 *   It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
4341 *   Assert on len is possible
4342 *
4343 *.ENDDOC                END DOCUMENTATION
4344 *
4345 ************************************************************************************************************/
4346HCF_STATIC void
4347put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
4348{
4349        hcf_io      io_port = ifbp->IFB_IOBase + HREG_DATA_1;   //BAP data register
4350        int         i;                                          //prevent side effects from macro
4351        hcf_16      j;
4352        HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp );
4353#if HCF_BIG_ENDIAN
4354        HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len );
4355        HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp );
4356        HCFASSERT( word_len <= len, MERGE_2( word_len, len ) );
4357
4358        if ( word_len ) {                                   //if there is anything to convert
4359                                                //.  convert and write the 1st hcf_16
4360                j = bufp[1] | bufp[0]<<8;
4361                OUT_PORT_WORD( io_port, j );
4362                                                //.  update pointer and counter accordingly
4363                len -= 2;
4364                bufp += 2;
4365                if ( word_len > 1 ) {           //.  if there is to convert more than 1 word ( i.e 2 )
4366                                                //.  .  convert and write the 2nd hcf_16
4367                        j = bufp[1] | bufp[0]<<8;   /*bufp is already incremented by 2*/
4368                        OUT_PORT_WORD( io_port, j );
4369                                                //.  .  update pointer and counter accordingly
4370                        len -= 2;
4371                        bufp += 2;
4372                }
4373        }
4374#endif // HCF_BIG_ENDIAN
4375        i = len;
4376        if ( i && ifbp->IFB_CarryOut ) {                    //skip zero-length
4377                j = ((*bufp)<<8) + ( ifbp->IFB_CarryOut & 0xFF );
4378                OUT_PORT_WORD( io_port, j );
4379                bufp++; i--;
4380                ifbp->IFB_CarryOut = 0;
4381        }
4382#if (HCF_IO) & HCF_IO_32BITS
4383        //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
4384                                                                //if buffer length >= 6 and 32 bits I/O support
4385        if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
4386                hcf_32 FAR  *p4; //prevent side effects from macro
4387                if ( ( (hcf_32)bufp & 0x1 ) == 0 ) {            //.  if buffer at least word aligned
4388                        if ( (hcf_32)bufp & 0x2 ) {             //.  .  if buffer not double word aligned
4389                                                                //.  .  .  write a single word to get double word aligned
4390                                j = *(wci_recordp)bufp;     //just to help ease writing macros with embedded assembly
4391                                OUT_PORT_WORD( io_port, j );
4392                                                                //.  .  .  adjust buffer length and pointer accordingly
4393                                bufp += 2; i -= 2;
4394                        }
4395                                                                //.  .  write as many double word as possible
4396                        p4 = (hcf_32 FAR *)bufp;
4397                        j = (hcf_16)i/4;
4398                        OUT_PORT_STRING_32( io_port, p4, j );
4399                                                                //.  .  adjust buffer length and pointer accordingly
4400                        bufp += i & ~0x0003;
4401                        i &= 0x0003;
4402                }
4403        }
4404#endif // HCF_IO_32BITS
4405                                                //if no 32-bit support OR byte aligned OR 1 word left
4406        if ( i ) {
4407                                                //.  if odd number of bytes left
4408                if ( i & 0x0001 ) {
4409                                                //.  .  save left over byte (before bufp is corrupted) in carry, set carry flag
4410                        ifbp->IFB_CarryOut = (hcf_16)bufp[i-1] | 0x0100;    //note that i and bufp are always simultaneously modified, &bufp[i-1] is invariant
4411                }
4412                                                //.  write as many word as possible in "alignment safe" way
4413                j = (hcf_16)i/2;
4414                OUT_PORT_STRING_8_16( io_port, bufp, j );
4415        }
4416} // put_frag
4417
4418
4419/************************************************************************************************************
4420 *
4421 *.SUBMODULE     void put_frag_finalize( IFBP ifbp )
4422 *.PURPOSE       cleanup after put_frag for trailing odd byte and MIC transfer to NIC.
4423 *
4424 *.ARGUMENTS
4425 *   ifbp        address of the Interface Block
4426 *
4427 *.RETURNS       N.A.
4428 *
4429 *.DESCRIPTION
4430 * finalize the MIC calculation with the padding pattern, output the last byte (if applicable)
4431 * of the message and the MIC to the TxFS
4432 *
4433 *
4434 *.DIAGRAM
4435 *2: 1 byte of the last put_frag may be still in IFB_CarryOut ( the put_frag carry holder ), so ........
