linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "compat.h"
  17#include "ctree.h"
  18#include "btrfs_inode.h"
  19#include "volumes.h"
  20#include "check-integrity.h"
  21#include "locking.h"
  22#include "rcu-string.h"
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28#ifdef CONFIG_BTRFS_DEBUG
  29static LIST_HEAD(buffers);
  30static LIST_HEAD(states);
  31
  32static DEFINE_SPINLOCK(leak_lock);
  33
  34static inline
  35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  36{
  37        unsigned long flags;
  38
  39        spin_lock_irqsave(&leak_lock, flags);
  40        list_add(new, head);
  41        spin_unlock_irqrestore(&leak_lock, flags);
  42}
  43
  44static inline
  45void btrfs_leak_debug_del(struct list_head *entry)
  46{
  47        unsigned long flags;
  48
  49        spin_lock_irqsave(&leak_lock, flags);
  50        list_del(entry);
  51        spin_unlock_irqrestore(&leak_lock, flags);
  52}
  53
  54static inline
  55void btrfs_leak_debug_check(void)
  56{
  57        struct extent_state *state;
  58        struct extent_buffer *eb;
  59
  60        while (!list_empty(&states)) {
  61                state = list_entry(states.next, struct extent_state, leak_list);
  62                printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  63                       "state %lu in tree %p refs %d\n",
  64                       (unsigned long long)state->start,
  65                       (unsigned long long)state->end,
  66                       state->state, state->tree, atomic_read(&state->refs));
  67                list_del(&state->leak_list);
  68                kmem_cache_free(extent_state_cache, state);
  69        }
  70
  71        while (!list_empty(&buffers)) {
  72                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  73                printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
  74                       "refs %d\n", (unsigned long long)eb->start,
  75                       eb->len, atomic_read(&eb->refs));
  76                list_del(&eb->leak_list);
  77                kmem_cache_free(extent_buffer_cache, eb);
  78        }
  79}
  80
  81#define btrfs_debug_check_extent_io_range(inode, start, end)            \
  82        __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
  83static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  84                struct inode *inode, u64 start, u64 end)
  85{
  86        u64 isize = i_size_read(inode);
  87
  88        if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  89                printk_ratelimited(KERN_DEBUG
  90                    "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
  91                                caller,
  92                                (unsigned long long)btrfs_ino(inode),
  93                                (unsigned long long)isize,
  94                                (unsigned long long)start,
  95                                (unsigned long long)end);
  96        }
  97}
  98#else
  99#define btrfs_leak_debug_add(new, head) do {} while (0)
 100#define btrfs_leak_debug_del(entry)     do {} while (0)
 101#define btrfs_leak_debug_check()        do {} while (0)
 102#define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
 103#endif
 104
 105#define BUFFER_LRU_MAX 64
 106
 107struct tree_entry {
 108        u64 start;
 109        u64 end;
 110        struct rb_node rb_node;
 111};
 112
 113struct extent_page_data {
 114        struct bio *bio;
 115        struct extent_io_tree *tree;
 116        get_extent_t *get_extent;
 117        unsigned long bio_flags;
 118
 119        /* tells writepage not to lock the state bits for this range
 120         * it still does the unlocking
 121         */
 122        unsigned int extent_locked:1;
 123
 124        /* tells the submit_bio code to use a WRITE_SYNC */
 125        unsigned int sync_io:1;
 126};
 127
 128static noinline void flush_write_bio(void *data);
 129static inline struct btrfs_fs_info *
 130tree_fs_info(struct extent_io_tree *tree)
 131{
 132        return btrfs_sb(tree->mapping->host->i_sb);
 133}
 134
 135int __init extent_io_init(void)
 136{
 137        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 138                        sizeof(struct extent_state), 0,
 139                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 140        if (!extent_state_cache)
 141                return -ENOMEM;
 142
 143        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 144                        sizeof(struct extent_buffer), 0,
 145                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 146        if (!extent_buffer_cache)
 147                goto free_state_cache;
 148
 149        btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 150                                     offsetof(struct btrfs_io_bio, bio));
 151        if (!btrfs_bioset)
 152                goto free_buffer_cache;
 153        return 0;
 154
 155free_buffer_cache:
 156        kmem_cache_destroy(extent_buffer_cache);
 157        extent_buffer_cache = NULL;
 158
 159free_state_cache:
 160        kmem_cache_destroy(extent_state_cache);
 161        extent_state_cache = NULL;
 162        return -ENOMEM;
 163}
 164
 165void extent_io_exit(void)
 166{
 167        btrfs_leak_debug_check();
 168
 169        /*
 170         * Make sure all delayed rcu free are flushed before we
 171         * destroy caches.
 172         */
 173        rcu_barrier();
 174        if (extent_state_cache)
 175                kmem_cache_destroy(extent_state_cache);
 176        if (extent_buffer_cache)
 177                kmem_cache_destroy(extent_buffer_cache);
 178        if (btrfs_bioset)
 179                bioset_free(btrfs_bioset);
 180}
 181
 182void extent_io_tree_init(struct extent_io_tree *tree,
 183                         struct address_space *mapping)
 184{
 185        tree->state = RB_ROOT;
 186        INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 187        tree->ops = NULL;
 188        tree->dirty_bytes = 0;
 189        spin_lock_init(&tree->lock);
 190        spin_lock_init(&tree->buffer_lock);
 191        tree->mapping = mapping;
 192}
 193
 194static struct extent_state *alloc_extent_state(gfp_t mask)
 195{
 196        struct extent_state *state;
 197
 198        state = kmem_cache_alloc(extent_state_cache, mask);
 199        if (!state)
 200                return state;
 201        state->state = 0;
 202        state->private = 0;
 203        state->tree = NULL;
 204        btrfs_leak_debug_add(&state->leak_list, &states);
 205        atomic_set(&state->refs, 1);
 206        init_waitqueue_head(&state->wq);
 207        trace_alloc_extent_state(state, mask, _RET_IP_);
 208        return state;
 209}
 210
 211void free_extent_state(struct extent_state *state)
 212{
 213        if (!state)
 214                return;
 215        if (atomic_dec_and_test(&state->refs)) {
 216                WARN_ON(state->tree);
 217                btrfs_leak_debug_del(&state->leak_list);
 218                trace_free_extent_state(state, _RET_IP_);
 219                kmem_cache_free(extent_state_cache, state);
 220        }
 221}
 222
 223static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 224                                   struct rb_node *node)
 225{
 226        struct rb_node **p = &root->rb_node;
 227        struct rb_node *parent = NULL;
 228        struct tree_entry *entry;
 229
 230        while (*p) {
 231                parent = *p;
 232                entry = rb_entry(parent, struct tree_entry, rb_node);
 233
 234                if (offset < entry->start)
 235                        p = &(*p)->rb_left;
 236                else if (offset > entry->end)
 237                        p = &(*p)->rb_right;
 238                else
 239                        return parent;
 240        }
 241
 242        rb_link_node(node, parent, p);
 243        rb_insert_color(node, root);
 244        return NULL;
 245}
 246
 247static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 248                                     struct rb_node **prev_ret,
 249                                     struct rb_node **next_ret)
 250{
 251        struct rb_root *root = &tree->state;
 252        struct rb_node *n = root->rb_node;
 253        struct rb_node *prev = NULL;
 254        struct rb_node *orig_prev = NULL;
 255        struct tree_entry *entry;
 256        struct tree_entry *prev_entry = NULL;
 257
 258        while (n) {
 259                entry = rb_entry(n, struct tree_entry, rb_node);
 260                prev = n;
 261                prev_entry = entry;
 262
 263                if (offset < entry->start)
 264                        n = n->rb_left;
 265                else if (offset > entry->end)
 266                        n = n->rb_right;
 267                else
 268                        return n;
 269        }
 270
 271        if (prev_ret) {
 272                orig_prev = prev;
 273                while (prev && offset > prev_entry->end) {
 274                        prev = rb_next(prev);
 275                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 276                }
 277                *prev_ret = prev;
 278                prev = orig_prev;
 279        }
 280
 281        if (next_ret) {
 282                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 283                while (prev && offset < prev_entry->start) {
 284                        prev = rb_prev(prev);
 285                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 286                }
 287                *next_ret = prev;
 288        }
 289        return NULL;
 290}
 291
 292static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 293                                          u64 offset)
 294{
 295        struct rb_node *prev = NULL;
 296        struct rb_node *ret;
 297
 298        ret = __etree_search(tree, offset, &prev, NULL);
 299        if (!ret)
 300                return prev;
 301        return ret;
 302}
 303
 304static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 305                     struct extent_state *other)
 306{
 307        if (tree->ops && tree->ops->merge_extent_hook)
 308                tree->ops->merge_extent_hook(tree->mapping->host, new,
 309                                             other);
 310}
 311
 312/*
 313 * utility function to look for merge candidates inside a given range.
