linux/drivers/usb/storage/alauda.c
<<
>>
Prefs
   1/*
   2 * Driver for Alauda-based card readers
   3 *
   4 * Current development and maintenance by:
   5 *   (c) 2005 Daniel Drake <dsd@gentoo.org>
   6 *
   7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
   8 *
   9 * Alauda implements a vendor-specific command set to access two media reader
  10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
  11 * which are accepted by these devices.
  12 *
  13 * The driver was developed through reverse-engineering, with the help of the
  14 * sddr09 driver which has many similarities, and with some help from the
  15 * (very old) vendor-supplied GPL sma03 driver.
  16 *
  17 * For protocol info, see http://alauda.sourceforge.net
  18 *
  19 * This program is free software; you can redistribute it and/or modify it
  20 * under the terms of the GNU General Public License as published by the
  21 * Free Software Foundation; either version 2, or (at your option) any
  22 * later version.
  23 *
  24 * This program is distributed in the hope that it will be useful, but
  25 * WITHOUT ANY WARRANTY; without even the implied warranty of
  26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  27 * General Public License for more details.
  28 *
  29 * You should have received a copy of the GNU General Public License along
  30 * with this program; if not, write to the Free Software Foundation, Inc.,
  31 * 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/slab.h>
  36
  37#include <scsi/scsi.h>
  38#include <scsi/scsi_cmnd.h>
  39#include <scsi/scsi_device.h>
  40
  41#include "usb.h"
  42#include "transport.h"
  43#include "protocol.h"
  44#include "debug.h"
  45
  46MODULE_DESCRIPTION("Driver for Alauda-based card readers");
  47MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
  48MODULE_LICENSE("GPL");
  49
  50/*
  51 * Status bytes
  52 */
  53#define ALAUDA_STATUS_ERROR             0x01
  54#define ALAUDA_STATUS_READY             0x40
  55
  56/*
  57 * Control opcodes (for request field)
  58 */
  59#define ALAUDA_GET_XD_MEDIA_STATUS      0x08
  60#define ALAUDA_GET_SM_MEDIA_STATUS      0x98
  61#define ALAUDA_ACK_XD_MEDIA_CHANGE      0x0a
  62#define ALAUDA_ACK_SM_MEDIA_CHANGE      0x9a
  63#define ALAUDA_GET_XD_MEDIA_SIG         0x86
  64#define ALAUDA_GET_SM_MEDIA_SIG         0x96
  65
  66/*
  67 * Bulk command identity (byte 0)
  68 */
  69#define ALAUDA_BULK_CMD                 0x40
  70
  71/*
  72 * Bulk opcodes (byte 1)
  73 */
  74#define ALAUDA_BULK_GET_REDU_DATA       0x85
  75#define ALAUDA_BULK_READ_BLOCK          0x94
  76#define ALAUDA_BULK_ERASE_BLOCK         0xa3
  77#define ALAUDA_BULK_WRITE_BLOCK         0xb4
  78#define ALAUDA_BULK_GET_STATUS2         0xb7
  79#define ALAUDA_BULK_RESET_MEDIA         0xe0
  80
  81/*
  82 * Port to operate on (byte 8)
  83 */
  84#define ALAUDA_PORT_XD                  0x00
  85#define ALAUDA_PORT_SM                  0x01
  86
  87/*
  88 * LBA and PBA are unsigned ints. Special values.
  89 */
  90#define UNDEF    0xffff
  91#define SPARE    0xfffe
  92#define UNUSABLE 0xfffd
  93
  94struct alauda_media_info {
  95        unsigned long capacity;         /* total media size in bytes */
  96        unsigned int pagesize;          /* page size in bytes */
  97        unsigned int blocksize;         /* number of pages per block */
  98        unsigned int uzonesize;         /* number of usable blocks per zone */
  99        unsigned int zonesize;          /* number of blocks per zone */
 100        unsigned int blockmask;         /* mask to get page from address */
 101
 102        unsigned char pageshift;
 103        unsigned char blockshift;
 104        unsigned char zoneshift;
 105
 106        u16 **lba_to_pba;               /* logical to physical block map */
 107        u16 **pba_to_lba;               /* physical to logical block map */
 108};
 109
 110struct alauda_info {
 111        struct alauda_media_info port[2];
 112        int wr_ep;                      /* endpoint to write data out of */
 113
 114        unsigned char sense_key;
 115        unsigned long sense_asc;        /* additional sense code */
 116        unsigned long sense_ascq;       /* additional sense code qualifier */
 117};
 118
 119#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 120#define LSB_of(s) ((s)&0xFF)
 121#define MSB_of(s) ((s)>>8)
 122
 123#define MEDIA_PORT(us) us->srb->device->lun
 124#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
 125
 126#define PBA_LO(pba) ((pba & 0xF) << 5)
 127#define PBA_HI(pba) (pba >> 3)
 128#define PBA_ZONE(pba) (pba >> 11)
 129
 130static int init_alauda(struct us_data *us);
 131
 132
 133/*
 134 * The table of devices
 135 */
 136#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
 137                    vendorName, productName, useProtocol, useTransport, \
 138                    initFunction, flags) \
 139{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
 140  .driver_info = (flags) }
 141
 142static struct usb_device_id alauda_usb_ids[] = {
 143#       include "unusual_alauda.h"
 144        { }             /* Terminating entry */
 145};
 146MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
 147
 148#undef UNUSUAL_DEV
 149
 150/*
 151 * The flags table
 152 */
 153#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
 154                    vendor_name, product_name, use_protocol, use_transport, \
 155                    init_function, Flags) \
 156{ \
 157        .vendorName = vendor_name,      \
 158        .productName = product_name,    \
 159        .useProtocol = use_protocol,    \
 160        .useTransport = use_transport,  \
 161        .initFunction = init_function,  \
 162}
 163
 164static struct us_unusual_dev alauda_unusual_dev_list[] = {
