linux/drivers/usb/wusbcore/crypto.c
<<
>>
Prefs
   1/*
   2 * Ultra Wide Band
   3 * AES-128 CCM Encryption
   4 *
   5 * Copyright (C) 2007 Intel Corporation
   6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License version
  10 * 2 as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20 * 02110-1301, USA.
  21 *
  22 *
  23 * We don't do any encryption here; we use the Linux Kernel's AES-128
  24 * crypto modules to construct keys and payload blocks in a way
  25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
  26 * there.
  27 *
  28 * Thanks a zillion to John Keys for his help and clarifications over
  29 * the designed-by-a-committee text.
  30 *
  31 * So the idea is that there is this basic Pseudo-Random-Function
  32 * defined in WUSB1.0[6.5] which is the core of everything. It works
  33 * by tweaking some blocks, AES crypting them and then xoring
  34 * something else with them (this seems to be called CBC(AES) -- can
  35 * you tell I know jack about crypto?). So we just funnel it into the
  36 * Linux Crypto API.
  37 *
  38 * We leave a crypto test module so we can verify that vectors match,
  39 * every now and then.
  40 *
  41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
  42 *             am learning a lot...
  43 *
  44 *             Conveniently, some data structures that need to be
  45 *             funneled through AES are...16 bytes in size!
  46 */
  47
  48#include <linux/crypto.h>
  49#include <linux/module.h>
  50#include <linux/err.h>
  51#include <linux/uwb.h>
  52#include <linux/slab.h>
  53#include <linux/usb/wusb.h>
  54#include <linux/scatterlist.h>
  55
  56static int debug_crypto_verify = 0;
  57
  58module_param(debug_crypto_verify, int, 0);
  59MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
  60
  61static void wusb_key_dump(const void *buf, size_t len)
  62{
  63        print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
  64                       buf, len, 0);
  65}
  66
  67/*
  68 * Block of data, as understood by AES-CCM
  69 *
  70 * The code assumes this structure is nothing but a 16 byte array
  71 * (packed in a struct to avoid common mess ups that I usually do with
  72 * arrays and enforcing type checking).
  73 */
  74struct aes_ccm_block {
  75        u8 data[16];
  76} __attribute__((packed));
  77
  78/*
  79 * Counter-mode Blocks (WUSB1.0[6.4])
  80 *
  81 * According to CCM (or so it seems), for the purpose of calculating
  82 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
  83 * ... BN.
  84 *
  85 * B0 contains flags, the CCM nonce and l(m).
  86 *
  87 * B1 contains l(a), the MAC header, the encryption offset and padding.
  88 *
  89 * If EO is nonzero, additional blocks are built from payload bytes
  90 * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
  91 * padding is not xmitted.
  92 */
  93
  94/* WUSB1.0[T6.4] */
  95struct aes_ccm_b0 {
  96        u8 flags;       /* 0x59, per CCM spec */
  97        struct aes_ccm_nonce ccm_nonce;
  98        __be16 lm;
  99} __attribute__((packed));
 100
 101/* WUSB1.0[T6.5] */
 102struct aes_ccm_b1 {
 103        __be16 la;
 104        u8 mac_header[10];
 105        __le16 eo;
 106        u8 security_reserved;   /* This is always zero */
 107        u8 padding;             /* 0 */
 108} __attribute__((packed));
 109
 110/*
 111 * Encryption Blocks (WUSB1.0[6.4.4])
 112 *
 113 * CCM uses Ax blocks to generate a keystream with which the MIC and
 114 * the message's payload are encoded. A0 always encrypts/decrypts the
 115 * MIC. Ax (x>0) are used for the successive payload blocks.
 116 *
 117 * The x is the counter, and is increased for each block.
 118 */
 119struct aes_ccm_a {
 120        u8 flags;       /* 0x01, per CCM spec */
 121        struct aes_ccm_nonce ccm_nonce;
 122        __be16 counter; /* Value of x */
 123} __attribute__((packed));
 124
 125static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
 126                         size_t size)
 127{
 128        u8 *bo = _bo;
 129        const u8 *bi1 = _bi1, *bi2 = _bi2;
 130        size_t itr;
 131        for (itr = 0; itr < size; itr++)
 132                bo[itr] = bi1[itr] ^ bi2[itr];
 133}
 134
 135/*
 136 * CC-MAC function WUSB1.0[6.5]
 137 *
 138 * Take a data string and produce the encrypted CBC Counter-mode MIC
 139 *
 140 * Note the names for most function arguments are made to (more or
 141 * less) match those used in the pseudo-function definition given in
 142 * WUSB1.0[6.5].
