linux/fs/btrfs/compression.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
  35#include "compat.h"
  36#include "ctree.h"
  37#include "disk-io.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "ordered-data.h"
  42#include "compression.h"
  43#include "extent_io.h"
  44#include "extent_map.h"
  45
  46struct compressed_bio {
  47        /* number of bios pending for this compressed extent */
  48        atomic_t pending_bios;
  49
  50        /* the pages with the compressed data on them */
  51        struct page **compressed_pages;
  52
  53        /* inode that owns this data */
  54        struct inode *inode;
  55
  56        /* starting offset in the inode for our pages */
  57        u64 start;
  58
  59        /* number of bytes in the inode we're working on */
  60        unsigned long len;
  61
  62        /* number of bytes on disk */
  63        unsigned long compressed_len;
  64
  65        /* the compression algorithm for this bio */
  66        int compress_type;
  67
  68        /* number of compressed pages in the array */
  69        unsigned long nr_pages;
  70
  71        /* IO errors */
  72        int errors;
  73        int mirror_num;
  74
  75        /* for reads, this is the bio we are copying the data into */
  76        struct bio *orig_bio;
  77
  78        /*
  79         * the start of a variable length array of checksums only
  80         * used by reads
  81         */
  82        u32 sums;
  83};
  84
  85static int btrfs_decompress_biovec(int type, struct page **pages_in,
  86                                   u64 disk_start, struct bio_vec *bvec,
  87                                   int vcnt, size_t srclen);
  88
  89static inline int compressed_bio_size(struct btrfs_root *root,
  90                                      unsigned long disk_size)
  91{
  92        u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  93
  94        return sizeof(struct compressed_bio) +
  95                ((disk_size + root->sectorsize - 1) / root->sectorsize) *
  96                csum_size;
  97}
  98
  99static struct bio *compressed_bio_alloc(struct block_device *bdev,
 100                                        u64 first_byte, gfp_t gfp_flags)
 101{
 102        int nr_vecs;
 103
 104        nr_vecs = bio_get_nr_vecs(bdev);
 105        return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
 106}
 107
 108static int check_compressed_csum(struct inode *inode,
 109                                 struct compressed_bio *cb,
 110                                 u64 disk_start)
 111{
 112        int ret;
 113        struct page *page;
 114        unsigned long i;
 115        char *kaddr;
 116        u32 csum;
 117        u32 *cb_sum = &cb->sums;
 118
 119        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 120                return 0;
 121
 122        for (i = 0; i < cb->nr_pages; i++) {
 123                page = cb->compressed_pages[i];
 124                csum = ~(u32)0;
 125
 126                kaddr = kmap_atomic(page);
 127                csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
 128                btrfs_csum_final(csum, (char *)&csum);
 129                kunmap_atomic(kaddr);
 130
 131                if (csum != *cb_sum) {
 132                        printk(KERN_INFO "btrfs csum failed ino %llu "
 133                               "extent %llu csum %u "
 134                               "wanted %u mirror %d\n",
 135                               (unsigned long long)btrfs_ino(inode),
 136                               (unsigned long long)disk_start,
 137                               csum, *cb_sum, cb->mirror_num);
 138                        ret = -EIO;
 139                        goto fail;
 140                }
 141                cb_sum++;
 142
 143        }
 144        ret = 0;
 145fail:
 146        return ret;
 147}
 148
 149/* when we finish reading compressed pages from the disk, we
 150 * decompress them and then run the bio end_io routines on the
 151 * decompressed pages (in the inode address space).
 152 *
 153 * This allows the checksumming and other IO error handling routines
 154 * to work normally
 155 *
 156 * The compressed pages are freed here, and it must be run
 157 * in process context
 158 */
 159static void end_compressed_bio_read(struct bio *bio, int err)
 160{
 161        struct compressed_bio *cb = bio->bi_private;
 162        struct inode *inode;
 163        struct page *page;
 164        unsigned long index;
 165        int ret;
 166
 167        if (err)
 168                cb->errors = 1;
 169
 170        /* if there are more bios still pending for this compressed
 171         * extent, just exit
 172         */
 173        if (!atomic_dec_and_test(&cb->pending_bios))
 174                goto out;
 175
 176        inode = cb->inode;
 177        ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
 178        if (ret)
 179                goto csum_failed;
 180
 181        /* ok, we're the last bio for this extent, lets start
 182         * the decompression.