 165#       include "unusual_alauda.h"
 166        { }             /* Terminating entry */
 167};
 168
 169#undef UNUSUAL_DEV
 170
 171
 172/*
 173 * Media handling
 174 */
 175
 176struct alauda_card_info {
 177        unsigned char id;               /* id byte */
 178        unsigned char chipshift;        /* 1<<cs bytes total capacity */
 179        unsigned char pageshift;        /* 1<<ps bytes in a page */
 180        unsigned char blockshift;       /* 1<<bs pages per block */
 181        unsigned char zoneshift;        /* 1<<zs blocks per zone */
 182};
 183
 184static struct alauda_card_info alauda_card_ids[] = {
 185        /* NAND flash */
 186        { 0x6e, 20, 8, 4, 8},   /* 1 MB */
 187        { 0xe8, 20, 8, 4, 8},   /* 1 MB */
 188        { 0xec, 20, 8, 4, 8},   /* 1 MB */
 189        { 0x64, 21, 8, 4, 9},   /* 2 MB */
 190        { 0xea, 21, 8, 4, 9},   /* 2 MB */
 191        { 0x6b, 22, 9, 4, 9},   /* 4 MB */
 192        { 0xe3, 22, 9, 4, 9},   /* 4 MB */
 193        { 0xe5, 22, 9, 4, 9},   /* 4 MB */
 194        { 0xe6, 23, 9, 4, 10},  /* 8 MB */
 195        { 0x73, 24, 9, 5, 10},  /* 16 MB */
 196        { 0x75, 25, 9, 5, 10},  /* 32 MB */
 197        { 0x76, 26, 9, 5, 10},  /* 64 MB */
 198        { 0x79, 27, 9, 5, 10},  /* 128 MB */
 199        { 0x71, 28, 9, 5, 10},  /* 256 MB */
 200
 201        /* MASK ROM */
 202        { 0x5d, 21, 9, 4, 8},   /* 2 MB */
 203        { 0xd5, 22, 9, 4, 9},   /* 4 MB */
 204        { 0xd6, 23, 9, 4, 10},  /* 8 MB */
 205        { 0x57, 24, 9, 4, 11},  /* 16 MB */
 206        { 0x58, 25, 9, 4, 12},  /* 32 MB */
 207        { 0,}
 208};
 209
 210static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
 211        int i;
 212
 213        for (i = 0; alauda_card_ids[i].id != 0; i++)
 214                if (alauda_card_ids[i].id == id)
 215                        return &(alauda_card_ids[i]);
 216        return NULL;
 217}
 218
 219/*
 220 * ECC computation.
 221 */
 222
 223static unsigned char parity[256];
 224static unsigned char ecc2[256];
 225
 226static void nand_init_ecc(void) {
 227        int i, j, a;
 228
 229        parity[0] = 0;
 230        for (i = 1; i < 256; i++)
 231                parity[i] = (parity[i&(i-1)] ^ 1);
 232
 233        for (i = 0; i < 256; i++) {
 234                a = 0;
 235                for (j = 0; j < 8; j++) {
 236                        if (i & (1<<j)) {
 237                                if ((j & 1) == 0)
 238                                        a ^= 0x04;
 239                                if ((j & 2) == 0)
 240                                        a ^= 0x10;
 241                                if ((j & 4) == 0)
 242                                        a ^= 0x40;
 243                        }
 244                }
 245                ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 246        }
 247}
 248
 249/* compute 3-byte ecc on 256 bytes */
 250static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 251        int i, j, a;
 252        unsigned char par = 0, bit, bits[8] = {0};
 253
 254        /* collect 16 checksum bits */
 255        for (i = 0; i < 256; i++) {
 256                par ^= data[i];
 257                bit = parity[data[i]];
 258                for (j = 0; j < 8; j++)
 259                        if ((i & (1<<j)) == 0)
 260                                bits[j] ^= bit;
 261        }
 262
 263        /* put 4+4+4 = 12 bits in the ecc */
 264        a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 265        ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 266
 267        a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 268        ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 269
 270        ecc[2] = ecc2[par];
 271}
 272
 273static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 274        return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 275}
 276
 277static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 278        memcpy(data, ecc, 3);
 279}
 280
 281/*
 282 * Alauda driver
 283 */
 284
 285/*
 286 * Forget our PBA <---> LBA mappings for a particular port
 287 */
 288static void alauda_free_maps (struct alauda_media_info *media_info)
 289{
 290        unsigned int shift = media_info->zoneshift
 291                + media_info->blockshift + media_info->pageshift;
 292        unsigned int num_zones = media_info->capacity >> shift;
 293        unsigned int i;
 294
 295        if (media_info->lba_to_pba != NULL)
 296                for (i = 0; i < num_zones; i++) {
 297                        kfree(media_info->lba_to_pba[i]);
 298                        media_info->lba_to_pba[i] = NULL;
 299                }
 300
 301        if (media_info->pba_to_lba != NULL)
 302                for (i = 0; i < num_zones; i++) {
 303                        kfree(media_info->pba_to_lba[i]);
 304                        media_info->pba_to_lba[i] = NULL;
 305                }
 306}
 307
 308/*
 309 * Returns 2 bytes of status data
 310 * The first byte describes media status, and second byte describes door status
 311 */
 312static int alauda_get_media_status(struct us_data *us, unsigned char *data)
 313{
 314        int rc;
 315        unsigned char command;
 316
 317        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 318                command = ALAUDA_GET_XD_MEDIA_STATUS;
 319        else
 320                command = ALAUDA_GET_SM_MEDIA_STATUS;
 321
 322        rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 323                command, 0xc0, 0, 1, data, 2);
 324
 325        usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
 326
 327        return rc;
 328}
 329
 330/*
 331 * Clears the "media was changed" bit so that we know when it changes again
 332 * in the future.
