linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "print-tree.h"
  26#include "locking.h"
  27
  28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  29                      *root, struct btrfs_path *path, int level);
  30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  31                      *root, struct btrfs_key *ins_key,
  32                      struct btrfs_path *path, int data_size, int extend);
  33static int push_node_left(struct btrfs_trans_handle *trans,
  34                          struct btrfs_root *root, struct extent_buffer *dst,
  35                          struct extent_buffer *src, int empty);
  36static int balance_node_right(struct btrfs_trans_handle *trans,
  37                              struct btrfs_root *root,
  38                              struct extent_buffer *dst_buf,
  39                              struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41                    int level, int slot);
  42static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  43                                 struct extent_buffer *eb);
  44static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
  45
  46struct btrfs_path *btrfs_alloc_path(void)
  47{
  48        struct btrfs_path *path;
  49        path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  50        return path;
  51}
  52
  53/*
  54 * set all locked nodes in the path to blocking locks.  This should
  55 * be done before scheduling
  56 */
  57noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  58{
  59        int i;
  60        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  61                if (!p->nodes[i] || !p->locks[i])
  62                        continue;
  63                btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  64                if (p->locks[i] == BTRFS_READ_LOCK)
  65                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  66                else if (p->locks[i] == BTRFS_WRITE_LOCK)
  67                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  68        }
  69}
  70
  71/*
  72 * reset all the locked nodes in the patch to spinning locks.
  73 *
  74 * held is used to keep lockdep happy, when lockdep is enabled
  75 * we set held to a blocking lock before we go around and
  76 * retake all the spinlocks in the path.  You can safely use NULL
  77 * for held
  78 */
  79noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  80                                        struct extent_buffer *held, int held_rw)
  81{
  82        int i;
  83
  84#ifdef CONFIG_DEBUG_LOCK_ALLOC
  85        /* lockdep really cares that we take all of these spinlocks
  86         * in the right order.  If any of the locks in the path are not
  87         * currently blocking, it is going to complain.  So, make really
  88         * really sure by forcing the path to blocking before we clear
  89         * the path blocking.
  90         */
  91        if (held) {
  92                btrfs_set_lock_blocking_rw(held, held_rw);
  93                if (held_rw == BTRFS_WRITE_LOCK)
  94                        held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  95                else if (held_rw == BTRFS_READ_LOCK)
  96                        held_rw = BTRFS_READ_LOCK_BLOCKING;
  97        }
  98        btrfs_set_path_blocking(p);
  99#endif
 100
 101        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
 102                if (p->nodes[i] && p->locks[i]) {
 103                        btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 104                        if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 105                                p->locks[i] = BTRFS_WRITE_LOCK;
 106                        else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 107                                p->locks[i] = BTRFS_READ_LOCK;
 108                }
 109        }
 110
 111#ifdef CONFIG_DEBUG_LOCK_ALLOC
 112        if (held)
 113                btrfs_clear_lock_blocking_rw(held, held_rw);
 114#endif
 115}
 116
 117/* this also releases the path */
 118void btrfs_free_path(struct btrfs_path *p)
 119{
 120        if (!p)
 121                return;
 122        btrfs_release_path(p);
 123        kmem_cache_free(btrfs_path_cachep, p);
 124}
 125
 126/*
 127 * path release drops references on the extent buffers in the path
 128 * and it drops any locks held by this path
 129 *
 130 * It is safe to call this on paths that no locks or extent buffers held.
 131 */
 132noinline void btrfs_release_path(struct btrfs_path *p)
 133{
 134        int i;
 135
 136        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 137                p->slots[i] = 0;
 138                if (!p->nodes[i])
 139                        continue;
 140                if (p->locks[i]) {
 141                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 142                        p->locks[i] = 0;
 143                }
 144                free_extent_buffer(p->nodes[i]);
 145                p->nodes[i] = NULL;
 146        }
 147}
 148
 149/*
 150 * safely gets a reference on the root node of a tree.  A lock
 151 * is not taken, so a concurrent writer may put a different node
 152 * at the root of the tree.  See btrfs_lock_root_node for the
 153 * looping required.
 154 *
 155 * The extent buffer returned by this has a reference taken, so
 156 * it won't disappear.  It may stop being the root of the tree
 157 * at any time because there are no locks held.
 158 */
 159struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 160{
 161        struct extent_buffer *eb;
 162
 163        while (1) {
 164                rcu_read_lock();
 165                eb = rcu_dereference(root->node);
 166
 167                /*
 168                 * RCU really hurts here, we could free up the root node because
 169                 * it was cow'ed but we may not get the new root node yet so do
 170                 * the inc_not_zero dance and if it doesn't work then
 171                 * synchronize_rcu and try again.
 172                 */
 173                if (atomic_inc_not_zero(&eb->refs)) {
 174                        rcu_read_unlock();
 175                        break;
 176                }
 177                rcu_read_unlock();
 178                synchronize_rcu();
 179        }
 180        return eb;
 181}
 182
 183/* loop around taking references on and locking the root node of the
 184 * tree until you end up with a lock on the root.  A locked buffer
 185 * is returned, with a reference held.
 186 */
 187struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 188{
 189        struct extent_buffer *eb;
 190
 191        while (1) {
 192                eb = btrfs_root_node(root);
 193                btrfs_tree_lock(eb);
 194                if (eb == root->node)
 195                        break;
 196                btrfs_tree_unlock(eb);
 197                free_extent_buffer(eb);
 198        }
 199        return eb;
 200}
 201
 202/* loop around taking references on and locking the root node of the
 203 * tree until you end up with a lock on the root.  A locked buffer
 204 * is returned, with a reference held.
 205 */
 206static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 207{
 208        struct extent_buffer *eb;
 209
 210        while (1) {
 211                eb = btrfs_root_node(root);
 212                btrfs_tree_read_lock(eb);
 213                if (eb == root->node)
 214                        break;
 215                btrfs_tree_read_unlock(eb);
 216                free_extent_buffer(eb);
 217        }
 218        return eb;
 219}
 220
 221/* cowonly root (everything not a reference counted cow subvolume), just get
 222 * put onto a simple dirty list.  transaction.c walks this to make sure they
 223 * get properly updated on disk.
 224 */
 225static void add_root_to_dirty_list(struct btrfs_root *root)
 226{
 227        spin_lock(&root->fs_info->trans_lock);
 228        if (root->track_dirty && list_empty(&root->dirty_list)) {
 229                list_add(&root->dirty_list,
 230                         &root->fs_info->dirty_cowonly_roots);
 231        }
 232        spin_unlock(&root->fs_info->trans_lock);
 233}
 234
 235/*
 236 * used by snapshot creation to make a copy of a root for a tree with
 237 * a given objectid.  The buffer with the new root node is returned in
 238 * cow_ret, and this func returns zero on success or a negative error code.
 239 */
 240int btrfs_copy_root(struct btrfs_trans_handle *trans,
 241                      struct btrfs_root *root,
 242                      struct extent_buffer *buf,
 243                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 244{
 245        struct extent_buffer *cow;
 246        int ret = 0;
 247        int level;
 248        struct btrfs_disk_key disk_key;
 249
 250        WARN_ON(root->ref_cows && trans->transid !=
 251                root->fs_info->running_transaction->transid);
 252        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 253
 254        level = btrfs_header_level(buf);
 255        if (level == 0)
 256                btrfs_item_key(buf, &disk_key, 0);
 257        else
 258                btrfs_node_key(buf, &disk_key, 0);
 259
 260        cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 261                                     new_root_objectid, &disk_key, level,
 262                                     buf->start, 0);
 263        if (IS_ERR(cow))
 264                return PTR_ERR(cow);
 265
 266        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 267        btrfs_set_header_bytenr(cow, cow->start);
 268        btrfs_set_header_generation(cow, trans->transid);
 269        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 270        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 271                                     BTRFS_HEADER_FLAG_RELOC);
 272        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 273                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 274        else
 275                btrfs_set_header_owner(cow, new_root_objectid);
 276
 277        write_extent_buffer(cow, root->fs_info->fsid,
 278                            (unsigned long)btrfs_header_fsid(cow),
 279                            BTRFS_FSID_SIZE);
 280
 281        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 282        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 283                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 284        else
 285                ret = btrfs_inc_ref(trans, root, cow, 0, 1);
 286
 287        if (ret)
 288                return ret;
 289
 290        btrfs_mark_buffer_dirty(cow);
 291        *cow_ret = cow;
 292        return 0;
 293}
 294
 295enum mod_log_op {
 296        MOD_LOG_KEY_REPLACE,
 297        MOD_LOG_KEY_ADD,
 298        MOD_LOG_KEY_REMOVE,
 299        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 300        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 301        MOD_LOG_MOVE_KEYS,
 302        MOD_LOG_ROOT_REPLACE,
 303};
 304
 305struct tree_mod_move {
 306        int dst_slot;
 307        int nr_items;
 308};
 309
 310struct tree_mod_root {
 311        u64 logical;
 312        u8 level;
 313};
 314
 315struct tree_mod_elem {
 316        struct rb_node node;
 317        u64 index;              /* shifted logical */
 318        u64 seq;
 319        enum mod_log_op op;
 320
 321        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 322        int slot;
 323
 324        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 325        u64 generation;
 326
 327        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 328        struct btrfs_disk_key key;
 329        u64 blockptr;
 330
 331        /* this is used for op == MOD_LOG_MOVE_KEYS */
 332        struct tree_mod_move move;
 333
 334        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 335        struct tree_mod_root old_root;
 336};
 337
 338static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 339{
 340        read_lock(&fs_info->tree_mod_log_lock);
 341}
 342
 343static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 344{
 345        read_unlock(&fs_info->tree_mod_log_lock);
 346}
 347
 348static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 349{
 350        write_lock(&fs_info->tree_mod_log_lock);
 351}
 352
 353static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 354{
 355        write_unlock(&fs_info->tree_mod_log_lock);
 356}
 357
 358/*
 359 * Increment the upper half of tree_mod_seq, set lower half zero.
 360 *
 361 * Must be called with fs_info->tree_mod_seq_lock held.
 362 */
 363static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
 364{
 365        u64 seq = atomic64_read(&fs_info->tree_mod_seq);
 366        seq &= 0xffffffff00000000ull;
 367        seq += 1ull << 32;
 368        atomic64_set(&fs_info->tree_mod_seq, seq);
 369        return seq;
 370}
 371
 372/*
 373 * Increment the lower half of tree_mod_seq.
 374 *
 375 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
 376 * are generated should not technically require a spin lock here. (Rationale:
 377 * incrementing the minor while incrementing the major seq number is between its
 378 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
 379 * just returns a unique sequence number as usual.) We have decided to leave
 380 * that requirement in here and rethink it once we notice it really imposes a
 381 * problem on some workload.
 382 */
 383static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
 384{
 385        return atomic64_inc_return(&fs_info->tree_mod_seq);
 386}
 387
 388/*
 389 * return the last minor in the previous major tree_mod_seq number
 390 */
 391u64 btrfs_tree_mod_seq_prev(u64 seq)
 392{
 393        return (seq & 0xffffffff00000000ull) - 1ull;
 394}
 395
 396/*
 397 * This adds a new blocker to the tree mod log's blocker list if the @elem
 398 * passed does not already have a sequence number set. So when a caller expects
 399 * to record tree modifications, it should ensure to set elem->seq to zero
 400 * before calling btrfs_get_tree_mod_seq.
 401 * Returns a fresh, unused tree log modification sequence number, even if no new
 402 * blocker was added.
 403 */
 404u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 405                           struct seq_list *elem)
 406{
 407        u64 seq;
 408
 409        tree_mod_log_write_lock(fs_info);
 410        spin_lock(&fs_info->tree_mod_seq_lock);
 411        if (!elem->seq) {
 412                elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
 413                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 414        }
 415        seq = btrfs_inc_tree_mod_seq_minor(fs_info);
 416        spin_unlock(&fs_info->tree_mod_seq_lock);
 417        tree_mod_log_write_unlock(fs_info);
 418
 419        return seq;
 420}
 421
 422void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 423                            struct seq_list *elem)
 424{
 425        struct rb_root *tm_root;
 426        struct rb_node *node;
 427        struct rb_node *next;
 428        struct seq_list *cur_elem;
 429        struct tree_mod_elem *tm;
 430        u64 min_seq = (u64)-1;
 431        u64 seq_putting = elem->seq;
 432
 433        if (!seq_putting)
 434                return;
 435
 436        spin_lock(&fs_info->tree_mod_seq_lock);
 437        list_del(&elem->list);
 438        elem->seq = 0;
 439
 440        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 441                if (cur_elem->seq < min_seq) {
 442                        if (seq_putting > cur_elem->seq) {
 443                                /*
 444                                 * blocker with lower sequence number exists, we
 445                                 * cannot remove anything from the log
 446                                 */
 447                                spin_unlock(&fs_info->tree_mod_seq_lock);
 448                                return;
 449                        }
 450                        min_seq = cur_elem->seq;
 451                }
 452        }
 453        spin_unlock(&fs_info->tree_mod_seq_lock);
 454
 455        /*
 456         * anything that's lower than the lowest existing (read: blocked)
 457         * sequence number can be removed from the tree.
 458         */
 459        tree_mod_log_write_lock(fs_info);
 460        tm_root = &fs_info->tree_mod_log;
 461        for (node = rb_first(tm_root); node; node = next) {
 462                next = rb_next(node);
 463                tm = container_of(node, struct tree_mod_elem, node);
 464                if (tm->seq > min_seq)
 465                        continue;
 466                rb_erase(node, tm_root);
 467                kfree(tm);
 468        }
 469        tree_mod_log_write_unlock(fs_info);
 470}
 471
 472/*
 473 * key order of the log:
 474 *       index -> sequence
 475 *
 476 * the index is the shifted logical of the *new* root node for root replace
 477 * operations, or the shifted logical of the affected block for all other
 478 * operations.
 479 */
 480static noinline int
 481__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 482{
 483        struct rb_root *tm_root;
 484        struct rb_node **new;
 485        struct rb_node *parent = NULL;
 486        struct tree_mod_elem *cur;
 487
 488        BUG_ON(!tm || !tm->seq);
 489
 490        tm_root = &fs_info->tree_mod_log;
 491        new = &tm_root->rb_node;
 492        while (*new) {
 493                cur = container_of(*new, struct tree_mod_elem, node);
 494                parent = *new;
 495                if (cur->index < tm->index)
 496                        new = &((*new)->rb_left);
 497                else if (cur->index > tm->index)
 498                        new = &((*new)->rb_right);
 499                else if (cur->seq < tm->seq)
 500                        new = &((*new)->rb_left);
 501                else if (cur->seq > tm->seq)
 502                        new = &((*new)->rb_right);
 503                else {
 504                        kfree(tm);
 505                        return -EEXIST;
 506                }
 507        }
 508
 509        rb_link_node(&tm->node, parent, new);
 510        rb_insert_color(&tm->node, tm_root);
 511        return 0;
 512}
 513
 514/*
 515 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 516 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 517 * this until all tree mod log insertions are recorded in the rb tree and then
 518 * call tree_mod_log_write_unlock() to release.
 519 */
 520static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 521                                    struct extent_buffer *eb) {
 522        smp_mb();
 523        if (list_empty(&(fs_info)->tree_mod_seq_list))
 524                return 1;
 525        if (eb && btrfs_header_level(eb) == 0)
 526                return 1;
 527
 528        tree_mod_log_write_lock(fs_info);
 529        if (list_empty(&fs_info->tree_mod_seq_list)) {
 530                /*
 531                 * someone emptied the list while we were waiting for the lock.
 532                 * we must not add to the list when no blocker exists.
 533                 */
 534                tree_mod_log_write_unlock(fs_info);
 535                return 1;
 536        }
 537
 538        return 0;
 539}
 540
 541/*
 542 * This allocates memory and gets a tree modification sequence number.
 543 *
 544 * Returns <0 on error.
 545 * Returns >0 (the added sequence number) on success.
 546 */
 547static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
 548                                 struct tree_mod_elem **tm_ret)
 549{
 550        struct tree_mod_elem *tm;
 551
 552        /*
 553         * once we switch from spin locks to something different, we should
 554         * honor the flags parameter here.
 555         */
 556        tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
 557        if (!tm)
 558                return -ENOMEM;
 559
 560        spin_lock(&fs_info->tree_mod_seq_lock);
 561        tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
 562        spin_unlock(&fs_info->tree_mod_seq_lock);
 563
 564        return tm->seq;
 565}
 566
 567static inline int
 568__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 569                          struct extent_buffer *eb, int slot,
 570                          enum mod_log_op op, gfp_t flags)
 571{
 572        int ret;
 573        struct tree_mod_elem *tm;
 574
 575        ret = tree_mod_alloc(fs_info, flags, &tm);
 576        if (ret < 0)
 577                return ret;
 578
 579        tm->index = eb->start >> PAGE_CACHE_SHIFT;
 580        if (op != MOD_LOG_KEY_ADD) {
 581                btrfs_node_key(eb, &tm->key, slot);
 582                tm->blockptr = btrfs_node_blockptr(eb, slot);
 583        }
 584        tm->op = op;
 585        tm->slot = slot;
 586        tm->generation = btrfs_node_ptr_generation(eb, slot);
 587
 588        return __tree_mod_log_insert(fs_info, tm);
 589}
 590
 591static noinline int
 592tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
 593                             struct extent_buffer *eb, int slot,
 594                             enum mod_log_op op, gfp_t flags)
 595{
 596        int ret;
 597
 598        if (tree_mod_dont_log(fs_info, eb))
 599                return 0;
 600
 601        ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
 602
 603        tree_mod_log_write_unlock(fs_info);
 604        return ret;
 605}
 606
 607static noinline int
 608tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
 609                        int slot, enum mod_log_op op)
 610{
 611        return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
 612}
 613
 614static noinline int
 615tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
 616                             struct extent_buffer *eb, int slot,
 617                             enum mod_log_op op)
 618{
 619        return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
 620}
 621
 622static noinline int
 623tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 624                         struct extent_buffer *eb, int dst_slot, int src_slot,
 625                         int nr_items, gfp_t flags)
 626{
 627        struct tree_mod_elem *tm;
 628        int ret;
 629        int i;
 630
 631        if (tree_mod_dont_log(fs_info, eb))
 632                return 0;
 633
 634        /*
 635         * When we override something during the move, we log these removals.
 636         * This can only happen when we move towards the beginning of the
 637         * buffer, i.e. dst_slot < src_slot.
 638         */
 639        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 640                ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
 641                                              MOD_LOG_KEY_REMOVE_WHILE_MOVING);
 642                BUG_ON(ret < 0);
 643        }
 644
 645        ret = tree_mod_alloc(fs_info, flags, &tm);
 646        if (ret < 0)
 647                goto out;
 648
 649        tm->index = eb->start >> PAGE_CACHE_SHIFT;
 650        tm->slot = src_slot;
 651        tm->move.dst_slot = dst_slot;
 652        tm->move.nr_items = nr_items;
 653        tm->op = MOD_LOG_MOVE_KEYS;
 654
 655        ret = __tree_mod_log_insert(fs_info, tm);
 656out:
 657        tree_mod_log_write_unlock(fs_info);
 658        return ret;
 659}
 660
 661static inline void
 662__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 663{
 664        int i;
 665        u32 nritems;
 666        int ret;
 667
 668        if (btrfs_header_level(eb) == 0)
 669                return;
 670
 671        nritems = btrfs_header_nritems(eb);
 672        for (i = nritems - 1; i >= 0; i--) {
 673                ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
 674                                              MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 675                BUG_ON(ret < 0);
 676        }
 677}
 678
 679static noinline int
 680tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 681                         struct extent_buffer *old_root,
 682                         struct extent_buffer *new_root, gfp_t flags,
 683                         int log_removal)
 684{
 685        struct tree_mod_elem *tm;
 686        int ret;
 687
 688        if (tree_mod_dont_log(fs_info, NULL))
 689                return 0;
 690
 691        if (log_removal)
 692                __tree_mod_log_free_eb(fs_info, old_root);
 693
 694        ret = tree_mod_alloc(fs_info, flags, &tm);
 695        if (ret < 0)
 696                goto out;
 697
 698        tm->index = new_root->start >> PAGE_CACHE_SHIFT;
 699        tm->old_root.logical = old_root->start;
 700        tm->old_root.level = btrfs_header_level(old_root);
 701        tm->generation = btrfs_header_generation(old_root);
 702        tm->op = MOD_LOG_ROOT_REPLACE;
 703
 704        ret = __tree_mod_log_insert(fs_info, tm);
 705out:
 706        tree_mod_log_write_unlock(fs_info);
 707        return ret;
 708}
 709
 710static struct tree_mod_elem *
 711__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 712                      int smallest)
 713{
 714        struct rb_root *tm_root;
 715        struct rb_node *node;
 716        struct tree_mod_elem *cur = NULL;
 717        struct tree_mod_elem *found = NULL;
 718        u64 index = start >> PAGE_CACHE_SHIFT;
 719
 720        tree_mod_log_read_lock(fs_info);
 721        tm_root = &fs_info->tree_mod_log;
 722        node = tm_root->rb_node;
 723        while (node) {
 724                cur = container_of(node, struct tree_mod_elem, node);
 725                if (cur->index < index) {
 726                        node = node->rb_left;
 727                } else if (cur->index > index) {
 728                        node = node->rb_right;
 729                } else if (cur->seq < min_seq) {
 730                        node = node->rb_left;
 731                } else if (!smallest) {
 732                        /* we want the node with the highest seq */
 733                        if (found)
 734                                BUG_ON(found->seq > cur->seq);
 735                        found = cur;
 736                        node = node->rb_left;
 737                } else if (cur->seq > min_seq) {
 738                        /* we want the node with the smallest seq */
 739                        if (found)
 740                                BUG_ON(found->seq < cur->seq);
 741                        found = cur;
 742                        node = node->rb_right;
 743                } else {
 744                        found = cur;
 745                        break;
 746                }
 747        }
 748        tree_mod_log_read_unlock(fs_info);
 749
 750        return found;
 751}
 752
 753/*
 754 * this returns the element from the log with the smallest time sequence
 755 * value that's in the log (the oldest log item). any element with a time
 756 * sequence lower than min_seq will be ignored.
 757 */
 758static struct tree_mod_elem *
 759tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 760                           u64 min_seq)
 761{
 762        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 763}
 764
 765/*
 766 * this returns the element from the log with the largest time sequence
 767 * value that's in the log (the most recent log item). any element with
 768 * a time sequence lower than min_seq will be ignored.
