linux/fs/btrfs/extent-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/pagemap.h>
  20#include <linux/writeback.h>
  21#include <linux/blkdev.h>
  22#include <linux/sort.h>
  23#include <linux/rcupdate.h>
  24#include <linux/kthread.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/percpu_counter.h>
  28#include "compat.h"
  29#include "hash.h"
  30#include "ctree.h"
  31#include "disk-io.h"
  32#include "print-tree.h"
  33#include "transaction.h"
  34#include "volumes.h"
  35#include "raid56.h"
  36#include "locking.h"
  37#include "free-space-cache.h"
  38#include "math.h"
  39
  40#undef SCRAMBLE_DELAYED_REFS
  41
  42/*
  43 * control flags for do_chunk_alloc's force field
  44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  45 * if we really need one.
  46 *
  47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
  48 * if we have very few chunks already allocated.  This is
  49 * used as part of the clustering code to help make sure
  50 * we have a good pool of storage to cluster in, without
  51 * filling the FS with empty chunks
  52 *
  53 * CHUNK_ALLOC_FORCE means it must try to allocate one
  54 *
  55 */
  56enum {
  57        CHUNK_ALLOC_NO_FORCE = 0,
  58        CHUNK_ALLOC_LIMITED = 1,
  59        CHUNK_ALLOC_FORCE = 2,
  60};
  61
  62/*
  63 * Control how reservations are dealt with.
  64 *
  65 * RESERVE_FREE - freeing a reservation.
  66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  67 *   ENOSPC accounting
  68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  69 *   bytes_may_use as the ENOSPC accounting is done elsewhere
  70 */
  71enum {
  72        RESERVE_FREE = 0,
  73        RESERVE_ALLOC = 1,
  74        RESERVE_ALLOC_NO_ACCOUNT = 2,
  75};
  76
  77static int update_block_group(struct btrfs_root *root,
  78                              u64 bytenr, u64 num_bytes, int alloc);
  79static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  80                                struct btrfs_root *root,
  81                                u64 bytenr, u64 num_bytes, u64 parent,
  82                                u64 root_objectid, u64 owner_objectid,
  83                                u64 owner_offset, int refs_to_drop,
  84                                struct btrfs_delayed_extent_op *extra_op);
  85static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  86                                    struct extent_buffer *leaf,
  87                                    struct btrfs_extent_item *ei);
  88static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  89                                      struct btrfs_root *root,
  90                                      u64 parent, u64 root_objectid,
  91                                      u64 flags, u64 owner, u64 offset,
  92                                      struct btrfs_key *ins, int ref_mod);
  93static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  94                                     struct btrfs_root *root,
  95                                     u64 parent, u64 root_objectid,
  96                                     u64 flags, struct btrfs_disk_key *key,
  97                                     int level, struct btrfs_key *ins);
  98static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  99                          struct btrfs_root *extent_root, u64 flags,
 100                          int force);
 101static int find_next_key(struct btrfs_path *path, int level,
 102                         struct btrfs_key *key);
 103static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
 104                            int dump_block_groups);
 105static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
 106                                       u64 num_bytes, int reserve);
 107static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 108                               u64 num_bytes);
 109int btrfs_pin_extent(struct btrfs_root *root,
 110                     u64 bytenr, u64 num_bytes, int reserved);
 111
 112static noinline int
 113block_group_cache_done(struct btrfs_block_group_cache *cache)
 114{
 115        smp_mb();
 116        return cache->cached == BTRFS_CACHE_FINISHED;
 117}
 118
 119static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
 120{
 121        return (cache->flags & bits) == bits;
 122}
 123
 124static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
 125{
 126        atomic_inc(&cache->count);
 127}
 128
 129void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
 130{
 131        if (atomic_dec_and_test(&cache->count)) {
 132                WARN_ON(cache->pinned > 0);
 133                WARN_ON(cache->reserved > 0);
 134                kfree(cache->free_space_ctl);
 135                kfree(cache);
 136        }
 137}
 138
 139/*
 140 * this adds the block group to the fs_info rb tree for the block group
 141 * cache
 142 */
 143static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 144                                struct btrfs_block_group_cache *block_group)
 145{
 146        struct rb_node **p;
 147        struct rb_node *parent = NULL;
 148        struct btrfs_block_group_cache *cache;
 149
 150        spin_lock(&info->block_group_cache_lock);
 151        p = &info->block_group_cache_tree.rb_node;
 152
 153        while (*p) {
 154                parent = *p;
 155                cache = rb_entry(parent, struct btrfs_block_group_cache,
 156                                 cache_node);
 157                if (block_group->key.objectid < cache->key.objectid) {
 158                        p = &(*p)->rb_left;
 159                } else if (block_group->key.objectid > cache->key.objectid) {
 160                        p = &(*p)->rb_right;
 161                } else {
 162                        spin_unlock(&info->block_group_cache_lock);
 163                        return -EEXIST;
 164                }
 165        }
 166
 167        rb_link_node(&block_group->cache_node, parent, p);
 168        rb_insert_color(&block_group->cache_node,
 169                        &info->block_group_cache_tree);
 170
 171        if (info->first_logical_byte > block_group->key.objectid)
 172                info->first_logical_byte = block_group->key.objectid;
 173
 174        spin_unlock(&info->block_group_cache_lock);
 175
 176        return 0;
 177}
 178
 179/*
 180 * This will return the block group at or after bytenr if contains is 0, else
 181 * it will return the block group that contains the bytenr
 182 */
 183static struct btrfs_block_group_cache *
 184block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 185                              int contains)
 186{
 187        struct btrfs_block_group_cache *cache, *ret = NULL;
 188        struct rb_node *n;
 189        u64 end, start;
 190
 191        spin_lock(&info->block_group_cache_lock);
 192        n = info->block_group_cache_tree.rb_node;
 193
 194        while (n) {
 195                cache = rb_entry(n, struct btrfs_block_group_cache,
 196                                 cache_node);
 197                end = cache->key.objectid + cache->key.offset - 1;
 198                start = cache->key.objectid;
 199
 200                if (bytenr < start) {
 201                        if (!contains && (!ret || start < ret->key.objectid))
 202                                ret = cache;
 203                        n = n->rb_left;
 204                } else if (bytenr > start) {
 205                        if (contains && bytenr <= end) {
 206                                ret = cache;
 207                                break;
 208                        }
 209                        n = n->rb_right;
 210                } else {
 211                        ret = cache;
 212                        break;
 213                }
 214        }
 215        if (ret) {
 216                btrfs_get_block_group(ret);
 217                if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
 218                        info->first_logical_byte = ret->key.objectid;
 219        }
 220        spin_unlock(&info->block_group_cache_lock);
 221
 222        return ret;
 223}
 224
 225static int add_excluded_extent(struct btrfs_root *root,
 226                               u64 start, u64 num_bytes)
 227{
 228        u64 end = start + num_bytes - 1;
 229        set_extent_bits(&root->fs_info->freed_extents[0],
 230                        start, end, EXTENT_UPTODATE, GFP_NOFS);
 231        set_extent_bits(&root->fs_info->freed_extents[1],
 232                        start, end, EXTENT_UPTODATE, GFP_NOFS);
 233        return 0;
 234}
 235
 236static void free_excluded_extents(struct btrfs_root *root,
 237                                  struct btrfs_block_group_cache *cache)
 238{
 239        u64 start, end;
 240
 241        start = cache->key.objectid;
 242        end = start + cache->key.offset - 1;
 243
 244        clear_extent_bits(&root->fs_info->freed_extents[0],
 245                          start, end, EXTENT_UPTODATE, GFP_NOFS);
 246        clear_extent_bits(&root->fs_info->freed_extents[1],
 247                          start, end, EXTENT_UPTODATE, GFP_NOFS);
 248}
 249
 250static int exclude_super_stripes(struct btrfs_root *root,
 251                                 struct btrfs_block_group_cache *cache)
 252{
 253        u64 bytenr;
 254        u64 *logical;
 255        int stripe_len;
 256        int i, nr, ret;
 257
 258        if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 259                stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 260                cache->bytes_super += stripe_len;
 261                ret = add_excluded_extent(root, cache->key.objectid,
 262                                          stripe_len);
 263                if (ret)
 264                        return ret;
 265        }
 266
 267        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 268                bytenr = btrfs_sb_offset(i);
 269                ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
 270                                       cache->key.objectid, bytenr,
 271                                       0, &logical, &nr, &stripe_len);
 272                if (ret)
 273                        return ret;
 274
 275                while (nr--) {
 276                        u64 start, len;
 277
 278                        if (logical[nr] > cache->key.objectid +
 279                            cache->key.offset)
 280                                continue;
 281
 282                        if (logical[nr] + stripe_len <= cache->key.objectid)
 283                                continue;
 284
 285                        start = logical[nr];
 286                        if (start < cache->key.objectid) {
 287                                start = cache->key.objectid;
 288                                len = (logical[nr] + stripe_len) - start;
 289                        } else {
 290                                len = min_t(u64, stripe_len,
 291                                            cache->key.objectid +
 292                                            cache->key.offset - start);
 293                        }
 294
 295                        cache->bytes_super += len;
 296                        ret = add_excluded_extent(root, start, len);
 297                        if (ret) {
 298                                kfree(logical);
 299                                return ret;
 300                        }
 301                }
 302
 303                kfree(logical);
 304        }
 305        return 0;
 306}
 307
 308static struct btrfs_caching_control *
 309get_caching_control(struct btrfs_block_group_cache *cache)
 310{
 311        struct btrfs_caching_control *ctl;
 312
 313        spin_lock(&cache->lock);
 314        if (cache->cached != BTRFS_CACHE_STARTED) {
 315                spin_unlock(&cache->lock);
 316                return NULL;
 317        }
 318
 319        /* We're loading it the fast way, so we don't have a caching_ctl. */
 320        if (!cache->caching_ctl) {
 321                spin_unlock(&cache->lock);
 322                return NULL;
 323        }
 324
 325        ctl = cache->caching_ctl;
 326        atomic_inc(&ctl->count);
 327        spin_unlock(&cache->lock);
 328        return ctl;
 329}
 330
 331static void put_caching_control(struct btrfs_caching_control *ctl)
 332{
 333        if (atomic_dec_and_test(&ctl->count))
 334                kfree(ctl);
 335}
 336
 337/*
 338 * this is only called by cache_block_group, since we could have freed extents
 339 * we need to check the pinned_extents for any extents that can't be used yet
 340 * since their free space will be released as soon as the transaction commits.
 341 */
 342static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 343                              struct btrfs_fs_info *info, u64 start, u64 end)
 344{
 345        u64 extent_start, extent_end, size, total_added = 0;
 346        int ret;
 347
 348        while (start < end) {
 349                ret = find_first_extent_bit(info->pinned_extents, start,
 350                                            &extent_start, &extent_end,
 351                                            EXTENT_DIRTY | EXTENT_UPTODATE,
 352                                            NULL);
 353                if (ret)
 354                        break;
 355
 356                if (extent_start <= start) {
 357                        start = extent_end + 1;
 358                } else if (extent_start > start && extent_start < end) {
 359                        size = extent_start - start;
 360                        total_added += size;
 361                        ret = btrfs_add_free_space(block_group, start,
 362                                                   size);
 363                        BUG_ON(ret); /* -ENOMEM or logic error */
 364                        start = extent_end + 1;
 365                } else {
 366                        break;
 367                }
 368        }
 369
 370        if (start < end) {
 371                size = end - start;
 372                total_added += size;
 373                ret = btrfs_add_free_space(block_group, start, size);
 374                BUG_ON(ret); /* -ENOMEM or logic error */
 375        }
 376
 377        return total_added;
 378}
 379
 380static noinline void caching_thread(struct btrfs_work *work)
 381{
 382        struct btrfs_block_group_cache *block_group;
 383        struct btrfs_fs_info *fs_info;
 384        struct btrfs_caching_control *caching_ctl;
 385        struct btrfs_root *extent_root;
 386        struct btrfs_path *path;
 387        struct extent_buffer *leaf;
 388        struct btrfs_key key;
 389        u64 total_found = 0;
 390        u64 last = 0;
 391        u32 nritems;
 392        int ret = 0;
 393
 394        caching_ctl = container_of(work, struct btrfs_caching_control, work);
 395        block_group = caching_ctl->block_group;
 396        fs_info = block_group->fs_info;
 397        extent_root = fs_info->extent_root;
 398
 399        path = btrfs_alloc_path();
 400        if (!path)
 401                goto out;
 402
 403        last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 404
 405        /*
 406         * We don't want to deadlock with somebody trying to allocate a new
 407         * extent for the extent root while also trying to search the extent
 408         * root to add free space.  So we skip locking and search the commit
 409         * root, since its read-only
 410         */
 411        path->skip_locking = 1;
 412        path->search_commit_root = 1;
 413        path->reada = 1;
 414
 415        key.objectid = last;
 416        key.offset = 0;
 417        key.type = BTRFS_EXTENT_ITEM_KEY;
 418again:
 419        mutex_lock(&caching_ctl->mutex);
 420        /* need to make sure the commit_root doesn't disappear */
 421        down_read(&fs_info->extent_commit_sem);
 422
 423        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 424        if (ret < 0)
 425                goto err;
 426
 427        leaf = path->nodes[0];
 428        nritems = btrfs_header_nritems(leaf);
 429
 430        while (1) {
 431                if (btrfs_fs_closing(fs_info) > 1) {
 432                        last = (u64)-1;
 433                        break;
 434                }
 435
 436                if (path->slots[0] < nritems) {
 437                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 438                } else {
 439                        ret = find_next_key(path, 0, &key);
 440                        if (ret)
 441                                break;
 442
 443                        if (need_resched()) {
 444                                caching_ctl->progress = last;
 445                                btrfs_release_path(path);
 446                                up_read(&fs_info->extent_commit_sem);
 447                                mutex_unlock(&caching_ctl->mutex);
 448                                cond_resched();
 449                                goto again;
 450                        }
 451
 452                        ret = btrfs_next_leaf(extent_root, path);
 453                        if (ret < 0)
 454                                goto err;
 455                        if (ret)
 456                                break;
 457                        leaf = path->nodes[0];
 458                        nritems = btrfs_header_nritems(leaf);
 459                        continue;
 460                }
 461
 462                if (key.objectid < block_group->key.objectid) {
 463                        path->slots[0]++;
 464                        continue;
 465                }
 466
 467                if (key.objectid >= block_group->key.objectid +
 468                    block_group->key.offset)
 469                        break;
 470
 471                if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 472                    key.type == BTRFS_METADATA_ITEM_KEY) {
 473                        total_found += add_new_free_space(block_group,
 474                                                          fs_info, last,
 475                                                          key.objectid);
 476                        if (key.type == BTRFS_METADATA_ITEM_KEY)
 477                                last = key.objectid +
 478                                        fs_info->tree_root->leafsize;
 479                        else
 480                                last = key.objectid + key.offset;
 481
 482                        if (total_found > (1024 * 1024 * 2)) {
 483                                total_found = 0;
 484                                wake_up(&caching_ctl->wait);
 485                        }
 486                }
 487                path->slots[0]++;
 488        }
 489        ret = 0;
 490
 491        total_found += add_new_free_space(block_group, fs_info, last,
 492                                          block_group->key.objectid +
 493                                          block_group->key.offset);
 494        caching_ctl->progress = (u64)-1;
 495
 496        spin_lock(&block_group->lock);
 497        block_group->caching_ctl = NULL;
 498        block_group->cached = BTRFS_CACHE_FINISHED;
 499        spin_unlock(&block_group->lock);
 500
 501err:
 502        btrfs_free_path(path);
 503        up_read(&fs_info->extent_commit_sem);
 504
 505        free_excluded_extents(extent_root, block_group);
 506
 507        mutex_unlock(&caching_ctl->mutex);
 508out:
 509        wake_up(&caching_ctl->wait);
 510
 511        put_caching_control(caching_ctl);
 512        btrfs_put_block_group(block_group);
 513}
 514
 515static int cache_block_group(struct btrfs_block_group_cache *cache,
 516                             int load_cache_only)
 517{
 518        DEFINE_WAIT(wait);
 519        struct btrfs_fs_info *fs_info = cache->fs_info;
 520        struct btrfs_caching_control *caching_ctl;
 521        int ret = 0;
 522
 523        caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 524        if (!caching_ctl)
 525                return -ENOMEM;
 526
 527        INIT_LIST_HEAD(&caching_ctl->list);
 528        mutex_init(&caching_ctl->mutex);
 529        init_waitqueue_head(&caching_ctl->wait);
 530        caching_ctl->block_group = cache;
 531        caching_ctl->progress = cache->key.objectid;
 532        atomic_set(&caching_ctl->count, 1);
 533        caching_ctl->work.func = caching_thread;
 534
 535        spin_lock(&cache->lock);
 536        /*
 537         * This should be a rare occasion, but this could happen I think in the
 538         * case where one thread starts to load the space cache info, and then
 539         * some other thread starts a transaction commit which tries to do an
 540         * allocation while the other thread is still loading the space cache
 541         * info.  The previous loop should have kept us from choosing this block
 542         * group, but if we've moved to the state where we will wait on caching
 543         * block groups we need to first check if we're doing a fast load here,
 544         * so we can wait for it to finish, otherwise we could end up allocating
 545         * from a block group who's cache gets evicted for one reason or
 546         * another.
 547         */
 548        while (cache->cached == BTRFS_CACHE_FAST) {
 549                struct btrfs_caching_control *ctl;
 550
 551                ctl = cache->caching_ctl;
 552                atomic_inc(&ctl->count);
 553                prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 554                spin_unlock(&cache->lock);
 555
 556                schedule();
 557
 558                finish_wait(&ctl->wait, &wait);
 559                put_caching_control(ctl);
 560                spin_lock(&cache->lock);
 561        }
 562
 563        if (cache->cached != BTRFS_CACHE_NO) {
 564                spin_unlock(&cache->lock);
 565                kfree(caching_ctl);
 566                return 0;
 567        }
 568        WARN_ON(cache->caching_ctl);
 569        cache->caching_ctl = caching_ctl;
 570        cache->cached = BTRFS_CACHE_FAST;
 571        spin_unlock(&cache->lock);
 572
 573        if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
 574                ret = load_free_space_cache(fs_info, cache);
 575
 576                spin_lock(&cache->lock);
 577                if (ret == 1) {
 578                        cache->caching_ctl = NULL;
 579                        cache->cached = BTRFS_CACHE_FINISHED;
 580                        cache->last_byte_to_unpin = (u64)-1;
 581                } else {
 582                        if (load_cache_only) {
 583                                cache->caching_ctl = NULL;
 584                                cache->cached = BTRFS_CACHE_NO;
 585                        } else {
 586                                cache->cached = BTRFS_CACHE_STARTED;
 587                        }
 588                }
 589                spin_unlock(&cache->lock);
 590                wake_up(&caching_ctl->wait);
 591                if (ret == 1) {
 592                        put_caching_control(caching_ctl);
 593                        free_excluded_extents(fs_info->extent_root, cache);
 594                        return 0;
 595                }
 596        } else {
 597                /*
 598                 * We are not going to do the fast caching, set cached to the
 599                 * appropriate value and wakeup any waiters.
 600                 */
 601                spin_lock(&cache->lock);
 602                if (load_cache_only) {
 603                        cache->caching_ctl = NULL;
 604                        cache->cached = BTRFS_CACHE_NO;
 605                } else {
 606                        cache->cached = BTRFS_CACHE_STARTED;
 607                }
 608                spin_unlock(&cache->lock);
 609                wake_up(&caching_ctl->wait);
 610        }
 611
 612        if (load_cache_only) {
 613                put_caching_control(caching_ctl);
 614                return 0;
 615        }
 616
 617        down_write(&fs_info->extent_commit_sem);
 618        atomic_inc(&caching_ctl->count);
 619        list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 620        up_write(&fs_info->extent_commit_sem);
 621
 622        btrfs_get_block_group(cache);
 623
 624        btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
 625
 626        return ret;
 627}
 628
 629/*
 630 * return the block group that starts at or after bytenr
 631 */
 632static struct btrfs_block_group_cache *
 633btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 634{
 635        struct btrfs_block_group_cache *cache;
 636
 637        cache = block_group_cache_tree_search(info, bytenr, 0);
 638
 639        return cache;
 640}
 641
 642/*
 643 * return the block group that contains the given bytenr
 644 */
 645struct btrfs_block_group_cache *btrfs_lookup_block_group(
 646                                                 struct btrfs_fs_info *info,
 647                                                 u64 bytenr)
 648{
 649        struct btrfs_block_group_cache *cache;
 650
 651        cache = block_group_cache_tree_search(info, bytenr, 1);
 652
 653        return cache;
 654}
 655
 656static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
 657                                                  u64 flags)
 658{
 659        struct list_head *head = &info->space_info;
 660        struct btrfs_space_info *found;
 661
 662        flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 663
 664        rcu_read_lock();
 665        list_for_each_entry_rcu(found, head, list) {
 666                if (found->flags & flags) {
 667                        rcu_read_unlock();
 668                        return found;
 669                }
 670        }
 671        rcu_read_unlock();
 672        return NULL;
 673}
 674
 675/*
 676 * after adding space to the filesystem, we need to clear the full flags
 677 * on all the space infos.
 678 */
 679void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 680{
 681        struct list_head *head = &info->space_info;
 682        struct btrfs_space_info *found;
 683
 684        rcu_read_lock();
 685        list_for_each_entry_rcu(found, head, list)
 686                found->full = 0;
 687        rcu_read_unlock();
 688}
 689
 690/* simple helper to search for an existing extent at a given offset */
 691int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
 692{
 693        int ret;
 694        struct btrfs_key key;
 695        struct btrfs_path *path;
 696
 697        path = btrfs_alloc_path();
 698        if (!path)
 699                return -ENOMEM;
 700
 701        key.objectid = start;
 702        key.offset = len;
 703        key.type = BTRFS_EXTENT_ITEM_KEY;
 704        ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
 705                                0, 0);
 706        if (ret > 0) {
 707                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 708                if (key.objectid == start &&
 709                    key.type == BTRFS_METADATA_ITEM_KEY)
 710                        ret = 0;
 711        }
 712        btrfs_free_path(path);
 713        return ret;
 714}
 715
 716/*
 717 * helper function to lookup reference count and flags of a tree block.
 718 *
 719 * the head node for delayed ref is used to store the sum of all the
 720 * reference count modifications queued up in the rbtree. the head
 721 * node may also store the extent flags to set. This way you can check
 722 * to see what the reference count and extent flags would be if all of
 723 * the delayed refs are not processed.
 724 */
 725int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 726                             struct btrfs_root *root, u64 bytenr,
 727                             u64 offset, int metadata, u64 *refs, u64 *flags)
 728{
 729        struct btrfs_delayed_ref_head *head;
 730        struct btrfs_delayed_ref_root *delayed_refs;
 731        struct btrfs_path *path;
 732        struct btrfs_extent_item *ei;
 733        struct extent_buffer *leaf;
 734        struct btrfs_key key;
 735        u32 item_size;
 736        u64 num_refs;
 737        u64 extent_flags;
 738        int ret;
 739
 740        /*
 741         * If we don't have skinny metadata, don't bother doing anything
 742         * different
 743         */
 744        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
 745                offset = root->leafsize;
 746                metadata = 0;
 747        }
 748
 749        path = btrfs_alloc_path();
 750        if (!path)
 751                return -ENOMEM;
 752
 753        if (metadata) {
 754                key.objectid = bytenr;
 755                key.type = BTRFS_METADATA_ITEM_KEY;
 756                key.offset = offset;
 757        } else {
 758                key.objectid = bytenr;
 759                key.type = BTRFS_EXTENT_ITEM_KEY;
 760                key.offset = offset;
 761        }
 762
 763        if (!trans) {
 764                path->skip_locking = 1;
 765                path->search_commit_root = 1;
 766        }
 767again:
 768        ret = btrfs_search_slot(trans, root->fs_info->extent_root,
 769                                &key, path, 0, 0);
 770        if (ret < 0)
 771                goto out_free;
 772
 773        if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 774                key.type = BTRFS_EXTENT_ITEM_KEY;
 775                key.offset = root->leafsize;
 776                btrfs_release_path(path);
 777                goto again;
 778        }
 779
 780        if (ret == 0) {
 781                leaf = path->nodes[0];
 782                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 783                if (item_size >= sizeof(*ei)) {
 784                        ei = btrfs_item_ptr(leaf, path->slots[0],
 785                                            struct btrfs_extent_item);
 786                        num_refs = btrfs_extent_refs(leaf, ei);
 787                        extent_flags = btrfs_extent_flags(leaf, ei);
 788                } else {
 789#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 790                        struct btrfs_extent_item_v0 *ei0;
 791                        BUG_ON(item_size != sizeof(*ei0));
 792                        ei0 = btrfs_item_ptr(leaf, path->slots[0],
 793                                             struct btrfs_extent_item_v0);
 794                        num_refs = btrfs_extent_refs_v0(leaf, ei0);
 795                        /* FIXME: this isn't correct for data */
 796                        extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 797#else
 798                        BUG();
 799#endif
 800                }
 801                BUG_ON(num_refs == 0);
 802        } else {
 803                num_refs = 0;
 804                extent_flags = 0;
 805                ret = 0;
 806        }
 807
 808        if (!trans)
 809                goto out;
 810
 811        delayed_refs = &trans->transaction->delayed_refs;
 812        spin_lock(&delayed_refs->lock);
 813        head = btrfs_find_delayed_ref_head(trans, bytenr);
 814        if (head) {
 815                if (!mutex_trylock(&head->mutex)) {
 816                        atomic_inc(&head->node.refs);
 817                        spin_unlock(&delayed_refs->lock);
 818
 819                        btrfs_release_path(path);
 820
 821                        /*
 822                         * Mutex was contended, block until it's released and try
 823                         * again
 824                         */
 825                        mutex_lock(&head->mutex);
 826                        mutex_unlock(&head->mutex);
 827                        btrfs_put_delayed_ref(&head->node);
 828                        goto again;
 829                }
 830                if (head->extent_op && head->extent_op->update_flags)
 831                        extent_flags |= head->extent_op->flags_to_set;
 832                else
 833                        BUG_ON(num_refs == 0);
 834
 835                num_refs += head->node.ref_mod;
 836                mutex_unlock(&head->mutex);
 837        }
 838        spin_unlock(&delayed_refs->lock);
 839out:
 840        WARN_ON(num_refs == 0);
 841        if (refs)
 842                *refs = num_refs;
 843        if (flags)
 844                *flags = extent_flags;
 845out_free:
 846        btrfs_free_path(path);
 847        return ret;
 848}
 849
 850/*
 851 * Back reference rules.  Back refs have three main goals:
 852 *
 853 * 1) differentiate between all holders of references to an extent so that
 854 *    when a reference is dropped we can make sure it was a valid reference
 855 *    before freeing the extent.
 856 *
 857 * 2) Provide enough information to quickly find the holders of an extent
 858 *    if we notice a given block is corrupted or bad.
 859 *
 860 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 861 *    maintenance.  This is actually the same as #2, but with a slightly
 862 *    different use case.
 863 *
 864 * There are two kinds of back refs. The implicit back refs is optimized
 865 * for pointers in non-shared tree blocks. For a given pointer in a block,
 866 * back refs of this kind provide information about the block's owner tree
 867 * and the pointer's key. These information allow us to find the block by
 868 * b-tree searching. The full back refs is for pointers in tree blocks not
 869 * referenced by their owner trees. The location of tree block is recorded
 870 * in the back refs. Actually the full back refs is generic, and can be
 871 * used in all cases the implicit back refs is used. The major shortcoming
 872 * of the full back refs is its overhead. Every time a tree block gets
 873 * COWed, we have to update back refs entry for all pointers in it.
 874 *
 875 * For a newly allocated tree block, we use implicit back refs for
 876 * pointers in it. This means most tree related operations only involve
 877 * implicit back refs. For a tree block created in old transaction, the
 878 * only way to drop a reference to it is COW it. So we can detect the
 879 * event that tree block loses its owner tree's reference and do the
 880 * back refs conversion.
 881 *
 882 * When a tree block is COW'd through a tree, there are four cases:
 883 *
 884 * The reference count of the block is one and the tree is the block's
 885 * owner tree. Nothing to do in this case.
 886 *
 887 * The reference count of the block is one and the tree is not the
 888 * block's owner tree. In this case, full back refs is used for pointers
 889 * in the block. Remove these full back refs, add implicit back refs for
 890 * every pointers in the new block.
 891 *
 892 * The reference count of the block is greater than one and the tree is
 893 * the block's owner tree. In this case, implicit back refs is used for
 894 * pointers in the block. Add full back refs for every pointers in the
 895 * block, increase lower level extents' reference counts. The original
 896 * implicit back refs are entailed to the new block.
 897 *
 898 * The reference count of the block is greater than one and the tree is
 899 * not the block's owner tree. Add implicit back refs for every pointer in
 900 * the new block, increase lower level extents' reference count.
 901 *
 902 * Back Reference Key composing:
 903 *
 904 * The key objectid corresponds to the first byte in the extent,
 905 * The key type is used to differentiate between types of back refs.
 906 * There are different meanings of the key offset for different types
 907 * of back refs.
 908 *
 909 * File extents can be referenced by:
 910 *
 911 * - multiple snapshots, subvolumes, or different generations in one subvol
 912 * - different files inside a single subvolume
 913 * - different offsets inside a file (bookend extents in file.c)
 914 *
 915 * The extent ref structure for the implicit back refs has fields for:
 916 *
 917 * - Objectid of the subvolume root
 918 * - objectid of the file holding the reference
 919 * - original offset in the file
 920 * - how many bookend extents
 921 *
 922 * The key offset for the implicit back refs is hash of the first
 923 * three fields.
 924 *
 925 * The extent ref structure for the full back refs has field for:
 926 *
 927 * - number of pointers in the tree leaf
 928 *
 929 * The key offset for the implicit back refs is the first byte of
 930 * the tree leaf
 931 *
 932 * When a file extent is allocated, The implicit back refs is used.
 933 * the fields are filled in:
 934 *
 935 *     (root_key.objectid, inode objectid, offset in file, 1)
 936 *
 937 * When a file extent is removed file truncation, we find the
 938 * corresponding implicit back refs and check the following fields:
 939 *
 940 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 941 *
 942 * Btree extents can be referenced by:
 943 *
 944 * - Different subvolumes
 945 *
 946 * Both the implicit back refs and the full back refs for tree blocks
 947 * only consist of key. The key offset for the implicit back refs is
 948 * objectid of block's owner tree. The key offset for the full back refs
 949 * is the first byte of parent block.
 950 *
 951 * When implicit back refs is used, information about the lowest key and
 952 * level of the tree block are required. These information are stored in
 953 * tree block info structure.
