linux/fs/btrfs/backref.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/vmalloc.h>
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "backref.h"
  23#include "ulist.h"
  24#include "transaction.h"
  25#include "delayed-ref.h"
  26#include "locking.h"
  27
  28struct extent_inode_elem {
  29        u64 inum;
  30        u64 offset;
  31        struct extent_inode_elem *next;
  32};
  33
  34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  35                                struct btrfs_file_extent_item *fi,
  36                                u64 extent_item_pos,
  37                                struct extent_inode_elem **eie)
  38{
  39        u64 offset = 0;
  40        struct extent_inode_elem *e;
  41
  42        if (!btrfs_file_extent_compression(eb, fi) &&
  43            !btrfs_file_extent_encryption(eb, fi) &&
  44            !btrfs_file_extent_other_encoding(eb, fi)) {
  45                u64 data_offset;
  46                u64 data_len;
  47
  48                data_offset = btrfs_file_extent_offset(eb, fi);
  49                data_len = btrfs_file_extent_num_bytes(eb, fi);
  50
  51                if (extent_item_pos < data_offset ||
  52                    extent_item_pos >= data_offset + data_len)
  53                        return 1;
  54                offset = extent_item_pos - data_offset;
  55        }
  56
  57        e = kmalloc(sizeof(*e), GFP_NOFS);
  58        if (!e)
  59                return -ENOMEM;
  60
  61        e->next = *eie;
  62        e->inum = key->objectid;
  63        e->offset = key->offset + offset;
  64        *eie = e;
  65
  66        return 0;
  67}
  68
  69static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  70                                u64 extent_item_pos,
  71                                struct extent_inode_elem **eie)
  72{
  73        u64 disk_byte;
  74        struct btrfs_key key;
  75        struct btrfs_file_extent_item *fi;
  76        int slot;
  77        int nritems;
  78        int extent_type;
  79        int ret;
  80
  81        /*
  82         * from the shared data ref, we only have the leaf but we need
  83         * the key. thus, we must look into all items and see that we
  84         * find one (some) with a reference to our extent item.
  85         */
  86        nritems = btrfs_header_nritems(eb);
  87        for (slot = 0; slot < nritems; ++slot) {
  88                btrfs_item_key_to_cpu(eb, &key, slot);
  89                if (key.type != BTRFS_EXTENT_DATA_KEY)
  90                        continue;
  91                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  92                extent_type = btrfs_file_extent_type(eb, fi);
  93                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  94                        continue;
  95                /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  96                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  97                if (disk_byte != wanted_disk_byte)
  98                        continue;
  99
 100                ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
 101                if (ret < 0)
 102                        return ret;
 103        }
 104
 105        return 0;
 106}
 107
 108/*
 109 * this structure records all encountered refs on the way up to the root
 110 */
 111struct __prelim_ref {
 112        struct list_head list;
 113        u64 root_id;
 114        struct btrfs_key key_for_search;
 115        int level;
 116        int count;
 117        struct extent_inode_elem *inode_list;
 118        u64 parent;
 119        u64 wanted_disk_byte;
 120};
 121
 122/*
 123 * the rules for all callers of this function are:
 124 * - obtaining the parent is the goal
 125 * - if you add a key, you must know that it is a correct key
 126 * - if you cannot add the parent or a correct key, then we will look into the
 127 *   block later to set a correct key
 128 *
 129 * delayed refs
 130 * ============
 131 *        backref type | shared | indirect | shared | indirect
 132 * information         |   tree |     tree |   data |     data
 133 * --------------------+--------+----------+--------+----------
 134 *      parent logical |    y   |     -    |    -   |     -
 135 *      key to resolve |    -   |     y    |    y   |     y
 136 *  tree block logical |    -   |     -    |    -   |     -
 137 *  root for resolving |    y   |     y    |    y   |     y
 138 *
 139 * - column 1:       we've the parent -> done
 140 * - column 2, 3, 4: we use the key to find the parent
 141 *
 142 * on disk refs (inline or keyed)
 143 * ==============================
 144 *        backref type | shared | indirect | shared | indirect
 145 * information         |   tree |     tree |   data |     data
 146 * --------------------+--------+----------+--------+----------
 147 *      parent logical |    y   |     -    |    y   |     -
 148 *      key to resolve |    -   |     -    |    -   |     y
 149 *  tree block logical |    y   |     y    |    y   |     y
 150 *  root for resolving |    -   |     y    |    y   |     y
 151 *
 152 * - column 1, 3: we've the parent -> done
 153 * - column 2:    we take the first key from the block to find the parent
 154 *                (see __add_missing_keys)
 155 * - column 4:    we use the key to find the parent
 156 *
 157 * additional information that's available but not required to find the parent
 158 * block might help in merging entries to gain some speed.
 159 */
 160
 161static int __add_prelim_ref(struct list_head *head, u64 root_id,
 162                            struct btrfs_key *key, int level,
 163                            u64 parent, u64 wanted_disk_byte, int count)
 164{
 165        struct __prelim_ref *ref;
 166
 167        /* in case we're adding delayed refs, we're holding the refs spinlock */
 168        ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
 169        if (!ref)
 170                return -ENOMEM;
 171
 172        ref->root_id = root_id;
 173        if (key)
 174                ref->key_for_search = *key;
 175        else
 176                memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 177
 178        ref->inode_list = NULL;
 179        ref->level = level;
 180        ref->count = count;
 181        ref->parent = parent;
 182        ref->wanted_disk_byte = wanted_disk_byte;
 183        list_add_tail(&ref->list, head);
 184
 185        return 0;
 186}
 187
 188static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 189                                struct ulist *parents, int level,
 190                                struct btrfs_key *key_for_search, u64 time_seq,
 191                                u64 wanted_disk_byte,
 192                                const u64 *extent_item_pos)
 193{
 194        int ret = 0;
 195        int slot;
 196        struct extent_buffer *eb;
 197        struct btrfs_key key;
 198        struct btrfs_file_extent_item *fi;
 199        struct extent_inode_elem *eie = NULL, *old = NULL;
 200        u64 disk_byte;
 201
 202        if (level != 0) {
 203                eb = path->nodes[level];
 204                ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 205                if (ret < 0)
 206                        return ret;
 207                return 0;
 208        }
 209
 210        /*
 211         * We normally enter this function with the path already pointing to
 212         * the first item to check. But sometimes, we may enter it with
 213         * slot==nritems. In that case, go to the next leaf before we continue.