 769 */
 770static struct tree_mod_elem *
 771tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 772{
 773        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 774}
 775
 776static noinline void
 777tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 778                     struct extent_buffer *src, unsigned long dst_offset,
 779                     unsigned long src_offset, int nr_items)
 780{
 781        int ret;
 782        int i;
 783
 784        if (tree_mod_dont_log(fs_info, NULL))
 785                return;
 786
 787        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
 788                tree_mod_log_write_unlock(fs_info);
 789                return;
 790        }
 791
 792        for (i = 0; i < nr_items; i++) {
 793                ret = tree_mod_log_insert_key_locked(fs_info, src,
 794                                                i + src_offset,
 795                                                MOD_LOG_KEY_REMOVE);
 796                BUG_ON(ret < 0);
 797                ret = tree_mod_log_insert_key_locked(fs_info, dst,
 798                                                     i + dst_offset,
 799                                                     MOD_LOG_KEY_ADD);
 800                BUG_ON(ret < 0);
 801        }
 802
 803        tree_mod_log_write_unlock(fs_info);
 804}
 805
 806static inline void
 807tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 808                     int dst_offset, int src_offset, int nr_items)
 809{
 810        int ret;
 811        ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 812                                       nr_items, GFP_NOFS);
 813        BUG_ON(ret < 0);
 814}
 815
 816static noinline void
 817tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 818                          struct extent_buffer *eb, int slot, int atomic)
 819{
 820        int ret;
 821
 822        ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
 823                                           MOD_LOG_KEY_REPLACE,
 824                                           atomic ? GFP_ATOMIC : GFP_NOFS);
 825        BUG_ON(ret < 0);
 826}
 827
 828static noinline void
 829tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 830{
 831        if (tree_mod_dont_log(fs_info, eb))
 832                return;
 833
 834        __tree_mod_log_free_eb(fs_info, eb);
 835
 836        tree_mod_log_write_unlock(fs_info);
 837}
 838
 839static noinline void
 840tree_mod_log_set_root_pointer(struct btrfs_root *root,
 841                              struct extent_buffer *new_root_node,
 842                              int log_removal)
 843{
 844        int ret;
 845        ret = tree_mod_log_insert_root(root->fs_info, root->node,
 846                                       new_root_node, GFP_NOFS, log_removal);
 847        BUG_ON(ret < 0);
 848}
 849
 850/*
 851 * check if the tree block can be shared by multiple trees
 852 */
 853int btrfs_block_can_be_shared(struct btrfs_root *root,
 854                              struct extent_buffer *buf)
 855{
 856        /*
 857         * Tree blocks not in refernece counted trees and tree roots
 858         * are never shared. If a block was allocated after the last
 859         * snapshot and the block was not allocated by tree relocation,
 860         * we know the block is not shared.
 861         */
 862        if (root->ref_cows &&
 863            buf != root->node && buf != root->commit_root &&
 864            (btrfs_header_generation(buf) <=
 865             btrfs_root_last_snapshot(&root->root_item) ||
 866             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 867                return 1;
 868#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 869        if (root->ref_cows &&
 870            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 871                return 1;
 872#endif
 873        return 0;
 874}
 875
 876static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 877                                       struct btrfs_root *root,
 878                                       struct extent_buffer *buf,
 879                                       struct extent_buffer *cow,
 880                                       int *last_ref)
 881{
 882        u64 refs;
 883        u64 owner;
 884        u64 flags;
 885        u64 new_flags = 0;
 886        int ret;
 887
 888        /*
 889         * Backrefs update rules:
 890         *
 891         * Always use full backrefs for extent pointers in tree block
 892         * allocated by tree relocation.
 893         *
 894         * If a shared tree block is no longer referenced by its owner
 895         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 896         * use full backrefs for extent pointers in tree block.
 897         *
 898         * If a tree block is been relocating
 899         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 900         * use full backrefs for extent pointers in tree block.
 901         * The reason for this is some operations (such as drop tree)
 902         * are only allowed for blocks use full backrefs.
 903         */
 904
 905        if (btrfs_block_can_be_shared(root, buf)) {
 906                ret = btrfs_lookup_extent_info(trans, root, buf->start,
 907                                               btrfs_header_level(buf), 1,
 908                                               &refs, &flags);
 909                if (ret)
 910                        return ret;
 911                if (refs == 0) {
 912                        ret = -EROFS;
 913                        btrfs_std_error(root->fs_info, ret);
 914                        return ret;
 915                }
 916        } else {
 917                refs = 1;
 918                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 919                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 920                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 921                else
 922                        flags = 0;
 923        }
 924
 925        owner = btrfs_header_owner(buf);
 926        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 927               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 928
 929        if (refs > 1) {
 930                if ((owner == root->root_key.objectid ||
 931                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 932                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 933                        ret = btrfs_inc_ref(trans, root, buf, 1, 1);
 934                        BUG_ON(ret); /* -ENOMEM */
 935
 936                        if (root->root_key.objectid ==
 937                            BTRFS_TREE_RELOC_OBJECTID) {
 938                                ret = btrfs_dec_ref(trans, root, buf, 0, 1);
 939                                BUG_ON(ret); /* -ENOMEM */
 940                                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 941                                BUG_ON(ret); /* -ENOMEM */
 942                        }
 943                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 944                } else {
 945
 946                        if (root->root_key.objectid ==
 947                            BTRFS_TREE_RELOC_OBJECTID)
 948                                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 949                        else
 950                                ret = btrfs_inc_ref(trans, root, cow, 0, 1);
 951                        BUG_ON(ret); /* -ENOMEM */
 952                }
 953                if (new_flags != 0) {
 954                        int level = btrfs_header_level(buf);
 955
 956                        ret = btrfs_set_disk_extent_flags(trans, root,
 957                                                          buf->start,
 958                                                          buf->len,
 959                                                          new_flags, level, 0);
 960                        if (ret)
 961                                return ret;
 962                }
 963        } else {
 964                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 965                        if (root->root_key.objectid ==
 966                            BTRFS_TREE_RELOC_OBJECTID)
 967                                ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 968                        else
 969                                ret = btrfs_inc_ref(trans, root, cow, 0, 1);
 970                        BUG_ON(ret); /* -ENOMEM */
 971                        ret = btrfs_dec_ref(trans, root, buf, 1, 1);
 972                        BUG_ON(ret); /* -ENOMEM */
 973                }
 974                clean_tree_block(trans, root, buf);
 975                *last_ref = 1;
 976        }
 977        return 0;
 978}
 979
 980/*
 981 * does the dirty work in cow of a single block.  The parent block (if
 982 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 983 * dirty and returned locked.  If you modify the block it needs to be marked
 984 * dirty again.
 985 *
 986 * search_start -- an allocation hint for the new block
 987 *
 988 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 989 * bytes the allocator should try to find free next to the block it returns.
 990 * This is just a hint and may be ignored by the allocator.
 991 */
 992static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 993                             struct btrfs_root *root,
 994                             struct extent_buffer *buf,
 995                             struct extent_buffer *parent, int parent_slot,
 996                             struct extent_buffer **cow_ret,
 997                             u64 search_start, u64 empty_size)
 998{
 999        struct btrfs_disk_key disk_key;
1000        struct extent_buffer *cow;
1001        int level, ret;
1002        int last_ref = 0;
1003        int unlock_orig = 0;
1004        u64 parent_start;
1005
1006        if (*cow_ret == buf)
1007                unlock_orig = 1;
1008
1009        btrfs_assert_tree_locked(buf);
1010
1011        WARN_ON(root->ref_cows && trans->transid !=
1012                root->fs_info->running_transaction->transid);
1013        WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1014
1015        level = btrfs_header_level(buf);
1016
1017        if (level == 0)
1018                btrfs_item_key(buf, &disk_key, 0);
1019        else
1020                btrfs_node_key(buf, &disk_key, 0);
1021
1022        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1023                if (parent)
1024                        parent_start = parent->start;
1025                else
1026                        parent_start = 0;
1027        } else
1028                parent_start = 0;
1029
1030        cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1031                                     root->root_key.objectid, &disk_key,
1032                                     level, search_start, empty_size);
1033        if (IS_ERR(cow))
1034                return PTR_ERR(cow);
1035
1036        /* cow is set to blocking by btrfs_init_new_buffer */
1037
1038        copy_extent_buffer(cow, buf, 0, 0, cow->len);
1039        btrfs_set_header_bytenr(cow, cow->start);
1040        btrfs_set_header_generation(cow, trans->transid);
1041        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1042        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1043                                     BTRFS_HEADER_FLAG_RELOC);
1044        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1045                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1046        else
1047                btrfs_set_header_owner(cow, root->root_key.objectid);
1048
1049        write_extent_buffer(cow, root->fs_info->fsid,
1050                            (unsigned long)btrfs_header_fsid(cow),
1051                            BTRFS_FSID_SIZE);
1052
1053        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1054        if (ret) {
1055                btrfs_abort_transaction(trans, root, ret);
1056                return ret;
1057        }
1058
1059        if (root->ref_cows)
1060                btrfs_reloc_cow_block(trans, root, buf, cow);
1061
1062        if (buf == root->node) {
1063                WARN_ON(parent && parent != buf);
1064                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1065                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1066                        parent_start = buf->start;
1067                else
1068                        parent_start = 0;
1069
1070                extent_buffer_get(cow);
1071                tree_mod_log_set_root_pointer(root, cow, 1);
1072                rcu_assign_pointer(root->node, cow);
1073
1074                btrfs_free_tree_block(trans, root, buf, parent_start,
1075                                      last_ref);
1076                free_extent_buffer(buf);
1077                add_root_to_dirty_list(root);
1078        } else {
1079                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080                        parent_start = parent->start;
1081                else
1082                        parent_start = 0;
1083
1084                WARN_ON(trans->transid != btrfs_header_generation(parent));
1085                tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1086                                        MOD_LOG_KEY_REPLACE);
1087                btrfs_set_node_blockptr(parent, parent_slot,
1088                                        cow->start);
1089                btrfs_set_node_ptr_generation(parent, parent_slot,
1090                                              trans->transid);
1091                btrfs_mark_buffer_dirty(parent);
1092                if (last_ref)
1093                        tree_mod_log_free_eb(root->fs_info, buf);
1094                btrfs_free_tree_block(trans, root, buf, parent_start,
1095                                      last_ref);
1096        }
1097        if (unlock_orig)
1098                btrfs_tree_unlock(buf);
1099        free_extent_buffer_stale(buf);
1100        btrfs_mark_buffer_dirty(cow);
1101        *cow_ret = cow;
1102        return 0;
1103}
1104
1105/*
1106 * returns the logical address of the oldest predecessor of the given root.
1107 * entries older than time_seq are ignored.
1108 */
1109static struct tree_mod_elem *
1110__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1111                           struct extent_buffer *eb_root, u64 time_seq)
1112{
1113        struct tree_mod_elem *tm;
1114        struct tree_mod_elem *found = NULL;
1115        u64 root_logical = eb_root->start;
1116        int looped = 0;
1117
1118        if (!time_seq)
1119                return 0;
1120
1121        /*
1122         * the very last operation that's logged for a root is the replacement
1123         * operation (if it is replaced at all). this has the index of the *new*
1124         * root, making it the very first operation that's logged for this root.
1125         */
1126        while (1) {
1127                tm = tree_mod_log_search_oldest(fs_info, root_logical,
1128                                                time_seq);
1129                if (!looped && !tm)
1130                        return 0;
1131                /*
1132                 * if there are no tree operation for the oldest root, we simply
1133                 * return it. this should only happen if that (old) root is at
1134                 * level 0.
1135                 */
1136                if (!tm)
1137                        break;
1138
1139                /*
1140                 * if there's an operation that's not a root replacement, we
1141                 * found the oldest version of our root. normally, we'll find a
1142                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1143                 */
1144                if (tm->op != MOD_LOG_ROOT_REPLACE)
1145                        break;
1146
1147                found = tm;
1148                root_logical = tm->old_root.logical;
1149                looped = 1;
1150        }
1151
1152        /* if there's no old root to return, return what we found instead */
1153        if (!found)
1154                found = tm;
1155
1156        return found;
1157}
1158
1159/*
1160 * tm is a pointer to the first operation to rewind within eb. then, all
1161 * previous operations will be rewinded (until we reach something older than
1162 * time_seq).
1163 */
1164static void
1165__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1166                      u64 time_seq, struct tree_mod_elem *first_tm)
1167{
1168        u32 n;
1169        struct rb_node *next;
1170        struct tree_mod_elem *tm = first_tm;
1171        unsigned long o_dst;
1172        unsigned long o_src;
1173        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1174
1175        n = btrfs_header_nritems(eb);
1176        tree_mod_log_read_lock(fs_info);
1177        while (tm && tm->seq >= time_seq) {
1178                /*
1179                 * all the operations are recorded with the operator used for
1180                 * the modification. as we're going backwards, we do the
1181                 * opposite of each operation here.
1182                 */
1183                switch (tm->op) {
1184                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1185                        BUG_ON(tm->slot < n);
1186                        /* Fallthrough */
1187                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1188                case MOD_LOG_KEY_REMOVE:
1189                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1190                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1191                        btrfs_set_node_ptr_generation(eb, tm->slot,
1192                                                      tm->generation);
1193                        n++;
1194                        break;
1195                case MOD_LOG_KEY_REPLACE:
1196                        BUG_ON(tm->slot >= n);
1197                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1198                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1199                        btrfs_set_node_ptr_generation(eb, tm->slot,
1200                                                      tm->generation);
1201                        break;
1202                case MOD_LOG_KEY_ADD:
1203                        /* if a move operation is needed it's in the log */
1204                        n--;
1205                        break;
1206                case MOD_LOG_MOVE_KEYS:
1207                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1208                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1209                        memmove_extent_buffer(eb, o_dst, o_src,
1210                                              tm->move.nr_items * p_size);
1211                        break;
1212                case MOD_LOG_ROOT_REPLACE:
1213                        /*
1214                         * this operation is special. for roots, this must be
1215                         * handled explicitly before rewinding.
1216                         * for non-roots, this operation may exist if the node
1217                         * was a root: root A -> child B; then A gets empty and
1218                         * B is promoted to the new root. in the mod log, we'll
1219                         * have a root-replace operation for B, a tree block
1220                         * that is no root. we simply ignore that operation.
1221                         */
1222                        break;
1223                }
1224                next = rb_next(&tm->node);
1225                if (!next)
1226                        break;
1227                tm = container_of(next, struct tree_mod_elem, node);
1228                if (tm->index != first_tm->index)
1229                        break;
1230        }
1231        tree_mod_log_read_unlock(fs_info);
1232        btrfs_set_header_nritems(eb, n);
1233}
1234
1235/*
1236 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1237 * is returned. If rewind operations happen, a fresh buffer is returned. The
1238 * returned buffer is always read-locked. If the returned buffer is not the
1239 * input buffer, the lock on the input buffer is released and the input buffer
1240 * is freed (its refcount is decremented).
1241 */
1242static struct extent_buffer *
1243tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1244                    u64 time_seq)
1245{
1246        struct extent_buffer *eb_rewin;
1247        struct tree_mod_elem *tm;
1248
1249        if (!time_seq)
1250                return eb;
1251
1252        if (btrfs_header_level(eb) == 0)
1253                return eb;
1254
1255        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1256        if (!tm)
1257                return eb;
1258
1259        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1260                BUG_ON(tm->slot != 0);
1261                eb_rewin = alloc_dummy_extent_buffer(eb->start,
1262                                                fs_info->tree_root->nodesize);
1263                BUG_ON(!eb_rewin);
1264                btrfs_set_header_bytenr(eb_rewin, eb->start);
1265                btrfs_set_header_backref_rev(eb_rewin,
1266                                             btrfs_header_backref_rev(eb));
1267                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1268                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1269        } else {
1270                eb_rewin = btrfs_clone_extent_buffer(eb);
1271                BUG_ON(!eb_rewin);
1272        }
1273
1274        btrfs_tree_read_unlock(eb);
1275        free_extent_buffer(eb);
1276
1277        extent_buffer_get(eb_rewin);
1278        btrfs_tree_read_lock(eb_rewin);
1279        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1280        WARN_ON(btrfs_header_nritems(eb_rewin) >
1281                BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1282
1283        return eb_rewin;
1284}
1285
1286/*
1287 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1288 * value. If there are no changes, the current root->root_node is returned. If
1289 * anything changed in between, there's a fresh buffer allocated on which the
1290 * rewind operations are done. In any case, the returned buffer is read locked.
1291 * Returns NULL on error (with no locks held).
1292 */
1293static inline struct extent_buffer *
1294get_old_root(struct btrfs_root *root, u64 time_seq)
1295{
1296        struct tree_mod_elem *tm;
1297        struct extent_buffer *eb = NULL;
1298        struct extent_buffer *eb_root;
1299        struct extent_buffer *old;
1300        struct tree_mod_root *old_root = NULL;
1301        u64 old_generation = 0;
1302        u64 logical;
1303        u32 blocksize;
1304
1305        eb_root = btrfs_read_lock_root_node(root);
1306        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1307        if (!tm)
1308                return eb_root;
1309
1310        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1311                old_root = &tm->old_root;
1312                old_generation = tm->generation;
1313                logical = old_root->logical;
1314        } else {
1315                logical = eb_root->start;
1316        }
1317
1318        tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1319        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1320                btrfs_tree_read_unlock(eb_root);
1321                free_extent_buffer(eb_root);
1322                blocksize = btrfs_level_size(root, old_root->level);
1323                old = read_tree_block(root, logical, blocksize, 0);
1324                if (!old || !extent_buffer_uptodate(old)) {
1325                        free_extent_buffer(old);
1326                        pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1327                                logical);
1328                        WARN_ON(1);
1329                } else {
1330                        eb = btrfs_clone_extent_buffer(old);
1331                        free_extent_buffer(old);
1332                }
1333        } else if (old_root) {
1334                btrfs_tree_read_unlock(eb_root);
1335                free_extent_buffer(eb_root);
1336                eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1337        } else {
1338                eb = btrfs_clone_extent_buffer(eb_root);
1339                btrfs_tree_read_unlock(eb_root);
1340                free_extent_buffer(eb_root);
1341        }
1342
1343        if (!eb)
1344                return NULL;
1345        extent_buffer_get(eb);
1346        btrfs_tree_read_lock(eb);
1347        if (old_root) {
1348                btrfs_set_header_bytenr(eb, eb->start);
1349                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1350                btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1351                btrfs_set_header_level(eb, old_root->level);
1352                btrfs_set_header_generation(eb, old_generation);
1353        }
1354        if (tm)
1355                __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1356        else
1357                WARN_ON(btrfs_header_level(eb) != 0);
1358        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1359
1360        return eb;
1361}
1362
1363int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1364{
1365        struct tree_mod_elem *tm;
1366        int level;
1367        struct extent_buffer *eb_root = btrfs_root_node(root);
1368
1369        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1370        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1371                level = tm->old_root.level;
1372        } else {
1373                level = btrfs_header_level(eb_root);
1374        }
1375        free_extent_buffer(eb_root);
1376
1377        return level;
1378}
1379
1380static inline int should_cow_block(struct btrfs_trans_handle *trans,
1381                                   struct btrfs_root *root,
1382                                   struct extent_buffer *buf)
1383{
1384        /* ensure we can see the force_cow */
1385        smp_rmb();
1386
1387        /*
1388         * We do not need to cow a block if
1389         * 1) this block is not created or changed in this transaction;
1390         * 2) this block does not belong to TREE_RELOC tree;
1391         * 3) the root is not forced COW.
1392         *
1393         * What is forced COW:
1394         *    when we create snapshot during commiting the transaction,
1395         *    after we've finished coping src root, we must COW the shared
1396         *    block to ensure the metadata consistency.
1397         */
1398        if (btrfs_header_generation(buf) == trans->transid &&
1399            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1400            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1401              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1402            !root->force_cow)
1403                return 0;
1404        return 1;
1405}
1406
1407/*
1408 * cows a single block, see __btrfs_cow_block for the real work.