 183         */
 184        ret = btrfs_decompress_biovec(cb->compress_type,
 185                                      cb->compressed_pages,
 186                                      cb->start,
 187                                      cb->orig_bio->bi_io_vec,
 188                                      cb->orig_bio->bi_vcnt,
 189                                      cb->compressed_len);
 190csum_failed:
 191        if (ret)
 192                cb->errors = 1;
 193
 194        /* release the compressed pages */
 195        index = 0;
 196        for (index = 0; index < cb->nr_pages; index++) {
 197                page = cb->compressed_pages[index];
 198                page->mapping = NULL;
 199                page_cache_release(page);
 200        }
 201
 202        /* do io completion on the original bio */
 203        if (cb->errors) {
 204                bio_io_error(cb->orig_bio);
 205        } else {
 206                int bio_index = 0;
 207                struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
 208
 209                /*
 210                 * we have verified the checksum already, set page
 211                 * checked so the end_io handlers know about it
 212                 */
 213                while (bio_index < cb->orig_bio->bi_vcnt) {
 214                        SetPageChecked(bvec->bv_page);
 215                        bvec++;
 216                        bio_index++;
 217                }
 218                bio_endio(cb->orig_bio, 0);
 219        }
 220
 221        /* finally free the cb struct */
 222        kfree(cb->compressed_pages);
 223        kfree(cb);
 224out:
 225        bio_put(bio);
 226}
 227
 228/*
 229 * Clear the writeback bits on all of the file
 230 * pages for a compressed write
 231 */
 232static noinline void end_compressed_writeback(struct inode *inode, u64 start,
 233                                              unsigned long ram_size)
 234{
 235        unsigned long index = start >> PAGE_CACHE_SHIFT;
 236        unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
 237        struct page *pages[16];
 238        unsigned long nr_pages = end_index - index + 1;
 239        int i;
 240        int ret;
 241
 242        while (nr_pages > 0) {
 243                ret = find_get_pages_contig(inode->i_mapping, index,
 244                                     min_t(unsigned long,
 245                                     nr_pages, ARRAY_SIZE(pages)), pages);
 246                if (ret == 0) {
 247                        nr_pages -= 1;
 248                        index += 1;
 249                        continue;
 250                }
 251                for (i = 0; i < ret; i++) {
 252                        end_page_writeback(pages[i]);
 253                        page_cache_release(pages[i]);
 254                }
 255                nr_pages -= ret;
 256                index += ret;
 257        }
 258        /* the inode may be gone now */
 259}
 260
 261/*
 262 * do the cleanup once all the compressed pages hit the disk.
 263 * This will clear writeback on the file pages and free the compressed
 264 * pages.
 265 *
 266 * This also calls the writeback end hooks for the file pages so that
 267 * metadata and checksums can be updated in the file.
 268 */
 269static void end_compressed_bio_write(struct bio *bio, int err)
 270{
 271        struct extent_io_tree *tree;
 272        struct compressed_bio *cb = bio->bi_private;
 273        struct inode *inode;
 274        struct page *page;
 275        unsigned long index;
 276
 277        if (err)
 278                cb->errors = 1;
 279
 280        /* if there are more bios still pending for this compressed
 281         * extent, just exit
 282         */
 283        if (!atomic_dec_and_test(&cb->pending_bios))
 284                goto out;
 285
 286        /* ok, we're the last bio for this extent, step one is to
 287         * call back into the FS and do all the end_io operations
 288         */
 289        inode = cb->inode;
 290        tree = &BTRFS_I(inode)->io_tree;
 291        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 292        tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 293                                         cb->start,
 294                                         cb->start + cb->len - 1,
 295                                         NULL, 1);
 296        cb->compressed_pages[0]->mapping = NULL;
 297
 298        end_compressed_writeback(inode, cb->start, cb->len);
 299        /* note, our inode could be gone now */
 300
 301        /*
 302         * release the compressed pages, these came from alloc_page and
 303         * are not attached to the inode at all
 304         */
 305        index = 0;
 306        for (index = 0; index < cb->nr_pages; index++) {
 307                page = cb->compressed_pages[index];
 308                page->mapping = NULL;
 309                page_cache_release(page);
 310        }
 311
 312        /* finally free the cb struct */
 313        kfree(cb->compressed_pages);
 314        kfree(cb);
 315out:
 316        bio_put(bio);
 317}
 318
 319/*
 320 * worker function to build and submit bios for previously compressed pages.