 214         */
 215        if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
 216                ret = btrfs_next_old_leaf(root, path, time_seq);
 217
 218        while (!ret) {
 219                eb = path->nodes[0];
 220                slot = path->slots[0];
 221
 222                btrfs_item_key_to_cpu(eb, &key, slot);
 223
 224                if (key.objectid != key_for_search->objectid ||
 225                    key.type != BTRFS_EXTENT_DATA_KEY)
 226                        break;
 227
 228                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 229                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 230
 231                if (disk_byte == wanted_disk_byte) {
 232                        eie = NULL;
 233                        old = NULL;
 234                        if (extent_item_pos) {
 235                                ret = check_extent_in_eb(&key, eb, fi,
 236                                                *extent_item_pos,
 237                                                &eie);
 238                                if (ret < 0)
 239                                        break;
 240                        }
 241                        if (ret > 0)
 242                                goto next;
 243                        ret = ulist_add_merge(parents, eb->start,
 244                                              (uintptr_t)eie,
 245                                              (u64 *)&old, GFP_NOFS);
 246                        if (ret < 0)
 247                                break;
 248                        if (!ret && extent_item_pos) {
 249                                while (old->next)
 250                                        old = old->next;
 251                                old->next = eie;
 252                        }
 253                }
 254next:
 255                ret = btrfs_next_old_item(root, path, time_seq);
 256        }
 257
 258        if (ret > 0)
 259                ret = 0;
 260        return ret;
 261}
 262
 263/*
 264 * resolve an indirect backref in the form (root_id, key, level)
 265 * to a logical address
 266 */
 267static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 268                                  struct btrfs_path *path, u64 time_seq,
 269                                  struct __prelim_ref *ref,
 270                                  struct ulist *parents,
 271                                  const u64 *extent_item_pos)
 272{
 273        struct btrfs_root *root;
 274        struct btrfs_key root_key;
 275        struct extent_buffer *eb;
 276        int ret = 0;
 277        int root_level;
 278        int level = ref->level;
 279
 280        root_key.objectid = ref->root_id;
 281        root_key.type = BTRFS_ROOT_ITEM_KEY;
 282        root_key.offset = (u64)-1;
 283        root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 284        if (IS_ERR(root)) {
 285                ret = PTR_ERR(root);
 286                goto out;
 287        }
 288
 289        root_level = btrfs_old_root_level(root, time_seq);
 290
 291        if (root_level + 1 == level)
 292                goto out;
 293
 294        path->lowest_level = level;
 295        ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
 296        pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 297                 "%d for key (%llu %u %llu)\n",
 298                 (unsigned long long)ref->root_id, level, ref->count, ret,
 299                 (unsigned long long)ref->key_for_search.objectid,
 300                 ref->key_for_search.type,
 301                 (unsigned long long)ref->key_for_search.offset);
 302        if (ret < 0)
 303                goto out;
 304
 305        eb = path->nodes[level];
 306        while (!eb) {
 307                if (!level) {
 308                        WARN_ON(1);
 309                        ret = 1;
 310                        goto out;
 311                }
 312                level--;
 313                eb = path->nodes[level];
 314        }
 315
 316        ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
 317                                time_seq, ref->wanted_disk_byte,
 318                                extent_item_pos);
 319out:
 320        path->lowest_level = 0;
 321        btrfs_release_path(path);
 322        return ret;
 323}
 324
 325/*
 326 * resolve all indirect backrefs from the list
 327 */
 328static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 329                                   struct btrfs_path *path, u64 time_seq,
 330                                   struct list_head *head,
 331                                   const u64 *extent_item_pos)
 332{
 333        int err;
 334        int ret = 0;
 335        struct __prelim_ref *ref;
 336        struct __prelim_ref *ref_safe;
 337        struct __prelim_ref *new_ref;
 338        struct ulist *parents;
 339        struct ulist_node *node;
 340        struct ulist_iterator uiter;
 341
 342        parents = ulist_alloc(GFP_NOFS);
 343        if (!parents)
 344                return -ENOMEM;
 345
 346        /*
 347         * _safe allows us to insert directly after the current item without
 348         * iterating over the newly inserted items.
 349         * we're also allowed to re-assign ref during iteration.
 350         */
 351        list_for_each_entry_safe(ref, ref_safe, head, list) {
 352                if (ref->parent)        /* already direct */
 353                        continue;
 354                if (ref->count == 0)
 355                        continue;
 356                err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
 357                                             parents, extent_item_pos);
 358                if (err == -ENOMEM)
 359                        goto out;
 360                if (err)
 361                        continue;
 362
 363                /* we put the first parent into the ref at hand */
 364                ULIST_ITER_INIT(&uiter);
 365                node = ulist_next(parents, &uiter);
 366                ref->parent = node ? node->val : 0;
 367                ref->inode_list = node ?
 368                        (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
 369
 370                /* additional parents require new refs being added here */
 371                while ((node = ulist_next(parents, &uiter))) {
 372                        new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
 373                        if (!new_ref) {
 374                                ret = -ENOMEM;
 375                                goto out;
 376                        }
 377                        memcpy(new_ref, ref, sizeof(*ref));
 378                        new_ref->parent = node->val;
 379                        new_ref->inode_list = (struct extent_inode_elem *)
 380                                                        (uintptr_t)node->aux;
 381                        list_add(&new_ref->list, &ref->list);
 382                }
 383                ulist_reinit(parents);
 384        }
 385out:
 386        ulist_free(parents);
 387        return ret;
 388}
 389
 390static inline int ref_for_same_block(struct __prelim_ref *ref1,
 391                                     struct __prelim_ref *ref2)
 392{
 393        if (ref1->level != ref2->level)
 394                return 0;
 395        if (ref1->root_id != ref2->root_id)
 396                return 0;
 397        if (ref1->key_for_search.type != ref2->key_for_search.type)
 398                return 0;
 399        if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 400                return 0;
 401        if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 402                return 0;
 403        if (ref1->parent != ref2->parent)
 404                return 0;
 405
 406        return 1;
 407}
 408
 409/*
 410 * read tree blocks and add keys where required.
 411 */
 412static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 413                              struct list_head *head)
 414{
 415        struct list_head *pos;
 416        struct extent_buffer *eb;
 417
 418        list_for_each(pos, head) {
 419                struct __prelim_ref *ref;
 420                ref = list_entry(pos, struct __prelim_ref, list);
 421
 422                if (ref->parent)
 423                        continue;
 424                if (ref->key_for_search.type)
 425                        continue;
 426                BUG_ON(!ref->wanted_disk_byte);
 427                eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 428                                     fs_info->tree_root->leafsize, 0);
 429                if (!eb || !extent_buffer_uptodate(eb)) {
 430                        free_extent_buffer(eb);
 431                        return -EIO;
 432                }
 433                btrfs_tree_read_lock(eb);
 434                if (btrfs_header_level(eb) == 0)
 435                        btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 436                else
 437                        btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 438                btrfs_tree_read_unlock(eb);
 439                free_extent_buffer(eb);
 440        }
 441        return 0;
 442}
 443
 444/*
 445 * merge two lists of backrefs and adjust counts accordingly
 446 *
 447 * mode = 1: merge identical keys, if key is set
 448 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 449 *           additionally, we could even add a key range for the blocks we
 450 *           looked into to merge even more (-> replace unresolved refs by those
 451 *           having a parent).