 954 */
 955
 956#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 957static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
 958                                  struct btrfs_root *root,
 959                                  struct btrfs_path *path,
 960                                  u64 owner, u32 extra_size)
 961{
 962        struct btrfs_extent_item *item;
 963        struct btrfs_extent_item_v0 *ei0;
 964        struct btrfs_extent_ref_v0 *ref0;
 965        struct btrfs_tree_block_info *bi;
 966        struct extent_buffer *leaf;
 967        struct btrfs_key key;
 968        struct btrfs_key found_key;
 969        u32 new_size = sizeof(*item);
 970        u64 refs;
 971        int ret;
 972
 973        leaf = path->nodes[0];
 974        BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
 975
 976        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 977        ei0 = btrfs_item_ptr(leaf, path->slots[0],
 978                             struct btrfs_extent_item_v0);
 979        refs = btrfs_extent_refs_v0(leaf, ei0);
 980
 981        if (owner == (u64)-1) {
 982                while (1) {
 983                        if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 984                                ret = btrfs_next_leaf(root, path);
 985                                if (ret < 0)
 986                                        return ret;
 987                                BUG_ON(ret > 0); /* Corruption */
 988                                leaf = path->nodes[0];
 989                        }
 990                        btrfs_item_key_to_cpu(leaf, &found_key,
 991                                              path->slots[0]);
 992                        BUG_ON(key.objectid != found_key.objectid);
 993                        if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
 994                                path->slots[0]++;
 995                                continue;
 996                        }
 997                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
 998                                              struct btrfs_extent_ref_v0);
 999                        owner = btrfs_ref_objectid_v0(leaf, ref0);
1000                        break;
1001                }
1002        }
1003        btrfs_release_path(path);
1004
1005        if (owner < BTRFS_FIRST_FREE_OBJECTID)
1006                new_size += sizeof(*bi);
1007
1008        new_size -= sizeof(*ei0);
1009        ret = btrfs_search_slot(trans, root, &key, path,
1010                                new_size + extra_size, 1);
1011        if (ret < 0)
1012                return ret;
1013        BUG_ON(ret); /* Corruption */
1014
1015        btrfs_extend_item(root, path, new_size);
1016
1017        leaf = path->nodes[0];
1018        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1019        btrfs_set_extent_refs(leaf, item, refs);
1020        /* FIXME: get real generation */
1021        btrfs_set_extent_generation(leaf, item, 0);
1022        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1023                btrfs_set_extent_flags(leaf, item,
1024                                       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1025                                       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1026                bi = (struct btrfs_tree_block_info *)(item + 1);
1027                /* FIXME: get first key of the block */
1028                memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1029                btrfs_set_tree_block_level(leaf, bi, (int)owner);
1030        } else {
1031                btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1032        }
1033        btrfs_mark_buffer_dirty(leaf);
1034        return 0;
1035}
1036#endif
1037
1038static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1039{
1040        u32 high_crc = ~(u32)0;
1041        u32 low_crc = ~(u32)0;
1042        __le64 lenum;
1043
1044        lenum = cpu_to_le64(root_objectid);
1045        high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1046        lenum = cpu_to_le64(owner);
1047        low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048        lenum = cpu_to_le64(offset);
1049        low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1050
1051        return ((u64)high_crc << 31) ^ (u64)low_crc;
1052}
1053
1054static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1055                                     struct btrfs_extent_data_ref *ref)
1056{
1057        return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1058                                    btrfs_extent_data_ref_objectid(leaf, ref),
1059                                    btrfs_extent_data_ref_offset(leaf, ref));
1060}
1061
1062static int match_extent_data_ref(struct extent_buffer *leaf,
1063                                 struct btrfs_extent_data_ref *ref,
1064                                 u64 root_objectid, u64 owner, u64 offset)
1065{
1066        if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1067            btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1068            btrfs_extent_data_ref_offset(leaf, ref) != offset)
1069                return 0;
1070        return 1;
1071}
1072
1073static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1074                                           struct btrfs_root *root,
1075                                           struct btrfs_path *path,
1076                                           u64 bytenr, u64 parent,
1077                                           u64 root_objectid,
1078                                           u64 owner, u64 offset)
1079{
1080        struct btrfs_key key;
1081        struct btrfs_extent_data_ref *ref;
1082        struct extent_buffer *leaf;
1083        u32 nritems;
1084        int ret;
1085        int recow;
1086        int err = -ENOENT;
1087
1088        key.objectid = bytenr;
1089        if (parent) {
1090                key.type = BTRFS_SHARED_DATA_REF_KEY;
1091                key.offset = parent;
1092        } else {
1093                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1094                key.offset = hash_extent_data_ref(root_objectid,
1095                                                  owner, offset);
1096        }
1097again:
1098        recow = 0;
1099        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1100        if (ret < 0) {
1101                err = ret;
1102                goto fail;
1103        }
1104
1105        if (parent) {
1106                if (!ret)
1107                        return 0;
1108#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1109                key.type = BTRFS_EXTENT_REF_V0_KEY;
1110                btrfs_release_path(path);
1111                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1112                if (ret < 0) {
1113                        err = ret;
1114                        goto fail;
1115                }
1116                if (!ret)
1117                        return 0;
1118#endif
1119                goto fail;
1120        }
1121
1122        leaf = path->nodes[0];
1123        nritems = btrfs_header_nritems(leaf);
1124        while (1) {
1125                if (path->slots[0] >= nritems) {
1126                        ret = btrfs_next_leaf(root, path);
1127                        if (ret < 0)
1128                                err = ret;
1129                        if (ret)
1130                                goto fail;
1131
1132                        leaf = path->nodes[0];
1133                        nritems = btrfs_header_nritems(leaf);
1134                        recow = 1;
1135                }
1136
1137                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1138                if (key.objectid != bytenr ||
1139                    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1140                        goto fail;
1141
1142                ref = btrfs_item_ptr(leaf, path->slots[0],
1143                                     struct btrfs_extent_data_ref);
1144
1145                if (match_extent_data_ref(leaf, ref, root_objectid,
1146                                          owner, offset)) {
1147                        if (recow) {
1148                                btrfs_release_path(path);
1149                                goto again;
1150                        }
1151                        err = 0;
1152                        break;
1153                }
1154                path->slots[0]++;
1155        }
1156fail:
1157        return err;
1158}
1159
1160static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1161                                           struct btrfs_root *root,
1162                                           struct btrfs_path *path,
1163                                           u64 bytenr, u64 parent,
1164                                           u64 root_objectid, u64 owner,
1165                                           u64 offset, int refs_to_add)
1166{
1167        struct btrfs_key key;
1168        struct extent_buffer *leaf;
1169        u32 size;
1170        u32 num_refs;
1171        int ret;
1172
1173        key.objectid = bytenr;
1174        if (parent) {
1175                key.type = BTRFS_SHARED_DATA_REF_KEY;
1176                key.offset = parent;
1177                size = sizeof(struct btrfs_shared_data_ref);
1178        } else {
1179                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1180                key.offset = hash_extent_data_ref(root_objectid,
1181                                                  owner, offset);
1182                size = sizeof(struct btrfs_extent_data_ref);
1183        }
1184
1185        ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1186        if (ret && ret != -EEXIST)
1187                goto fail;
1188
1189        leaf = path->nodes[0];
1190        if (parent) {
1191                struct btrfs_shared_data_ref *ref;
1192                ref = btrfs_item_ptr(leaf, path->slots[0],
1193                                     struct btrfs_shared_data_ref);
1194                if (ret == 0) {
1195                        btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1196                } else {
1197                        num_refs = btrfs_shared_data_ref_count(leaf, ref);
1198                        num_refs += refs_to_add;
1199                        btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1200                }
1201        } else {
1202                struct btrfs_extent_data_ref *ref;
1203                while (ret == -EEXIST) {
1204                        ref = btrfs_item_ptr(leaf, path->slots[0],
1205                                             struct btrfs_extent_data_ref);
1206                        if (match_extent_data_ref(leaf, ref, root_objectid,
1207                                                  owner, offset))
1208                                break;
1209                        btrfs_release_path(path);
1210                        key.offset++;
1211                        ret = btrfs_insert_empty_item(trans, root, path, &key,
1212                                                      size);
1213                        if (ret && ret != -EEXIST)
1214                                goto fail;
1215
1216                        leaf = path->nodes[0];
1217                }
1218                ref = btrfs_item_ptr(leaf, path->slots[0],
1219                                     struct btrfs_extent_data_ref);
1220                if (ret == 0) {
1221                        btrfs_set_extent_data_ref_root(leaf, ref,
1222                                                       root_objectid);
1223                        btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1224                        btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1225                        btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1226                } else {
1227                        num_refs = btrfs_extent_data_ref_count(leaf, ref);
1228                        num_refs += refs_to_add;
1229                        btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1230                }
1231        }
1232        btrfs_mark_buffer_dirty(leaf);
1233        ret = 0;
1234fail:
1235        btrfs_release_path(path);
1236        return ret;
1237}
1238
1239static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1240                                           struct btrfs_root *root,
1241                                           struct btrfs_path *path,
1242                                           int refs_to_drop)
1243{
1244        struct btrfs_key key;
1245        struct btrfs_extent_data_ref *ref1 = NULL;
1246        struct btrfs_shared_data_ref *ref2 = NULL;
1247        struct extent_buffer *leaf;
1248        u32 num_refs = 0;
1249        int ret = 0;
1250
1251        leaf = path->nodes[0];
1252        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1253
1254        if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1255                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1256                                      struct btrfs_extent_data_ref);
1257                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1258        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1259                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1260                                      struct btrfs_shared_data_ref);
1261                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1262#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1263        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1264                struct btrfs_extent_ref_v0 *ref0;
1265                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1266                                      struct btrfs_extent_ref_v0);
1267                num_refs = btrfs_ref_count_v0(leaf, ref0);
1268#endif
1269        } else {
1270                BUG();
1271        }
1272
1273        BUG_ON(num_refs < refs_to_drop);
1274        num_refs -= refs_to_drop;
1275
1276        if (num_refs == 0) {
1277                ret = btrfs_del_item(trans, root, path);
1278        } else {
1279                if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1280                        btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1281                else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1282                        btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1283#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1284                else {
1285                        struct btrfs_extent_ref_v0 *ref0;
1286                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1287                                        struct btrfs_extent_ref_v0);
1288                        btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1289                }
1290#endif
1291                btrfs_mark_buffer_dirty(leaf);
1292        }
1293        return ret;
1294}
1295
1296static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1297                                          struct btrfs_path *path,
1298                                          struct btrfs_extent_inline_ref *iref)
1299{
1300        struct btrfs_key key;
1301        struct extent_buffer *leaf;
1302        struct btrfs_extent_data_ref *ref1;
1303        struct btrfs_shared_data_ref *ref2;
1304        u32 num_refs = 0;
1305
1306        leaf = path->nodes[0];
1307        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1308        if (iref) {
1309                if (btrfs_extent_inline_ref_type(leaf, iref) ==
1310                    BTRFS_EXTENT_DATA_REF_KEY) {
1311                        ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1312                        num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1313                } else {
1314                        ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1315                        num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1316                }
1317        } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1318                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1319                                      struct btrfs_extent_data_ref);
1320                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1321        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1322                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1323                                      struct btrfs_shared_data_ref);
1324                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1325#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1326        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1327                struct btrfs_extent_ref_v0 *ref0;
1328                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1329                                      struct btrfs_extent_ref_v0);
1330                num_refs = btrfs_ref_count_v0(leaf, ref0);
1331#endif
1332        } else {
1333                WARN_ON(1);
1334        }
1335        return num_refs;
1336}
1337
1338static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1339                                          struct btrfs_root *root,
1340                                          struct btrfs_path *path,
1341                                          u64 bytenr, u64 parent,
1342                                          u64 root_objectid)
1343{
1344        struct btrfs_key key;
1345        int ret;
1346
1347        key.objectid = bytenr;
1348        if (parent) {
1349                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1350                key.offset = parent;
1351        } else {
1352                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1353                key.offset = root_objectid;
1354        }
1355
1356        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1357        if (ret > 0)
1358                ret = -ENOENT;
1359#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360        if (ret == -ENOENT && parent) {
1361                btrfs_release_path(path);
1362                key.type = BTRFS_EXTENT_REF_V0_KEY;
1363                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1364                if (ret > 0)
1365                        ret = -ENOENT;
1366        }
1367#endif
1368        return ret;
1369}
1370
1371static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1372                                          struct btrfs_root *root,
1373                                          struct btrfs_path *path,
1374                                          u64 bytenr, u64 parent,
1375                                          u64 root_objectid)
1376{
1377        struct btrfs_key key;
1378        int ret;
1379
1380        key.objectid = bytenr;
1381        if (parent) {
1382                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1383                key.offset = parent;
1384        } else {
1385                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1386                key.offset = root_objectid;
1387        }
1388
1389        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1390        btrfs_release_path(path);
1391        return ret;
1392}
1393
1394static inline int extent_ref_type(u64 parent, u64 owner)
1395{
1396        int type;
1397        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1398                if (parent > 0)
1399                        type = BTRFS_SHARED_BLOCK_REF_KEY;
1400                else
1401                        type = BTRFS_TREE_BLOCK_REF_KEY;
1402        } else {
1403                if (parent > 0)
1404                        type = BTRFS_SHARED_DATA_REF_KEY;
1405                else
1406                        type = BTRFS_EXTENT_DATA_REF_KEY;
1407        }
1408        return type;
1409}
1410
1411static int find_next_key(struct btrfs_path *path, int level,
1412                         struct btrfs_key *key)
1413
1414{
1415        for (; level < BTRFS_MAX_LEVEL; level++) {
1416                if (!path->nodes[level])
1417                        break;
1418                if (path->slots[level] + 1 >=
1419                    btrfs_header_nritems(path->nodes[level]))
1420                        continue;
1421                if (level == 0)
1422                        btrfs_item_key_to_cpu(path->nodes[level], key,
1423                                              path->slots[level] + 1);
1424                else
1425                        btrfs_node_key_to_cpu(path->nodes[level], key,
1426                                              path->slots[level] + 1);
1427                return 0;
1428        }
1429        return 1;
1430}
1431
1432/*
1433 * look for inline back ref. if back ref is found, *ref_ret is set
1434 * to the address of inline back ref, and 0 is returned.
1435 *
1436 * if back ref isn't found, *ref_ret is set to the address where it
1437 * should be inserted, and -ENOENT is returned.
1438 *
1439 * if insert is true and there are too many inline back refs, the path
1440 * points to the extent item, and -EAGAIN is returned.
1441 *
1442 * NOTE: inline back refs are ordered in the same way that back ref
1443 *       items in the tree are ordered.
1444 */
1445static noinline_for_stack
1446int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1447                                 struct btrfs_root *root,
1448                                 struct btrfs_path *path,
1449                                 struct btrfs_extent_inline_ref **ref_ret,
1450                                 u64 bytenr, u64 num_bytes,
1451                                 u64 parent, u64 root_objectid,
1452                                 u64 owner, u64 offset, int insert)
1453{
1454        struct btrfs_key key;
1455        struct extent_buffer *leaf;
1456        struct btrfs_extent_item *ei;
1457        struct btrfs_extent_inline_ref *iref;
1458        u64 flags;
1459        u64 item_size;
1460        unsigned long ptr;
1461        unsigned long end;
1462        int extra_size;
1463        int type;
1464        int want;
1465        int ret;
1466        int err = 0;
1467        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1468                                                 SKINNY_METADATA);
1469
1470        key.objectid = bytenr;
1471        key.type = BTRFS_EXTENT_ITEM_KEY;
1472        key.offset = num_bytes;
1473
1474        want = extent_ref_type(parent, owner);
1475        if (insert) {
1476                extra_size = btrfs_extent_inline_ref_size(want);
1477                path->keep_locks = 1;
1478        } else
1479                extra_size = -1;
1480
1481        /*
1482         * Owner is our parent level, so we can just add one to get the level
1483         * for the block we are interested in.
1484         */
1485        if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1486                key.type = BTRFS_METADATA_ITEM_KEY;
1487                key.offset = owner;
1488        }
1489
1490again:
1491        ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1492        if (ret < 0) {
1493                err = ret;
1494                goto out;
1495        }
1496
1497        /*
1498         * We may be a newly converted file system which still has the old fat
1499         * extent entries for metadata, so try and see if we have one of those.
1500         */
1501        if (ret > 0 && skinny_metadata) {
1502                skinny_metadata = false;
1503                if (path->slots[0]) {
1504                        path->slots[0]--;
1505                        btrfs_item_key_to_cpu(path->nodes[0], &key,
1506                                              path->slots[0]);
1507                        if (key.objectid == bytenr &&
1508                            key.type == BTRFS_EXTENT_ITEM_KEY &&
1509                            key.offset == num_bytes)
1510                                ret = 0;
1511                }
1512                if (ret) {
1513                        key.type = BTRFS_EXTENT_ITEM_KEY;
1514                        key.offset = num_bytes;
1515                        btrfs_release_path(path);
1516                        goto again;
1517                }
1518        }
1519
1520        if (ret && !insert) {
1521                err = -ENOENT;
1522                goto out;
1523        } else if (ret) {
1524                err = -EIO;
1525                WARN_ON(1);
1526                goto out;
1527        }
1528
1529        leaf = path->nodes[0];
1530        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1531#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1532        if (item_size < sizeof(*ei)) {
1533                if (!insert) {
1534                        err = -ENOENT;
1535                        goto out;
1536                }
1537                ret = convert_extent_item_v0(trans, root, path, owner,
1538                                             extra_size);
1539                if (ret < 0) {
1540                        err = ret;
1541                        goto out;
1542                }
1543                leaf = path->nodes[0];
1544                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1545        }
1546#endif
1547        BUG_ON(item_size < sizeof(*ei));
1548
1549        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1550        flags = btrfs_extent_flags(leaf, ei);
1551
1552        ptr = (unsigned long)(ei + 1);
1553        end = (unsigned long)ei + item_size;
1554
1555        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1556                ptr += sizeof(struct btrfs_tree_block_info);
1557                BUG_ON(ptr > end);
1558        }
1559
1560        err = -ENOENT;
1561        while (1) {
1562                if (ptr >= end) {
1563                        WARN_ON(ptr > end);
1564                        break;
1565                }
1566                iref = (struct btrfs_extent_inline_ref *)ptr;
1567                type = btrfs_extent_inline_ref_type(leaf, iref);
1568                if (want < type)
1569                        break;
1570                if (want > type) {
1571                        ptr += btrfs_extent_inline_ref_size(type);
1572                        continue;
1573                }
1574
1575                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1576                        struct btrfs_extent_data_ref *dref;
1577                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1578                        if (match_extent_data_ref(leaf, dref, root_objectid,
1579                                                  owner, offset)) {
1580                                err = 0;
1581                                break;
1582                        }
1583                        if (hash_extent_data_ref_item(leaf, dref) <
1584                            hash_extent_data_ref(root_objectid, owner, offset))
1585                                break;
1586                } else {
1587                        u64 ref_offset;
1588                        ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1589                        if (parent > 0) {
1590                                if (parent == ref_offset) {
1591                                        err = 0;
1592                                        break;
1593                                }
1594                                if (ref_offset < parent)
1595                                        break;
1596                        } else {
1597                                if (root_objectid == ref_offset) {
1598                                        err = 0;
1599                                        break;
1600                                }
1601                                if (ref_offset < root_objectid)
1602                                        break;
1603                        }
1604                }
1605                ptr += btrfs_extent_inline_ref_size(type);
1606        }
1607        if (err == -ENOENT && insert) {
1608                if (item_size + extra_size >=
1609                    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1610                        err = -EAGAIN;
1611                        goto out;
1612                }
1613                /*
1614                 * To add new inline back ref, we have to make sure
1615                 * there is no corresponding back ref item.
1616                 * For simplicity, we just do not add new inline back
1617                 * ref if there is any kind of item for this block
1618                 */
1619                if (find_next_key(path, 0, &key) == 0 &&
1620                    key.objectid == bytenr &&
1621                    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1622                        err = -EAGAIN;
1623                        goto out;
1624                }
1625        }
1626        *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1627out:
1628        if (insert) {
1629                path->keep_locks = 0;
1630                btrfs_unlock_up_safe(path, 1);
1631        }
1632        return err;
1633}
1634
1635/*
1636 * helper to add new inline back ref
1637 */
1638static noinline_for_stack
1639void setup_inline_extent_backref(struct btrfs_root *root,
1640                                 struct btrfs_path *path,
1641                                 struct btrfs_extent_inline_ref *iref,
1642                                 u64 parent, u64 root_objectid,
1643                                 u64 owner, u64 offset, int refs_to_add,
1644                                 struct btrfs_delayed_extent_op *extent_op)
1645{
1646        struct extent_buffer *leaf;
1647        struct btrfs_extent_item *ei;
1648        unsigned long ptr;
1649        unsigned long end;
1650        unsigned long item_offset;
1651        u64 refs;
1652        int size;
1653        int type;
1654
1655        leaf = path->nodes[0];
1656        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1657        item_offset = (unsigned long)iref - (unsigned long)ei;
1658
1659        type = extent_ref_type(parent, owner);
1660        size = btrfs_extent_inline_ref_size(type);
1661
1662        btrfs_extend_item(root, path, size);
1663
1664        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1665        refs = btrfs_extent_refs(leaf, ei);
1666        refs += refs_to_add;
1667        btrfs_set_extent_refs(leaf, ei, refs);
1668        if (extent_op)
1669                __run_delayed_extent_op(extent_op, leaf, ei);
1670
1671        ptr = (unsigned long)ei + item_offset;
1672        end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1673        if (ptr < end - size)
1674                memmove_extent_buffer(leaf, ptr + size, ptr,
1675                                      end - size - ptr);
1676
1677        iref = (struct btrfs_extent_inline_ref *)ptr;
1678        btrfs_set_extent_inline_ref_type(leaf, iref, type);
1679        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1680                struct btrfs_extent_data_ref *dref;
1681                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1682                btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1683                btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1684                btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1685                btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1686        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1687                struct btrfs_shared_data_ref *sref;
1688                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1689                btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1690                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1691        } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1692                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1693        } else {
1694                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1695        }
1696        btrfs_mark_buffer_dirty(leaf);
1697}
1698
1699static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1700                                 struct btrfs_root *root,
1701                                 struct btrfs_path *path,
1702                                 struct btrfs_extent_inline_ref **ref_ret,
1703                                 u64 bytenr, u64 num_bytes, u64 parent,
1704                                 u64 root_objectid, u64 owner, u64 offset)
1705{
1706        int ret;
1707
1708        ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1709                                           bytenr, num_bytes, parent,
1710                                           root_objectid, owner, offset, 0);
1711        if (ret != -ENOENT)
1712                return ret;
1713
1714        btrfs_release_path(path);
1715        *ref_ret = NULL;
1716
1717        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1718                ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1719                                            root_objectid);
1720        } else {
1721                ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1722                                             root_objectid, owner, offset);
1723        }
1724        return ret;
1725}
1726
1727/*
1728 * helper to update/remove inline back ref
1729 */
1730static noinline_for_stack
1731void update_inline_extent_backref(struct btrfs_root *root,
1732                                  struct btrfs_path *path,
1733                                  struct btrfs_extent_inline_ref *iref,
1734                                  int refs_to_mod,
1735                                  struct btrfs_delayed_extent_op *extent_op)
1736{
1737        struct extent_buffer *leaf;
1738        struct btrfs_extent_item *ei;
1739        struct btrfs_extent_data_ref *dref = NULL;
1740        struct btrfs_shared_data_ref *sref = NULL;
1741        unsigned long ptr;
1742        unsigned long end;
1743        u32 item_size;
1744        int size;
1745        int type;
1746        u64 refs;
1747
1748        leaf = path->nodes[0];
1749        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750        refs = btrfs_extent_refs(leaf, ei);
1751        WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1752        refs += refs_to_mod;
1753        btrfs_set_extent_refs(leaf, ei, refs);
1754        if (extent_op)
1755                __run_delayed_extent_op(extent_op, leaf, ei);
1756
1757        type = btrfs_extent_inline_ref_type(leaf, iref);
1758
1759        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1760                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1761                refs = btrfs_extent_data_ref_count(leaf, dref);
1762        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1763                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1764                refs = btrfs_shared_data_ref_count(leaf, sref);
1765        } else {
1766                refs = 1;
1767                BUG_ON(refs_to_mod != -1);
1768        }
1769
1770        BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1771        refs += refs_to_mod;
1772
1773        if (refs > 0) {
1774                if (type == BTRFS_EXTENT_DATA_REF_KEY)
1775                        btrfs_set_extent_data_ref_count(leaf, dref, refs);
1776                else
1777                        btrfs_set_shared_data_ref_count(leaf, sref, refs);
1778        } else {
1779                size =  btrfs_extent_inline_ref_size(type);
1780                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1781                ptr = (unsigned long)iref;
1782                end = (unsigned long)ei + item_size;
1783                if (ptr + size < end)
1784                        memmove_extent_buffer(leaf, ptr, ptr + size,
1785                                              end - ptr - size);
1786                item_size -= size;
1787                btrfs_truncate_item(root, path, item_size, 1);
1788        }
1789        btrfs_mark_buffer_dirty(leaf);
1790}
1791
1792static noinline_for_stack
1793int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1794                                 struct btrfs_root *root,
1795                                 struct btrfs_path *path,
1796                                 u64 bytenr, u64 num_bytes, u64 parent,
1797                                 u64 root_objectid, u64 owner,
1798                                 u64 offset, int refs_to_add,
1799                                 struct btrfs_delayed_extent_op *extent_op)
1800{
1801        struct btrfs_extent_inline_ref *iref;
1802        int ret;
1803
1804        ret = lookup_inline_extent_backref(trans, root, path, &iref,
1805                                           bytenr, num_bytes, parent,
1806                                           root_objectid, owner, offset, 1);
1807        if (ret == 0) {
1808                BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1809                update_inline_extent_backref(root, path, iref,
1810                                             refs_to_add, extent_op);
1811        } else if (ret == -ENOENT) {
1812                setup_inline_extent_backref(root, path, iref, parent,
1813                                            root_objectid, owner, offset,
1814                                            refs_to_add, extent_op);
1815                ret = 0;
1816        }
1817        return ret;
1818}
1819
1820static int insert_extent_backref(struct btrfs_trans_handle *trans,
1821                                 struct btrfs_root *root,
1822                                 struct btrfs_path *path,
1823                                 u64 bytenr, u64 parent, u64 root_objectid,
1824                                 u64 owner, u64 offset, int refs_to_add)
1825{
1826        int ret;
1827        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1828                BUG_ON(refs_to_add != 1);
1829                ret = insert_tree_block_ref(trans, root, path, bytenr,
1830                                            parent, root_objectid);
1831        } else {
1832                ret = insert_extent_data_ref(trans, root, path, bytenr,
1833                                             parent, root_objectid,
1834                                             owner, offset, refs_to_add);
1835        }
1836        return ret;
1837}
1838
1839static int remove_extent_backref(struct btrfs_trans_handle *trans,
1840                                 struct btrfs_root *root,
1841                                 struct btrfs_path *path,
1842                                 struct btrfs_extent_inline_ref *iref,
1843                                 int refs_to_drop, int is_data)
1844{
1845        int ret = 0;
1846
1847        BUG_ON(!is_data && refs_to_drop != 1);
1848        if (iref) {
1849                update_inline_extent_backref(root, path, iref,
1850                                             -refs_to_drop, NULL);
1851        } else if (is_data) {
1852                ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1853        } else {
1854                ret = btrfs_del_item(trans, root, path);
1855        }
1856        return ret;
1857}
1858
1859static int btrfs_issue_discard(struct block_device *bdev,
1860                                u64 start, u64 len)
1861{
1862        return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1863}
1864
1865static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1866                                u64 num_bytes, u64 *actual_bytes)
1867{
1868        int ret;
1869        u64 discarded_bytes = 0;
1870        struct btrfs_bio *bbio = NULL;
1871
1872
1873        /* Tell the block device(s) that the sectors can be discarded */
1874        ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1875                              bytenr, &num_bytes, &bbio, 0);
1876        /* Error condition is -ENOMEM */
1877        if (!ret) {
1878                struct btrfs_bio_stripe *stripe = bbio->stripes;
1879                int i;
1880
1881
1882                for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1883                        if (!stripe->dev->can_discard)
1884                                continue;
1885
1886                        ret = btrfs_issue_discard(stripe->dev->bdev,
1887                                                  stripe->physical,
1888                                                  stripe->length);
1889                        if (!ret)
1890                                discarded_bytes += stripe->length;
1891                        else if (ret != -EOPNOTSUPP)
1892                                break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1893
1894                        /*
1895                         * Just in case we get back EOPNOTSUPP for some reason,
1896                         * just ignore the return value so we don't screw up
1897                         * people calling discard_extent.
1898                         */
1899                        ret = 0;
1900                }
1901                kfree(bbio);
1902        }
1903
1904        if (actual_bytes)
1905                *actual_bytes = discarded_bytes;
1906
1907
1908        if (ret == -EOPNOTSUPP)
1909                ret = 0;
1910        return ret;
1911}
1912
1913/* Can return -ENOMEM */
1914int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1915                         struct btrfs_root *root,
1916                         u64 bytenr, u64 num_bytes, u64 parent,
1917                         u64 root_objectid, u64 owner, u64 offset, int for_cow)
1918{
1919        int ret;
1920        struct btrfs_fs_info *fs_info = root->fs_info;
1921
1922        BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1923               root_objectid == BTRFS_TREE_LOG_OBJECTID);
1924
1925        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1926                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1927                                        num_bytes,
1928                                        parent, root_objectid, (int)owner,
1929                                        BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1930        } else {
1931                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1932                                        num_bytes,
1933                                        parent, root_objectid, owner, offset,
1934                                        BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1935        }
1936        return ret;
1937}
1938
1939static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1940                                  struct btrfs_root *root,
1941                                  u64 bytenr, u64 num_bytes,
1942                                  u64 parent, u64 root_objectid,
1943                                  u64 owner, u64 offset, int refs_to_add,
1944                                  struct btrfs_delayed_extent_op *extent_op)
1945{
1946        struct btrfs_path *path;
1947        struct extent_buffer *leaf;
1948        struct btrfs_extent_item *item;
1949        u64 refs;
1950        int ret;
1951        int err = 0;
1952
1953        path = btrfs_alloc_path();
1954        if (!path)
1955                return -ENOMEM;
1956
1957        path->reada = 1;
1958        path->leave_spinning = 1;
1959        /* this will setup the path even if it fails to insert the back ref */
1960        ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1961                                           path, bytenr, num_bytes, parent,
1962                                           root_objectid, owner, offset,
1963                                           refs_to_add, extent_op);
1964        if (ret == 0)
1965                goto out;
1966
1967        if (ret != -EAGAIN) {
1968                err = ret;
1969                goto out;
1970        }
1971
1972        leaf = path->nodes[0];
1973        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1974        refs = btrfs_extent_refs(leaf, item);
1975        btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1976        if (extent_op)
1977                __run_delayed_extent_op(extent_op, leaf, item);
1978
1979        btrfs_mark_buffer_dirty(leaf);
1980        btrfs_release_path(path);
1981
1982        path->reada = 1;
1983        path->leave_spinning = 1;
1984
1985        /* now insert the actual backref */
1986        ret = insert_extent_backref(trans, root->fs_info->extent_root,
1987                                    path, bytenr, parent, root_objectid,
1988                                    owner, offset, refs_to_add);
1989        if (ret)
1990                btrfs_abort_transaction(trans, root, ret);
1991out:
1992        btrfs_free_path(path);
1993        return err;
1994}
1995
1996static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1997                                struct btrfs_root *root,
1998                                struct btrfs_delayed_ref_node *node,
1999                                struct btrfs_delayed_extent_op *extent_op,
2000                                int insert_reserved)
2001{
2002        int ret = 0;
2003        struct btrfs_delayed_data_ref *ref;
2004        struct btrfs_key ins;
2005        u64 parent = 0;
2006        u64 ref_root = 0;
2007        u64 flags = 0;
2008
2009        ins.objectid = node->bytenr;
2010        ins.offset = node->num_bytes;
2011        ins.type = BTRFS_EXTENT_ITEM_KEY;
2012
2013        ref = btrfs_delayed_node_to_data_ref(node);
2014        if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2015                parent = ref->parent;
2016        else
2017                ref_root = ref->root;
2018
2019        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2020                if (extent_op)
2021                        flags |= extent_op->flags_to_set;
2022                ret = alloc_reserved_file_extent(trans, root,
2023                                                 parent, ref_root, flags,
2024                                                 ref->objectid, ref->offset,
2025                                                 &ins, node->ref_mod);
2026        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2027                ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2028                                             node->num_bytes, parent,
2029                                             ref_root, ref->objectid,
2030                                             ref->offset, node->ref_mod,
2031                                             extent_op);
2032        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2033                ret = __btrfs_free_extent(trans, root, node->bytenr,
2034                                          node->num_bytes, parent,
2035                                          ref_root, ref->objectid,
2036                                          ref->offset, node->ref_mod,
2037                                          extent_op);
2038        } else {
2039                BUG();
2040        }
2041        return ret;
2042}
2043
2044static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2045                                    struct extent_buffer *leaf,
2046                                    struct btrfs_extent_item *ei)
2047{
2048        u64 flags = btrfs_extent_flags(leaf, ei);
2049        if (extent_op->update_flags) {
2050                flags |= extent_op->flags_to_set;
2051                btrfs_set_extent_flags(leaf, ei, flags);
2052        }
2053
2054        if (extent_op->update_key) {
2055                struct btrfs_tree_block_info *bi;
2056                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2057                bi = (struct btrfs_tree_block_info *)(ei + 1);
2058                btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2059        }
2060}
2061
2062static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2063                                 struct btrfs_root *root,
2064                                 struct btrfs_delayed_ref_node *node,
2065                                 struct btrfs_delayed_extent_op *extent_op)
2066{
2067        struct btrfs_key key;
2068        struct btrfs_path *path;
2069        struct btrfs_extent_item *ei;
2070        struct extent_buffer *leaf;
2071        u32 item_size;
2072        int ret;
2073        int err = 0;
2074        int metadata = !extent_op->is_data;
2075
2076        if (trans->aborted)
2077                return 0;
2078
2079        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2080                metadata = 0;
2081
2082        path = btrfs_alloc_path();
2083        if (!path)
2084                return -ENOMEM;
2085
2086        key.objectid = node->bytenr;
2087
2088        if (metadata) {
2089                key.type = BTRFS_METADATA_ITEM_KEY;
2090                key.offset = extent_op->level;
2091        } else {
2092                key.type = BTRFS_EXTENT_ITEM_KEY;
2093                key.offset = node->num_bytes;
2094        }
2095
2096again:
2097        path->reada = 1;
2098        path->leave_spinning = 1;
2099        ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2100                                path, 0, 1);
2101        if (ret < 0) {
2102                err = ret;
2103                goto out;
2104        }
2105        if (ret > 0) {
2106                if (metadata) {
2107                        btrfs_release_path(path);
2108                        metadata = 0;
2109
2110                        key.offset = node->num_bytes;
2111                        key.type = BTRFS_EXTENT_ITEM_KEY;
2112                        goto again;
2113                }
2114                err = -EIO;
2115                goto out;
2116        }
2117
2118        leaf = path->nodes[0];
2119        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2120#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2121        if (item_size < sizeof(*ei)) {
2122                ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2123                                             path, (u64)-1, 0);
2124                if (ret < 0) {
2125                        err = ret;
2126                        goto out;
2127                }
2128                leaf = path->nodes[0];
2129                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2130        }
2131#endif
2132        BUG_ON(item_size < sizeof(*ei));
2133        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2134        __run_delayed_extent_op(extent_op, leaf, ei);
2135
2136        btrfs_mark_buffer_dirty(leaf);
2137out:
2138        btrfs_free_path(path);
2139        return err;
2140}
2141
2142static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2143                                struct btrfs_root *root,
2144                                struct btrfs_delayed_ref_node *node,
2145                                struct btrfs_delayed_extent_op *extent_op,
2146                                int insert_reserved)
2147{
2148        int ret = 0;
2149        struct btrfs_delayed_tree_ref *ref;
2150        struct btrfs_key ins;
2151        u64 parent = 0;
2152        u64 ref_root = 0;
2153        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2154                                                 SKINNY_METADATA);
2155
2156        ref = btrfs_delayed_node_to_tree_ref(node);
2157        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2158                parent = ref->parent;
2159        else
2160                ref_root = ref->root;
2161
2162        ins.objectid = node->bytenr;
2163        if (skinny_metadata) {
2164                ins.offset = ref->level;
2165                ins.type = BTRFS_METADATA_ITEM_KEY;
2166        } else {
2167                ins.offset = node->num_bytes;
2168                ins.type = BTRFS_EXTENT_ITEM_KEY;
2169        }
2170
2171        BUG_ON(node->ref_mod != 1);
2172        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2173                BUG_ON(!extent_op || !extent_op->update_flags);
2174                ret = alloc_reserved_tree_block(trans, root,
2175                                                parent, ref_root,
2176                                                extent_op->flags_to_set,
2177                                                &extent_op->key,
2178                                                ref->level, &ins);
2179        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2180                ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2181                                             node->num_bytes, parent, ref_root,
2182                                             ref->level, 0, 1, extent_op);
2183        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2184                ret = __btrfs_free_extent(trans, root, node->bytenr,
2185                                          node->num_bytes, parent, ref_root,
2186                                          ref->level, 0, 1, extent_op);
2187        } else {
2188                BUG();
2189        }
2190        return ret;
2191}
2192
2193/* helper function to actually process a single delayed ref entry */
2194static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2195                               struct btrfs_root *root,
2196                               struct btrfs_delayed_ref_node *node,
2197                               struct btrfs_delayed_extent_op *extent_op,
2198                               int insert_reserved)
2199{
2200        int ret = 0;
2201
2202        if (trans->aborted)
2203                return 0;
2204
2205        if (btrfs_delayed_ref_is_head(node)) {
2206                struct btrfs_delayed_ref_head *head;
2207                /*
2208                 * we've hit the end of the chain and we were supposed
2209                 * to insert this extent into the tree.  But, it got
2210                 * deleted before we ever needed to insert it, so all
2211                 * we have to do is clean up the accounting
2212                 */
2213                BUG_ON(extent_op);
2214                head = btrfs_delayed_node_to_head(node);
2215                if (insert_reserved) {
2216                        btrfs_pin_extent(root, node->bytenr,
2217                                         node->num_bytes, 1);
2218                        if (head->is_data) {
2219                                ret = btrfs_del_csums(trans, root,
2220                                                      node->bytenr,
2221                                                      node->num_bytes);
2222                        }
2223                }
2224                return ret;
2225        }
2226
2227        if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2228            node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2229                ret = run_delayed_tree_ref(trans, root, node, extent_op,
2230                                           insert_reserved);
2231        else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2232                 node->type == BTRFS_SHARED_DATA_REF_KEY)
2233                ret = run_delayed_data_ref(trans, root, node, extent_op,
2234                                           insert_reserved);
2235        else
2236                BUG();
2237        return ret;
2238}
2239
2240static noinline struct btrfs_delayed_ref_node *
2241select_delayed_ref(struct btrfs_delayed_ref_head *head)
2242{
2243        struct rb_node *node;
2244        struct btrfs_delayed_ref_node *ref;
2245        int action = BTRFS_ADD_DELAYED_REF;
2246again:
2247        /*
2248         * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2249         * this prevents ref count from going down to zero when
2250         * there still are pending delayed ref.