 321 * The corresponding pages in the inode should be marked for writeback
 322 * and the compressed pages should have a reference on them for dropping
 323 * when the IO is complete.
 324 *
 325 * This also checksums the file bytes and gets things ready for
 326 * the end io hooks.
 327 */
 328int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 329                                 unsigned long len, u64 disk_start,
 330                                 unsigned long compressed_len,
 331                                 struct page **compressed_pages,
 332                                 unsigned long nr_pages)
 333{
 334        struct bio *bio = NULL;
 335        struct btrfs_root *root = BTRFS_I(inode)->root;
 336        struct compressed_bio *cb;
 337        unsigned long bytes_left;
 338        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 339        int pg_index = 0;
 340        struct page *page;
 341        u64 first_byte = disk_start;
 342        struct block_device *bdev;
 343        int ret;
 344        int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 345
 346        WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 347        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 348        if (!cb)
 349                return -ENOMEM;
 350        atomic_set(&cb->pending_bios, 0);
 351        cb->errors = 0;
 352        cb->inode = inode;
 353        cb->start = start;
 354        cb->len = len;
 355        cb->mirror_num = 0;
 356        cb->compressed_pages = compressed_pages;
 357        cb->compressed_len = compressed_len;
 358        cb->orig_bio = NULL;
 359        cb->nr_pages = nr_pages;
 360
 361        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 362
 363        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 364        if(!bio) {
 365                kfree(cb);
 366                return -ENOMEM;
 367        }
 368        bio->bi_private = cb;
 369        bio->bi_end_io = end_compressed_bio_write;
 370        atomic_inc(&cb->pending_bios);
 371
 372        /* create and submit bios for the compressed pages */
 373        bytes_left = compressed_len;
 374        for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 375                page = compressed_pages[pg_index];
 376                page->mapping = inode->i_mapping;
 377                if (bio->bi_size)
 378                        ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
 379                                                           PAGE_CACHE_SIZE,
 380                                                           bio, 0);
 381                else
 382                        ret = 0;
 383
 384                page->mapping = NULL;
 385                if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 386                    PAGE_CACHE_SIZE) {
 387                        bio_get(bio);
 388
 389                        /*
 390                         * inc the count before we submit the bio so
 391                         * we know the end IO handler won't happen before
 392                         * we inc the count.  Otherwise, the cb might get
 393                         * freed before we're done setting it up
 394                         */
 395                        atomic_inc(&cb->pending_bios);
 396                        ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 397                        BUG_ON(ret); /* -ENOMEM */
 398
 399                        if (!skip_sum) {
 400                                ret = btrfs_csum_one_bio(root, inode, bio,
 401                                                         start, 1);
 402                                BUG_ON(ret); /* -ENOMEM */
 403                        }
 404
 405                        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 406                        BUG_ON(ret); /* -ENOMEM */
 407
 408                        bio_put(bio);
 409
 410                        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 411                        BUG_ON(!bio);
 412                        bio->bi_private = cb;
 413                        bio->bi_end_io = end_compressed_bio_write;
 414                        bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 415                }
 416                if (bytes_left < PAGE_CACHE_SIZE) {
 417                        printk("bytes left %lu compress len %lu nr %lu\n",
 418                               bytes_left, cb->compressed_len, cb->nr_pages);
 419                }
 420                bytes_left -= PAGE_CACHE_SIZE;
 421                first_byte += PAGE_CACHE_SIZE;
 422                cond_resched();
 423        }
 424        bio_get(bio);
 425
 426        ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 427        BUG_ON(ret); /* -ENOMEM */
 428
 429        if (!skip_sum) {
 430                ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 431                BUG_ON(ret); /* -ENOMEM */
 432        }
 433