 314 * Any extents with matching state are merged together into a single
 315 * extent in the tree.  Extents with EXTENT_IO in their state field
 316 * are not merged because the end_io handlers need to be able to do
 317 * operations on them without sleeping (or doing allocations/splits).
 318 *
 319 * This should be called with the tree lock held.
 320 */
 321static void merge_state(struct extent_io_tree *tree,
 322                        struct extent_state *state)
 323{
 324        struct extent_state *other;
 325        struct rb_node *other_node;
 326
 327        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 328                return;
 329
 330        other_node = rb_prev(&state->rb_node);
 331        if (other_node) {
 332                other = rb_entry(other_node, struct extent_state, rb_node);
 333                if (other->end == state->start - 1 &&
 334                    other->state == state->state) {
 335                        merge_cb(tree, state, other);
 336                        state->start = other->start;
 337                        other->tree = NULL;
 338                        rb_erase(&other->rb_node, &tree->state);
 339                        free_extent_state(other);
 340                }
 341        }
 342        other_node = rb_next(&state->rb_node);
 343        if (other_node) {
 344                other = rb_entry(other_node, struct extent_state, rb_node);
 345                if (other->start == state->end + 1 &&
 346                    other->state == state->state) {
 347                        merge_cb(tree, state, other);
 348                        state->end = other->end;
 349                        other->tree = NULL;
 350                        rb_erase(&other->rb_node, &tree->state);
 351                        free_extent_state(other);
 352                }
 353        }
 354}
 355
 356static void set_state_cb(struct extent_io_tree *tree,
 357                         struct extent_state *state, unsigned long *bits)
 358{
 359        if (tree->ops && tree->ops->set_bit_hook)
 360                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 361}
 362
 363static void clear_state_cb(struct extent_io_tree *tree,
 364                           struct extent_state *state, unsigned long *bits)
 365{
 366        if (tree->ops && tree->ops->clear_bit_hook)
 367                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 368}
 369
 370static void set_state_bits(struct extent_io_tree *tree,
 371                           struct extent_state *state, unsigned long *bits);
 372
 373/*
 374 * insert an extent_state struct into the tree.  'bits' are set on the
 375 * struct before it is inserted.
 376 *
 377 * This may return -EEXIST if the extent is already there, in which case the
 378 * state struct is freed.
 379 *
 380 * The tree lock is not taken internally.  This is a utility function and
 381 * probably isn't what you want to call (see set/clear_extent_bit).
 382 */
 383static int insert_state(struct extent_io_tree *tree,
 384                        struct extent_state *state, u64 start, u64 end,
 385                        unsigned long *bits)
 386{
 387        struct rb_node *node;
 388
 389        if (end < start)
 390                WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
 391                       (unsigned long long)end,
 392                       (unsigned long long)start);
 393        state->start = start;
 394        state->end = end;
 395
 396        set_state_bits(tree, state, bits);
 397
 398        node = tree_insert(&tree->state, end, &state->rb_node);
 399        if (node) {
 400                struct extent_state *found;
 401                found = rb_entry(node, struct extent_state, rb_node);
 402                printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 403                       "%llu %llu\n", (unsigned long long)found->start,
 404                       (unsigned long long)found->end,
 405                       (unsigned long long)start, (unsigned long long)end);
 406                return -EEXIST;
 407        }
 408        state->tree = tree;
 409        merge_state(tree, state);
 410        return 0;
 411}
 412
 413static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 414                     u64 split)
 415{
 416        if (tree->ops && tree->ops->split_extent_hook)
 417                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 418}
 419
 420/*
 421 * split a given extent state struct in two, inserting the preallocated
 422 * struct 'prealloc' as the newly created second half.  'split' indicates an
 423 * offset inside 'orig' where it should be split.
 424 *
 425 * Before calling,
 426 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 427 * are two extent state structs in the tree:
 428 * prealloc: [orig->start, split - 1]
 429 * orig: [ split, orig->end ]
 430 *
 431 * The tree locks are not taken by this function. They need to be held
 432 * by the caller.
 433 */
 434static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 435                       struct extent_state *prealloc, u64 split)
 436{
 437        struct rb_node *node;
 438
 439        split_cb(tree, orig, split);
 440
 441        prealloc->start = orig->start;
 442        prealloc->end = split - 1;
 443        prealloc->state = orig->state;
 444        orig->start = split;
 445
 446        node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 447        if (node) {
 448                free_extent_state(prealloc);
 449                return -EEXIST;
 450        }
 451        prealloc->tree = tree;
 452        return 0;
 453}
 454
 455static struct extent_state *next_state(struct extent_state *state)
 456{
 457        struct rb_node *next = rb_next(&state->rb_node);
 458        if (next)
 459                return rb_entry(next, struct extent_state, rb_node);
 460        else
 461                return NULL;
 462}
 463
 464/*
 465 * utility function to clear some bits in an extent state struct.
 466 * it will optionally wake up any one waiting on this state (wake == 1).
 467 *
 468 * If no bits are set on the state struct after clearing things, the
 469 * struct is freed and removed from the tree
 470 */
 471static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 472                                            struct extent_state *state,
 473                                            unsigned long *bits, int wake)
 474{
 475        struct extent_state *next;
 476        unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
 477
 478        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 479                u64 range = state->end - state->start + 1;
 480                WARN_ON(range > tree->dirty_bytes);
 481                tree->dirty_bytes -= range;
 482        }
 483        clear_state_cb(tree, state, bits);
 484        state->state &= ~bits_to_clear;
 485        if (wake)
 486                wake_up(&state->wq);
 487        if (state->state == 0) {
 488                next = next_state(state);
 489                if (state->tree) {
 490                        rb_erase(&state->rb_node, &tree->state);
 491                        state->tree = NULL;
 492                        free_extent_state(state);
 493                } else {
 494                        WARN_ON(1);
 495                }
 496        } else {
 497                merge_state(tree, state);
 498                next = next_state(state);
 499        }
 500        return next;
 501}
 502
 503static struct extent_state *
 504alloc_extent_state_atomic(struct extent_state *prealloc)
 505{
 506        if (!prealloc)
 507                prealloc = alloc_extent_state(GFP_ATOMIC);
 508
 509        return prealloc;
 510}
 511
 512static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 513{
 514        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 515                    "Extent tree was modified by another "
 516                    "thread while locked.");
 517}
 518
 519/*
 520 * clear some bits on a range in the tree.  This may require splitting
 521 * or inserting elements in the tree, so the gfp mask is used to
 522 * indicate which allocations or sleeping are allowed.
 523 *
 524 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 525 * the given range from the tree regardless of state (ie for truncate).