4436 *   1 - 3 bytes of the last put_frag may be still in IFB_tx_32 ( the MIC engine carry holder ), so ........
4437 *   The call to the MIC calculation routine feeds these remaining bytes (if any) of put_frag and the
4438 *   just as many bytes of the padding as needed to the MIC calculation engine. Note that the "unneeded" pad
4439 *   bytes simply end up in the MIC engine carry holder and are never used.
4440 *8: write the remainder of the MIC and possible some garbage to NIC RAM
4441 *   Note: i is always 4 (a loop-invariant of the while in point 2)
4442 *
4443 *.NOTICE
4444 *
4445 *.ENDDOC                END DOCUMENTATION
4446 *
4447 ************************************************************************************************************/
4448HCF_STATIC void
4449put_frag_finalize( IFBP ifbp )
4450{
4451#if (HCF_TYPE) & HCF_TYPE_WPA
4452        if ( ifbp->IFB_MICTxCarry != 0xFFFF) {      //if MIC calculation active
4453                CALC_TX_MIC( mic_pad, 8);               //.  feed (up to 8 bytes of) virtual padding to MIC engine
4454                                                        //.  write (possibly) trailing byte + (most of) MIC
4455                put_frag( ifbp, (wci_bufp)ifbp->IFB_MICTx, 8 BE_PAR(0) );
4456        }
4457#endif // HCF_TYPE_WPA
4458        put_frag( ifbp, null_addr, 1 BE_PAR(0) );   //write (possibly) trailing data or MIC byte
4459} // put_frag_finalize
4460
4461
4462/************************************************************************************************************
4463 *
4464 *.SUBMODULE     int put_info( IFBP ifbp, LTVP ltvp )
4465 *.PURPOSE       support routine to handle the "basic" task of hcf_put_info to pass RIDs to the NIC.
4466 *
4467 *.ARGUMENTS
4468 *   ifbp        address of the Interface Block
4469 *   ltvp        address in NIC RAM where LVT-records are located
4470 *
4471 *.RETURNS
4472 *   HCF_SUCCESS
4473 *   >>put_frag
4474 *   >>cmd_wait
4475 *
4476 *.DESCRIPTION
4477 *
4478 *
4479 *.DIAGRAM
4480 *20: do not write RIDs to NICs which have incompatible Firmware
4481 *24: If the RID does not exist, the L-field is set to zero.
4482 *   Note that some RIDs can not be read, e.g. the pseudo RIDs for direct Hermes commands and CFG_DEFAULT_KEYS
4483 *28: If the RID is written successful, pass it to the NIC by means of an Access Write command
4484 *
4485 *.NOTICE
4486 *   The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
4487 *     - some codes (e.g. CFG_REG_MB) are explicitly handled by the HCF which implies that these codes
4488 *       are valid. These codes are already consumed by hcf_put_info.
4489 *     - all other codes are passed to the Hermes. Before the put action is executed, hcf_get_info is called
4490 *       with an LTV record with a value of 1 in the L-field and the intended put action type in the Typ-code
4491 *       field. If the put action type is valid, it is also valid as a get action type code - except
4492 *       for CFG_DEFAULT_KEYS and CFG_ADD_TKIP_DEFAULT_KEY - so the HCF_ASSERT logic of hcf_get_info should
4493 *       not catch.