 434        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 435        BUG_ON(ret); /* -ENOMEM */
 436
 437        bio_put(bio);
 438        return 0;
 439}
 440
 441static noinline int add_ra_bio_pages(struct inode *inode,
 442                                     u64 compressed_end,
 443                                     struct compressed_bio *cb)
 444{
 445        unsigned long end_index;
 446        unsigned long pg_index;
 447        u64 last_offset;
 448        u64 isize = i_size_read(inode);
 449        int ret;
 450        struct page *page;
 451        unsigned long nr_pages = 0;
 452        struct extent_map *em;
 453        struct address_space *mapping = inode->i_mapping;
 454        struct extent_map_tree *em_tree;
 455        struct extent_io_tree *tree;
 456        u64 end;
 457        int misses = 0;
 458
 459        page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 460        last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 461        em_tree = &BTRFS_I(inode)->extent_tree;
 462        tree = &BTRFS_I(inode)->io_tree;
 463
 464        if (isize == 0)
 465                return 0;
 466
 467        end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 468
 469        while (last_offset < compressed_end) {
 470                pg_index = last_offset >> PAGE_CACHE_SHIFT;
 471
 472                if (pg_index > end_index)
 473                        break;
 474
 475                rcu_read_lock();
 476                page = radix_tree_lookup(&mapping->page_tree, pg_index);
 477                rcu_read_unlock();
 478                if (page) {
 479                        misses++;
 480                        if (misses > 4)
 481                                break;
 482                        goto next;
 483                }
 484
 485                page = __page_cache_alloc(mapping_gfp_mask(mapping) &
 486                                                                ~__GFP_FS);
 487                if (!page)
 488                        break;
 489
 490                if (add_to_page_cache_lru(page, mapping, pg_index,
 491                                                                GFP_NOFS)) {
 492                        page_cache_release(page);
 493                        goto next;
 494                }
 495
 496                end = last_offset + PAGE_CACHE_SIZE - 1;
 497                /*
 498                 * at this point, we have a locked page in the page cache
 499                 * for these bytes in the file.  But, we have to make
 500                 * sure they map to this compressed extent on disk.
 501                 */
 502                set_page_extent_mapped(page);
 503                lock_extent(tree, last_offset, end);
 504                read_lock(&em_tree->lock);
 505                em = lookup_extent_mapping(em_tree, last_offset,
 506                                           PAGE_CACHE_SIZE);
 507                read_unlock(&em_tree->lock);
 508
 509                if (!em || last_offset < em->start ||
 510                    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 511                    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
 512                        free_extent_map(em);
 513                        unlock_extent(tree, last_offset, end);
 514                        unlock_page(page);
 515                        page_cache_release(page);
 516                        break;
 517                }
 518                free_extent_map(em);
 519
 520                if (page->index == end_index) {
 521                        char *userpage;
 522                        size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 523
 524                        if (zero_offset) {
 525                                int zeros;
 526                                zeros = PAGE_CACHE_SIZE - zero_offset;
 527                                userpage = kmap_atomic(page);
 528                                memset(userpage + zero_offset, 0, zeros);
 529                                flush_dcache_page(page);
 530                                kunmap_atomic(userpage);
 531                        }
 532                }
 533
 534                ret = bio_add_page(cb->orig_bio, page,
 535                                   PAGE_CACHE_SIZE, 0);
 536
 537                if (ret == PAGE_CACHE_SIZE) {
 538                        nr_pages++;
 539                        page_cache_release(page);
 540                } else {
 541                        unlock_extent(tree, last_offset, end);
 542                        unlock_page(page);
 543                        page_cache_release(page);
 544                        break;
 545                }
 546next:
 547                last_offset += PAGE_CACHE_SIZE;
 548        }
 549        return 0;
 550}
 551
 552/*
 553 * for a compressed read, the bio we get passed has all the inode pages
 554 * in it.  We don't actually do IO on those pages but allocate new ones
 555 * to hold the compressed pages on disk.