 333 */
 334static int alauda_ack_media(struct us_data *us)
 335{
 336        unsigned char command;
 337
 338        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 339                command = ALAUDA_ACK_XD_MEDIA_CHANGE;
 340        else
 341                command = ALAUDA_ACK_SM_MEDIA_CHANGE;
 342
 343        return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
 344                command, 0x40, 0, 1, NULL, 0);
 345}
 346
 347/*
 348 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
 349 * and some other details.
 350 */
 351static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
 352{
 353        unsigned char command;
 354
 355        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 356                command = ALAUDA_GET_XD_MEDIA_SIG;
 357        else
 358                command = ALAUDA_GET_SM_MEDIA_SIG;
 359
 360        return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 361                command, 0xc0, 0, 0, data, 4);
 362}
 363
 364/*
 365 * Resets the media status (but not the whole device?)
 366 */
 367static int alauda_reset_media(struct us_data *us)
 368{
 369        unsigned char *command = us->iobuf;
 370
 371        memset(command, 0, 9);
 372        command[0] = ALAUDA_BULK_CMD;
 373        command[1] = ALAUDA_BULK_RESET_MEDIA;
 374        command[8] = MEDIA_PORT(us);
 375
 376        return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 377                command, 9, NULL);
 378}
 379
 380/*
 381 * Examines the media and deduces capacity, etc.
 382 */
 383static int alauda_init_media(struct us_data *us)
 384{
 385        unsigned char *data = us->iobuf;
 386        int ready = 0;
 387        struct alauda_card_info *media_info;
 388        unsigned int num_zones;
 389
 390        while (ready == 0) {
 391                msleep(20);
 392
 393                if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 394                        return USB_STOR_TRANSPORT_ERROR;
 395
 396                if (data[0] & 0x10)
 397                        ready = 1;
 398        }
 399
 400        usb_stor_dbg(us, "We are ready for action!\n");
 401
 402        if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
 403                return USB_STOR_TRANSPORT_ERROR;
 404
 405        msleep(10);
 406
 407        if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 408                return USB_STOR_TRANSPORT_ERROR;
 409
 410        if (data[0] != 0x14) {
 411                usb_stor_dbg(us, "Media not ready after ack\n");
 412                return USB_STOR_TRANSPORT_ERROR;
 413        }
 414
 415        if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
 416                return USB_STOR_TRANSPORT_ERROR;
 417
 418        usb_stor_dbg(us, "Media signature: %02X %02X %02X %02X\n",
 419                     data[0], data[1], data[2], data[3]);
 420        media_info = alauda_card_find_id(data[1]);
 421        if (media_info == NULL) {
 422                printk(KERN_WARNING
 423                        "alauda_init_media: Unrecognised media signature: "
 424                        "%02X %02X %02X %02X\n",
 425                        data[0], data[1], data[2], data[3]);
 426                return USB_STOR_TRANSPORT_ERROR;
 427        }
 428
 429        MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
 430        usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
 431                     MEDIA_INFO(us).capacity >> 20);
 432
 433        MEDIA_INFO(us).pageshift = media_info->pageshift;
 434        MEDIA_INFO(us).blockshift = media_info->blockshift;
 435        MEDIA_INFO(us).zoneshift = media_info->zoneshift;
 436
 437        MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
 438        MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
 439        MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
 440
 441        MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
 442        MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
 443
 444        num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
 445                + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
 446        MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 447        MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 448
 449        if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
 450                return USB_STOR_TRANSPORT_ERROR;
 451
 452        return USB_STOR_TRANSPORT_GOOD;
 453}
 454
 455/*
 456 * Examines the media status and does the right thing when the media has gone,
 457 * appeared, or changed.