4494 *
4495 *.ENDDOC                END DOCUMENTATION
4496 *
4497 ************************************************************************************************************/
4498HCF_STATIC int
4499put_info( IFBP ifbp, LTVP ltvp  )
4500{
4501
4502        int rc = HCF_SUCCESS;
4503
4504        HCFASSERT( ifbp->IFB_CardStat == 0, MERGE_2( ltvp->typ, ifbp->IFB_CardStat ) );
4505        HCFASSERT( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX, ltvp->typ );
4506
4507        if ( ifbp->IFB_CardStat == 0 &&                                                             /* 20*/
4508             ( ( CFG_RID_CFG_MIN <= ltvp->typ    && ltvp->typ <= CFG_RID_CFG_MAX ) ||
4509               ( CFG_RID_ENG_MIN <= ltvp->typ /* && ltvp->typ <= 0xFFFF */       )     ) ) {
4510#if HCF_ASSERT //FCC8, FCB0, FCB4, FCB6, FCB7, FCB8, FCC0, FCC4, FCBC, FCBD, FCBE, FCBF
4511                {
4512                        hcf_16     t = ltvp->typ;
4513                        LTV_STRCT  x = { 2, t, {0} };                                                          /*24*/
4514                        hcf_get_info( ifbp, (LTVP)&x );
4515                        if ( x.len == 0 &&
4516                             ( t != CFG_DEFAULT_KEYS && t != CFG_ADD_TKIP_DEFAULT_KEY && t != CFG_REMOVE_TKIP_DEFAULT_KEY &&
4517                               t != CFG_ADD_TKIP_MAPPED_KEY && t != CFG_REMOVE_TKIP_MAPPED_KEY &&
4518                               t != CFG_HANDOVER_ADDR && t != CFG_DISASSOCIATE_ADDR &&
4519                               t != CFG_FCBC && t != CFG_FCBD && t != CFG_FCBE && t != CFG_FCBF &&
4520                               t != CFG_DEAUTHENTICATE_ADDR
4521                                     )
4522                                ) {
4523                                HCFASSERT( DO_ASSERT, ltvp->typ );
4524                        }
4525                }
4526#endif // HCF_ASSERT
4527
4528                rc = setup_bap( ifbp, ltvp->typ, 0, IO_OUT );
4529                put_frag( ifbp, (wci_bufp)ltvp, 2*ltvp->len + 2 BE_PAR(2) );
4530        /*28*/  if ( rc == HCF_SUCCESS ) {
4531                        rc = cmd_exe( ifbp, HCMD_ACCESS + HCMD_ACCESS_WRITE, ltvp->typ );
4532                }
4533        }
4534        return rc;
4535} // put_info
4536
4537
4538/************************************************************************************************************
4539 *
4540 *.SUBMODULE     int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
4541 *.PURPOSE       accumulates a ( series of) buffers into a single Info block into the MailBox.
4542 *
4543 *.ARGUMENTS
4544 *   ifbp        address of the Interface Block
4545 *   ltvp        address of structure specifying the "type" and the fragments of the information to be synthesized
4546 *               as an LTV into the MailBox
4547 *
4548 *.RETURNS
4549 *
4550 *.DESCRIPTION
4551 * If the data does not fit (including no MailBox is available), the IFB_MBTally is incremented and an
4552 * error status is returned.
4553 * HCF_ASSERT does not catch.
4554 * Calling put_info_mb when their is no MailBox available, is considered a design error in the MSF.
4555 *
4556 * Note that there is always at least 1 word of unused space in the mail box.
4557 * As a consequence:
4558 * - no problem in pointer arithmetic (MB_RP == MB_WP means unambiguously mail box is completely empty
4559 * - There is always free space to write an L field with a value of zero after each MB_Info block.  This
4560 *   allows for an easy scan mechanism in the "get MB_Info block" logic.
4561 *
4562 *
4563 *.DIAGRAM
4564 *1: Calculate L field of the MBIB, i.e. 1 for the T-field + the cumulative length of the fragments.
4565 *2: The free space in the MailBox is calculated (2a: free part from Write Ptr to Read Ptr, 2b: free part
4566 *   turns out to wrap around) . If this space suffices to store the number of words reflected by len (T-field
4567 *   + Value-field) plus the additional MailBox Info L-field + a trailing 0 to act as the L-field of a trailing
4568 *   dummy or empty LTV record, then a MailBox Info block is build in the MailBox consisting of
4569 *     - the value len in the first word
4570 *     - type in the second word
4571 *     - a copy of the contents of the fragments in the second and higher word
4572 *
4573 *4: Since put_info_mb() can more or less directly be called from the MSF level, the I/F must be robust
4574 *   against out-of-range variables. As failsafe coding, the MB update is skipped by changing tlen to 0 if
4575 *   len == 0; This will indirectly cause an assert as result of the violation of the next if clause.
4576 *6: Check whether the free space in MailBox suffices (this covers the complete absence of the MailBox).
4577 *   Note that len is unsigned, so even MSF I/F violation works out O.K.
4578 *   The '2' in the expression "len+2" is used because 1 word is needed for L itself and 1 word is needed
4579 *   for the zero-sentinel
4580 *8: update MailBox Info length report to MSF with "oldest" MB Info Block size. Be careful here, if you get
4581 *   here before the MailBox is registered, you can't read from the buffer addressed by IFB_MBp (it is the
4582 *   Null buffer) so don't move this code till the end of this routine but keep it where there is garuanteed
4583 *   a buffer.