1409 * This version of it has extra checks so that a block isn't cow'd more than
1410 * once per transaction, as long as it hasn't been written yet
1411 */
1412noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1413                    struct btrfs_root *root, struct extent_buffer *buf,
1414                    struct extent_buffer *parent, int parent_slot,
1415                    struct extent_buffer **cow_ret)
1416{
1417        u64 search_start;
1418        int ret;
1419
1420        if (trans->transaction != root->fs_info->running_transaction)
1421                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1422                       (unsigned long long)trans->transid,
1423                       (unsigned long long)
1424                       root->fs_info->running_transaction->transid);
1425
1426        if (trans->transid != root->fs_info->generation)
1427                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1428                       (unsigned long long)trans->transid,
1429                       (unsigned long long)root->fs_info->generation);
1430
1431        if (!should_cow_block(trans, root, buf)) {
1432                *cow_ret = buf;
1433                return 0;
1434        }
1435
1436        search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1437
1438        if (parent)
1439                btrfs_set_lock_blocking(parent);
1440        btrfs_set_lock_blocking(buf);
1441
1442        ret = __btrfs_cow_block(trans, root, buf, parent,
1443                                 parent_slot, cow_ret, search_start, 0);
1444
1445        trace_btrfs_cow_block(root, buf, *cow_ret);
1446
1447        return ret;
1448}
1449
1450/*
1451 * helper function for defrag to decide if two blocks pointed to by a
1452 * node are actually close by
1453 */
1454static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1455{
1456        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1457                return 1;
1458        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1459                return 1;
1460        return 0;
1461}
1462
1463/*
1464 * compare two keys in a memcmp fashion
1465 */
1466static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1467{
1468        struct btrfs_key k1;
1469
1470        btrfs_disk_key_to_cpu(&k1, disk);
1471
1472        return btrfs_comp_cpu_keys(&k1, k2);
1473}
1474
1475/*
1476 * same as comp_keys only with two btrfs_key's
1477 */
1478int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1479{
1480        if (k1->objectid > k2->objectid)
1481                return 1;
1482        if (k1->objectid < k2->objectid)
1483                return -1;
1484        if (k1->type > k2->type)
1485                return 1;
1486        if (k1->type < k2->type)
1487                return -1;
1488        if (k1->offset > k2->offset)
1489                return 1;
1490        if (k1->offset < k2->offset)
1491                return -1;
1492        return 0;
1493}
1494
1495/*
1496 * this is used by the defrag code to go through all the
1497 * leaves pointed to by a node and reallocate them so that
1498 * disk order is close to key order
1499 */
1500int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1501                       struct btrfs_root *root, struct extent_buffer *parent,
1502                       int start_slot, u64 *last_ret,
1503                       struct btrfs_key *progress)
1504{
1505        struct extent_buffer *cur;
1506        u64 blocknr;
1507        u64 gen;
1508        u64 search_start = *last_ret;
1509        u64 last_block = 0;
1510        u64 other;
1511        u32 parent_nritems;
1512        int end_slot;
1513        int i;
1514        int err = 0;
1515        int parent_level;
1516        int uptodate;
1517        u32 blocksize;
1518        int progress_passed = 0;
1519        struct btrfs_disk_key disk_key;
1520
1521        parent_level = btrfs_header_level(parent);
1522
1523        WARN_ON(trans->transaction != root->fs_info->running_transaction);
1524        WARN_ON(trans->transid != root->fs_info->generation);
1525
1526        parent_nritems = btrfs_header_nritems(parent);
1527        blocksize = btrfs_level_size(root, parent_level - 1);
1528        end_slot = parent_nritems;
1529
1530        if (parent_nritems == 1)
1531                return 0;
1532
1533        btrfs_set_lock_blocking(parent);
1534
1535        for (i = start_slot; i < end_slot; i++) {
1536                int close = 1;
1537
1538                btrfs_node_key(parent, &disk_key, i);
1539                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1540                        continue;
1541
1542                progress_passed = 1;
1543                blocknr = btrfs_node_blockptr(parent, i);
1544                gen = btrfs_node_ptr_generation(parent, i);
1545                if (last_block == 0)
1546                        last_block = blocknr;
1547
1548                if (i > 0) {
1549                        other = btrfs_node_blockptr(parent, i - 1);
1550                        close = close_blocks(blocknr, other, blocksize);
1551                }
1552                if (!close && i < end_slot - 2) {
1553                        other = btrfs_node_blockptr(parent, i + 1);
1554                        close = close_blocks(blocknr, other, blocksize);
1555                }
1556                if (close) {
1557                        last_block = blocknr;
1558                        continue;
1559                }
1560
1561                cur = btrfs_find_tree_block(root, blocknr, blocksize);
1562                if (cur)
1563                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1564                else
1565                        uptodate = 0;
1566                if (!cur || !uptodate) {
1567                        if (!cur) {
1568                                cur = read_tree_block(root, blocknr,
1569                                                         blocksize, gen);
1570                                if (!cur || !extent_buffer_uptodate(cur)) {
1571                                        free_extent_buffer(cur);
1572                                        return -EIO;
1573                                }
1574                        } else if (!uptodate) {
1575                                err = btrfs_read_buffer(cur, gen);
1576                                if (err) {
1577                                        free_extent_buffer(cur);
1578                                        return err;
1579                                }
1580                        }
1581                }
1582                if (search_start == 0)
1583                        search_start = last_block;
1584
1585                btrfs_tree_lock(cur);
1586                btrfs_set_lock_blocking(cur);
1587                err = __btrfs_cow_block(trans, root, cur, parent, i,
1588                                        &cur, search_start,
1589                                        min(16 * blocksize,
1590                                            (end_slot - i) * blocksize));
1591                if (err) {
1592                        btrfs_tree_unlock(cur);
1593                        free_extent_buffer(cur);
1594                        break;
1595                }
1596                search_start = cur->start;
1597                last_block = cur->start;
1598                *last_ret = search_start;
1599                btrfs_tree_unlock(cur);
1600                free_extent_buffer(cur);
1601        }
1602        return err;
1603}
1604
1605/*
1606 * The leaf data grows from end-to-front in the node.
1607 * this returns the address of the start of the last item,
1608 * which is the stop of the leaf data stack
1609 */
1610static inline unsigned int leaf_data_end(struct btrfs_root *root,
1611                                         struct extent_buffer *leaf)
1612{
1613        u32 nr = btrfs_header_nritems(leaf);
1614        if (nr == 0)
1615                return BTRFS_LEAF_DATA_SIZE(root);
1616        return btrfs_item_offset_nr(leaf, nr - 1);
1617}
1618
1619
1620/*
1621 * search for key in the extent_buffer.  The items start at offset p,
1622 * and they are item_size apart.  There are 'max' items in p.
1623 *
1624 * the slot in the array is returned via slot, and it points to
1625 * the place where you would insert key if it is not found in
1626 * the array.
1627 *
1628 * slot may point to max if the key is bigger than all of the keys
1629 */
1630static noinline int generic_bin_search(struct extent_buffer *eb,
1631                                       unsigned long p,
1632                                       int item_size, struct btrfs_key *key,
1633                                       int max, int *slot)
1634{
1635        int low = 0;
1636        int high = max;
1637        int mid;
1638        int ret;
1639        struct btrfs_disk_key *tmp = NULL;
1640        struct btrfs_disk_key unaligned;
1641        unsigned long offset;
1642        char *kaddr = NULL;
1643        unsigned long map_start = 0;
1644        unsigned long map_len = 0;
1645        int err;
1646
1647        while (low < high) {
1648                mid = (low + high) / 2;
1649                offset = p + mid * item_size;
1650
1651                if (!kaddr || offset < map_start ||
1652                    (offset + sizeof(struct btrfs_disk_key)) >
1653                    map_start + map_len) {
1654
1655                        err = map_private_extent_buffer(eb, offset,
1656                                                sizeof(struct btrfs_disk_key),
1657                                                &kaddr, &map_start, &map_len);
1658
1659                        if (!err) {
1660                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1661                                                        map_start);
1662                        } else {
1663                                read_extent_buffer(eb, &unaligned,
1664                                                   offset, sizeof(unaligned));
1665                                tmp = &unaligned;
1666                        }
1667
1668                } else {
1669                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1670                                                        map_start);
1671                }
1672                ret = comp_keys(tmp, key);
1673
1674                if (ret < 0)
1675                        low = mid + 1;
1676                else if (ret > 0)
1677                        high = mid;
1678                else {
1679                        *slot = mid;
1680                        return 0;
1681                }
1682        }
1683        *slot = low;
1684        return 1;
1685}
1686
1687/*
1688 * simple bin_search frontend that does the right thing for
1689 * leaves vs nodes
1690 */
1691static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1692                      int level, int *slot)
1693{
1694        if (level == 0)
1695                return generic_bin_search(eb,
1696                                          offsetof(struct btrfs_leaf, items),
1697                                          sizeof(struct btrfs_item),
1698                                          key, btrfs_header_nritems(eb),
1699                                          slot);
1700        else
1701                return generic_bin_search(eb,
1702                                          offsetof(struct btrfs_node, ptrs),
1703                                          sizeof(struct btrfs_key_ptr),
1704                                          key, btrfs_header_nritems(eb),
1705                                          slot);
1706}
1707
1708int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1709                     int level, int *slot)
1710{
1711        return bin_search(eb, key, level, slot);
1712}
1713
1714static void root_add_used(struct btrfs_root *root, u32 size)
1715{
1716        spin_lock(&root->accounting_lock);
1717        btrfs_set_root_used(&root->root_item,
1718                            btrfs_root_used(&root->root_item) + size);
1719        spin_unlock(&root->accounting_lock);
1720}
1721
1722static void root_sub_used(struct btrfs_root *root, u32 size)
1723{
1724        spin_lock(&root->accounting_lock);
1725        btrfs_set_root_used(&root->root_item,
1726                            btrfs_root_used(&root->root_item) - size);
1727        spin_unlock(&root->accounting_lock);
1728}
1729
1730/* given a node and slot number, this reads the blocks it points to.  The
1731 * extent buffer is returned with a reference taken (but unlocked).
1732 * NULL is returned on error.
1733 */
1734static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1735                                   struct extent_buffer *parent, int slot)
1736{
1737        int level = btrfs_header_level(parent);
1738        struct extent_buffer *eb;
1739
1740        if (slot < 0)
1741                return NULL;
1742        if (slot >= btrfs_header_nritems(parent))
1743                return NULL;
1744
1745        BUG_ON(level == 0);
1746
1747        eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1748                             btrfs_level_size(root, level - 1),
1749                             btrfs_node_ptr_generation(parent, slot));
1750        if (eb && !extent_buffer_uptodate(eb)) {
1751                free_extent_buffer(eb);
1752                eb = NULL;
1753        }
1754
1755        return eb;
1756}
1757
1758/*
1759 * node level balancing, used to make sure nodes are in proper order for
1760 * item deletion.  We balance from the top down, so we have to make sure
1761 * that a deletion won't leave an node completely empty later on.
1762 */
1763static noinline int balance_level(struct btrfs_trans_handle *trans,
1764                         struct btrfs_root *root,
1765                         struct btrfs_path *path, int level)
1766{
1767        struct extent_buffer *right = NULL;
1768        struct extent_buffer *mid;
1769        struct extent_buffer *left = NULL;
1770        struct extent_buffer *parent = NULL;
1771        int ret = 0;
1772        int wret;
1773        int pslot;
1774        int orig_slot = path->slots[level];
1775        u64 orig_ptr;
1776
1777        if (level == 0)
1778                return 0;
1779
1780        mid = path->nodes[level];
1781
1782        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1783                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1784        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1785
1786        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1787
1788        if (level < BTRFS_MAX_LEVEL - 1) {
1789                parent = path->nodes[level + 1];
1790                pslot = path->slots[level + 1];
1791        }
1792
1793        /*
1794         * deal with the case where there is only one pointer in the root
1795         * by promoting the node below to a root
1796         */
1797        if (!parent) {
1798                struct extent_buffer *child;
1799
1800                if (btrfs_header_nritems(mid) != 1)
1801                        return 0;
1802
1803                /* promote the child to a root */
1804                child = read_node_slot(root, mid, 0);
1805                if (!child) {
1806                        ret = -EROFS;
1807                        btrfs_std_error(root->fs_info, ret);
1808                        goto enospc;
1809                }
1810
1811                btrfs_tree_lock(child);
1812                btrfs_set_lock_blocking(child);
1813                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1814                if (ret) {
1815                        btrfs_tree_unlock(child);
1816                        free_extent_buffer(child);
1817                        goto enospc;
1818                }
1819
1820                tree_mod_log_set_root_pointer(root, child, 1);
1821                rcu_assign_pointer(root->node, child);
1822
1823                add_root_to_dirty_list(root);
1824                btrfs_tree_unlock(child);
1825
1826                path->locks[level] = 0;
1827                path->nodes[level] = NULL;
1828                clean_tree_block(trans, root, mid);
1829                btrfs_tree_unlock(mid);
1830                /* once for the path */
1831                free_extent_buffer(mid);
1832
1833                root_sub_used(root, mid->len);
1834                btrfs_free_tree_block(trans, root, mid, 0, 1);
1835                /* once for the root ptr */
1836                free_extent_buffer_stale(mid);
1837                return 0;
1838        }
1839        if (btrfs_header_nritems(mid) >
1840            BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1841                return 0;
1842
1843        left = read_node_slot(root, parent, pslot - 1);
1844        if (left) {
1845                btrfs_tree_lock(left);
1846                btrfs_set_lock_blocking(left);
1847                wret = btrfs_cow_block(trans, root, left,
1848                                       parent, pslot - 1, &left);
1849                if (wret) {
1850                        ret = wret;
1851                        goto enospc;
1852                }
1853        }
1854        right = read_node_slot(root, parent, pslot + 1);
1855        if (right) {
1856                btrfs_tree_lock(right);
1857                btrfs_set_lock_blocking(right);
1858                wret = btrfs_cow_block(trans, root, right,
1859                                       parent, pslot + 1, &right);
1860                if (wret) {
1861                        ret = wret;
1862                        goto enospc;
1863                }
1864        }
1865
1866        /* first, try to make some room in the middle buffer */
1867        if (left) {
1868                orig_slot += btrfs_header_nritems(left);
1869                wret = push_node_left(trans, root, left, mid, 1);
1870                if (wret < 0)
1871                        ret = wret;
1872        }
1873
1874        /*
1875         * then try to empty the right most buffer into the middle
1876         */
1877        if (right) {
1878                wret = push_node_left(trans, root, mid, right, 1);
1879                if (wret < 0 && wret != -ENOSPC)
1880                        ret = wret;
1881                if (btrfs_header_nritems(right) == 0) {
1882                        clean_tree_block(trans, root, right);
1883                        btrfs_tree_unlock(right);
1884                        del_ptr(root, path, level + 1, pslot + 1);
1885                        root_sub_used(root, right->len);
1886                        btrfs_free_tree_block(trans, root, right, 0, 1);
1887                        free_extent_buffer_stale(right);
1888                        right = NULL;
1889                } else {
1890                        struct btrfs_disk_key right_key;
1891                        btrfs_node_key(right, &right_key, 0);
1892                        tree_mod_log_set_node_key(root->fs_info, parent,
1893                                                  pslot + 1, 0);
1894                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1895                        btrfs_mark_buffer_dirty(parent);
1896                }
1897        }
1898        if (btrfs_header_nritems(mid) == 1) {
1899                /*
1900                 * we're not allowed to leave a node with one item in the
1901                 * tree during a delete.  A deletion from lower in the tree
1902                 * could try to delete the only pointer in this node.
1903                 * So, pull some keys from the left.
1904                 * There has to be a left pointer at this point because
1905                 * otherwise we would have pulled some pointers from the
1906                 * right
1907                 */
1908                if (!left) {
1909                        ret = -EROFS;
1910                        btrfs_std_error(root->fs_info, ret);
1911                        goto enospc;
1912                }
1913                wret = balance_node_right(trans, root, mid, left);
1914                if (wret < 0) {
1915                        ret = wret;
1916                        goto enospc;
1917                }
1918                if (wret == 1) {
1919                        wret = push_node_left(trans, root, left, mid, 1);
1920                        if (wret < 0)
1921                                ret = wret;
1922                }
1923                BUG_ON(wret == 1);
1924        }
1925        if (btrfs_header_nritems(mid) == 0) {
1926                clean_tree_block(trans, root, mid);
1927                btrfs_tree_unlock(mid);
1928                del_ptr(root, path, level + 1, pslot);
1929                root_sub_used(root, mid->len);
1930                btrfs_free_tree_block(trans, root, mid, 0, 1);
1931                free_extent_buffer_stale(mid);
1932                mid = NULL;
1933        } else {
1934                /* update the parent key to reflect our changes */
1935                struct btrfs_disk_key mid_key;
1936                btrfs_node_key(mid, &mid_key, 0);
1937                tree_mod_log_set_node_key(root->fs_info, parent,
1938                                          pslot, 0);
1939                btrfs_set_node_key(parent, &mid_key, pslot);
1940                btrfs_mark_buffer_dirty(parent);
1941        }
1942
1943        /* update the path */
1944        if (left) {
1945                if (btrfs_header_nritems(left) > orig_slot) {
1946                        extent_buffer_get(left);
1947                        /* left was locked after cow */
1948                        path->nodes[level] = left;
1949                        path->slots[level + 1] -= 1;
1950                        path->slots[level] = orig_slot;
1951                        if (mid) {
1952                                btrfs_tree_unlock(mid);
1953                                free_extent_buffer(mid);
1954                        }
1955                } else {
1956                        orig_slot -= btrfs_header_nritems(left);
1957                        path->slots[level] = orig_slot;
1958                }
1959        }
1960        /* double check we haven't messed things up */
1961        if (orig_ptr !=
1962            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1963                BUG();
1964enospc:
1965        if (right) {
1966                btrfs_tree_unlock(right);
1967                free_extent_buffer(right);
1968        }
1969        if (left) {
1970                if (path->nodes[level] != left)
1971                        btrfs_tree_unlock(left);
1972                free_extent_buffer(left);
1973        }
1974        return ret;
1975}
1976
1977/* Node balancing for insertion.  Here we only split or push nodes around
1978 * when they are completely full.  This is also done top down, so we
1979 * have to be pessimistic.
1980 */
1981static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1982                                          struct btrfs_root *root,
1983                                          struct btrfs_path *path, int level)
1984{
1985        struct extent_buffer *right = NULL;
1986        struct extent_buffer *mid;
1987        struct extent_buffer *left = NULL;
1988        struct extent_buffer *parent = NULL;
1989        int ret = 0;
1990        int wret;
1991        int pslot;
1992        int orig_slot = path->slots[level];
1993
1994        if (level == 0)
1995                return 1;
1996
1997        mid = path->nodes[level];
1998        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1999
2000        if (level < BTRFS_MAX_LEVEL - 1) {
2001                parent = path->nodes[level + 1];
2002                pslot = path->slots[level + 1];
2003        }
2004
2005        if (!parent)
2006                return 1;
2007
2008        left = read_node_slot(root, parent, pslot - 1);
2009
2010        /* first, try to make some room in the middle buffer */
2011        if (left) {
2012                u32 left_nr;
2013
2014                btrfs_tree_lock(left);
2015                btrfs_set_lock_blocking(left);
2016
2017                left_nr = btrfs_header_nritems(left);
2018                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2019                        wret = 1;
2020                } else {
2021                        ret = btrfs_cow_block(trans, root, left, parent,
2022                                              pslot - 1, &left);
2023                        if (ret)
2024                                wret = 1;
2025                        else {
2026                                wret = push_node_left(trans, root,
2027                                                      left, mid, 0);
2028                        }
2029                }
2030                if (wret < 0)
2031                        ret = wret;
2032                if (wret == 0) {
2033                        struct btrfs_disk_key disk_key;
2034                        orig_slot += left_nr;
2035                        btrfs_node_key(mid, &disk_key, 0);
2036                        tree_mod_log_set_node_key(root->fs_info, parent,
2037                                                  pslot, 0);
2038                        btrfs_set_node_key(parent, &disk_key, pslot);
2039                        btrfs_mark_buffer_dirty(parent);
2040                        if (btrfs_header_nritems(left) > orig_slot) {
2041                                path->nodes[level] = left;
2042                                path->slots[level + 1] -= 1;
2043                                path->slots[level] = orig_slot;
2044                                btrfs_tree_unlock(mid);
2045                                free_extent_buffer(mid);
2046                        } else {
2047                                orig_slot -=
2048                                        btrfs_header_nritems(left);
2049                                path->slots[level] = orig_slot;
2050                                btrfs_tree_unlock(left);
2051                                free_extent_buffer(left);
2052                        }
2053                        return 0;
2054                }
2055                btrfs_tree_unlock(left);
2056                free_extent_buffer(left);
2057        }
2058        right = read_node_slot(root, parent, pslot + 1);
2059
2060        /*
2061         * then try to empty the right most buffer into the middle
2062         */
2063        if (right) {
2064                u32 right_nr;
2065
2066                btrfs_tree_lock(right);
2067                btrfs_set_lock_blocking(right);
2068
2069                right_nr = btrfs_header_nritems(right);
2070                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2071                        wret = 1;
2072                } else {
2073                        ret = btrfs_cow_block(trans, root, right,
2074                                              parent, pslot + 1,
2075                                              &right);
2076                        if (ret)
2077                                wret = 1;
2078                        else {
2079                                wret = balance_node_right(trans, root,
2080                                                          right, mid);
2081                        }
2082                }
2083                if (wret < 0)
2084                        ret = wret;
2085                if (wret == 0) {
2086                        struct btrfs_disk_key disk_key;
2087
2088                        btrfs_node_key(right, &disk_key, 0);
2089                        tree_mod_log_set_node_key(root->fs_info, parent,
2090                                                  pslot + 1, 0);
2091                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2092                        btrfs_mark_buffer_dirty(parent);
2093
2094                        if (btrfs_header_nritems(mid) <= orig_slot) {
2095                                path->nodes[level] = right;
2096                                path->slots[level + 1] += 1;
2097                                path->slots[level] = orig_slot -
2098                                        btrfs_header_nritems(mid);
2099                                btrfs_tree_unlock(mid);
2100                                free_extent_buffer(mid);
2101                        } else {
2102                                btrfs_tree_unlock(right);
2103                                free_extent_buffer(right);
2104                        }
2105                        return 0;
2106                }
2107                btrfs_tree_unlock(right);
2108                free_extent_buffer(right);
2109        }
2110        return 1;
2111}
2112
2113/*
2114 * readahead one full node of leaves, finding things that are close
2115 * to the block in 'slot', and triggering ra on them.
2116 */
2117static void reada_for_search(struct btrfs_root *root,
2118                             struct btrfs_path *path,
2119                             int level, int slot, u64 objectid)
2120{
2121        struct extent_buffer *node;
2122        struct btrfs_disk_key disk_key;
2123        u32 nritems;
2124        u64 search;
2125        u64 target;
2126        u64 nread = 0;
2127        u64 gen;
2128        int direction = path->reada;
2129        struct extent_buffer *eb;
2130        u32 nr;
2131        u32 blocksize;
2132        u32 nscan = 0;
2133
2134        if (level != 1)
2135                return;
2136
2137        if (!path->nodes[level])
2138                return;
2139
2140        node = path->nodes[level];
2141
2142        search = btrfs_node_blockptr(node, slot);
2143        blocksize = btrfs_level_size(root, level - 1);
2144        eb = btrfs_find_tree_block(root, search, blocksize);
2145        if (eb) {
2146                free_extent_buffer(eb);
2147                return;
2148        }
2149
2150        target = search;
2151
2152        nritems = btrfs_header_nritems(node);
2153        nr = slot;
2154
2155        while (1) {
2156                if (direction < 0) {
2157                        if (nr == 0)
2158                                break;
2159                        nr--;
2160                } else if (direction > 0) {
2161                        nr++;
2162                        if (nr >= nritems)
2163                                break;
2164                }
2165                if (path->reada < 0 && objectid) {
2166                        btrfs_node_key(node, &disk_key, nr);
2167                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2168                                break;
2169                }
2170                search = btrfs_node_blockptr(node, nr);
2171                if ((search <= target && target - search <= 65536) ||
2172                    (search > target && search - target <= 65536)) {
2173                        gen = btrfs_node_ptr_generation(node, nr);
2174                        readahead_tree_block(root, search, blocksize, gen);
2175                        nread += blocksize;
2176                }
2177                nscan++;
2178                if ((nread > 65536 || nscan > 32))
2179                        break;
2180        }
2181}
2182
2183static noinline void reada_for_balance(struct btrfs_root *root,
2184                                       struct btrfs_path *path, int level)
2185{
2186        int slot;
2187        int nritems;
2188        struct extent_buffer *parent;
2189        struct extent_buffer *eb;
2190        u64 gen;
2191        u64 block1 = 0;
2192        u64 block2 = 0;
2193        int blocksize;
2194
2195        parent = path->nodes[level + 1];
2196        if (!parent)
2197                return;
2198
2199        nritems = btrfs_header_nritems(parent);
2200        slot = path->slots[level + 1];
2201        blocksize = btrfs_level_size(root, level);
2202
2203        if (slot > 0) {
2204                block1 = btrfs_node_blockptr(parent, slot - 1);
2205                gen = btrfs_node_ptr_generation(parent, slot - 1);
2206                eb = btrfs_find_tree_block(root, block1, blocksize);
2207                /*
2208                 * if we get -eagain from btrfs_buffer_uptodate, we
2209                 * don't want to return eagain here.  That will loop
2210                 * forever
2211                 */
2212                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2213                        block1 = 0;
2214                free_extent_buffer(eb);
2215        }
2216        if (slot + 1 < nritems) {
2217                block2 = btrfs_node_blockptr(parent, slot + 1);
2218                gen = btrfs_node_ptr_generation(parent, slot + 1);
2219                eb = btrfs_find_tree_block(root, block2, blocksize);
2220                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2221                        block2 = 0;
2222                free_extent_buffer(eb);
2223        }
2224
2225        if (block1)
2226                readahead_tree_block(root, block1, blocksize, 0);
2227        if (block2)
2228                readahead_tree_block(root, block2, blocksize, 0);
2229}
2230
2231
2232/*
2233 * when we walk down the tree, it is usually safe to unlock the higher layers
2234 * in the tree.  The exceptions are when our path goes through slot 0, because
2235 * operations on the tree might require changing key pointers higher up in the
2236 * tree.