 143 *
 144 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
 145 *
 146 * @tfm_aes: AES cipher handle (initialized)
 147 *
 148 * @mic: buffer for placing the computed MIC (Message Integrity
 149 *       Code). This is exactly 8 bytes, and we expect the buffer to
 150 *       be at least eight bytes in length.
 151 *
 152 * @key: 128 bit symmetric key
 153 *
 154 * @n: CCM nonce
 155 *
 156 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
 157 *     we use exactly 14 bytes).
 158 *
 159 * @b: data stream to be processed; cannot be a global or const local
 160 *     (will confuse the scatterlists)
 161 *
 162 * @blen: size of b...
 163 *
 164 * Still not very clear how this is done, but looks like this: we
 165 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
 166 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
 167 * take the payload and divide it in blocks (16 bytes), xor them with
 168 * the previous crypto result (16 bytes) and crypt it, repeat the next
 169 * block with the output of the previous one, rinse wash (I guess this
 170 * is what AES CBC mode means...but I truly have no idea). So we use
 171 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
 172 * Vector) is 16 bytes and is set to zero, so
 173 *
 174 * See rfc3610. Linux crypto has a CBC implementation, but the
 175 * documentation is scarce, to say the least, and the example code is
 176 * so intricated that is difficult to understand how things work. Most
 177 * of this is guess work -- bite me.
 178 *
 179 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
 180 *     using the 14 bytes of @a to fill up
 181 *     b1.{mac_header,e0,security_reserved,padding}.
 182 *
 183 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
 184 *       l(m) is orthogonal, they bear no relationship, so it is not
 185 *       in conflict with the parameter's relation that
 186 *       WUSB1.0[6.4.2]) defines.
 187 *
 188 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
 189 *       first errata released on 2005/07.
 190 *
 191 * NOTE: we need to clean IV to zero at each invocation to make sure
 192 *       we start with a fresh empty Initial Vector, so that the CBC
 193 *       works ok.
 194 *
 195 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
 196 *       what sg[4] is for. Maybe there is a smarter way to do this.
 197 */
 198static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
 199                        struct crypto_cipher *tfm_aes, void *mic,
 200                        const struct aes_ccm_nonce *n,
 201                        const struct aes_ccm_label *a, const void *b,
 202                        size_t blen)
 203{
 204        int result = 0;
 205        struct blkcipher_desc desc;
 206        struct aes_ccm_b0 b0;
 207        struct aes_ccm_b1 b1;
 208        struct aes_ccm_a ax;
 209        struct scatterlist sg[4], sg_dst;
 210        void *iv, *dst_buf;
 211        size_t ivsize, dst_size;
 212        const u8 bzero[16] = { 0 };
 213        size_t zero_padding;
 214
 215        /*
 216         * These checks should be compile time optimized out
 217         * ensure @a fills b1's mac_header and following fields
 218         */
 219        WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
 220        WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
 221        WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
 222        WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
 223
 224        result = -ENOMEM;
 225        zero_padding = sizeof(struct aes_ccm_block)
 226                - blen % sizeof(struct aes_ccm_block);
 227        zero_padding = blen % sizeof(struct aes_ccm_block);
 228        if (zero_padding)
 229                zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
 230        dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
 231        dst_buf = kzalloc(dst_size, GFP_KERNEL);
 232        if (dst_buf == NULL) {
 233                printk(KERN_ERR "E: can't alloc destination buffer\n");
 234                goto error_dst_buf;
 235        }
 236
 237        iv = crypto_blkcipher_crt(tfm_cbc)->iv;
 238        ivsize = crypto_blkcipher_ivsize(tfm_cbc);
 239        memset(iv, 0, ivsize);
 240
 241        /* Setup B0 */
 242        b0.flags = 0x59;        /* Format B0 */
 243        b0.ccm_nonce = *n;
 244        b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
 245
 246        /* Setup B1
 247         *
 248         * The WUSB spec is anything but clear! WUSB1.0[6.5]
 249         * says that to initialize B1 from A with 'l(a) = blen +
 250         * 14'--after clarification, it means to use A's contents
 251         * for MAC Header, EO, sec reserved and padding.