 526 *
 527 * the range [start, end] is inclusive.
 528 *
 529 * This takes the tree lock, and returns 0 on success and < 0 on error.
 530 */
 531int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 532                     unsigned long bits, int wake, int delete,
 533                     struct extent_state **cached_state,
 534                     gfp_t mask)
 535{
 536        struct extent_state *state;
 537        struct extent_state *cached;
 538        struct extent_state *prealloc = NULL;
 539        struct rb_node *node;
 540        u64 last_end;
 541        int err;
 542        int clear = 0;
 543
 544        btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
 545
 546        if (bits & EXTENT_DELALLOC)
 547                bits |= EXTENT_NORESERVE;
 548
 549        if (delete)
 550                bits |= ~EXTENT_CTLBITS;
 551        bits |= EXTENT_FIRST_DELALLOC;
 552
 553        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 554                clear = 1;
 555again:
 556        if (!prealloc && (mask & __GFP_WAIT)) {
 557                prealloc = alloc_extent_state(mask);
 558                if (!prealloc)
 559                        return -ENOMEM;
 560        }
 561
 562        spin_lock(&tree->lock);
 563        if (cached_state) {
 564                cached = *cached_state;
 565
 566                if (clear) {
 567                        *cached_state = NULL;
 568                        cached_state = NULL;
 569                }
 570
 571                if (cached && cached->tree && cached->start <= start &&
 572                    cached->end > start) {
 573                        if (clear)
 574                                atomic_dec(&cached->refs);
 575                        state = cached;
 576                        goto hit_next;
 577                }
 578                if (clear)
 579                        free_extent_state(cached);
 580        }
 581        /*
 582         * this search will find the extents that end after
 583         * our range starts
 584         */
 585        node = tree_search(tree, start);
 586        if (!node)
 587                goto out;
 588        state = rb_entry(node, struct extent_state, rb_node);
 589hit_next:
 590        if (state->start > end)
 591                goto out;
 592        WARN_ON(state->end < start);
 593        last_end = state->end;
 594
 595        /* the state doesn't have the wanted bits, go ahead */
 596        if (!(state->state & bits)) {
 597                state = next_state(state);
 598                goto next;
 599        }
 600
 601        /*
 602         *     | ---- desired range ---- |
 603         *  | state | or
 604         *  | ------------- state -------------- |
 605         *
 606         * We need to split the extent we found, and may flip
 607         * bits on second half.
 608         *
 609         * If the extent we found extends past our range, we
 610         * just split and search again.  It'll get split again
 611         * the next time though.
 612         *
 613         * If the extent we found is inside our range, we clear
 614         * the desired bit on it.
 615         */
 616
 617        if (state->start < start) {
 618                prealloc = alloc_extent_state_atomic(prealloc);
 619                BUG_ON(!prealloc);
 620                err = split_state(tree, state, prealloc, start);
 621                if (err)
 622                        extent_io_tree_panic(tree, err);
 623
 624                prealloc = NULL;
 625                if (err)
 626                        goto out;
 627                if (state->end <= end) {
 628                        state = clear_state_bit(tree, state, &bits, wake);
 629                        goto next;
 630                }
 631                goto search_again;
 632        }
 633        /*
 634         * | ---- desired range ---- |
 635         *                        | state |
 636         * We need to split the extent, and clear the bit
 637         * on the first half
 638         */
 639        if (state->start <= end && state->end > end) {
 640                prealloc = alloc_extent_state_atomic(prealloc);
 641                BUG_ON(!prealloc);
 642                err = split_state(tree, state, prealloc, end + 1);
 643                if (err)
 644                        extent_io_tree_panic(tree, err);
 645
 646                if (wake)
 647                        wake_up(&state->wq);
 648
 649                clear_state_bit(tree, prealloc, &bits, wake);
 650
 651                prealloc = NULL;
 652                goto out;
 653        }
 654
 655        state = clear_state_bit(tree, state, &bits, wake);
 656next:
 657        if (last_end == (u64)-1)
 658                goto out;
 659        start = last_end + 1;
 660        if (start <= end && state && !need_resched())
 661                goto hit_next;
 662        goto search_again;
 663
 664out:
 665        spin_unlock(&tree->lock);
 666        if (prealloc)
 667                free_extent_state(prealloc);
 668
 669        return 0;
 670
 671search_again:
 672        if (start > end)
 673                goto out;
 674        spin_unlock(&tree->lock);
 675        if (mask & __GFP_WAIT)
 676                cond_resched();
 677        goto again;
 678}
 679
 680static void wait_on_state(struct extent_io_tree *tree,
 681                          struct extent_state *state)
 682                __releases(tree->lock)
 683                __acquires(tree->lock)
 684{
 685        DEFINE_WAIT(wait);
 686        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 687        spin_unlock(&tree->lock);
 688        schedule();
 689        spin_lock(&tree->lock);
 690        finish_wait(&state->wq, &wait);
 691}
 692
 693/*
 694 * waits for one or more bits to clear on a range in the state tree.
 695 * The range [start, end] is inclusive.
 696 * The tree lock is taken by this function
 697 */
 698static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 699                            unsigned long bits)
 700{
 701        struct extent_state *state;
 702        struct rb_node *node;
 703
 704        btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
 705
 706        spin_lock(&tree->lock);
 707again:
 708        while (1) {
 709                /*
 710                 * this search will find all the extents that end after
 711                 * our range starts
 712                 */
 713                node = tree_search(tree, start);
 714                if (!node)
 715                        break;
 716
 717                state = rb_entry(node, struct extent_state, rb_node);
 718
 719                if (state->start > end)
 720                        goto out;
 721
 722                if (state->state & bits) {
 723                        start = state->start;
 724                        atomic_inc(&state->refs);
 725                        wait_on_state(tree, state);
 726                        free_extent_state(state);
 727                        goto again;
 728                }
 729                start = state->end + 1;
 730
 731                if (start > end)
 732                        break;
 733
 734                cond_resched_lock(&tree->lock);
 735        }
 736out:
 737        spin_unlock(&tree->lock);
 738}
 739
 740static void set_state_bits(struct extent_io_tree *tree,
 741                           struct extent_state *state,
 742                           unsigned long *bits)
 743{
 744        unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
 745
 746        set_state_cb(tree, state, bits);
 747        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 748                u64 range = state->end - state->start + 1;
 749                tree->dirty_bytes += range;
 750        }
 751        state->state |= bits_to_set;
 752}
 753
 754static void cache_state(struct extent_state *state,
 755                        struct extent_state **cached_ptr)
 756{
 757        if (cached_ptr && !(*cached_ptr)) {
 758                if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 759                        *cached_ptr = state;
 760                        atomic_inc(&state->refs);
 761                }
 762        }
 763}
 764
 765static void uncache_state(struct extent_state **cached_ptr)
 766{
 767        if (cached_ptr && (*cached_ptr)) {
 768                struct extent_state *state = *cached_ptr;
 769                *cached_ptr = NULL;
 770                free_extent_state(state);
 771        }
 772}
 773
 774/*
 775 * set some bits on a range in the tree.  This may require allocations or
 776 * sleeping, so the gfp mask is used to indicate what is allowed.
 777 *
 778 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 779 * part of the range already has the desired bits set.  The start of the
 780 * existing range is returned in failed_start in this case.
 781 *
 782 * [start, end] is inclusive This takes the tree lock.