2251         */
2252        node = rb_prev(&head->node.rb_node);
2253        while (1) {
2254                if (!node)
2255                        break;
2256                ref = rb_entry(node, struct btrfs_delayed_ref_node,
2257                                rb_node);
2258                if (ref->bytenr != head->node.bytenr)
2259                        break;
2260                if (ref->action == action)
2261                        return ref;
2262                node = rb_prev(node);
2263        }
2264        if (action == BTRFS_ADD_DELAYED_REF) {
2265                action = BTRFS_DROP_DELAYED_REF;
2266                goto again;
2267        }
2268        return NULL;
2269}
2270
2271/*
2272 * Returns 0 on success or if called with an already aborted transaction.
2273 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2274 */
2275static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2276                                       struct btrfs_root *root,
2277                                       struct list_head *cluster)
2278{
2279        struct btrfs_delayed_ref_root *delayed_refs;
2280        struct btrfs_delayed_ref_node *ref;
2281        struct btrfs_delayed_ref_head *locked_ref = NULL;
2282        struct btrfs_delayed_extent_op *extent_op;
2283        struct btrfs_fs_info *fs_info = root->fs_info;
2284        int ret;
2285        int count = 0;
2286        int must_insert_reserved = 0;
2287
2288        delayed_refs = &trans->transaction->delayed_refs;
2289        while (1) {
2290                if (!locked_ref) {
2291                        /* pick a new head ref from the cluster list */
2292                        if (list_empty(cluster))
2293                                break;
2294
2295                        locked_ref = list_entry(cluster->next,
2296                                     struct btrfs_delayed_ref_head, cluster);
2297
2298                        /* grab the lock that says we are going to process
2299                         * all the refs for this head */
2300                        ret = btrfs_delayed_ref_lock(trans, locked_ref);
2301
2302                        /*
2303                         * we may have dropped the spin lock to get the head
2304                         * mutex lock, and that might have given someone else
2305                         * time to free the head.  If that's true, it has been
2306                         * removed from our list and we can move on.
2307                         */
2308                        if (ret == -EAGAIN) {
2309                                locked_ref = NULL;
2310                                count++;
2311                                continue;
2312                        }
2313                }
2314
2315                /*
2316                 * We need to try and merge add/drops of the same ref since we
2317                 * can run into issues with relocate dropping the implicit ref
2318                 * and then it being added back again before the drop can
2319                 * finish.  If we merged anything we need to re-loop so we can
2320                 * get a good ref.
2321                 */
2322                btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2323                                         locked_ref);
2324
2325                /*
2326                 * locked_ref is the head node, so we have to go one
2327                 * node back for any delayed ref updates
2328                 */
2329                ref = select_delayed_ref(locked_ref);
2330
2331                if (ref && ref->seq &&
2332                    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2333                        /*
2334                         * there are still refs with lower seq numbers in the
2335                         * process of being added. Don't run this ref yet.
2336                         */
2337                        list_del_init(&locked_ref->cluster);
2338                        btrfs_delayed_ref_unlock(locked_ref);
2339                        locked_ref = NULL;
2340                        delayed_refs->num_heads_ready++;
2341                        spin_unlock(&delayed_refs->lock);
2342                        cond_resched();
2343                        spin_lock(&delayed_refs->lock);
2344                        continue;
2345                }
2346
2347                /*
2348                 * record the must insert reserved flag before we
2349                 * drop the spin lock.
2350                 */
2351                must_insert_reserved = locked_ref->must_insert_reserved;
2352                locked_ref->must_insert_reserved = 0;
2353
2354                extent_op = locked_ref->extent_op;
2355                locked_ref->extent_op = NULL;
2356
2357                if (!ref) {
2358                        /* All delayed refs have been processed, Go ahead
2359                         * and send the head node to run_one_delayed_ref,
2360                         * so that any accounting fixes can happen
2361                         */
2362                        ref = &locked_ref->node;
2363
2364                        if (extent_op && must_insert_reserved) {
2365                                btrfs_free_delayed_extent_op(extent_op);
2366                                extent_op = NULL;
2367                        }
2368
2369                        if (extent_op) {
2370                                spin_unlock(&delayed_refs->lock);
2371
2372                                ret = run_delayed_extent_op(trans, root,
2373                                                            ref, extent_op);
2374                                btrfs_free_delayed_extent_op(extent_op);
2375
2376                                if (ret) {
2377                                        btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2378                                        spin_lock(&delayed_refs->lock);
2379                                        btrfs_delayed_ref_unlock(locked_ref);
2380                                        return ret;
2381                                }
2382
2383                                goto next;
2384                        }
2385                }
2386
2387                ref->in_tree = 0;
2388                rb_erase(&ref->rb_node, &delayed_refs->root);
2389                delayed_refs->num_entries--;
2390                if (!btrfs_delayed_ref_is_head(ref)) {
2391                        /*
2392                         * when we play the delayed ref, also correct the
2393                         * ref_mod on head
2394                         */
2395                        switch (ref->action) {
2396                        case BTRFS_ADD_DELAYED_REF:
2397                        case BTRFS_ADD_DELAYED_EXTENT:
2398                                locked_ref->node.ref_mod -= ref->ref_mod;
2399                                break;
2400                        case BTRFS_DROP_DELAYED_REF:
2401                                locked_ref->node.ref_mod += ref->ref_mod;
2402                                break;
2403                        default:
2404                                WARN_ON(1);
2405                        }
2406                }
2407                spin_unlock(&delayed_refs->lock);
2408
2409                ret = run_one_delayed_ref(trans, root, ref, extent_op,
2410                                          must_insert_reserved);
2411
2412                btrfs_free_delayed_extent_op(extent_op);
2413                if (ret) {
2414                        btrfs_delayed_ref_unlock(locked_ref);
2415                        btrfs_put_delayed_ref(ref);
2416                        btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2417                        spin_lock(&delayed_refs->lock);
2418                        return ret;
2419                }
2420
2421                /*
2422                 * If this node is a head, that means all the refs in this head
2423                 * have been dealt with, and we will pick the next head to deal
2424                 * with, so we must unlock the head and drop it from the cluster
2425                 * list before we release it.
2426                 */
2427                if (btrfs_delayed_ref_is_head(ref)) {
2428                        list_del_init(&locked_ref->cluster);
2429                        btrfs_delayed_ref_unlock(locked_ref);
2430                        locked_ref = NULL;
2431                }
2432                btrfs_put_delayed_ref(ref);
2433                count++;
2434next:
2435                cond_resched();
2436                spin_lock(&delayed_refs->lock);
2437        }
2438        return count;
2439}
2440
2441#ifdef SCRAMBLE_DELAYED_REFS
2442/*
2443 * Normally delayed refs get processed in ascending bytenr order. This
2444 * correlates in most cases to the order added. To expose dependencies on this
2445 * order, we start to process the tree in the middle instead of the beginning
2446 */
2447static u64 find_middle(struct rb_root *root)
2448{
2449        struct rb_node *n = root->rb_node;
2450        struct btrfs_delayed_ref_node *entry;
2451        int alt = 1;
2452        u64 middle;
2453        u64 first = 0, last = 0;
2454
2455        n = rb_first(root);
2456        if (n) {
2457                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2458                first = entry->bytenr;
2459        }
2460        n = rb_last(root);
2461        if (n) {
2462                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2463                last = entry->bytenr;
2464        }
2465        n = root->rb_node;
2466
2467        while (n) {
2468                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2469                WARN_ON(!entry->in_tree);
2470
2471                middle = entry->bytenr;
2472
2473                if (alt)
2474                        n = n->rb_left;
2475                else
2476                        n = n->rb_right;
2477
2478                alt = 1 - alt;
2479        }
2480        return middle;
2481}
2482#endif
2483
2484int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2485                                         struct btrfs_fs_info *fs_info)
2486{
2487        struct qgroup_update *qgroup_update;
2488        int ret = 0;
2489
2490        if (list_empty(&trans->qgroup_ref_list) !=
2491            !trans->delayed_ref_elem.seq) {
2492                /* list without seq or seq without list */
2493                btrfs_err(fs_info,
2494                        "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2495                        list_empty(&trans->qgroup_ref_list) ? "" : " not",
2496                        (u32)(trans->delayed_ref_elem.seq >> 32),
2497                        (u32)trans->delayed_ref_elem.seq);
2498                BUG();
2499        }
2500
2501        if (!trans->delayed_ref_elem.seq)
2502                return 0;
2503
2504        while (!list_empty(&trans->qgroup_ref_list)) {
2505                qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2506                                                 struct qgroup_update, list);
2507                list_del(&qgroup_update->list);
2508                if (!ret)
2509                        ret = btrfs_qgroup_account_ref(
2510                                        trans, fs_info, qgroup_update->node,
2511                                        qgroup_update->extent_op);
2512                kfree(qgroup_update);
2513        }
2514
2515        btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2516
2517        return ret;
2518}
2519
2520static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2521                      int count)
2522{
2523        int val = atomic_read(&delayed_refs->ref_seq);
2524
2525        if (val < seq || val >= seq + count)
2526                return 1;
2527        return 0;
2528}
2529
2530static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2531{
2532        u64 num_bytes;
2533
2534        num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2535                             sizeof(struct btrfs_extent_inline_ref));
2536        if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2537                num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2538
2539        /*
2540         * We don't ever fill up leaves all the way so multiply by 2 just to be
2541         * closer to what we're really going to want to ouse.
2542         */
2543        return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2544}
2545
2546int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2547                                       struct btrfs_root *root)
2548{
2549        struct btrfs_block_rsv *global_rsv;
2550        u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2551        u64 num_bytes;
2552        int ret = 0;
2553
2554        num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2555        num_heads = heads_to_leaves(root, num_heads);
2556        if (num_heads > 1)
2557                num_bytes += (num_heads - 1) * root->leafsize;
2558        num_bytes <<= 1;
2559        global_rsv = &root->fs_info->global_block_rsv;
2560
2561        /*
2562         * If we can't allocate any more chunks lets make sure we have _lots_ of
2563         * wiggle room since running delayed refs can create more delayed refs.
2564         */
2565        if (global_rsv->space_info->full)
2566                num_bytes <<= 1;
2567
2568        spin_lock(&global_rsv->lock);
2569        if (global_rsv->reserved <= num_bytes)
2570                ret = 1;
2571        spin_unlock(&global_rsv->lock);
2572        return ret;
2573}
2574
2575/*
2576 * this starts processing the delayed reference count updates and
2577 * extent insertions we have queued up so far.  count can be
2578 * 0, which means to process everything in the tree at the start
2579 * of the run (but not newly added entries), or it can be some target
2580 * number you'd like to process.
2581 *
2582 * Returns 0 on success or if called with an aborted transaction
2583 * Returns <0 on error and aborts the transaction
2584 */
2585int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2586                           struct btrfs_root *root, unsigned long count)
2587{
2588        struct rb_node *node;
2589        struct btrfs_delayed_ref_root *delayed_refs;
2590        struct btrfs_delayed_ref_node *ref;
2591        struct list_head cluster;
2592        int ret;
2593        u64 delayed_start;
2594        int run_all = count == (unsigned long)-1;
2595        int run_most = 0;
2596        int loops;
2597
2598        /* We'll clean this up in btrfs_cleanup_transaction */
2599        if (trans->aborted)
2600                return 0;
2601
2602        if (root == root->fs_info->extent_root)
2603                root = root->fs_info->tree_root;
2604
2605        btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2606
2607        delayed_refs = &trans->transaction->delayed_refs;
2608        INIT_LIST_HEAD(&cluster);
2609        if (count == 0) {
2610                count = delayed_refs->num_entries * 2;
2611                run_most = 1;
2612        }
2613
2614        if (!run_all && !run_most) {
2615                int old;
2616                int seq = atomic_read(&delayed_refs->ref_seq);
2617
2618progress:
2619                old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2620                if (old) {
2621                        DEFINE_WAIT(__wait);
2622                        if (delayed_refs->flushing ||
2623                            !btrfs_should_throttle_delayed_refs(trans, root))
2624                                return 0;
2625
2626                        prepare_to_wait(&delayed_refs->wait, &__wait,
2627                                        TASK_UNINTERRUPTIBLE);
2628
2629                        old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2630                        if (old) {
2631                                schedule();
2632                                finish_wait(&delayed_refs->wait, &__wait);
2633
2634                                if (!refs_newer(delayed_refs, seq, 256))
2635                                        goto progress;
2636                                else
2637                                        return 0;
2638                        } else {
2639                                finish_wait(&delayed_refs->wait, &__wait);
2640                                goto again;
2641                        }
2642                }
2643
2644        } else {
2645                atomic_inc(&delayed_refs->procs_running_refs);
2646        }
2647
2648again:
2649        loops = 0;
2650        spin_lock(&delayed_refs->lock);
2651
2652#ifdef SCRAMBLE_DELAYED_REFS
2653        delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2654#endif
2655
2656        while (1) {
2657                if (!(run_all || run_most) &&
2658                    !btrfs_should_throttle_delayed_refs(trans, root))
2659                        break;
2660
2661                /*
2662                 * go find something we can process in the rbtree.  We start at
2663                 * the beginning of the tree, and then build a cluster
2664                 * of refs to process starting at the first one we are able to
2665                 * lock
2666                 */
2667                delayed_start = delayed_refs->run_delayed_start;
2668                ret = btrfs_find_ref_cluster(trans, &cluster,
2669                                             delayed_refs->run_delayed_start);
2670                if (ret)
2671                        break;
2672
2673                ret = run_clustered_refs(trans, root, &cluster);
2674                if (ret < 0) {
2675                        btrfs_release_ref_cluster(&cluster);
2676                        spin_unlock(&delayed_refs->lock);
2677                        btrfs_abort_transaction(trans, root, ret);
2678                        atomic_dec(&delayed_refs->procs_running_refs);
2679                        wake_up(&delayed_refs->wait);
2680                        return ret;
2681                }
2682
2683                atomic_add(ret, &delayed_refs->ref_seq);
2684
2685                count -= min_t(unsigned long, ret, count);
2686
2687                if (count == 0)
2688                        break;
2689
2690                if (delayed_start >= delayed_refs->run_delayed_start) {
2691                        if (loops == 0) {
2692                                /*
2693                                 * btrfs_find_ref_cluster looped. let's do one
2694                                 * more cycle. if we don't run any delayed ref
2695                                 * during that cycle (because we can't because
2696                                 * all of them are blocked), bail out.
2697                                 */
2698                                loops = 1;
2699                        } else {
2700                                /*
2701                                 * no runnable refs left, stop trying
2702                                 */
2703                                BUG_ON(run_all);
2704                                break;
2705                        }
2706                }
2707                if (ret) {
2708                        /* refs were run, let's reset staleness detection */
2709                        loops = 0;
2710                }
2711        }
2712
2713        if (run_all) {
2714                if (!list_empty(&trans->new_bgs)) {
2715                        spin_unlock(&delayed_refs->lock);
2716                        btrfs_create_pending_block_groups(trans, root);
2717                        spin_lock(&delayed_refs->lock);
2718                }
2719
2720                node = rb_first(&delayed_refs->root);
2721                if (!node)
2722                        goto out;
2723                count = (unsigned long)-1;
2724
2725                while (node) {
2726                        ref = rb_entry(node, struct btrfs_delayed_ref_node,
2727                                       rb_node);
2728                        if (btrfs_delayed_ref_is_head(ref)) {
2729                                struct btrfs_delayed_ref_head *head;
2730
2731                                head = btrfs_delayed_node_to_head(ref);
2732                                atomic_inc(&ref->refs);
2733
2734                                spin_unlock(&delayed_refs->lock);
2735                                /*
2736                                 * Mutex was contended, block until it's
2737                                 * released and try again
2738                                 */
2739                                mutex_lock(&head->mutex);
2740                                mutex_unlock(&head->mutex);
2741
2742                                btrfs_put_delayed_ref(ref);
2743                                cond_resched();
2744                                goto again;
2745                        }
2746                        node = rb_next(node);
2747                }
2748                spin_unlock(&delayed_refs->lock);
2749                schedule_timeout(1);
2750                goto again;
2751        }
2752out:
2753        atomic_dec(&delayed_refs->procs_running_refs);
2754        smp_mb();
2755        if (waitqueue_active(&delayed_refs->wait))
2756                wake_up(&delayed_refs->wait);
2757
2758        spin_unlock(&delayed_refs->lock);
2759        assert_qgroups_uptodate(trans);
2760        return 0;
2761}
2762
2763int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2764                                struct btrfs_root *root,
2765                                u64 bytenr, u64 num_bytes, u64 flags,
2766                                int level, int is_data)
2767{
2768        struct btrfs_delayed_extent_op *extent_op;
2769        int ret;
2770
2771        extent_op = btrfs_alloc_delayed_extent_op();
2772        if (!extent_op)
2773                return -ENOMEM;
2774
2775        extent_op->flags_to_set = flags;
2776        extent_op->update_flags = 1;
2777        extent_op->update_key = 0;
2778        extent_op->is_data = is_data ? 1 : 0;
2779        extent_op->level = level;
2780
2781        ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2782                                          num_bytes, extent_op);
2783        if (ret)
2784                btrfs_free_delayed_extent_op(extent_op);
2785        return ret;
2786}
2787
2788static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2789                                      struct btrfs_root *root,
2790                                      struct btrfs_path *path,
2791                                      u64 objectid, u64 offset, u64 bytenr)
2792{
2793        struct btrfs_delayed_ref_head *head;
2794        struct btrfs_delayed_ref_node *ref;
2795        struct btrfs_delayed_data_ref *data_ref;
2796        struct btrfs_delayed_ref_root *delayed_refs;
2797        struct rb_node *node;
2798        int ret = 0;
2799
2800        ret = -ENOENT;
2801        delayed_refs = &trans->transaction->delayed_refs;
2802        spin_lock(&delayed_refs->lock);
2803        head = btrfs_find_delayed_ref_head(trans, bytenr);
2804        if (!head)
2805                goto out;
2806
2807        if (!mutex_trylock(&head->mutex)) {
2808                atomic_inc(&head->node.refs);
2809                spin_unlock(&delayed_refs->lock);
2810
2811                btrfs_release_path(path);
2812
2813                /*
2814                 * Mutex was contended, block until it's released and let
2815                 * caller try again
2816                 */
2817                mutex_lock(&head->mutex);
2818                mutex_unlock(&head->mutex);
2819                btrfs_put_delayed_ref(&head->node);
2820                return -EAGAIN;
2821        }
2822
2823        node = rb_prev(&head->node.rb_node);
2824        if (!node)
2825                goto out_unlock;
2826
2827        ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2828
2829        if (ref->bytenr != bytenr)
2830                goto out_unlock;
2831
2832        ret = 1;
2833        if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2834                goto out_unlock;
2835
2836        data_ref = btrfs_delayed_node_to_data_ref(ref);
2837
2838        node = rb_prev(node);
2839        if (node) {
2840                int seq = ref->seq;
2841
2842                ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2843                if (ref->bytenr == bytenr && ref->seq == seq)
2844                        goto out_unlock;
2845        }
2846
2847        if (data_ref->root != root->root_key.objectid ||
2848            data_ref->objectid != objectid || data_ref->offset != offset)
2849                goto out_unlock;
2850
2851        ret = 0;
2852out_unlock:
2853        mutex_unlock(&head->mutex);
2854out:
2855        spin_unlock(&delayed_refs->lock);
2856        return ret;
2857}
2858
2859static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2860                                        struct btrfs_root *root,
2861                                        struct btrfs_path *path,
2862                                        u64 objectid, u64 offset, u64 bytenr)
2863{
2864        struct btrfs_root *extent_root = root->fs_info->extent_root;
2865        struct extent_buffer *leaf;
2866        struct btrfs_extent_data_ref *ref;
2867        struct btrfs_extent_inline_ref *iref;
2868        struct btrfs_extent_item *ei;
2869        struct btrfs_key key;
2870        u32 item_size;
2871        int ret;
2872
2873        key.objectid = bytenr;
2874        key.offset = (u64)-1;
2875        key.type = BTRFS_EXTENT_ITEM_KEY;
2876
2877        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2878        if (ret < 0)
2879                goto out;
2880        BUG_ON(ret == 0); /* Corruption */
2881
2882        ret = -ENOENT;
2883        if (path->slots[0] == 0)
2884                goto out;
2885
2886        path->slots[0]--;
2887        leaf = path->nodes[0];
2888        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2889
2890        if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2891                goto out;
2892
2893        ret = 1;
2894        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2895#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2896        if (item_size < sizeof(*ei)) {
2897                WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2898                goto out;
2899        }
2900#endif
2901        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2902
2903        if (item_size != sizeof(*ei) +
2904            btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2905                goto out;
2906
2907        if (btrfs_extent_generation(leaf, ei) <=
2908            btrfs_root_last_snapshot(&root->root_item))
2909                goto out;
2910
2911        iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2912        if (btrfs_extent_inline_ref_type(leaf, iref) !=
2913            BTRFS_EXTENT_DATA_REF_KEY)
2914                goto out;
2915
2916        ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2917        if (btrfs_extent_refs(leaf, ei) !=
2918            btrfs_extent_data_ref_count(leaf, ref) ||
2919            btrfs_extent_data_ref_root(leaf, ref) !=
2920            root->root_key.objectid ||
2921            btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2922            btrfs_extent_data_ref_offset(leaf, ref) != offset)
2923                goto out;
2924
2925        ret = 0;
2926out:
2927        return ret;
2928}
2929
2930int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2931                          struct btrfs_root *root,
2932                          u64 objectid, u64 offset, u64 bytenr)
2933{
2934        struct btrfs_path *path;
2935        int ret;
2936        int ret2;
2937
2938        path = btrfs_alloc_path();
2939        if (!path)
2940                return -ENOENT;
2941
2942        do {
2943                ret = check_committed_ref(trans, root, path, objectid,
2944                                          offset, bytenr);
2945                if (ret && ret != -ENOENT)
2946                        goto out;
2947
2948                ret2 = check_delayed_ref(trans, root, path, objectid,
2949                                         offset, bytenr);
2950        } while (ret2 == -EAGAIN);
2951
2952        if (ret2 && ret2 != -ENOENT) {
2953                ret = ret2;
2954                goto out;
2955        }
2956
2957        if (ret != -ENOENT || ret2 != -ENOENT)
2958                ret = 0;
2959out:
2960        btrfs_free_path(path);
2961        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2962                WARN_ON(ret > 0);
2963        return ret;
2964}
2965
2966static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2967                           struct btrfs_root *root,
2968                           struct extent_buffer *buf,
2969                           int full_backref, int inc, int for_cow)
2970{
2971        u64 bytenr;
2972        u64 num_bytes;
2973        u64 parent;
2974        u64 ref_root;
2975        u32 nritems;
2976        struct btrfs_key key;
2977        struct btrfs_file_extent_item *fi;
2978        int i;
2979        int level;
2980        int ret = 0;
2981        int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2982                            u64, u64, u64, u64, u64, u64, int);
2983
2984        ref_root = btrfs_header_owner(buf);
2985        nritems = btrfs_header_nritems(buf);
2986        level = btrfs_header_level(buf);
2987
2988        if (!root->ref_cows && level == 0)
2989                return 0;
2990
2991        if (inc)
2992                process_func = btrfs_inc_extent_ref;
2993        else
2994                process_func = btrfs_free_extent;
2995
2996        if (full_backref)
2997                parent = buf->start;
2998        else
2999                parent = 0;
3000
3001        for (i = 0; i < nritems; i++) {
3002                if (level == 0) {
3003                        btrfs_item_key_to_cpu(buf, &key, i);
3004                        if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3005                                continue;
3006                        fi = btrfs_item_ptr(buf, i,
3007                                            struct btrfs_file_extent_item);
3008                        if (btrfs_file_extent_type(buf, fi) ==
3009                            BTRFS_FILE_EXTENT_INLINE)
3010                                continue;
3011                        bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3012                        if (bytenr == 0)
3013                                continue;
3014
3015                        num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3016                        key.offset -= btrfs_file_extent_offset(buf, fi);
3017                        ret = process_func(trans, root, bytenr, num_bytes,
3018                                           parent, ref_root, key.objectid,
3019                                           key.offset, for_cow);
3020                        if (ret)
3021                                goto fail;
3022                } else {
3023                        bytenr = btrfs_node_blockptr(buf, i);
3024                        num_bytes = btrfs_level_size(root, level - 1);
3025                        ret = process_func(trans, root, bytenr, num_bytes,
3026                                           parent, ref_root, level - 1, 0,
3027                                           for_cow);
3028                        if (ret)
3029                                goto fail;
3030                }
3031        }
3032        return 0;
3033fail:
3034        return ret;
3035}
3036
3037int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3038                  struct extent_buffer *buf, int full_backref, int for_cow)
3039{
3040        return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3041}
3042
3043int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3044                  struct extent_buffer *buf, int full_backref, int for_cow)
3045{
3046        return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3047}
3048
3049static int write_one_cache_group(struct btrfs_trans_handle *trans,
3050                                 struct btrfs_root *root,
3051                                 struct btrfs_path *path,
3052                                 struct btrfs_block_group_cache *cache)
3053{
3054        int ret;
3055        struct btrfs_root *extent_root = root->fs_info->extent_root;
3056        unsigned long bi;
3057        struct extent_buffer *leaf;
3058
3059        ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3060        if (ret < 0)
3061                goto fail;
3062        BUG_ON(ret); /* Corruption */
3063
3064        leaf = path->nodes[0];
3065        bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3066        write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3067        btrfs_mark_buffer_dirty(leaf);
3068        btrfs_release_path(path);
3069fail:
3070        if (ret) {
3071                btrfs_abort_transaction(trans, root, ret);
3072                return ret;
3073        }
3074        return 0;
3075
3076}
3077
3078static struct btrfs_block_group_cache *
3079next_block_group(struct btrfs_root *root,
3080                 struct btrfs_block_group_cache *cache)
3081{
3082        struct rb_node *node;
3083        spin_lock(&root->fs_info->block_group_cache_lock);
3084        node = rb_next(&cache->cache_node);
3085        btrfs_put_block_group(cache);
3086        if (node) {
3087                cache = rb_entry(node, struct btrfs_block_group_cache,
3088                                 cache_node);
3089                btrfs_get_block_group(cache);
3090        } else
3091                cache = NULL;
3092        spin_unlock(&root->fs_info->block_group_cache_lock);
3093        return cache;
3094}
3095
3096static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3097                            struct btrfs_trans_handle *trans,
3098                            struct btrfs_path *path)
3099{
3100        struct btrfs_root *root = block_group->fs_info->tree_root;
3101        struct inode *inode = NULL;
3102        u64 alloc_hint = 0;
3103        int dcs = BTRFS_DC_ERROR;
3104        int num_pages = 0;
3105        int retries = 0;
3106        int ret = 0;
3107
3108        /*
3109         * If this block group is smaller than 100 megs don't bother caching the
3110         * block group.
3111         */
3112        if (block_group->key.offset < (100 * 1024 * 1024)) {
3113                spin_lock(&block_group->lock);
3114                block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3115                spin_unlock(&block_group->lock);
3116                return 0;
3117        }
3118
3119again:
3120        inode = lookup_free_space_inode(root, block_group, path);
3121        if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3122                ret = PTR_ERR(inode);
3123                btrfs_release_path(path);
3124                goto out;
3125        }
3126
3127        if (IS_ERR(inode)) {
3128                BUG_ON(retries);
3129                retries++;
3130
3131                if (block_group->ro)
3132                        goto out_free;
3133
3134                ret = create_free_space_inode(root, trans, block_group, path);
3135                if (ret)
3136                        goto out_free;
3137                goto again;
3138        }
3139
3140        /* We've already setup this transaction, go ahead and exit */
3141        if (block_group->cache_generation == trans->transid &&
3142            i_size_read(inode)) {
3143                dcs = BTRFS_DC_SETUP;
3144                goto out_put;
3145        }
3146
3147        /*
3148         * We want to set the generation to 0, that way if anything goes wrong
3149         * from here on out we know not to trust this cache when we load up next
3150         * time.
3151         */
3152        BTRFS_I(inode)->generation = 0;
3153        ret = btrfs_update_inode(trans, root, inode);
3154        WARN_ON(ret);
3155
3156        if (i_size_read(inode) > 0) {
3157                ret = btrfs_check_trunc_cache_free_space(root,
3158                                        &root->fs_info->global_block_rsv);
3159                if (ret)
3160                        goto out_put;
3161
3162                ret = btrfs_truncate_free_space_cache(root, trans, path,
3163                                                      inode);
3164                if (ret)
3165                        goto out_put;
3166        }
3167
3168        spin_lock(&block_group->lock);
3169        if (block_group->cached != BTRFS_CACHE_FINISHED ||
3170            !btrfs_test_opt(root, SPACE_CACHE)) {
3171                /*
3172                 * don't bother trying to write stuff out _if_
3173                 * a) we're not cached,
3174                 * b) we're with nospace_cache mount option.
3175                 */
3176                dcs = BTRFS_DC_WRITTEN;
3177                spin_unlock(&block_group->lock);
3178                goto out_put;
3179        }
3180        spin_unlock(&block_group->lock);
3181
3182        /*
3183         * Try to preallocate enough space based on how big the block group is.
3184         * Keep in mind this has to include any pinned space which could end up
3185         * taking up quite a bit since it's not folded into the other space
3186         * cache.
3187         */
3188        num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3189        if (!num_pages)
3190                num_pages = 1;
3191
3192        num_pages *= 16;
3193        num_pages *= PAGE_CACHE_SIZE;
3194
3195        ret = btrfs_check_data_free_space(inode, num_pages);
3196        if (ret)
3197                goto out_put;
3198
3199        ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3200                                              num_pages, num_pages,
3201                                              &alloc_hint);
3202        if (!ret)
3203                dcs = BTRFS_DC_SETUP;
3204        btrfs_free_reserved_data_space(inode, num_pages);
3205
3206out_put:
3207        iput(inode);
3208out_free:
3209        btrfs_release_path(path);
3210out:
3211        spin_lock(&block_group->lock);
3212        if (!ret && dcs == BTRFS_DC_SETUP)
3213                block_group->cache_generation = trans->transid;
3214        block_group->disk_cache_state = dcs;
3215        spin_unlock(&block_group->lock);
3216
3217        return ret;
3218}
3219
3220int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3221                                   struct btrfs_root *root)
3222{
3223        struct btrfs_block_group_cache *cache;
3224        int err = 0;
3225        struct btrfs_path *path;
3226        u64 last = 0;
3227
3228        path = btrfs_alloc_path();
3229        if (!path)
3230                return -ENOMEM;
3231
3232again:
3233        while (1) {
3234                cache = btrfs_lookup_first_block_group(root->fs_info, last);
3235                while (cache) {
3236                        if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3237                                break;
3238                        cache = next_block_group(root, cache);
3239                }
3240                if (!cache) {
3241                        if (last == 0)
3242                                break;
3243                        last = 0;
3244                        continue;
3245                }
3246                err = cache_save_setup(cache, trans, path);
3247                last = cache->key.objectid + cache->key.offset;
3248                btrfs_put_block_group(cache);
3249        }
3250
3251        while (1) {
3252                if (last == 0) {
3253                        err = btrfs_run_delayed_refs(trans, root,
3254                                                     (unsigned long)-1);
3255                        if (err) /* File system offline */
3256                                goto out;
3257                }
3258
3259                cache = btrfs_lookup_first_block_group(root->fs_info, last);
3260                while (cache) {
3261                        if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3262                                btrfs_put_block_group(cache);
3263                                goto again;
3264                        }
3265
3266                        if (cache->dirty)
3267                                break;
3268                        cache = next_block_group(root, cache);
3269                }
3270                if (!cache) {
3271                        if (last == 0)
3272                                break;
3273                        last = 0;
3274                        continue;
3275                }
3276
3277                if (cache->disk_cache_state == BTRFS_DC_SETUP)
3278                        cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3279                cache->dirty = 0;
3280                last = cache->key.objectid + cache->key.offset;
3281
3282                err = write_one_cache_group(trans, root, path, cache);
3283                if (err) /* File system offline */
3284                        goto out;
3285
3286                btrfs_put_block_group(cache);
3287        }
3288
3289        while (1) {
3290                /*
3291                 * I don't think this is needed since we're just marking our
3292                 * preallocated extent as written, but just in case it can't
3293                 * hurt.
3294                 */
3295                if (last == 0) {
3296                        err = btrfs_run_delayed_refs(trans, root,
3297                                                     (unsigned long)-1);
3298                        if (err) /* File system offline */
3299                                goto out;
3300                }
3301
3302                cache = btrfs_lookup_first_block_group(root->fs_info, last);
3303                while (cache) {
3304                        /*
3305                         * Really this shouldn't happen, but it could if we
3306                         * couldn't write the entire preallocated extent and
3307                         * splitting the extent resulted in a new block.
3308                         */
3309                        if (cache->dirty) {
3310                                btrfs_put_block_group(cache);
3311                                goto again;
3312                        }
3313                        if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3314                                break;
3315                        cache = next_block_group(root, cache);
3316                }
3317                if (!cache) {
3318                        if (last == 0)
3319                                break;
3320                        last = 0;
3321                        continue;
3322                }
3323
3324                err = btrfs_write_out_cache(root, trans, cache, path);
3325
3326                /*
3327                 * If we didn't have an error then the cache state is still
3328                 * NEED_WRITE, so we can set it to WRITTEN.
3329                 */
3330                if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3331                        cache->disk_cache_state = BTRFS_DC_WRITTEN;
3332                last = cache->key.objectid + cache->key.offset;
3333                btrfs_put_block_group(cache);
3334        }
3335out:
3336
3337        btrfs_free_path(path);
3338        return err;
3339}
3340
3341int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3342{
3343        struct btrfs_block_group_cache *block_group;
3344        int readonly = 0;
3345
3346        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3347        if (!block_group || block_group->ro)
3348                readonly = 1;
3349        if (block_group)
3350                btrfs_put_block_group(block_group);
3351        return readonly;
3352}
3353
3354static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3355                             u64 total_bytes, u64 bytes_used,
3356                             struct btrfs_space_info **space_info)
3357{
3358        struct btrfs_space_info *found;
3359        int i;
3360        int factor;
3361        int ret;
3362
3363        if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3364                     BTRFS_BLOCK_GROUP_RAID10))
3365                factor = 2;
3366        else
3367                factor = 1;
3368
3369        found = __find_space_info(info, flags);
3370        if (found) {
3371                spin_lock(&found->lock);
3372                found->total_bytes += total_bytes;
3373                found->disk_total += total_bytes * factor;
3374                found->bytes_used += bytes_used;
3375                found->disk_used += bytes_used * factor;
3376                found->full = 0;
3377                spin_unlock(&found->lock);
3378                *space_info = found;
3379                return 0;
3380        }
3381        found = kzalloc(sizeof(*found), GFP_NOFS);
3382        if (!found)
3383                return -ENOMEM;
3384
3385        ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3386        if (ret) {
3387                kfree(found);
3388                return ret;
3389        }
3390
3391        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3392                INIT_LIST_HEAD(&found->block_groups[i]);
3393        init_rwsem(&found->groups_sem);
3394        spin_lock_init(&found->lock);
3395        found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3396        found->total_bytes = total_bytes;
3397        found->disk_total = total_bytes * factor;
3398        found->bytes_used = bytes_used;
3399        found->disk_used = bytes_used * factor;
3400        found->bytes_pinned = 0;
3401        found->bytes_reserved = 0;
3402        found->bytes_readonly = 0;
3403        found->bytes_may_use = 0;
3404        found->full = 0;
3405        found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3406        found->chunk_alloc = 0;
3407        found->flush = 0;
3408        init_waitqueue_head(&found->wait);
3409        *space_info = found;
3410        list_add_rcu(&found->list, &info->space_info);
3411        if (flags & BTRFS_BLOCK_GROUP_DATA)
3412                info->data_sinfo = found;
3413        return 0;
3414}
3415
3416static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3417{
3418        u64 extra_flags = chunk_to_extended(flags) &
3419                                BTRFS_EXTENDED_PROFILE_MASK;
3420
3421        write_seqlock(&fs_info->profiles_lock);
3422        if (flags & BTRFS_BLOCK_GROUP_DATA)
3423                fs_info->avail_data_alloc_bits |= extra_flags;
3424        if (flags & BTRFS_BLOCK_GROUP_METADATA)
3425                fs_info->avail_metadata_alloc_bits |= extra_flags;
3426        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3427                fs_info->avail_system_alloc_bits |= extra_flags;
3428        write_sequnlock(&fs_info->profiles_lock);
3429}
3430
3431/*
3432 * returns target flags in extended format or 0 if restripe for this
3433 * chunk_type is not in progress
3434 *
3435 * should be called with either volume_mutex or balance_lock held
3436 */
3437static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3438{
3439        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3440        u64 target = 0;
3441
3442        if (!bctl)
3443                return 0;
3444
3445        if (flags & BTRFS_BLOCK_GROUP_DATA &&
3446            bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3447                target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3448        } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3449                   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3450                target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3451        } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3452                   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3453                target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3454        }
3455
3456        return target;
3457}
3458
3459/*
3460 * @flags: available profiles in extended format (see ctree.h)
3461 *
3462 * Returns reduced profile in chunk format.  If profile changing is in
3463 * progress (either running or paused) picks the target profile (if it's
3464 * already available), otherwise falls back to plain reducing.