 556 *
 557 * bio->bi_sector points to the compressed extent on disk
 558 * bio->bi_io_vec points to all of the inode pages
 559 * bio->bi_vcnt is a count of pages
 560 *
 561 * After the compressed pages are read, we copy the bytes into the
 562 * bio we were passed and then call the bio end_io calls
 563 */
 564int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 565                                 int mirror_num, unsigned long bio_flags)
 566{
 567        struct extent_io_tree *tree;
 568        struct extent_map_tree *em_tree;
 569        struct compressed_bio *cb;
 570        struct btrfs_root *root = BTRFS_I(inode)->root;
 571        unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 572        unsigned long compressed_len;
 573        unsigned long nr_pages;
 574        unsigned long pg_index;
 575        struct page *page;
 576        struct block_device *bdev;
 577        struct bio *comp_bio;
 578        u64 cur_disk_byte = (u64)bio->bi_sector << 9;
 579        u64 em_len;
 580        u64 em_start;
 581        struct extent_map *em;
 582        int ret = -ENOMEM;
 583        int faili = 0;
 584        u32 *sums;
 585
 586        tree = &BTRFS_I(inode)->io_tree;
 587        em_tree = &BTRFS_I(inode)->extent_tree;
 588
 589        /* we need the actual starting offset of this extent in the file */
 590        read_lock(&em_tree->lock);
 591        em = lookup_extent_mapping(em_tree,
 592                                   page_offset(bio->bi_io_vec->bv_page),
 593                                   PAGE_CACHE_SIZE);
 594        read_unlock(&em_tree->lock);
 595        if (!em)
 596                return -EIO;
 597
 598        compressed_len = em->block_len;
 599        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 600        if (!cb)
 601                goto out;
 602
 603        atomic_set(&cb->pending_bios, 0);
 604        cb->errors = 0;
 605        cb->inode = inode;
 606        cb->mirror_num = mirror_num;
 607        sums = &cb->sums;
 608
 609        cb->start = em->orig_start;
 610        em_len = em->len;
 611        em_start = em->start;
 612
 613        free_extent_map(em);
 614        em = NULL;
 615
 616        cb->len = uncompressed_len;
 617        cb->compressed_len = compressed_len;
 618        cb->compress_type = extent_compress_type(bio_flags);
 619        cb->orig_bio = bio;
 620
 621        nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
 622                                 PAGE_CACHE_SIZE;
 623        cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
 624                                       GFP_NOFS);
 625        if (!cb->compressed_pages)
 626                goto fail1;
 627
 628        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 629
 630        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 631                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 632                                                              __GFP_HIGHMEM);
 633                if (!cb->compressed_pages[pg_index]) {
 634                        faili = pg_index - 1;
 635                        ret = -ENOMEM;
 636                        goto fail2;
 637                }
 638        }
 639        faili = nr_pages - 1;
 640        cb->nr_pages = nr_pages;
 641
 642        add_ra_bio_pages(inode, em_start + em_len, cb);
 643
 644        /* include any pages we added in add_ra-bio_pages */
 645        uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 646        cb->len = uncompressed_len;
 647
 648        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 649        if (!comp_bio)
 650                goto fail2;
 651        comp_bio->bi_private = cb;
 652        comp_bio->bi_end_io = end_compressed_bio_read;
 653        atomic_inc(&cb->pending_bios);
 654
 655        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 656                page = cb->compressed_pages[pg_index];
 657                page->mapping = inode->i_mapping;
 658                page->index = em_start >> PAGE_CACHE_SHIFT;
 659
 660                if (comp_bio->bi_size)
 661                        ret = tree->ops->merge_bio_hook(READ, page, 0,