 452 * mode = 2: merge identical parents
 453 */
 454static void __merge_refs(struct list_head *head, int mode)
 455{
 456        struct list_head *pos1;
 457
 458        list_for_each(pos1, head) {
 459                struct list_head *n2;
 460                struct list_head *pos2;
 461                struct __prelim_ref *ref1;
 462
 463                ref1 = list_entry(pos1, struct __prelim_ref, list);
 464
 465                for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
 466                     pos2 = n2, n2 = pos2->next) {
 467                        struct __prelim_ref *ref2;
 468                        struct __prelim_ref *xchg;
 469                        struct extent_inode_elem *eie;
 470
 471                        ref2 = list_entry(pos2, struct __prelim_ref, list);
 472
 473                        if (mode == 1) {
 474                                if (!ref_for_same_block(ref1, ref2))
 475                                        continue;
 476                                if (!ref1->parent && ref2->parent) {
 477                                        xchg = ref1;
 478                                        ref1 = ref2;
 479                                        ref2 = xchg;
 480                                }
 481                        } else {
 482                                if (ref1->parent != ref2->parent)
 483                                        continue;
 484                        }
 485
 486                        eie = ref1->inode_list;
 487                        while (eie && eie->next)
 488                                eie = eie->next;
 489                        if (eie)
 490                                eie->next = ref2->inode_list;
 491                        else
 492                                ref1->inode_list = ref2->inode_list;
 493                        ref1->count += ref2->count;
 494
 495                        list_del(&ref2->list);
 496                        kfree(ref2);
 497                }
 498
 499        }
 500}
 501
 502/*
 503 * add all currently queued delayed refs from this head whose seq nr is
 504 * smaller or equal that seq to the list
 505 */
 506static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 507                              struct list_head *prefs)
 508{
 509        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 510        struct rb_node *n = &head->node.rb_node;
 511        struct btrfs_key key;
 512        struct btrfs_key op_key = {0};
 513        int sgn;
 514        int ret = 0;
 515
 516        if (extent_op && extent_op->update_key)
 517                btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 518
 519        while ((n = rb_prev(n))) {
 520                struct btrfs_delayed_ref_node *node;
 521                node = rb_entry(n, struct btrfs_delayed_ref_node,
 522                                rb_node);
 523                if (node->bytenr != head->node.bytenr)
 524                        break;
 525                WARN_ON(node->is_head);
 526
 527                if (node->seq > seq)
 528                        continue;
 529
 530                switch (node->action) {
 531                case BTRFS_ADD_DELAYED_EXTENT:
 532                case BTRFS_UPDATE_DELAYED_HEAD:
 533                        WARN_ON(1);
 534                        continue;
 535                case BTRFS_ADD_DELAYED_REF:
 536                        sgn = 1;
 537                        break;
 538                case BTRFS_DROP_DELAYED_REF:
 539                        sgn = -1;
 540                        break;
 541                default:
 542                        BUG_ON(1);
 543                }
 544                switch (node->type) {
 545                case BTRFS_TREE_BLOCK_REF_KEY: {
 546                        struct btrfs_delayed_tree_ref *ref;
 547
 548                        ref = btrfs_delayed_node_to_tree_ref(node);
 549                        ret = __add_prelim_ref(prefs, ref->root, &op_key,
 550                                               ref->level + 1, 0, node->bytenr,
 551                                               node->ref_mod * sgn);
 552                        break;
 553                }
 554                case BTRFS_SHARED_BLOCK_REF_KEY: {
 555                        struct btrfs_delayed_tree_ref *ref;
 556
 557                        ref = btrfs_delayed_node_to_tree_ref(node);
 558                        ret = __add_prelim_ref(prefs, ref->root, NULL,
 559                                               ref->level + 1, ref->parent,
 560                                               node->bytenr,
 561                                               node->ref_mod * sgn);
 562                        break;
 563                }
 564                case BTRFS_EXTENT_DATA_REF_KEY: {
 565                        struct btrfs_delayed_data_ref *ref;
 566                        ref = btrfs_delayed_node_to_data_ref(node);
 567
 568                        key.objectid = ref->objectid;
 569                        key.type = BTRFS_EXTENT_DATA_KEY;
 570                        key.offset = ref->offset;
 571                        ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 572                                               node->bytenr,
 573                                               node->ref_mod * sgn);
 574                        break;
 575                }
 576                case BTRFS_SHARED_DATA_REF_KEY: {
 577                        struct btrfs_delayed_data_ref *ref;
 578
 579                        ref = btrfs_delayed_node_to_data_ref(node);
 580
 581                        key.objectid = ref->objectid;
 582                        key.type = BTRFS_EXTENT_DATA_KEY;
 583                        key.offset = ref->offset;
 584                        ret = __add_prelim_ref(prefs, ref->root, &key, 0,
 585                                               ref->parent, node->bytenr,
 586                                               node->ref_mod * sgn);
 587                        break;
 588                }
 589                default:
 590                        WARN_ON(1);
 591                }
 592                if (ret)
 593                        return ret;
 594        }
 595
 596        return 0;
 597}
 598
 599/*
 600 * add all inline backrefs for bytenr to the list
 601 */
 602static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 603                             struct btrfs_path *path, u64 bytenr,
 604                             int *info_level, struct list_head *prefs)
 605{
 606        int ret = 0;
 607        int slot;
 608        struct extent_buffer *leaf;
 609        struct btrfs_key key;
 610        struct btrfs_key found_key;
 611        unsigned long ptr;
 612        unsigned long end;
 613        struct btrfs_extent_item *ei;
 614        u64 flags;
 615        u64 item_size;
 616
 617        /*
 618         * enumerate all inline refs
 619         */
 620        leaf = path->nodes[0];
 621        slot = path->slots[0];
 622
 623        item_size = btrfs_item_size_nr(leaf, slot);
 624        BUG_ON(item_size < sizeof(*ei));
 625
 626        ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 627        flags = btrfs_extent_flags(leaf, ei);
 628        btrfs_item_key_to_cpu(leaf, &found_key, slot);
 629
 630        ptr = (unsigned long)(ei + 1);
 631        end = (unsigned long)ei + item_size;
 632
 633        if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 634            flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 635                struct btrfs_tree_block_info *info;
 636
 637                info = (struct btrfs_tree_block_info *)ptr;
 638                *info_level = btrfs_tree_block_level(leaf, info);
 639                ptr += sizeof(struct btrfs_tree_block_info);
 640                BUG_ON(ptr > end);
 641        } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 642                *info_level = found_key.offset;
 643        } else {
 644                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 645        }
 646
 647        while (ptr < end) {
 648                struct btrfs_extent_inline_ref *iref;
 649                u64 offset;
 650                int type;
 651
 652                iref = (struct btrfs_extent_inline_ref *)ptr;
 653                type = btrfs_extent_inline_ref_type(leaf, iref);
 654                offset = btrfs_extent_inline_ref_offset(leaf, iref);
 655
 656                switch (type) {
 657                case BTRFS_SHARED_BLOCK_REF_KEY:
 658                        ret = __add_prelim_ref(prefs, 0, NULL,
 659                                                *info_level + 1, offset,
 660                                                bytenr, 1);
 661                        break;
 662                case BTRFS_SHARED_DATA_REF_KEY: {
 663                        struct btrfs_shared_data_ref *sdref;
 664                        int count;
 665
 666                        sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 667                        count = btrfs_shared_data_ref_count(leaf, sdref);
 668                        ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 669                                               bytenr, count);
 670                        break;
 671                }
 672                case BTRFS_TREE_BLOCK_REF_KEY:
 673                        ret = __add_prelim_ref(prefs, offset, NULL,
 674                                               *info_level + 1, 0,
 675                                               bytenr, 1);
 676                        break;
 677                case BTRFS_EXTENT_DATA_REF_KEY: {
 678                        struct btrfs_extent_data_ref *dref;
 679                        int count;
 680                        u64 root;
 681
 682                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 683                        count = btrfs_extent_data_ref_count(leaf, dref);