4584 *
4585 *.NOTICE
4586 *   boundary testing depends on the fact that IFB_MBSize is guaranteed to be zero if no MailBox is present,
4587 *   and to a lesser degree, that IFB_MBWp = IFB_MBRp = 0
4588 *
4589 *.ENDDOC                END DOCUMENTATION
4590 *
4591 ************************************************************************************************************/
4592
4593HCF_STATIC int
4594put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
4595{
4596
4597        int         rc = HCF_SUCCESS;
4598        hcf_16      i;                      //work counter
4599        hcf_16      *dp;                    //destination pointer (in MailBox)
4600        wci_recordp sp;                     //source pointer
4601        hcf_16      len;                    //total length to copy to MailBox
4602        hcf_16      tlen;                   //free length/working length/offset in WMP frame
4603
4604        if ( ifbp->IFB_MBp == NULL ) return rc;  //;?not sufficient
4605        HCFASSERT( ifbp->IFB_MBp != NULL, 0 );                   //!!!be careful, don't get into an endless recursion
4606        HCFASSERT( ifbp->IFB_MBSize, 0 );
4607
4608        len = 1;                                                                                            /* 1 */
4609        for ( i = 0; i < ltvp->frag_cnt; i++ ) {
4610                len += ltvp->frag_buf[i].frag_len;
4611        }
4612        if ( ifbp->IFB_MBRp > ifbp->IFB_MBWp ) {
4613                tlen = ifbp->IFB_MBRp - ifbp->IFB_MBWp;                                                         /* 2a*/
4614        } else {
4615                if ( ifbp->IFB_MBRp == ifbp->IFB_MBWp ) {
4616                        ifbp->IFB_MBRp = ifbp->IFB_MBWp = 0;    // optimize Wrapping
4617                }
4618                tlen = ifbp->IFB_MBSize - ifbp->IFB_MBWp;                                                       /* 2b*/
4619                if ( ( tlen <= len + 2 ) && ( len + 2 < ifbp->IFB_MBRp ) ) {    //if trailing space is too small but
4620                                                                                //   leading space is sufficiently large
4621                        ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0xFFFF;                 //flag dummy LTV to fill the trailing space
4622                        ifbp->IFB_MBWp = 0;                                     //reset WritePointer to begin of MailBox
4623                        tlen = ifbp->IFB_MBRp;                                  //get new available space size
4624                }
4625        }
4626        dp = &ifbp->IFB_MBp[ifbp->IFB_MBWp];
4627        if ( len == 0 ) {
4628                tlen = 0; //;? what is this good for
4629        }
4630        if ( len + 2 >= tlen ){                                                                             /* 6 */
4631                //Do Not ASSERT, this is a normal condition
4632                IF_TALLY( ifbp->IFB_HCF_Tallies.NoBufMB++ );
4633                rc = HCF_ERR_LEN;
4634        } else {
4635                *dp++ = len;                                    //write Len (= size of T+V in words to MB_Info block
4636                *dp++ = ltvp->base_typ;                         //write Type to MB_Info block
4637                ifbp->IFB_MBWp += len + 1;                      //update WritePointer of MailBox
4638                for ( i = 0; i < ltvp->frag_cnt; i++ ) {                // process each of the fragments
4639                        sp = ltvp->frag_buf[i].frag_addr;
4640                        len = ltvp->frag_buf[i].frag_len;
4641                        while ( len-- ) *dp++ = *sp++;
4642                }
4643                ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0;              //to assure get_info for CFG_MB_INFO stops
4644                ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp];                                            /* 8 */
4645        }
4646        return rc;
4647} // put_info_mb
4648
4649
4650/************************************************************************************************************
4651 *
4652 *.SUBMODULE     int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
4653 *.PURPOSE       set up data access to NIC RAM via BAP_1.
4654 *
4655 *.ARGUMENTS
4656 *   ifbp            address of I/F Block
4657 *   fid             FID/RID
4658 *   offset          !!even!! offset in FID/RID
4659 *   type            IO_IN, IO_OUT
4660 *
4661 *.RETURNS
4662 *   HCF_SUCCESS                 O.K
4663 *   HCF_ERR_NO_NIC              card is removed
4664 *   HCF_ERR_DEFUNCT_TIME_OUT    Fatal malfunction detected
4665 *   HCF_ERR_DEFUNCT_.....       if and only if IFB_DefunctStat <> 0
4666 *
4667 *.DESCRIPTION
4668 *
4669 * A non-zero return status indicates:
4670 * - the NIC is considered nonoperational, e.g. due to a time-out of some Hermes activity in the past
4671 * - BAP_1 could not properly be initialized
4672 * - the card is removed before completion of the data transfer
4673 * In all other cases, a zero is returned.
4674 * BAP Initialization failure indicates an H/W error which is very likely to signal complete H/W failure.