 458 */
 459static int alauda_check_media(struct us_data *us)
 460{
 461        struct alauda_info *info = (struct alauda_info *) us->extra;
 462        unsigned char status[2];
 463        int rc;
 464
 465        rc = alauda_get_media_status(us, status);
 466
 467        /* Check for no media or door open */
 468        if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
 469                || ((status[1] & 0x01) == 0)) {
 470                usb_stor_dbg(us, "No media, or door open\n");
 471                alauda_free_maps(&MEDIA_INFO(us));
 472                info->sense_key = 0x02;
 473                info->sense_asc = 0x3A;
 474                info->sense_ascq = 0x00;
 475                return USB_STOR_TRANSPORT_FAILED;
 476        }
 477
 478        /* Check for media change */
 479        if (status[0] & 0x08) {
 480                usb_stor_dbg(us, "Media change detected\n");
 481                alauda_free_maps(&MEDIA_INFO(us));
 482                alauda_init_media(us);
 483
 484                info->sense_key = UNIT_ATTENTION;
 485                info->sense_asc = 0x28;
 486                info->sense_ascq = 0x00;
 487                return USB_STOR_TRANSPORT_FAILED;
 488        }
 489
 490        return USB_STOR_TRANSPORT_GOOD;
 491}
 492
 493/*
 494 * Checks the status from the 2nd status register
 495 * Returns 3 bytes of status data, only the first is known
 496 */
 497static int alauda_check_status2(struct us_data *us)
 498{
 499        int rc;
 500        unsigned char command[] = {
 501                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
 502                0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
 503        };
 504        unsigned char data[3];
 505
 506        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 507                command, 9, NULL);
 508        if (rc != USB_STOR_XFER_GOOD)
 509                return rc;
 510
 511        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 512                data, 3, NULL);
 513        if (rc != USB_STOR_XFER_GOOD)
 514                return rc;
 515
 516        usb_stor_dbg(us, "%02X %02X %02X\n", data[0], data[1], data[2]);
 517        if (data[0] & ALAUDA_STATUS_ERROR)
 518                return USB_STOR_XFER_ERROR;
 519
 520        return USB_STOR_XFER_GOOD;
 521}
 522
 523/*
 524 * Gets the redundancy data for the first page of a PBA
 525 * Returns 16 bytes.
 526 */
 527static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
 528{
 529        int rc;
 530        unsigned char command[] = {
 531                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
 532                PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
 533        };
 534
 535        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 536                command, 9, NULL);
 537        if (rc != USB_STOR_XFER_GOOD)
 538                return rc;
 539
 540        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 541                data, 16, NULL);
 542}
 543
 544/*
 545 * Finds the first unused PBA in a zone
 546 * Returns the absolute PBA of an unused PBA, or 0 if none found.
 547 */
 548static u16 alauda_find_unused_pba(struct alauda_media_info *info,
 549        unsigned int zone)
 550{
 551        u16 *pba_to_lba = info->pba_to_lba[zone];
 552        unsigned int i;
 553
 554        for (i = 0; i < info->zonesize; i++)
 555                if (pba_to_lba[i] == UNDEF)
 556                        return (zone << info->zoneshift) + i;
 557
 558        return 0;
 559}
 560
 561/*
 562 * Reads the redundancy data for all PBA's in a zone
 563 * Produces lba <--> pba mappings
 564 */
 565static int alauda_read_map(struct us_data *us, unsigned int zone)
 566{
 567        unsigned char *data = us->iobuf;
 568        int result;
 569        int i, j;
 570        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 571        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 572        unsigned int lba_offset, lba_real, blocknum;
 573        unsigned int zone_base_lba = zone * uzonesize;
 574        unsigned int zone_base_pba = zone * zonesize;
 575        u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 576        u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 577        if (lba_to_pba == NULL || pba_to_lba == NULL) {
 578                result = USB_STOR_TRANSPORT_ERROR;
 579                goto error;
 580        }
 581
 582        usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
 583
 584        /* 1024 PBA's per zone */
 585        for (i = 0; i < zonesize; i++)
 586                lba_to_pba[i] = pba_to_lba[i] = UNDEF;
 587
 588        for (i = 0; i < zonesize; i++) {
 589                blocknum = zone_base_pba + i;
 590
 591                result = alauda_get_redu_data(us, blocknum, data);
 592                if (result != USB_STOR_XFER_GOOD) {
 593                        result = USB_STOR_TRANSPORT_ERROR;
 594                        goto error;
 595                }
 596
 597                /* special PBAs have control field 0^16 */
 598                for (j = 0; j < 16; j++)
 599                        if (data[j] != 0)
 600                                goto nonz;
 601                pba_to_lba[i] = UNUSABLE;
 602                usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
 603                continue;
 604
 605        nonz:
 606                /* unwritten PBAs have control field FF^16 */
 607                for (j = 0; j < 16; j++)
 608                        if (data[j] != 0xff)
 609                                goto nonff;
 610                continue;
 611
 612        nonff:
 613                /* normal PBAs start with six FFs */
 614                if (j < 6) {
 615                        usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
 616                                     blocknum,
 617                                     data[0], data[1], data[2], data[3],
 618                                     data[4], data[5]);
 619                        pba_to_lba[i] = UNUSABLE;
 620                        continue;
 621                }
 622
 623                if ((data[6] >> 4) != 0x01) {
 624                        usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
 625                                     blocknum, data[6], data[7],
 626                                     data[11], data[12]);
 627                        pba_to_lba[i] = UNUSABLE;
 628                        continue;
 629                }
 630
 631                /* check even parity */
 632                if (parity[data[6] ^ data[7]]) {
 633                        printk(KERN_WARNING
 634                               "alauda_read_map: Bad parity in LBA for block %d"
 635                               " (%02X %02X)\n", i, data[6], data[7]);
 636                        pba_to_lba[i] = UNUSABLE;
 637                        continue;
 638                }
 639
 640                lba_offset = short_pack(data[7], data[6]);
 641                lba_offset = (lba_offset & 0x07FF) >> 1;
 642                lba_real = lba_offset + zone_base_lba;
 643
 644                /*
 645                 * Every 1024 physical blocks ("zone"), the LBA numbers
 646                 * go back to zero, but are within a higher block of LBA's.