 252         */
 253        b1.la = cpu_to_be16(blen + 14);
 254        memcpy(&b1.mac_header, a, sizeof(*a));
 255
 256        sg_init_table(sg, ARRAY_SIZE(sg));
 257        sg_set_buf(&sg[0], &b0, sizeof(b0));
 258        sg_set_buf(&sg[1], &b1, sizeof(b1));
 259        sg_set_buf(&sg[2], b, blen);
 260        /* 0 if well behaved :) */
 261        sg_set_buf(&sg[3], bzero, zero_padding);
 262        sg_init_one(&sg_dst, dst_buf, dst_size);
 263
 264        desc.tfm = tfm_cbc;
 265        desc.flags = 0;
 266        result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
 267        if (result < 0) {
 268                printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
 269                       result);
 270                goto error_cbc_crypt;
 271        }
 272
 273        /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
 274         * The procedure is to AES crypt the A0 block and XOR the MIC
 275         * Tag against it; we only do the first 8 bytes and place it
 276         * directly in the destination buffer.
 277         *
 278         * POS Crypto API: size is assumed to be AES's block size.
 279         * Thanks for documenting it -- tip taken from airo.c
 280         */
 281        ax.flags = 0x01;                /* as per WUSB 1.0 spec */
 282        ax.ccm_nonce = *n;
 283        ax.counter = 0;
 284        crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
 285        bytewise_xor(mic, &ax, iv, 8);
 286        result = 8;
 287error_cbc_crypt:
 288        kfree(dst_buf);
 289error_dst_buf:
 290        return result;
 291}
 292
 293/*
 294 * WUSB Pseudo Random Function (WUSB1.0[6.5])
 295 *
 296 * @b: buffer to the source data; cannot be a global or const local
 297 *     (will confuse the scatterlists)
 298 */
 299ssize_t wusb_prf(void *out, size_t out_size,
 300                 const u8 key[16], const struct aes_ccm_nonce *_n,
 301                 const struct aes_ccm_label *a,
 302                 const void *b, size_t blen, size_t len)
 303{
 304        ssize_t result, bytes = 0, bitr;
 305        struct aes_ccm_nonce n = *_n;
 306        struct crypto_blkcipher *tfm_cbc;
 307        struct crypto_cipher *tfm_aes;
 308        u64 sfn = 0;
 309        __le64 sfn_le;
 310
 311        tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
 312        if (IS_ERR(tfm_cbc)) {
 313                result = PTR_ERR(tfm_cbc);
 314                printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
 315                goto error_alloc_cbc;
 316        }
 317        result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
 318        if (result < 0) {
 319                printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
 320                goto error_setkey_cbc;
 321        }
 322
 323        tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
 324        if (IS_ERR(tfm_aes)) {
 325                result = PTR_ERR(tfm_aes);
 326                printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
 327                goto error_alloc_aes;
 328        }
 329        result = crypto_cipher_setkey(tfm_aes, key, 16);
 330        if (result < 0) {
 331                printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
 332                goto error_setkey_aes;
 333        }
 334
 335        for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
 336                sfn_le = cpu_to_le64(sfn++);
 337                memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
 338                result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
 339                                      &n, a, b, blen);
 340                if (result < 0)
 341                        goto error_ccm_mac;
 342                bytes += result;
 343        }
 344        result = bytes;
 345error_ccm_mac:
 346error_setkey_aes:
 347        crypto_free_cipher(tfm_aes);
 348error_alloc_aes:
 349error_setkey_cbc:
 350        crypto_free_blkcipher(tfm_cbc);
 351error_alloc_cbc:
 352        return result;
 353}
 354
 355/* WUSB1.0[A.2] test vectors */
 356static const u8 stv_hsmic_key[16] = {
 357        0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
 358        0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
 359};
 360
 361static const struct aes_ccm_nonce stv_hsmic_n = {
 362        .sfn = { 0 },
 363        .tkid = { 0x76, 0x98, 0x01,  },
 364        .dest_addr = { .data = { 0xbe, 0x00 } },
 365                .src_addr = { .data = { 0x76, 0x98 } },
 366};
 367
 368/*
 369 * Out-of-band MIC Generation verification code
 370 *
 371 */
 372static int wusb_oob_mic_verify(void)
 373{
 374        int result;
 375        u8 mic[8];
 376        /* WUSB1.0[A.2] test vectors
 377         *
 378         * Need to keep it in the local stack as GCC 4.1.3something
 379         * messes up and generates noise.