 783 */
 784
 785static int __must_check
 786__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 787                 unsigned long bits, unsigned long exclusive_bits,
 788                 u64 *failed_start, struct extent_state **cached_state,
 789                 gfp_t mask)
 790{
 791        struct extent_state *state;
 792        struct extent_state *prealloc = NULL;
 793        struct rb_node *node;
 794        int err = 0;
 795        u64 last_start;
 796        u64 last_end;
 797
 798        btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
 799
 800        bits |= EXTENT_FIRST_DELALLOC;
 801again:
 802        if (!prealloc && (mask & __GFP_WAIT)) {
 803                prealloc = alloc_extent_state(mask);
 804                BUG_ON(!prealloc);
 805        }
 806
 807        spin_lock(&tree->lock);
 808        if (cached_state && *cached_state) {
 809                state = *cached_state;
 810                if (state->start <= start && state->end > start &&
 811                    state->tree) {
 812                        node = &state->rb_node;
 813                        goto hit_next;
 814                }
 815        }
 816        /*
 817         * this search will find all the extents that end after
 818         * our range starts.
 819         */
 820        node = tree_search(tree, start);
 821        if (!node) {
 822                prealloc = alloc_extent_state_atomic(prealloc);
 823                BUG_ON(!prealloc);
 824                err = insert_state(tree, prealloc, start, end, &bits);
 825                if (err)
 826                        extent_io_tree_panic(tree, err);
 827
 828                prealloc = NULL;
 829                goto out;
 830        }
 831        state = rb_entry(node, struct extent_state, rb_node);
 832hit_next:
 833        last_start = state->start;
 834        last_end = state->end;
 835
 836        /*
 837         * | ---- desired range ---- |
 838         * | state |
 839         *
 840         * Just lock what we found and keep going
 841         */
 842        if (state->start == start && state->end <= end) {
 843                if (state->state & exclusive_bits) {
 844                        *failed_start = state->start;
 845                        err = -EEXIST;
 846                        goto out;
 847                }
 848
 849                set_state_bits(tree, state, &bits);
 850                cache_state(state, cached_state);
 851                merge_state(tree, state);
 852                if (last_end == (u64)-1)
 853                        goto out;
 854                start = last_end + 1;
 855                state = next_state(state);
 856                if (start < end && state && state->start == start &&
 857                    !need_resched())
 858                        goto hit_next;
 859                goto search_again;
 860        }
 861
 862        /*
 863         *     | ---- desired range ---- |
 864         * | state |
 865         *   or
 866         * | ------------- state -------------- |
 867         *
 868         * We need to split the extent we found, and may flip bits on
 869         * second half.
 870         *
 871         * If the extent we found extends past our
 872         * range, we just split and search again.  It'll get split
 873         * again the next time though.
 874         *
 875         * If the extent we found is inside our range, we set the
 876         * desired bit on it.
 877         */
 878        if (state->start < start) {
 879                if (state->state & exclusive_bits) {
 880                        *failed_start = start;
 881                        err = -EEXIST;
 882                        goto out;
 883                }
 884
 885                prealloc = alloc_extent_state_atomic(prealloc);
 886                BUG_ON(!prealloc);
 887                err = split_state(tree, state, prealloc, start);
 888                if (err)
 889                        extent_io_tree_panic(tree, err);
 890
 891                prealloc = NULL;
 892                if (err)
 893                        goto out;
 894                if (state->end <= end) {
 895                        set_state_bits(tree, state, &bits);
 896                        cache_state(state, cached_state);
 897                        merge_state(tree, state);
 898                        if (last_end == (u64)-1)
 899                                goto out;
 900                        start = last_end + 1;
 901                        state = next_state(state);
 902                        if (start < end && state && state->start == start &&
 903                            !need_resched())
 904                                goto hit_next;
 905                }
 906                goto search_again;
 907        }
 908        /*
 909         * | ---- desired range ---- |
 910         *     | state | or               | state |
 911         *
 912         * There's a hole, we need to insert something in it and
 913         * ignore the extent we found.
 914         */
 915        if (state->start > start) {
 916                u64 this_end;
 917                if (end < last_start)
 918                        this_end = end;
 919                else
 920                        this_end = last_start - 1;
 921
 922                prealloc = alloc_extent_state_atomic(prealloc);
 923                BUG_ON(!prealloc);
 924
 925                /*
 926                 * Avoid to free 'prealloc' if it can be merged with
 927                 * the later extent.
 928                 */
 929                err = insert_state(tree, prealloc, start, this_end,
 930                                   &bits);
 931                if (err)
 932                        extent_io_tree_panic(tree, err);
 933
 934                cache_state(prealloc, cached_state);
 935                prealloc = NULL;
 936                start = this_end + 1;
 937                goto search_again;
 938        }
 939        /*
 940         * | ---- desired range ---- |
 941         *                        | state |
 942         * We need to split the extent, and set the bit
 943         * on the first half
 944         */
 945        if (state->start <= end && state->end > end) {
 946                if (state->state & exclusive_bits) {
 947                        *failed_start = start;
 948                        err = -EEXIST;
 949                        goto out;
 950                }
 951
 952                prealloc = alloc_extent_state_atomic(prealloc);
 953                BUG_ON(!prealloc);
 954                err = split_state(tree, state, prealloc, end + 1);
 955                if (err)
 956                        extent_io_tree_panic(tree, err);
 957
 958                set_state_bits(tree, prealloc, &bits);
 959                cache_state(prealloc, cached_state);
 960                merge_state(tree, prealloc);
 961                prealloc = NULL;
 962                goto out;
 963        }
 964
 965        goto search_again;
 966
 967out:
 968        spin_unlock(&tree->lock);
 969        if (prealloc)
 970                free_extent_state(prealloc);
 971
 972        return err;
 973
 974search_again:
 975        if (start > end)
 976                goto out;
 977        spin_unlock(&tree->lock);
 978        if (mask & __GFP_WAIT)
 979                cond_resched();
 980        goto again;
 981}
 982
 983int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 984                   unsigned long bits, u64 * failed_start,
 985                   struct extent_state **cached_state, gfp_t mask)
 986{
 987        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
 988                                cached_state, mask);
 989}
 990
 991
 992/**
 993 * convert_extent_bit - convert all bits in a given range from one bit to
 994 *                      another
 995 * @tree:       the io tree to search
 996 * @start:      the start offset in bytes
 997 * @end:        the end offset in bytes (inclusive)
 998 * @bits:       the bits to set in this range
 999 * @clear_bits: the bits to clear in this range
1000 * @cached_state:       state that we're going to cache
1001 * @mask:       the allocation mask
1002 *
1003 * This will go through and set bits for the given range.  If any states exist
1004 * already in this range they are set with the given bit and cleared of the
1005 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1006 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1007 * boundary bits like LOCK.
1008 */
1009int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1010                       unsigned long bits, unsigned long clear_bits,
1011                       struct extent_state **cached_state, gfp_t mask)
1012{
1013        struct extent_state *state;
1014        struct extent_state *prealloc = NULL;
1015        struct rb_node *node;
1016        int err = 0;
1017        u64 last_start;
1018        u64 last_end;
1019
1020        btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1021
1022again:
1023        if (!prealloc && (mask & __GFP_WAIT)) {
1024                prealloc = alloc_extent_state(mask);
1025                if (!prealloc)
1026                        return -ENOMEM;
1027        }
1028
1029        spin_lock(&tree->lock);
1030        if (cached_state && *cached_state) {
1031                state = *cached_state;
1032                if (state->start <= start && state->end > start &&
1033                    state->tree) {
1034                        node = &state->rb_node;
1035                        goto hit_next;
1036                }
1037        }
1038
1039        /*
1040         * this search will find all the extents that end after
1041         * our range starts.