 684                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 685                                                                      dref);
 686                        key.type = BTRFS_EXTENT_DATA_KEY;
 687                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 688                        root = btrfs_extent_data_ref_root(leaf, dref);
 689                        ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 690                                               bytenr, count);
 691                        break;
 692                }
 693                default:
 694                        WARN_ON(1);
 695                }
 696                if (ret)
 697                        return ret;
 698                ptr += btrfs_extent_inline_ref_size(type);
 699        }
 700
 701        return 0;
 702}
 703
 704/*
 705 * add all non-inline backrefs for bytenr to the list
 706 */
 707static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 708                            struct btrfs_path *path, u64 bytenr,
 709                            int info_level, struct list_head *prefs)
 710{
 711        struct btrfs_root *extent_root = fs_info->extent_root;
 712        int ret;
 713        int slot;
 714        struct extent_buffer *leaf;
 715        struct btrfs_key key;
 716
 717        while (1) {
 718                ret = btrfs_next_item(extent_root, path);
 719                if (ret < 0)
 720                        break;
 721                if (ret) {
 722                        ret = 0;
 723                        break;
 724                }
 725
 726                slot = path->slots[0];
 727                leaf = path->nodes[0];
 728                btrfs_item_key_to_cpu(leaf, &key, slot);
 729
 730                if (key.objectid != bytenr)
 731                        break;
 732                if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 733                        continue;
 734                if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 735                        break;
 736
 737                switch (key.type) {
 738                case BTRFS_SHARED_BLOCK_REF_KEY:
 739                        ret = __add_prelim_ref(prefs, 0, NULL,
 740                                                info_level + 1, key.offset,
 741                                                bytenr, 1);
 742                        break;
 743                case BTRFS_SHARED_DATA_REF_KEY: {
 744                        struct btrfs_shared_data_ref *sdref;
 745                        int count;
 746
 747                        sdref = btrfs_item_ptr(leaf, slot,
 748                                              struct btrfs_shared_data_ref);
 749                        count = btrfs_shared_data_ref_count(leaf, sdref);
 750                        ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 751                                                bytenr, count);
 752                        break;
 753                }
 754                case BTRFS_TREE_BLOCK_REF_KEY:
 755                        ret = __add_prelim_ref(prefs, key.offset, NULL,
 756                                               info_level + 1, 0,
 757                                               bytenr, 1);
 758                        break;
 759                case BTRFS_EXTENT_DATA_REF_KEY: {
 760                        struct btrfs_extent_data_ref *dref;
 761                        int count;
 762                        u64 root;
 763
 764                        dref = btrfs_item_ptr(leaf, slot,
 765                                              struct btrfs_extent_data_ref);
 766                        count = btrfs_extent_data_ref_count(leaf, dref);
 767                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 768                                                                      dref);
 769                        key.type = BTRFS_EXTENT_DATA_KEY;
 770                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 771                        root = btrfs_extent_data_ref_root(leaf, dref);
 772                        ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 773                                               bytenr, count);
 774                        break;
 775                }
 776                default:
 777                        WARN_ON(1);
 778                }
 779                if (ret)
 780                        return ret;
 781
 782        }
 783
 784        return ret;
 785}
 786
 787/*
 788 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 789 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 790 * indirect refs to their parent bytenr.
 791 * When roots are found, they're added to the roots list
 792 *
 793 * FIXME some caching might speed things up
 794 */
 795static int find_parent_nodes(struct btrfs_trans_handle *trans,
 796                             struct btrfs_fs_info *fs_info, u64 bytenr,
 797                             u64 time_seq, struct ulist *refs,
 798                             struct ulist *roots, const u64 *extent_item_pos)
 799{
 800        struct btrfs_key key;
 801        struct btrfs_path *path;
 802        struct btrfs_delayed_ref_root *delayed_refs = NULL;
 803        struct btrfs_delayed_ref_head *head;
 804        int info_level = 0;
 805        int ret;
 806        struct list_head prefs_delayed;
 807        struct list_head prefs;
 808        struct __prelim_ref *ref;
 809
 810        INIT_LIST_HEAD(&prefs);
 811        INIT_LIST_HEAD(&prefs_delayed);
 812
 813        key.objectid = bytenr;
 814        key.offset = (u64)-1;
 815        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 816                key.type = BTRFS_METADATA_ITEM_KEY;
 817        else
 818                key.type = BTRFS_EXTENT_ITEM_KEY;
 819
 820        path = btrfs_alloc_path();
 821        if (!path)
 822                return -ENOMEM;
 823        if (!trans)
 824                path->search_commit_root = 1;
 825
 826        /*
 827         * grab both a lock on the path and a lock on the delayed ref head.
 828         * We need both to get a consistent picture of how the refs look
 829         * at a specified point in time
 830         */
 831again:
 832        head = NULL;
 833
 834        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 835        if (ret < 0)
 836                goto out;
 837        BUG_ON(ret == 0);
 838
 839        if (trans) {
 840                /*
 841                 * look if there are updates for this ref queued and lock the
 842                 * head
 843                 */
 844                delayed_refs = &trans->transaction->delayed_refs;
 845                spin_lock(&delayed_refs->lock);
 846                head = btrfs_find_delayed_ref_head(trans, bytenr);
 847                if (head) {
 848                        if (!mutex_trylock(&head->mutex)) {
 849                                atomic_inc(&head->node.refs);
 850                                spin_unlock(&delayed_refs->lock);
 851
 852                                btrfs_release_path(path);
 853
 854                                /*
 855                                 * Mutex was contended, block until it's
 856                                 * released and try again
 857                                 */
 858                                mutex_lock(&head->mutex);
 859                                mutex_unlock(&head->mutex);
 860                                btrfs_put_delayed_ref(&head->node);
 861                                goto again;
 862                        }
 863                        ret = __add_delayed_refs(head, time_seq,
 864                                                 &prefs_delayed);
 865                        mutex_unlock(&head->mutex);
 866                        if (ret) {
 867                                spin_unlock(&delayed_refs->lock);
 868                                goto out;
 869                        }
 870                }
 871                spin_unlock(&delayed_refs->lock);
 872        }
 873
 874        if (path->slots[0]) {
 875                struct extent_buffer *leaf;
 876                int slot;
 877
 878                path->slots[0]--;
 879                leaf = path->nodes[0];
 880                slot = path->slots[0];
 881                btrfs_item_key_to_cpu(leaf, &key, slot);
 882                if (key.objectid == bytenr &&
 883                    (key.type == BTRFS_EXTENT_ITEM_KEY ||
 884                     key.type == BTRFS_METADATA_ITEM_KEY)) {
 885                        ret = __add_inline_refs(fs_info, path, bytenr,
 886                                                &info_level, &prefs);
 887                        if (ret)
 888                                goto out;
 889                        ret = __add_keyed_refs(fs_info, path, bytenr,
 890                                               info_level, &prefs);
 891                        if (ret)
 892                                goto out;
 893                }
 894        }
 895        btrfs_release_path(path);
 896
 897        list_splice_init(&prefs_delayed, &prefs);
 898
 899        ret = __add_missing_keys(fs_info, &prefs);
 900        if (ret)
 901                goto out;
 902
 903        __merge_refs(&prefs, 1);
 904
 905        ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
 906                                      extent_item_pos);
 907        if (ret)
 908                goto out;
 909
 910        __merge_refs(&prefs, 2);
 911
 912        while (!list_empty(&prefs)) {
 913                ref = list_first_entry(&prefs, struct __prelim_ref, list);
 914                list_del(&ref->list);
 915                WARN_ON(ref->count < 0);
 916                if (ref->count && ref->root_id && ref->parent == 0) {
 917                        /* no parent == root of tree */
 918                        ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
 919                        if (ret < 0)
 920                                goto out;