2237 *
2238 * callers might also have set path->keep_locks, which tells this code to keep
2239 * the lock if the path points to the last slot in the block.  This is part of
2240 * walking through the tree, and selecting the next slot in the higher block.
2241 *
2242 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2243 * if lowest_unlock is 1, level 0 won't be unlocked
2244 */
2245static noinline void unlock_up(struct btrfs_path *path, int level,
2246                               int lowest_unlock, int min_write_lock_level,
2247                               int *write_lock_level)
2248{
2249        int i;
2250        int skip_level = level;
2251        int no_skips = 0;
2252        struct extent_buffer *t;
2253
2254        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2255                if (!path->nodes[i])
2256                        break;
2257                if (!path->locks[i])
2258                        break;
2259                if (!no_skips && path->slots[i] == 0) {
2260                        skip_level = i + 1;
2261                        continue;
2262                }
2263                if (!no_skips && path->keep_locks) {
2264                        u32 nritems;
2265                        t = path->nodes[i];
2266                        nritems = btrfs_header_nritems(t);
2267                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2268                                skip_level = i + 1;
2269                                continue;
2270                        }
2271                }
2272                if (skip_level < i && i >= lowest_unlock)
2273                        no_skips = 1;
2274
2275                t = path->nodes[i];
2276                if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2277                        btrfs_tree_unlock_rw(t, path->locks[i]);
2278                        path->locks[i] = 0;
2279                        if (write_lock_level &&
2280                            i > min_write_lock_level &&
2281                            i <= *write_lock_level) {
2282                                *write_lock_level = i - 1;
2283                        }
2284                }
2285        }
2286}
2287
2288/*
2289 * This releases any locks held in the path starting at level and
2290 * going all the way up to the root.
2291 *
2292 * btrfs_search_slot will keep the lock held on higher nodes in a few
2293 * corner cases, such as COW of the block at slot zero in the node.  This
2294 * ignores those rules, and it should only be called when there are no
2295 * more updates to be done higher up in the tree.
2296 */
2297noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2298{
2299        int i;
2300
2301        if (path->keep_locks)
2302                return;
2303
2304        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2305                if (!path->nodes[i])
2306                        continue;
2307                if (!path->locks[i])
2308                        continue;
2309                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2310                path->locks[i] = 0;
2311        }
2312}
2313
2314/*
2315 * helper function for btrfs_search_slot.  The goal is to find a block
2316 * in cache without setting the path to blocking.  If we find the block
2317 * we return zero and the path is unchanged.
2318 *
2319 * If we can't find the block, we set the path blocking and do some
2320 * reada.  -EAGAIN is returned and the search must be repeated.
2321 */
2322static int
2323read_block_for_search(struct btrfs_trans_handle *trans,
2324                       struct btrfs_root *root, struct btrfs_path *p,
2325                       struct extent_buffer **eb_ret, int level, int slot,
2326                       struct btrfs_key *key, u64 time_seq)
2327{
2328        u64 blocknr;
2329        u64 gen;
2330        u32 blocksize;
2331        struct extent_buffer *b = *eb_ret;
2332        struct extent_buffer *tmp;
2333        int ret;
2334
2335        blocknr = btrfs_node_blockptr(b, slot);
2336        gen = btrfs_node_ptr_generation(b, slot);
2337        blocksize = btrfs_level_size(root, level - 1);
2338
2339        tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2340        if (tmp) {
2341                /* first we do an atomic uptodate check */
2342                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2343                        *eb_ret = tmp;
2344                        return 0;
2345                }
2346
2347                /* the pages were up to date, but we failed
2348                 * the generation number check.  Do a full
2349                 * read for the generation number that is correct.
2350                 * We must do this without dropping locks so
2351                 * we can trust our generation number
2352                 */
2353                btrfs_set_path_blocking(p);
2354
2355                /* now we're allowed to do a blocking uptodate check */
2356                ret = btrfs_read_buffer(tmp, gen);
2357                if (!ret) {
2358                        *eb_ret = tmp;
2359                        return 0;
2360                }
2361                free_extent_buffer(tmp);
2362                btrfs_release_path(p);
2363                return -EIO;
2364        }
2365
2366        /*
2367         * reduce lock contention at high levels
2368         * of the btree by dropping locks before
2369         * we read.  Don't release the lock on the current
2370         * level because we need to walk this node to figure
2371         * out which blocks to read.
2372         */
2373        btrfs_unlock_up_safe(p, level + 1);
2374        btrfs_set_path_blocking(p);
2375
2376        free_extent_buffer(tmp);
2377        if (p->reada)
2378                reada_for_search(root, p, level, slot, key->objectid);
2379
2380        btrfs_release_path(p);
2381
2382        ret = -EAGAIN;
2383        tmp = read_tree_block(root, blocknr, blocksize, 0);
2384        if (tmp) {
2385                /*
2386                 * If the read above didn't mark this buffer up to date,
2387                 * it will never end up being up to date.  Set ret to EIO now
2388                 * and give up so that our caller doesn't loop forever
2389                 * on our EAGAINs.
2390                 */
2391                if (!btrfs_buffer_uptodate(tmp, 0, 0))
2392                        ret = -EIO;
2393                free_extent_buffer(tmp);
2394        }
2395        return ret;
2396}
2397
2398/*
2399 * helper function for btrfs_search_slot.  This does all of the checks
2400 * for node-level blocks and does any balancing required based on
2401 * the ins_len.
2402 *
2403 * If no extra work was required, zero is returned.  If we had to
2404 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2405 * start over
2406 */
2407static int
2408setup_nodes_for_search(struct btrfs_trans_handle *trans,
2409                       struct btrfs_root *root, struct btrfs_path *p,
2410                       struct extent_buffer *b, int level, int ins_len,
2411                       int *write_lock_level)
2412{
2413        int ret;
2414        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2415            BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2416                int sret;
2417
2418                if (*write_lock_level < level + 1) {
2419                        *write_lock_level = level + 1;
2420                        btrfs_release_path(p);
2421                        goto again;
2422                }
2423
2424                btrfs_set_path_blocking(p);
2425                reada_for_balance(root, p, level);
2426                sret = split_node(trans, root, p, level);
2427                btrfs_clear_path_blocking(p, NULL, 0);
2428
2429                BUG_ON(sret > 0);
2430                if (sret) {
2431                        ret = sret;
2432                        goto done;
2433                }
2434                b = p->nodes[level];
2435        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2436                   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2437                int sret;
2438
2439                if (*write_lock_level < level + 1) {
2440                        *write_lock_level = level + 1;
2441                        btrfs_release_path(p);
2442                        goto again;
2443                }
2444
2445                btrfs_set_path_blocking(p);
2446                reada_for_balance(root, p, level);
2447                sret = balance_level(trans, root, p, level);
2448                btrfs_clear_path_blocking(p, NULL, 0);
2449
2450                if (sret) {
2451                        ret = sret;
2452                        goto done;
2453                }
2454                b = p->nodes[level];
2455                if (!b) {
2456                        btrfs_release_path(p);
2457                        goto again;
2458                }
2459                BUG_ON(btrfs_header_nritems(b) == 1);
2460        }
2461        return 0;
2462
2463again:
2464        ret = -EAGAIN;
2465done:
2466        return ret;
2467}
2468
2469/*
2470 * look for key in the tree.  path is filled in with nodes along the way
2471 * if key is found, we return zero and you can find the item in the leaf
2472 * level of the path (level 0)
2473 *
2474 * If the key isn't found, the path points to the slot where it should
2475 * be inserted, and 1 is returned.  If there are other errors during the
2476 * search a negative error number is returned.
2477 *
2478 * if ins_len > 0, nodes and leaves will be split as we walk down the
2479 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2480 * possible)
2481 */
2482int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2483                      *root, struct btrfs_key *key, struct btrfs_path *p, int
2484                      ins_len, int cow)
2485{
2486        struct extent_buffer *b;
2487        int slot;
2488        int ret;
2489        int err;
2490        int level;
2491        int lowest_unlock = 1;
2492        int root_lock;
2493        /* everything at write_lock_level or lower must be write locked */
2494        int write_lock_level = 0;
2495        u8 lowest_level = 0;
2496        int min_write_lock_level;
2497
2498        lowest_level = p->lowest_level;
2499        WARN_ON(lowest_level && ins_len > 0);
2500        WARN_ON(p->nodes[0] != NULL);
2501
2502        if (ins_len < 0) {
2503                lowest_unlock = 2;
2504
2505                /* when we are removing items, we might have to go up to level
2506                 * two as we update tree pointers  Make sure we keep write
2507                 * for those levels as well
2508                 */
2509                write_lock_level = 2;
2510        } else if (ins_len > 0) {
2511                /*
2512                 * for inserting items, make sure we have a write lock on
2513                 * level 1 so we can update keys
2514                 */
2515                write_lock_level = 1;
2516        }
2517
2518        if (!cow)
2519                write_lock_level = -1;
2520
2521        if (cow && (p->keep_locks || p->lowest_level))
2522                write_lock_level = BTRFS_MAX_LEVEL;
2523
2524        min_write_lock_level = write_lock_level;
2525
2526again:
2527        /*
2528         * we try very hard to do read locks on the root
2529         */
2530        root_lock = BTRFS_READ_LOCK;
2531        level = 0;
2532        if (p->search_commit_root) {
2533                /*
2534                 * the commit roots are read only
2535                 * so we always do read locks
2536                 */
2537                b = root->commit_root;
2538                extent_buffer_get(b);
2539                level = btrfs_header_level(b);
2540                if (!p->skip_locking)
2541                        btrfs_tree_read_lock(b);
2542        } else {
2543                if (p->skip_locking) {
2544                        b = btrfs_root_node(root);
2545                        level = btrfs_header_level(b);
2546                } else {
2547                        /* we don't know the level of the root node
2548                         * until we actually have it read locked
2549                         */
2550                        b = btrfs_read_lock_root_node(root);
2551                        level = btrfs_header_level(b);
2552                        if (level <= write_lock_level) {
2553                                /* whoops, must trade for write lock */
2554                                btrfs_tree_read_unlock(b);
2555                                free_extent_buffer(b);
2556                                b = btrfs_lock_root_node(root);
2557                                root_lock = BTRFS_WRITE_LOCK;
2558
2559                                /* the level might have changed, check again */
2560                                level = btrfs_header_level(b);
2561                        }
2562                }
2563        }
2564        p->nodes[level] = b;
2565        if (!p->skip_locking)
2566                p->locks[level] = root_lock;
2567
2568        while (b) {
2569                level = btrfs_header_level(b);
2570
2571                /*
2572                 * setup the path here so we can release it under lock
2573                 * contention with the cow code
2574                 */
2575                if (cow) {
2576                        /*
2577                         * if we don't really need to cow this block
2578                         * then we don't want to set the path blocking,
2579                         * so we test it here
2580                         */
2581                        if (!should_cow_block(trans, root, b))
2582                                goto cow_done;
2583
2584                        btrfs_set_path_blocking(p);
2585
2586                        /*
2587                         * must have write locks on this node and the
2588                         * parent
2589                         */
2590                        if (level > write_lock_level ||
2591                            (level + 1 > write_lock_level &&
2592                            level + 1 < BTRFS_MAX_LEVEL &&
2593                            p->nodes[level + 1])) {
2594                                write_lock_level = level + 1;
2595                                btrfs_release_path(p);
2596                                goto again;
2597                        }
2598
2599                        err = btrfs_cow_block(trans, root, b,
2600                                              p->nodes[level + 1],
2601                                              p->slots[level + 1], &b);
2602                        if (err) {
2603                                ret = err;
2604                                goto done;
2605                        }
2606                }
2607cow_done:
2608                BUG_ON(!cow && ins_len);
2609
2610                p->nodes[level] = b;
2611                btrfs_clear_path_blocking(p, NULL, 0);
2612
2613                /*
2614                 * we have a lock on b and as long as we aren't changing
2615                 * the tree, there is no way to for the items in b to change.
2616                 * It is safe to drop the lock on our parent before we
2617                 * go through the expensive btree search on b.
2618                 *
2619                 * If cow is true, then we might be changing slot zero,
2620                 * which may require changing the parent.  So, we can't
2621                 * drop the lock until after we know which slot we're
2622                 * operating on.
2623                 */
2624                if (!cow)
2625                        btrfs_unlock_up_safe(p, level + 1);
2626
2627                ret = bin_search(b, key, level, &slot);
2628
2629                if (level != 0) {
2630                        int dec = 0;
2631                        if (ret && slot > 0) {
2632                                dec = 1;
2633                                slot -= 1;
2634                        }
2635                        p->slots[level] = slot;
2636                        err = setup_nodes_for_search(trans, root, p, b, level,
2637                                             ins_len, &write_lock_level);
2638                        if (err == -EAGAIN)
2639                                goto again;
2640                        if (err) {
2641                                ret = err;
2642                                goto done;
2643                        }
2644                        b = p->nodes[level];
2645                        slot = p->slots[level];
2646
2647                        /*
2648                         * slot 0 is special, if we change the key
2649                         * we have to update the parent pointer
2650                         * which means we must have a write lock
2651                         * on the parent
2652                         */
2653                        if (slot == 0 && cow &&
2654                            write_lock_level < level + 1) {
2655                                write_lock_level = level + 1;
2656                                btrfs_release_path(p);
2657                                goto again;
2658                        }
2659
2660                        unlock_up(p, level, lowest_unlock,
2661                                  min_write_lock_level, &write_lock_level);
2662
2663                        if (level == lowest_level) {
2664                                if (dec)
2665                                        p->slots[level]++;
2666                                goto done;
2667                        }
2668
2669                        err = read_block_for_search(trans, root, p,
2670                                                    &b, level, slot, key, 0);
2671                        if (err == -EAGAIN)
2672                                goto again;
2673                        if (err) {
2674                                ret = err;
2675                                goto done;
2676                        }
2677
2678                        if (!p->skip_locking) {
2679                                level = btrfs_header_level(b);
2680                                if (level <= write_lock_level) {
2681                                        err = btrfs_try_tree_write_lock(b);
2682                                        if (!err) {
2683                                                btrfs_set_path_blocking(p);
2684                                                btrfs_tree_lock(b);
2685                                                btrfs_clear_path_blocking(p, b,
2686                                                                  BTRFS_WRITE_LOCK);
2687                                        }
2688                                        p->locks[level] = BTRFS_WRITE_LOCK;
2689                                } else {
2690                                        err = btrfs_try_tree_read_lock(b);
2691                                        if (!err) {
2692                                                btrfs_set_path_blocking(p);
2693                                                btrfs_tree_read_lock(b);
2694                                                btrfs_clear_path_blocking(p, b,
2695                                                                  BTRFS_READ_LOCK);
2696                                        }
2697                                        p->locks[level] = BTRFS_READ_LOCK;
2698                                }
2699                                p->nodes[level] = b;
2700                        }
2701                } else {
2702                        p->slots[level] = slot;
2703                        if (ins_len > 0 &&
2704                            btrfs_leaf_free_space(root, b) < ins_len) {
2705                                if (write_lock_level < 1) {
2706                                        write_lock_level = 1;
2707                                        btrfs_release_path(p);
2708                                        goto again;
2709                                }
2710
2711                                btrfs_set_path_blocking(p);
2712                                err = split_leaf(trans, root, key,
2713                                                 p, ins_len, ret == 0);
2714                                btrfs_clear_path_blocking(p, NULL, 0);
2715
2716                                BUG_ON(err > 0);
2717                                if (err) {
2718                                        ret = err;
2719                                        goto done;
2720                                }
2721                        }
2722                        if (!p->search_for_split)
2723                                unlock_up(p, level, lowest_unlock,
2724                                          min_write_lock_level, &write_lock_level);
2725                        goto done;
2726                }
2727        }
2728        ret = 1;
2729done:
2730        /*
2731         * we don't really know what they plan on doing with the path
2732         * from here on, so for now just mark it as blocking
2733         */
2734        if (!p->leave_spinning)
2735                btrfs_set_path_blocking(p);
2736        if (ret < 0)
2737                btrfs_release_path(p);
2738        return ret;
2739}
2740
2741/*
2742 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2743 * current state of the tree together with the operations recorded in the tree
2744 * modification log to search for the key in a previous version of this tree, as
2745 * denoted by the time_seq parameter.
2746 *
2747 * Naturally, there is no support for insert, delete or cow operations.
2748 *
2749 * The resulting path and return value will be set up as if we called
2750 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2751 */
2752int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2753                          struct btrfs_path *p, u64 time_seq)
2754{
2755        struct extent_buffer *b;
2756        int slot;
2757        int ret;
2758        int err;
2759        int level;
2760        int lowest_unlock = 1;
2761        u8 lowest_level = 0;
2762
2763        lowest_level = p->lowest_level;
2764        WARN_ON(p->nodes[0] != NULL);
2765
2766        if (p->search_commit_root) {
2767                BUG_ON(time_seq);
2768                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2769        }
2770
2771again:
2772        b = get_old_root(root, time_seq);
2773        level = btrfs_header_level(b);
2774        p->locks[level] = BTRFS_READ_LOCK;
2775
2776        while (b) {
2777                level = btrfs_header_level(b);
2778                p->nodes[level] = b;
2779                btrfs_clear_path_blocking(p, NULL, 0);
2780
2781                /*
2782                 * we have a lock on b and as long as we aren't changing
2783                 * the tree, there is no way to for the items in b to change.
2784                 * It is safe to drop the lock on our parent before we
2785                 * go through the expensive btree search on b.
2786                 */
2787                btrfs_unlock_up_safe(p, level + 1);
2788
2789                ret = bin_search(b, key, level, &slot);
2790
2791                if (level != 0) {
2792                        int dec = 0;
2793                        if (ret && slot > 0) {
2794                                dec = 1;
2795                                slot -= 1;
2796                        }
2797                        p->slots[level] = slot;
2798                        unlock_up(p, level, lowest_unlock, 0, NULL);
2799
2800                        if (level == lowest_level) {
2801                                if (dec)
2802                                        p->slots[level]++;
2803                                goto done;
2804                        }
2805
2806                        err = read_block_for_search(NULL, root, p, &b, level,
2807                                                    slot, key, time_seq);
2808                        if (err == -EAGAIN)
2809                                goto again;
2810                        if (err) {
2811                                ret = err;
2812                                goto done;
2813                        }
2814
2815                        level = btrfs_header_level(b);
2816                        err = btrfs_try_tree_read_lock(b);
2817                        if (!err) {
2818                                btrfs_set_path_blocking(p);
2819                                btrfs_tree_read_lock(b);
2820                                btrfs_clear_path_blocking(p, b,
2821                                                          BTRFS_READ_LOCK);
2822                        }
2823                        b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2824                        p->locks[level] = BTRFS_READ_LOCK;
2825                        p->nodes[level] = b;
2826                } else {
2827                        p->slots[level] = slot;
2828                        unlock_up(p, level, lowest_unlock, 0, NULL);
2829                        goto done;
2830                }
2831        }
2832        ret = 1;
2833done:
2834        if (!p->leave_spinning)
2835                btrfs_set_path_blocking(p);
2836        if (ret < 0)
2837                btrfs_release_path(p);
2838
2839        return ret;
2840}
2841
2842/*
2843 * helper to use instead of search slot if no exact match is needed but
2844 * instead the next or previous item should be returned.
2845 * When find_higher is true, the next higher item is returned, the next lower
2846 * otherwise.
2847 * When return_any and find_higher are both true, and no higher item is found,
2848 * return the next lower instead.
2849 * When return_any is true and find_higher is false, and no lower item is found,
2850 * return the next higher instead.
2851 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2852 * < 0 on error
2853 */
2854int btrfs_search_slot_for_read(struct btrfs_root *root,
2855                               struct btrfs_key *key, struct btrfs_path *p,
2856                               int find_higher, int return_any)
2857{
2858        int ret;
2859        struct extent_buffer *leaf;
2860
2861again:
2862        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2863        if (ret <= 0)
2864                return ret;
2865        /*
2866         * a return value of 1 means the path is at the position where the
2867         * item should be inserted. Normally this is the next bigger item,
2868         * but in case the previous item is the last in a leaf, path points
2869         * to the first free slot in the previous leaf, i.e. at an invalid
2870         * item.
2871         */
2872        leaf = p->nodes[0];
2873
2874        if (find_higher) {
2875                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2876                        ret = btrfs_next_leaf(root, p);
2877                        if (ret <= 0)
2878                                return ret;
2879                        if (!return_any)
2880                                return 1;
2881                        /*
2882                         * no higher item found, return the next
2883                         * lower instead
2884                         */
2885                        return_any = 0;
2886                        find_higher = 0;
2887                        btrfs_release_path(p);
2888                        goto again;
2889                }
2890        } else {
2891                if (p->slots[0] == 0) {
2892                        ret = btrfs_prev_leaf(root, p);
2893                        if (ret < 0)
2894                                return ret;
2895                        if (!ret) {
2896                                p->slots[0] = btrfs_header_nritems(leaf) - 1;
2897                                return 0;
2898                        }
2899                        if (!return_any)
2900                                return 1;
2901                        /*
2902                         * no lower item found, return the next
2903                         * higher instead
2904                         */
2905                        return_any = 0;
2906                        find_higher = 1;
2907                        btrfs_release_path(p);
2908                        goto again;
2909                } else {
2910                        --p->slots[0];
2911                }
2912        }
2913        return 0;
2914}
2915
2916/*
2917 * adjust the pointers going up the tree, starting at level
2918 * making sure the right key of each node is points to 'key'.