 662                                                        PAGE_CACHE_SIZE,
 663                                                        comp_bio, 0);
 664                else
 665                        ret = 0;
 666
 667                page->mapping = NULL;
 668                if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 669                    PAGE_CACHE_SIZE) {
 670                        bio_get(comp_bio);
 671
 672                        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 673                        BUG_ON(ret); /* -ENOMEM */
 674
 675                        /*
 676                         * inc the count before we submit the bio so
 677                         * we know the end IO handler won't happen before
 678                         * we inc the count.  Otherwise, the cb might get
 679                         * freed before we're done setting it up
 680                         */
 681                        atomic_inc(&cb->pending_bios);
 682
 683                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 684                                ret = btrfs_lookup_bio_sums(root, inode,
 685                                                        comp_bio, sums);
 686                                BUG_ON(ret); /* -ENOMEM */
 687                        }
 688                        sums += (comp_bio->bi_size + root->sectorsize - 1) /
 689                                root->sectorsize;
 690
 691                        ret = btrfs_map_bio(root, READ, comp_bio,
 692                                            mirror_num, 0);
 693                        if (ret)
 694                                bio_endio(comp_bio, ret);
 695
 696                        bio_put(comp_bio);
 697
 698                        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 699                                                        GFP_NOFS);
 700                        BUG_ON(!comp_bio);
 701                        comp_bio->bi_private = cb;
 702                        comp_bio->bi_end_io = end_compressed_bio_read;
 703
 704                        bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 705                }
 706                cur_disk_byte += PAGE_CACHE_SIZE;
 707        }
 708        bio_get(comp_bio);
 709
 710        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 711        BUG_ON(ret); /* -ENOMEM */
 712
 713        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 714                ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 715                BUG_ON(ret); /* -ENOMEM */
 716        }
 717
 718        ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 719        if (ret)
 720                bio_endio(comp_bio, ret);
 721
 722        bio_put(comp_bio);
 723        return 0;
 724
 725fail2:
 726        while (faili >= 0) {
 727                __free_page(cb->compressed_pages[faili]);
 728                faili--;
 729        }
 730
 731        kfree(cb->compressed_pages);
 732fail1:
 733        kfree(cb);
 734out:
 735        free_extent_map(em);
 736        return ret;
 737}
 738
 739static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
 740static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
 741static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
 742static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
 743static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
 744
 745static struct btrfs_compress_op *btrfs_compress_op[] = {
 746        &btrfs_zlib_compress,
 747        &btrfs_lzo_compress,
 748};
 749
 750void __init btrfs_init_compress(void)
 751{
 752        int i;
 753
 754        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 755                INIT_LIST_HEAD(&comp_idle_workspace[i]);
 756                spin_lock_init(&comp_workspace_lock[i]);
 757                atomic_set(&comp_alloc_workspace[i], 0);
 758                init_waitqueue_head(&comp_workspace_wait[i]);
 759        }
 760}
 761
 762/*
 763 * this finds an available workspace or allocates a new one
 764 * ERR_PTR is returned if things go bad.