 921                }
 922                if (ref->count && ref->parent) {
 923                        struct extent_inode_elem *eie = NULL;
 924                        if (extent_item_pos && !ref->inode_list) {
 925                                u32 bsz;
 926                                struct extent_buffer *eb;
 927                                bsz = btrfs_level_size(fs_info->extent_root,
 928                                                        info_level);
 929                                eb = read_tree_block(fs_info->extent_root,
 930                                                           ref->parent, bsz, 0);
 931                                if (!eb || !extent_buffer_uptodate(eb)) {
 932                                        free_extent_buffer(eb);
 933                                        ret = -EIO;
 934                                        goto out;
 935                                }
 936                                ret = find_extent_in_eb(eb, bytenr,
 937                                                        *extent_item_pos, &eie);
 938                                ref->inode_list = eie;
 939                                free_extent_buffer(eb);
 940                        }
 941                        ret = ulist_add_merge(refs, ref->parent,
 942                                              (uintptr_t)ref->inode_list,
 943                                              (u64 *)&eie, GFP_NOFS);
 944                        if (ret < 0)
 945                                goto out;
 946                        if (!ret && extent_item_pos) {
 947                                /*
 948                                 * we've recorded that parent, so we must extend
 949                                 * its inode list here
 950                                 */
 951                                BUG_ON(!eie);
 952                                while (eie->next)
 953                                        eie = eie->next;
 954                                eie->next = ref->inode_list;
 955                        }
 956                }
 957                kfree(ref);
 958        }
 959
 960out:
 961        btrfs_free_path(path);
 962        while (!list_empty(&prefs)) {
 963                ref = list_first_entry(&prefs, struct __prelim_ref, list);
 964                list_del(&ref->list);
 965                kfree(ref);
 966        }
 967        while (!list_empty(&prefs_delayed)) {
 968                ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
 969                                       list);
 970                list_del(&ref->list);
 971                kfree(ref);
 972        }
 973
 974        return ret;
 975}
 976
 977static void free_leaf_list(struct ulist *blocks)
 978{
 979        struct ulist_node *node = NULL;
 980        struct extent_inode_elem *eie;
 981        struct extent_inode_elem *eie_next;
 982        struct ulist_iterator uiter;
 983
 984        ULIST_ITER_INIT(&uiter);
 985        while ((node = ulist_next(blocks, &uiter))) {
 986                if (!node->aux)
 987                        continue;
 988                eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
 989                for (; eie; eie = eie_next) {
 990                        eie_next = eie->next;
 991                        kfree(eie);
 992                }
 993                node->aux = 0;
 994        }
 995
 996        ulist_free(blocks);
 997}
 998
 999/*
1000 * Finds all leafs with a reference to the specified combination of bytenr and
1001 * offset. key_list_head will point to a list of corresponding keys (caller must
1002 * free each list element). The leafs will be stored in the leafs ulist, which
1003 * must be freed with ulist_free.
1004 *
1005 * returns 0 on success, <0 on error
1006 */
1007static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1008                                struct btrfs_fs_info *fs_info, u64 bytenr,
1009                                u64 time_seq, struct ulist **leafs,
1010                                const u64 *extent_item_pos)
1011{
1012        struct ulist *tmp;
1013        int ret;
1014
1015        tmp = ulist_alloc(GFP_NOFS);
1016        if (!tmp)
1017                return -ENOMEM;
1018        *leafs = ulist_alloc(GFP_NOFS);
1019        if (!*leafs) {
1020                ulist_free(tmp);
1021                return -ENOMEM;
1022        }
1023
1024        ret = find_parent_nodes(trans, fs_info, bytenr,
1025                                time_seq, *leafs, tmp, extent_item_pos);
1026        ulist_free(tmp);
1027
1028        if (ret < 0 && ret != -ENOENT) {
1029                free_leaf_list(*leafs);
1030                return ret;
1031        }
1032
1033        return 0;
1034}
1035
1036/*
1037 * walk all backrefs for a given extent to find all roots that reference this
1038 * extent. Walking a backref means finding all extents that reference this
1039 * extent and in turn walk the backrefs of those, too. Naturally this is a
1040 * recursive process, but here it is implemented in an iterative fashion: We
1041 * find all referencing extents for the extent in question and put them on a
1042 * list. In turn, we find all referencing extents for those, further appending
1043 * to the list. The way we iterate the list allows adding more elements after
1044 * the current while iterating. The process stops when we reach the end of the
1045 * list. Found roots are added to the roots list.
1046 *
1047 * returns 0 on success, < 0 on error.
1048 */
1049int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1050                                struct btrfs_fs_info *fs_info, u64 bytenr,
1051                                u64 time_seq, struct ulist **roots)
1052{
1053        struct ulist *tmp;
1054        struct ulist_node *node = NULL;
1055        struct ulist_iterator uiter;
1056        int ret;
1057
1058        tmp = ulist_alloc(GFP_NOFS);
1059        if (!tmp)
1060                return -ENOMEM;
1061        *roots = ulist_alloc(GFP_NOFS);
1062        if (!*roots) {
1063                ulist_free(tmp);
1064                return -ENOMEM;
1065        }
1066
1067        ULIST_ITER_INIT(&uiter);
1068        while (1) {
1069                ret = find_parent_nodes(trans, fs_info, bytenr,
1070                                        time_seq, tmp, *roots, NULL);
1071                if (ret < 0 && ret != -ENOENT) {
1072                        ulist_free(tmp);
1073                        ulist_free(*roots);
1074                        return ret;
1075                }
1076                node = ulist_next(tmp, &uiter);
1077                if (!node)
1078                        break;
1079                bytenr = node->val;
1080        }
1081
1082        ulist_free(tmp);
1083        return 0;
1084}
1085
1086
1087static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1088                        struct btrfs_root *fs_root, struct btrfs_path *path,
1089                        struct btrfs_key *found_key)
1090{
1091        int ret;
1092        struct btrfs_key key;
1093        struct extent_buffer *eb;
1094
1095        key.type = key_type;
1096        key.objectid = inum;
1097        key.offset = ioff;
1098
1099        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1100        if (ret < 0)
1101                return ret;
1102
1103        eb = path->nodes[0];
1104        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1105                ret = btrfs_next_leaf(fs_root, path);
1106                if (ret)
1107                        return ret;
1108                eb = path->nodes[0];
1109        }
1110
1111        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1112        if (found_key->type != key.type || found_key->objectid != key.objectid)
1113                return 1;
1114
1115        return 0;
1116}
1117
1118/*
1119 * this makes the path point to (inum INODE_ITEM ioff)
1120 */
1121int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1122                        struct btrfs_path *path)
1123{
1124        struct btrfs_key key;
1125        return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1126                                &key);
1127}
1128
1129static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1130                                struct btrfs_path *path,
1131                                struct btrfs_key *found_key)
1132{
1133        return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1134                                found_key);
1135}
1136
1137int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1138                          u64 start_off, struct btrfs_path *path,
1139                          struct btrfs_inode_extref **ret_extref,
1140                          u64 *found_off)
1141{
1142        int ret, slot;
1143        struct btrfs_key key;
1144        struct btrfs_key found_key;
1145        struct btrfs_inode_extref *extref;
1146        struct extent_buffer *leaf;
1147        unsigned long ptr;
1148
1149        key.objectid = inode_objectid;
1150        btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1151        key.offset = start_off;
1152
1153        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1154        if (ret < 0)
1155                return ret;
1156
1157        while (1) {
1158                leaf = path->nodes[0];
1159                slot = path->slots[0];
1160                if (slot >= btrfs_header_nritems(leaf)) {
1161                        /*
1162                         * If the item at offset is not found,
1163                         * btrfs_search_slot will point us to the slot
1164                         * where it should be inserted. In our case
1165                         * that will be the slot directly before the
1166                         * next INODE_REF_KEY_V2 item. In the case
1167                         * that we're pointing to the last slot in a
1168                         * leaf, we must move one leaf over.