 647                 * Also, there is a maximum of 1000 LBA's per zone.
 648                 * In other words, in PBA 1024-2047 you will find LBA 0-999
 649                 * which are really LBA 1000-1999. This allows for 24 bad
 650                 * or special physical blocks per zone.
 651                 */
 652
 653                if (lba_offset >= uzonesize) {
 654                        printk(KERN_WARNING
 655                               "alauda_read_map: Bad low LBA %d for block %d\n",
 656                               lba_real, blocknum);
 657                        continue;
 658                }
 659
 660                if (lba_to_pba[lba_offset] != UNDEF) {
 661                        printk(KERN_WARNING
 662                               "alauda_read_map: "
 663                               "LBA %d seen for PBA %d and %d\n",
 664                               lba_real, lba_to_pba[lba_offset], blocknum);
 665                        continue;
 666                }
 667
 668                pba_to_lba[i] = lba_real;
 669                lba_to_pba[lba_offset] = blocknum;
 670                continue;
 671        }
 672
 673        MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
 674        MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
 675        result = 0;
 676        goto out;
 677
 678error:
 679        kfree(lba_to_pba);
 680        kfree(pba_to_lba);
 681out:
 682        return result;
 683}
 684
 685/*
 686 * Checks to see whether we have already mapped a certain zone
 687 * If we haven't, the map is generated
 688 */
 689static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
 690{
 691        if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
 692                || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
 693                alauda_read_map(us, zone);
 694}
 695
 696/*
 697 * Erases an entire block
 698 */
 699static int alauda_erase_block(struct us_data *us, u16 pba)
 700{
 701        int rc;
 702        unsigned char command[] = {
 703                ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
 704                PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
 705        };
 706        unsigned char buf[2];
 707
 708        usb_stor_dbg(us, "Erasing PBA %d\n", pba);
 709
 710        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 711                command, 9, NULL);
 712        if (rc != USB_STOR_XFER_GOOD)
 713                return rc;
 714
 715        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 716                buf, 2, NULL);
 717        if (rc != USB_STOR_XFER_GOOD)
 718                return rc;
 719
 720        usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
 721        return rc;
 722}
 723
 724/*
 725 * Reads data from a certain offset page inside a PBA, including interleaved
 726 * redundancy data. Returns (pagesize+64)*pages bytes in data.
 727 */
 728static int alauda_read_block_raw(struct us_data *us, u16 pba,
 729                unsigned int page, unsigned int pages, unsigned char *data)
 730{
 731        int rc;
 732        unsigned char command[] = {
 733                ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
 734                PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
 735        };
 736
 737        usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
 738
 739        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 740                command, 9, NULL);
 741        if (rc != USB_STOR_XFER_GOOD)
 742                return rc;
 743
 744        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 745                data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
 746}
 747
 748/*
 749 * Reads data from a certain offset page inside a PBA, excluding redundancy
 750 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
 751 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
 752 * trailing bytes outside this function.
 753 */
 754static int alauda_read_block(struct us_data *us, u16 pba,
 755                unsigned int page, unsigned int pages, unsigned char *data)
 756{
 757        int i, rc;
 758        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 759
 760        rc = alauda_read_block_raw(us, pba, page, pages, data);
 761        if (rc != USB_STOR_XFER_GOOD)
 762                return rc;
 763
 764        /* Cut out the redundancy data */
 765        for (i = 0; i < pages; i++) {
 766                int dest_offset = i * pagesize;
 767                int src_offset = i * (pagesize + 64);
 768                memmove(data + dest_offset, data + src_offset, pagesize);
 769        }
 770
 771        return rc;
 772}
 773
 774/*
 775 * Writes an entire block of data and checks status after write.
 776 * Redundancy data must be already included in data. Data should be
 777 * (pagesize+64)*blocksize bytes in length.
 778 */
 779static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
 780{
 781        int rc;
 782        struct alauda_info *info = (struct alauda_info *) us->extra;
 783        unsigned char command[] = {
 784                ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
 785                PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
 786        };
 787
 788        usb_stor_dbg(us, "pba %d\n", pba);
 789
 790        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 791                command, 9, NULL);
 792        if (rc != USB_STOR_XFER_GOOD)
 793                return rc;
 794
 795        rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
 796                (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
 797                NULL);
 798        if (rc != USB_STOR_XFER_GOOD)
 799                return rc;
 800
 801        return alauda_check_status2(us);
 802}
 803
 804/*
 805 * Write some data to a specific LBA.