 380         */
 381        struct usb_handshake stv_hsmic_hs = {
 382                .bMessageNumber = 2,
 383                .bStatus        = 00,
 384                .tTKID          = { 0x76, 0x98, 0x01 },
 385                .bReserved      = 00,
 386                .CDID           = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
 387                                    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
 388                                    0x3c, 0x3d, 0x3e, 0x3f },
 389                .nonce          = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
 390                                    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
 391                                    0x2c, 0x2d, 0x2e, 0x2f },
 392                .MIC            = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
 393                                    0x14, 0x7b } ,
 394        };
 395        size_t hs_size;
 396
 397        result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
 398        if (result < 0)
 399                printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
 400        else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
 401                printk(KERN_ERR "E: OOB MIC test: "
 402                       "mismatch between MIC result and WUSB1.0[A2]\n");
 403                hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
 404                printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
 405                wusb_key_dump(&stv_hsmic_hs, hs_size);
 406                printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
 407                       sizeof(stv_hsmic_n));
 408                wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
 409                printk(KERN_ERR "E: MIC out:\n");
 410                wusb_key_dump(mic, sizeof(mic));
 411                printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
 412                wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
 413                result = -EINVAL;
 414        } else
 415                result = 0;
 416        return result;
 417}
 418
 419/*
 420 * Test vectors for Key derivation
 421 *
 422 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
 423 * (errata corrected in 2005/07).
 424 */
 425static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
 426        0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
 427        0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
 428};
 429
 430static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
 431        .sfn = { 0 },
 432        .tkid = { 0x76, 0x98, 0x01,  },
 433        .dest_addr = { .data = { 0xbe, 0x00 } },
 434        .src_addr = { .data = { 0x76, 0x98 } },
 435};
 436
 437static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
 438        .kck = {
 439                0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
 440                0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
 441        },
 442        .ptk = {
 443                0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
 444                0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
 445        }
 446};
 447
 448/*
 449 * Performa a test to make sure we match the vectors defined in
 450 * WUSB1.0[A.1](Errata2006/12)
 451 */
 452static int wusb_key_derive_verify(void)
 453{
 454        int result = 0;
 455        struct wusb_keydvt_out keydvt_out;
 456        /* These come from WUSB1.0[A.1] + 2006/12 errata
 457         * NOTE: can't make this const or global -- somehow it seems
 458         *       the scatterlists for crypto get confused and we get
 459         *       bad data. There is no doc on this... */
 460        struct wusb_keydvt_in stv_keydvt_in_a1 = {
 461                .hnonce = {
 462                        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 463                        0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
 464                },
 465                .dnonce = {
 466                        0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
 467                        0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
 468                }
 469        };
 470
 471        result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
 472                                 &stv_keydvt_in_a1);
 473        if (result < 0)
 474                printk(KERN_ERR "E: WUSB key derivation test: "
 475                       "derivation failed: %d\n", result);
 476        if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
 477                printk(KERN_ERR "E: WUSB key derivation test: "
 478                       "mismatch between key derivation result "
 479                       "and WUSB1.0[A1] Errata 2006/12\n");
 480                printk(KERN_ERR "E: keydvt in: key\n");
 481                wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
 482                printk(KERN_ERR "E: keydvt in: nonce\n");
 483                wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
 484                printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
 485                wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
 486                printk(KERN_ERR "E: keydvt out: KCK\n");
 487                wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
 488                printk(KERN_ERR "E: keydvt out: PTK\n");
 489                wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
 490                result = -EINVAL;
 491        } else
 492                result = 0;
 493        return result;
 494}
 495
 496/*
 497 * Initialize crypto system
 498 *
 499 * FIXME: we do nothing now, other than verifying. Later on we'll
 500 * cache the encryption stuff, so that's why we have a separate init.
 501 */
 502int wusb_crypto_init(void)
 503{
 504        int result;
 505
 506        if (debug_crypto_verify) {
 507                result = wusb_key_derive_verify();
 508                if (result < 0)
 509                        return result;
 510                return wusb_oob_mic_verify();
 511        }
 512        return 0;
 513}
 514
 515void wusb_crypto_exit(void)
 516{
 517        /* FIXME: free cached crypto transforms */
 518}
 519