1042         */
1043        node = tree_search(tree, start);
1044        if (!node) {
1045                prealloc = alloc_extent_state_atomic(prealloc);
1046                if (!prealloc) {
1047                        err = -ENOMEM;
1048                        goto out;
1049                }
1050                err = insert_state(tree, prealloc, start, end, &bits);
1051                prealloc = NULL;
1052                if (err)
1053                        extent_io_tree_panic(tree, err);
1054                goto out;
1055        }
1056        state = rb_entry(node, struct extent_state, rb_node);
1057hit_next:
1058        last_start = state->start;
1059        last_end = state->end;
1060
1061        /*
1062         * | ---- desired range ---- |
1063         * | state |
1064         *
1065         * Just lock what we found and keep going
1066         */
1067        if (state->start == start && state->end <= end) {
1068                set_state_bits(tree, state, &bits);
1069                cache_state(state, cached_state);
1070                state = clear_state_bit(tree, state, &clear_bits, 0);
1071                if (last_end == (u64)-1)
1072                        goto out;
1073                start = last_end + 1;
1074                if (start < end && state && state->start == start &&
1075                    !need_resched())
1076                        goto hit_next;
1077                goto search_again;
1078        }
1079
1080        /*
1081         *     | ---- desired range ---- |
1082         * | state |
1083         *   or
1084         * | ------------- state -------------- |
1085         *
1086         * We need to split the extent we found, and may flip bits on
1087         * second half.
1088         *
1089         * If the extent we found extends past our
1090         * range, we just split and search again.  It'll get split
1091         * again the next time though.
1092         *
1093         * If the extent we found is inside our range, we set the
1094         * desired bit on it.
1095         */
1096        if (state->start < start) {
1097                prealloc = alloc_extent_state_atomic(prealloc);
1098                if (!prealloc) {
1099                        err = -ENOMEM;
1100                        goto out;
1101                }
1102                err = split_state(tree, state, prealloc, start);
1103                if (err)
1104                        extent_io_tree_panic(tree, err);
1105                prealloc = NULL;
1106                if (err)
1107                        goto out;
1108                if (state->end <= end) {
1109                        set_state_bits(tree, state, &bits);
1110                        cache_state(state, cached_state);
1111                        state = clear_state_bit(tree, state, &clear_bits, 0);
1112                        if (last_end == (u64)-1)
1113                                goto out;
1114                        start = last_end + 1;
1115                        if (start < end && state && state->start == start &&
1116                            !need_resched())
1117                                goto hit_next;
1118                }
1119                goto search_again;
1120        }
1121        /*
1122         * | ---- desired range ---- |
1123         *     | state | or               | state |
1124         *
1125         * There's a hole, we need to insert something in it and
1126         * ignore the extent we found.
1127         */
1128        if (state->start > start) {
1129                u64 this_end;
1130                if (end < last_start)
1131                        this_end = end;
1132                else
1133                        this_end = last_start - 1;
1134
1135                prealloc = alloc_extent_state_atomic(prealloc);
1136                if (!prealloc) {
1137                        err = -ENOMEM;
1138                        goto out;
1139                }
1140
1141                /*
1142                 * Avoid to free 'prealloc' if it can be merged with
1143                 * the later extent.
1144                 */
1145                err = insert_state(tree, prealloc, start, this_end,
1146                                   &bits);
1147                if (err)
1148                        extent_io_tree_panic(tree, err);
1149                cache_state(prealloc, cached_state);
1150                prealloc = NULL;
1151                start = this_end + 1;
1152                goto search_again;
1153        }
1154        /*
1155         * | ---- desired range ---- |
1156         *                        | state |
1157         * We need to split the extent, and set the bit
1158         * on the first half
1159         */
1160        if (state->start <= end && state->end > end) {
1161                prealloc = alloc_extent_state_atomic(prealloc);
1162                if (!prealloc) {
1163                        err = -ENOMEM;
1164                        goto out;
1165                }
1166
1167                err = split_state(tree, state, prealloc, end + 1);
1168                if (err)
1169                        extent_io_tree_panic(tree, err);
1170
1171                set_state_bits(tree, prealloc, &bits);
1172                cache_state(prealloc, cached_state);
1173                clear_state_bit(tree, prealloc, &clear_bits, 0);
1174                prealloc = NULL;
1175                goto out;
1176        }
1177
1178        goto search_again;
1179
1180out:
1181        spin_unlock(&tree->lock);
1182        if (prealloc)
1183                free_extent_state(prealloc);
1184
1185        return err;
1186
1187search_again:
1188        if (start > end)
1189                goto out;
1190        spin_unlock(&tree->lock);
1191        if (mask & __GFP_WAIT)
1192                cond_resched();
1193        goto again;
1194}
1195
1196/* wrappers around set/clear extent bit */
1197int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1198                     gfp_t mask)
1199{
1200        return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1201                              NULL, mask);
1202}
1203
1204int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1205                    unsigned long bits, gfp_t mask)
1206{
1207        return set_extent_bit(tree, start, end, bits, NULL,
1208                              NULL, mask);
1209}
1210
1211int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1212                      unsigned long bits, gfp_t mask)
1213{
1214        return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1215}
1216
1217int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1218                        struct extent_state **cached_state, gfp_t mask)
1219{
1220        return set_extent_bit(tree, start, end,
1221                              EXTENT_DELALLOC | EXTENT_UPTODATE,
1222                              NULL, cached_state, mask);
1223}
1224
1225int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1226                      struct extent_state **cached_state, gfp_t mask)
1227{
1228        return set_extent_bit(tree, start, end,
1229                              EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1230                              NULL, cached_state, mask);
1231}
1232
1233int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1234                       gfp_t mask)
1235{
1236        return clear_extent_bit(tree, start, end,
1237                                EXTENT_DIRTY | EXTENT_DELALLOC |
1238                                EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1239}
1240
1241int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1242                     gfp_t mask)
1243{
1244        return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1245                              NULL, mask);
1246}
1247
1248int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1249                        struct extent_state **cached_state, gfp_t mask)
1250{
1251        return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1252                              cached_state, mask);
1253}
1254
1255int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1256                          struct extent_state **cached_state, gfp_t mask)
1257{
1258        return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1259                                cached_state, mask);
1260}
1261
1262/*
1263 * either insert or lock state struct between start and end use mask to tell
1264 * us if waiting is desired.
1265 */
1266int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1267                     unsigned long bits, struct extent_state **cached_state)
1268{
1269        int err;
1270        u64 failed_start;
1271        while (1) {
1272                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1273                                       EXTENT_LOCKED, &failed_start,
1274                                       cached_state, GFP_NOFS);
1275                if (err == -EEXIST) {
1276                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1277                        start = failed_start;
1278                } else
1279                        break;
1280                WARN_ON(start > end);
1281        }
1282        return err;
1283}
1284
1285int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1286{
1287        return lock_extent_bits(tree, start, end, 0, NULL);
1288}
1289
1290int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1291{
1292        int err;
1293        u64 failed_start;
1294
1295        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1296                               &failed_start, NULL, GFP_NOFS);
1297        if (err == -EEXIST) {
1298                if (failed_start > start)
1299                        clear_extent_bit(tree, start, failed_start - 1,
1300                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1301                return 0;
1302        }
1303        return 1;
1304}
1305
1306int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1307                         struct extent_state **cached, gfp_t mask)
1308{
1309        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1310                                mask);
1311}
1312
1313int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1314{
1315        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1316                                GFP_NOFS);
1317}
1318
1319int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1320{
1321        unsigned long index = start >> PAGE_CACHE_SHIFT;
1322        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1323        struct page *page;
1324
1325        while (index <= end_index) {
1326                page = find_get_page(inode->i_mapping, index);
1327                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1328                clear_page_dirty_for_io(page);
1329                page_cache_release(page);
1330                index++;
1331        }
1332        return 0;
1333}
1334
1335int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1336{
1337        unsigned long index = start >> PAGE_CACHE_SHIFT;
1338        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339        struct page *page;
1340
1341        while (index <= end_index) {
1342                page = find_get_page(inode->i_mapping, index);
1343                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1344                account_page_redirty(page);
1345                __set_page_dirty_nobuffers(page);
1346                page_cache_release(page);
1347                index++;
1348        }
1349        return 0;
1350}
1351
1352/*
1353 * helper function to set both pages and extents in the tree writeback
1354 */
1355static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1356{
1357        unsigned long index = start >> PAGE_CACHE_SHIFT;
1358        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1359        struct page *page;
1360
1361        while (index <= end_index) {
1362                page = find_get_page(tree->mapping, index);
1363                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1364                set_page_writeback(page);
1365                page_cache_release(page);
1366                index++;
1367        }
1368        return 0;
1369}
1370
1371/* find the first state struct with 'bits' set after 'start', and
1372 * return it.  tree->lock must be held.  NULL will returned if
1373 * nothing was found after 'start'
1374 */
1375static struct extent_state *
1376find_first_extent_bit_state(struct extent_io_tree *tree,
1377                            u64 start, unsigned long bits)
1378{
1379        struct rb_node *node;
1380        struct extent_state *state;
1381
1382        /*
1383         * this search will find all the extents that end after
1384         * our range starts.