 806 */
 807static int alauda_write_lba(struct us_data *us, u16 lba,
 808                 unsigned int page, unsigned int pages,
 809                 unsigned char *ptr, unsigned char *blockbuffer)
 810{
 811        u16 pba, lbap, new_pba;
 812        unsigned char *bptr, *cptr, *xptr;
 813        unsigned char ecc[3];
 814        int i, result;
 815        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 816        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 817        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 818        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 819        unsigned int lba_offset = lba % uzonesize;
 820        unsigned int new_pba_offset;
 821        unsigned int zone = lba / uzonesize;
 822
 823        alauda_ensure_map_for_zone(us, zone);
 824
 825        pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 826        if (pba == 1) {
 827                /* Maybe it is impossible to write to PBA 1.
 828                   Fake success, but don't do anything. */
 829                printk(KERN_WARNING
 830                       "alauda_write_lba: avoid writing to pba 1\n");
 831                return USB_STOR_TRANSPORT_GOOD;
 832        }
 833
 834        new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
 835        if (!new_pba) {
 836                printk(KERN_WARNING
 837                       "alauda_write_lba: Out of unused blocks\n");
 838                return USB_STOR_TRANSPORT_ERROR;
 839        }
 840
 841        /* read old contents */
 842        if (pba != UNDEF) {
 843                result = alauda_read_block_raw(us, pba, 0,
 844                        blocksize, blockbuffer);
 845                if (result != USB_STOR_XFER_GOOD)
 846                        return result;
 847        } else {
 848                memset(blockbuffer, 0, blocksize * (pagesize + 64));
 849        }
 850
 851        lbap = (lba_offset << 1) | 0x1000;
 852        if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 853                lbap ^= 1;
 854
 855        /* check old contents and fill lba */
 856        for (i = 0; i < blocksize; i++) {
 857                bptr = blockbuffer + (i * (pagesize + 64));
 858                cptr = bptr + pagesize;
 859                nand_compute_ecc(bptr, ecc);
 860                if (!nand_compare_ecc(cptr+13, ecc)) {
 861                        usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 862                                     i, pba);
 863                        nand_store_ecc(cptr+13, ecc);
 864                }
 865                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 866                if (!nand_compare_ecc(cptr+8, ecc)) {
 867                        usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 868                                     i, pba);
 869                        nand_store_ecc(cptr+8, ecc);
 870                }
 871                cptr[6] = cptr[11] = MSB_of(lbap);
 872                cptr[7] = cptr[12] = LSB_of(lbap);
 873        }
 874
 875        /* copy in new stuff and compute ECC */
 876        xptr = ptr;
 877        for (i = page; i < page+pages; i++) {
 878                bptr = blockbuffer + (i * (pagesize + 64));
 879                cptr = bptr + pagesize;
 880                memcpy(bptr, xptr, pagesize);
 881                xptr += pagesize;
 882                nand_compute_ecc(bptr, ecc);
 883                nand_store_ecc(cptr+13, ecc);
 884                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 885                nand_store_ecc(cptr+8, ecc);
 886        }
 887
 888        result = alauda_write_block(us, new_pba, blockbuffer);
 889        if (result != USB_STOR_XFER_GOOD)
 890                return result;
 891
 892        new_pba_offset = new_pba - (zone * zonesize);
 893        MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
 894        MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
 895        usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
 896
 897        if (pba != UNDEF) {
 898                unsigned int pba_offset = pba - (zone * zonesize);
 899                result = alauda_erase_block(us, pba);
 900                if (result != USB_STOR_XFER_GOOD)
 901                        return result;
 902                MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
 903        }
 904
 905        return USB_STOR_TRANSPORT_GOOD;
 906}
 907
 908/*
 909 * Read data from a specific sector address
 910 */
 911static int alauda_read_data(struct us_data *us, unsigned long address,
 912                unsigned int sectors)
 913{
 914        unsigned char *buffer;
 915        u16 lba, max_lba;
 916        unsigned int page, len, offset;
 917        unsigned int blockshift = MEDIA_INFO(us).blockshift;
 918        unsigned int pageshift = MEDIA_INFO(us).pageshift;
 919        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 920        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 921        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 922        struct scatterlist *sg;
 923        int result;
 924
 925        /*
 926         * Since we only read in one block at a time, we have to create
 927         * a bounce buffer and move the data a piece at a time between the
 928         * bounce buffer and the actual transfer buffer.
 929         * We make this buffer big enough to hold temporary redundancy data,
 930         * which we use when reading the data blocks.
