linux/drivers/video/kyro/STG4000InitDevice.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/video/kyro/STG4000InitDevice.c
   3 *
   4 *  Copyright (C) 2000 Imagination Technologies Ltd
   5 *  Copyright (C) 2002 STMicroelectronics
   6 *
   7 * This file is subject to the terms and conditions of the GNU General Public
   8 * License.  See the file COPYING in the main directory of this archive
   9 * for more details.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/errno.h>
  14#include <linux/types.h>
  15#include <linux/pci.h>
  16
  17#include "STG4000Reg.h"
  18#include "STG4000Interface.h"
  19
  20/* SDRAM fixed settings */
  21#define SDRAM_CFG_0   0x49A1
  22#define SDRAM_CFG_1   0xA732
  23#define SDRAM_CFG_2   0x31
  24#define SDRAM_ARB_CFG 0xA0
  25#define SDRAM_REFRESH 0x20
  26
  27/* Reset values */
  28#define PMX2_SOFTRESET_DAC_RST          0x0001
  29#define PMX2_SOFTRESET_C1_RST           0x0004
  30#define PMX2_SOFTRESET_C2_RST           0x0008
  31#define PMX2_SOFTRESET_3D_RST           0x0010
  32#define PMX2_SOFTRESET_VIDIN_RST        0x0020
  33#define PMX2_SOFTRESET_TLB_RST          0x0040
  34#define PMX2_SOFTRESET_SD_RST           0x0080
  35#define PMX2_SOFTRESET_VGA_RST          0x0100
  36#define PMX2_SOFTRESET_ROM_RST          0x0200  /* reserved bit, do not reset */
  37#define PMX2_SOFTRESET_TA_RST           0x0400
  38#define PMX2_SOFTRESET_REG_RST          0x4000
  39#define PMX2_SOFTRESET_ALL              0x7fff
  40
  41/* Core clock freq */
  42#define CORE_PLL_FREQ 1000000
  43
  44/* Reference Clock freq */
  45#define REF_FREQ 14318
  46
  47/* PCI Registers */
  48static u16 CorePllControl = 0x70;
  49
  50#define PCI_CONFIG_SUBSYS_ID    0x2e
  51
  52/* Misc */
  53#define CORE_PLL_MODE_REG_0_7      3
  54#define CORE_PLL_MODE_REG_8_15     2
  55#define CORE_PLL_MODE_CONFIG_REG   1
  56#define DAC_PLL_CONFIG_REG         0
  57
  58#define STG_MAX_VCO 500000
  59#define STG_MIN_VCO 100000
  60
  61/* PLL Clock */
  62#define    STG4K3_PLL_SCALER      8     /* scale numbers by 2^8 for fixed point calc */
  63#define    STG4K3_PLL_MIN_R       2     /* Minimum multiplier */
  64#define    STG4K3_PLL_MAX_R       33    /* Max */
  65#define    STG4K3_PLL_MIN_F       2     /* Minimum divisor */
  66#define    STG4K3_PLL_MAX_F       513   /* Max */
  67#define    STG4K3_PLL_MIN_OD      0     /* Min output divider (shift) */
  68#define    STG4K3_PLL_MAX_OD      2     /* Max */
  69#define    STG4K3_PLL_MIN_VCO_SC  (100000000 >> STG4K3_PLL_SCALER)      /* Min VCO rate */
  70#define    STG4K3_PLL_MAX_VCO_SC  (500000000 >> STG4K3_PLL_SCALER)      /* Max VCO rate */
  71#define    STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER)      /* Min VCO rate (restricted) */
  72#define    STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER)      /* Max VCO rate (restricted) */
  73#define    STG4K3_PLL_MINR_VCO    100000000     /* Min VCO rate (restricted) */
  74#define    STG4K3_PLL_MAX_VCO     500000000     /* Max VCO rate */
  75#define    STG4K3_PLL_MAXR_VCO    500000000     /* Max VCO rate (restricted) */
  76
  77#define OS_DELAY(X) \
  78{ \
  79volatile u32 i,count=0; \
  80    for(i=0;i<X;i++) count++; \
  81}
  82
  83static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg,
  84                              u32 dwSubSysID, u32 dwRevID)
  85{
  86        u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 };
  87        u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 };
  88        u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 };
  89        u32 adwSDRAMRsh[] = { 36, 39, 40 };
  90        u32 adwChipSpeed[] = { 110, 120, 125 };
  91        u32 dwMemTypeIdx;
  92        u32 dwChipSpeedIdx;
  93
  94        /* Get memory tpye and chip speed indexs from the SubSysDevID */
  95        dwMemTypeIdx = (dwSubSysID & 0x70) >> 4;
  96        dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7;
  97
  98        if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2)
  99                return 0;
 100
 101        /* Program SD-RAM interface */
 102        STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]);
 103        if (dwRevID < 5) {
 104                STG_WRITE_REG(SDRAMConf0, 0x49A1);
 105                STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]);
 106        } else {
 107                STG_WRITE_REG(SDRAMConf0, 0x4DF1);
 108                STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]);
 109        }
 110
 111        STG_WRITE_REG(SDRAMConf2, 0x31);
 112        STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]);
 113
 114        return adwChipSpeed[dwChipSpeedIdx] * 10000;
 115}
 116
 117u32 ProgramClock(u32 refClock,
 118                   u32 coreClock,
 119                   u32 * FOut, u32 * ROut, u32 * POut)
 120{
 121        u32 R = 0, F = 0, OD = 0, ODIndex = 0;
 122        u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0;
 123        u32 ulBestVCO = 0, ulBestClk = 0, ulBestScore = 0;
 124        u32 ulScore, ulPhaseScore, ulVcoScore;
 125        u32 ulTmp = 0, ulVCO;
 126        u32 ulScaleClockReq, ulMinClock, ulMaxClock;
 127        u32 ODValues[] = { 1, 2, 0 };
 128
 129        /* Translate clock in Hz */
 130        coreClock *= 100;       /* in Hz */
 131        refClock *= 1000;       /* in Hz */
 132
 133        /* Work out acceptable clock