1385         */
1386        node = tree_search(tree, start);
1387        if (!node)
1388                goto out;
1389
1390        while (1) {
1391                state = rb_entry(node, struct extent_state, rb_node);
1392                if (state->end >= start && (state->state & bits))
1393                        return state;
1394
1395                node = rb_next(node);
1396                if (!node)
1397                        break;
1398        }
1399out:
1400        return NULL;
1401}
1402
1403/*
1404 * find the first offset in the io tree with 'bits' set. zero is
1405 * returned if we find something, and *start_ret and *end_ret are
1406 * set to reflect the state struct that was found.
1407 *
1408 * If nothing was found, 1 is returned. If found something, return 0.
1409 */
1410int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1411                          u64 *start_ret, u64 *end_ret, unsigned long bits,
1412                          struct extent_state **cached_state)
1413{
1414        struct extent_state *state;
1415        struct rb_node *n;
1416        int ret = 1;
1417
1418        spin_lock(&tree->lock);
1419        if (cached_state && *cached_state) {
1420                state = *cached_state;
1421                if (state->end == start - 1 && state->tree) {
1422                        n = rb_next(&state->rb_node);
1423                        while (n) {
1424                                state = rb_entry(n, struct extent_state,
1425                                                 rb_node);
1426                                if (state->state & bits)
1427                                        goto got_it;
1428                                n = rb_next(n);
1429                        }
1430                        free_extent_state(*cached_state);
1431                        *cached_state = NULL;
1432                        goto out;
1433                }
1434                free_extent_state(*cached_state);
1435                *cached_state = NULL;
1436        }
1437
1438        state = find_first_extent_bit_state(tree, start, bits);
1439got_it:
1440        if (state) {
1441                cache_state(state, cached_state);
1442                *start_ret = state->start;
1443                *end_ret = state->end;
1444                ret = 0;
1445        }
1446out:
1447        spin_unlock(&tree->lock);
1448        return ret;
1449}
1450
1451/*
1452 * find a contiguous range of bytes in the file marked as delalloc, not
1453 * more than 'max_bytes'.  start and end are used to return the range,
1454 *
1455 * 1 is returned if we find something, 0 if nothing was in the tree
1456 */
1457static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1458                                        u64 *start, u64 *end, u64 max_bytes,
1459                                        struct extent_state **cached_state)
1460{
1461        struct rb_node *node;
1462        struct extent_state *state;
1463        u64 cur_start = *start;
1464        u64 found = 0;
1465        u64 total_bytes = 0;
1466
1467        spin_lock(&tree->lock);
1468
1469        /*
1470         * this search will find all the extents that end after
1471         * our range starts.
1472         */
1473        node = tree_search(tree, cur_start);
1474        if (!node) {
1475                if (!found)
1476                        *end = (u64)-1;
1477                goto out;
1478        }
1479
1480        while (1) {
1481                state = rb_entry(node, struct extent_state, rb_node);
1482                if (found && (state->start != cur_start ||
1483                              (state->state & EXTENT_BOUNDARY))) {
1484                        goto out;
1485                }
1486                if (!(state->state & EXTENT_DELALLOC)) {
1487                        if (!found)
1488                                *end = state->end;
1489                        goto out;
1490                }
1491                if (!found) {
1492                        *start = state->start;
1493                        *cached_state = state;
1494                        atomic_inc(&state->refs);
1495                }
1496                found++;
1497                *end = state->end;
1498                cur_start = state->end + 1;
1499                node = rb_next(node);
1500                if (!node)
1501                        break;
1502                total_bytes += state->end - state->start + 1;
1503                if (total_bytes >= max_bytes)
1504                        break;
1505        }
1506out:
1507        spin_unlock(&tree->lock);
1508        return found;
1509}
1510
1511static noinline void __unlock_for_delalloc(struct inode *inode,
1512                                           struct page *locked_page,
1513                                           u64 start, u64 end)
1514{
1515        int ret;
1516        struct page *pages[16];
1517        unsigned long index = start >> PAGE_CACHE_SHIFT;
1518        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1519        unsigned long nr_pages = end_index - index + 1;
1520        int i;
1521
1522        if (index == locked_page->index && end_index == index)
1523                return;
1524
1525        while (nr_pages > 0) {
1526                ret = find_get_pages_contig(inode->i_mapping, index,
1527                                     min_t(unsigned long, nr_pages,
1528                                     ARRAY_SIZE(pages)), pages);
1529                for (i = 0; i < ret; i++) {
1530                        if (pages[i] != locked_page)
1531                                unlock_page(pages[i]);
1532                        page_cache_release(pages[i]);
1533                }
1534                nr_pages -= ret;
1535                index += ret;
1536                cond_resched();
1537        }
1538}
1539
1540static noinline int lock_delalloc_pages(struct inode *inode,
1541                                        struct page *locked_page,
1542                                        u64 delalloc_start,
1543                                        u64 delalloc_end)
1544{
1545        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1546        unsigned long start_index = index;
1547        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1548        unsigned long pages_locked = 0;
1549        struct page *pages[16];
1550        unsigned long nrpages;
1551        int ret;
1552        int i;
1553
1554        /* the caller is responsible for locking the start index */
1555        if (index == locked_page->index && index == end_index)
1556                return 0;
1557
1558        /* skip the page at the start index */
1559        nrpages = end_index - index + 1;
1560        while (nrpages > 0) {
1561                ret = find_get_pages_contig(inode->i_mapping, index,
1562                                     min_t(unsigned long,
1563                                     nrpages, ARRAY_SIZE(pages)), pages);
1564                if (ret == 0) {
1565                        ret = -EAGAIN;
1566                        goto done;
1567                }
1568                /* now we have an array of pages, lock them all */
1569                for (i = 0; i < ret; i++) {
1570                        /*
1571                         * the caller is taking responsibility for
1572                         * locked_page
1573                         */
1574                        if (pages[i] != locked_page) {
1575                                lock_page(pages[i]);
1576                                if (!PageDirty(pages[i]) ||
1577                                    pages[i]->mapping != inode->i_mapping) {
1578                                        ret = -EAGAIN;
1579                                        unlock_page(pages[i]);
1580                                        page_cache_release(pages[i]);
1581                                        goto done;
1582                                }
1583                        }
1584                        page_cache_release(pages[i]);
1585                        pages_locked++;
1586                }
1587                nrpages -= ret;
1588                index += ret;
1589                cond_resched();
1590        }
1591        ret = 0;
1592done:
1593        if (ret && pages_locked) {
1594                __unlock_for_delalloc(inode, locked_page,
1595                              delalloc_start,
1596                              ((u64)(start_index + pages_locked - 1)) <<
1597                              PAGE_CACHE_SHIFT);
1598        }
1599        return ret;
1600}
1601
1602/*
1603 * find a contiguous range of bytes in the file marked as delalloc, not
1604 * more than 'max_bytes'.  start and end are used to return the range,
1605 *
1606 * 1 is returned if we find something, 0 if nothing was in the tree
1607 */
1608static noinline u64 find_lock_delalloc_range(struct inode *inode,
1609                                             struct extent_io_tree *tree,
1610                                             struct page *locked_page,
1611                                             u64 *start, u64 *end,
1612                                             u64 max_bytes)
1613{
1614        u64 delalloc_start;
1615        u64 delalloc_end;
1616        u64 found;
1617        struct extent_state *cached_state = NULL;
1618        int ret;
1619        int loops = 0;
1620
1621again:
1622        /* step one, find a bunch of delalloc bytes starting at start */
1623        delalloc_start = *start;
1624        delalloc_end = 0;
1625        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1626                                    max_bytes, &cached_state);
1627        if (!found || delalloc_end <= *start) {
1628                *start = delalloc_start;
1629                *end = delalloc_end;
1630                free_extent_state(cached_state);
1631                return found;
1632        }
1633
1634        /*
1635         * start comes from the offset of locked_page.  We have to lock
1636         * pages in order, so we can't process delalloc bytes before
1637         * locked_page
1638         */
1639        if (delalloc_start < *start)
1640                delalloc_start = *start;
1641
1642        /*
1643         * make sure to limit the number of pages we try to lock down
1644         * if we're looping.