2919 * This is used after shifting pointers to the left, so it stops
2920 * fixing up pointers when a given leaf/node is not in slot 0 of the
2921 * higher levels
2922 *
2923 */
2924static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2925                           struct btrfs_disk_key *key, int level)
2926{
2927        int i;
2928        struct extent_buffer *t;
2929
2930        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2931                int tslot = path->slots[i];
2932                if (!path->nodes[i])
2933                        break;
2934                t = path->nodes[i];
2935                tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2936                btrfs_set_node_key(t, key, tslot);
2937                btrfs_mark_buffer_dirty(path->nodes[i]);
2938                if (tslot != 0)
2939                        break;
2940        }
2941}
2942
2943/*
2944 * update item key.
2945 *
2946 * This function isn't completely safe. It's the caller's responsibility
2947 * that the new key won't break the order
2948 */
2949void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2950                             struct btrfs_key *new_key)
2951{
2952        struct btrfs_disk_key disk_key;
2953        struct extent_buffer *eb;
2954        int slot;
2955
2956        eb = path->nodes[0];
2957        slot = path->slots[0];
2958        if (slot > 0) {
2959                btrfs_item_key(eb, &disk_key, slot - 1);
2960                BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2961        }
2962        if (slot < btrfs_header_nritems(eb) - 1) {
2963                btrfs_item_key(eb, &disk_key, slot + 1);
2964                BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2965        }
2966
2967        btrfs_cpu_key_to_disk(&disk_key, new_key);
2968        btrfs_set_item_key(eb, &disk_key, slot);
2969        btrfs_mark_buffer_dirty(eb);
2970        if (slot == 0)
2971                fixup_low_keys(root, path, &disk_key, 1);
2972}
2973
2974/*
2975 * try to push data from one node into the next node left in the
2976 * tree.
2977 *
2978 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2979 * error, and > 0 if there was no room in the left hand block.
2980 */
2981static int push_node_left(struct btrfs_trans_handle *trans,
2982                          struct btrfs_root *root, struct extent_buffer *dst,
2983                          struct extent_buffer *src, int empty)
2984{
2985        int push_items = 0;
2986        int src_nritems;
2987        int dst_nritems;
2988        int ret = 0;
2989
2990        src_nritems = btrfs_header_nritems(src);
2991        dst_nritems = btrfs_header_nritems(dst);
2992        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2993        WARN_ON(btrfs_header_generation(src) != trans->transid);
2994        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2995
2996        if (!empty && src_nritems <= 8)
2997                return 1;
2998
2999        if (push_items <= 0)
3000                return 1;
3001
3002        if (empty) {
3003                push_items = min(src_nritems, push_items);
3004                if (push_items < src_nritems) {
3005                        /* leave at least 8 pointers in the node if
3006                         * we aren't going to empty it
3007                         */
3008                        if (src_nritems - push_items < 8) {
3009                                if (push_items <= 8)
3010                                        return 1;
3011                                push_items -= 8;
3012                        }
3013                }
3014        } else
3015                push_items = min(src_nritems - 8, push_items);
3016
3017        tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3018                             push_items);
3019        copy_extent_buffer(dst, src,
3020                           btrfs_node_key_ptr_offset(dst_nritems),
3021                           btrfs_node_key_ptr_offset(0),
3022                           push_items * sizeof(struct btrfs_key_ptr));
3023
3024        if (push_items < src_nritems) {
3025                /*
3026                 * don't call tree_mod_log_eb_move here, key removal was already
3027                 * fully logged by tree_mod_log_eb_copy above.
3028                 */
3029                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3030                                      btrfs_node_key_ptr_offset(push_items),
3031                                      (src_nritems - push_items) *
3032                                      sizeof(struct btrfs_key_ptr));
3033        }
3034        btrfs_set_header_nritems(src, src_nritems - push_items);
3035        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3036        btrfs_mark_buffer_dirty(src);
3037        btrfs_mark_buffer_dirty(dst);
3038
3039        return ret;
3040}
3041
3042/*
3043 * try to push data from one node into the next node right in the
3044 * tree.
3045 *
3046 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3047 * error, and > 0 if there was no room in the right hand block.
3048 *
3049 * this will  only push up to 1/2 the contents of the left node over
3050 */
3051static int balance_node_right(struct btrfs_trans_handle *trans,
3052                              struct btrfs_root *root,
3053                              struct extent_buffer *dst,
3054                              struct extent_buffer *src)
3055{
3056        int push_items = 0;
3057        int max_push;
3058        int src_nritems;
3059        int dst_nritems;
3060        int ret = 0;
3061
3062        WARN_ON(btrfs_header_generation(src) != trans->transid);
3063        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3064
3065        src_nritems = btrfs_header_nritems(src);
3066        dst_nritems = btrfs_header_nritems(dst);
3067        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3068        if (push_items <= 0)
3069                return 1;
3070
3071        if (src_nritems < 4)
3072                return 1;
3073
3074        max_push = src_nritems / 2 + 1;
3075        /* don't try to empty the node */
3076        if (max_push >= src_nritems)
3077                return 1;
3078
3079        if (max_push < push_items)
3080                push_items = max_push;
3081
3082        tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3083        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3084                                      btrfs_node_key_ptr_offset(0),
3085                                      (dst_nritems) *
3086                                      sizeof(struct btrfs_key_ptr));
3087
3088        tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3089                             src_nritems - push_items, push_items);
3090        copy_extent_buffer(dst, src,
3091                           btrfs_node_key_ptr_offset(0),
3092                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3093                           push_items * sizeof(struct btrfs_key_ptr));
3094
3095        btrfs_set_header_nritems(src, src_nritems - push_items);
3096        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3097
3098        btrfs_mark_buffer_dirty(src);
3099        btrfs_mark_buffer_dirty(dst);
3100
3101        return ret;
3102}
3103
3104/*
3105 * helper function to insert a new root level in the tree.
3106 * A new node is allocated, and a single item is inserted to
3107 * point to the existing root
3108 *
3109 * returns zero on success or < 0 on failure.
3110 */
3111static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3112                           struct btrfs_root *root,
3113                           struct btrfs_path *path, int level)
3114{
3115        u64 lower_gen;
3116        struct extent_buffer *lower;
3117        struct extent_buffer *c;
3118        struct extent_buffer *old;
3119        struct btrfs_disk_key lower_key;
3120
3121        BUG_ON(path->nodes[level]);
3122        BUG_ON(path->nodes[level-1] != root->node);
3123
3124        lower = path->nodes[level-1];
3125        if (level == 1)
3126                btrfs_item_key(lower, &lower_key, 0);
3127        else
3128                btrfs_node_key(lower, &lower_key, 0);
3129
3130        c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3131                                   root->root_key.objectid, &lower_key,
3132                                   level, root->node->start, 0);
3133        if (IS_ERR(c))
3134                return PTR_ERR(c);
3135
3136        root_add_used(root, root->nodesize);
3137
3138        memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3139        btrfs_set_header_nritems(c, 1);
3140        btrfs_set_header_level(c, level);
3141        btrfs_set_header_bytenr(c, c->start);
3142        btrfs_set_header_generation(c, trans->transid);
3143        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3144        btrfs_set_header_owner(c, root->root_key.objectid);
3145
3146        write_extent_buffer(c, root->fs_info->fsid,
3147                            (unsigned long)btrfs_header_fsid(c),
3148                            BTRFS_FSID_SIZE);
3149
3150        write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3151                            (unsigned long)btrfs_header_chunk_tree_uuid(c),
3152                            BTRFS_UUID_SIZE);
3153
3154        btrfs_set_node_key(c, &lower_key, 0);
3155        btrfs_set_node_blockptr(c, 0, lower->start);
3156        lower_gen = btrfs_header_generation(lower);
3157        WARN_ON(lower_gen != trans->transid);
3158
3159        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3160
3161        btrfs_mark_buffer_dirty(c);
3162
3163        old = root->node;
3164        tree_mod_log_set_root_pointer(root, c, 0);
3165        rcu_assign_pointer(root->node, c);
3166
3167        /* the super has an extra ref to root->node */
3168        free_extent_buffer(old);
3169
3170        add_root_to_dirty_list(root);
3171        extent_buffer_get(c);
3172        path->nodes[level] = c;
3173        path->locks[level] = BTRFS_WRITE_LOCK;
3174        path->slots[level] = 0;
3175        return 0;
3176}
3177
3178/*
3179 * worker function to insert a single pointer in a node.
3180 * the node should have enough room for the pointer already
3181 *
3182 * slot and level indicate where you want the key to go, and
3183 * blocknr is the block the key points to.
3184 */
3185static void insert_ptr(struct btrfs_trans_handle *trans,
3186                       struct btrfs_root *root, struct btrfs_path *path,
3187                       struct btrfs_disk_key *key, u64 bytenr,
3188                       int slot, int level)
3189{
3190        struct extent_buffer *lower;
3191        int nritems;
3192        int ret;
3193
3194        BUG_ON(!path->nodes[level]);
3195        btrfs_assert_tree_locked(path->nodes[level]);
3196        lower = path->nodes[level];
3197        nritems = btrfs_header_nritems(lower);
3198        BUG_ON(slot > nritems);
3199        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3200        if (slot != nritems) {
3201                if (level)
3202                        tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3203                                             slot, nritems - slot);
3204                memmove_extent_buffer(lower,
3205                              btrfs_node_key_ptr_offset(slot + 1),
3206                              btrfs_node_key_ptr_offset(slot),
3207                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3208        }
3209        if (level) {
3210                ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3211                                              MOD_LOG_KEY_ADD);
3212                BUG_ON(ret < 0);
3213        }
3214        btrfs_set_node_key(lower, key, slot);
3215        btrfs_set_node_blockptr(lower, slot, bytenr);
3216        WARN_ON(trans->transid == 0);
3217        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3218        btrfs_set_header_nritems(lower, nritems + 1);
3219        btrfs_mark_buffer_dirty(lower);
3220}
3221
3222/*
3223 * split the node at the specified level in path in two.
3224 * The path is corrected to point to the appropriate node after the split
3225 *
3226 * Before splitting this tries to make some room in the node by pushing
3227 * left and right, if either one works, it returns right away.
3228 *
3229 * returns 0 on success and < 0 on failure
3230 */
3231static noinline int split_node(struct btrfs_trans_handle *trans,
3232                               struct btrfs_root *root,
3233                               struct btrfs_path *path, int level)
3234{
3235        struct extent_buffer *c;
3236        struct extent_buffer *split;
3237        struct btrfs_disk_key disk_key;
3238        int mid;
3239        int ret;
3240        u32 c_nritems;
3241
3242        c = path->nodes[level];
3243        WARN_ON(btrfs_header_generation(c) != trans->transid);
3244        if (c == root->node) {
3245                /*
3246                 * trying to split the root, lets make a new one
3247                 *
3248                 * tree mod log: We don't log_removal old root in
3249                 * insert_new_root, because that root buffer will be kept as a
3250                 * normal node. We are going to log removal of half of the
3251                 * elements below with tree_mod_log_eb_copy. We're holding a
3252                 * tree lock on the buffer, which is why we cannot race with
3253                 * other tree_mod_log users.
3254                 */
3255                ret = insert_new_root(trans, root, path, level + 1);
3256                if (ret)
3257                        return ret;
3258        } else {
3259                ret = push_nodes_for_insert(trans, root, path, level);
3260                c = path->nodes[level];
3261                if (!ret && btrfs_header_nritems(c) <
3262                    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3263                        return 0;
3264                if (ret < 0)
3265                        return ret;
3266        }
3267
3268        c_nritems = btrfs_header_nritems(c);
3269        mid = (c_nritems + 1) / 2;
3270        btrfs_node_key(c, &disk_key, mid);
3271
3272        split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3273                                        root->root_key.objectid,
3274                                        &disk_key, level, c->start, 0);
3275        if (IS_ERR(split))
3276                return PTR_ERR(split);
3277
3278        root_add_used(root, root->nodesize);
3279
3280        memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3281        btrfs_set_header_level(split, btrfs_header_level(c));
3282        btrfs_set_header_bytenr(split, split->start);
3283        btrfs_set_header_generation(split, trans->transid);
3284        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3285        btrfs_set_header_owner(split, root->root_key.objectid);
3286        write_extent_buffer(split, root->fs_info->fsid,
3287                            (unsigned long)btrfs_header_fsid(split),
3288                            BTRFS_FSID_SIZE);
3289        write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3290                            (unsigned long)btrfs_header_chunk_tree_uuid(split),
3291                            BTRFS_UUID_SIZE);
3292
3293        tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3294        copy_extent_buffer(split, c,
3295                           btrfs_node_key_ptr_offset(0),
3296                           btrfs_node_key_ptr_offset(mid),
3297                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3298        btrfs_set_header_nritems(split, c_nritems - mid);
3299        btrfs_set_header_nritems(c, mid);
3300        ret = 0;
3301
3302        btrfs_mark_buffer_dirty(c);
3303        btrfs_mark_buffer_dirty(split);
3304
3305        insert_ptr(trans, root, path, &disk_key, split->start,
3306                   path->slots[level + 1] + 1, level + 1);
3307
3308        if (path->slots[level] >= mid) {
3309                path->slots[level] -= mid;
3310                btrfs_tree_unlock(c);
3311                free_extent_buffer(c);
3312                path->nodes[level] = split;
3313                path->slots[level + 1] += 1;
3314        } else {
3315                btrfs_tree_unlock(split);
3316                free_extent_buffer(split);
3317        }
3318        return ret;
3319}
3320
3321/*
3322 * how many bytes are required to store the items in a leaf.  start
3323 * and nr indicate which items in the leaf to check.  This totals up the
3324 * space used both by the item structs and the item data
3325 */
3326static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3327{
3328        struct btrfs_item *start_item;
3329        struct btrfs_item *end_item;
3330        struct btrfs_map_token token;
3331        int data_len;
3332        int nritems = btrfs_header_nritems(l);
3333        int end = min(nritems, start + nr) - 1;
3334
3335        if (!nr)
3336                return 0;
3337        btrfs_init_map_token(&token);
3338        start_item = btrfs_item_nr(l, start);
3339        end_item = btrfs_item_nr(l, end);
3340        data_len = btrfs_token_item_offset(l, start_item, &token) +
3341                btrfs_token_item_size(l, start_item, &token);
3342        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3343        data_len += sizeof(struct btrfs_item) * nr;
3344        WARN_ON(data_len < 0);
3345        return data_len;
3346}
3347
3348/*
3349 * The space between the end of the leaf items and
3350 * the start of the leaf data.  IOW, how much room
3351 * the leaf has left for both items and data
3352 */
3353noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3354                                   struct extent_buffer *leaf)
3355{
3356        int nritems = btrfs_header_nritems(leaf);
3357        int ret;
3358        ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3359        if (ret < 0) {
3360                printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3361                       "used %d nritems %d\n",
3362                       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3363                       leaf_space_used(leaf, 0, nritems), nritems);
3364        }
3365        return ret;
3366}
3367
3368/*
3369 * min slot controls the lowest index we're willing to push to the
3370 * right.  We'll push up to and including min_slot, but no lower
3371 */
3372static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3373                                      struct btrfs_root *root,
3374                                      struct btrfs_path *path,
3375                                      int data_size, int empty,
3376                                      struct extent_buffer *right,
3377                                      int free_space, u32 left_nritems,
3378                                      u32 min_slot)
3379{
3380        struct extent_buffer *left = path->nodes[0];
3381        struct extent_buffer *upper = path->nodes[1];
3382        struct btrfs_map_token token;
3383        struct btrfs_disk_key disk_key;
3384        int slot;
3385        u32 i;
3386        int push_space = 0;
3387        int push_items = 0;
3388        struct btrfs_item *item;
3389        u32 nr;
3390        u32 right_nritems;
3391        u32 data_end;
3392        u32 this_item_size;
3393
3394        btrfs_init_map_token(&token);
3395
3396        if (empty)
3397                nr = 0;
3398        else
3399                nr = max_t(u32, 1, min_slot);
3400
3401        if (path->slots[0] >= left_nritems)
3402                push_space += data_size;
3403
3404        slot = path->slots[1];
3405        i = left_nritems - 1;
3406        while (i >= nr) {
3407                item = btrfs_item_nr(left, i);
3408
3409                if (!empty && push_items > 0) {
3410                        if (path->slots[0] > i)
3411                                break;
3412                        if (path->slots[0] == i) {
3413                                int space = btrfs_leaf_free_space(root, left);
3414                                if (space + push_space * 2 > free_space)
3415                                        break;
3416                        }
3417                }
3418
3419                if (path->slots[0] == i)
3420                        push_space += data_size;
3421
3422                this_item_size = btrfs_item_size(left, item);
3423                if (this_item_size + sizeof(*item) + push_space > free_space)
3424                        break;
3425
3426                push_items++;
3427                push_space += this_item_size + sizeof(*item);
3428                if (i == 0)
3429                        break;
3430                i--;
3431        }
3432
3433        if (push_items == 0)
3434                goto out_unlock;
3435
3436        WARN_ON(!empty && push_items == left_nritems);
3437
3438        /* push left to right */
3439        right_nritems = btrfs_header_nritems(right);
3440
3441        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3442        push_space -= leaf_data_end(root, left);
3443
3444        /* make room in the right data area */
3445        data_end = leaf_data_end(root, right);
3446        memmove_extent_buffer(right,
3447                              btrfs_leaf_data(right) + data_end - push_space,
3448                              btrfs_leaf_data(right) + data_end,
3449                              BTRFS_LEAF_DATA_SIZE(root) - data_end);
3450
3451        /* copy from the left data area */
3452        copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3453                     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3454                     btrfs_leaf_data(left) + leaf_data_end(root, left),
3455                     push_space);
3456
3457        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3458                              btrfs_item_nr_offset(0),
3459                              right_nritems * sizeof(struct btrfs_item));
3460
3461        /* copy the items from left to right */
3462        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3463                   btrfs_item_nr_offset(left_nritems - push_items),
3464                   push_items * sizeof(struct btrfs_item));
3465
3466        /* update the item pointers */
3467        right_nritems += push_items;
3468        btrfs_set_header_nritems(right, right_nritems);
3469        push_space = BTRFS_LEAF_DATA_SIZE(root);
3470        for (i = 0; i < right_nritems; i++) {
3471                item = btrfs_item_nr(right, i);
3472                push_space -= btrfs_token_item_size(right, item, &token);
3473                btrfs_set_token_item_offset(right, item, push_space, &token);
3474        }
3475
3476        left_nritems -= push_items;
3477        btrfs_set_header_nritems(left, left_nritems);
3478
3479        if (left_nritems)
3480                btrfs_mark_buffer_dirty(left);
3481        else
3482                clean_tree_block(trans, root, left);
3483
3484        btrfs_mark_buffer_dirty(right);
3485
3486        btrfs_item_key(right, &disk_key, 0);
3487        btrfs_set_node_key(upper, &disk_key, slot + 1);
3488        btrfs_mark_buffer_dirty(upper);
3489
3490        /* then fixup the leaf pointer in the path */
3491        if (path->slots[0] >= left_nritems) {
3492                path->slots[0] -= left_nritems;
3493                if (btrfs_header_nritems(path->nodes[0]) == 0)
3494                        clean_tree_block(trans, root, path->nodes[0]);
3495                btrfs_tree_unlock(path->nodes[0]);
3496                free_extent_buffer(path->nodes[0]);
3497                path->nodes[0] = right;
3498                path->slots[1] += 1;
3499        } else {
3500                btrfs_tree_unlock(right);
3501                free_extent_buffer(right);
3502        }
3503        return 0;
3504
3505out_unlock:
3506        btrfs_tree_unlock(right);
3507        free_extent_buffer(right);
3508        return 1;
3509}
3510
3511/*
3512 * push some data in the path leaf to the right, trying to free up at
3513 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3514 *
3515 * returns 1 if the push failed because the other node didn't have enough
3516 * room, 0 if everything worked out and < 0 if there were major errors.