 134         * The method calculates ~ +- 0.4% (1/256)
 135         */
 136        ulMinClock = coreClock - (coreClock >> 8);
 137        ulMaxClock = coreClock + (coreClock >> 8);
 138
 139        /* Scale clock required for use in calculations */
 140        ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER;
 141
 142        /* Iterate through post divider values */
 143        for (ODIndex = 0; ODIndex < 3; ODIndex++) {
 144                OD = ODValues[ODIndex];
 145                R = STG4K3_PLL_MIN_R;
 146
 147                /* loop for pre-divider from min to max  */
 148                while (R <= STG4K3_PLL_MAX_R) {
 149                        /* estimate required feedback multiplier */
 150                        ulTmp = R * (ulScaleClockReq << OD);
 151
 152                        /* F = ClkRequired * R * (2^OD) / Fref */
 153                        F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER));
 154
 155                        /* compensate for accuracy */
 156                        if (F > STG4K3_PLL_MIN_F)
 157                                F--;
 158
 159
 160                        /*
 161                         * We should be close to our target frequency (if it's
 162                         * achievable with current OD & R) let's iterate
 163                         * through F for best fit
 164                         */
 165                        while ((F >= STG4K3_PLL_MIN_F) &&
 166                               (F <= STG4K3_PLL_MAX_F)) {
 167                                /* Calc VCO at full accuracy */
 168                                ulVCO = refClock / R;
 169                                ulVCO = F * ulVCO;
 170
 171                                /*
 172                                 * Check it's within restricted VCO range
 173                                 * unless of course the desired frequency is
 174                                 * above the restricted range, then test
 175                                 * against VCO limit
 176                                 */
 177                                if ((ulVCO >= STG4K3_PLL_MINR_VCO) &&
 178                                    ((ulVCO <= STG4K3_PLL_MAXR_VCO) ||
 179                                     ((coreClock > STG4K3_PLL_MAXR_VCO)
 180                                      && (ulVCO <= STG4K3_PLL_MAX_VCO)))) {
 181                                        ulTmp = (ulVCO >> OD);  /* Clock = VCO / (2^OD) */
 182
 183                                        /* Is this clock good enough? */
 184                                        if ((ulTmp >= ulMinClock)
 185                                            && (ulTmp <= ulMaxClock)) {
 186                                                ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10);
 187
 188                                                ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10);
 189                                                ulScore = ulPhaseScore + ulVcoScore;
 190
 191                                                if (!ulBestScore) {
 192                                                        ulBestVCO = ulVCO;
 193                                                        ulBestOD = OD;
 194                                                        ulBestF = F;
 195                                                        ulBestR = R;
 196                                                        ulBestClk = ulTmp;
 197                                                        ulBestScore =
 198                                                            ulScore;
 199                                                }
 200                                                /* is this better, ( aim for highest Score) */
 201                        /*--------------------------------------------------------------------------
 202                             Here we want to use a scoring system which will take account of both the
 203                            value at the phase comparater and the VCO output
 204                             to do this we will use a cumulative score between the two
 205                          The way this ends up is that we choose the first value in the loop anyway
 206                          but we shall keep this code in case new restrictions come into play
 207                          --------------------------------------------------------------------------*/
 208                                                if ((ulScore >= ulBestScore) && (OD > 0)) {
 209                                                        ulBestVCO = ulVCO;
 210                                                        ulBestOD = OD;
 211                                                        ulBestF = F;
 212                                                        ulBestR = R;
 213                                                        ulBestClk = ulTmp;
 214                                                        ulBestScore =
 215                                                            ulScore;
 216                                                }
 217                                        }
 218                                }
 219                                F++;
 220                        }
 221                        R++;
 222                }
 223        }
 224
 225        /*
 226           did we find anything?