 931         */
 932
 933        len = min(sectors, blocksize) * (pagesize + 64);
 934        buffer = kmalloc(len, GFP_NOIO);
 935        if (buffer == NULL) {
 936                printk(KERN_WARNING "alauda_read_data: Out of memory\n");
 937                return USB_STOR_TRANSPORT_ERROR;
 938        }
 939
 940        /* Figure out the initial LBA and page */
 941        lba = address >> blockshift;
 942        page = (address & MEDIA_INFO(us).blockmask);
 943        max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
 944
 945        result = USB_STOR_TRANSPORT_GOOD;
 946        offset = 0;
 947        sg = NULL;
 948
 949        while (sectors > 0) {
 950                unsigned int zone = lba / uzonesize; /* integer division */
 951                unsigned int lba_offset = lba - (zone * uzonesize);
 952                unsigned int pages;
 953                u16 pba;
 954                alauda_ensure_map_for_zone(us, zone);
 955
 956                /* Not overflowing capacity? */
 957                if (lba >= max_lba) {
 958                        usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 959                                     lba, max_lba);
 960                        result = USB_STOR_TRANSPORT_ERROR;
 961                        break;
 962                }
 963
 964                /* Find number of pages we can read in this block */
 965                pages = min(sectors, blocksize - page);
 966                len = pages << pageshift;
 967
 968                /* Find where this lba lives on disk */
 969                pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 970
 971                if (pba == UNDEF) {     /* this lba was never written */
 972                        usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 973                                     pages, lba, page);
 974
 975                        /* This is not really an error. It just means
 976                           that the block has never been written.
 977                           Instead of returning USB_STOR_TRANSPORT_ERROR
 978                           it is better to return all zero data. */
 979
 980                        memset(buffer, 0, len);
 981                } else {
 982                        usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 983                                     pages, pba, lba, page);
 984
 985                        result = alauda_read_block(us, pba, page, pages, buffer);
 986                        if (result != USB_STOR_TRANSPORT_GOOD)
 987                                break;
 988                }
 989
 990                /* Store the data in the transfer buffer */
 991                usb_stor_access_xfer_buf(buffer, len, us->srb,
 992                                &sg, &offset, TO_XFER_BUF);
 993
 994                page = 0;
 995                lba++;
 996                sectors -= pages;
 997        }
 998
 999        kfree(buffer);
1000        return result;
1001}
1002
1003/*
1004 * Write data to a specific sector address
1005 */
1006static int alauda_write_data(struct us_data *us, unsigned long address,
1007                unsigned int sectors)
1008{
1009        unsigned char *buffer, *blockbuffer;
1010        unsigned int page, len, offset;
1011        unsigned int blockshift = MEDIA_INFO(us).blockshift;
1012        unsigned int pageshift = MEDIA_INFO(us).pageshift;
1013        unsigned int blocksize = MEDIA_INFO(us).blocksize;
1014        unsigned int pagesize = MEDIA_INFO(us).pagesize;
1015        struct scatterlist *sg;
1016        u16 lba, max_lba;
1017        int result;
1018
1019        /*
1020         * Since we don't write the user data directly to the device,
1021         * we have to create a bounce buffer and move the data a piece
1022         * at a time between the bounce buffer and the actual transfer buffer.
1023         */
1024
1025        len = min(sectors, blocksize) * pagesize;
1026        buffer = kmalloc(len, GFP_NOIO);
1027        if (buffer == NULL) {
1028                printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1029                return USB_STOR_TRANSPORT_ERROR;
1030        }
1031
1032        /*
1033         * We also need a temporary block buffer, where we read in the old data,
1034         * overwrite parts with the new data, and manipulate the redundancy data
1035         */
1036        blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1037        if (blockbuffer == NULL) {
1038                printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1039                kfree(buffer);
1040                return USB_STOR_TRANSPORT_ERROR;
1041        }
1042
1043        /* Figure out the initial LBA and page */
1044        lba = address >> blockshift;
1045        page = (address & MEDIA_INFO(us).blockmask);
1046        max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1047
1048        result = USB_STOR_TRANSPORT_GOOD;
1049        offset = 0;
1050        sg = NULL;
1051
1052        while (sectors > 0) {
1053                /* Write as many sectors as possible in this block */
1054                unsigned int pages = min(sectors, blocksize - page);
1055                len = pages << pageshift;
1056
1057                /* Not overflowing capacity? */
1058                if (lba >= max_lba) {
1059                        usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1060                                     lba, max_lba);
1061                        result = USB_STOR_TRANSPORT_ERROR;
1062                        break;
1063                }
1064
1065                /* Get the data from the transfer buffer */
1066                usb_stor_access_xfer_buf(buffer, len, us->srb,
1067                                &sg, &offset, FROM_XFER_BUF);
1068
1069                result = alauda_write_lba(us, lba, page, pages, buffer,
1070                        blockbuffer);
1071                if (result != USB_STOR_TRANSPORT_GOOD)
1072                        break;
1073
1074                page = 0;
1075                lba++;
1076                sectors -= pages;
1077        }
1078
1079        kfree(buffer);
1080        kfree(blockbuffer);
1081        return result;
1082}
1083
1084/*
1085 * Our interface with the rest of the world
1086 */
1087
1088static void alauda_info_destructor(void *extra)
1089{
1090        struct alauda_info *info = (struct alauda_info *) extra;
1091        int port;
1092
1093        if (!info)
1094                return;
1095