3517 *
3518 * this will push starting from min_slot to the end of the leaf.  It won't
3519 * push any slot lower than min_slot
3520 */
3521static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3522                           *root, struct btrfs_path *path,
3523                           int min_data_size, int data_size,
3524                           int empty, u32 min_slot)
3525{
3526        struct extent_buffer *left = path->nodes[0];
3527        struct extent_buffer *right;
3528        struct extent_buffer *upper;
3529        int slot;
3530        int free_space;
3531        u32 left_nritems;
3532        int ret;
3533
3534        if (!path->nodes[1])
3535                return 1;
3536
3537        slot = path->slots[1];
3538        upper = path->nodes[1];
3539        if (slot >= btrfs_header_nritems(upper) - 1)
3540                return 1;
3541
3542        btrfs_assert_tree_locked(path->nodes[1]);
3543
3544        right = read_node_slot(root, upper, slot + 1);
3545        if (right == NULL)
3546                return 1;
3547
3548        btrfs_tree_lock(right);
3549        btrfs_set_lock_blocking(right);
3550
3551        free_space = btrfs_leaf_free_space(root, right);
3552        if (free_space < data_size)
3553                goto out_unlock;
3554
3555        /* cow and double check */
3556        ret = btrfs_cow_block(trans, root, right, upper,
3557                              slot + 1, &right);
3558        if (ret)
3559                goto out_unlock;
3560
3561        free_space = btrfs_leaf_free_space(root, right);
3562        if (free_space < data_size)
3563                goto out_unlock;
3564
3565        left_nritems = btrfs_header_nritems(left);
3566        if (left_nritems == 0)
3567                goto out_unlock;
3568
3569        return __push_leaf_right(trans, root, path, min_data_size, empty,
3570                                right, free_space, left_nritems, min_slot);
3571out_unlock:
3572        btrfs_tree_unlock(right);
3573        free_extent_buffer(right);
3574        return 1;
3575}
3576
3577/*
3578 * push some data in the path leaf to the left, trying to free up at
3579 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3580 *
3581 * max_slot can put a limit on how far into the leaf we'll push items.  The
3582 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3583 * items
3584 */
3585static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3586                                     struct btrfs_root *root,
3587                                     struct btrfs_path *path, int data_size,
3588                                     int empty, struct extent_buffer *left,
3589                                     int free_space, u32 right_nritems,
3590                                     u32 max_slot)
3591{
3592        struct btrfs_disk_key disk_key;
3593        struct extent_buffer *right = path->nodes[0];
3594        int i;
3595        int push_space = 0;
3596        int push_items = 0;
3597        struct btrfs_item *item;
3598        u32 old_left_nritems;
3599        u32 nr;
3600        int ret = 0;
3601        u32 this_item_size;
3602        u32 old_left_item_size;
3603        struct btrfs_map_token token;
3604
3605        btrfs_init_map_token(&token);
3606
3607        if (empty)
3608                nr = min(right_nritems, max_slot);
3609        else
3610                nr = min(right_nritems - 1, max_slot);
3611
3612        for (i = 0; i < nr; i++) {
3613                item = btrfs_item_nr(right, i);
3614
3615                if (!empty && push_items > 0) {
3616                        if (path->slots[0] < i)
3617                                break;
3618                        if (path->slots[0] == i) {
3619                                int space = btrfs_leaf_free_space(root, right);
3620                                if (space + push_space * 2 > free_space)
3621                                        break;
3622                        }
3623                }
3624
3625                if (path->slots[0] == i)
3626                        push_space += data_size;
3627
3628                this_item_size = btrfs_item_size(right, item);
3629                if (this_item_size + sizeof(*item) + push_space > free_space)
3630                        break;
3631
3632                push_items++;
3633                push_space += this_item_size + sizeof(*item);
3634        }
3635
3636        if (push_items == 0) {
3637                ret = 1;
3638                goto out;
3639        }
3640        if (!empty && push_items == btrfs_header_nritems(right))
3641                WARN_ON(1);
3642
3643        /* push data from right to left */
3644        copy_extent_buffer(left, right,
3645                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3646                           btrfs_item_nr_offset(0),
3647                           push_items * sizeof(struct btrfs_item));
3648
3649        push_space = BTRFS_LEAF_DATA_SIZE(root) -
3650                     btrfs_item_offset_nr(right, push_items - 1);
3651
3652        copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3653                     leaf_data_end(root, left) - push_space,
3654                     btrfs_leaf_data(right) +
3655                     btrfs_item_offset_nr(right, push_items - 1),
3656                     push_space);
3657        old_left_nritems = btrfs_header_nritems(left);
3658        BUG_ON(old_left_nritems <= 0);
3659
3660        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3661        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3662                u32 ioff;
3663
3664                item = btrfs_item_nr(left, i);
3665
3666                ioff = btrfs_token_item_offset(left, item, &token);
3667                btrfs_set_token_item_offset(left, item,
3668                      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3669                      &token);
3670        }
3671        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3672
3673        /* fixup right node */
3674        if (push_items > right_nritems)
3675                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3676                       right_nritems);
3677
3678        if (push_items < right_nritems) {
3679                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3680                                                  leaf_data_end(root, right);
3681                memmove_extent_buffer(right, btrfs_leaf_data(right) +
3682                                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3683                                      btrfs_leaf_data(right) +
3684                                      leaf_data_end(root, right), push_space);
3685
3686                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3687                              btrfs_item_nr_offset(push_items),
3688                             (btrfs_header_nritems(right) - push_items) *
3689                             sizeof(struct btrfs_item));
3690        }
3691        right_nritems -= push_items;
3692        btrfs_set_header_nritems(right, right_nritems);
3693        push_space = BTRFS_LEAF_DATA_SIZE(root);
3694        for (i = 0; i < right_nritems; i++) {
3695                item = btrfs_item_nr(right, i);
3696
3697                push_space = push_space - btrfs_token_item_size(right,
3698                                                                item, &token);
3699                btrfs_set_token_item_offset(right, item, push_space, &token);
3700        }
3701
3702        btrfs_mark_buffer_dirty(left);
3703        if (right_nritems)
3704                btrfs_mark_buffer_dirty(right);
3705        else
3706                clean_tree_block(trans, root, right);
3707
3708        btrfs_item_key(right, &disk_key, 0);
3709        fixup_low_keys(root, path, &disk_key, 1);
3710
3711        /* then fixup the leaf pointer in the path */
3712        if (path->slots[0] < push_items) {
3713                path->slots[0] += old_left_nritems;
3714                btrfs_tree_unlock(path->nodes[0]);
3715                free_extent_buffer(path->nodes[0]);
3716                path->nodes[0] = left;
3717                path->slots[1] -= 1;
3718        } else {
3719                btrfs_tree_unlock(left);
3720                free_extent_buffer(left);
3721                path->slots[0] -= push_items;
3722        }
3723        BUG_ON(path->slots[0] < 0);
3724        return ret;
3725out:
3726        btrfs_tree_unlock(left);
3727        free_extent_buffer(left);
3728        return ret;
3729}
3730
3731/*
3732 * push some data in the path leaf to the left, trying to free up at
3733 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3734 *
3735 * max_slot can put a limit on how far into the leaf we'll push items.  The
3736 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3737 * items
3738 */
3739static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3740                          *root, struct btrfs_path *path, int min_data_size,
3741                          int data_size, int empty, u32 max_slot)
3742{
3743        struct extent_buffer *right = path->nodes[0];
3744        struct extent_buffer *left;
3745        int slot;
3746        int free_space;
3747        u32 right_nritems;
3748        int ret = 0;
3749
3750        slot = path->slots[1];
3751        if (slot == 0)
3752                return 1;
3753        if (!path->nodes[1])
3754                return 1;
3755
3756        right_nritems = btrfs_header_nritems(right);
3757        if (right_nritems == 0)
3758                return 1;
3759
3760        btrfs_assert_tree_locked(path->nodes[1]);
3761
3762        left = read_node_slot(root, path->nodes[1], slot - 1);
3763        if (left == NULL)
3764                return 1;
3765
3766        btrfs_tree_lock(left);
3767        btrfs_set_lock_blocking(left);
3768
3769        free_space = btrfs_leaf_free_space(root, left);
3770        if (free_space < data_size) {
3771                ret = 1;
3772                goto out;
3773        }
3774
3775        /* cow and double check */
3776        ret = btrfs_cow_block(trans, root, left,
3777                              path->nodes[1], slot - 1, &left);
3778        if (ret) {
3779                /* we hit -ENOSPC, but it isn't fatal here */
3780                if (ret == -ENOSPC)
3781                        ret = 1;
3782                goto out;
3783        }
3784
3785        free_space = btrfs_leaf_free_space(root, left);
3786        if (free_space < data_size) {
3787                ret = 1;
3788                goto out;
3789        }
3790
3791        return __push_leaf_left(trans, root, path, min_data_size,
3792                               empty, left, free_space, right_nritems,
3793                               max_slot);
3794out:
3795        btrfs_tree_unlock(left);
3796        free_extent_buffer(left);
3797        return ret;
3798}
3799
3800/*
3801 * split the path's leaf in two, making sure there is at least data_size
3802 * available for the resulting leaf level of the path.
3803 */
3804static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3805                                    struct btrfs_root *root,
3806                                    struct btrfs_path *path,
3807                                    struct extent_buffer *l,
3808                                    struct extent_buffer *right,
3809                                    int slot, int mid, int nritems)
3810{
3811        int data_copy_size;
3812        int rt_data_off;
3813        int i;
3814        struct btrfs_disk_key disk_key;
3815        struct btrfs_map_token token;
3816
3817        btrfs_init_map_token(&token);
3818
3819        nritems = nritems - mid;
3820        btrfs_set_header_nritems(right, nritems);
3821        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3822
3823        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3824                           btrfs_item_nr_offset(mid),
3825                           nritems * sizeof(struct btrfs_item));
3826
3827        copy_extent_buffer(right, l,
3828                     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3829                     data_copy_size, btrfs_leaf_data(l) +
3830                     leaf_data_end(root, l), data_copy_size);
3831
3832        rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3833                      btrfs_item_end_nr(l, mid);
3834
3835        for (i = 0; i < nritems; i++) {
3836                struct btrfs_item *item = btrfs_item_nr(right, i);
3837                u32 ioff;
3838
3839                ioff = btrfs_token_item_offset(right, item, &token);
3840                btrfs_set_token_item_offset(right, item,
3841                                            ioff + rt_data_off, &token);
3842        }
3843
3844        btrfs_set_header_nritems(l, mid);
3845        btrfs_item_key(right, &disk_key, 0);
3846        insert_ptr(trans, root, path, &disk_key, right->start,
3847                   path->slots[1] + 1, 1);
3848
3849        btrfs_mark_buffer_dirty(right);
3850        btrfs_mark_buffer_dirty(l);
3851        BUG_ON(path->slots[0] != slot);
3852
3853        if (mid <= slot) {
3854                btrfs_tree_unlock(path->nodes[0]);
3855                free_extent_buffer(path->nodes[0]);
3856                path->nodes[0] = right;
3857                path->slots[0] -= mid;
3858                path->slots[1] += 1;
3859        } else {
3860                btrfs_tree_unlock(right);
3861                free_extent_buffer(right);
3862        }
3863
3864        BUG_ON(path->slots[0] < 0);
3865}
3866
3867/*
3868 * double splits happen when we need to insert a big item in the middle
3869 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3870 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3871 *          A                 B                 C
3872 *
3873 * We avoid this by trying to push the items on either side of our target
3874 * into the adjacent leaves.  If all goes well we can avoid the double split
3875 * completely.
3876 */
3877static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3878                                          struct btrfs_root *root,
3879                                          struct btrfs_path *path,
3880                                          int data_size)
3881{
3882        int ret;
3883        int progress = 0;
3884        int slot;
3885        u32 nritems;
3886
3887        slot = path->slots[0];
3888
3889        /*
3890         * try to push all the items after our slot into the
3891         * right leaf
3892         */
3893        ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3894        if (ret < 0)
3895                return ret;
3896
3897        if (ret == 0)
3898                progress++;
3899
3900        nritems = btrfs_header_nritems(path->nodes[0]);
3901        /*
3902         * our goal is to get our slot at the start or end of a leaf.  If
3903         * we've done so we're done
3904         */
3905        if (path->slots[0] == 0 || path->slots[0] == nritems)
3906                return 0;
3907
3908        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3909                return 0;
3910
3911        /* try to push all the items before our slot into the next leaf */
3912        slot = path->slots[0];
3913        ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3914        if (ret < 0)
3915                return ret;
3916
3917        if (ret == 0)
3918                progress++;
3919
3920        if (progress)
3921                return 0;
3922        return 1;
3923}
3924
3925/*
3926 * split the path's leaf in two, making sure there is at least data_size
3927 * available for the resulting leaf level of the path.
3928 *
3929 * returns 0 if all went well and < 0 on failure.
3930 */
3931static noinline int split_leaf(struct btrfs_trans_handle *trans,
3932                               struct btrfs_root *root,
3933                               struct btrfs_key *ins_key,
3934                               struct btrfs_path *path, int data_size,
3935                               int extend)
3936{
3937        struct btrfs_disk_key disk_key;
3938        struct extent_buffer *l;
3939        u32 nritems;
3940        int mid;
3941        int slot;
3942        struct extent_buffer *right;
3943        int ret = 0;
3944        int wret;
3945        int split;
3946        int num_doubles = 0;
3947        int tried_avoid_double = 0;
3948
3949        l = path->nodes[0];
3950        slot = path->slots[0];
3951        if (extend && data_size + btrfs_item_size_nr(l, slot) +
3952            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3953                return -EOVERFLOW;
3954
3955        /* first try to make some room by pushing left and right */
3956        if (data_size && path->nodes[1]) {
3957                wret = push_leaf_right(trans, root, path, data_size,
3958                                       data_size, 0, 0);
3959                if (wret < 0)
3960                        return wret;
3961                if (wret) {
3962                        wret = push_leaf_left(trans, root, path, data_size,
3963                                              data_size, 0, (u32)-1);
3964                        if (wret < 0)
3965                                return wret;
3966                }
3967                l = path->nodes[0];
3968
3969                /* did the pushes work? */
3970                if (btrfs_leaf_free_space(root, l) >= data_size)
3971                        return 0;
3972        }
3973
3974        if (!path->nodes[1]) {
3975                ret = insert_new_root(trans, root, path, 1);
3976                if (ret)
3977                        return ret;
3978        }
3979again:
3980        split = 1;
3981        l = path->nodes[0];
3982        slot = path->slots[0];
3983        nritems = btrfs_header_nritems(l);
3984        mid = (nritems + 1) / 2;
3985
3986        if (mid <= slot) {
3987                if (nritems == 1 ||
3988                    leaf_space_used(l, mid, nritems - mid) + data_size >
3989                        BTRFS_LEAF_DATA_SIZE(root)) {
3990                        if (slot >= nritems) {
3991                                split = 0;
3992                        } else {
3993                                mid = slot;
3994                                if (mid != nritems &&
3995                                    leaf_space_used(l, mid, nritems - mid) +
3996                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3997                                        if (data_size && !tried_avoid_double)
3998                                                goto push_for_double;
3999                                        split = 2;
4000                                }
4001                        }
4002                }
4003        } else {
4004                if (leaf_space_used(l, 0, mid) + data_size >
4005                        BTRFS_LEAF_DATA_SIZE(root)) {
4006                        if (!extend && data_size && slot == 0) {
4007                                split = 0;
4008                        } else if ((extend || !data_size) && slot == 0) {
4009                                mid = 1;
4010                        } else {
4011                                mid = slot;
4012                                if (mid != nritems &&
4013                                    leaf_space_used(l, mid, nritems - mid) +
4014                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4015                                        if (data_size && !tried_avoid_double)
4016                                                goto push_for_double;
4017                                        split = 2 ;
4018                                }
4019                        }
4020                }
4021        }
4022
4023        if (split == 0)
4024                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4025        else
4026                btrfs_item_key(l, &disk_key, mid);
4027
4028        right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4029                                        root->root_key.objectid,
4030                                        &disk_key, 0, l->start, 0);
4031        if (IS_ERR(right))
4032                return PTR_ERR(right);
4033
4034        root_add_used(root, root->leafsize);
4035
4036        memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4037        btrfs_set_header_bytenr(right, right->start);
4038        btrfs_set_header_generation(right, trans->transid);
4039        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4040        btrfs_set_header_owner(right, root->root_key.objectid);
4041        btrfs_set_header_level(right, 0);
4042        write_extent_buffer(right, root->fs_info->fsid,
4043                            (unsigned long)btrfs_header_fsid(right),
4044                            BTRFS_FSID_SIZE);
4045
4046        write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4047                            (unsigned long)btrfs_header_chunk_tree_uuid(right),
4048                            BTRFS_UUID_SIZE);
4049
4050        if (split == 0) {
4051                if (mid <= slot) {
4052                        btrfs_set_header_nritems(right, 0);
4053                        insert_ptr(trans, root, path, &disk_key, right->start,
4054                                   path->slots[1] + 1, 1);
4055                        btrfs_tree_unlock(path->nodes[0]);
4056                        free_extent_buffer(path->nodes[0]);
4057                        path->nodes[0] = right;
4058                        path->slots[0] = 0;
4059                        path->slots[1] += 1;
4060                } else {
4061                        btrfs_set_header_nritems(right, 0);
4062                        insert_ptr(trans, root, path, &disk_key, right->start,
4063                                          path->slots[1], 1);
4064                        btrfs_tree_unlock(path->nodes[0]);
4065                        free_extent_buffer(path->nodes[0]);
4066                        path->nodes[0] = right;
4067                        path->slots[0] = 0;
4068                        if (path->slots[1] == 0)
4069                                fixup_low_keys(root, path, &disk_key, 1);
4070                }
4071                btrfs_mark_buffer_dirty(right);
4072                return ret;
4073        }
4074
4075        copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4076
4077        if (split == 2) {
4078                BUG_ON(num_doubles != 0);
4079                num_doubles++;
4080                goto again;
4081        }
4082
4083        return 0;
4084
4085push_for_double:
4086        push_for_double_split(trans, root, path, data_size);
4087        tried_avoid_double = 1;
4088        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4089                return 0;
4090        goto again;
4091}
4092
4093static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4094                                         struct btrfs_root *root,
4095                                         struct btrfs_path *path, int ins_len)
4096{
4097        struct btrfs_key key;
4098        struct extent_buffer *leaf;
4099        struct btrfs_file_extent_item *fi;
4100        u64 extent_len = 0;
4101        u32 item_size;
4102        int ret;
4103
4104        leaf = path->nodes[0];
4105        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4106
4107        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4108               key.type != BTRFS_EXTENT_CSUM_KEY);
4109
4110        if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4111                return 0;
4112
4113        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4114        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4115                fi = btrfs_item_ptr(leaf, path->slots[0],
4116                                    struct btrfs_file_extent_item);
4117                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4118        }
4119        btrfs_release_path(path);
4120
4121        path->keep_locks = 1;
4122        path->search_for_split = 1;
4123        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4124        path->search_for_split = 0;
4125        if (ret < 0)
4126                goto err;
4127
4128        ret = -EAGAIN;
4129        leaf = path->nodes[0];
4130        /* if our item isn't there or got smaller, return now */
4131        if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4132                goto err;
4133
4134        /* the leaf has  changed, it now has room.  return now */
4135        if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4136                goto err;
4137
4138        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4139                fi = btrfs_item_ptr(leaf, path->slots[0],
4140                                    struct btrfs_file_extent_item);
4141                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4142                        goto err;
4143        }
4144
4145        btrfs_set_path_blocking(path);
4146        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4147        if (ret)
4148                goto err;
4149
4150        path->keep_locks = 0;
4151        btrfs_unlock_up_safe(path, 1);
4152        return 0;
4153err:
4154        path->keep_locks = 0;
4155        return ret;
4156}
4157
4158static noinline int split_item(struct btrfs_trans_handle *trans,
4159                               struct btrfs_root *root,
4160                               struct btrfs_path *path,
4161                               struct btrfs_key *new_key,
4162                               unsigned long split_offset)
4163{
4164        struct extent_buffer *leaf;
4165        struct btrfs_item *item;
4166        struct btrfs_item *new_item;
4167        int slot;
4168        char *buf;
4169        u32 nritems;
4170        u32 item_size;
4171        u32 orig_offset;
4172        struct btrfs_disk_key disk_key;
4173
4174        leaf = path->nodes[0];
4175        BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4176
4177        btrfs_set_path_blocking(path);
4178
4179        item = btrfs_item_nr(leaf, path->slots[0]);
4180        orig_offset = btrfs_item_offset(leaf, item);
4181        item_size = btrfs_item_size(leaf, item);
4182
4183        buf = kmalloc(item_size, GFP_NOFS);
4184        if (!buf)
4185                return -ENOMEM;
4186
4187        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4188                            path->slots[0]), item_size);
4189
4190        slot = path->slots[0] + 1;
4191        nritems = btrfs_header_nritems(leaf);
4192        if (slot != nritems) {
4193                /* shift the items */
4194                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4195                                btrfs_item_nr_offset(slot),
4196                                (nritems - slot) * sizeof(struct btrfs_item));
4197        }
4198
4199        btrfs_cpu_key_to_disk(&disk_key, new_key);
4200        btrfs_set_item_key(leaf, &disk_key, slot);
4201
4202        new_item = btrfs_item_nr(leaf, slot);
4203
4204        btrfs_set_item_offset(leaf, new_item, orig_offset);
4205        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4206
4207        btrfs_set_item_offset(leaf, item,
4208                              orig_offset + item_size - split_offset);
4209        btrfs_set_item_size(leaf, item, split_offset);
4210
4211        btrfs_set_header_nritems(leaf, nritems + 1);
4212
4213        /* write the data for the start of the original item */
4214        write_extent_buffer(leaf, buf,
4215                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4216                            split_offset);
4217
4218        /* write the data for the new item */
4219        write_extent_buffer(leaf, buf + split_offset,
4220                            btrfs_item_ptr_offset(leaf, slot),
4221                            item_size - split_offset);
4222        btrfs_mark_buffer_dirty(leaf);
4223
4224        BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4225        kfree(buf);
4226        return 0;
4227}
4228
4229/*
4230 * This function splits a single item into two items,
4231 * giving 'new_key' to the new item and splitting the
4232 * old one at split_offset (from the start of the item).
4233 *
4234 * The path may be released by this operation.  After
4235 * the split, the path is pointing to the old item.  The
4236 * new item is going to be in the same node as the old one.
4237 *
4238 * Note, the item being split must be smaller enough to live alone on
4239 * a tree block with room for one extra struct btrfs_item
4240 *
4241 * This allows us to split the item in place, keeping a lock on the
4242 * leaf the entire time.
4243 */
4244int btrfs_split_item(struct btrfs_trans_handle *trans,
4245                     struct btrfs_root *root,
4246                     struct btrfs_path *path,
4247                     struct btrfs_key *new_key,
4248                     unsigned long split_offset)
4249{
4250        int ret;
4251        ret = setup_leaf_for_split(trans, root, path,
4252                                   sizeof(struct btrfs_item));
4253        if (ret)
4254                return ret;
4255
4256        ret = split_item(trans, root, path, new_key, split_offset);
4257        return ret;
4258}
4259
4260/*
4261 * This function duplicate a item, giving 'new_key' to the new item.
4262 * It guarantees both items live in the same tree leaf and the new item
4263 * is contiguous with the original item.
4264 *
4265 * This allows us to split file extent in place, keeping a lock on the
4266 * leaf the entire time.
4267 */
4268int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4269                         struct btrfs_root *root,
4270                         struct btrfs_path *path,
4271                         struct btrfs_key *new_key)
4272{
4273        struct extent_buffer *leaf;
4274        int ret;
4275        u32 item_size;
4276
4277        leaf = path->nodes[0];
4278        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4279        ret = setup_leaf_for_split(trans, root, path,
4280                                   item_size + sizeof(struct btrfs_item));
4281        if (ret)
4282                return ret;
4283
4284        path->slots[0]++;
4285        setup_items_for_insert(root, path, new_key, &item_size,
4286                               item_size, item_size +
4287                               sizeof(struct btrfs_item), 1);
4288        leaf = path->nodes[0];
4289        memcpy_extent_buffer(leaf,
4290                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4291                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4292                             item_size);
4293        return 0;
4294}
4295
4296/*
4297 * make the item pointed to by the path smaller.  new_size indicates
4298 * how small to make it, and from_end tells us if we just chop bytes
4299 * off the end of the item or if we shift the item to chop bytes off
4300 * the front.