1645         */
1646        if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1647                delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1648
1649        /* step two, lock all the pages after the page that has start */
1650        ret = lock_delalloc_pages(inode, locked_page,
1651                                  delalloc_start, delalloc_end);
1652        if (ret == -EAGAIN) {
1653                /* some of the pages are gone, lets avoid looping by
1654                 * shortening the size of the delalloc range we're searching
1655                 */
1656                free_extent_state(cached_state);
1657                if (!loops) {
1658                        unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1659                        max_bytes = PAGE_CACHE_SIZE - offset;
1660                        loops = 1;
1661                        goto again;
1662                } else {
1663                        found = 0;
1664                        goto out_failed;
1665                }
1666        }
1667        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1668
1669        /* step three, lock the state bits for the whole range */
1670        lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1671
1672        /* then test to make sure it is all still delalloc */
1673        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1674                             EXTENT_DELALLOC, 1, cached_state);
1675        if (!ret) {
1676                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1677                                     &cached_state, GFP_NOFS);
1678                __unlock_for_delalloc(inode, locked_page,
1679                              delalloc_start, delalloc_end);
1680                cond_resched();
1681                goto again;
1682        }
1683        free_extent_state(cached_state);
1684        *start = delalloc_start;
1685        *end = delalloc_end;
1686out_failed:
1687        return found;
1688}
1689
1690int extent_clear_unlock_delalloc(struct inode *inode,
1691                                struct extent_io_tree *tree,
1692                                u64 start, u64 end, struct page *locked_page,
1693                                unsigned long op)
1694{
1695        int ret;
1696        struct page *pages[16];
1697        unsigned long index = start >> PAGE_CACHE_SHIFT;
1698        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1699        unsigned long nr_pages = end_index - index + 1;
1700        int i;
1701        unsigned long clear_bits = 0;
1702
1703        if (op & EXTENT_CLEAR_UNLOCK)
1704                clear_bits |= EXTENT_LOCKED;
1705        if (op & EXTENT_CLEAR_DIRTY)
1706                clear_bits |= EXTENT_DIRTY;
1707
1708        if (op & EXTENT_CLEAR_DELALLOC)
1709                clear_bits |= EXTENT_DELALLOC;
1710
1711        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1712        if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1713                    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1714                    EXTENT_SET_PRIVATE2)))
1715                return 0;
1716
1717        while (nr_pages > 0) {
1718                ret = find_get_pages_contig(inode->i_mapping, index,
1719                                     min_t(unsigned long,
1720                                     nr_pages, ARRAY_SIZE(pages)), pages);
1721                for (i = 0; i < ret; i++) {
1722
1723                        if (op & EXTENT_SET_PRIVATE2)
1724                                SetPagePrivate2(pages[i]);
1725
1726                        if (pages[i] == locked_page) {
1727                                page_cache_release(pages[i]);
1728                                continue;
1729                        }
1730                        if (op & EXTENT_CLEAR_DIRTY)
1731                                clear_page_dirty_for_io(pages[i]);
1732                        if (op & EXTENT_SET_WRITEBACK)
1733                                set_page_writeback(pages[i]);
1734                        if (op & EXTENT_END_WRITEBACK)
1735                                end_page_writeback(pages[i]);
1736                        if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1737                                unlock_page(pages[i]);
1738                        page_cache_release(pages[i]);
1739                }
1740                nr_pages -= ret;
1741                index += ret;
1742                cond_resched();
1743        }
1744        return 0;
1745}
1746
1747/*
1748 * count the number of bytes in the tree that have a given bit(s)
1749 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1750 * cached.  The total number found is returned.
1751 */
1752u64 count_range_bits(struct extent_io_tree *tree,
1753                     u64 *start, u64 search_end, u64 max_bytes,
1754                     unsigned long bits, int contig)
1755{
1756        struct rb_node *node;
1757        struct extent_state *state;
1758        u64 cur_start = *start;
1759        u64 total_bytes = 0;
1760        u64 last = 0;
1761        int found = 0;
1762
1763        if (search_end <= cur_start) {
1764                WARN_ON(1);
1765                return 0;
1766        }
1767
1768        spin_lock(&tree->lock);
1769        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1770                total_bytes = tree->dirty_bytes;
1771                goto out;
1772        }
1773        /*
1774         * this search will find all the extents that end after
1775         * our range starts.
1776         */
1777        node = tree_search(tree, cur_start);
1778        if (!node)
1779                goto out;
1780
1781        while (1) {
1782                state = rb_entry(node, struct extent_state, rb_node);
1783                if (state->start > search_end)
1784                        break;
1785                if (contig && found && state->start > last + 1)
1786                        break;
1787                if (state->end >= cur_start && (state->state & bits) == bits) {
1788                        total_bytes += min(search_end, state->end) + 1 -
1789                                       max(cur_start, state->start);
1790                        if (total_bytes >= max_bytes)
1791                                break;
1792                        if (!found) {
1793                                *start = max(cur_start, state->start);
1794                                found = 1;
1795                        }
1796                        last = state->end;
1797                } else if (contig && found) {
1798                        break;
1799                }
1800                node = rb_next(node);
1801                if (!node)
1802                        break;
1803        }
1804out:
1805        spin_unlock(&tree->lock);
1806        return total_bytes;
1807}
1808
1809/*
1810 * set the private field for a given byte offset in the tree.  If there isn't
1811 * an extent_state there already, this does nothing.
1812 */
1813int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1814{
1815        struct rb_node *node;
1816        struct extent_state *state;
1817        int ret = 0;
1818
1819        spin_lock(&tree->lock);
1820        /*
1821         * this search will find all the extents that end after
1822         * our range starts.
1823         */
1824        node = tree_search(tree, start);
1825        if (!node) {
1826                ret = -ENOENT;
1827                goto out;
1828        }
1829        state = rb_entry(node, struct extent_state, rb_node);
1830        if (state->start != start) {
1831                ret = -ENOENT;
1832                goto out;
1833        }
1834        state->private = private;
1835out:
1836        spin_unlock(&tree->lock);
1837        return ret;
1838}
1839
1840void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1841                            int count)
1842{
1843        struct rb_node *node;
1844        struct extent_state *state;
1845
1846        spin_lock(&tree->lock);
1847        /*
1848         * this search will find all the extents that end after
1849         * our range starts.