1169                         */
1170                        ret = btrfs_next_leaf(root, path);
1171                        if (ret) {
1172                                if (ret >= 1)
1173                                        ret = -ENOENT;
1174                                break;
1175                        }
1176                        continue;
1177                }
1178
1179                btrfs_item_key_to_cpu(leaf, &found_key, slot);
1180
1181                /*
1182                 * Check that we're still looking at an extended ref key for
1183                 * this particular objectid. If we have different
1184                 * objectid or type then there are no more to be found
1185                 * in the tree and we can exit.
1186                 */
1187                ret = -ENOENT;
1188                if (found_key.objectid != inode_objectid)
1189                        break;
1190                if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1191                        break;
1192
1193                ret = 0;
1194                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1195                extref = (struct btrfs_inode_extref *)ptr;
1196                *ret_extref = extref;
1197                if (found_off)
1198                        *found_off = found_key.offset;
1199                break;
1200        }
1201
1202        return ret;
1203}
1204
1205/*
1206 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1207 * Elements of the path are separated by '/' and the path is guaranteed to be
1208 * 0-terminated. the path is only given within the current file system.
1209 * Therefore, it never starts with a '/'. the caller is responsible to provide
1210 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1211 * the start point of the resulting string is returned. this pointer is within
1212 * dest, normally.
1213 * in case the path buffer would overflow, the pointer is decremented further
1214 * as if output was written to the buffer, though no more output is actually
1215 * generated. that way, the caller can determine how much space would be
1216 * required for the path to fit into the buffer. in that case, the returned
1217 * value will be smaller than dest. callers must check this!
1218 */
1219char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1220                        u32 name_len, unsigned long name_off,
1221                        struct extent_buffer *eb_in, u64 parent,
1222                        char *dest, u32 size)
1223{
1224        int slot;
1225        u64 next_inum;
1226        int ret;
1227        s64 bytes_left = ((s64)size) - 1;
1228        struct extent_buffer *eb = eb_in;
1229        struct btrfs_key found_key;
1230        int leave_spinning = path->leave_spinning;
1231        struct btrfs_inode_ref *iref;
1232
1233        if (bytes_left >= 0)
1234                dest[bytes_left] = '\0';
1235
1236        path->leave_spinning = 1;
1237        while (1) {
1238                bytes_left -= name_len;
1239                if (bytes_left >= 0)
1240                        read_extent_buffer(eb, dest + bytes_left,
1241                                           name_off, name_len);
1242                if (eb != eb_in) {
1243                        btrfs_tree_read_unlock_blocking(eb);
1244                        free_extent_buffer(eb);
1245                }
1246                ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1247                if (ret > 0)
1248                        ret = -ENOENT;
1249                if (ret)
1250                        break;
1251
1252                next_inum = found_key.offset;
1253
1254                /* regular exit ahead */
1255                if (parent == next_inum)
1256                        break;
1257
1258                slot = path->slots[0];
1259                eb = path->nodes[0];
1260                /* make sure we can use eb after releasing the path */
1261                if (eb != eb_in) {
1262                        atomic_inc(&eb->refs);
1263                        btrfs_tree_read_lock(eb);
1264                        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1265                }
1266                btrfs_release_path(path);
1267                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1268
1269                name_len = btrfs_inode_ref_name_len(eb, iref);
1270                name_off = (unsigned long)(iref + 1);
1271
1272                parent = next_inum;
1273                --bytes_left;
1274                if (bytes_left >= 0)
1275                        dest[bytes_left] = '/';
1276        }
1277
1278        btrfs_release_path(path);
1279        path->leave_spinning = leave_spinning;
1280
1281        if (ret)
1282                return ERR_PTR(ret);
1283
1284        return dest + bytes_left;
1285}
1286
1287/*
1288 * this makes the path point to (logical EXTENT_ITEM *)
1289 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1290 * tree blocks and <0 on error.
1291 */
1292int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1293                        struct btrfs_path *path, struct btrfs_key *found_key,
1294                        u64 *flags_ret)
1295{
1296        int ret;
1297        u64 flags;
1298        u64 size = 0;
1299        u32 item_size;
1300        struct extent_buffer *eb;
1301        struct btrfs_extent_item *ei;
1302        struct btrfs_key key;
1303
1304        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1305                key.type = BTRFS_METADATA_ITEM_KEY;
1306        else
1307                key.type = BTRFS_EXTENT_ITEM_KEY;
1308        key.objectid = logical;
1309        key.offset = (u64)-1;
1310
1311        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1312        if (ret < 0)
1313                return ret;
1314        ret = btrfs_previous_item(fs_info->extent_root, path,
1315                                        0, BTRFS_EXTENT_ITEM_KEY);
1316        if (ret < 0)
1317                return ret;
1318
1319        btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1320        if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1321                size = fs_info->extent_root->leafsize;
1322        else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1323                size = found_key->offset;
1324
1325        if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
1326             found_key->type != BTRFS_METADATA_ITEM_KEY) ||
1327            found_key->objectid > logical ||
1328            found_key->objectid + size <= logical) {
1329                pr_debug("logical %llu is not within any extent\n",
1330                         (unsigned long long)logical);
1331                return -ENOENT;
1332        }
1333
1334        eb = path->nodes[0];
1335        item_size = btrfs_item_size_nr(eb, path->slots[0]);
1336        BUG_ON(item_size < sizeof(*ei));
1337
1338        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1339        flags = btrfs_extent_flags(eb, ei);
1340
1341        pr_debug("logical %llu is at position %llu within the extent (%llu "
1342                 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1343                 (unsigned long long)logical,
1344                 (unsigned long long)(logical - found_key->objectid),
1345                 (unsigned long long)found_key->objectid,
1346                 (unsigned long long)found_key->offset,
1347                 (unsigned long long)flags, item_size);
1348
1349        WARN_ON(!flags_ret);
1350        if (flags_ret) {
1351                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1352                        *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1353                else if (flags & BTRFS_EXTENT_FLAG_DATA)
1354                        *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1355                else
1356                        BUG_ON(1);
1357                return 0;
1358        }
1359
1360        return -EIO;
1361}
1362
1363/*
1364 * helper function to iterate extent inline refs. ptr must point to a 0 value
1365 * for the first call and may be modified. it is used to track state.