3465 */
3466static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3467{
3468        /*
3469         * we add in the count of missing devices because we want
3470         * to make sure that any RAID levels on a degraded FS
3471         * continue to be honored.
3472         */
3473        u64 num_devices = root->fs_info->fs_devices->rw_devices +
3474                root->fs_info->fs_devices->missing_devices;
3475        u64 target;
3476        u64 tmp;
3477
3478        /*
3479         * see if restripe for this chunk_type is in progress, if so
3480         * try to reduce to the target profile
3481         */
3482        spin_lock(&root->fs_info->balance_lock);
3483        target = get_restripe_target(root->fs_info, flags);
3484        if (target) {
3485                /* pick target profile only if it's already available */
3486                if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3487                        spin_unlock(&root->fs_info->balance_lock);
3488                        return extended_to_chunk(target);
3489                }
3490        }
3491        spin_unlock(&root->fs_info->balance_lock);
3492
3493        /* First, mask out the RAID levels which aren't possible */
3494        if (num_devices == 1)
3495                flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3496                           BTRFS_BLOCK_GROUP_RAID5);
3497        if (num_devices < 3)
3498                flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3499        if (num_devices < 4)
3500                flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3501
3502        tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3503                       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3504                       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3505        flags &= ~tmp;
3506
3507        if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3508                tmp = BTRFS_BLOCK_GROUP_RAID6;
3509        else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3510                tmp = BTRFS_BLOCK_GROUP_RAID5;
3511        else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3512                tmp = BTRFS_BLOCK_GROUP_RAID10;
3513        else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3514                tmp = BTRFS_BLOCK_GROUP_RAID1;
3515        else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3516                tmp = BTRFS_BLOCK_GROUP_RAID0;
3517
3518        return extended_to_chunk(flags | tmp);
3519}
3520
3521static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3522{
3523        unsigned seq;
3524
3525        do {
3526                seq = read_seqbegin(&root->fs_info->profiles_lock);
3527
3528                if (flags & BTRFS_BLOCK_GROUP_DATA)
3529                        flags |= root->fs_info->avail_data_alloc_bits;
3530                else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3531                        flags |= root->fs_info->avail_system_alloc_bits;
3532                else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3533                        flags |= root->fs_info->avail_metadata_alloc_bits;
3534        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3535
3536        return btrfs_reduce_alloc_profile(root, flags);
3537}
3538
3539u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3540{
3541        u64 flags;
3542        u64 ret;
3543
3544        if (data)
3545                flags = BTRFS_BLOCK_GROUP_DATA;
3546        else if (root == root->fs_info->chunk_root)
3547                flags = BTRFS_BLOCK_GROUP_SYSTEM;
3548        else
3549                flags = BTRFS_BLOCK_GROUP_METADATA;
3550
3551        ret = get_alloc_profile(root, flags);
3552        return ret;
3553}
3554
3555/*
3556 * This will check the space that the inode allocates from to make sure we have
3557 * enough space for bytes.
3558 */
3559int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3560{
3561        struct btrfs_space_info *data_sinfo;
3562        struct btrfs_root *root = BTRFS_I(inode)->root;
3563        struct btrfs_fs_info *fs_info = root->fs_info;
3564        u64 used;
3565        int ret = 0, committed = 0, alloc_chunk = 1;
3566
3567        /* make sure bytes are sectorsize aligned */
3568        bytes = ALIGN(bytes, root->sectorsize);
3569
3570        if (root == root->fs_info->tree_root ||
3571            BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3572                alloc_chunk = 0;
3573                committed = 1;
3574        }
3575
3576        data_sinfo = fs_info->data_sinfo;
3577        if (!data_sinfo)
3578                goto alloc;
3579
3580again:
3581        /* make sure we have enough space to handle the data first */
3582        spin_lock(&data_sinfo->lock);
3583        used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3584                data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3585                data_sinfo->bytes_may_use;
3586
3587        if (used + bytes > data_sinfo->total_bytes) {
3588                struct btrfs_trans_handle *trans;
3589
3590                /*
3591                 * if we don't have enough free bytes in this space then we need
3592                 * to alloc a new chunk.
3593                 */
3594                if (!data_sinfo->full && alloc_chunk) {
3595                        u64 alloc_target;
3596
3597                        data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3598                        spin_unlock(&data_sinfo->lock);
3599alloc:
3600                        alloc_target = btrfs_get_alloc_profile(root, 1);
3601                        trans = btrfs_join_transaction(root);
3602                        if (IS_ERR(trans))
3603                                return PTR_ERR(trans);
3604
3605                        ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3606                                             alloc_target,
3607                                             CHUNK_ALLOC_NO_FORCE);
3608                        btrfs_end_transaction(trans, root);
3609                        if (ret < 0) {
3610                                if (ret != -ENOSPC)
3611                                        return ret;
3612                                else
3613                                        goto commit_trans;
3614                        }
3615
3616                        if (!data_sinfo)
3617                                data_sinfo = fs_info->data_sinfo;
3618
3619                        goto again;
3620                }
3621
3622                /*
3623                 * If we don't have enough pinned space to deal with this
3624                 * allocation don't bother committing the transaction.
3625                 */
3626                if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3627                                           bytes) < 0)
3628                        committed = 1;
3629                spin_unlock(&data_sinfo->lock);
3630
3631                /* commit the current transaction and try again */
3632commit_trans:
3633                if (!committed &&
3634                    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3635                        committed = 1;
3636
3637                        trans = btrfs_join_transaction(root);
3638                        if (IS_ERR(trans))
3639                                return PTR_ERR(trans);
3640                        ret = btrfs_commit_transaction(trans, root);
3641                        if (ret)
3642                                return ret;
3643                        goto again;
3644                }
3645
3646                return -ENOSPC;
3647        }
3648        data_sinfo->bytes_may_use += bytes;
3649        trace_btrfs_space_reservation(root->fs_info, "space_info",
3650                                      data_sinfo->flags, bytes, 1);
3651        spin_unlock(&data_sinfo->lock);
3652
3653        return 0;
3654}
3655
3656/*
3657 * Called if we need to clear a data reservation for this inode.
3658 */
3659void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3660{
3661        struct btrfs_root *root = BTRFS_I(inode)->root;
3662        struct btrfs_space_info *data_sinfo;
3663
3664        /* make sure bytes are sectorsize aligned */
3665        bytes = ALIGN(bytes, root->sectorsize);
3666
3667        data_sinfo = root->fs_info->data_sinfo;
3668        spin_lock(&data_sinfo->lock);
3669        WARN_ON(data_sinfo->bytes_may_use < bytes);
3670        data_sinfo->bytes_may_use -= bytes;
3671        trace_btrfs_space_reservation(root->fs_info, "space_info",
3672                                      data_sinfo->flags, bytes, 0);
3673        spin_unlock(&data_sinfo->lock);
3674}
3675
3676static void force_metadata_allocation(struct btrfs_fs_info *info)
3677{
3678        struct list_head *head = &info->space_info;
3679        struct btrfs_space_info *found;
3680
3681        rcu_read_lock();
3682        list_for_each_entry_rcu(found, head, list) {
3683                if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3684                        found->force_alloc = CHUNK_ALLOC_FORCE;
3685        }
3686        rcu_read_unlock();
3687}
3688
3689static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3690{
3691        return (global->size << 1);
3692}
3693
3694static int should_alloc_chunk(struct btrfs_root *root,
3695                              struct btrfs_space_info *sinfo, int force)
3696{
3697        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3698        u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3699        u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3700        u64 thresh;
3701
3702        if (force == CHUNK_ALLOC_FORCE)
3703                return 1;
3704
3705        /*
3706         * We need to take into account the global rsv because for all intents
3707         * and purposes it's used space.  Don't worry about locking the
3708         * global_rsv, it doesn't change except when the transaction commits.
3709         */
3710        if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3711                num_allocated += calc_global_rsv_need_space(global_rsv);
3712
3713        /*
3714         * in limited mode, we want to have some free space up to
3715         * about 1% of the FS size.
3716         */
3717        if (force == CHUNK_ALLOC_LIMITED) {
3718                thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3719                thresh = max_t(u64, 64 * 1024 * 1024,
3720                               div_factor_fine(thresh, 1));
3721
3722                if (num_bytes - num_allocated < thresh)
3723                        return 1;
3724        }
3725
3726        if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3727                return 0;
3728        return 1;
3729}
3730
3731static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3732{
3733        u64 num_dev;
3734
3735        if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3736                    BTRFS_BLOCK_GROUP_RAID0 |
3737                    BTRFS_BLOCK_GROUP_RAID5 |
3738                    BTRFS_BLOCK_GROUP_RAID6))
3739                num_dev = root->fs_info->fs_devices->rw_devices;
3740        else if (type & BTRFS_BLOCK_GROUP_RAID1)
3741                num_dev = 2;
3742        else
3743                num_dev = 1;    /* DUP or single */
3744
3745        /* metadata for updaing devices and chunk tree */
3746        return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3747}
3748
3749static void check_system_chunk(struct btrfs_trans_handle *trans,
3750                               struct btrfs_root *root, u64 type)
3751{
3752        struct btrfs_space_info *info;
3753        u64 left;
3754        u64 thresh;
3755
3756        info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3757        spin_lock(&info->lock);
3758        left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3759                info->bytes_reserved - info->bytes_readonly;
3760        spin_unlock(&info->lock);
3761
3762        thresh = get_system_chunk_thresh(root, type);
3763        if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3764                btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3765                        left, thresh, type);
3766                dump_space_info(info, 0, 0);
3767        }
3768
3769        if (left < thresh) {
3770                u64 flags;
3771
3772                flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3773                btrfs_alloc_chunk(trans, root, flags);
3774        }
3775}
3776
3777static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3778                          struct btrfs_root *extent_root, u64 flags, int force)
3779{
3780        struct btrfs_space_info *space_info;
3781        struct btrfs_fs_info *fs_info = extent_root->fs_info;
3782        int wait_for_alloc = 0;
3783        int ret = 0;
3784
3785        /* Don't re-enter if we're already allocating a chunk */
3786        if (trans->allocating_chunk)
3787                return -ENOSPC;
3788
3789        space_info = __find_space_info(extent_root->fs_info, flags);
3790        if (!space_info) {
3791                ret = update_space_info(extent_root->fs_info, flags,
3792                                        0, 0, &space_info);
3793                BUG_ON(ret); /* -ENOMEM */
3794        }
3795        BUG_ON(!space_info); /* Logic error */
3796
3797again:
3798        spin_lock(&space_info->lock);
3799        if (force < space_info->force_alloc)
3800                force = space_info->force_alloc;
3801        if (space_info->full) {
3802                spin_unlock(&space_info->lock);
3803                return 0;
3804        }
3805
3806        if (!should_alloc_chunk(extent_root, space_info, force)) {
3807                spin_unlock(&space_info->lock);
3808                return 0;
3809        } else if (space_info->chunk_alloc) {
3810                wait_for_alloc = 1;
3811        } else {
3812                space_info->chunk_alloc = 1;
3813        }
3814
3815        spin_unlock(&space_info->lock);
3816
3817        mutex_lock(&fs_info->chunk_mutex);
3818
3819        /*
3820         * The chunk_mutex is held throughout the entirety of a chunk
3821         * allocation, so once we've acquired the chunk_mutex we know that the
3822         * other guy is done and we need to recheck and see if we should
3823         * allocate.
3824         */
3825        if (wait_for_alloc) {
3826                mutex_unlock(&fs_info->chunk_mutex);
3827                wait_for_alloc = 0;
3828                goto again;
3829        }
3830
3831        trans->allocating_chunk = true;
3832
3833        /*
3834         * If we have mixed data/metadata chunks we want to make sure we keep
3835         * allocating mixed chunks instead of individual chunks.
3836         */
3837        if (btrfs_mixed_space_info(space_info))
3838                flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3839
3840        /*
3841         * if we're doing a data chunk, go ahead and make sure that
3842         * we keep a reasonable number of metadata chunks allocated in the
3843         * FS as well.
3844         */
3845        if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3846                fs_info->data_chunk_allocations++;
3847                if (!(fs_info->data_chunk_allocations %
3848                      fs_info->metadata_ratio))
3849                        force_metadata_allocation(fs_info);
3850        }
3851
3852        /*
3853         * Check if we have enough space in SYSTEM chunk because we may need
3854         * to update devices.
3855         */
3856        check_system_chunk(trans, extent_root, flags);
3857
3858        ret = btrfs_alloc_chunk(trans, extent_root, flags);
3859        trans->allocating_chunk = false;
3860
3861        spin_lock(&space_info->lock);
3862        if (ret < 0 && ret != -ENOSPC)
3863                goto out;
3864        if (ret)
3865                space_info->full = 1;
3866        else
3867                ret = 1;
3868
3869        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3870out:
3871        space_info->chunk_alloc = 0;
3872        spin_unlock(&space_info->lock);
3873        mutex_unlock(&fs_info->chunk_mutex);
3874        return ret;
3875}
3876
3877static int can_overcommit(struct btrfs_root *root,
3878                          struct btrfs_space_info *space_info, u64 bytes,
3879                          enum btrfs_reserve_flush_enum flush)
3880{
3881        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3882        u64 profile = btrfs_get_alloc_profile(root, 0);
3883        u64 space_size;
3884        u64 avail;
3885        u64 used;
3886        u64 to_add;
3887
3888        used = space_info->bytes_used + space_info->bytes_reserved +
3889                space_info->bytes_pinned + space_info->bytes_readonly;
3890
3891        /*
3892         * We only want to allow over committing if we have lots of actual space
3893         * free, but if we don't have enough space to handle the global reserve
3894         * space then we could end up having a real enospc problem when trying
3895         * to allocate a chunk or some other such important allocation.
3896         */
3897        spin_lock(&global_rsv->lock);
3898        space_size = calc_global_rsv_need_space(global_rsv);
3899        spin_unlock(&global_rsv->lock);
3900        if (used + space_size >= space_info->total_bytes)
3901                return 0;
3902
3903        used += space_info->bytes_may_use;
3904
3905        spin_lock(&root->fs_info->free_chunk_lock);
3906        avail = root->fs_info->free_chunk_space;
3907        spin_unlock(&root->fs_info->free_chunk_lock);
3908
3909        /*
3910         * If we have dup, raid1 or raid10 then only half of the free
3911         * space is actually useable.  For raid56, the space info used
3912         * doesn't include the parity drive, so we don't have to
3913         * change the math
3914         */
3915        if (profile & (BTRFS_BLOCK_GROUP_DUP |
3916                       BTRFS_BLOCK_GROUP_RAID1 |
3917                       BTRFS_BLOCK_GROUP_RAID10))
3918                avail >>= 1;
3919
3920        to_add = space_info->total_bytes;
3921
3922        /*
3923         * If we aren't flushing all things, let us overcommit up to
3924         * 1/2th of the space. If we can flush, don't let us overcommit
3925         * too much, let it overcommit up to 1/8 of the space.
3926         */
3927        if (flush == BTRFS_RESERVE_FLUSH_ALL)
3928                to_add >>= 3;
3929        else
3930                to_add >>= 1;
3931
3932        /*
3933         * Limit the overcommit to the amount of free space we could possibly
3934         * allocate for chunks.
3935         */
3936        to_add = min(avail, to_add);
3937
3938        if (used + bytes < space_info->total_bytes + to_add)
3939                return 1;
3940        return 0;
3941}
3942
3943static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3944                                         unsigned long nr_pages)
3945{
3946        struct super_block *sb = root->fs_info->sb;
3947
3948        if (down_read_trylock(&sb->s_umount)) {
3949                writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3950                up_read(&sb->s_umount);
3951        } else {
3952                /*
3953                 * We needn't worry the filesystem going from r/w to r/o though
3954                 * we don't acquire ->s_umount mutex, because the filesystem
3955                 * should guarantee the delalloc inodes list be empty after
3956                 * the filesystem is readonly(all dirty pages are written to
3957                 * the disk).
3958                 */
3959                btrfs_start_all_delalloc_inodes(root->fs_info, 0);
3960                if (!current->journal_info)
3961                        btrfs_wait_all_ordered_extents(root->fs_info, 0);
3962        }
3963}
3964
3965/*
3966 * shrink metadata reservation for delalloc
3967 */
3968static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3969                            bool wait_ordered)
3970{
3971        struct btrfs_block_rsv *block_rsv;
3972        struct btrfs_space_info *space_info;
3973        struct btrfs_trans_handle *trans;
3974        u64 delalloc_bytes;
3975        u64 max_reclaim;
3976        long time_left;
3977        unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3978        int loops = 0;
3979        enum btrfs_reserve_flush_enum flush;
3980
3981        trans = (struct btrfs_trans_handle *)current->journal_info;
3982        block_rsv = &root->fs_info->delalloc_block_rsv;
3983        space_info = block_rsv->space_info;
3984
3985        smp_mb();
3986        delalloc_bytes = percpu_counter_sum_positive(
3987                                                &root->fs_info->delalloc_bytes);
3988        if (delalloc_bytes == 0) {
3989                if (trans)
3990                        return;
3991                btrfs_wait_all_ordered_extents(root->fs_info, 0);
3992                return;
3993        }
3994
3995        while (delalloc_bytes && loops < 3) {
3996                max_reclaim = min(delalloc_bytes, to_reclaim);
3997                nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3998                btrfs_writeback_inodes_sb_nr(root, nr_pages);
3999                /*
4000                 * We need to wait for the async pages to actually start before
4001                 * we do anything.
4002                 */
4003                wait_event(root->fs_info->async_submit_wait,
4004                           !atomic_read(&root->fs_info->async_delalloc_pages));
4005
4006                if (!trans)
4007                        flush = BTRFS_RESERVE_FLUSH_ALL;
4008                else
4009                        flush = BTRFS_RESERVE_NO_FLUSH;
4010                spin_lock(&space_info->lock);
4011                if (can_overcommit(root, space_info, orig, flush)) {
4012                        spin_unlock(&space_info->lock);
4013                        break;
4014                }
4015                spin_unlock(&space_info->lock);
4016
4017                loops++;
4018                if (wait_ordered && !trans) {
4019                        btrfs_wait_all_ordered_extents(root->fs_info, 0);
4020                } else {
4021                        time_left = schedule_timeout_killable(1);
4022                        if (time_left)
4023                                break;
4024                }
4025                smp_mb();
4026                delalloc_bytes = percpu_counter_sum_positive(
4027                                                &root->fs_info->delalloc_bytes);
4028        }
4029}
4030
4031/**
4032 * maybe_commit_transaction - possibly commit the transaction if its ok to
4033 * @root - the root we're allocating for
4034 * @bytes - the number of bytes we want to reserve
4035 * @force - force the commit
4036 *
4037 * This will check to make sure that committing the transaction will actually
4038 * get us somewhere and then commit the transaction if it does.  Otherwise it
4039 * will return -ENOSPC.
4040 */
4041static int may_commit_transaction(struct btrfs_root *root,
4042                                  struct btrfs_space_info *space_info,
4043                                  u64 bytes, int force)
4044{
4045        struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4046        struct btrfs_trans_handle *trans;
4047
4048        trans = (struct btrfs_trans_handle *)current->journal_info;
4049        if (trans)
4050                return -EAGAIN;
4051
4052        if (force)
4053                goto commit;
4054
4055        /* See if there is enough pinned space to make this reservation */
4056        spin_lock(&space_info->lock);
4057        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4058                                   bytes) >= 0) {
4059                spin_unlock(&space_info->lock);
4060                goto commit;
4061        }
4062        spin_unlock(&space_info->lock);
4063
4064        /*
4065         * See if there is some space in the delayed insertion reservation for
4066         * this reservation.
4067         */
4068        if (space_info != delayed_rsv->space_info)
4069                return -ENOSPC;
4070
4071        spin_lock(&space_info->lock);
4072        spin_lock(&delayed_rsv->lock);
4073        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4074                                   bytes - delayed_rsv->size) >= 0) {
4075                spin_unlock(&delayed_rsv->lock);
4076                spin_unlock(&space_info->lock);
4077                return -ENOSPC;
4078        }
4079        spin_unlock(&delayed_rsv->lock);
4080        spin_unlock(&space_info->lock);
4081
4082commit:
4083        trans = btrfs_join_transaction(root);
4084        if (IS_ERR(trans))
4085                return -ENOSPC;
4086
4087        return btrfs_commit_transaction(trans, root);
4088}
4089
4090enum flush_state {
4091        FLUSH_DELAYED_ITEMS_NR  =       1,
4092        FLUSH_DELAYED_ITEMS     =       2,
4093        FLUSH_DELALLOC          =       3,
4094        FLUSH_DELALLOC_WAIT     =       4,
4095        ALLOC_CHUNK             =       5,
4096        COMMIT_TRANS            =       6,
4097};
4098
4099static int flush_space(struct btrfs_root *root,
4100                       struct btrfs_space_info *space_info, u64 num_bytes,
4101                       u64 orig_bytes, int state)
4102{
4103        struct btrfs_trans_handle *trans;
4104        int nr;
4105        int ret = 0;
4106
4107        switch (state) {
4108        case FLUSH_DELAYED_ITEMS_NR:
4109        case FLUSH_DELAYED_ITEMS:
4110                if (state == FLUSH_DELAYED_ITEMS_NR) {
4111                        u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4112
4113                        nr = (int)div64_u64(num_bytes, bytes);
4114                        if (!nr)
4115                                nr = 1;
4116                        nr *= 2;
4117                } else {
4118                        nr = -1;
4119                }
4120                trans = btrfs_join_transaction(root);
4121                if (IS_ERR(trans)) {
4122                        ret = PTR_ERR(trans);
4123                        break;
4124                }
4125                ret = btrfs_run_delayed_items_nr(trans, root, nr);
4126                btrfs_end_transaction(trans, root);
4127                break;
4128        case FLUSH_DELALLOC:
4129        case FLUSH_DELALLOC_WAIT:
4130                shrink_delalloc(root, num_bytes, orig_bytes,
4131                                state == FLUSH_DELALLOC_WAIT);
4132                break;
4133        case ALLOC_CHUNK:
4134                trans = btrfs_join_transaction(root);
4135                if (IS_ERR(trans)) {
4136                        ret = PTR_ERR(trans);
4137                        break;
4138                }
4139                ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4140                                     btrfs_get_alloc_profile(root, 0),
4141                                     CHUNK_ALLOC_NO_FORCE);
4142                btrfs_end_transaction(trans, root);
4143                if (ret == -ENOSPC)
4144                        ret = 0;
4145                break;
4146        case COMMIT_TRANS:
4147                ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4148                break;
4149        default:
4150                ret = -ENOSPC;
4151                break;
4152        }
4153
4154        return ret;
4155}
4156/**
4157 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4158 * @root - the root we're allocating for
4159 * @block_rsv - the block_rsv we're allocating for
4160 * @orig_bytes - the number of bytes we want
4161 * @flush - whether or not we can flush to make our reservation
4162 *
4163 * This will reserve orgi_bytes number of bytes from the space info associated
4164 * with the block_rsv.  If there is not enough space it will make an attempt to
4165 * flush out space to make room.  It will do this by flushing delalloc if
4166 * possible or committing the transaction.  If flush is 0 then no attempts to
4167 * regain reservations will be made and this will fail if there is not enough
4168 * space already.
4169 */
4170static int reserve_metadata_bytes(struct btrfs_root *root,
4171                                  struct btrfs_block_rsv *block_rsv,
4172                                  u64 orig_bytes,
4173                                  enum btrfs_reserve_flush_enum flush)
4174{
4175        struct btrfs_space_info *space_info = block_rsv->space_info;
4176        u64 used;
4177        u64 num_bytes = orig_bytes;
4178        int flush_state = FLUSH_DELAYED_ITEMS_NR;
4179        int ret = 0;
4180        bool flushing = false;
4181
4182again:
4183        ret = 0;
4184        spin_lock(&space_info->lock);
4185        /*
4186         * We only want to wait if somebody other than us is flushing and we
4187         * are actually allowed to flush all things.
4188         */
4189        while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4190               space_info->flush) {
4191                spin_unlock(&space_info->lock);
4192                /*
4193                 * If we have a trans handle we can't wait because the flusher
4194                 * may have to commit the transaction, which would mean we would
4195                 * deadlock since we are waiting for the flusher to finish, but
4196                 * hold the current transaction open.
4197                 */
4198                if (current->journal_info)
4199                        return -EAGAIN;
4200                ret = wait_event_killable(space_info->wait, !space_info->flush);
4201                /* Must have been killed, return */
4202                if (ret)
4203                        return -EINTR;
4204
4205                spin_lock(&space_info->lock);
4206        }
4207
4208        ret = -ENOSPC;
4209        used = space_info->bytes_used + space_info->bytes_reserved +
4210                space_info->bytes_pinned + space_info->bytes_readonly +
4211                space_info->bytes_may_use;
4212
4213        /*
4214         * The idea here is that we've not already over-reserved the block group
4215         * then we can go ahead and save our reservation first and then start
4216         * flushing if we need to.  Otherwise if we've already overcommitted
4217         * lets start flushing stuff first and then come back and try to make
4218         * our reservation.
4219         */
4220        if (used <= space_info->total_bytes) {
4221                if (used + orig_bytes <= space_info->total_bytes) {
4222                        space_info->bytes_may_use += orig_bytes;
4223                        trace_btrfs_space_reservation(root->fs_info,
4224                                "space_info", space_info->flags, orig_bytes, 1);
4225                        ret = 0;
4226                } else {
4227                        /*
4228                         * Ok set num_bytes to orig_bytes since we aren't
4229                         * overocmmitted, this way we only try and reclaim what
4230                         * we need.
4231                         */
4232                        num_bytes = orig_bytes;
4233                }
4234        } else {
4235                /*
4236                 * Ok we're over committed, set num_bytes to the overcommitted
4237                 * amount plus the amount of bytes that we need for this
4238                 * reservation.
4239                 */
4240                num_bytes = used - space_info->total_bytes +
4241                        (orig_bytes * 2);
4242        }
4243
4244        if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4245                space_info->bytes_may_use += orig_bytes;
4246                trace_btrfs_space_reservation(root->fs_info, "space_info",
4247                                              space_info->flags, orig_bytes,
4248                                              1);
4249                ret = 0;
4250        }
4251
4252        /*
4253         * Couldn't make our reservation, save our place so while we're trying
4254         * to reclaim space we can actually use it instead of somebody else
4255         * stealing it from us.
4256         *
4257         * We make the other tasks wait for the flush only when we can flush
4258         * all things.
4259         */
4260        if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4261                flushing = true;
4262                space_info->flush = 1;
4263        }
4264
4265        spin_unlock(&space_info->lock);
4266
4267        if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4268                goto out;
4269
4270        ret = flush_space(root, space_info, num_bytes, orig_bytes,
4271                          flush_state);
4272        flush_state++;
4273
4274        /*
4275         * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4276         * would happen. So skip delalloc flush.
4277         */
4278        if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4279            (flush_state == FLUSH_DELALLOC ||
4280             flush_state == FLUSH_DELALLOC_WAIT))
4281                flush_state = ALLOC_CHUNK;
4282
4283        if (!ret)
4284                goto again;
4285        else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4286                 flush_state < COMMIT_TRANS)
4287                goto again;
4288        else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4289                 flush_state <= COMMIT_TRANS)
4290                goto again;
4291
4292out:
4293        if (ret == -ENOSPC &&
4294            unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4295                struct btrfs_block_rsv *global_rsv =
4296                        &root->fs_info->global_block_rsv;
4297
4298                if (block_rsv != global_rsv &&
4299                    !block_rsv_use_bytes(global_rsv, orig_bytes))
4300                        ret = 0;
4301        }
4302        if (flushing) {
4303                spin_lock(&space_info->lock);
4304                space_info->flush = 0;
4305                wake_up_all(&space_info->wait);
4306                spin_unlock(&space_info->lock);
4307        }
4308        return ret;
4309}
4310
4311static struct btrfs_block_rsv *get_block_rsv(
4312                                        const struct btrfs_trans_handle *trans,
4313                                        const struct btrfs_root *root)
4314{
4315        struct btrfs_block_rsv *block_rsv = NULL;
4316
4317        if (root->ref_cows)
4318                block_rsv = trans->block_rsv;
4319
4320        if (root == root->fs_info->csum_root && trans->adding_csums)
4321                block_rsv = trans->block_rsv;
4322
4323        if (!block_rsv)
4324                block_rsv = root->block_rsv;
4325
4326        if (!block_rsv)
4327                block_rsv = &root->fs_info->empty_block_rsv;
4328
4329        return block_rsv;
4330}
4331
4332static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4333                               u64 num_bytes)
4334{
4335        int ret = -ENOSPC;
4336        spin_lock(&block_rsv->lock);
4337        if (block_rsv->reserved >= num_bytes) {
4338                block_rsv->reserved -= num_bytes;
4339                if (block_rsv->reserved < block_rsv->size)
4340                        block_rsv->full = 0;
4341                ret = 0;
4342        }
4343        spin_unlock(&block_rsv->lock);
4344        return ret;
4345}
4346
4347static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4348                                u64 num_bytes, int update_size)
4349{
4350        spin_lock(&block_rsv->lock);
4351        block_rsv->reserved += num_bytes;
4352        if (update_size)
4353                block_rsv->size += num_bytes;
4354        else if (block_rsv->reserved >= block_rsv->size)
4355                block_rsv->full = 1;
4356        spin_unlock(&block_rsv->lock);
4357}
4358
4359int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4360                             struct btrfs_block_rsv *dest, u64 num_bytes,
4361                             int min_factor)
4362{
4363        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4364        u64 min_bytes;
4365
4366        if (global_rsv->space_info != dest->space_info)
4367                return -ENOSPC;
4368
4369        spin_lock(&global_rsv->lock);
4370        min_bytes = div_factor(global_rsv->size, min_factor);
4371        if (global_rsv->reserved < min_bytes + num_bytes) {
4372                spin_unlock(&global_rsv->lock);
4373                return -ENOSPC;
4374        }
4375        global_rsv->reserved -= num_bytes;
4376        if (global_rsv->reserved < global_rsv->size)
4377                global_rsv->full = 0;
4378        spin_unlock(&global_rsv->lock);
4379
4380        block_rsv_add_bytes(dest, num_bytes, 1);
4381        return 0;
4382}
4383
4384static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4385                                    struct btrfs_block_rsv *block_rsv,
4386                                    struct btrfs_block_rsv *dest, u64 num_bytes)
4387{
4388        struct btrfs_space_info *space_info = block_rsv->space_info;
4389
4390        spin_lock(&block_rsv->lock);
4391        if (num_bytes == (u64)-1)
4392                num_bytes = block_rsv->size;
4393        block_rsv->size -= num_bytes;
4394        if (block_rsv->reserved >= block_rsv->size) {
4395                num_bytes = block_rsv->reserved - block_rsv->size;
4396                block_rsv->reserved = block_rsv->size;
4397                block_rsv->full = 1;
4398        } else {
4399                num_bytes = 0;
4400        }
4401        spin_unlock(&block_rsv->lock);
4402
4403        if (num_bytes > 0) {
4404                if (dest) {
4405                        spin_lock(&dest->lock);
4406                        if (!dest->full) {
4407                                u64 bytes_to_add;
4408
4409                                bytes_to_add = dest->size - dest->reserved;
4410                                bytes_to_add = min(num_bytes, bytes_to_add);
4411                                dest->reserved += bytes_to_add;
4412                                if (dest->reserved >= dest->size)
4413                                        dest->full = 1;
4414                                num_bytes -= bytes_to_add;
4415                        }
4416                        spin_unlock(&dest->lock);
4417                }
4418                if (num_bytes) {
4419                        spin_lock(&space_info->lock);
4420                        space_info->bytes_may_use -= num_bytes;
4421                        trace_btrfs_space_reservation(fs_info, "space_info",
4422                                        space_info->flags, num_bytes, 0);
4423                        space_info->reservation_progress++;
4424                        spin_unlock(&space_info->lock);
4425                }
4426        }
4427}
4428
4429static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4430                                   struct btrfs_block_rsv *dst, u64 num_bytes)
4431{
4432        int ret;
4433
4434        ret = block_rsv_use_bytes(src, num_bytes);
4435        if (ret)
4436                return ret;
4437
4438        block_rsv_add_bytes(dst, num_bytes, 1);
4439        return 0;
4440}
4441
4442void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4443{
4444        memset(rsv, 0, sizeof(*rsv));
4445        spin_lock_init(&rsv->lock);
4446        rsv->type = type;
4447}
4448
4449struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4450                                              unsigned short type)
4451{
4452        struct btrfs_block_rsv *block_rsv;
4453        struct btrfs_fs_info *fs_info = root->fs_info;
4454
4455        block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4456        if (!block_rsv)
4457                return NULL;
4458
4459        btrfs_init_block_rsv(block_rsv, type);
4460        block_rsv->space_info = __find_space_info(fs_info,
4461                                                  BTRFS_BLOCK_GROUP_METADATA);
4462        return block_rsv;
4463}
4464
4465void btrfs_free_block_rsv(struct btrfs_root *root,
4466                          struct btrfs_block_rsv *rsv)
4467{
4468        if (!rsv)
4469                return;
4470        btrfs_block_rsv_release(root, rsv, (u64)-1);
4471        kfree(rsv);
4472}
4473
4474int btrfs_block_rsv_add(struct btrfs_root *root,
4475                        struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4476                        enum btrfs_reserve_flush_enum flush)
4477{
4478        int ret;
4479
4480        if (num_bytes == 0)
4481                return 0;
4482
4483        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4484        if (!ret) {
4485                block_rsv_add_bytes(block_rsv, num_bytes, 1);
4486                return 0;
4487        }
4488
4489        return ret;
4490}
4491
4492int btrfs_block_rsv_check(struct btrfs_root *root,
4493                          struct btrfs_block_rsv *block_rsv, int min_factor)
4494{
4495        u64 num_bytes = 0;
4496        int ret = -ENOSPC;
4497
4498        if (!block_rsv)
4499                return 0;
4500
4501        spin_lock(&block_rsv->lock);
4502        num_bytes = div_factor(block_rsv->size, min_factor);
4503        if (block_rsv->reserved >= num_bytes)
4504                ret = 0;
4505        spin_unlock(&block_rsv->lock);
4506
4507        return ret;
4508}
4509
4510int btrfs_block_rsv_refill(struct btrfs_root *root,
4511                           struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4512                           enum btrfs_reserve_flush_enum flush)
4513{
4514        u64 num_bytes = 0;
4515        int ret = -ENOSPC;
4516
4517        if (!block_rsv)
4518                return 0;
4519
4520        spin_lock(&block_rsv->lock);
4521        num_bytes = min_reserved;
4522        if (block_rsv->reserved >= num_bytes)
4523                ret = 0;
4524        else
4525                num_bytes -= block_rsv->reserved;
4526        spin_unlock(&block_rsv->lock);
4527
4528        if (!ret)
4529                return 0;
4530
4531        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4532        if (!ret) {
4533                block_rsv_add_bytes(block_rsv, num_bytes, 0);
4534                return 0;
4535        }
4536
4537        return ret;
4538}
4539
4540int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4541                            struct btrfs_block_rsv *dst_rsv,
4542                            u64 num_bytes)
4543{
4544        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4545}
4546
4547void btrfs_block_rsv_release(struct btrfs_root *root,
4548                             struct btrfs_block_rsv *block_rsv,
4549                             u64 num_bytes)
4550{
4551        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4552        if (global_rsv->full || global_rsv == block_rsv ||
4553            block_rsv->space_info != global_rsv->space_info)
4554                global_rsv = NULL;
4555        block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4556                                num_bytes);
4557}
4558
4559/*
4560 * helper to calculate size of global block reservation.