 765 */
 766static struct list_head *find_workspace(int type)
 767{
 768        struct list_head *workspace;
 769        int cpus = num_online_cpus();
 770        int idx = type - 1;
 771
 772        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 773        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 774        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 775        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 776        int *num_workspace                      = &comp_num_workspace[idx];
 777again:
 778        spin_lock(workspace_lock);
 779        if (!list_empty(idle_workspace)) {
 780                workspace = idle_workspace->next;
 781                list_del(workspace);
 782                (*num_workspace)--;
 783                spin_unlock(workspace_lock);
 784                return workspace;
 785
 786        }
 787        if (atomic_read(alloc_workspace) > cpus) {
 788                DEFINE_WAIT(wait);
 789
 790                spin_unlock(workspace_lock);
 791                prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
 792                if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
 793                        schedule();
 794                finish_wait(workspace_wait, &wait);
 795                goto again;
 796        }
 797        atomic_inc(alloc_workspace);
 798        spin_unlock(workspace_lock);
 799
 800        workspace = btrfs_compress_op[idx]->alloc_workspace();
 801        if (IS_ERR(workspace)) {
 802                atomic_dec(alloc_workspace);
 803                wake_up(workspace_wait);
 804        }
 805        return workspace;
 806}
 807
 808/*
 809 * put a workspace struct back on the list or free it if we have enough
 810 * idle ones sitting around
 811 */
 812static void free_workspace(int type, struct list_head *workspace)
 813{
 814        int idx = type - 1;
 815        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 816        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 817        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 818        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 819        int *num_workspace                      = &comp_num_workspace[idx];
 820
 821        spin_lock(workspace_lock);
 822        if (*num_workspace < num_online_cpus()) {
 823                list_add_tail(workspace, idle_workspace);
 824                (*num_workspace)++;
 825                spin_unlock(workspace_lock);
 826                goto wake;
 827        }
 828        spin_unlock(workspace_lock);
 829
 830        btrfs_compress_op[idx]->free_workspace(workspace);
 831        atomic_dec(alloc_workspace);
 832wake:
 833        smp_mb();
 834        if (waitqueue_active(workspace_wait))
 835                wake_up(workspace_wait);
 836}
 837
 838/*
 839 * cleanup function for module exit
 840 */
 841static void free_workspaces(void)
 842{
 843        struct list_head *workspace;
 844        int i;
 845
 846        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 847                while (!list_empty(&comp_idle_workspace[i])) {
 848                        workspace = comp_idle_workspace[i].next;
 849                        list_del(workspace);
 850                        btrfs_compress_op[i]->free_workspace(workspace);
 851                        atomic_dec(&comp_alloc_workspace[i]);
 852                }
 853        }
 854}
 855
 856/*
 857 * given an address space and start/len, compress the bytes.
 858 *
 859 * pages are allocated to hold the compressed result and stored
 860 * in 'pages'
 861 *
 862 * out_pages is used to return the number of pages allocated.  There
 863 * may be pages allocated even if we return an error
 864 *
 865 * total_in is used to return the number of bytes actually read.  It
 866 * may be smaller then len if we had to exit early because we
 867 * ran out of room in the pages array or because we cross the
 868 * max_out threshold.
 869 *
 870 * total_out is used to return the total number of compressed bytes
 871 *
 872 * max_out tells us the max number of bytes that we're allowed to
 873 * stuff into pages
 874 */
 875int btrfs_compress_pages(int type, struct address_space *mapping,
 876                         u64 start, unsigned long len,
 877                         struct page **pages,
 878                         unsigned long nr_dest_pages,
 879                         unsigned long *out_pages,
 880                         unsigned long *total_in,
 881                         unsigned long *total_out,
 882                         unsigned long max_out)
 883{
 884        struct list_head *workspace;
 885        int ret;
 886
 887        workspace = find_workspace(type);
 888        if (IS_ERR(workspace))
 889                return -1;
 890
 891        ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 892                                                      start, len, pages,
 893                                                      nr_dest_pages, out_pages,
 894                                                      total_in, total_out,
 895                                                      max_out);
 896        free_workspace(type, workspace);
 897        return ret;
 898}
 899
 900/*
 901 * pages_in is an array of pages with compressed data.
 902 *
 903 * disk_start is the starting logical offset of this array in the file
 904 *
 905 * bvec is a bio_vec of pages from the file that we want to decompress into
 906 *
 907 * vcnt is the count of pages in the biovec
 908 *
 909 * srclen is the number of bytes in pages_in
 910 *
 911 * The basic idea is that we have a bio that was created by readpages.
 912 * The pages in the bio are for the uncompressed data, and they may not
 913 * be contiguous.  They all correspond to the range of bytes covered by
 914 * the compressed extent.
 915 */
 916static int btrfs_decompress_biovec(int type, struct page **pages_in,
 917                                   u64 disk_start, struct bio_vec *bvec,
 918                                   int vcnt, size_t srclen)
 919{
 920        struct list_head *workspace;
 921        int ret;
 922
 923        workspace = find_workspace(type);
 924        if (IS_ERR(workspace))
 925                return -ENOMEM;
 926
 927        ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 928                                                         disk_start,
 929                                                         bvec, vcnt, srclen);
 930        free_workspace(type, workspace);
 931        return ret;
 932}
 933
 934/*
 935 * a less complex decompression routine.  Our compressed data fits in a
 936 * single page, and we want to read a single page out of it.