1366 * if more refs exist, 0 is returned and the next call to
1367 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1368 * next ref. after the last ref was processed, 1 is returned.
1369 * returns <0 on error
1370 */
1371static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1372                                struct btrfs_extent_item *ei, u32 item_size,
1373                                struct btrfs_extent_inline_ref **out_eiref,
1374                                int *out_type)
1375{
1376        unsigned long end;
1377        u64 flags;
1378        struct btrfs_tree_block_info *info;
1379
1380        if (!*ptr) {
1381                /* first call */
1382                flags = btrfs_extent_flags(eb, ei);
1383                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1384                        info = (struct btrfs_tree_block_info *)(ei + 1);
1385                        *out_eiref =
1386                                (struct btrfs_extent_inline_ref *)(info + 1);
1387                } else {
1388                        *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1389                }
1390                *ptr = (unsigned long)*out_eiref;
1391                if ((void *)*ptr >= (void *)ei + item_size)
1392                        return -ENOENT;
1393        }
1394
1395        end = (unsigned long)ei + item_size;
1396        *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1397        *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1398
1399        *ptr += btrfs_extent_inline_ref_size(*out_type);
1400        WARN_ON(*ptr > end);
1401        if (*ptr == end)
1402                return 1; /* last */
1403
1404        return 0;
1405}
1406
1407/*
1408 * reads the tree block backref for an extent. tree level and root are returned
1409 * through out_level and out_root. ptr must point to a 0 value for the first
1410 * call and may be modified (see __get_extent_inline_ref comment).
1411 * returns 0 if data was provided, 1 if there was no more data to provide or
1412 * <0 on error.
1413 */
1414int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1415                                struct btrfs_extent_item *ei, u32 item_size,
1416                                u64 *out_root, u8 *out_level)
1417{
1418        int ret;
1419        int type;
1420        struct btrfs_tree_block_info *info;
1421        struct btrfs_extent_inline_ref *eiref;
1422
1423        if (*ptr == (unsigned long)-1)
1424                return 1;
1425
1426        while (1) {
1427                ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1428                                                &eiref, &type);
1429                if (ret < 0)
1430                        return ret;
1431
1432                if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1433                    type == BTRFS_SHARED_BLOCK_REF_KEY)
1434                        break;
1435
1436                if (ret == 1)
1437                        return 1;
1438        }
1439
1440        /* we can treat both ref types equally here */
1441        info = (struct btrfs_tree_block_info *)(ei + 1);
1442        *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1443        *out_level = btrfs_tree_block_level(eb, info);
1444
1445        if (ret == 1)
1446                *ptr = (unsigned long)-1;
1447
1448        return 0;
1449}
1450
1451static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1452                                u64 root, u64 extent_item_objectid,
1453                                iterate_extent_inodes_t *iterate, void *ctx)
1454{
1455        struct extent_inode_elem *eie;
1456        int ret = 0;
1457
1458        for (eie = inode_list; eie; eie = eie->next) {
1459                pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1460                         "root %llu\n", extent_item_objectid,
1461                         eie->inum, eie->offset, root);
1462                ret = iterate(eie->inum, eie->offset, root, ctx);
1463                if (ret) {
1464                        pr_debug("stopping iteration for %llu due to ret=%d\n",
1465                                 extent_item_objectid, ret);
1466                        break;
1467                }
1468        }
1469
1470        return ret;
1471}
1472
1473/*
1474 * calls iterate() for every inode that references the extent identified by
1475 * the given parameters.
1476 * when the iterator function returns a non-zero value, iteration stops.
1477 */
1478int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1479                                u64 extent_item_objectid, u64 extent_item_pos,
1480                                int search_commit_root,
1481                                iterate_extent_inodes_t *iterate, void *ctx)
1482{
1483        int ret;
1484        struct btrfs_trans_handle *trans = NULL;
1485        struct ulist *refs = NULL;
1486        struct ulist *roots = NULL;
1487        struct ulist_node *ref_node = NULL;
1488        struct ulist_node *root_node = NULL;
1489        struct seq_list tree_mod_seq_elem = {};
1490        struct ulist_iterator ref_uiter;
1491        struct ulist_iterator root_uiter;
1492
1493        pr_debug("resolving all inodes for extent %llu\n",
1494                        extent_item_objectid);
1495
1496        if (!search_commit_root) {
1497                trans = btrfs_join_transaction(fs_info->extent_root);
1498                if (IS_ERR(trans))
1499                        return PTR_ERR(trans);
1500                btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1501        }
1502
1503        ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1504                                   tree_mod_seq_elem.seq, &refs,
1505                                   &extent_item_pos);
1506        if (ret)
1507                goto out;
1508
1509        ULIST_ITER_INIT(&ref_uiter);
1510        while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1511                ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1512                                           tree_mod_seq_elem.seq, &roots);
1513                if (ret)
1514                        break;
1515                ULIST_ITER_INIT(&root_uiter);
1516                while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1517                        pr_debug("root %llu references leaf %llu, data list "
1518                                 "%#llx\n", root_node->val, ref_node->val,
1519                                 (long long)ref_node->aux);
1520                        ret = iterate_leaf_refs((struct extent_inode_elem *)
1521                                                (uintptr_t)ref_node->aux,
1522                                                root_node->val,
1523                                                extent_item_objectid,
1524                                                iterate, ctx);
1525                }
1526                ulist_free(roots);
1527        }
1528
1529        free_leaf_list(refs);
1530out:
1531        if (!search_commit_root) {
1532                btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1533                btrfs_end_transaction(trans, fs_info->extent_root);
1534        }
1535
1536        return ret;
1537}
1538
1539int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1540                                struct btrfs_path *path,
1541                                iterate_extent_inodes_t *iterate, void *ctx)
1542{
1543        int ret;
1544        u64 extent_item_pos;
1545        u64 flags = 0;
1546        struct btrfs_key found_key;
1547        int search_commit_root = path->search_commit_root;
1548
1549        ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1550        btrfs_release_path(path);
1551        if (ret < 0)
1552                return ret;
1553        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1554                return -EINVAL;
1555
1556        extent_item_pos = logical - found_key.objectid;
1557        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1558                                        extent_item_pos, search_commit_root,
1559                                        iterate, ctx);
1560
1561        return ret;
1562}
1563
1564typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1565                              struct extent_buffer *eb, void *ctx);
1566
1567static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1568                              struct btrfs_path *path,
1569                              iterate_irefs_t *iterate, void *ctx)
1570{
1571        int ret = 0;
1572        int slot;
1573        u32 cur;
1574        u32 len;
1575        u32 name_len;
1576        u64 parent = 0;
1577        int found = 0;
1578        struct extent_buffer *eb;
1579        struct btrfs_item *item;
1580        struct btrfs_inode_ref *iref;
1581        struct btrfs_key found_key;
1582
1583        while (!ret) {
1584                path->leave_spinning = 1;
1585                ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1586                                     &found_key);