4561 * the desired value is sum of space used by extent tree,
4562 * checksum tree and root tree
4563 */
4564static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4565{
4566        struct btrfs_space_info *sinfo;
4567        u64 num_bytes;
4568        u64 meta_used;
4569        u64 data_used;
4570        int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4571
4572        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4573        spin_lock(&sinfo->lock);
4574        data_used = sinfo->bytes_used;
4575        spin_unlock(&sinfo->lock);
4576
4577        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4578        spin_lock(&sinfo->lock);
4579        if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4580                data_used = 0;
4581        meta_used = sinfo->bytes_used;
4582        spin_unlock(&sinfo->lock);
4583
4584        num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4585                    csum_size * 2;
4586        num_bytes += div64_u64(data_used + meta_used, 50);
4587
4588        if (num_bytes * 3 > meta_used)
4589                num_bytes = div64_u64(meta_used, 3);
4590
4591        return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4592}
4593
4594static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4595{
4596        struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4597        struct btrfs_space_info *sinfo = block_rsv->space_info;
4598        u64 num_bytes;
4599
4600        num_bytes = calc_global_metadata_size(fs_info);
4601
4602        spin_lock(&sinfo->lock);
4603        spin_lock(&block_rsv->lock);
4604
4605        block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4606
4607        num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4608                    sinfo->bytes_reserved + sinfo->bytes_readonly +
4609                    sinfo->bytes_may_use;
4610
4611        if (sinfo->total_bytes > num_bytes) {
4612                num_bytes = sinfo->total_bytes - num_bytes;
4613                block_rsv->reserved += num_bytes;
4614                sinfo->bytes_may_use += num_bytes;
4615                trace_btrfs_space_reservation(fs_info, "space_info",
4616                                      sinfo->flags, num_bytes, 1);
4617        }
4618
4619        if (block_rsv->reserved >= block_rsv->size) {
4620                num_bytes = block_rsv->reserved - block_rsv->size;
4621                sinfo->bytes_may_use -= num_bytes;
4622                trace_btrfs_space_reservation(fs_info, "space_info",
4623                                      sinfo->flags, num_bytes, 0);
4624                sinfo->reservation_progress++;
4625                block_rsv->reserved = block_rsv->size;
4626                block_rsv->full = 1;
4627        }
4628
4629        spin_unlock(&block_rsv->lock);
4630        spin_unlock(&sinfo->lock);
4631}
4632
4633static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4634{
4635        struct btrfs_space_info *space_info;
4636
4637        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4638        fs_info->chunk_block_rsv.space_info = space_info;
4639
4640        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4641        fs_info->global_block_rsv.space_info = space_info;
4642        fs_info->delalloc_block_rsv.space_info = space_info;
4643        fs_info->trans_block_rsv.space_info = space_info;
4644        fs_info->empty_block_rsv.space_info = space_info;
4645        fs_info->delayed_block_rsv.space_info = space_info;
4646
4647        fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4648        fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4649        fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4650        fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4651        if (fs_info->quota_root)
4652                fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4653        fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4654
4655        update_global_block_rsv(fs_info);
4656}
4657
4658static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4659{
4660        block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4661                                (u64)-1);
4662        WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4663        WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4664        WARN_ON(fs_info->trans_block_rsv.size > 0);
4665        WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4666        WARN_ON(fs_info->chunk_block_rsv.size > 0);
4667        WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4668        WARN_ON(fs_info->delayed_block_rsv.size > 0);
4669        WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4670}
4671
4672void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4673                                  struct btrfs_root *root)
4674{
4675        if (!trans->block_rsv)
4676                return;
4677
4678        if (!trans->bytes_reserved)
4679                return;
4680
4681        trace_btrfs_space_reservation(root->fs_info, "transaction",
4682                                      trans->transid, trans->bytes_reserved, 0);
4683        btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4684        trans->bytes_reserved = 0;
4685}
4686
4687/* Can only return 0 or -ENOSPC */
4688int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4689                                  struct inode *inode)
4690{
4691        struct btrfs_root *root = BTRFS_I(inode)->root;
4692        struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4693        struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4694
4695        /*
4696         * We need to hold space in order to delete our orphan item once we've
4697         * added it, so this takes the reservation so we can release it later
4698         * when we are truly done with the orphan item.
4699         */
4700        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4701        trace_btrfs_space_reservation(root->fs_info, "orphan",
4702                                      btrfs_ino(inode), num_bytes, 1);
4703        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4704}
4705
4706void btrfs_orphan_release_metadata(struct inode *inode)
4707{
4708        struct btrfs_root *root = BTRFS_I(inode)->root;
4709        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4710        trace_btrfs_space_reservation(root->fs_info, "orphan",
4711                                      btrfs_ino(inode), num_bytes, 0);
4712        btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4713}
4714
4715/*
4716 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4717 * root: the root of the parent directory
4718 * rsv: block reservation
4719 * items: the number of items that we need do reservation
4720 * qgroup_reserved: used to return the reserved size in qgroup
4721 *
4722 * This function is used to reserve the space for snapshot/subvolume
4723 * creation and deletion. Those operations are different with the
4724 * common file/directory operations, they change two fs/file trees
4725 * and root tree, the number of items that the qgroup reserves is
4726 * different with the free space reservation. So we can not use
4727 * the space reseravtion mechanism in start_transaction().
4728 */
4729int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4730                                     struct btrfs_block_rsv *rsv,
4731                                     int items,
4732                                     u64 *qgroup_reserved)
4733{
4734        u64 num_bytes;
4735        int ret;
4736
4737        if (root->fs_info->quota_enabled) {
4738                /* One for parent inode, two for dir entries */
4739                num_bytes = 3 * root->leafsize;
4740                ret = btrfs_qgroup_reserve(root, num_bytes);
4741                if (ret)
4742                        return ret;
4743        } else {
4744                num_bytes = 0;
4745        }
4746
4747        *qgroup_reserved = num_bytes;
4748
4749        num_bytes = btrfs_calc_trans_metadata_size(root, items);
4750        rsv->space_info = __find_space_info(root->fs_info,
4751                                            BTRFS_BLOCK_GROUP_METADATA);
4752        ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4753                                  BTRFS_RESERVE_FLUSH_ALL);
4754        if (ret) {
4755                if (*qgroup_reserved)
4756                        btrfs_qgroup_free(root, *qgroup_reserved);
4757        }
4758
4759        return ret;
4760}
4761
4762void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4763                                      struct btrfs_block_rsv *rsv,
4764                                      u64 qgroup_reserved)
4765{
4766        btrfs_block_rsv_release(root, rsv, (u64)-1);
4767        if (qgroup_reserved)
4768                btrfs_qgroup_free(root, qgroup_reserved);
4769}
4770
4771/**
4772 * drop_outstanding_extent - drop an outstanding extent
4773 * @inode: the inode we're dropping the extent for
4774 *
4775 * This is called when we are freeing up an outstanding extent, either called
4776 * after an error or after an extent is written.  This will return the number of
4777 * reserved extents that need to be freed.  This must be called with
4778 * BTRFS_I(inode)->lock held.
4779 */
4780static unsigned drop_outstanding_extent(struct inode *inode)
4781{
4782        unsigned drop_inode_space = 0;
4783        unsigned dropped_extents = 0;
4784
4785        BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4786        BTRFS_I(inode)->outstanding_extents--;
4787
4788        if (BTRFS_I(inode)->outstanding_extents == 0 &&
4789            test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4790                               &BTRFS_I(inode)->runtime_flags))
4791                drop_inode_space = 1;
4792
4793        /*
4794         * If we have more or the same amount of outsanding extents than we have
4795         * reserved then we need to leave the reserved extents count alone.
4796         */
4797        if (BTRFS_I(inode)->outstanding_extents >=
4798            BTRFS_I(inode)->reserved_extents)
4799                return drop_inode_space;
4800
4801        dropped_extents = BTRFS_I(inode)->reserved_extents -
4802                BTRFS_I(inode)->outstanding_extents;
4803        BTRFS_I(inode)->reserved_extents -= dropped_extents;
4804        return dropped_extents + drop_inode_space;
4805}
4806
4807/**
4808 * calc_csum_metadata_size - return the amount of metada space that must be
4809 *      reserved/free'd for the given bytes.
4810 * @inode: the inode we're manipulating
4811 * @num_bytes: the number of bytes in question
4812 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4813 *
4814 * This adjusts the number of csum_bytes in the inode and then returns the
4815 * correct amount of metadata that must either be reserved or freed.  We
4816 * calculate how many checksums we can fit into one leaf and then divide the
4817 * number of bytes that will need to be checksumed by this value to figure out
4818 * how many checksums will be required.  If we are adding bytes then the number
4819 * may go up and we will return the number of additional bytes that must be
4820 * reserved.  If it is going down we will return the number of bytes that must
4821 * be freed.
4822 *
4823 * This must be called with BTRFS_I(inode)->lock held.
4824 */
4825static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4826                                   int reserve)
4827{
4828        struct btrfs_root *root = BTRFS_I(inode)->root;
4829        u64 csum_size;
4830        int num_csums_per_leaf;
4831        int num_csums;
4832        int old_csums;
4833
4834        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4835            BTRFS_I(inode)->csum_bytes == 0)
4836                return 0;
4837
4838        old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4839        if (reserve)
4840                BTRFS_I(inode)->csum_bytes += num_bytes;
4841        else
4842                BTRFS_I(inode)->csum_bytes -= num_bytes;
4843        csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4844        num_csums_per_leaf = (int)div64_u64(csum_size,
4845                                            sizeof(struct btrfs_csum_item) +
4846                                            sizeof(struct btrfs_disk_key));
4847        num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4848        num_csums = num_csums + num_csums_per_leaf - 1;
4849        num_csums = num_csums / num_csums_per_leaf;
4850
4851        old_csums = old_csums + num_csums_per_leaf - 1;
4852        old_csums = old_csums / num_csums_per_leaf;
4853
4854        /* No change, no need to reserve more */
4855        if (old_csums == num_csums)
4856                return 0;
4857
4858        if (reserve)
4859                return btrfs_calc_trans_metadata_size(root,
4860                                                      num_csums - old_csums);
4861
4862        return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4863}
4864
4865int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4866{
4867        struct btrfs_root *root = BTRFS_I(inode)->root;
4868        struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4869        u64 to_reserve = 0;
4870        u64 csum_bytes;
4871        unsigned nr_extents = 0;
4872        int extra_reserve = 0;
4873        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4874        int ret = 0;
4875        bool delalloc_lock = true;
4876        u64 to_free = 0;
4877        unsigned dropped;
4878
4879        /* If we are a free space inode we need to not flush since we will be in
4880         * the middle of a transaction commit.  We also don't need the delalloc
4881         * mutex since we won't race with anybody.  We need this mostly to make
4882         * lockdep shut its filthy mouth.
4883         */
4884        if (btrfs_is_free_space_inode(inode)) {
4885                flush = BTRFS_RESERVE_NO_FLUSH;
4886                delalloc_lock = false;
4887        }
4888
4889        if (flush != BTRFS_RESERVE_NO_FLUSH &&
4890            btrfs_transaction_in_commit(root->fs_info))
4891                schedule_timeout(1);
4892
4893        if (delalloc_lock)
4894                mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4895
4896        num_bytes = ALIGN(num_bytes, root->sectorsize);
4897
4898        spin_lock(&BTRFS_I(inode)->lock);
4899        BTRFS_I(inode)->outstanding_extents++;
4900
4901        if (BTRFS_I(inode)->outstanding_extents >
4902            BTRFS_I(inode)->reserved_extents)
4903                nr_extents = BTRFS_I(inode)->outstanding_extents -
4904                        BTRFS_I(inode)->reserved_extents;
4905
4906        /*
4907         * Add an item to reserve for updating the inode when we complete the
4908         * delalloc io.
4909         */
4910        if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4911                      &BTRFS_I(inode)->runtime_flags)) {
4912                nr_extents++;
4913                extra_reserve = 1;
4914        }
4915
4916        to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4917        to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4918        csum_bytes = BTRFS_I(inode)->csum_bytes;
4919        spin_unlock(&BTRFS_I(inode)->lock);
4920
4921        if (root->fs_info->quota_enabled) {
4922                ret = btrfs_qgroup_reserve(root, num_bytes +
4923                                           nr_extents * root->leafsize);
4924                if (ret)
4925                        goto out_fail;
4926        }
4927
4928        ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4929        if (unlikely(ret)) {
4930                if (root->fs_info->quota_enabled)
4931                        btrfs_qgroup_free(root, num_bytes +
4932                                                nr_extents * root->leafsize);
4933                goto out_fail;
4934        }
4935
4936        spin_lock(&BTRFS_I(inode)->lock);
4937        if (extra_reserve) {
4938                set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4939                        &BTRFS_I(inode)->runtime_flags);
4940                nr_extents--;
4941        }
4942        BTRFS_I(inode)->reserved_extents += nr_extents;
4943        spin_unlock(&BTRFS_I(inode)->lock);
4944
4945        if (delalloc_lock)
4946                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4947
4948        if (to_reserve)
4949                trace_btrfs_space_reservation(root->fs_info,"delalloc",
4950                                              btrfs_ino(inode), to_reserve, 1);
4951        block_rsv_add_bytes(block_rsv, to_reserve, 1);
4952
4953        return 0;
4954
4955out_fail:
4956        spin_lock(&BTRFS_I(inode)->lock);
4957        dropped = drop_outstanding_extent(inode);
4958        /*
4959         * If the inodes csum_bytes is the same as the original
4960         * csum_bytes then we know we haven't raced with any free()ers
4961         * so we can just reduce our inodes csum bytes and carry on.
4962         */
4963        if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
4964                calc_csum_metadata_size(inode, num_bytes, 0);
4965        } else {
4966                u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
4967                u64 bytes;
4968
4969                /*
4970                 * This is tricky, but first we need to figure out how much we
4971                 * free'd from any free-ers that occured during this
4972                 * reservation, so we reset ->csum_bytes to the csum_bytes
4973                 * before we dropped our lock, and then call the free for the
4974                 * number of bytes that were freed while we were trying our
4975                 * reservation.
4976                 */
4977                bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
4978                BTRFS_I(inode)->csum_bytes = csum_bytes;
4979                to_free = calc_csum_metadata_size(inode, bytes, 0);
4980
4981
4982                /*
4983                 * Now we need to see how much we would have freed had we not
4984                 * been making this reservation and our ->csum_bytes were not
4985                 * artificially inflated.
4986                 */
4987                BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
4988                bytes = csum_bytes - orig_csum_bytes;
4989                bytes = calc_csum_metadata_size(inode, bytes, 0);
4990
4991                /*
4992                 * Now reset ->csum_bytes to what it should be.  If bytes is
4993                 * more than to_free then we would have free'd more space had we
4994                 * not had an artificially high ->csum_bytes, so we need to free
4995                 * the remainder.  If bytes is the same or less then we don't
4996                 * need to do anything, the other free-ers did the correct
4997                 * thing.
4998                 */
4999                BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5000                if (bytes > to_free)
5001                        to_free = bytes - to_free;
5002                else
5003                        to_free = 0;
5004        }
5005        spin_unlock(&BTRFS_I(inode)->lock);
5006        if (dropped)
5007                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5008
5009        if (to_free) {
5010                btrfs_block_rsv_release(root, block_rsv, to_free);
5011                trace_btrfs_space_reservation(root->fs_info, "delalloc",
5012                                              btrfs_ino(inode), to_free, 0);
5013        }
5014        if (delalloc_lock)
5015                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5016        return ret;
5017}
5018
5019/**
5020 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5021 * @inode: the inode to release the reservation for
5022 * @num_bytes: the number of bytes we're releasing
5023 *
5024 * This will release the metadata reservation for an inode.  This can be called
5025 * once we complete IO for a given set of bytes to release their metadata
5026 * reservations.
5027 */
5028void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5029{
5030        struct btrfs_root *root = BTRFS_I(inode)->root;
5031        u64 to_free = 0;
5032        unsigned dropped;
5033
5034        num_bytes = ALIGN(num_bytes, root->sectorsize);
5035        spin_lock(&BTRFS_I(inode)->lock);
5036        dropped = drop_outstanding_extent(inode);
5037
5038        if (num_bytes)
5039                to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5040        spin_unlock(&BTRFS_I(inode)->lock);
5041        if (dropped > 0)
5042                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5043
5044        trace_btrfs_space_reservation(root->fs_info, "delalloc",
5045                                      btrfs_ino(inode), to_free, 0);
5046        if (root->fs_info->quota_enabled) {
5047                btrfs_qgroup_free(root, num_bytes +
5048                                        dropped * root->leafsize);
5049        }
5050
5051        btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5052                                to_free);
5053}
5054
5055/**
5056 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5057 * @inode: inode we're writing to
5058 * @num_bytes: the number of bytes we want to allocate
5059 *
5060 * This will do the following things
5061 *
5062 * o reserve space in the data space info for num_bytes
5063 * o reserve space in the metadata space info based on number of outstanding
5064 *   extents and how much csums will be needed
5065 * o add to the inodes ->delalloc_bytes
5066 * o add it to the fs_info's delalloc inodes list.
5067 *
5068 * This will return 0 for success and -ENOSPC if there is no space left.
5069 */
5070int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5071{
5072        int ret;
5073
5074        ret = btrfs_check_data_free_space(inode, num_bytes);
5075        if (ret)
5076                return ret;
5077
5078        ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5079        if (ret) {
5080                btrfs_free_reserved_data_space(inode, num_bytes);
5081                return ret;
5082        }
5083
5084        return 0;
5085}
5086
5087/**
5088 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5089 * @inode: inode we're releasing space for
5090 * @num_bytes: the number of bytes we want to free up
5091 *
5092 * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5093 * called in the case that we don't need the metadata AND data reservations
5094 * anymore.  So if there is an error or we insert an inline extent.
5095 *
5096 * This function will release the metadata space that was not used and will
5097 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5098 * list if there are no delalloc bytes left.
5099 */
5100void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5101{
5102        btrfs_delalloc_release_metadata(inode, num_bytes);
5103        btrfs_free_reserved_data_space(inode, num_bytes);
5104}
5105
5106static int update_block_group(struct btrfs_root *root,
5107                              u64 bytenr, u64 num_bytes, int alloc)
5108{
5109        struct btrfs_block_group_cache *cache = NULL;
5110        struct btrfs_fs_info *info = root->fs_info;
5111        u64 total = num_bytes;
5112        u64 old_val;
5113        u64 byte_in_group;
5114        int factor;
5115
5116        /* block accounting for super block */
5117        spin_lock(&info->delalloc_root_lock);
5118        old_val = btrfs_super_bytes_used(info->super_copy);
5119        if (alloc)
5120                old_val += num_bytes;
5121        else
5122                old_val -= num_bytes;
5123        btrfs_set_super_bytes_used(info->super_copy, old_val);
5124        spin_unlock(&info->delalloc_root_lock);
5125
5126        while (total) {
5127                cache = btrfs_lookup_block_group(info, bytenr);
5128                if (!cache)
5129                        return -ENOENT;
5130                if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5131                                    BTRFS_BLOCK_GROUP_RAID1 |
5132                                    BTRFS_BLOCK_GROUP_RAID10))
5133                        factor = 2;
5134                else
5135                        factor = 1;
5136                /*
5137                 * If this block group has free space cache written out, we
5138                 * need to make sure to load it if we are removing space.  This
5139                 * is because we need the unpinning stage to actually add the
5140                 * space back to the block group, otherwise we will leak space.
5141                 */
5142                if (!alloc && cache->cached == BTRFS_CACHE_NO)
5143                        cache_block_group(cache, 1);
5144
5145                byte_in_group = bytenr - cache->key.objectid;
5146                WARN_ON(byte_in_group > cache->key.offset);
5147
5148                spin_lock(&cache->space_info->lock);
5149                spin_lock(&cache->lock);
5150
5151                if (btrfs_test_opt(root, SPACE_CACHE) &&
5152                    cache->disk_cache_state < BTRFS_DC_CLEAR)
5153                        cache->disk_cache_state = BTRFS_DC_CLEAR;
5154
5155                cache->dirty = 1;
5156                old_val = btrfs_block_group_used(&cache->item);
5157                num_bytes = min(total, cache->key.offset - byte_in_group);
5158                if (alloc) {
5159                        old_val += num_bytes;
5160                        btrfs_set_block_group_used(&cache->item, old_val);
5161                        cache->reserved -= num_bytes;
5162                        cache->space_info->bytes_reserved -= num_bytes;
5163                        cache->space_info->bytes_used += num_bytes;
5164                        cache->space_info->disk_used += num_bytes * factor;
5165                        spin_unlock(&cache->lock);
5166                        spin_unlock(&cache->space_info->lock);
5167                } else {
5168                        old_val -= num_bytes;
5169                        btrfs_set_block_group_used(&cache->item, old_val);
5170                        cache->pinned += num_bytes;
5171                        cache->space_info->bytes_pinned += num_bytes;
5172                        cache->space_info->bytes_used -= num_bytes;
5173                        cache->space_info->disk_used -= num_bytes * factor;
5174                        spin_unlock(&cache->lock);
5175                        spin_unlock(&cache->space_info->lock);
5176
5177                        set_extent_dirty(info->pinned_extents,
5178                                         bytenr, bytenr + num_bytes - 1,
5179                                         GFP_NOFS | __GFP_NOFAIL);
5180                }
5181                btrfs_put_block_group(cache);
5182                total -= num_bytes;
5183                bytenr += num_bytes;
5184        }
5185        return 0;
5186}
5187
5188static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5189{
5190        struct btrfs_block_group_cache *cache;
5191        u64 bytenr;
5192
5193        spin_lock(&root->fs_info->block_group_cache_lock);
5194        bytenr = root->fs_info->first_logical_byte;
5195        spin_unlock(&root->fs_info->block_group_cache_lock);
5196
5197        if (bytenr < (u64)-1)
5198                return bytenr;
5199
5200        cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5201        if (!cache)
5202                return 0;
5203
5204        bytenr = cache->key.objectid;
5205        btrfs_put_block_group(cache);
5206
5207        return bytenr;
5208}
5209
5210static int pin_down_extent(struct btrfs_root *root,
5211                           struct btrfs_block_group_cache *cache,
5212                           u64 bytenr, u64 num_bytes, int reserved)
5213{
5214        spin_lock(&cache->space_info->lock);
5215        spin_lock(&cache->lock);
5216        cache->pinned += num_bytes;
5217        cache->space_info->bytes_pinned += num_bytes;
5218        if (reserved) {
5219                cache->reserved -= num_bytes;
5220                cache->space_info->bytes_reserved -= num_bytes;
5221        }
5222        spin_unlock(&cache->lock);
5223        spin_unlock(&cache->space_info->lock);
5224
5225        set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5226                         bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5227        return 0;
5228}
5229
5230/*
5231 * this function must be called within transaction
5232 */
5233int btrfs_pin_extent(struct btrfs_root *root,
5234                     u64 bytenr, u64 num_bytes, int reserved)
5235{
5236        struct btrfs_block_group_cache *cache;
5237
5238        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5239        BUG_ON(!cache); /* Logic error */
5240
5241        pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5242
5243        btrfs_put_block_group(cache);
5244        return 0;
5245}
5246
5247/*
5248 * this function must be called within transaction
5249 */
5250int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5251                                    u64 bytenr, u64 num_bytes)
5252{
5253        struct btrfs_block_group_cache *cache;
5254        int ret;
5255
5256        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5257        if (!cache)
5258                return -EINVAL;
5259
5260        /*
5261         * pull in the free space cache (if any) so that our pin
5262         * removes the free space from the cache.  We have load_only set
5263         * to one because the slow code to read in the free extents does check
5264         * the pinned extents.
5265         */
5266        cache_block_group(cache, 1);
5267
5268        pin_down_extent(root, cache, bytenr, num_bytes, 0);
5269
5270        /* remove us from the free space cache (if we're there at all) */
5271        ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5272        btrfs_put_block_group(cache);
5273        return ret;
5274}
5275
5276static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5277{
5278        int ret;
5279        struct btrfs_block_group_cache *block_group;
5280        struct btrfs_caching_control *caching_ctl;
5281
5282        block_group = btrfs_lookup_block_group(root->fs_info, start);
5283        if (!block_group)
5284                return -EINVAL;
5285
5286        cache_block_group(block_group, 0);
5287        caching_ctl = get_caching_control(block_group);
5288
5289        if (!caching_ctl) {
5290                /* Logic error */
5291                BUG_ON(!block_group_cache_done(block_group));
5292                ret = btrfs_remove_free_space(block_group, start, num_bytes);
5293        } else {
5294                mutex_lock(&caching_ctl->mutex);
5295
5296                if (start >= caching_ctl->progress) {
5297                        ret = add_excluded_extent(root, start, num_bytes);
5298                } else if (start + num_bytes <= caching_ctl->progress) {
5299                        ret = btrfs_remove_free_space(block_group,
5300                                                      start, num_bytes);
5301                } else {
5302                        num_bytes = caching_ctl->progress - start;
5303                        ret = btrfs_remove_free_space(block_group,
5304                                                      start, num_bytes);
5305                        if (ret)
5306                                goto out_lock;
5307
5308                        num_bytes = (start + num_bytes) -
5309                                caching_ctl->progress;
5310                        start = caching_ctl->progress;
5311                        ret = add_excluded_extent(root, start, num_bytes);
5312                }
5313out_lock:
5314                mutex_unlock(&caching_ctl->mutex);
5315                put_caching_control(caching_ctl);
5316        }
5317        btrfs_put_block_group(block_group);
5318        return ret;
5319}
5320
5321int btrfs_exclude_logged_extents(struct btrfs_root *log,
5322                                 struct extent_buffer *eb)
5323{
5324        struct btrfs_file_extent_item *item;
5325        struct btrfs_key key;
5326        int found_type;
5327        int i;
5328
5329        if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5330                return 0;
5331
5332        for (i = 0; i < btrfs_header_nritems(eb); i++) {
5333                btrfs_item_key_to_cpu(eb, &key, i);
5334                if (key.type != BTRFS_EXTENT_DATA_KEY)
5335                        continue;
5336                item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5337                found_type = btrfs_file_extent_type(eb, item);
5338                if (found_type == BTRFS_FILE_EXTENT_INLINE)
5339                        continue;
5340                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5341                        continue;
5342                key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5343                key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5344                __exclude_logged_extent(log, key.objectid, key.offset);
5345        }
5346
5347        return 0;
5348}
5349
5350/**
5351 * btrfs_update_reserved_bytes - update the block_group and space info counters
5352 * @cache:      The cache we are manipulating
5353 * @num_bytes:  The number of bytes in question
5354 * @reserve:    One of the reservation enums
5355 *
5356 * This is called by the allocator when it reserves space, or by somebody who is
5357 * freeing space that was never actually used on disk.  For example if you
5358 * reserve some space for a new leaf in transaction A and before transaction A
5359 * commits you free that leaf, you call this with reserve set to 0 in order to
5360 * clear the reservation.
5361 *
5362 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5363 * ENOSPC accounting.  For data we handle the reservation through clearing the
5364 * delalloc bits in the io_tree.  We have to do this since we could end up
5365 * allocating less disk space for the amount of data we have reserved in the
5366 * case of compression.
5367 *
5368 * If this is a reservation and the block group has become read only we cannot
5369 * make the reservation and return -EAGAIN, otherwise this function always
5370 * succeeds.
5371 */
5372static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5373                                       u64 num_bytes, int reserve)
5374{
5375        struct btrfs_space_info *space_info = cache->space_info;
5376        int ret = 0;
5377
5378        spin_lock(&space_info->lock);
5379        spin_lock(&cache->lock);
5380        if (reserve != RESERVE_FREE) {
5381                if (cache->ro) {
5382                        ret = -EAGAIN;
5383                } else {
5384                        cache->reserved += num_bytes;
5385                        space_info->bytes_reserved += num_bytes;
5386                        if (reserve == RESERVE_ALLOC) {
5387                                trace_btrfs_space_reservation(cache->fs_info,
5388                                                "space_info", space_info->flags,
5389                                                num_bytes, 0);
5390                                space_info->bytes_may_use -= num_bytes;
5391                        }
5392                }
5393        } else {
5394                if (cache->ro)
5395                        space_info->bytes_readonly += num_bytes;
5396                cache->reserved -= num_bytes;
5397                space_info->bytes_reserved -= num_bytes;
5398                space_info->reservation_progress++;
5399        }
5400        spin_unlock(&cache->lock);
5401        spin_unlock(&space_info->lock);
5402        return ret;
5403}
5404
5405void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5406                                struct btrfs_root *root)
5407{
5408        struct btrfs_fs_info *fs_info = root->fs_info;
5409        struct btrfs_caching_control *next;
5410        struct btrfs_caching_control *caching_ctl;
5411        struct btrfs_block_group_cache *cache;
5412        struct btrfs_space_info *space_info;
5413
5414        down_write(&fs_info->extent_commit_sem);
5415
5416        list_for_each_entry_safe(caching_ctl, next,
5417                                 &fs_info->caching_block_groups, list) {
5418                cache = caching_ctl->block_group;
5419                if (block_group_cache_done(cache)) {
5420                        cache->last_byte_to_unpin = (u64)-1;
5421                        list_del_init(&caching_ctl->list);
5422                        put_caching_control(caching_ctl);
5423                } else {
5424                        cache->last_byte_to_unpin = caching_ctl->progress;
5425                }
5426        }
5427
5428        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5429                fs_info->pinned_extents = &fs_info->freed_extents[1];
5430        else
5431                fs_info->pinned_extents = &fs_info->freed_extents[0];
5432
5433        up_write(&fs_info->extent_commit_sem);
5434
5435        list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5436                percpu_counter_set(&space_info->total_bytes_pinned, 0);
5437
5438        update_global_block_rsv(fs_info);
5439}
5440
5441static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5442{
5443        struct btrfs_fs_info *fs_info = root->fs_info;
5444        struct btrfs_block_group_cache *cache = NULL;
5445        struct btrfs_space_info *space_info;
5446        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5447        u64 len;
5448        bool readonly;
5449
5450        while (start <= end) {
5451                readonly = false;
5452                if (!cache ||
5453                    start >= cache->key.objectid + cache->key.offset) {
5454                        if (cache)
5455                                btrfs_put_block_group(cache);
5456                        cache = btrfs_lookup_block_group(fs_info, start);
5457                        BUG_ON(!cache); /* Logic error */
5458                }
5459
5460                len = cache->key.objectid + cache->key.offset - start;
5461                len = min(len, end + 1 - start);
5462
5463                if (start < cache->last_byte_to_unpin) {
5464                        len = min(len, cache->last_byte_to_unpin - start);
5465                        btrfs_add_free_space(cache, start, len);
5466                }
5467
5468                start += len;
5469                space_info = cache->space_info;
5470
5471                spin_lock(&space_info->lock);
5472                spin_lock(&cache->lock);
5473                cache->pinned -= len;
5474                space_info->bytes_pinned -= len;
5475                if (cache->ro) {
5476                        space_info->bytes_readonly += len;
5477                        readonly = true;
5478                }
5479                spin_unlock(&cache->lock);
5480                if (!readonly && global_rsv->space_info == space_info) {
5481                        spin_lock(&global_rsv->lock);
5482                        if (!global_rsv->full) {
5483                                len = min(len, global_rsv->size -
5484                                          global_rsv->reserved);
5485                                global_rsv->reserved += len;
5486                                space_info->bytes_may_use += len;
5487                                if (global_rsv->reserved >= global_rsv->size)
5488                                        global_rsv->full = 1;
5489                        }
5490                        spin_unlock(&global_rsv->lock);
5491                }
5492                spin_unlock(&space_info->lock);
5493        }
5494
5495        if (cache)
5496                btrfs_put_block_group(cache);
5497        return 0;
5498}
5499
5500int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5501                               struct btrfs_root *root)
5502{
5503        struct btrfs_fs_info *fs_info = root->fs_info;
5504        struct extent_io_tree *unpin;
5505        u64 start;
5506        u64 end;
5507        int ret;
5508
5509        if (trans->aborted)
5510                return 0;
5511
5512        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5513                unpin = &fs_info->freed_extents[1];
5514        else
5515                unpin = &fs_info->freed_extents[0];
5516
5517        while (1) {
5518                ret = find_first_extent_bit(unpin, 0, &start, &end,
5519                                            EXTENT_DIRTY, NULL);
5520                if (ret)
5521                        break;
5522
5523                if (btrfs_test_opt(root, DISCARD))
5524                        ret = btrfs_discard_extent(root, start,
5525                                                   end + 1 - start, NULL);
5526
5527                clear_extent_dirty(unpin, start, end, GFP_NOFS);
5528                unpin_extent_range(root, start, end);
5529                cond_resched();
5530        }
5531
5532        return 0;
5533}
5534
5535static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5536                             u64 owner, u64 root_objectid)
5537{
5538        struct btrfs_space_info *space_info;
5539        u64 flags;
5540
5541        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5542                if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5543                        flags = BTRFS_BLOCK_GROUP_SYSTEM;
5544                else
5545                        flags = BTRFS_BLOCK_GROUP_METADATA;
5546        } else {
5547                flags = BTRFS_BLOCK_GROUP_DATA;
5548        }
5549
5550        space_info = __find_space_info(fs_info, flags);
5551        BUG_ON(!space_info); /* Logic bug */
5552        percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5553}
5554
5555
5556static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5557                                struct btrfs_root *root,
5558                                u64 bytenr, u64 num_bytes, u64 parent,
5559                                u64 root_objectid, u64 owner_objectid,
5560                                u64 owner_offset, int refs_to_drop,
5561                                struct btrfs_delayed_extent_op *extent_op)
5562{
5563        struct btrfs_key key;
5564        struct btrfs_path *path;
5565        struct btrfs_fs_info *info = root->fs_info;
5566        struct btrfs_root *extent_root = info->extent_root;
5567        struct extent_buffer *leaf;
5568        struct btrfs_extent_item *ei;
5569        struct btrfs_extent_inline_ref *iref;
5570        int ret;
5571        int is_data;
5572        int extent_slot = 0;
5573        int found_extent = 0;
5574        int num_to_del = 1;
5575        u32 item_size;
5576        u64 refs;
5577        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5578                                                 SKINNY_METADATA);
5579
5580        path = btrfs_alloc_path();
5581        if (!path)
5582                return -ENOMEM;
5583
5584        path->reada = 1;
5585        path->leave_spinning = 1;
5586
5587        is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5588        BUG_ON(!is_data && refs_to_drop != 1);
5589
5590        if (is_data)
5591                skinny_metadata = 0;
5592
5593        ret = lookup_extent_backref(trans, extent_root, path, &iref,
5594                                    bytenr, num_bytes, parent,
5595                                    root_objectid, owner_objectid,
5596                                    owner_offset);
5597        if (ret == 0) {
5598                extent_slot = path->slots[0];
5599                while (extent_slot >= 0) {
5600                        btrfs_item_key_to_cpu(path->nodes[0], &key,
5601                                              extent_slot);
5602                        if (key.objectid != bytenr)
5603                                break;
5604                        if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5605                            key.offset == num_bytes) {
5606                                found_extent = 1;
5607                                break;
5608                        }
5609                        if (key.type == BTRFS_METADATA_ITEM_KEY &&
5610                            key.offset == owner_objectid) {
5611                                found_extent = 1;
5612                                break;
5613                        }
5614                        if (path->slots[0] - extent_slot > 5)
5615                                break;
5616                        extent_slot--;
5617                }
5618#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5619                item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5620                if (found_extent && item_size < sizeof(*ei))
5621                        found_extent = 0;
5622#endif
5623                if (!found_extent) {
5624                        BUG_ON(iref);
5625                        ret = remove_extent_backref(trans, extent_root, path,
5626                                                    NULL, refs_to_drop,
5627                                                    is_data);
5628                        if (ret) {
5629                                btrfs_abort_transaction(trans, extent_root, ret);
5630                                goto out;
5631                        }
5632                        btrfs_release_path(path);
5633                        path->leave_spinning = 1;
5634
5635                        key.objectid = bytenr;
5636                        key.type = BTRFS_EXTENT_ITEM_KEY;
5637                        key.offset = num_bytes;
5638
5639                        if (!is_data && skinny_metadata) {
5640                                key.type = BTRFS_METADATA_ITEM_KEY;
5641                                key.offset = owner_objectid;
5642                        }
5643
5644                        ret = btrfs_search_slot(trans, extent_root,
5645                                                &key, path, -1, 1);
5646                        if (ret > 0 && skinny_metadata && path->slots[0]) {
5647                                /*
5648                                 * Couldn't find our skinny metadata item,
5649                                 * see if we have ye olde extent item.