4301 */
4302void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4303                         u32 new_size, int from_end)
4304{
4305        int slot;
4306        struct extent_buffer *leaf;
4307        struct btrfs_item *item;
4308        u32 nritems;
4309        unsigned int data_end;
4310        unsigned int old_data_start;
4311        unsigned int old_size;
4312        unsigned int size_diff;
4313        int i;
4314        struct btrfs_map_token token;
4315
4316        btrfs_init_map_token(&token);
4317
4318        leaf = path->nodes[0];
4319        slot = path->slots[0];
4320
4321        old_size = btrfs_item_size_nr(leaf, slot);
4322        if (old_size == new_size)
4323                return;
4324
4325        nritems = btrfs_header_nritems(leaf);
4326        data_end = leaf_data_end(root, leaf);
4327
4328        old_data_start = btrfs_item_offset_nr(leaf, slot);
4329
4330        size_diff = old_size - new_size;
4331
4332        BUG_ON(slot < 0);
4333        BUG_ON(slot >= nritems);
4334
4335        /*
4336         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4337         */
4338        /* first correct the data pointers */
4339        for (i = slot; i < nritems; i++) {
4340                u32 ioff;
4341                item = btrfs_item_nr(leaf, i);
4342
4343                ioff = btrfs_token_item_offset(leaf, item, &token);
4344                btrfs_set_token_item_offset(leaf, item,
4345                                            ioff + size_diff, &token);
4346        }
4347
4348        /* shift the data */
4349        if (from_end) {
4350                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4351                              data_end + size_diff, btrfs_leaf_data(leaf) +
4352                              data_end, old_data_start + new_size - data_end);
4353        } else {
4354                struct btrfs_disk_key disk_key;
4355                u64 offset;
4356
4357                btrfs_item_key(leaf, &disk_key, slot);
4358
4359                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4360                        unsigned long ptr;
4361                        struct btrfs_file_extent_item *fi;
4362
4363                        fi = btrfs_item_ptr(leaf, slot,
4364                                            struct btrfs_file_extent_item);
4365                        fi = (struct btrfs_file_extent_item *)(
4366                             (unsigned long)fi - size_diff);
4367
4368                        if (btrfs_file_extent_type(leaf, fi) ==
4369                            BTRFS_FILE_EXTENT_INLINE) {
4370                                ptr = btrfs_item_ptr_offset(leaf, slot);
4371                                memmove_extent_buffer(leaf, ptr,
4372                                      (unsigned long)fi,
4373                                      offsetof(struct btrfs_file_extent_item,
4374                                                 disk_bytenr));
4375                        }
4376                }
4377
4378                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4379                              data_end + size_diff, btrfs_leaf_data(leaf) +
4380                              data_end, old_data_start - data_end);
4381
4382                offset = btrfs_disk_key_offset(&disk_key);
4383                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4384                btrfs_set_item_key(leaf, &disk_key, slot);
4385                if (slot == 0)
4386                        fixup_low_keys(root, path, &disk_key, 1);
4387        }
4388
4389        item = btrfs_item_nr(leaf, slot);
4390        btrfs_set_item_size(leaf, item, new_size);
4391        btrfs_mark_buffer_dirty(leaf);
4392
4393        if (btrfs_leaf_free_space(root, leaf) < 0) {
4394                btrfs_print_leaf(root, leaf);
4395                BUG();
4396        }
4397}
4398
4399/*
4400 * make the item pointed to by the path bigger, data_size is the added size.
4401 */
4402void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4403                       u32 data_size)
4404{
4405        int slot;
4406        struct extent_buffer *leaf;
4407        struct btrfs_item *item;
4408        u32 nritems;
4409        unsigned int data_end;
4410        unsigned int old_data;
4411        unsigned int old_size;
4412        int i;
4413        struct btrfs_map_token token;
4414
4415        btrfs_init_map_token(&token);
4416
4417        leaf = path->nodes[0];
4418
4419        nritems = btrfs_header_nritems(leaf);
4420        data_end = leaf_data_end(root, leaf);
4421
4422        if (btrfs_leaf_free_space(root, leaf) < data_size) {
4423                btrfs_print_leaf(root, leaf);
4424                BUG();
4425        }
4426        slot = path->slots[0];
4427        old_data = btrfs_item_end_nr(leaf, slot);
4428
4429        BUG_ON(slot < 0);
4430        if (slot >= nritems) {
4431                btrfs_print_leaf(root, leaf);
4432                printk(KERN_CRIT "slot %d too large, nritems %d\n",
4433                       slot, nritems);
4434                BUG_ON(1);
4435        }
4436
4437        /*
4438         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4439         */
4440        /* first correct the data pointers */
4441        for (i = slot; i < nritems; i++) {
4442                u32 ioff;
4443                item = btrfs_item_nr(leaf, i);
4444
4445                ioff = btrfs_token_item_offset(leaf, item, &token);
4446                btrfs_set_token_item_offset(leaf, item,
4447                                            ioff - data_size, &token);
4448        }
4449
4450        /* shift the data */
4451        memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4452                      data_end - data_size, btrfs_leaf_data(leaf) +
4453                      data_end, old_data - data_end);
4454
4455        data_end = old_data;
4456        old_size = btrfs_item_size_nr(leaf, slot);
4457        item = btrfs_item_nr(leaf, slot);
4458        btrfs_set_item_size(leaf, item, old_size + data_size);
4459        btrfs_mark_buffer_dirty(leaf);
4460
4461        if (btrfs_leaf_free_space(root, leaf) < 0) {
4462                btrfs_print_leaf(root, leaf);
4463                BUG();
4464        }
4465}
4466
4467/*
4468 * this is a helper for btrfs_insert_empty_items, the main goal here is
4469 * to save stack depth by doing the bulk of the work in a function
4470 * that doesn't call btrfs_search_slot
4471 */
4472void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4473                            struct btrfs_key *cpu_key, u32 *data_size,
4474                            u32 total_data, u32 total_size, int nr)
4475{
4476        struct btrfs_item *item;
4477        int i;
4478        u32 nritems;
4479        unsigned int data_end;
4480        struct btrfs_disk_key disk_key;
4481        struct extent_buffer *leaf;
4482        int slot;
4483        struct btrfs_map_token token;
4484
4485        btrfs_init_map_token(&token);
4486
4487        leaf = path->nodes[0];
4488        slot = path->slots[0];
4489
4490        nritems = btrfs_header_nritems(leaf);
4491        data_end = leaf_data_end(root, leaf);
4492
4493        if (btrfs_leaf_free_space(root, leaf) < total_size) {
4494                btrfs_print_leaf(root, leaf);
4495                printk(KERN_CRIT "not enough freespace need %u have %d\n",
4496                       total_size, btrfs_leaf_free_space(root, leaf));
4497                BUG();
4498        }
4499
4500        if (slot != nritems) {
4501                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4502
4503                if (old_data < data_end) {
4504                        btrfs_print_leaf(root, leaf);
4505                        printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4506                               slot, old_data, data_end);
4507                        BUG_ON(1);
4508                }
4509                /*
4510                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4511                 */
4512                /* first correct the data pointers */
4513                for (i = slot; i < nritems; i++) {
4514                        u32 ioff;
4515
4516                        item = btrfs_item_nr(leaf, i);
4517                        ioff = btrfs_token_item_offset(leaf, item, &token);
4518                        btrfs_set_token_item_offset(leaf, item,
4519                                                    ioff - total_data, &token);
4520                }
4521                /* shift the items */
4522                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4523                              btrfs_item_nr_offset(slot),
4524                              (nritems - slot) * sizeof(struct btrfs_item));
4525
4526                /* shift the data */
4527                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4528                              data_end - total_data, btrfs_leaf_data(leaf) +
4529                              data_end, old_data - data_end);
4530                data_end = old_data;
4531        }
4532
4533        /* setup the item for the new data */
4534        for (i = 0; i < nr; i++) {
4535                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4536                btrfs_set_item_key(leaf, &disk_key, slot + i);
4537                item = btrfs_item_nr(leaf, slot + i);
4538                btrfs_set_token_item_offset(leaf, item,
4539                                            data_end - data_size[i], &token);
4540                data_end -= data_size[i];
4541                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4542        }
4543
4544        btrfs_set_header_nritems(leaf, nritems + nr);
4545
4546        if (slot == 0) {
4547                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4548                fixup_low_keys(root, path, &disk_key, 1);
4549        }
4550        btrfs_unlock_up_safe(path, 1);
4551        btrfs_mark_buffer_dirty(leaf);
4552
4553        if (btrfs_leaf_free_space(root, leaf) < 0) {
4554                btrfs_print_leaf(root, leaf);
4555                BUG();
4556        }
4557}
4558
4559/*
4560 * Given a key and some data, insert items into the tree.
4561 * This does all the path init required, making room in the tree if needed.
4562 */
4563int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4564                            struct btrfs_root *root,
4565                            struct btrfs_path *path,
4566                            struct btrfs_key *cpu_key, u32 *data_size,
4567                            int nr)
4568{
4569        int ret = 0;
4570        int slot;
4571        int i;
4572        u32 total_size = 0;
4573        u32 total_data = 0;
4574
4575        for (i = 0; i < nr; i++)
4576                total_data += data_size[i];
4577
4578        total_size = total_data + (nr * sizeof(struct btrfs_item));
4579        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4580        if (ret == 0)
4581                return -EEXIST;
4582        if (ret < 0)
4583                return ret;
4584
4585        slot = path->slots[0];
4586        BUG_ON(slot < 0);
4587
4588        setup_items_for_insert(root, path, cpu_key, data_size,
4589                               total_data, total_size, nr);
4590        return 0;
4591}
4592
4593/*
4594 * Given a key and some data, insert an item into the tree.
4595 * This does all the path init required, making room in the tree if needed.
4596 */
4597int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4598                      *root, struct btrfs_key *cpu_key, void *data, u32
4599                      data_size)
4600{
4601        int ret = 0;
4602        struct btrfs_path *path;
4603        struct extent_buffer *leaf;
4604        unsigned long ptr;
4605
4606        path = btrfs_alloc_path();
4607        if (!path)
4608                return -ENOMEM;
4609        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4610        if (!ret) {
4611                leaf = path->nodes[0];
4612                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4613                write_extent_buffer(leaf, data, ptr, data_size);
4614                btrfs_mark_buffer_dirty(leaf);
4615        }
4616        btrfs_free_path(path);
4617        return ret;
4618}
4619
4620/*
4621 * delete the pointer from a given node.
4622 *
4623 * the tree should have been previously balanced so the deletion does not
4624 * empty a node.
4625 */
4626static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4627                    int level, int slot)
4628{
4629        struct extent_buffer *parent = path->nodes[level];
4630        u32 nritems;
4631        int ret;
4632
4633        nritems = btrfs_header_nritems(parent);
4634        if (slot != nritems - 1) {
4635                if (level)
4636                        tree_mod_log_eb_move(root->fs_info, parent, slot,
4637                                             slot + 1, nritems - slot - 1);
4638                memmove_extent_buffer(parent,
4639                              btrfs_node_key_ptr_offset(slot),
4640                              btrfs_node_key_ptr_offset(slot + 1),
4641                              sizeof(struct btrfs_key_ptr) *
4642                              (nritems - slot - 1));
4643        } else if (level) {
4644                ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4645                                              MOD_LOG_KEY_REMOVE);
4646                BUG_ON(ret < 0);
4647        }
4648
4649        nritems--;
4650        btrfs_set_header_nritems(parent, nritems);
4651        if (nritems == 0 && parent == root->node) {
4652                BUG_ON(btrfs_header_level(root->node) != 1);
4653                /* just turn the root into a leaf and break */
4654                btrfs_set_header_level(root->node, 0);
4655        } else if (slot == 0) {
4656                struct btrfs_disk_key disk_key;
4657
4658                btrfs_node_key(parent, &disk_key, 0);
4659                fixup_low_keys(root, path, &disk_key, level + 1);
4660        }
4661        btrfs_mark_buffer_dirty(parent);
4662}
4663
4664/*
4665 * a helper function to delete the leaf pointed to by path->slots[1] and
4666 * path->nodes[1].
4667 *
4668 * This deletes the pointer in path->nodes[1] and frees the leaf
4669 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4670 *
4671 * The path must have already been setup for deleting the leaf, including
4672 * all the proper balancing.  path->nodes[1] must be locked.
4673 */
4674static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4675                                    struct btrfs_root *root,
4676                                    struct btrfs_path *path,
4677                                    struct extent_buffer *leaf)
4678{
4679        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4680        del_ptr(root, path, 1, path->slots[1]);
4681
4682        /*
4683         * btrfs_free_extent is expensive, we want to make sure we
4684         * aren't holding any locks when we call it
4685         */
4686        btrfs_unlock_up_safe(path, 0);
4687
4688        root_sub_used(root, leaf->len);
4689
4690        extent_buffer_get(leaf);
4691        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4692        free_extent_buffer_stale(leaf);
4693}
4694/*
4695 * delete the item at the leaf level in path.  If that empties
4696 * the leaf, remove it from the tree
4697 */
4698int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4699                    struct btrfs_path *path, int slot, int nr)
4700{
4701        struct extent_buffer *leaf;
4702        struct btrfs_item *item;
4703        int last_off;
4704        int dsize = 0;
4705        int ret = 0;
4706        int wret;
4707        int i;
4708        u32 nritems;
4709        struct btrfs_map_token token;
4710
4711        btrfs_init_map_token(&token);
4712
4713        leaf = path->nodes[0];
4714        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4715
4716        for (i = 0; i < nr; i++)
4717                dsize += btrfs_item_size_nr(leaf, slot + i);
4718
4719        nritems = btrfs_header_nritems(leaf);
4720
4721        if (slot + nr != nritems) {
4722                int data_end = leaf_data_end(root, leaf);
4723
4724                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4725                              data_end + dsize,
4726                              btrfs_leaf_data(leaf) + data_end,
4727                              last_off - data_end);
4728
4729                for (i = slot + nr; i < nritems; i++) {
4730                        u32 ioff;
4731
4732                        item = btrfs_item_nr(leaf, i);
4733                        ioff = btrfs_token_item_offset(leaf, item, &token);
4734                        btrfs_set_token_item_offset(leaf, item,
4735                                                    ioff + dsize, &token);
4736                }
4737
4738                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4739                              btrfs_item_nr_offset(slot + nr),
4740                              sizeof(struct btrfs_item) *
4741                              (nritems - slot - nr));
4742        }
4743        btrfs_set_header_nritems(leaf, nritems - nr);
4744        nritems -= nr;
4745
4746        /* delete the leaf if we've emptied it */
4747        if (nritems == 0) {
4748                if (leaf == root->node) {
4749                        btrfs_set_header_level(leaf, 0);
4750                } else {
4751                        btrfs_set_path_blocking(path);
4752                        clean_tree_block(trans, root, leaf);
4753                        btrfs_del_leaf(trans, root, path, leaf);
4754                }
4755        } else {
4756                int used = leaf_space_used(leaf, 0, nritems);
4757                if (slot == 0) {
4758                        struct btrfs_disk_key disk_key;
4759
4760                        btrfs_item_key(leaf, &disk_key, 0);
4761                        fixup_low_keys(root, path, &disk_key, 1);
4762                }
4763
4764                /* delete the leaf if it is mostly empty */
4765                if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4766                        /* push_leaf_left fixes the path.
4767                         * make sure the path still points to our leaf
4768                         * for possible call to del_ptr below
4769                         */
4770                        slot = path->slots[1];
4771                        extent_buffer_get(leaf);
4772
4773                        btrfs_set_path_blocking(path);
4774                        wret = push_leaf_left(trans, root, path, 1, 1,
4775                                              1, (u32)-1);
4776                        if (wret < 0 && wret != -ENOSPC)
4777                                ret = wret;
4778
4779                        if (path->nodes[0] == leaf &&
4780                            btrfs_header_nritems(leaf)) {
4781                                wret = push_leaf_right(trans, root, path, 1,
4782                                                       1, 1, 0);
4783                                if (wret < 0 && wret != -ENOSPC)
4784                                        ret = wret;
4785                        }
4786
4787                        if (btrfs_header_nritems(leaf) == 0) {
4788                                path->slots[1] = slot;
4789                                btrfs_del_leaf(trans, root, path, leaf);
4790                                free_extent_buffer(leaf);
4791                                ret = 0;
4792                        } else {
4793                                /* if we're still in the path, make sure
4794                                 * we're dirty.  Otherwise, one of the
4795                                 * push_leaf functions must have already
4796                                 * dirtied this buffer
4797                                 */
4798                                if (path->nodes[0] == leaf)
4799                                        btrfs_mark_buffer_dirty(leaf);
4800                                free_extent_buffer(leaf);
4801                        }
4802                } else {
4803                        btrfs_mark_buffer_dirty(leaf);
4804                }
4805        }
4806        return ret;
4807}
4808
4809/*
4810 * search the tree again to find a leaf with lesser keys
4811 * returns 0 if it found something or 1 if there are no lesser leaves.
4812 * returns < 0 on io errors.
4813 *
4814 * This may release the path, and so you may lose any locks held at the
4815 * time you call it.
4816 */
4817int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4818{
4819        struct btrfs_key key;
4820        struct btrfs_disk_key found_key;
4821        int ret;
4822
4823        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4824
4825        if (key.offset > 0)
4826                key.offset--;
4827        else if (key.type > 0)
4828                key.type--;
4829        else if (key.objectid > 0)
4830                key.objectid--;
4831        else
4832                return 1;
4833
4834        btrfs_release_path(path);
4835        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4836        if (ret < 0)
4837                return ret;
4838        btrfs_item_key(path->nodes[0], &found_key, 0);
4839        ret = comp_keys(&found_key, &key);
4840        if (ret < 0)
4841                return 0;
4842        return 1;
4843}
4844
4845/*
4846 * A helper function to walk down the tree starting at min_key, and looking
4847 * for nodes or leaves that are have a minimum transaction id.
4848 * This is used by the btree defrag code, and tree logging
4849 *
4850 * This does not cow, but it does stuff the starting key it finds back
4851 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4852 * key and get a writable path.
4853 *
4854 * This does lock as it descends, and path->keep_locks should be set
4855 * to 1 by the caller.
4856 *
4857 * This honors path->lowest_level to prevent descent past a given level
4858 * of the tree.
4859 *
4860 * min_trans indicates the oldest transaction that you are interested
4861 * in walking through.  Any nodes or leaves older than min_trans are
4862 * skipped over (without reading them).
4863 *
4864 * returns zero if something useful was found, < 0 on error and 1 if there
4865 * was nothing in the tree that matched the search criteria.
4866 */
4867int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4868                         struct btrfs_key *max_key,
4869                         struct btrfs_path *path,
4870                         u64 min_trans)
4871{
4872        struct extent_buffer *cur;
4873        struct btrfs_key found_key;
4874        int slot;
4875        int sret;
4876        u32 nritems;
4877        int level;
4878        int ret = 1;
4879
4880        WARN_ON(!path->keep_locks);
4881again:
4882        cur = btrfs_read_lock_root_node(root);
4883        level = btrfs_header_level(cur);
4884        WARN_ON(path->nodes[level]);
4885        path->nodes[level] = cur;
4886        path->locks[level] = BTRFS_READ_LOCK;
4887
4888        if (btrfs_header_generation(cur) < min_trans) {
4889                ret = 1;
4890                goto out;
4891        }
4892        while (1) {
4893                nritems = btrfs_header_nritems(cur);
4894                level = btrfs_header_level(cur);
4895                sret = bin_search(cur, min_key, level, &slot);
4896
4897                /* at the lowest level, we're done, setup the path and exit */
4898                if (level == path->lowest_level) {
4899                        if (slot >= nritems)
4900                                goto find_next_key;
4901                        ret = 0;
4902                        path->slots[level] = slot;
4903                        btrfs_item_key_to_cpu(cur, &found_key, slot);
4904                        goto out;
4905                }
4906                if (sret && slot > 0)
4907                        slot--;
4908                /*
4909                 * check this node pointer against the min_trans parameters.
4910                 * If it is too old, old, skip to the next one.
4911                 */
4912                while (slot < nritems) {
4913                        u64 blockptr;
4914                        u64 gen;
4915
4916                        blockptr = btrfs_node_blockptr(cur, slot);
4917                        gen = btrfs_node_ptr_generation(cur, slot);
4918                        if (gen < min_trans) {
4919                                slot++;
4920                                continue;
4921                        }
4922                        break;
4923                }
4924find_next_key:
4925                /*
4926                 * we didn't find a candidate key in this node, walk forward
4927                 * and find another one
4928                 */
4929                if (slot >= nritems) {
4930                        path->slots[level] = slot;
4931                        btrfs_set_path_blocking(path);
4932                        sret = btrfs_find_next_key(root, path, min_key, level,
4933                                                  min_trans);
4934                        if (sret == 0) {
4935                                btrfs_release_path(path);
4936                                goto again;
4937                        } else {
4938                                goto out;
4939                        }
4940                }
4941                /* save our key for returning back */
4942                btrfs_node_key_to_cpu(cur, &found_key, slot);
4943                path->slots[level] = slot;
4944                if (level == path->lowest_level) {
4945                        ret = 0;
4946                        unlock_up(path, level, 1, 0, NULL);
4947                        goto out;
4948                }
4949                btrfs_set_path_blocking(path);
4950                cur = read_node_slot(root, cur, slot);
4951                BUG_ON(!cur); /* -ENOMEM */
4952
4953                btrfs_tree_read_lock(cur);
4954
4955                path->locks[level - 1] = BTRFS_READ_LOCK;
4956                path->nodes[level - 1] = cur;
4957                unlock_up(path, level, 1, 0, NULL);
4958                btrfs_clear_path_blocking(path, NULL, 0);
4959        }
4960out:
4961        if (ret == 0)
4962                memcpy(min_key, &found_key, sizeof(found_key));
4963        btrfs_set_path_blocking(path);
4964        return ret;
4965}
4966
4967static void tree_move_down(struct btrfs_root *root,
4968                           struct btrfs_path *path,
4969                           int *level, int root_level)
4970{
4971        BUG_ON(*level == 0);
4972        path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4973                                        path->slots[*level]);
4974        path->slots[*level - 1] = 0;
4975        (*level)--;
4976}
4977
4978static int tree_move_next_or_upnext(struct btrfs_root *root,
4979                                    struct btrfs_path *path,
4980                                    int *level, int root_level)
4981{
4982        int ret = 0;
4983        int nritems;
4984        nritems = btrfs_header_nritems(path->nodes[*level]);
4985
4986        path->slots[*level]++;
4987
4988        while (path->slots[*level] >= nritems) {
4989                if (*level == root_level)
4990                        return -1;
4991
4992                /* move upnext */
4993                path->slots[*level] = 0;
4994                free_extent_buffer(path->nodes[*level]);
4995                path->nodes[*level] = NULL;
4996                (*level)++;
4997                path->slots[*level]++;
4998
4999                nritems = btrfs_header_nritems(path->nodes[*level]);
5000                ret = 1;
5001        }
5002        return ret;
5003}
5004
5005/*
5006 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5007 * or down.