 227           Then return RFOD
 228         */
 229        if (ulBestScore) {
 230                *ROut = ulBestR;
 231                *FOut = ulBestF;
 232
 233                if ((ulBestOD == 2) || (ulBestOD == 3)) {
 234                        *POut = 3;
 235                } else
 236                        *POut = ulBestOD;
 237
 238        }
 239
 240        return (ulBestClk);
 241}
 242
 243int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev)
 244{
 245        u32 F, R, P;
 246        u16 core_pll = 0, sub;
 247        u32 ulCoreClock;
 248        u32 tmp;
 249        u32 ulChipSpeed;
 250
 251        STG_WRITE_REG(IntMask, 0xFFFF);
 252
 253        /* Disable Primary Core Thread0 */
 254        tmp = STG_READ_REG(Thread0Enable);
 255        CLEAR_BIT(0);
 256        STG_WRITE_REG(Thread0Enable, tmp);
 257
 258        /* Disable Primary Core Thread1 */
 259        tmp = STG_READ_REG(Thread1Enable);
 260        CLEAR_BIT(0);
 261        STG_WRITE_REG(Thread1Enable, tmp);
 262
 263        STG_WRITE_REG(SoftwareReset,
 264                      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
 265        STG_WRITE_REG(SoftwareReset,
 266                      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
 267                      PMX2_SOFTRESET_ROM_RST);
 268
 269        /* Need to play around to reset TA */
 270        STG_WRITE_REG(TAConfiguration, 0);
 271        STG_WRITE_REG(SoftwareReset,
 272                      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
 273        STG_WRITE_REG(SoftwareReset,
 274                      PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
 275                      PMX2_SOFTRESET_ROM_RST);
 276
 277        pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub);
 278
 279        ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub,
 280                                         (u32)pDev->revision);
 281
 282        if (ulChipSpeed == 0)
 283                return -EINVAL;
 284
 285        ulCoreClock = ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P);
 286
 287        core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11));
 288
 289        /* Set Core PLL Control to Core PLL Mode  */
 290
 291        /* Send bits 0:7 of the Core PLL Mode register */
 292        tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF));
 293        pci_write_config_word(pDev, CorePllControl, tmp);
 294        /* Without some delay between the PCI config writes the clock does
 295           not reliably set when the code is compiled -O3
 296         */
 297        OS_DELAY(1000000);
 298
 299        tmp |= SET_BIT(14);
 300        pci_write_config_word(pDev, CorePllControl, tmp);
 301        OS_DELAY(1000000);
 302
 303        /* Send bits 8:15 of the Core PLL Mode register */
 304        tmp =
 305            ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8));
 306        pci_write_config_word(pDev, CorePllControl, tmp);
 307        OS_DELAY(1000000);
 308
 309        tmp |= SET_BIT(14);
 310        pci_write_config_word(pDev, CorePllControl, tmp);
 311        OS_DELAY(1000000);
 312
 313        STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL);
 314
 315#if 0
 316        /* Enable Primary Core Thread0 */
 317        tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0));
 318        STG_WRITE_REG(Thread0Enable, tmp);
 319
 320        /* Enable Primary Core Thread1 */
 321        tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0));
 322        STG_WRITE_REG(Thread1Enable, tmp);
 323#endif
 324
 325        return 0;
 326}
 327