5650                                 */
5651                                path->slots[0]--;
5652                                btrfs_item_key_to_cpu(path->nodes[0], &key,
5653                                                      path->slots[0]);
5654                                if (key.objectid == bytenr &&
5655                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
5656                                    key.offset == num_bytes)
5657                                        ret = 0;
5658                        }
5659
5660                        if (ret > 0 && skinny_metadata) {
5661                                skinny_metadata = false;
5662                                key.type = BTRFS_EXTENT_ITEM_KEY;
5663                                key.offset = num_bytes;
5664                                btrfs_release_path(path);
5665                                ret = btrfs_search_slot(trans, extent_root,
5666                                                        &key, path, -1, 1);
5667                        }
5668
5669                        if (ret) {
5670                                btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5671                                        ret, (unsigned long long)bytenr);
5672                                if (ret > 0)
5673                                        btrfs_print_leaf(extent_root,
5674                                                         path->nodes[0]);
5675                        }
5676                        if (ret < 0) {
5677                                btrfs_abort_transaction(trans, extent_root, ret);
5678                                goto out;
5679                        }
5680                        extent_slot = path->slots[0];
5681                }
5682        } else if (ret == -ENOENT) {
5683                btrfs_print_leaf(extent_root, path->nodes[0]);
5684                WARN_ON(1);
5685                btrfs_err(info,
5686                        "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5687                        (unsigned long long)bytenr,
5688                        (unsigned long long)parent,
5689                        (unsigned long long)root_objectid,
5690                        (unsigned long long)owner_objectid,
5691                        (unsigned long long)owner_offset);
5692        } else {
5693                btrfs_abort_transaction(trans, extent_root, ret);
5694                goto out;
5695        }
5696
5697        leaf = path->nodes[0];
5698        item_size = btrfs_item_size_nr(leaf, extent_slot);
5699#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5700        if (item_size < sizeof(*ei)) {
5701                BUG_ON(found_extent || extent_slot != path->slots[0]);
5702                ret = convert_extent_item_v0(trans, extent_root, path,
5703                                             owner_objectid, 0);
5704                if (ret < 0) {
5705                        btrfs_abort_transaction(trans, extent_root, ret);
5706                        goto out;
5707                }
5708
5709                btrfs_release_path(path);
5710                path->leave_spinning = 1;
5711
5712                key.objectid = bytenr;
5713                key.type = BTRFS_EXTENT_ITEM_KEY;
5714                key.offset = num_bytes;
5715
5716                ret = btrfs_search_slot(trans, extent_root, &key, path,
5717                                        -1, 1);
5718                if (ret) {
5719                        btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5720                                ret, (unsigned long long)bytenr);
5721                        btrfs_print_leaf(extent_root, path->nodes[0]);
5722                }
5723                if (ret < 0) {
5724                        btrfs_abort_transaction(trans, extent_root, ret);
5725                        goto out;
5726                }
5727
5728                extent_slot = path->slots[0];
5729                leaf = path->nodes[0];
5730                item_size = btrfs_item_size_nr(leaf, extent_slot);
5731        }
5732#endif
5733        BUG_ON(item_size < sizeof(*ei));
5734        ei = btrfs_item_ptr(leaf, extent_slot,
5735                            struct btrfs_extent_item);
5736        if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5737            key.type == BTRFS_EXTENT_ITEM_KEY) {
5738                struct btrfs_tree_block_info *bi;
5739                BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5740                bi = (struct btrfs_tree_block_info *)(ei + 1);
5741                WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5742        }
5743
5744        refs = btrfs_extent_refs(leaf, ei);
5745        if (refs < refs_to_drop) {
5746                btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5747                          "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5748                ret = -EINVAL;
5749                btrfs_abort_transaction(trans, extent_root, ret);
5750                goto out;
5751        }
5752        refs -= refs_to_drop;
5753
5754        if (refs > 0) {
5755                if (extent_op)
5756                        __run_delayed_extent_op(extent_op, leaf, ei);
5757                /*
5758                 * In the case of inline back ref, reference count will
5759                 * be updated by remove_extent_backref
5760                 */
5761                if (iref) {
5762                        BUG_ON(!found_extent);
5763                } else {
5764                        btrfs_set_extent_refs(leaf, ei, refs);
5765                        btrfs_mark_buffer_dirty(leaf);
5766                }
5767                if (found_extent) {
5768                        ret = remove_extent_backref(trans, extent_root, path,
5769                                                    iref, refs_to_drop,
5770                                                    is_data);
5771                        if (ret) {
5772                                btrfs_abort_transaction(trans, extent_root, ret);
5773                                goto out;
5774                        }
5775                }
5776                add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5777                                 root_objectid);
5778        } else {
5779                if (found_extent) {
5780                        BUG_ON(is_data && refs_to_drop !=
5781                               extent_data_ref_count(root, path, iref));
5782                        if (iref) {
5783                                BUG_ON(path->slots[0] != extent_slot);
5784                        } else {
5785                                BUG_ON(path->slots[0] != extent_slot + 1);
5786                                path->slots[0] = extent_slot;
5787                                num_to_del = 2;
5788                        }
5789                }
5790
5791                ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5792                                      num_to_del);
5793                if (ret) {
5794                        btrfs_abort_transaction(trans, extent_root, ret);
5795                        goto out;
5796                }
5797                btrfs_release_path(path);
5798
5799                if (is_data) {
5800                        ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5801                        if (ret) {
5802                                btrfs_abort_transaction(trans, extent_root, ret);
5803                                goto out;
5804                        }
5805                }
5806
5807                ret = update_block_group(root, bytenr, num_bytes, 0);
5808                if (ret) {
5809                        btrfs_abort_transaction(trans, extent_root, ret);
5810                        goto out;
5811                }
5812        }
5813out:
5814        btrfs_free_path(path);
5815        return ret;
5816}
5817
5818/*
5819 * when we free an block, it is possible (and likely) that we free the last
5820 * delayed ref for that extent as well.  This searches the delayed ref tree for
5821 * a given extent, and if there are no other delayed refs to be processed, it
5822 * removes it from the tree.
5823 */
5824static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5825                                      struct btrfs_root *root, u64 bytenr)
5826{
5827        struct btrfs_delayed_ref_head *head;
5828        struct btrfs_delayed_ref_root *delayed_refs;
5829        struct btrfs_delayed_ref_node *ref;
5830        struct rb_node *node;
5831        int ret = 0;
5832
5833        delayed_refs = &trans->transaction->delayed_refs;
5834        spin_lock(&delayed_refs->lock);
5835        head = btrfs_find_delayed_ref_head(trans, bytenr);
5836        if (!head)
5837                goto out;
5838
5839        node = rb_prev(&head->node.rb_node);
5840        if (!node)
5841                goto out;
5842
5843        ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5844
5845        /* there are still entries for this ref, we can't drop it */
5846        if (ref->bytenr == bytenr)
5847                goto out;
5848
5849        if (head->extent_op) {
5850                if (!head->must_insert_reserved)
5851                        goto out;
5852                btrfs_free_delayed_extent_op(head->extent_op);
5853                head->extent_op = NULL;
5854        }
5855
5856        /*
5857         * waiting for the lock here would deadlock.  If someone else has it
5858         * locked they are already in the process of dropping it anyway
5859         */
5860        if (!mutex_trylock(&head->mutex))
5861                goto out;
5862
5863        /*
5864         * at this point we have a head with no other entries.  Go
5865         * ahead and process it.
5866         */
5867        head->node.in_tree = 0;
5868        rb_erase(&head->node.rb_node, &delayed_refs->root);
5869
5870        delayed_refs->num_entries--;
5871
5872        /*
5873         * we don't take a ref on the node because we're removing it from the
5874         * tree, so we just steal the ref the tree was holding.
5875         */
5876        delayed_refs->num_heads--;
5877        if (list_empty(&head->cluster))
5878                delayed_refs->num_heads_ready--;
5879
5880        list_del_init(&head->cluster);
5881        spin_unlock(&delayed_refs->lock);
5882
5883        BUG_ON(head->extent_op);
5884        if (head->must_insert_reserved)
5885                ret = 1;
5886
5887        mutex_unlock(&head->mutex);
5888        btrfs_put_delayed_ref(&head->node);
5889        return ret;
5890out:
5891        spin_unlock(&delayed_refs->lock);
5892        return 0;
5893}
5894
5895void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5896                           struct btrfs_root *root,
5897                           struct extent_buffer *buf,
5898                           u64 parent, int last_ref)
5899{
5900        struct btrfs_block_group_cache *cache = NULL;
5901        int pin = 1;
5902        int ret;
5903
5904        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5905                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5906                                        buf->start, buf->len,
5907                                        parent, root->root_key.objectid,
5908                                        btrfs_header_level(buf),
5909                                        BTRFS_DROP_DELAYED_REF, NULL, 0);
5910                BUG_ON(ret); /* -ENOMEM */
5911        }
5912
5913        if (!last_ref)
5914                return;
5915
5916        cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5917
5918        if (btrfs_header_generation(buf) == trans->transid) {
5919                if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5920                        ret = check_ref_cleanup(trans, root, buf->start);
5921                        if (!ret)
5922                                goto out;
5923                }
5924
5925                if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5926                        pin_down_extent(root, cache, buf->start, buf->len, 1);
5927                        goto out;
5928                }
5929
5930                WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5931
5932                btrfs_add_free_space(cache, buf->start, buf->len);
5933                btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5934                pin = 0;
5935        }
5936out:
5937        if (pin)
5938                add_pinned_bytes(root->fs_info, buf->len,
5939                                 btrfs_header_level(buf),
5940                                 root->root_key.objectid);
5941
5942        /*
5943         * Deleting the buffer, clear the corrupt flag since it doesn't matter
5944         * anymore.
5945         */
5946        clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5947        btrfs_put_block_group(cache);
5948}
5949
5950/* Can return -ENOMEM */
5951int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5952                      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5953                      u64 owner, u64 offset, int for_cow)
5954{
5955        int ret;
5956        struct btrfs_fs_info *fs_info = root->fs_info;
5957
5958        add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
5959
5960        /*
5961         * tree log blocks never actually go into the extent allocation
5962         * tree, just update pinning info and exit early.
5963         */
5964        if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5965                WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5966                /* unlocks the pinned mutex */
5967                btrfs_pin_extent(root, bytenr, num_bytes, 1);
5968                ret = 0;
5969        } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5970                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5971                                        num_bytes,
5972                                        parent, root_objectid, (int)owner,
5973                                        BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5974        } else {
5975                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5976                                                num_bytes,
5977                                                parent, root_objectid, owner,
5978                                                offset, BTRFS_DROP_DELAYED_REF,
5979                                                NULL, for_cow);
5980        }
5981        return ret;
5982}
5983
5984static u64 stripe_align(struct btrfs_root *root,
5985                        struct btrfs_block_group_cache *cache,
5986                        u64 val, u64 num_bytes)
5987{
5988        u64 ret = ALIGN(val, root->stripesize);
5989        return ret;
5990}
5991
5992/*
5993 * when we wait for progress in the block group caching, its because
5994 * our allocation attempt failed at least once.  So, we must sleep
5995 * and let some progress happen before we try again.
5996 *
5997 * This function will sleep at least once waiting for new free space to
5998 * show up, and then it will check the block group free space numbers
5999 * for our min num_bytes.  Another option is to have it go ahead
6000 * and look in the rbtree for a free extent of a given size, but this
6001 * is a good start.
6002 */
6003static noinline int
6004wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6005                                u64 num_bytes)
6006{
6007        struct btrfs_caching_control *caching_ctl;
6008
6009        caching_ctl = get_caching_control(cache);
6010        if (!caching_ctl)
6011                return 0;
6012
6013        wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6014                   (cache->free_space_ctl->free_space >= num_bytes));
6015
6016        put_caching_control(caching_ctl);
6017        return 0;
6018}
6019
6020static noinline int
6021wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6022{
6023        struct btrfs_caching_control *caching_ctl;
6024
6025        caching_ctl = get_caching_control(cache);
6026        if (!caching_ctl)
6027                return 0;
6028
6029        wait_event(caching_ctl->wait, block_group_cache_done(cache));
6030
6031        put_caching_control(caching_ctl);
6032        return 0;
6033}
6034
6035int __get_raid_index(u64 flags)
6036{
6037        if (flags & BTRFS_BLOCK_GROUP_RAID10)
6038                return BTRFS_RAID_RAID10;
6039        else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6040                return BTRFS_RAID_RAID1;
6041        else if (flags & BTRFS_BLOCK_GROUP_DUP)
6042                return BTRFS_RAID_DUP;
6043        else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6044                return BTRFS_RAID_RAID0;
6045        else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6046                return BTRFS_RAID_RAID5;
6047        else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6048                return BTRFS_RAID_RAID6;
6049
6050        return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6051}
6052
6053static int get_block_group_index(struct btrfs_block_group_cache *cache)
6054{
6055        return __get_raid_index(cache->flags);
6056}
6057
6058enum btrfs_loop_type {
6059        LOOP_CACHING_NOWAIT = 0,
6060        LOOP_CACHING_WAIT = 1,
6061        LOOP_ALLOC_CHUNK = 2,
6062        LOOP_NO_EMPTY_SIZE = 3,
6063};
6064
6065/*
6066 * walks the btree of allocated extents and find a hole of a given size.
6067 * The key ins is changed to record the hole:
6068 * ins->objectid == block start
6069 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6070 * ins->offset == number of blocks
6071 * Any available blocks before search_start are skipped.
6072 */
6073static noinline int find_free_extent(struct btrfs_trans_handle *trans,
6074                                     struct btrfs_root *orig_root,
6075                                     u64 num_bytes, u64 empty_size,
6076                                     u64 hint_byte, struct btrfs_key *ins,
6077                                     u64 flags)
6078{
6079        int ret = 0;
6080        struct btrfs_root *root = orig_root->fs_info->extent_root;
6081        struct btrfs_free_cluster *last_ptr = NULL;
6082        struct btrfs_block_group_cache *block_group = NULL;
6083        struct btrfs_block_group_cache *used_block_group;
6084        u64 search_start = 0;
6085        int empty_cluster = 2 * 1024 * 1024;
6086        struct btrfs_space_info *space_info;
6087        int loop = 0;
6088        int index = __get_raid_index(flags);
6089        int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6090                RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6091        bool found_uncached_bg = false;
6092        bool failed_cluster_refill = false;
6093        bool failed_alloc = false;
6094        bool use_cluster = true;
6095        bool have_caching_bg = false;
6096
6097        WARN_ON(num_bytes < root->sectorsize);
6098        btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6099        ins->objectid = 0;
6100        ins->offset = 0;
6101
6102        trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6103
6104        space_info = __find_space_info(root->fs_info, flags);
6105        if (!space_info) {
6106                btrfs_err(root->fs_info, "No space info for %llu", flags);
6107                return -ENOSPC;
6108        }
6109
6110        /*
6111         * If the space info is for both data and metadata it means we have a
6112         * small filesystem and we can't use the clustering stuff.
6113         */
6114        if (btrfs_mixed_space_info(space_info))
6115                use_cluster = false;
6116
6117        if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6118                last_ptr = &root->fs_info->meta_alloc_cluster;
6119                if (!btrfs_test_opt(root, SSD))
6120                        empty_cluster = 64 * 1024;
6121        }
6122
6123        if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6124            btrfs_test_opt(root, SSD)) {
6125                last_ptr = &root->fs_info->data_alloc_cluster;
6126        }
6127
6128        if (last_ptr) {
6129                spin_lock(&last_ptr->lock);
6130                if (last_ptr->block_group)
6131                        hint_byte = last_ptr->window_start;
6132                spin_unlock(&last_ptr->lock);
6133        }
6134
6135        search_start = max(search_start, first_logical_byte(root, 0));
6136        search_start = max(search_start, hint_byte);
6137
6138        if (!last_ptr)
6139                empty_cluster = 0;
6140
6141        if (search_start == hint_byte) {
6142                block_group = btrfs_lookup_block_group(root->fs_info,
6143                                                       search_start);
6144                used_block_group = block_group;
6145                /*
6146                 * we don't want to use the block group if it doesn't match our
6147                 * allocation bits, or if its not cached.
6148                 *
6149                 * However if we are re-searching with an ideal block group
6150                 * picked out then we don't care that the block group is cached.
6151                 */
6152                if (block_group && block_group_bits(block_group, flags) &&
6153                    block_group->cached != BTRFS_CACHE_NO) {
6154                        down_read(&space_info->groups_sem);
6155                        if (list_empty(&block_group->list) ||
6156                            block_group->ro) {
6157                                /*
6158                                 * someone is removing this block group,
6159                                 * we can't jump into the have_block_group
6160                                 * target because our list pointers are not
6161                                 * valid
6162                                 */
6163                                btrfs_put_block_group(block_group);
6164                                up_read(&space_info->groups_sem);
6165                        } else {
6166                                index = get_block_group_index(block_group);
6167                                goto have_block_group;
6168                        }
6169                } else if (block_group) {
6170                        btrfs_put_block_group(block_group);
6171                }
6172        }
6173search:
6174        have_caching_bg = false;
6175        down_read(&space_info->groups_sem);
6176        list_for_each_entry(block_group, &space_info->block_groups[index],
6177                            list) {
6178                u64 offset;
6179                int cached;
6180
6181                used_block_group = block_group;
6182                btrfs_get_block_group(block_group);
6183                search_start = block_group->key.objectid;
6184
6185                /*
6186                 * this can happen if we end up cycling through all the
6187                 * raid types, but we want to make sure we only allocate
6188                 * for the proper type.
6189                 */
6190                if (!block_group_bits(block_group, flags)) {
6191                    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6192                                BTRFS_BLOCK_GROUP_RAID1 |
6193                                BTRFS_BLOCK_GROUP_RAID5 |
6194                                BTRFS_BLOCK_GROUP_RAID6 |
6195                                BTRFS_BLOCK_GROUP_RAID10;
6196
6197                        /*
6198                         * if they asked for extra copies and this block group
6199                         * doesn't provide them, bail.  This does allow us to
6200                         * fill raid0 from raid1.
6201                         */
6202                        if ((flags & extra) && !(block_group->flags & extra))
6203                                goto loop;
6204                }
6205
6206have_block_group:
6207                cached = block_group_cache_done(block_group);
6208                if (unlikely(!cached)) {
6209                        found_uncached_bg = true;
6210                        ret = cache_block_group(block_group, 0);
6211                        BUG_ON(ret < 0);
6212                        ret = 0;
6213                }
6214
6215                if (unlikely(block_group->ro))
6216                        goto loop;
6217
6218                /*
6219                 * Ok we want to try and use the cluster allocator, so
6220                 * lets look there
6221                 */
6222                if (last_ptr) {
6223                        unsigned long aligned_cluster;
6224                        /*
6225                         * the refill lock keeps out other
6226                         * people trying to start a new cluster
6227                         */
6228                        spin_lock(&last_ptr->refill_lock);
6229                        used_block_group = last_ptr->block_group;
6230                        if (used_block_group != block_group &&
6231                            (!used_block_group ||
6232                             used_block_group->ro ||
6233                             !block_group_bits(used_block_group, flags))) {
6234                                used_block_group = block_group;
6235                                goto refill_cluster;
6236                        }
6237
6238                        if (used_block_group != block_group)
6239                                btrfs_get_block_group(used_block_group);
6240
6241                        offset = btrfs_alloc_from_cluster(used_block_group,
6242                          last_ptr, num_bytes, used_block_group->key.objectid);
6243                        if (offset) {
6244                                /* we have a block, we're done */
6245                                spin_unlock(&last_ptr->refill_lock);
6246                                trace_btrfs_reserve_extent_cluster(root,
6247                                        block_group, search_start, num_bytes);
6248                                goto checks;
6249                        }
6250
6251                        WARN_ON(last_ptr->block_group != used_block_group);
6252                        if (used_block_group != block_group) {
6253                                btrfs_put_block_group(used_block_group);
6254                                used_block_group = block_group;
6255                        }
6256refill_cluster:
6257                        BUG_ON(used_block_group != block_group);
6258                        /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6259                         * set up a new clusters, so lets just skip it
6260                         * and let the allocator find whatever block
6261                         * it can find.  If we reach this point, we
6262                         * will have tried the cluster allocator
6263                         * plenty of times and not have found
6264                         * anything, so we are likely way too
6265                         * fragmented for the clustering stuff to find
6266                         * anything.
6267                         *
6268                         * However, if the cluster is taken from the
6269                         * current block group, release the cluster
6270                         * first, so that we stand a better chance of
6271                         * succeeding in the unclustered
6272                         * allocation.  */
6273                        if (loop >= LOOP_NO_EMPTY_SIZE &&
6274                            last_ptr->block_group != block_group) {
6275                                spin_unlock(&last_ptr->refill_lock);
6276                                goto unclustered_alloc;
6277                        }
6278
6279                        /*
6280                         * this cluster didn't work out, free it and
6281                         * start over
6282                         */
6283                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
6284
6285                        if (loop >= LOOP_NO_EMPTY_SIZE) {
6286                                spin_unlock(&last_ptr->refill_lock);
6287                                goto unclustered_alloc;
6288                        }
6289
6290                        aligned_cluster = max_t(unsigned long,
6291                                                empty_cluster + empty_size,
6292                                              block_group->full_stripe_len);
6293
6294                        /* allocate a cluster in this block group */
6295                        ret = btrfs_find_space_cluster(trans, root,
6296                                               block_group, last_ptr,
6297                                               search_start, num_bytes,
6298                                               aligned_cluster);
6299                        if (ret == 0) {
6300                                /*
6301                                 * now pull our allocation out of this
6302                                 * cluster
6303                                 */
6304                                offset = btrfs_alloc_from_cluster(block_group,
6305                                                  last_ptr, num_bytes,
6306                                                  search_start);
6307                                if (offset) {
6308                                        /* we found one, proceed */
6309                                        spin_unlock(&last_ptr->refill_lock);
6310                                        trace_btrfs_reserve_extent_cluster(root,
6311                                                block_group, search_start,
6312                                                num_bytes);
6313                                        goto checks;
6314                                }
6315                        } else if (!cached && loop > LOOP_CACHING_NOWAIT
6316                                   && !failed_cluster_refill) {
6317                                spin_unlock(&last_ptr->refill_lock);
6318
6319                                failed_cluster_refill = true;
6320                                wait_block_group_cache_progress(block_group,
6321                                       num_bytes + empty_cluster + empty_size);
6322                                goto have_block_group;
6323                        }
6324
6325                        /*
6326                         * at this point we either didn't find a cluster
6327                         * or we weren't able to allocate a block from our
6328                         * cluster.  Free the cluster we've been trying
6329                         * to use, and go to the next block group
6330                         */
6331                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
6332                        spin_unlock(&last_ptr->refill_lock);
6333                        goto loop;
6334                }
6335
6336unclustered_alloc:
6337                spin_lock(&block_group->free_space_ctl->tree_lock);
6338                if (cached &&
6339                    block_group->free_space_ctl->free_space <
6340                    num_bytes + empty_cluster + empty_size) {
6341                        spin_unlock(&block_group->free_space_ctl->tree_lock);
6342                        goto loop;
6343                }
6344                spin_unlock(&block_group->free_space_ctl->tree_lock);
6345
6346                offset = btrfs_find_space_for_alloc(block_group, search_start,
6347                                                    num_bytes, empty_size);
6348                /*
6349                 * If we didn't find a chunk, and we haven't failed on this
6350                 * block group before, and this block group is in the middle of
6351                 * caching and we are ok with waiting, then go ahead and wait
6352                 * for progress to be made, and set failed_alloc to true.
6353                 *
6354                 * If failed_alloc is true then we've already waited on this
6355                 * block group once and should move on to the next block group.
6356                 */
6357                if (!offset && !failed_alloc && !cached &&
6358                    loop > LOOP_CACHING_NOWAIT) {
6359                        wait_block_group_cache_progress(block_group,
6360                                                num_bytes + empty_size);
6361                        failed_alloc = true;
6362                        goto have_block_group;
6363                } else if (!offset) {
6364                        if (!cached)
6365                                have_caching_bg = true;
6366                        goto loop;
6367                }
6368checks:
6369                search_start = stripe_align(root, used_block_group,
6370                                            offset, num_bytes);
6371
6372                /* move on to the next group */
6373                if (search_start + num_bytes >
6374                    used_block_group->key.objectid + used_block_group->key.offset) {
6375                        btrfs_add_free_space(used_block_group, offset, num_bytes);
6376                        goto loop;
6377                }
6378
6379                if (offset < search_start)
6380                        btrfs_add_free_space(used_block_group, offset,
6381                                             search_start - offset);
6382                BUG_ON(offset > search_start);
6383
6384                ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6385                                                  alloc_type);
6386                if (ret == -EAGAIN) {
6387                        btrfs_add_free_space(used_block_group, offset, num_bytes);
6388                        goto loop;
6389                }
6390
6391                /* we are all good, lets return */
6392                ins->objectid = search_start;
6393                ins->offset = num_bytes;
6394
6395                trace_btrfs_reserve_extent(orig_root, block_group,
6396                                           search_start, num_bytes);
6397                if (used_block_group != block_group)
6398                        btrfs_put_block_group(used_block_group);
6399                btrfs_put_block_group(block_group);
6400                break;
6401loop:
6402                failed_cluster_refill = false;
6403                failed_alloc = false;
6404                BUG_ON(index != get_block_group_index(block_group));
6405                if (used_block_group != block_group)
6406                        btrfs_put_block_group(used_block_group);
6407                btrfs_put_block_group(block_group);
6408        }
6409        up_read(&space_info->groups_sem);
6410
6411        if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6412                goto search;
6413
6414        if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6415                goto search;
6416
6417        /*
6418         * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6419         *                      caching kthreads as we move along
6420         * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6421         * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6422         * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6423         *                      again
6424         */
6425        if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6426                index = 0;
6427                loop++;
6428                if (loop == LOOP_ALLOC_CHUNK) {
6429                        ret = do_chunk_alloc(trans, root, flags,
6430                                             CHUNK_ALLOC_FORCE);
6431                        /*
6432                         * Do not bail out on ENOSPC since we
6433                         * can do more things.
6434                         */
6435                        if (ret < 0 && ret != -ENOSPC) {
6436                                btrfs_abort_transaction(trans,
6437                                                        root, ret);
6438                                goto out;
6439                        }
6440                }
6441
6442                if (loop == LOOP_NO_EMPTY_SIZE) {
6443                        empty_size = 0;
6444                        empty_cluster = 0;
6445                }
6446
6447                goto search;
6448        } else if (!ins->objectid) {
6449                ret = -ENOSPC;
6450        } else if (ins->objectid) {
6451                ret = 0;
6452        }
6453out:
6454
6455        return ret;
6456}
6457
6458static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6459                            int dump_block_groups)
6460{
6461        struct btrfs_block_group_cache *cache;
6462        int index = 0;
6463
6464        spin_lock(&info->lock);
6465        printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6466               (unsigned long long)info->flags,
6467               (unsigned long long)(info->total_bytes - info->bytes_used -
6468                                    info->bytes_pinned - info->bytes_reserved -
6469                                    info->bytes_readonly),
6470               (info->full) ? "" : "not ");
6471        printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6472               "reserved=%llu, may_use=%llu, readonly=%llu\n",
6473               (unsigned long long)info->total_bytes,
6474               (unsigned long long)info->bytes_used,
6475               (unsigned long long)info->bytes_pinned,
6476               (unsigned long long)info->bytes_reserved,
6477               (unsigned long long)info->bytes_may_use,
6478               (unsigned long long)info->bytes_readonly);
6479        spin_unlock(&info->lock);
6480
6481        if (!dump_block_groups)
6482                return;
6483
6484        down_read(&info->groups_sem);
6485again:
6486        list_for_each_entry(cache, &info->block_groups[index], list) {
6487                spin_lock(&cache->lock);
6488                printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6489                       (unsigned long long)cache->key.objectid,
6490                       (unsigned long long)cache->key.offset,
6491                       (unsigned long long)btrfs_block_group_used(&cache->item),
6492                       (unsigned long long)cache->pinned,
6493                       (unsigned long long)cache->reserved,
6494                       cache->ro ? "[readonly]" : "");
6495                btrfs_dump_free_space(cache, bytes);
6496                spin_unlock(&cache->lock);
6497        }
6498        if (++index < BTRFS_NR_RAID_TYPES)
6499                goto again;
6500        up_read(&info->groups_sem);
6501}
6502
6503int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6504                         struct btrfs_root *root,
6505                         u64 num_bytes, u64 min_alloc_size,
6506                         u64 empty_size, u64 hint_byte,
6507                         struct btrfs_key *ins, int is_data)
6508{
6509        bool final_tried = false;
6510        u64 flags;
6511        int ret;
6512
6513        flags = btrfs_get_alloc_profile(root, is_data);
6514again:
6515        WARN_ON(num_bytes < root->sectorsize);
6516        ret = find_free_extent(trans, root, num_bytes, empty_size,
6517                               hint_byte, ins, flags);
6518
6519        if (ret == -ENOSPC) {
6520                if (!final_tried) {
6521                        num_bytes = num_bytes >> 1;
6522                        num_bytes = round_down(num_bytes, root->sectorsize);
6523                        num_bytes = max(num_bytes, min_alloc_size);
6524                        if (num_bytes == min_alloc_size)
6525                                final_tried = true;
6526                        goto again;
6527                } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6528                        struct btrfs_space_info *sinfo;
6529
6530                        sinfo = __find_space_info(root->fs_info, flags);
6531                        btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6532                                (unsigned long long)flags,
6533                                (unsigned long long)num_bytes);
6534                        if (sinfo)
6535                                dump_space_info(sinfo, num_bytes, 1);
6536                }
6537        }
6538
6539        trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6540
6541        return ret;
6542}
6543
6544static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6545                                        u64 start, u64 len, int pin)
6546{
6547        struct btrfs_block_group_cache *cache;
6548        int ret = 0;
6549
6550        cache = btrfs_lookup_block_group(root->fs_info, start);
6551        if (!cache) {
6552                btrfs_err(root->fs_info, "Unable to find block group for %llu",
6553                        (unsigned long long)start);
6554                return -ENOSPC;
6555        }
6556
6557        if (btrfs_test_opt(root, DISCARD))
6558                ret = btrfs_discard_extent(root, start, len, NULL);
6559
6560        if (pin)
6561                pin_down_extent(root, cache, start, len, 1);
6562        else {
6563                btrfs_add_free_space(cache, start, len);
6564                btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6565        }
6566        btrfs_put_block_group(cache);
6567
6568        trace_btrfs_reserved_extent_free(root, start, len);
6569
6570        return ret;
6571}
6572
6573int btrfs_free_reserved_extent(struct btrfs_root *root,
6574                                        u64 start, u64 len)
6575{
6576        return __btrfs_free_reserved_extent(root, start, len, 0);
6577}
6578
6579int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6580                                       u64 start, u64 len)
6581{
6582        return __btrfs_free_reserved_extent(root, start, len, 1);
6583}
6584
6585static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6586                                      struct btrfs_root *root,
6587                                      u64 parent, u64 root_objectid,
6588                                      u64 flags, u64 owner, u64 offset,
6589                                      struct btrfs_key *ins, int ref_mod)
6590{
6591        int ret;
6592        struct btrfs_fs_info *fs_info = root->fs_info;
6593        struct btrfs_extent_item *extent_item;
6594        struct btrfs_extent_inline_ref *iref;
6595        struct btrfs_path *path;
6596        struct extent_buffer *leaf;
6597        int type;
6598        u32 size;
6599
6600        if (parent > 0)
6601                type = BTRFS_SHARED_DATA_REF_KEY;
6602        else
6603                type = BTRFS_EXTENT_DATA_REF_KEY;
6604
6605        size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6606
6607        path = btrfs_alloc_path();
6608        if (!path)
6609                return -ENOMEM;
6610
6611        path->leave_spinning = 1;
6612        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6613                                      ins, size);
6614        if (ret) {
6615                btrfs_free_path(path);
6616                return ret;
6617        }
6618
6619        leaf = path->nodes[0];
6620        extent_item = btrfs_item_ptr(leaf, path->slots[0],
6621                                     struct btrfs_extent_item);
6622        btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6623        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6624        btrfs_set_extent_flags(leaf, extent_item,
6625                               flags | BTRFS_EXTENT_FLAG_DATA);
6626
6627        iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6628        btrfs_set_extent_inline_ref_type(leaf, iref, type);
6629        if (parent > 0) {
6630                struct btrfs_shared_data_ref *ref;
6631                ref = (struct btrfs_shared_data_ref *)(iref + 1);
6632                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6633                btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6634        } else {
6635                struct btrfs_extent_data_ref *ref;
6636                ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6637                btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6638                btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6639                btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6640                btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6641        }
6642
6643        btrfs_mark_buffer_dirty(path->nodes[0]);
6644        btrfs_free_path(path);
6645
6646        ret = update_block_group(root, ins->objectid, ins->offset, 1);
6647        if (ret) { /* -ENOENT, logic error */
6648                btrfs_err(fs_info, "update block group failed for %llu %llu",
6649                        (unsigned long long)ins->objectid,
6650                        (unsigned long long)ins->offset);
6651                BUG();
6652        }
6653        return ret;
6654}
6655
6656static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6657                                     struct btrfs_root *root,
6658                                     u64 parent, u64 root_objectid,
6659                                     u64 flags, struct btrfs_disk_key *key,
6660                                     int level, struct btrfs_key *ins)
6661{
6662        int ret;
6663        struct btrfs_fs_info *fs_info = root->fs_info;
6664        struct btrfs_extent_item *extent_item;
6665        struct btrfs_tree_block_info *block_info;
6666        struct btrfs_extent_inline_ref *iref;
6667        struct btrfs_path *path;
6668        struct extent_buffer *leaf;
6669        u32 size = sizeof(*extent_item) + sizeof(*iref);
6670        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6671                                                 SKINNY_METADATA);
6672
6673        if (!skinny_metadata)
6674                size += sizeof(*block_info);
6675
6676        path = btrfs_alloc_path();
6677        if (!path)
6678                return -ENOMEM;
6679
6680        path->leave_spinning = 1;
6681        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6682                                      ins, size);
6683        if (ret) {
6684                btrfs_free_path(path);
6685                return ret;
6686        }
6687
6688        leaf = path->nodes[0];
6689        extent_item = btrfs_item_ptr(leaf, path->slots[0],
6690                                     struct btrfs_extent_item);
6691        btrfs_set_extent_refs(leaf, extent_item, 1);
6692        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6693        btrfs_set_extent_flags(leaf, extent_item,
6694                               flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6695
6696        if (skinny_metadata) {
6697                iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6698        } else {
6699                block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6700                btrfs_set_tree_block_key(leaf, block_info, key);
6701                btrfs_set_tree_block_level(leaf, block_info, level);
6702                iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6703        }
6704
6705        if (parent > 0) {
6706                BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6707                btrfs_set_extent_inline_ref_type(leaf, iref,
6708                                                 BTRFS_SHARED_BLOCK_REF_KEY);
6709                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6710        } else {
6711                btrfs_set_extent_inline_ref_type(leaf, iref,
6712                                                 BTRFS_TREE_BLOCK_REF_KEY);
6713                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6714        }
6715
6716        btrfs_mark_buffer_dirty(leaf);
6717        btrfs_free_path(path);
6718
6719        ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6720        if (ret) { /* -ENOENT, logic error */
6721                btrfs_err(fs_info, "update block group failed for %llu %llu",
6722                        (unsigned long long)ins->objectid,
6723                        (unsigned long long)ins->offset);
6724                BUG();
6725        }
6726        return ret;
6727}
6728
6729int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6730                                     struct btrfs_root *root,
6731                                     u64 root_objectid, u64 owner,
6732                                     u64 offset, struct btrfs_key *ins)
6733{
6734        int ret;
6735
6736        BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6737
6738        ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6739                                         ins->offset, 0,
6740                                         root_objectid, owner, offset,
6741                                         BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6742        return ret;
6743}
6744
6745/*
6746 * this is used by the tree logging recovery code.  It records that
6747 * an extent has been allocated and makes sure to clear the free
6748 * space cache bits as well
6749 */
6750int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6751                                   struct btrfs_root *root,
6752                                   u64 root_objectid, u64 owner, u64 offset,
6753                                   struct btrfs_key *ins)
6754{
6755        int ret;
6756        struct btrfs_block_group_cache *block_group;
6757
6758        /*
6759         * Mixed block groups will exclude before processing the log so we only
6760         * need to do the exlude dance if this fs isn't mixed.