4675 * Once a BAP Initialization failure has occurred all subsequent interactions with the Hermes will return a
4676 * "defunct" status till the Hermes is re-initialized by means of an hcf_connect.
4677 *
4678 * A BAP is a set of registers (Offset, Select and Data) offering read/write access to a particular FID or
4679 * RID. This access is based on a auto-increment feature.
4680 * There are two BAPs but these days the HCF uses only BAP_1 and leaves BAP_0 to the PCI Busmastering H/W.
4681 *
4682 * The BAP-mechanism is based on the Busy bit in the Offset register (see the Hermes definition). The waiting
4683 * for Busy must occur between writing the Offset register and accessing the Data register. The
4684 * implementation to wait for the Busy bit drop after each write to the Offset register, implies that the
4685 * requirement that the Busy bit is low  before the Select register is written, is automatically met.
4686 * BAP-setup may be time consuming (e.g. 380 usec for large offsets occurs frequently). The wait for Busy bit
4687 * drop is protected by a loop counter, which is initialized with IFB_TickIni, which is calibrated in init.
4688 *
4689 * The NIC I/F is optimized for word transfer and can only handle word transfer at a word boundary in NIC
4690 * RAM. The intended solution for transfer of a single byte has multiple H/W flaws. There have been different
4691 * S/W Workaround strategies. RID access is hcf_16 based by "nature", so no byte access problems.  For Tx/Rx
4692 * FID access,  the byte logic became obsolete by absorbing it in the double word oriented nature of the MIC
4693 * feature.
4694 *
4695 *
4696 *.DIAGRAM
4697 *
4698 *2: the test on rc checks whether the HCF went into "defunct" mode ( e.g. BAP initialization or a call to
4699 *   cmd_wait did ever fail).
4700 *4: the select register and offset register are set
4701 *   the offset register is monitored till a successful condition (no busy bit) is detected or till the
4702 *   (calibrated) protection counter expires
4703 *   If the counter expires, this is reflected in IFB_DefunctStat, so all subsequent calls to setup_bap fail
4704 *   immediately ( see 2)
4705 *6: initialization of the carry as used by pet/get_frag
4706 *8: HREG_OFFSET_ERR is ignored as error because:
4707 *    a: the Hermes is robust against it
4708 *    b: it is not known what causes it (probably a bug), hence no strategy can be specified which level is
4709 *       to handle this error in which way. In the past, it could be induced by the MSF level, e.g. by calling
4710 *       hcf_rcv_msg while there was no Rx-FID available. Since this is an MSF-error which is caught by ASSERT,
4711 *       there is no run-time action required by the HCF.
4712 *   Lumping the Offset error in with the Busy bit error, as has been done in the past turns out to be a
4713 *   disaster or a life saver, just depending on what the cause of the error is. Since no prediction can be
4714 *   done about the future, it is "felt" to be the best strategy to ignore this error. One day the code was
4715 *   accompanied by the following comment:
4716 *   //  ignore HREG_OFFSET_ERR, someone, supposedly the MSF programmer ;) made a bug. Since we don't know
4717 *   //  what is going on, we might as well go on - under management pressure - by ignoring it
4718 *
4719 *.ENDDOC                          END DOCUMENTATION
4720 *
4721 ************************************************************************************************************/
4722HCF_STATIC int
4723setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
4724{
4725        PROT_CNT_INI;
4726        int rc;
4727
4728        HCFTRACE( ifbp, HCF_TRACE_STRIO );
4729        rc = ifbp->IFB_DefunctStat;
4730        if (rc == HCF_SUCCESS) {                                        /*2*/
4731                OPW( HREG_SELECT_1, fid );                                                              /*4*/
4732                OPW( HREG_OFFSET_1, offset );
4733                if ( type == IO_IN ) {
4734                        ifbp->IFB_CarryIn = 0;
4735                }
4736                else ifbp->IFB_CarryOut = 0;
4737                HCF_WAIT_WHILE( IPW( HREG_OFFSET_1) & HCMD_BUSY );
4738                HCFASSERT( !( IPW( HREG_OFFSET_1) & HREG_OFFSET_ERR ), MERGE_2( fid, offset ) );         /*8*/
4739                if ( prot_cnt == 0 ) {
4740                        HCFASSERT( DO_ASSERT, MERGE_2( fid, offset ) );
4741                        rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIME_OUT;
4742                        ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
4743                }
4744        }
4745        HCFTRACE( ifbp, HCF_TRACE_STRIO | HCF_TRACE_EXIT );
4746        return rc;
4747} // setup_bap
4748
4749