1096        for (port = 0; port < 2; port++) {
1097                struct alauda_media_info *media_info = &info->port[port];
1098
1099                alauda_free_maps(media_info);
1100                kfree(media_info->lba_to_pba);
1101                kfree(media_info->pba_to_lba);
1102        }
1103}
1104
1105/*
1106 * Initialize alauda_info struct and find the data-write endpoint
1107 */
1108static int init_alauda(struct us_data *us)
1109{
1110        struct alauda_info *info;
1111        struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1112        nand_init_ecc();
1113
1114        us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1115        if (!us->extra)
1116                return USB_STOR_TRANSPORT_ERROR;
1117
1118        info = (struct alauda_info *) us->extra;
1119        us->extra_destructor = alauda_info_destructor;
1120
1121        info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1122                altsetting->endpoint[0].desc.bEndpointAddress
1123                & USB_ENDPOINT_NUMBER_MASK);
1124
1125        return USB_STOR_TRANSPORT_GOOD;
1126}
1127
1128static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1129{
1130        int rc;
1131        struct alauda_info *info = (struct alauda_info *) us->extra;
1132        unsigned char *ptr = us->iobuf;
1133        static unsigned char inquiry_response[36] = {
1134                0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1135        };
1136
1137        if (srb->cmnd[0] == INQUIRY) {
1138                usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1139                memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1140                fill_inquiry_response(us, ptr, 36);
1141                return USB_STOR_TRANSPORT_GOOD;
1142        }
1143
1144        if (srb->cmnd[0] == TEST_UNIT_READY) {
1145                usb_stor_dbg(us, "TEST_UNIT_READY\n");
1146                return alauda_check_media(us);
1147        }
1148
1149        if (srb->cmnd[0] == READ_CAPACITY) {
1150                unsigned int num_zones;
1151                unsigned long capacity;
1152
1153                rc = alauda_check_media(us);
1154                if (rc != USB_STOR_TRANSPORT_GOOD)
1155                        return rc;
1156
1157                num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1158                        + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1159
1160                capacity = num_zones * MEDIA_INFO(us).uzonesize
1161                        * MEDIA_INFO(us).blocksize;
1162
1163                /* Report capacity and page size */
1164                ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1165                ((__be32 *) ptr)[1] = cpu_to_be32(512);
1166
1167                usb_stor_set_xfer_buf(ptr, 8, srb);
1168                return USB_STOR_TRANSPORT_GOOD;
1169        }
1170
1171        if (srb->cmnd[0] == READ_10) {
1172                unsigned int page, pages;
1173
1174                rc = alauda_check_media(us);
1175                if (rc != USB_STOR_TRANSPORT_GOOD)
1176                        return rc;
1177
1178                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1179                page <<= 16;
1180                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1181                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1182
1183                usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1184
1185                return alauda_read_data(us, page, pages);
1186        }
1187
1188        if (srb->cmnd[0] == WRITE_10) {
1189                unsigned int page, pages;
1190
1191                rc = alauda_check_media(us);
1192                if (rc != USB_STOR_TRANSPORT_GOOD)
1193                        return rc;
1194
1195                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1196                page <<= 16;
1197                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1198                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1199
1200                usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1201
1202                return alauda_write_data(us, page, pages);
1203        }
1204
1205        if (srb->cmnd[0] == REQUEST_SENSE) {
1206                usb_stor_dbg(us, "REQUEST_SENSE\n");
1207
1208                memset(ptr, 0, 18);
1209                ptr[0] = 0xF0;
1210                ptr[2] = info->sense_key;
1211                ptr[7] = 11;
1212                ptr[12] = info->sense_asc;
1213                ptr[13] = info->sense_ascq;
1214                usb_stor_set_xfer_buf(ptr, 18, srb);
1215
1216                return USB_STOR_TRANSPORT_GOOD;
1217        }
1218
1219        if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1220                /* sure.  whatever.  not like we can stop the user from popping
1221                   the media out of the device (no locking doors, etc) */
1222                return USB_STOR_TRANSPORT_GOOD;
1223        }
1224
1225        usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1226                     srb->cmnd[0], srb->cmnd[0]);
1227        info->sense_key = 0x05;
1228        info->sense_asc = 0x20;
1229        info->sense_ascq = 0x00;
1230        return USB_STOR_TRANSPORT_FAILED;
1231}
1232
1233static int alauda_probe(struct usb_interface *intf,
1234                         const struct usb_device_id *id)
1235{
1236        struct us_data *us;
1237        int result;
1238
1239        result = usb_stor_probe1(&us, intf, id,
1240                        (id - alauda_usb_ids) + alauda_unusual_dev_list);
1241        if (result)
1242                return result;
1243
1244        us->transport_name  = "Alauda Control/Bulk";
1245        us->transport = alauda_transport;
1246        us->transport_reset = usb_stor_Bulk_reset;
1247        us->max_lun = 1;
1248
1249        result = usb_stor_probe2(us);
1250        return result;
1251}
1252
1253static struct usb_driver alauda_driver = {
1254        .name =         "ums-alauda",
1255        .probe =        alauda_probe,
1256        .disconnect =   usb_stor_disconnect,
1257        .suspend =      usb_stor_suspend,
1258        .resume =       usb_stor_resume,
1259        .reset_resume = usb_stor_reset_resume,
1260        .pre_reset =    usb_stor_pre_reset,
1261        .post_reset =   usb_stor_post_reset,
1262        .id_table =     alauda_usb_ids,
1263        .soft_unbind =  1,
1264        .no_dynamic_id = 1,
1265};
1266
1267module_usb_driver(alauda_driver);
1268