6761         */
6762        if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6763                ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6764                if (ret)
6765                        return ret;
6766        }
6767
6768        block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6769        if (!block_group)
6770                return -EINVAL;
6771
6772        ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6773                                          RESERVE_ALLOC_NO_ACCOUNT);
6774        BUG_ON(ret); /* logic error */
6775        ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6776                                         0, owner, offset, ins, 1);
6777        btrfs_put_block_group(block_group);
6778        return ret;
6779}
6780
6781static struct extent_buffer *
6782btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6783                      u64 bytenr, u32 blocksize, int level)
6784{
6785        struct extent_buffer *buf;
6786
6787        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6788        if (!buf)
6789                return ERR_PTR(-ENOMEM);
6790        btrfs_set_header_generation(buf, trans->transid);
6791        btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6792        btrfs_tree_lock(buf);
6793        clean_tree_block(trans, root, buf);
6794        clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6795
6796        btrfs_set_lock_blocking(buf);
6797        btrfs_set_buffer_uptodate(buf);
6798
6799        if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6800                /*
6801                 * we allow two log transactions at a time, use different
6802                 * EXENT bit to differentiate dirty pages.
6803                 */
6804                if (root->log_transid % 2 == 0)
6805                        set_extent_dirty(&root->dirty_log_pages, buf->start,
6806                                        buf->start + buf->len - 1, GFP_NOFS);
6807                else
6808                        set_extent_new(&root->dirty_log_pages, buf->start,
6809                                        buf->start + buf->len - 1, GFP_NOFS);
6810        } else {
6811                set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6812                         buf->start + buf->len - 1, GFP_NOFS);
6813        }
6814        trans->blocks_used++;
6815        /* this returns a buffer locked for blocking */
6816        return buf;
6817}
6818
6819static struct btrfs_block_rsv *
6820use_block_rsv(struct btrfs_trans_handle *trans,
6821              struct btrfs_root *root, u32 blocksize)
6822{
6823        struct btrfs_block_rsv *block_rsv;
6824        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6825        int ret;
6826        bool global_updated = false;
6827
6828        block_rsv = get_block_rsv(trans, root);
6829
6830        if (unlikely(block_rsv->size == 0))
6831                goto try_reserve;
6832again:
6833        ret = block_rsv_use_bytes(block_rsv, blocksize);
6834        if (!ret)
6835                return block_rsv;
6836
6837        if (block_rsv->failfast)
6838                return ERR_PTR(ret);
6839
6840        if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6841                global_updated = true;
6842                update_global_block_rsv(root->fs_info);
6843                goto again;
6844        }
6845
6846        if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6847                static DEFINE_RATELIMIT_STATE(_rs,
6848                                DEFAULT_RATELIMIT_INTERVAL * 10,
6849                                /*DEFAULT_RATELIMIT_BURST*/ 1);
6850                if (__ratelimit(&_rs))
6851                        WARN(1, KERN_DEBUG
6852                                "btrfs: block rsv returned %d\n", ret);
6853        }
6854try_reserve:
6855        ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6856                                     BTRFS_RESERVE_NO_FLUSH);
6857        if (!ret)
6858                return block_rsv;
6859        /*
6860         * If we couldn't reserve metadata bytes try and use some from
6861         * the global reserve if its space type is the same as the global
6862         * reservation.
6863         */
6864        if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6865            block_rsv->space_info == global_rsv->space_info) {
6866                ret = block_rsv_use_bytes(global_rsv, blocksize);
6867                if (!ret)
6868                        return global_rsv;
6869        }
6870        return ERR_PTR(ret);
6871}
6872
6873static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6874                            struct btrfs_block_rsv *block_rsv, u32 blocksize)
6875{
6876        block_rsv_add_bytes(block_rsv, blocksize, 0);
6877        block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6878}
6879
6880/*
6881 * finds a free extent and does all the dirty work required for allocation
6882 * returns the key for the extent through ins, and a tree buffer for
6883 * the first block of the extent through buf.
6884 *
6885 * returns the tree buffer or NULL.
6886 */
6887struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6888                                        struct btrfs_root *root, u32 blocksize,
6889                                        u64 parent, u64 root_objectid,
6890                                        struct btrfs_disk_key *key, int level,
6891                                        u64 hint, u64 empty_size)
6892{
6893        struct btrfs_key ins;
6894        struct btrfs_block_rsv *block_rsv;
6895        struct extent_buffer *buf;
6896        u64 flags = 0;
6897        int ret;
6898        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6899                                                 SKINNY_METADATA);
6900
6901        block_rsv = use_block_rsv(trans, root, blocksize);
6902        if (IS_ERR(block_rsv))
6903                return ERR_CAST(block_rsv);
6904
6905        ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6906                                   empty_size, hint, &ins, 0);
6907        if (ret) {
6908                unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6909                return ERR_PTR(ret);
6910        }
6911
6912        buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6913                                    blocksize, level);
6914        BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6915
6916        if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6917                if (parent == 0)
6918                        parent = ins.objectid;
6919                flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6920        } else
6921                BUG_ON(parent > 0);
6922
6923        if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6924                struct btrfs_delayed_extent_op *extent_op;
6925                extent_op = btrfs_alloc_delayed_extent_op();
6926                BUG_ON(!extent_op); /* -ENOMEM */
6927                if (key)
6928                        memcpy(&extent_op->key, key, sizeof(extent_op->key));
6929                else
6930                        memset(&extent_op->key, 0, sizeof(extent_op->key));
6931                extent_op->flags_to_set = flags;
6932                if (skinny_metadata)
6933                        extent_op->update_key = 0;
6934                else
6935                        extent_op->update_key = 1;
6936                extent_op->update_flags = 1;
6937                extent_op->is_data = 0;
6938                extent_op->level = level;
6939
6940                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6941                                        ins.objectid,
6942                                        ins.offset, parent, root_objectid,
6943                                        level, BTRFS_ADD_DELAYED_EXTENT,
6944                                        extent_op, 0);
6945                BUG_ON(ret); /* -ENOMEM */
6946        }
6947        return buf;
6948}
6949
6950struct walk_control {
6951        u64 refs[BTRFS_MAX_LEVEL];
6952        u64 flags[BTRFS_MAX_LEVEL];
6953        struct btrfs_key update_progress;
6954        int stage;
6955        int level;
6956        int shared_level;
6957        int update_ref;
6958        int keep_locks;
6959        int reada_slot;
6960        int reada_count;
6961        int for_reloc;
6962};
6963
6964#define DROP_REFERENCE  1
6965#define UPDATE_BACKREF  2
6966
6967static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6968                                     struct btrfs_root *root,
6969                                     struct walk_control *wc,
6970                                     struct btrfs_path *path)
6971{
6972        u64 bytenr;
6973        u64 generation;
6974        u64 refs;
6975        u64 flags;
6976        u32 nritems;
6977        u32 blocksize;
6978        struct btrfs_key key;
6979        struct extent_buffer *eb;
6980        int ret;
6981        int slot;
6982        int nread = 0;
6983
6984        if (path->slots[wc->level] < wc->reada_slot) {
6985                wc->reada_count = wc->reada_count * 2 / 3;
6986                wc->reada_count = max(wc->reada_count, 2);
6987        } else {
6988                wc->reada_count = wc->reada_count * 3 / 2;
6989                wc->reada_count = min_t(int, wc->reada_count,
6990                                        BTRFS_NODEPTRS_PER_BLOCK(root));
6991        }
6992
6993        eb = path->nodes[wc->level];
6994        nritems = btrfs_header_nritems(eb);
6995        blocksize = btrfs_level_size(root, wc->level - 1);
6996
6997        for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6998                if (nread >= wc->reada_count)
6999                        break;
7000
7001                cond_resched();
7002                bytenr = btrfs_node_blockptr(eb, slot);
7003                generation = btrfs_node_ptr_generation(eb, slot);
7004
7005                if (slot == path->slots[wc->level])
7006                        goto reada;
7007
7008                if (wc->stage == UPDATE_BACKREF &&
7009                    generation <= root->root_key.offset)
7010                        continue;
7011
7012                /* We don't lock the tree block, it's OK to be racy here */
7013                ret = btrfs_lookup_extent_info(trans, root, bytenr,
7014                                               wc->level - 1, 1, &refs,
7015                                               &flags);
7016                /* We don't care about errors in readahead. */
7017                if (ret < 0)
7018                        continue;
7019                BUG_ON(refs == 0);
7020
7021                if (wc->stage == DROP_REFERENCE) {
7022                        if (refs == 1)
7023                                goto reada;
7024
7025                        if (wc->level == 1 &&
7026                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7027                                continue;
7028                        if (!wc->update_ref ||
7029                            generation <= root->root_key.offset)
7030                                continue;
7031                        btrfs_node_key_to_cpu(eb, &key, slot);
7032                        ret = btrfs_comp_cpu_keys(&key,
7033                                                  &wc->update_progress);
7034                        if (ret < 0)
7035                                continue;
7036                } else {
7037                        if (wc->level == 1 &&
7038                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7039                                continue;
7040                }
7041reada:
7042                ret = readahead_tree_block(root, bytenr, blocksize,
7043                                           generation);
7044                if (ret)
7045                        break;
7046                nread++;
7047        }
7048        wc->reada_slot = slot;
7049}
7050
7051/*
7052 * helper to process tree block while walking down the tree.
7053 *
7054 * when wc->stage == UPDATE_BACKREF, this function updates
7055 * back refs for pointers in the block.
7056 *
7057 * NOTE: return value 1 means we should stop walking down.
7058 */
7059static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7060                                   struct btrfs_root *root,
7061                                   struct btrfs_path *path,
7062                                   struct walk_control *wc, int lookup_info)
7063{
7064        int level = wc->level;
7065        struct extent_buffer *eb = path->nodes[level];
7066        u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7067        int ret;
7068
7069        if (wc->stage == UPDATE_BACKREF &&
7070            btrfs_header_owner(eb) != root->root_key.objectid)
7071                return 1;
7072
7073        /*
7074         * when reference count of tree block is 1, it won't increase
7075         * again. once full backref flag is set, we never clear it.
7076         */
7077        if (lookup_info &&
7078            ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7079             (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7080                BUG_ON(!path->locks[level]);
7081                ret = btrfs_lookup_extent_info(trans, root,
7082                                               eb->start, level, 1,
7083                                               &wc->refs[level],
7084                                               &wc->flags[level]);
7085                BUG_ON(ret == -ENOMEM);
7086                if (ret)
7087                        return ret;
7088                BUG_ON(wc->refs[level] == 0);
7089        }
7090
7091        if (wc->stage == DROP_REFERENCE) {
7092                if (wc->refs[level] > 1)
7093                        return 1;
7094
7095                if (path->locks[level] && !wc->keep_locks) {
7096                        btrfs_tree_unlock_rw(eb, path->locks[level]);
7097                        path->locks[level] = 0;
7098                }
7099                return 0;
7100        }
7101
7102        /* wc->stage == UPDATE_BACKREF */
7103        if (!(wc->flags[level] & flag)) {
7104                BUG_ON(!path->locks[level]);
7105                ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7106                BUG_ON(ret); /* -ENOMEM */
7107                ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7108                BUG_ON(ret); /* -ENOMEM */
7109                ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7110                                                  eb->len, flag,
7111                                                  btrfs_header_level(eb), 0);
7112                BUG_ON(ret); /* -ENOMEM */
7113                wc->flags[level] |= flag;
7114        }
7115
7116        /*
7117         * the block is shared by multiple trees, so it's not good to
7118         * keep the tree lock
7119         */
7120        if (path->locks[level] && level > 0) {
7121                btrfs_tree_unlock_rw(eb, path->locks[level]);
7122                path->locks[level] = 0;
7123        }
7124        return 0;
7125}
7126
7127/*
7128 * helper to process tree block pointer.
7129 *
7130 * when wc->stage == DROP_REFERENCE, this function checks
7131 * reference count of the block pointed to. if the block
7132 * is shared and we need update back refs for the subtree
7133 * rooted at the block, this function changes wc->stage to
7134 * UPDATE_BACKREF. if the block is shared and there is no
7135 * need to update back, this function drops the reference
7136 * to the block.
7137 *
7138 * NOTE: return value 1 means we should stop walking down.
7139 */
7140static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7141                                 struct btrfs_root *root,
7142                                 struct btrfs_path *path,
7143                                 struct walk_control *wc, int *lookup_info)
7144{
7145        u64 bytenr;
7146        u64 generation;
7147        u64 parent;
7148        u32 blocksize;
7149        struct btrfs_key key;
7150        struct extent_buffer *next;
7151        int level = wc->level;
7152        int reada = 0;
7153        int ret = 0;
7154
7155        generation = btrfs_node_ptr_generation(path->nodes[level],
7156                                               path->slots[level]);
7157        /*
7158         * if the lower level block was created before the snapshot
7159         * was created, we know there is no need to update back refs
7160         * for the subtree
7161         */
7162        if (wc->stage == UPDATE_BACKREF &&
7163            generation <= root->root_key.offset) {
7164                *lookup_info = 1;
7165                return 1;
7166        }
7167
7168        bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7169        blocksize = btrfs_level_size(root, level - 1);
7170
7171        next = btrfs_find_tree_block(root, bytenr, blocksize);
7172        if (!next) {
7173                next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7174                if (!next)
7175                        return -ENOMEM;
7176                reada = 1;
7177        }
7178        btrfs_tree_lock(next);
7179        btrfs_set_lock_blocking(next);
7180
7181        ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7182                                       &wc->refs[level - 1],
7183                                       &wc->flags[level - 1]);
7184        if (ret < 0) {
7185                btrfs_tree_unlock(next);
7186                return ret;
7187        }
7188
7189        if (unlikely(wc->refs[level - 1] == 0)) {
7190                btrfs_err(root->fs_info, "Missing references.");
7191                BUG();
7192        }
7193        *lookup_info = 0;
7194
7195        if (wc->stage == DROP_REFERENCE) {
7196                if (wc->refs[level - 1] > 1) {
7197                        if (level == 1 &&
7198                            (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7199                                goto skip;
7200
7201                        if (!wc->update_ref ||
7202                            generation <= root->root_key.offset)
7203                                goto skip;
7204
7205                        btrfs_node_key_to_cpu(path->nodes[level], &key,
7206                                              path->slots[level]);
7207                        ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7208                        if (ret < 0)
7209                                goto skip;
7210
7211                        wc->stage = UPDATE_BACKREF;
7212                        wc->shared_level = level - 1;
7213                }
7214        } else {
7215                if (level == 1 &&
7216                    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7217                        goto skip;
7218        }
7219
7220        if (!btrfs_buffer_uptodate(next, generation, 0)) {
7221                btrfs_tree_unlock(next);
7222                free_extent_buffer(next);
7223                next = NULL;
7224                *lookup_info = 1;
7225        }
7226
7227        if (!next) {
7228                if (reada && level == 1)
7229                        reada_walk_down(trans, root, wc, path);
7230                next = read_tree_block(root, bytenr, blocksize, generation);
7231                if (!next || !extent_buffer_uptodate(next)) {
7232                        free_extent_buffer(next);
7233                        return -EIO;
7234                }
7235                btrfs_tree_lock(next);
7236                btrfs_set_lock_blocking(next);
7237        }
7238
7239        level--;
7240        BUG_ON(level != btrfs_header_level(next));
7241        path->nodes[level] = next;
7242        path->slots[level] = 0;
7243        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7244        wc->level = level;
7245        if (wc->level == 1)
7246                wc->reada_slot = 0;
7247        return 0;
7248skip:
7249        wc->refs[level - 1] = 0;
7250        wc->flags[level - 1] = 0;
7251        if (wc->stage == DROP_REFERENCE) {
7252                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7253                        parent = path->nodes[level]->start;
7254                } else {
7255                        BUG_ON(root->root_key.objectid !=
7256                               btrfs_header_owner(path->nodes[level]));
7257                        parent = 0;
7258                }
7259
7260                ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7261                                root->root_key.objectid, level - 1, 0, 0);
7262                BUG_ON(ret); /* -ENOMEM */
7263        }
7264        btrfs_tree_unlock(next);
7265        free_extent_buffer(next);
7266        *lookup_info = 1;
7267        return 1;
7268}
7269
7270/*
7271 * helper to process tree block while walking up the tree.
7272 *
7273 * when wc->stage == DROP_REFERENCE, this function drops
7274 * reference count on the block.
7275 *
7276 * when wc->stage == UPDATE_BACKREF, this function changes
7277 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7278 * to UPDATE_BACKREF previously while processing the block.
7279 *
7280 * NOTE: return value 1 means we should stop walking up.
7281 */
7282static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7283                                 struct btrfs_root *root,
7284                                 struct btrfs_path *path,
7285                                 struct walk_control *wc)
7286{
7287        int ret;
7288        int level = wc->level;
7289        struct extent_buffer *eb = path->nodes[level];
7290        u64 parent = 0;
7291
7292        if (wc->stage == UPDATE_BACKREF) {
7293                BUG_ON(wc->shared_level < level);
7294                if (level < wc->shared_level)
7295                        goto out;
7296
7297                ret = find_next_key(path, level + 1, &wc->update_progress);
7298                if (ret > 0)
7299                        wc->update_ref = 0;
7300
7301                wc->stage = DROP_REFERENCE;
7302                wc->shared_level = -1;
7303                path->slots[level] = 0;
7304
7305                /*
7306                 * check reference count again if the block isn't locked.
7307                 * we should start walking down the tree again if reference
7308                 * count is one.
7309                 */
7310                if (!path->locks[level]) {
7311                        BUG_ON(level == 0);
7312                        btrfs_tree_lock(eb);
7313                        btrfs_set_lock_blocking(eb);
7314                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7315
7316                        ret = btrfs_lookup_extent_info(trans, root,
7317                                                       eb->start, level, 1,
7318                                                       &wc->refs[level],
7319                                                       &wc->flags[level]);
7320                        if (ret < 0) {
7321                                btrfs_tree_unlock_rw(eb, path->locks[level]);
7322                                path->locks[level] = 0;
7323                                return ret;
7324                        }
7325                        BUG_ON(wc->refs[level] == 0);
7326                        if (wc->refs[level] == 1) {
7327                                btrfs_tree_unlock_rw(eb, path->locks[level]);
7328                                path->locks[level] = 0;
7329                                return 1;
7330                        }
7331                }
7332        }
7333
7334        /* wc->stage == DROP_REFERENCE */
7335        BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7336
7337        if (wc->refs[level] == 1) {
7338                if (level == 0) {
7339                        if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7340                                ret = btrfs_dec_ref(trans, root, eb, 1,
7341                                                    wc->for_reloc);
7342                        else
7343                                ret = btrfs_dec_ref(trans, root, eb, 0,
7344                                                    wc->for_reloc);
7345                        BUG_ON(ret); /* -ENOMEM */
7346                }
7347                /* make block locked assertion in clean_tree_block happy */
7348                if (!path->locks[level] &&
7349                    btrfs_header_generation(eb) == trans->transid) {
7350                        btrfs_tree_lock(eb);
7351                        btrfs_set_lock_blocking(eb);
7352                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7353                }
7354                clean_tree_block(trans, root, eb);
7355        }
7356
7357        if (eb == root->node) {
7358                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7359                        parent = eb->start;
7360                else
7361                        BUG_ON(root->root_key.objectid !=
7362                               btrfs_header_owner(eb));
7363        } else {
7364                if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7365                        parent = path->nodes[level + 1]->start;
7366                else
7367                        BUG_ON(root->root_key.objectid !=
7368                               btrfs_header_owner(path->nodes[level + 1]));
7369        }
7370
7371        btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7372out:
7373        wc->refs[level] = 0;
7374        wc->flags[level] = 0;
7375        return 0;
7376}
7377
7378static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7379                                   struct btrfs_root *root,
7380                                   struct btrfs_path *path,
7381                                   struct walk_control *wc)
7382{
7383        int level = wc->level;
7384        int lookup_info = 1;
7385        int ret;
7386
7387        while (level >= 0) {
7388                ret = walk_down_proc(trans, root, path, wc, lookup_info);
7389                if (ret > 0)
7390                        break;
7391
7392                if (level == 0)
7393                        break;
7394
7395                if (path->slots[level] >=
7396                    btrfs_header_nritems(path->nodes[level]))
7397                        break;
7398
7399                ret = do_walk_down(trans, root, path, wc, &lookup_info);
7400                if (ret > 0) {
7401                        path->slots[level]++;
7402                        continue;
7403                } else if (ret < 0)
7404                        return ret;
7405                level = wc->level;
7406        }
7407        return 0;
7408}
7409
7410static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7411                                 struct btrfs_root *root,
7412                                 struct btrfs_path *path,
7413                                 struct walk_control *wc, int max_level)
7414{
7415        int level = wc->level;
7416        int ret;
7417
7418        path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7419        while (level < max_level && path->nodes[level]) {
7420                wc->level = level;
7421                if (path->slots[level] + 1 <
7422                    btrfs_header_nritems(path->nodes[level])) {
7423                        path->slots[level]++;
7424                        return 0;
7425                } else {
7426                        ret = walk_up_proc(trans, root, path, wc);
7427                        if (ret > 0)
7428                                return 0;
7429
7430                        if (path->locks[level]) {
7431                                btrfs_tree_unlock_rw(path->nodes[level],
7432                                                     path->locks[level]);
7433                                path->locks[level] = 0;
7434                        }
7435                        free_extent_buffer(path->nodes[level]);
7436                        path->nodes[level] = NULL;
7437                        level++;
7438                }
7439        }
7440        return 1;
7441}
7442
7443/*
7444 * drop a subvolume tree.
7445 *
7446 * this function traverses the tree freeing any blocks that only
7447 * referenced by the tree.
7448 *
7449 * when a shared tree block is found. this function decreases its
7450 * reference count by one. if update_ref is true, this function
7451 * also make sure backrefs for the shared block and all lower level
7452 * blocks are properly updated.
7453 *
7454 * If called with for_reloc == 0, may exit early with -EAGAIN
7455 */
7456int btrfs_drop_snapshot(struct btrfs_root *root,
7457                         struct btrfs_block_rsv *block_rsv, int update_ref,
7458                         int for_reloc)
7459{
7460        struct btrfs_path *path;
7461        struct btrfs_trans_handle *trans;
7462        struct btrfs_root *tree_root = root->fs_info->tree_root;
7463        struct btrfs_root_item *root_item = &root->root_item;
7464        struct walk_control *wc;
7465        struct btrfs_key key;
7466        int err = 0;
7467        int ret;
7468        int level;
7469        bool root_dropped = false;
7470
7471        path = btrfs_alloc_path();
7472        if (!path) {
7473                err = -ENOMEM;
7474                goto out;
7475        }
7476
7477        wc = kzalloc(sizeof(*wc), GFP_NOFS);
7478        if (!wc) {
7479                btrfs_free_path(path);
7480                err = -ENOMEM;
7481                goto out;
7482        }
7483
7484        trans = btrfs_start_transaction(tree_root, 0);
7485        if (IS_ERR(trans)) {
7486                err = PTR_ERR(trans);
7487                goto out_free;
7488        }
7489
7490        if (block_rsv)
7491                trans->block_rsv = block_rsv;
7492
7493        if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7494                level = btrfs_header_level(root->node);
7495                path->nodes[level] = btrfs_lock_root_node(root);
7496                btrfs_set_lock_blocking(path->nodes[level]);
7497                path->slots[level] = 0;
7498                path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7499                memset(&wc->update_progress, 0,
7500                       sizeof(wc->update_progress));
7501        } else {
7502                btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7503                memcpy(&wc->update_progress, &key,
7504                       sizeof(wc->update_progress));
7505
7506                level = root_item->drop_level;
7507                BUG_ON(level == 0);
7508                path->lowest_level = level;
7509                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7510                path->lowest_level = 0;
7511                if (ret < 0) {
7512                        err = ret;
7513                        goto out_end_trans;
7514                }
7515                WARN_ON(ret > 0);
7516
7517                /*
7518                 * unlock our path, this is safe because only this
7519                 * function is allowed to delete this snapshot
7520                 */
7521                btrfs_unlock_up_safe(path, 0);
7522
7523                level = btrfs_header_level(root->node);
7524                while (1) {
7525                        btrfs_tree_lock(path->nodes[level]);
7526                        btrfs_set_lock_blocking(path->nodes[level]);
7527                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7528
7529                        ret = btrfs_lookup_extent_info(trans, root,
7530                                                path->nodes[level]->start,
7531                                                level, 1, &wc->refs[level],
7532                                                &wc->flags[level]);
7533                        if (ret < 0) {
7534                                err = ret;
7535                                goto out_end_trans;
7536                        }
7537                        BUG_ON(wc->refs[level] == 0);
7538
7539                        if (level == root_item->drop_level)
7540                                break;
7541
7542                        btrfs_tree_unlock(path->nodes[level]);
7543                        path->locks[level] = 0;
7544                        WARN_ON(wc->refs[level] != 1);
7545                        level--;
7546                }
7547        }
7548
7549        wc->level = level;
7550        wc->shared_level = -1;
7551        wc->stage = DROP_REFERENCE;
7552        wc->update_ref = update_ref;
7553        wc->keep_locks = 0;
7554        wc->for_reloc = for_reloc;
7555        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7556
7557        while (1) {
7558
7559                ret = walk_down_tree(trans, root, path, wc);
7560                if (ret < 0) {
7561                        err = ret;
7562                        break;
7563                }
7564
7565                ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7566                if (ret < 0) {
7567                        err = ret;
7568                        break;
7569                }
7570
7571                if (ret > 0) {
7572                        BUG_ON(wc->stage != DROP_REFERENCE);
7573                        break;
7574                }
7575
7576                if (wc->stage == DROP_REFERENCE) {
7577                        level = wc->level;
7578                        btrfs_node_key(path->nodes[level],
7579                                       &root_item->drop_progress,
7580                                       path->slots[level]);
7581                        root_item->drop_level = level;
7582                }
7583
7584                BUG_ON(wc->level == 0);
7585                if (btrfs_should_end_transaction(trans, tree_root) ||
7586                    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7587                        ret = btrfs_update_root(trans, tree_root,
7588                                                &root->root_key,
7589                                                root_item);
7590                        if (ret) {
7591                                btrfs_abort_transaction(trans, tree_root, ret);
7592                                err = ret;
7593                                goto out_end_trans;
7594                        }
7595
7596                        btrfs_end_transaction_throttle(trans, tree_root);
7597                        if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7598                                pr_debug("btrfs: drop snapshot early exit\n");
7599                                err = -EAGAIN;
7600                                goto out_free;
7601                        }
7602
7603                        trans = btrfs_start_transaction(tree_root, 0);
7604                        if (IS_ERR(trans)) {
7605                                err = PTR_ERR(trans);
7606                                goto out_free;
7607                        }
7608                        if (block_rsv)
7609                                trans->block_rsv = block_rsv;
7610                }
7611        }
7612        btrfs_release_path(path);
7613        if (err)
7614                goto out_end_trans;
7615
7616        ret = btrfs_del_root(trans, tree_root, &root->root_key);
7617        if (ret) {
7618                btrfs_abort_transaction(trans, tree_root, ret);
7619                goto out_end_trans;
7620        }
7621
7622        if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7623                ret = btrfs_find_root(tree_root, &root->root_key, path,
7624                                      NULL, NULL);
7625                if (ret < 0) {
7626                        btrfs_abort_transaction(trans, tree_root, ret);
7627                        err = ret;
7628                        goto out_end_trans;
7629                } else if (ret > 0) {
7630                        /* if we fail to delete the orphan item this time
7631                         * around, it'll get picked up the next time.
7632                         *
7633                         * The most common failure here is just -ENOENT.
7634                         */
7635                        btrfs_del_orphan_item(trans, tree_root,
7636                                              root->root_key.objectid);
7637                }
7638        }
7639
7640        if (root->in_radix) {
7641                btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7642        } else {
7643                free_extent_buffer(root->node);
7644                free_extent_buffer(root->commit_root);
7645                btrfs_put_fs_root(root);
7646        }
7647        root_dropped = true;
7648out_end_trans:
7649        btrfs_end_transaction_throttle(trans, tree_root);
7650out_free:
7651        kfree(wc);
7652        btrfs_free_path(path);
7653out:
7654        /*
7655         * So if we need to stop dropping the snapshot for whatever reason we
7656         * need to make sure to add it back to the dead root list so that we
7657         * keep trying to do the work later.  This also cleans up roots if we
7658         * don't have it in the radix (like when we recover after a power fail
7659         * or unmount) so we don't leak memory.
7660         */
7661        if (root_dropped == false)
7662                btrfs_add_dead_root(root);
7663        if (err)
7664                btrfs_std_error(root->fs_info, err);
7665        return err;
7666}
7667
7668/*
7669 * drop subtree rooted at tree block 'node'.
7670 *
7671 * NOTE: this function will unlock and release tree block 'node'
7672 * only used by relocation code
7673 */
7674int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7675                        struct btrfs_root *root,
7676                        struct extent_buffer *node,
7677                        struct extent_buffer *parent)
7678{
7679        struct btrfs_path *path;
7680        struct walk_control *wc;
7681        int level;
7682        int parent_level;
7683        int ret = 0;
7684        int wret;
7685
7686        BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7687
7688        path = btrfs_alloc_path();
7689        if (!path)
7690                return -ENOMEM;
7691
7692        wc = kzalloc(sizeof(*wc), GFP_NOFS);
7693        if (!wc) {
7694                btrfs_free_path(path);
7695                return -ENOMEM;
7696        }
7697
7698        btrfs_assert_tree_locked(parent);
7699        parent_level = btrfs_header_level(parent);
7700        extent_buffer_get(parent);
7701        path->nodes[parent_level] = parent;
7702        path->slots[parent_level] = btrfs_header_nritems(parent);
7703
7704        btrfs_assert_tree_locked(node);
7705        level = btrfs_header_level(node);
7706        path->nodes[level] = node;
7707        path->slots[level] = 0;
7708        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7709
7710        wc->refs[parent_level] = 1;
7711        wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7712        wc->level = level;
7713        wc->shared_level = -1;
7714        wc->stage = DROP_REFERENCE;
7715        wc->update_ref = 0;
7716        wc->keep_locks = 1;
7717        wc->for_reloc = 1;
7718        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7719
7720        while (1) {
7721                wret = walk_down_tree(trans, root, path, wc);
7722                if (wret < 0) {
7723                        ret = wret;
7724                        break;
7725                }
7726
7727                wret = walk_up_tree(trans, root, path, wc, parent_level);
7728                if (wret < 0)
7729                        ret = wret;
7730                if (wret != 0)
7731                        break;
7732        }
7733
7734        kfree(wc);
7735        btrfs_free_path(path);
7736        return ret;
7737}
7738
7739static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7740{
7741        u64 num_devices;
7742        u64 stripped;
7743
7744        /*
7745         * if restripe for this chunk_type is on pick target profile and
7746         * return, otherwise do the usual balance
7747         */
7748        stripped = get_restripe_target(root->fs_info, flags);
7749        if (stripped)
7750                return extended_to_chunk(stripped);
7751
7752        /*
7753         * we add in the count of missing devices because we want
7754         * to make sure that any RAID levels on a degraded FS
7755         * continue to be honored.