5008 */
5009static int tree_advance(struct btrfs_root *root,
5010                        struct btrfs_path *path,
5011                        int *level, int root_level,
5012                        int allow_down,
5013                        struct btrfs_key *key)
5014{
5015        int ret;
5016
5017        if (*level == 0 || !allow_down) {
5018                ret = tree_move_next_or_upnext(root, path, level, root_level);
5019        } else {
5020                tree_move_down(root, path, level, root_level);
5021                ret = 0;
5022        }
5023        if (ret >= 0) {
5024                if (*level == 0)
5025                        btrfs_item_key_to_cpu(path->nodes[*level], key,
5026                                        path->slots[*level]);
5027                else
5028                        btrfs_node_key_to_cpu(path->nodes[*level], key,
5029                                        path->slots[*level]);
5030        }
5031        return ret;
5032}
5033
5034static int tree_compare_item(struct btrfs_root *left_root,
5035                             struct btrfs_path *left_path,
5036                             struct btrfs_path *right_path,
5037                             char *tmp_buf)
5038{
5039        int cmp;
5040        int len1, len2;
5041        unsigned long off1, off2;
5042
5043        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5044        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5045        if (len1 != len2)
5046                return 1;
5047
5048        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5049        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5050                                right_path->slots[0]);
5051
5052        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5053
5054        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5055        if (cmp)
5056                return 1;
5057        return 0;
5058}
5059
5060#define ADVANCE 1
5061#define ADVANCE_ONLY_NEXT -1
5062
5063/*
5064 * This function compares two trees and calls the provided callback for
5065 * every changed/new/deleted item it finds.
5066 * If shared tree blocks are encountered, whole subtrees are skipped, making
5067 * the compare pretty fast on snapshotted subvolumes.
5068 *
5069 * This currently works on commit roots only. As commit roots are read only,
5070 * we don't do any locking. The commit roots are protected with transactions.
5071 * Transactions are ended and rejoined when a commit is tried in between.
5072 *
5073 * This function checks for modifications done to the trees while comparing.
5074 * If it detects a change, it aborts immediately.
5075 */
5076int btrfs_compare_trees(struct btrfs_root *left_root,
5077                        struct btrfs_root *right_root,
5078                        btrfs_changed_cb_t changed_cb, void *ctx)
5079{
5080        int ret;
5081        int cmp;
5082        struct btrfs_trans_handle *trans = NULL;
5083        struct btrfs_path *left_path = NULL;
5084        struct btrfs_path *right_path = NULL;
5085        struct btrfs_key left_key;
5086        struct btrfs_key right_key;
5087        char *tmp_buf = NULL;
5088        int left_root_level;
5089        int right_root_level;
5090        int left_level;
5091        int right_level;
5092        int left_end_reached;
5093        int right_end_reached;
5094        int advance_left;
5095        int advance_right;
5096        u64 left_blockptr;
5097        u64 right_blockptr;
5098        u64 left_start_ctransid;
5099        u64 right_start_ctransid;
5100        u64 ctransid;
5101
5102        left_path = btrfs_alloc_path();
5103        if (!left_path) {
5104                ret = -ENOMEM;
5105                goto out;
5106        }
5107        right_path = btrfs_alloc_path();
5108        if (!right_path) {
5109                ret = -ENOMEM;
5110                goto out;
5111        }
5112
5113        tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5114        if (!tmp_buf) {
5115                ret = -ENOMEM;
5116                goto out;
5117        }
5118
5119        left_path->search_commit_root = 1;
5120        left_path->skip_locking = 1;
5121        right_path->search_commit_root = 1;
5122        right_path->skip_locking = 1;
5123
5124        spin_lock(&left_root->root_item_lock);
5125        left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5126        spin_unlock(&left_root->root_item_lock);
5127
5128        spin_lock(&right_root->root_item_lock);
5129        right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5130        spin_unlock(&right_root->root_item_lock);
5131
5132        trans = btrfs_join_transaction(left_root);
5133        if (IS_ERR(trans)) {
5134                ret = PTR_ERR(trans);
5135                trans = NULL;
5136                goto out;
5137        }
5138
5139        /*
5140         * Strategy: Go to the first items of both trees. Then do
5141         *
5142         * If both trees are at level 0
5143         *   Compare keys of current items
5144         *     If left < right treat left item as new, advance left tree
5145         *       and repeat
5146         *     If left > right treat right item as deleted, advance right tree
5147         *       and repeat
5148         *     If left == right do deep compare of items, treat as changed if
5149         *       needed, advance both trees and repeat
5150         * If both trees are at the same level but not at level 0
5151         *   Compare keys of current nodes/leafs
5152         *     If left < right advance left tree and repeat
5153         *     If left > right advance right tree and repeat
5154         *     If left == right compare blockptrs of the next nodes/leafs
5155         *       If they match advance both trees but stay at the same level
5156         *         and repeat
5157         *       If they don't match advance both trees while allowing to go
5158         *         deeper and repeat
5159         * If tree levels are different
5160         *   Advance the tree that needs it and repeat
5161         *
5162         * Advancing a tree means:
5163         *   If we are at level 0, try to go to the next slot. If that's not
5164         *   possible, go one level up and repeat. Stop when we found a level
5165         *   where we could go to the next slot. We may at this point be on a
5166         *   node or a leaf.
5167         *
5168         *   If we are not at level 0 and not on shared tree blocks, go one
5169         *   level deeper.
5170         *
5171         *   If we are not at level 0 and on shared tree blocks, go one slot to
5172         *   the right if possible or go up and right.
5173         */
5174
5175        left_level = btrfs_header_level(left_root->commit_root);
5176        left_root_level = left_level;
5177        left_path->nodes[left_level] = left_root->commit_root;
5178        extent_buffer_get(left_path->nodes[left_level]);
5179
5180        right_level = btrfs_header_level(right_root->commit_root);
5181        right_root_level = right_level;
5182        right_path->nodes[right_level] = right_root->commit_root;
5183        extent_buffer_get(right_path->nodes[right_level]);
5184
5185        if (left_level == 0)
5186                btrfs_item_key_to_cpu(left_path->nodes[left_level],
5187                                &left_key, left_path->slots[left_level]);
5188        else
5189                btrfs_node_key_to_cpu(left_path->nodes[left_level],
5190                                &left_key, left_path->slots[left_level]);
5191        if (right_level == 0)
5192                btrfs_item_key_to_cpu(right_path->nodes[right_level],
5193                                &right_key, right_path->slots[right_level]);
5194        else
5195                btrfs_node_key_to_cpu(right_path->nodes[right_level],
5196                                &right_key, right_path->slots[right_level]);
5197
5198        left_end_reached = right_end_reached = 0;
5199        advance_left = advance_right = 0;
5200
5201        while (1) {
5202                /*
5203                 * We need to make sure the transaction does not get committed
5204                 * while we do anything on commit roots. This means, we need to
5205                 * join and leave transactions for every item that we process.
5206                 */
5207                if (trans && btrfs_should_end_transaction(trans, left_root)) {
5208                        btrfs_release_path(left_path);
5209                        btrfs_release_path(right_path);
5210
5211                        ret = btrfs_end_transaction(trans, left_root);
5212                        trans = NULL;
5213                        if (ret < 0)
5214                                goto out;
5215                }
5216                /* now rejoin the transaction */
5217                if (!trans) {
5218                        trans = btrfs_join_transaction(left_root);
5219                        if (IS_ERR(trans)) {
5220                                ret = PTR_ERR(trans);
5221                                trans = NULL;
5222                                goto out;
5223                        }
5224
5225                        spin_lock(&left_root->root_item_lock);
5226                        ctransid = btrfs_root_ctransid(&left_root->root_item);
5227                        spin_unlock(&left_root->root_item_lock);
5228                        if (ctransid != left_start_ctransid)
5229                                left_start_ctransid = 0;
5230
5231                        spin_lock(&right_root->root_item_lock);
5232                        ctransid = btrfs_root_ctransid(&right_root->root_item);
5233                        spin_unlock(&right_root->root_item_lock);
5234                        if (ctransid != right_start_ctransid)
5235                                right_start_ctransid = 0;
5236
5237                        if (!left_start_ctransid || !right_start_ctransid) {
5238                                WARN(1, KERN_WARNING
5239                                        "btrfs: btrfs_compare_tree detected "
5240                                        "a change in one of the trees while "
5241                                        "iterating. This is probably a "
5242                                        "bug.\n");
5243                                ret = -EIO;
5244                                goto out;
5245                        }
5246
5247                        /*
5248                         * the commit root may have changed, so start again
5249                         * where we stopped
5250                         */
5251                        left_path->lowest_level = left_level;
5252                        right_path->lowest_level = right_level;
5253                        ret = btrfs_search_slot(NULL, left_root,
5254                                        &left_key, left_path, 0, 0);
5255                        if (ret < 0)
5256                                goto out;
5257                        ret = btrfs_search_slot(NULL, right_root,
5258                                        &right_key, right_path, 0, 0);
5259                        if (ret < 0)
5260                                goto out;
5261                }
5262
5263                if (advance_left && !left_end_reached) {
5264                        ret = tree_advance(left_root, left_path, &left_level,
5265                                        left_root_level,
5266                                        advance_left != ADVANCE_ONLY_NEXT,
5267                                        &left_key);
5268                        if (ret < 0)
5269                                left_end_reached = ADVANCE;
5270                        advance_left = 0;
5271                }
5272                if (advance_right && !right_end_reached) {
5273                        ret = tree_advance(right_root, right_path, &right_level,
5274                                        right_root_level,
5275                                        advance_right != ADVANCE_ONLY_NEXT,
5276                                        &right_key);
5277                        if (ret < 0)
5278                                right_end_reached = ADVANCE;
5279                        advance_right = 0;
5280                }
5281
5282                if (left_end_reached && right_end_reached) {
5283                        ret = 0;
5284                        goto out;
5285                } else if (left_end_reached) {
5286                        if (right_level == 0) {
5287                                ret = changed_cb(left_root, right_root,
5288                                                left_path, right_path,
5289                                                &right_key,
5290                                                BTRFS_COMPARE_TREE_DELETED,
5291                                                ctx);
5292                                if (ret < 0)
5293                                        goto out;
5294                        }
5295                        advance_right = ADVANCE;
5296                        continue;
5297                } else if (right_end_reached) {
5298                        if (left_level == 0) {
5299                                ret = changed_cb(left_root, right_root,
5300                                                left_path, right_path,
5301                                                &left_key,
5302                                                BTRFS_COMPARE_TREE_NEW,
5303                                                ctx);
5304                                if (ret < 0)
5305                                        goto out;
5306                        }
5307                        advance_left = ADVANCE;
5308                        continue;
5309                }
5310
5311                if (left_level == 0 && right_level == 0) {
5312                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5313                        if (cmp < 0) {
5314                                ret = changed_cb(left_root, right_root,
5315                                                left_path, right_path,
5316                                                &left_key,
5317                                                BTRFS_COMPARE_TREE_NEW,
5318                                                ctx);
5319                                if (ret < 0)
5320                                        goto out;
5321                                advance_left = ADVANCE;
5322                        } else if (cmp > 0) {
5323                                ret = changed_cb(left_root, right_root,
5324                                                left_path, right_path,
5325                                                &right_key,
5326                                                BTRFS_COMPARE_TREE_DELETED,
5327                                                ctx);
5328                                if (ret < 0)
5329                                        goto out;
5330                                advance_right = ADVANCE;
5331                        } else {
5332                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5333                                ret = tree_compare_item(left_root, left_path,
5334                                                right_path, tmp_buf);
5335                                if (ret) {
5336                                        WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5337                                        ret = changed_cb(left_root, right_root,
5338                                                left_path, right_path,
5339                                                &left_key,
5340                                                BTRFS_COMPARE_TREE_CHANGED,
5341                                                ctx);
5342                                        if (ret < 0)
5343                                                goto out;
5344                                }
5345                                advance_left = ADVANCE;
5346                                advance_right = ADVANCE;
5347                        }
5348                } else if (left_level == right_level) {
5349                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5350                        if (cmp < 0) {
5351                                advance_left = ADVANCE;
5352                        } else if (cmp > 0) {
5353                                advance_right = ADVANCE;
5354                        } else {
5355                                left_blockptr = btrfs_node_blockptr(
5356                                                left_path->nodes[left_level],
5357                                                left_path->slots[left_level]);
5358                                right_blockptr = btrfs_node_blockptr(
5359                                                right_path->nodes[right_level],
5360                                                right_path->slots[right_level]);
5361                                if (left_blockptr == right_blockptr) {
5362                                        /*
5363                                         * As we're on a shared block, don't
5364                                         * allow to go deeper.
5365                                         */
5366                                        advance_left = ADVANCE_ONLY_NEXT;
5367                                        advance_right = ADVANCE_ONLY_NEXT;
5368                                } else {
5369                                        advance_left = ADVANCE;
5370                                        advance_right = ADVANCE;
5371                                }
5372                        }
5373                } else if (left_level < right_level) {
5374                        advance_right = ADVANCE;
5375                } else {
5376                        advance_left = ADVANCE;
5377                }
5378        }
5379
5380out:
5381        btrfs_free_path(left_path);
5382        btrfs_free_path(right_path);
5383        kfree(tmp_buf);
5384
5385        if (trans) {
5386                if (!ret)
5387                        ret = btrfs_end_transaction(trans, left_root);
5388                else
5389                        btrfs_end_transaction(trans, left_root);
5390        }
5391
5392        return ret;
5393}
5394
5395/*
5396 * this is similar to btrfs_next_leaf, but does not try to preserve
5397 * and fixup the path.  It looks for and returns the next key in the
5398 * tree based on the current path and the min_trans parameters.
5399 *
5400 * 0 is returned if another key is found, < 0 if there are any errors
5401 * and 1 is returned if there are no higher keys in the tree
5402 *
5403 * path->keep_locks should be set to 1 on the search made before
5404 * calling this function.
5405 */
5406int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5407                        struct btrfs_key *key, int level, u64 min_trans)
5408{
5409        int slot;
5410        struct extent_buffer *c;
5411
5412        WARN_ON(!path->keep_locks);
5413        while (level < BTRFS_MAX_LEVEL) {
5414                if (!path->nodes[level])
5415                        return 1;
5416
5417                slot = path->slots[level] + 1;
5418                c = path->nodes[level];
5419next:
5420                if (slot >= btrfs_header_nritems(c)) {
5421                        int ret;
5422                        int orig_lowest;
5423                        struct btrfs_key cur_key;
5424                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5425                            !path->nodes[level + 1])
5426                                return 1;
5427
5428                        if (path->locks[level + 1]) {
5429                                level++;
5430                                continue;
5431                        }
5432
5433                        slot = btrfs_header_nritems(c) - 1;
5434                        if (level == 0)
5435                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5436                        else
5437                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5438
5439                        orig_lowest = path->lowest_level;
5440                        btrfs_release_path(path);
5441                        path->lowest_level = level;
5442                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5443                                                0, 0);
5444                        path->lowest_level = orig_lowest;
5445                        if (ret < 0)
5446                                return ret;
5447
5448                        c = path->nodes[level];
5449                        slot = path->slots[level];
5450                        if (ret == 0)
5451                                slot++;
5452                        goto next;
5453                }
5454
5455                if (level == 0)
5456                        btrfs_item_key_to_cpu(c, key, slot);
5457                else {
5458                        u64 gen = btrfs_node_ptr_generation(c, slot);
5459
5460                        if (gen < min_trans) {
5461                                slot++;
5462                                goto next;
5463                        }
5464                        btrfs_node_key_to_cpu(c, key, slot);
5465                }
5466                return 0;
5467        }
5468        return 1;
5469}
5470
5471/*
5472 * search the tree again to find a leaf with greater keys
5473 * returns 0 if it found something or 1 if there are no greater leaves.
5474 * returns < 0 on io errors.
5475 */
5476int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5477{
5478        return btrfs_next_old_leaf(root, path, 0);
5479}
5480
5481int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5482                        u64 time_seq)
5483{
5484        int slot;
5485        int level;
5486        struct extent_buffer *c;
5487        struct extent_buffer *next;
5488        struct btrfs_key key;
5489        u32 nritems;
5490        int ret;
5491        int old_spinning = path->leave_spinning;
5492        int next_rw_lock = 0;
5493
5494        nritems = btrfs_header_nritems(path->nodes[0]);
5495        if (nritems == 0)
5496                return 1;
5497
5498        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5499again:
5500        level = 1;
5501        next = NULL;
5502        next_rw_lock = 0;
5503        btrfs_release_path(path);
5504
5505        path->keep_locks = 1;
5506        path->leave_spinning = 1;
5507
5508        if (time_seq)
5509                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5510        else
5511                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5512        path->keep_locks = 0;
5513
5514        if (ret < 0)
5515                return ret;
5516
5517        nritems = btrfs_header_nritems(path->nodes[0]);
5518        /*
5519         * by releasing the path above we dropped all our locks.  A balance
5520         * could have added more items next to the key that used to be
5521         * at the very end of the block.  So, check again here and
5522         * advance the path if there are now more items available.
5523         */
5524        if (nritems > 0 && path->slots[0] < nritems - 1) {
5525                if (ret == 0)
5526                        path->slots[0]++;
5527                ret = 0;
5528                goto done;
5529        }
5530
5531        while (level < BTRFS_MAX_LEVEL) {
5532                if (!path->nodes[level]) {
5533                        ret = 1;
5534                        goto done;
5535                }
5536
5537                slot = path->slots[level] + 1;
5538                c = path->nodes[level];
5539                if (slot >= btrfs_header_nritems(c)) {
5540                        level++;
5541                        if (level == BTRFS_MAX_LEVEL) {
5542                                ret = 1;
5543                                goto done;
5544                        }
5545                        continue;
5546                }
5547
5548                if (next) {
5549                        btrfs_tree_unlock_rw(next, next_rw_lock);
5550                        free_extent_buffer(next);
5551                }
5552
5553                next = c;
5554                next_rw_lock = path->locks[level];
5555                ret = read_block_for_search(NULL, root, path, &next, level,
5556                                            slot, &key, 0);
5557                if (ret == -EAGAIN)
5558                        goto again;
5559
5560                if (ret < 0) {
5561                        btrfs_release_path(path);
5562                        goto done;
5563                }
5564
5565                if (!path->skip_locking) {
5566                        ret = btrfs_try_tree_read_lock(next);
5567                        if (!ret && time_seq) {
5568                                /*
5569                                 * If we don't get the lock, we may be racing
5570                                 * with push_leaf_left, holding that lock while
5571                                 * itself waiting for the leaf we've currently
5572                                 * locked. To solve this situation, we give up
5573                                 * on our lock and cycle.
5574                                 */
5575                                free_extent_buffer(next);
5576                                btrfs_release_path(path);
5577                                cond_resched();
5578                                goto again;
5579                        }
5580                        if (!ret) {
5581                                btrfs_set_path_blocking(path);
5582                                btrfs_tree_read_lock(next);
5583                                btrfs_clear_path_blocking(path, next,
5584                                                          BTRFS_READ_LOCK);
5585                        }
5586                        next_rw_lock = BTRFS_READ_LOCK;
5587                }
5588                break;
5589        }
5590        path->slots[level] = slot;
5591        while (1) {
5592                level--;
5593                c = path->nodes[level];
5594                if (path->locks[level])
5595                        btrfs_tree_unlock_rw(c, path->locks[level]);
5596
5597                free_extent_buffer(c);
5598                path->nodes[level] = next;
5599                path->slots[level] = 0;
5600                if (!path->skip_locking)
5601                        path->locks[level] = next_rw_lock;
5602                if (!level)
5603                        break;
5604
5605                ret = read_block_for_search(NULL, root, path, &next, level,
5606                                            0, &key, 0);
5607                if (ret == -EAGAIN)
5608                        goto again;
5609
5610                if (ret < 0) {
5611                        btrfs_release_path(path);
5612                        goto done;
5613                }
5614
5615                if (!path->skip_locking) {
5616                        ret = btrfs_try_tree_read_lock(next);
5617                        if (!ret) {
5618                                btrfs_set_path_blocking(path);
5619                                btrfs_tree_read_lock(next);
5620                                btrfs_clear_path_blocking(path, next,
5621                                                          BTRFS_READ_LOCK);
5622                        }
5623                        next_rw_lock = BTRFS_READ_LOCK;
5624                }
5625        }
5626        ret = 0;
5627done:
5628        unlock_up(path, 0, 1, 0, NULL);
5629        path->leave_spinning = old_spinning;
5630        if (!old_spinning)
5631                btrfs_set_path_blocking(path);
5632
5633        return ret;
5634}
5635
5636/*
5637 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5638 * searching until it gets past min_objectid or finds an item of 'type'
5639 *
5640 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5641 */
5642int btrfs_previous_item(struct btrfs_root *root,
5643                        struct btrfs_path *path, u64 min_objectid,
5644                        int type)
5645{
5646        struct btrfs_key found_key;
5647        struct extent_buffer *leaf;
5648        u32 nritems;
5649        int ret;
5650
5651        while (1) {
5652                if (path->slots[0] == 0) {
5653                        btrfs_set_path_blocking(path);
5654                        ret = btrfs_prev_leaf(root, path);
5655                        if (ret != 0)
5656                                return ret;
5657                } else {
5658                        path->slots[0]--;
5659                }
5660                leaf = path->nodes[0];
5661                nritems = btrfs_header_nritems(leaf);
5662                if (nritems == 0)
5663                        return 1;
5664                if (path->slots[0] == nritems)
5665                        path->slots[0]--;
5666
5667                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5668                if (found_key.objectid < min_objectid)
5669                        break;
5670                if (found_key.type == type)
5671                        return 0;
5672                if (found_key.objectid == min_objectid &&
5673                    found_key.type < type)
5674                        break;
5675        }
5676        return 1;
5677}
5678