1587                if (ret < 0)
1588                        break;
1589                if (ret) {
1590                        ret = found ? 0 : -ENOENT;
1591                        break;
1592                }
1593                ++found;
1594
1595                parent = found_key.offset;
1596                slot = path->slots[0];
1597                eb = path->nodes[0];
1598                /* make sure we can use eb after releasing the path */
1599                atomic_inc(&eb->refs);
1600                btrfs_tree_read_lock(eb);
1601                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1602                btrfs_release_path(path);
1603
1604                item = btrfs_item_nr(eb, slot);
1605                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1606
1607                for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1608                        name_len = btrfs_inode_ref_name_len(eb, iref);
1609                        /* path must be released before calling iterate()! */
1610                        pr_debug("following ref at offset %u for inode %llu in "
1611                                 "tree %llu\n", cur,
1612                                 (unsigned long long)found_key.objectid,
1613                                 (unsigned long long)fs_root->objectid);
1614                        ret = iterate(parent, name_len,
1615                                      (unsigned long)(iref + 1), eb, ctx);
1616                        if (ret)
1617                                break;
1618                        len = sizeof(*iref) + name_len;
1619                        iref = (struct btrfs_inode_ref *)((char *)iref + len);
1620                }
1621                btrfs_tree_read_unlock_blocking(eb);
1622                free_extent_buffer(eb);
1623        }
1624
1625        btrfs_release_path(path);
1626
1627        return ret;
1628}
1629
1630static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1631                                 struct btrfs_path *path,
1632                                 iterate_irefs_t *iterate, void *ctx)
1633{
1634        int ret;
1635        int slot;
1636        u64 offset = 0;
1637        u64 parent;
1638        int found = 0;
1639        struct extent_buffer *eb;
1640        struct btrfs_inode_extref *extref;
1641        struct extent_buffer *leaf;
1642        u32 item_size;
1643        u32 cur_offset;
1644        unsigned long ptr;
1645
1646        while (1) {
1647                ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1648                                            &offset);
1649                if (ret < 0)
1650                        break;
1651                if (ret) {
1652                        ret = found ? 0 : -ENOENT;
1653                        break;
1654                }
1655                ++found;
1656
1657                slot = path->slots[0];
1658                eb = path->nodes[0];
1659                /* make sure we can use eb after releasing the path */
1660                atomic_inc(&eb->refs);
1661
1662                btrfs_tree_read_lock(eb);
1663                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1664                btrfs_release_path(path);
1665
1666                leaf = path->nodes[0];
1667                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1668                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1669                cur_offset = 0;
1670
1671                while (cur_offset < item_size) {
1672                        u32 name_len;
1673
1674                        extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1675                        parent = btrfs_inode_extref_parent(eb, extref);
1676                        name_len = btrfs_inode_extref_name_len(eb, extref);
1677                        ret = iterate(parent, name_len,
1678                                      (unsigned long)&extref->name, eb, ctx);
1679                        if (ret)
1680                                break;
1681
1682                        cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1683                        cur_offset += sizeof(*extref);
1684                }
1685                btrfs_tree_read_unlock_blocking(eb);
1686                free_extent_buffer(eb);
1687
1688                offset++;
1689        }
1690
1691        btrfs_release_path(path);
1692
1693        return ret;
1694}
1695
1696static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1697                         struct btrfs_path *path, iterate_irefs_t *iterate,
1698                         void *ctx)
1699{
1700        int ret;
1701        int found_refs = 0;
1702
1703        ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1704        if (!ret)
1705                ++found_refs;
1706        else if (ret != -ENOENT)
1707                return ret;
1708
1709        ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1710        if (ret == -ENOENT && found_refs)
1711                return 0;
1712
1713        return ret;
1714}
1715
1716/*
1717 * returns 0 if the path could be dumped (probably truncated)
1718 * returns <0 in case of an error
1719 */
1720static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1721                         struct extent_buffer *eb, void *ctx)
1722{
1723        struct inode_fs_paths *ipath = ctx;
1724        char *fspath;
1725        char *fspath_min;
1726        int i = ipath->fspath->elem_cnt;
1727        const int s_ptr = sizeof(char *);
1728        u32 bytes_left;
1729
1730        bytes_left = ipath->fspath->bytes_left > s_ptr ?
1731                                        ipath->fspath->bytes_left - s_ptr : 0;
1732
1733        fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1734        fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1735                                   name_off, eb, inum, fspath_min, bytes_left);
1736        if (IS_ERR(fspath))
1737                return PTR_ERR(fspath);
1738
1739        if (fspath > fspath_min) {
1740                ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1741                ++ipath->fspath->elem_cnt;
1742                ipath->fspath->bytes_left = fspath - fspath_min;
1743        } else {
1744                ++ipath->fspath->elem_missed;
1745                ipath->fspath->bytes_missing += fspath_min - fspath;
1746                ipath->fspath->bytes_left = 0;
1747        }
1748
1749        return 0;
1750}
1751
1752/*
1753 * this dumps all file system paths to the inode into the ipath struct, provided
1754 * is has been created large enough. each path is zero-terminated and accessed
1755 * from ipath->fspath->val[i].
1756 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1757 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1758 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1759 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1760 * have been needed to return all paths.
1761 */
1762int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1763{
1764        return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1765                             inode_to_path, ipath);
1766}
1767
1768struct btrfs_data_container *init_data_container(u32 total_bytes)
1769{
1770        struct btrfs_data_container *data;
1771        size_t alloc_bytes;
1772
1773        alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1774        data = vmalloc(alloc_bytes);
1775        if (!data)
1776                return ERR_PTR(-ENOMEM);
1777
1778        if (total_bytes >= sizeof(*data)) {
1779                data->bytes_left = total_bytes - sizeof(*data);
1780                data->bytes_missing = 0;
1781        } else {
1782                data->bytes_missing = sizeof(*data) - total_bytes;
1783                data->bytes_left = 0;
1784        }
1785
1786        data->elem_cnt = 0;
1787        data->elem_missed = 0;
1788
1789        return data;
1790}
1791
1792/*
1793 * allocates space to return multiple file system paths for an inode.
1794 * total_bytes to allocate are passed, note that space usable for actual path
1795 * information will be total_bytes - sizeof(struct inode_fs_paths).
1796 * the returned pointer must be freed with free_ipath() in the end.
1797 */
1798struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1799                                        struct btrfs_path *path)
1800{
1801        struct inode_fs_paths *ifp;
1802        struct btrfs_data_container *fspath;
1803
1804        fspath = init_data_container(total_bytes);
1805        if (IS_ERR(fspath))
1806                return (void *)fspath;
1807
1808        ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1809        if (!ifp) {
1810                kfree(fspath);
1811                return ERR_PTR(-ENOMEM);
1812        }
1813
1814        ifp->btrfs_path = path;
1815        ifp->fspath = fspath;
1816        ifp->fs_root = fs_root;
1817
1818        return ifp;
1819}
1820
1821void free_ipath(struct inode_fs_paths *ipath)
1822{
1823        if (!ipath)
1824                return;
1825        vfree(ipath->fspath);
1826        kfree(ipath);
1827}
1828