7756         */
7757        num_devices = root->fs_info->fs_devices->rw_devices +
7758                root->fs_info->fs_devices->missing_devices;
7759
7760        stripped = BTRFS_BLOCK_GROUP_RAID0 |
7761                BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7762                BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7763
7764        if (num_devices == 1) {
7765                stripped |= BTRFS_BLOCK_GROUP_DUP;
7766                stripped = flags & ~stripped;
7767
7768                /* turn raid0 into single device chunks */
7769                if (flags & BTRFS_BLOCK_GROUP_RAID0)
7770                        return stripped;
7771
7772                /* turn mirroring into duplication */
7773                if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7774                             BTRFS_BLOCK_GROUP_RAID10))
7775                        return stripped | BTRFS_BLOCK_GROUP_DUP;
7776        } else {
7777                /* they already had raid on here, just return */
7778                if (flags & stripped)
7779                        return flags;
7780
7781                stripped |= BTRFS_BLOCK_GROUP_DUP;
7782                stripped = flags & ~stripped;
7783
7784                /* switch duplicated blocks with raid1 */
7785                if (flags & BTRFS_BLOCK_GROUP_DUP)
7786                        return stripped | BTRFS_BLOCK_GROUP_RAID1;
7787
7788                /* this is drive concat, leave it alone */
7789        }
7790
7791        return flags;
7792}
7793
7794static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7795{
7796        struct btrfs_space_info *sinfo = cache->space_info;
7797        u64 num_bytes;
7798        u64 min_allocable_bytes;
7799        int ret = -ENOSPC;
7800
7801
7802        /*
7803         * We need some metadata space and system metadata space for
7804         * allocating chunks in some corner cases until we force to set
7805         * it to be readonly.
7806         */
7807        if ((sinfo->flags &
7808             (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7809            !force)
7810                min_allocable_bytes = 1 * 1024 * 1024;
7811        else
7812                min_allocable_bytes = 0;
7813
7814        spin_lock(&sinfo->lock);
7815        spin_lock(&cache->lock);
7816
7817        if (cache->ro) {
7818                ret = 0;
7819                goto out;
7820        }
7821
7822        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7823                    cache->bytes_super - btrfs_block_group_used(&cache->item);
7824
7825        if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7826            sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7827            min_allocable_bytes <= sinfo->total_bytes) {
7828                sinfo->bytes_readonly += num_bytes;
7829                cache->ro = 1;
7830                ret = 0;
7831        }
7832out:
7833        spin_unlock(&cache->lock);
7834        spin_unlock(&sinfo->lock);
7835        return ret;
7836}
7837
7838int btrfs_set_block_group_ro(struct btrfs_root *root,
7839                             struct btrfs_block_group_cache *cache)
7840
7841{
7842        struct btrfs_trans_handle *trans;
7843        u64 alloc_flags;
7844        int ret;
7845
7846        BUG_ON(cache->ro);
7847
7848        trans = btrfs_join_transaction(root);
7849        if (IS_ERR(trans))
7850                return PTR_ERR(trans);
7851
7852        alloc_flags = update_block_group_flags(root, cache->flags);
7853        if (alloc_flags != cache->flags) {
7854                ret = do_chunk_alloc(trans, root, alloc_flags,
7855                                     CHUNK_ALLOC_FORCE);
7856                if (ret < 0)
7857                        goto out;
7858        }
7859
7860        ret = set_block_group_ro(cache, 0);
7861        if (!ret)
7862                goto out;
7863        alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7864        ret = do_chunk_alloc(trans, root, alloc_flags,
7865                             CHUNK_ALLOC_FORCE);
7866        if (ret < 0)
7867                goto out;
7868        ret = set_block_group_ro(cache, 0);
7869out:
7870        btrfs_end_transaction(trans, root);
7871        return ret;
7872}
7873
7874int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7875                            struct btrfs_root *root, u64 type)
7876{
7877        u64 alloc_flags = get_alloc_profile(root, type);
7878        return do_chunk_alloc(trans, root, alloc_flags,
7879                              CHUNK_ALLOC_FORCE);
7880}
7881
7882/*
7883 * helper to account the unused space of all the readonly block group in the
7884 * list. takes mirrors into account.
7885 */
7886static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7887{
7888        struct btrfs_block_group_cache *block_group;
7889        u64 free_bytes = 0;
7890        int factor;
7891
7892        list_for_each_entry(block_group, groups_list, list) {
7893                spin_lock(&block_group->lock);
7894
7895                if (!block_group->ro) {
7896                        spin_unlock(&block_group->lock);
7897                        continue;
7898                }
7899
7900                if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7901                                          BTRFS_BLOCK_GROUP_RAID10 |
7902                                          BTRFS_BLOCK_GROUP_DUP))
7903                        factor = 2;
7904                else
7905                        factor = 1;
7906
7907                free_bytes += (block_group->key.offset -
7908                               btrfs_block_group_used(&block_group->item)) *
7909                               factor;
7910
7911                spin_unlock(&block_group->lock);
7912        }
7913
7914        return free_bytes;
7915}
7916
7917/*
7918 * helper to account the unused space of all the readonly block group in the
7919 * space_info. takes mirrors into account.
7920 */
7921u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7922{
7923        int i;
7924        u64 free_bytes = 0;
7925
7926        spin_lock(&sinfo->lock);
7927
7928        for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7929                if (!list_empty(&sinfo->block_groups[i]))
7930                        free_bytes += __btrfs_get_ro_block_group_free_space(
7931                                                &sinfo->block_groups[i]);
7932
7933        spin_unlock(&sinfo->lock);
7934
7935        return free_bytes;
7936}
7937
7938void btrfs_set_block_group_rw(struct btrfs_root *root,
7939                              struct btrfs_block_group_cache *cache)
7940{
7941        struct btrfs_space_info *sinfo = cache->space_info;
7942        u64 num_bytes;
7943
7944        BUG_ON(!cache->ro);
7945
7946        spin_lock(&sinfo->lock);
7947        spin_lock(&cache->lock);
7948        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7949                    cache->bytes_super - btrfs_block_group_used(&cache->item);
7950        sinfo->bytes_readonly -= num_bytes;
7951        cache->ro = 0;
7952        spin_unlock(&cache->lock);
7953        spin_unlock(&sinfo->lock);
7954}
7955
7956/*
7957 * checks to see if its even possible to relocate this block group.
7958 *
7959 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7960 * ok to go ahead and try.
7961 */
7962int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7963{
7964        struct btrfs_block_group_cache *block_group;
7965        struct btrfs_space_info *space_info;
7966        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7967        struct btrfs_device *device;
7968        struct btrfs_trans_handle *trans;
7969        u64 min_free;
7970        u64 dev_min = 1;
7971        u64 dev_nr = 0;
7972        u64 target;
7973        int index;
7974        int full = 0;
7975        int ret = 0;
7976
7977        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7978
7979        /* odd, couldn't find the block group, leave it alone */
7980        if (!block_group)
7981                return -1;
7982
7983        min_free = btrfs_block_group_used(&block_group->item);
7984
7985        /* no bytes used, we're good */
7986        if (!min_free)
7987                goto out;
7988
7989        space_info = block_group->space_info;
7990        spin_lock(&space_info->lock);
7991
7992        full = space_info->full;
7993
7994        /*
7995         * if this is the last block group we have in this space, we can't
7996         * relocate it unless we're able to allocate a new chunk below.
7997         *
7998         * Otherwise, we need to make sure we have room in the space to handle
7999         * all of the extents from this block group.  If we can, we're good
8000         */
8001        if ((space_info->total_bytes != block_group->key.offset) &&
8002            (space_info->bytes_used + space_info->bytes_reserved +
8003             space_info->bytes_pinned + space_info->bytes_readonly +
8004             min_free < space_info->total_bytes)) {
8005                spin_unlock(&space_info->lock);
8006                goto out;
8007        }
8008        spin_unlock(&space_info->lock);
8009
8010        /*
8011         * ok we don't have enough space, but maybe we have free space on our
8012         * devices to allocate new chunks for relocation, so loop through our
8013         * alloc devices and guess if we have enough space.  if this block
8014         * group is going to be restriped, run checks against the target
8015         * profile instead of the current one.
8016         */
8017        ret = -1;
8018
8019        /*
8020         * index:
8021         *      0: raid10
8022         *      1: raid1
8023         *      2: dup
8024         *      3: raid0
8025         *      4: single
8026         */
8027        target = get_restripe_target(root->fs_info, block_group->flags);
8028        if (target) {
8029                index = __get_raid_index(extended_to_chunk(target));
8030        } else {
8031                /*
8032                 * this is just a balance, so if we were marked as full
8033                 * we know there is no space for a new chunk
8034                 */
8035                if (full)
8036                        goto out;
8037
8038                index = get_block_group_index(block_group);
8039        }
8040
8041        if (index == BTRFS_RAID_RAID10) {
8042                dev_min = 4;
8043                /* Divide by 2 */
8044                min_free >>= 1;
8045        } else if (index == BTRFS_RAID_RAID1) {
8046                dev_min = 2;
8047        } else if (index == BTRFS_RAID_DUP) {
8048                /* Multiply by 2 */
8049                min_free <<= 1;
8050        } else if (index == BTRFS_RAID_RAID0) {
8051                dev_min = fs_devices->rw_devices;
8052                do_div(min_free, dev_min);
8053        }
8054
8055        /* We need to do this so that we can look at pending chunks */
8056        trans = btrfs_join_transaction(root);
8057        if (IS_ERR(trans)) {
8058                ret = PTR_ERR(trans);
8059                goto out;
8060        }
8061
8062        mutex_lock(&root->fs_info->chunk_mutex);
8063        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8064                u64 dev_offset;
8065
8066                /*
8067                 * check to make sure we can actually find a chunk with enough
8068                 * space to fit our block group in.
8069                 */
8070                if (device->total_bytes > device->bytes_used + min_free &&
8071                    !device->is_tgtdev_for_dev_replace) {
8072                        ret = find_free_dev_extent(trans, device, min_free,
8073                                                   &dev_offset, NULL);
8074                        if (!ret)
8075                                dev_nr++;
8076
8077                        if (dev_nr >= dev_min)
8078                                break;
8079
8080                        ret = -1;
8081                }
8082        }
8083        mutex_unlock(&root->fs_info->chunk_mutex);
8084        btrfs_end_transaction(trans, root);
8085out:
8086        btrfs_put_block_group(block_group);
8087        return ret;
8088}
8089
8090static int find_first_block_group(struct btrfs_root *root,
8091                struct btrfs_path *path, struct btrfs_key *key)
8092{
8093        int ret = 0;
8094        struct btrfs_key found_key;
8095        struct extent_buffer *leaf;
8096        int slot;
8097
8098        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8099        if (ret < 0)
8100                goto out;
8101
8102        while (1) {
8103                slot = path->slots[0];
8104                leaf = path->nodes[0];
8105                if (slot >= btrfs_header_nritems(leaf)) {
8106                        ret = btrfs_next_leaf(root, path);
8107                        if (ret == 0)
8108                                continue;
8109                        if (ret < 0)
8110                                goto out;
8111                        break;
8112                }
8113                btrfs_item_key_to_cpu(leaf, &found_key, slot);
8114
8115                if (found_key.objectid >= key->objectid &&
8116                    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8117                        ret = 0;
8118                        goto out;
8119                }
8120                path->slots[0]++;
8121        }
8122out:
8123        return ret;
8124}
8125
8126void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8127{
8128        struct btrfs_block_group_cache *block_group;
8129        u64 last = 0;
8130
8131        while (1) {
8132                struct inode *inode;
8133
8134                block_group = btrfs_lookup_first_block_group(info, last);
8135                while (block_group) {
8136                        spin_lock(&block_group->lock);
8137                        if (block_group->iref)
8138                                break;
8139                        spin_unlock(&block_group->lock);
8140                        block_group = next_block_group(info->tree_root,
8141                                                       block_group);
8142                }
8143                if (!block_group) {
8144                        if (last == 0)
8145                                break;
8146                        last = 0;
8147                        continue;
8148                }
8149
8150                inode = block_group->inode;
8151                block_group->iref = 0;
8152                block_group->inode = NULL;
8153                spin_unlock(&block_group->lock);
8154                iput(inode);
8155                last = block_group->key.objectid + block_group->key.offset;
8156                btrfs_put_block_group(block_group);
8157        }
8158}
8159
8160int btrfs_free_block_groups(struct btrfs_fs_info *info)
8161{
8162        struct btrfs_block_group_cache *block_group;
8163        struct btrfs_space_info *space_info;
8164        struct btrfs_caching_control *caching_ctl;
8165        struct rb_node *n;
8166
8167        down_write(&info->extent_commit_sem);
8168        while (!list_empty(&info->caching_block_groups)) {
8169                caching_ctl = list_entry(info->caching_block_groups.next,
8170                                         struct btrfs_caching_control, list);
8171                list_del(&caching_ctl->list);
8172                put_caching_control(caching_ctl);
8173        }
8174        up_write(&info->extent_commit_sem);
8175
8176        spin_lock(&info->block_group_cache_lock);
8177        while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8178                block_group = rb_entry(n, struct btrfs_block_group_cache,
8179                                       cache_node);
8180                rb_erase(&block_group->cache_node,
8181                         &info->block_group_cache_tree);
8182                spin_unlock(&info->block_group_cache_lock);
8183
8184                down_write(&block_group->space_info->groups_sem);
8185                list_del(&block_group->list);
8186                up_write(&block_group->space_info->groups_sem);
8187
8188                if (block_group->cached == BTRFS_CACHE_STARTED)
8189                        wait_block_group_cache_done(block_group);
8190
8191                /*
8192                 * We haven't cached this block group, which means we could
8193                 * possibly have excluded extents on this block group.
8194                 */
8195                if (block_group->cached == BTRFS_CACHE_NO)
8196                        free_excluded_extents(info->extent_root, block_group);
8197
8198                btrfs_remove_free_space_cache(block_group);
8199                btrfs_put_block_group(block_group);
8200
8201                spin_lock(&info->block_group_cache_lock);
8202        }
8203        spin_unlock(&info->block_group_cache_lock);
8204
8205        /* now that all the block groups are freed, go through and
8206         * free all the space_info structs.  This is only called during
8207         * the final stages of unmount, and so we know nobody is
8208         * using them.  We call synchronize_rcu() once before we start,
8209         * just to be on the safe side.
8210         */
8211        synchronize_rcu();
8212
8213        release_global_block_rsv(info);
8214
8215        while(!list_empty(&info->space_info)) {
8216                space_info = list_entry(info->space_info.next,
8217                                        struct btrfs_space_info,
8218                                        list);
8219                if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8220                        if (space_info->bytes_pinned > 0 ||
8221                            space_info->bytes_reserved > 0 ||
8222                            space_info->bytes_may_use > 0) {
8223                                WARN_ON(1);
8224                                dump_space_info(space_info, 0, 0);
8225                        }
8226                }
8227                percpu_counter_destroy(&space_info->total_bytes_pinned);
8228                list_del(&space_info->list);
8229                kfree(space_info);
8230        }
8231        return 0;
8232}
8233
8234static void __link_block_group(struct btrfs_space_info *space_info,
8235                               struct btrfs_block_group_cache *cache)
8236{
8237        int index = get_block_group_index(cache);
8238
8239        down_write(&space_info->groups_sem);
8240        list_add_tail(&cache->list, &space_info->block_groups[index]);
8241        up_write(&space_info->groups_sem);
8242}
8243
8244int btrfs_read_block_groups(struct btrfs_root *root)
8245{
8246        struct btrfs_path *path;
8247        int ret;
8248        struct btrfs_block_group_cache *cache;
8249        struct btrfs_fs_info *info = root->fs_info;
8250        struct btrfs_space_info *space_info;
8251        struct btrfs_key key;
8252        struct btrfs_key found_key;
8253        struct extent_buffer *leaf;
8254        int need_clear = 0;
8255        u64 cache_gen;
8256
8257        root = info->extent_root;
8258        key.objectid = 0;
8259        key.offset = 0;
8260        btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8261        path = btrfs_alloc_path();
8262        if (!path)
8263                return -ENOMEM;
8264        path->reada = 1;
8265
8266        cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8267        if (btrfs_test_opt(root, SPACE_CACHE) &&
8268            btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8269                need_clear = 1;
8270        if (btrfs_test_opt(root, CLEAR_CACHE))
8271                need_clear = 1;
8272
8273        while (1) {
8274                ret = find_first_block_group(root, path, &key);
8275                if (ret > 0)
8276                        break;
8277                if (ret != 0)
8278                        goto error;
8279                leaf = path->nodes[0];
8280                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8281                cache = kzalloc(sizeof(*cache), GFP_NOFS);
8282                if (!cache) {
8283                        ret = -ENOMEM;
8284                        goto error;
8285                }
8286                cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8287                                                GFP_NOFS);
8288                if (!cache->free_space_ctl) {
8289                        kfree(cache);
8290                        ret = -ENOMEM;
8291                        goto error;
8292                }
8293
8294                atomic_set(&cache->count, 1);
8295                spin_lock_init(&cache->lock);
8296                cache->fs_info = info;
8297                INIT_LIST_HEAD(&cache->list);
8298                INIT_LIST_HEAD(&cache->cluster_list);
8299
8300                if (need_clear) {
8301                        /*
8302                         * When we mount with old space cache, we need to
8303                         * set BTRFS_DC_CLEAR and set dirty flag.
8304                         *
8305                         * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8306                         *    truncate the old free space cache inode and
8307                         *    setup a new one.
8308                         * b) Setting 'dirty flag' makes sure that we flush
8309                         *    the new space cache info onto disk.
8310                         */
8311                        cache->disk_cache_state = BTRFS_DC_CLEAR;
8312                        if (btrfs_test_opt(root, SPACE_CACHE))
8313                                cache->dirty = 1;
8314                }
8315
8316                read_extent_buffer(leaf, &cache->item,
8317                                   btrfs_item_ptr_offset(leaf, path->slots[0]),
8318                                   sizeof(cache->item));
8319                memcpy(&cache->key, &found_key, sizeof(found_key));
8320
8321                key.objectid = found_key.objectid + found_key.offset;
8322                btrfs_release_path(path);
8323                cache->flags = btrfs_block_group_flags(&cache->item);
8324                cache->sectorsize = root->sectorsize;
8325                cache->full_stripe_len = btrfs_full_stripe_len(root,
8326                                               &root->fs_info->mapping_tree,
8327                                               found_key.objectid);
8328                btrfs_init_free_space_ctl(cache);
8329
8330                /*
8331                 * We need to exclude the super stripes now so that the space
8332                 * info has super bytes accounted for, otherwise we'll think
8333                 * we have more space than we actually do.
8334                 */
8335                ret = exclude_super_stripes(root, cache);
8336                if (ret) {
8337                        /*
8338                         * We may have excluded something, so call this just in
8339                         * case.
8340                         */
8341                        free_excluded_extents(root, cache);
8342                        kfree(cache->free_space_ctl);
8343                        kfree(cache);
8344                        goto error;
8345                }
8346
8347                /*
8348                 * check for two cases, either we are full, and therefore
8349                 * don't need to bother with the caching work since we won't
8350                 * find any space, or we are empty, and we can just add all
8351                 * the space in and be done with it.  This saves us _alot_ of
8352                 * time, particularly in the full case.
8353                 */
8354                if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8355                        cache->last_byte_to_unpin = (u64)-1;
8356                        cache->cached = BTRFS_CACHE_FINISHED;
8357                        free_excluded_extents(root, cache);
8358                } else if (btrfs_block_group_used(&cache->item) == 0) {
8359                        cache->last_byte_to_unpin = (u64)-1;
8360                        cache->cached = BTRFS_CACHE_FINISHED;
8361                        add_new_free_space(cache, root->fs_info,
8362                                           found_key.objectid,
8363                                           found_key.objectid +
8364                                           found_key.offset);
8365                        free_excluded_extents(root, cache);
8366                }
8367
8368                ret = btrfs_add_block_group_cache(root->fs_info, cache);
8369                if (ret) {
8370                        btrfs_remove_free_space_cache(cache);
8371                        btrfs_put_block_group(cache);
8372                        goto error;
8373                }
8374
8375                ret = update_space_info(info, cache->flags, found_key.offset,
8376                                        btrfs_block_group_used(&cache->item),
8377                                        &space_info);
8378                if (ret) {
8379                        btrfs_remove_free_space_cache(cache);
8380                        spin_lock(&info->block_group_cache_lock);
8381                        rb_erase(&cache->cache_node,
8382                                 &info->block_group_cache_tree);
8383                        spin_unlock(&info->block_group_cache_lock);
8384                        btrfs_put_block_group(cache);
8385                        goto error;
8386                }
8387
8388                cache->space_info = space_info;
8389                spin_lock(&cache->space_info->lock);
8390                cache->space_info->bytes_readonly += cache->bytes_super;
8391                spin_unlock(&cache->space_info->lock);
8392
8393                __link_block_group(space_info, cache);
8394
8395                set_avail_alloc_bits(root->fs_info, cache->flags);
8396                if (btrfs_chunk_readonly(root, cache->key.objectid))
8397                        set_block_group_ro(cache, 1);
8398        }
8399
8400        list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8401                if (!(get_alloc_profile(root, space_info->flags) &
8402                      (BTRFS_BLOCK_GROUP_RAID10 |
8403                       BTRFS_BLOCK_GROUP_RAID1 |
8404                       BTRFS_BLOCK_GROUP_RAID5 |
8405                       BTRFS_BLOCK_GROUP_RAID6 |
8406                       BTRFS_BLOCK_GROUP_DUP)))
8407                        continue;
8408                /*
8409                 * avoid allocating from un-mirrored block group if there are
8410                 * mirrored block groups.
8411                 */
8412                list_for_each_entry(cache, &space_info->block_groups[3], list)
8413                        set_block_group_ro(cache, 1);
8414                list_for_each_entry(cache, &space_info->block_groups[4], list)
8415                        set_block_group_ro(cache, 1);
8416        }
8417
8418        init_global_block_rsv(info);
8419        ret = 0;
8420error:
8421        btrfs_free_path(path);
8422        return ret;
8423}
8424
8425void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8426                                       struct btrfs_root *root)
8427{
8428        struct btrfs_block_group_cache *block_group, *tmp;
8429        struct btrfs_root *extent_root = root->fs_info->extent_root;
8430        struct btrfs_block_group_item item;
8431        struct btrfs_key key;
8432        int ret = 0;
8433
8434        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8435                                 new_bg_list) {
8436                list_del_init(&block_group->new_bg_list);
8437
8438                if (ret)
8439                        continue;
8440
8441                spin_lock(&block_group->lock);
8442                memcpy(&item, &block_group->item, sizeof(item));
8443                memcpy(&key, &block_group->key, sizeof(key));
8444                spin_unlock(&block_group->lock);
8445
8446                ret = btrfs_insert_item(trans, extent_root, &key, &item,
8447                                        sizeof(item));
8448                if (ret)
8449                        btrfs_abort_transaction(trans, extent_root, ret);
8450                ret = btrfs_finish_chunk_alloc(trans, extent_root,
8451                                               key.objectid, key.offset);
8452                if (ret)
8453                        btrfs_abort_transaction(trans, extent_root, ret);
8454        }
8455}
8456
8457int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8458                           struct btrfs_root *root, u64 bytes_used,
8459                           u64 type, u64 chunk_objectid, u64 chunk_offset,
8460                           u64 size)
8461{
8462        int ret;
8463        struct btrfs_root *extent_root;
8464        struct btrfs_block_group_cache *cache;
8465
8466        extent_root = root->fs_info->extent_root;
8467
8468        root->fs_info->last_trans_log_full_commit = trans->transid;
8469
8470        cache = kzalloc(sizeof(*cache), GFP_NOFS);
8471        if (!cache)
8472                return -ENOMEM;
8473        cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8474                                        GFP_NOFS);
8475        if (!cache->free_space_ctl) {
8476                kfree(cache);
8477                return -ENOMEM;
8478        }
8479
8480        cache->key.objectid = chunk_offset;
8481        cache->key.offset = size;
8482        cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8483        cache->sectorsize = root->sectorsize;
8484        cache->fs_info = root->fs_info;
8485        cache->full_stripe_len = btrfs_full_stripe_len(root,
8486                                               &root->fs_info->mapping_tree,
8487                                               chunk_offset);
8488
8489        atomic_set(&cache->count, 1);
8490        spin_lock_init(&cache->lock);
8491        INIT_LIST_HEAD(&cache->list);
8492        INIT_LIST_HEAD(&cache->cluster_list);
8493        INIT_LIST_HEAD(&cache->new_bg_list);
8494
8495        btrfs_init_free_space_ctl(cache);
8496
8497        btrfs_set_block_group_used(&cache->item, bytes_used);
8498        btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8499        cache->flags = type;
8500        btrfs_set_block_group_flags(&cache->item, type);
8501
8502        cache->last_byte_to_unpin = (u64)-1;
8503        cache->cached = BTRFS_CACHE_FINISHED;
8504        ret = exclude_super_stripes(root, cache);
8505        if (ret) {
8506                /*
8507                 * We may have excluded something, so call this just in
8508                 * case.
8509                 */
8510                free_excluded_extents(root, cache);
8511                kfree(cache->free_space_ctl);
8512                kfree(cache);
8513                return ret;
8514        }
8515
8516        add_new_free_space(cache, root->fs_info, chunk_offset,
8517                           chunk_offset + size);
8518
8519        free_excluded_extents(root, cache);
8520
8521        ret = btrfs_add_block_group_cache(root->fs_info, cache);
8522        if (ret) {
8523                btrfs_remove_free_space_cache(cache);
8524                btrfs_put_block_group(cache);
8525                return ret;
8526        }
8527
8528        ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8529                                &cache->space_info);
8530        if (ret) {
8531                btrfs_remove_free_space_cache(cache);
8532                spin_lock(&root->fs_info->block_group_cache_lock);
8533                rb_erase(&cache->cache_node,
8534                         &root->fs_info->block_group_cache_tree);
8535                spin_unlock(&root->fs_info->block_group_cache_lock);
8536                btrfs_put_block_group(cache);
8537                return ret;
8538        }
8539        update_global_block_rsv(root->fs_info);
8540
8541        spin_lock(&cache->space_info->lock);
8542        cache->space_info->bytes_readonly += cache->bytes_super;
8543        spin_unlock(&cache->space_info->lock);
8544
8545        __link_block_group(cache->space_info, cache);
8546
8547        list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8548
8549        set_avail_alloc_bits(extent_root->fs_info, type);
8550
8551        return 0;
8552}
8553
8554static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8555{
8556        u64 extra_flags = chunk_to_extended(flags) &
8557                                BTRFS_EXTENDED_PROFILE_MASK;
8558
8559        write_seqlock(&fs_info->profiles_lock);
8560        if (flags & BTRFS_BLOCK_GROUP_DATA)
8561                fs_info->avail_data_alloc_bits &= ~extra_flags;
8562        if (flags & BTRFS_BLOCK_GROUP_METADATA)
8563                fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8564        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8565                fs_info->avail_system_alloc_bits &= ~extra_flags;
8566        write_sequnlock(&fs_info->profiles_lock);
8567}
8568
8569int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8570                             struct btrfs_root *root, u64 group_start)
8571{
8572        struct btrfs_path *path;
8573        struct btrfs_block_group_cache *block_group;
8574        struct btrfs_free_cluster *cluster;
8575        struct btrfs_root *tree_root = root->fs_info->tree_root;
8576        struct btrfs_key key;
8577        struct inode *inode;
8578        int ret;
8579        int index;
8580        int factor;
8581
8582        root = root->fs_info->extent_root;
8583
8584        block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8585        BUG_ON(!block_group);
8586        BUG_ON(!block_group->ro);
8587
8588        /*
8589         * Free the reserved super bytes from this block group before
8590         * remove it.
8591         */
8592        free_excluded_extents(root, block_group);
8593
8594        memcpy(&key, &block_group->key, sizeof(key));
8595        index = get_block_group_index(block_group);
8596        if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8597                                  BTRFS_BLOCK_GROUP_RAID1 |
8598                                  BTRFS_BLOCK_GROUP_RAID10))
8599                factor = 2;
8600        else
8601                factor = 1;
8602
8603        /* make sure this block group isn't part of an allocation cluster */
8604        cluster = &root->fs_info->data_alloc_cluster;
8605        spin_lock(&cluster->refill_lock);
8606        btrfs_return_cluster_to_free_space(block_group, cluster);
8607        spin_unlock(&cluster->refill_lock);
8608
8609        /*
8610         * make sure this block group isn't part of a metadata
8611         * allocation cluster
8612         */
8613        cluster = &root->fs_info->meta_alloc_cluster;
8614        spin_lock(&cluster->refill_lock);
8615        btrfs_return_cluster_to_free_space(block_group, cluster);
8616        spin_unlock(&cluster->refill_lock);
8617
8618        path = btrfs_alloc_path();
8619        if (!path) {
8620                ret = -ENOMEM;
8621                goto out;
8622        }
8623
8624        inode = lookup_free_space_inode(tree_root, block_group, path);
8625        if (!IS_ERR(inode)) {
8626                ret = btrfs_orphan_add(trans, inode);
8627                if (ret) {
8628                        btrfs_add_delayed_iput(inode);
8629                        goto out;
8630                }
8631                clear_nlink(inode);
8632                /* One for the block groups ref */
8633                spin_lock(&block_group->lock);
8634                if (block_group->iref) {
8635                        block_group->iref = 0;
8636                        block_group->inode = NULL;
8637                        spin_unlock(&block_group->lock);
8638                        iput(inode);
8639                } else {
8640                        spin_unlock(&block_group->lock);
8641                }
8642                /* One for our lookup ref */
8643                btrfs_add_delayed_iput(inode);
8644        }
8645
8646        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8647        key.offset = block_group->key.objectid;
8648        key.type = 0;
8649
8650        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8651        if (ret < 0)
8652                goto out;
8653        if (ret > 0)
8654                btrfs_release_path(path);
8655        if (ret == 0) {
8656                ret = btrfs_del_item(trans, tree_root, path);
8657                if (ret)
8658                        goto out;
8659                btrfs_release_path(path);
8660        }
8661
8662        spin_lock(&root->fs_info->block_group_cache_lock);
8663        rb_erase(&block_group->cache_node,
8664                 &root->fs_info->block_group_cache_tree);
8665
8666        if (root->fs_info->first_logical_byte == block_group->key.objectid)
8667                root->fs_info->first_logical_byte = (u64)-1;
8668        spin_unlock(&root->fs_info->block_group_cache_lock);
8669
8670        down_write(&block_group->space_info->groups_sem);
8671        /*
8672         * we must use list_del_init so people can check to see if they
8673         * are still on the list after taking the semaphore
8674         */
8675        list_del_init(&block_group->list);
8676        if (list_empty(&block_group->space_info->block_groups[index]))
8677                clear_avail_alloc_bits(root->fs_info, block_group->flags);
8678        up_write(&block_group->space_info->groups_sem);
8679
8680        if (block_group->cached == BTRFS_CACHE_STARTED)
8681                wait_block_group_cache_done(block_group);
8682
8683        btrfs_remove_free_space_cache(block_group);
8684
8685        spin_lock(&block_group->space_info->lock);
8686        block_group->space_info->total_bytes -= block_group->key.offset;
8687        block_group->space_info->bytes_readonly -= block_group->key.offset;
8688        block_group->space_info->disk_total -= block_group->key.offset * factor;
8689        spin_unlock(&block_group->space_info->lock);
8690
8691        memcpy(&key, &block_group->key, sizeof(key));
8692
8693        btrfs_clear_space_info_full(root->fs_info);
8694
8695        btrfs_put_block_group(block_group);
8696        btrfs_put_block_group(block_group);
8697
8698        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8699        if (ret > 0)
8700                ret = -EIO;
8701        if (ret < 0)
8702                goto out;
8703
8704        ret = btrfs_del_item(trans, root, path);
8705out:
8706        btrfs_free_path(path);
8707        return ret;
8708}
8709
8710int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8711{
8712        struct btrfs_space_info *space_info;
8713        struct btrfs_super_block *disk_super;
8714        u64 features;
8715        u64 flags;
8716        int mixed = 0;
8717        int ret;
8718
8719        disk_super = fs_info->super_copy;
8720        if (!btrfs_super_root(disk_super))
8721                return 1;
8722
8723        features = btrfs_super_incompat_flags(disk_super);
8724        if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8725                mixed = 1;
8726
8727        flags = BTRFS_BLOCK_GROUP_SYSTEM;
8728        ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8729        if (ret)
8730                goto out;
8731
8732        if (mixed) {
8733                flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8734                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8735        } else {
8736                flags = BTRFS_BLOCK_GROUP_METADATA;
8737                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8738                if (ret)
8739                        goto out;
8740
8741                flags = BTRFS_BLOCK_GROUP_DATA;
8742                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8743        }
8744out:
8745        return ret;
8746}
8747
8748int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8749{
8750        return unpin_extent_range(root, start, end);
8751}
8752
8753int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8754                               u64 num_bytes, u64 *actual_bytes)
8755{
8756        return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8757}
8758
8759int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8760{
8761        struct btrfs_fs_info *fs_info = root->fs_info;
8762        struct btrfs_block_group_cache *cache = NULL;
8763        u64 group_trimmed;
8764        u64 start;
8765        u64 end;
8766        u64 trimmed = 0;
8767        u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8768        int ret = 0;
8769
8770        /*
8771         * try to trim all FS space, our block group may start from non-zero.
8772         */
8773        if (range->len == total_bytes)
8774                cache = btrfs_lookup_first_block_group(fs_info, range->start);
8775        else
8776                cache = btrfs_lookup_block_group(fs_info, range->start);
8777
8778        while (cache) {
8779                if (cache->key.objectid >= (range->start + range->len)) {
8780                        btrfs_put_block_group(cache);
8781                        break;
8782                }
8783
8784                start = max(range->start, cache->key.objectid);
8785                end = min(range->start + range->len,
8786                                cache->key.objectid + cache->key.offset);
8787
8788                if (end - start >= range->minlen) {
8789                        if (!block_group_cache_done(cache)) {
8790                                ret = cache_block_group(cache, 0);
8791                                if (ret) {
8792                                        btrfs_put_block_group(cache);
8793                                        break;
8794                                }
8795                                ret = wait_block_group_cache_done(cache);
8796                                if (ret) {
8797                                        btrfs_put_block_group(cache);
8798                                        break;
8799                                }
8800                        }
8801                        ret = btrfs_trim_block_group(cache,
8802                                                     &group_trimmed,
8803                                                     start,
8804                                                     end,
8805                                                     range->minlen);
8806
8807                        trimmed += group_trimmed;
8808                        if (ret) {
8809                                btrfs_put_block_group(cache);
8810                                break;
8811                        }
8812                }
8813
8814                cache = next_block_group(fs_info->tree_root, cache);
8815        }
8816
8817        range->len = trimmed;
8818        return ret;
8819}
8820