 937 * start_byte tells us the offset into the compressed data we're interested in
 938 */
 939int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 940                     unsigned long start_byte, size_t srclen, size_t destlen)
 941{
 942        struct list_head *workspace;
 943        int ret;
 944
 945        workspace = find_workspace(type);
 946        if (IS_ERR(workspace))
 947                return -ENOMEM;
 948
 949        ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 950                                                  dest_page, start_byte,
 951                                                  srclen, destlen);
 952
 953        free_workspace(type, workspace);
 954        return ret;
 955}
 956
 957void btrfs_exit_compress(void)
 958{
 959        free_workspaces();
 960}
 961
 962/*
 963 * Copy uncompressed data from working buffer to pages.
 964 *
 965 * buf_start is the byte offset we're of the start of our workspace buffer.
 966 *
 967 * total_out is the last byte of the buffer
 968 */
 969int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 970                              unsigned long total_out, u64 disk_start,
 971                              struct bio_vec *bvec, int vcnt,
 972                              unsigned long *pg_index,
 973                              unsigned long *pg_offset)
 974{
 975        unsigned long buf_offset;
 976        unsigned long current_buf_start;
 977        unsigned long start_byte;
 978        unsigned long working_bytes = total_out - buf_start;
 979        unsigned long bytes;
 980        char *kaddr;
 981        struct page *page_out = bvec[*pg_index].bv_page;
 982
 983        /*
 984         * start byte is the first byte of the page we're currently
 985         * copying into relative to the start of the compressed data.
 986         */
 987        start_byte = page_offset(page_out) - disk_start;
 988
 989        /* we haven't yet hit data corresponding to this page */
 990        if (total_out <= start_byte)
 991                return 1;
 992
 993        /*
 994         * the start of the data we care about is offset into
 995         * the middle of our working buffer
 996         */
 997        if (total_out > start_byte && buf_start < start_byte) {
 998                buf_offset = start_byte - buf_start;
 999                working_bytes -= buf_offset;
1000        } else {
1001                buf_offset = 0;
1002        }
1003        current_buf_start = buf_start;
1004
1005        /* copy bytes from the working buffer into the pages */
1006        while (working_bytes > 0) {
1007                bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1008                            PAGE_CACHE_SIZE - buf_offset);
1009                bytes = min(bytes, working_bytes);
1010                kaddr = kmap_atomic(page_out);
1011                memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1012                kunmap_atomic(kaddr);
1013                flush_dcache_page(page_out);
1014
1015                *pg_offset += bytes;
1016                buf_offset += bytes;
1017                working_bytes -= bytes;
1018                current_buf_start += bytes;
1019
1020                /* check if we need to pick another page */
1021                if (*pg_offset == PAGE_CACHE_SIZE) {
1022                        (*pg_index)++;
1023                        if (*pg_index >= vcnt)
1024                                return 0;
1025
1026                        page_out = bvec[*pg_index].bv_page;
1027                        *pg_offset = 0;
1028                        start_byte = page_offset(page_out) - disk_start;
1029
1030                        /*
1031                         * make sure our new page is covered by this
1032                         * working buffer
1033                         */
1034                        if (total_out <= start_byte)
1035                                return 1;
1036
1037                        /*
1038                         * the next page in the biovec might not be adjacent
1039                         * to the last page, but it might still be found
1040                         * inside this working buffer. bump our offset pointer
1041                         */
1042                        if (total_out > start_byte &&
1043                            current_buf_start < start_byte) {
1044                                buf_offset = start_byte - buf_start;
1045                                working_bytes = total_out - start_byte;
1046                                current_buf_start = buf_start + buf_offset;
1047                        }
1048                }
1049        }
1050
1051        return 1;
1052}
1053