1850         */
1851        node = tree_search(tree, start);
1852        BUG_ON(!node);
1853
1854        state = rb_entry(node, struct extent_state, rb_node);
1855        BUG_ON(state->start != start);
1856
1857        while (count) {
1858                state->private = *csums++;
1859                count--;
1860                state = next_state(state);
1861        }
1862        spin_unlock(&tree->lock);
1863}
1864
1865static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1866{
1867        struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1868
1869        return page_offset(bvec->bv_page) + bvec->bv_offset;
1870}
1871
1872void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1873                        u32 csums[], int count)
1874{
1875        struct rb_node *node;
1876        struct extent_state *state = NULL;
1877        u64 start;
1878
1879        spin_lock(&tree->lock);
1880        do {
1881                start = __btrfs_get_bio_offset(bio, bio_index);
1882                if (state == NULL || state->start != start) {
1883                        node = tree_search(tree, start);
1884                        BUG_ON(!node);
1885
1886                        state = rb_entry(node, struct extent_state, rb_node);
1887                        BUG_ON(state->start != start);
1888                }
1889                state->private = *csums++;
1890                count--;
1891                bio_index++;
1892
1893                state = next_state(state);
1894        } while (count);
1895        spin_unlock(&tree->lock);
1896}
1897
1898int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1899{
1900        struct rb_node *node;
1901        struct extent_state *state;
1902        int ret = 0;
1903
1904        spin_lock(&tree->lock);
1905        /*
1906         * this search will find all the extents that end after
1907         * our range starts.
1908         */
1909        node = tree_search(tree, start);
1910        if (!node) {
1911                ret = -ENOENT;
1912                goto out;
1913        }
1914        state = rb_entry(node, struct extent_state, rb_node);
1915        if (state->start != start) {
1916                ret = -ENOENT;
1917                goto out;
1918        }
1919        *private = state->private;
1920out:
1921        spin_unlock(&tree->lock);
1922        return ret;
1923}
1924
1925/*
1926 * searches a range in the state tree for a given mask.
1927 * If 'filled' == 1, this returns 1 only if every extent in the tree
1928 * has the bits set.  Otherwise, 1 is returned if any bit in the
1929 * range is found set.
1930 */
1931int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1932                   unsigned long bits, int filled, struct extent_state *cached)
1933{
1934        struct extent_state *state = NULL;
1935        struct rb_node *node;
1936        int bitset = 0;
1937
1938        spin_lock(&tree->lock);
1939        if (cached && cached->tree && cached->start <= start &&
1940            cached->end > start)
1941                node = &cached->rb_node;
1942        else
1943                node = tree_search(tree, start);
1944        while (node && start <= end) {
1945                state = rb_entry(node, struct extent_state, rb_node);
1946
1947                if (filled && state->start > start) {
1948                        bitset = 0;
1949                        break;
1950                }
1951
1952                if (state->start > end)
1953                        break;
1954
1955                if (state->state & bits) {
1956                        bitset = 1;
1957                        if (!filled)
1958                                break;
1959                } else if (filled) {
1960                        bitset = 0;
1961                        break;
1962                }
1963
1964                if (state->end == (u64)-1)
1965                        break;
1966
1967                start = state->end + 1;
1968                if (start > end)
1969                        break;
1970                node = rb_next(node);
1971                if (!node) {
1972                        if (filled)
1973                                bitset = 0;
1974                        break;
1975                }
1976        }
1977        spin_unlock(&tree->lock);
1978        return bitset;
1979}
1980
1981/*
1982 * helper function to set a given page up to date if all the
1983 * extents in the tree for that page are up to date
1984 */
1985static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1986{
1987        u64 start = page_offset(page);
1988        u64 end = start + PAGE_CACHE_SIZE - 1;
1989        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1990                SetPageUptodate(page);
1991}
1992
1993/*
1994 * When IO fails, either with EIO or csum verification fails, we
1995 * try other mirrors that might have a good copy of the data.  This
1996 * io_failure_record is used to record state as we go through all the
1997 * mirrors.  If another mirror has good data, the page is set up to date
1998 * and things continue.  If a good mirror can't be found, the original
1999 * bio end_io callback is called to indicate things have failed.
2000 */
2001struct io_failure_record {
2002        struct page *page;
2003        u64 start;
2004        u64 len;
2005        u64 logical;
2006        unsigned long bio_flags;
2007        int this_mirror;
2008        int failed_mirror;
2009        int in_validation;
2010};
2011
2012static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
2013                                int did_repair)
2014{
2015        int ret;
2016        int err = 0;
2017        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2018
2019        set_state_private(failure_tree, rec->start, 0);
2020        ret = clear_extent_bits(failure_tree, rec->start,
2021                                rec->start + rec->len - 1,
2022                                EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2023        if (ret)
2024                err = ret;
2025
2026        ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2027                                rec->start + rec->len - 1,
2028                                EXTENT_DAMAGED, GFP_NOFS);
2029        if (ret && !err)
2030                err = ret;
2031
2032        kfree(rec);
2033        return err;
2034}
2035
2036static void repair_io_failure_callback(struct bio *bio, int err)
2037{
2038        complete(bio->bi_private);
2039}
2040
2041/*
2042 * this bypasses the standard btrfs submit functions deliberately, as
2043 * the standard behavior is to write all copies in a raid setup. here we only
2044 * want to write the one bad copy. so we do the mapping for ourselves and issue
2045 * submit_bio directly.
2046 * to avoid any synchronization issues, wait for the data after writing, which
2047 * actually prevents the read that triggered the error from finishing.
2048 * currently, there can be no more than two copies of every data bit. thus,
2049 * exactly one rewrite is required.
2050 */
2051int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2052                        u64 length, u64 logical, struct page *page,
2053                        int mirror_num)
2054{
2055        struct bio *bio;
2056        struct btrfs_device *dev;
2057        DECLARE_COMPLETION_ONSTACK(compl);
2058        u64 map_length = 0;
2059        u64 sector;
2060        struct btrfs_bio *bbio = NULL;
2061        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2062        int ret;
2063
2064        BUG_ON(!mirror_num);
2065
2066        /* we can't repair anything in raid56 yet */
2067        if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2068                return 0;
2069
2070        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2071        if (!bio)
2072                return -EIO;
2073        bio->bi_private = &compl;
2074        bio->bi_end_io = repair_io_failure_callback;
2075        bio->bi_size = 0;
2076        map_length = length;
2077
2078        ret = btrfs_map_block(fs_info, WRITE, logical,
2079                              &map_length, &bbio, mirror_num);
2080        if (ret) {
2081                bio_put(bio);
2082                return -EIO;
2083        }
2084        BUG_ON(mirror_num != bbio->mirror_num);
2085        sector = bbio->stripes[mirror_num-1].physical >> 9;
2086        bio->bi_sector = sector;
2087        dev = bbio->stripes[mirror_num-1].dev;
2088        kfree(bbio);
2089        if (!dev || !dev->bdev || !dev->writeable) {
2090                bio_put(bio);
2091                return -EIO;
2092        }
2093        bio->bi_bdev = dev->bdev;
2094        bio_add_page(bio, page, length, start - page_offset(page));
2095        btrfsic_submit_bio(WRITE_SYNC, bio);
2096        wait_for_completion(&compl);
2097
2098        if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2099                /* try to remap that extent elsewhere? */
2100                bio_put(bio);
2101                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2102                return -EIO;
2103        }
2104
2105        printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2106                      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2107                      start, rcu_str_deref(dev->name), sector);
2108
2109        bio_put(bio);
2110        return 0;
2111}
2112
2113int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2114                         int mirror_num)
2115{
2116        u64 start = eb->start;
2117        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2118        int ret = 0;
2119
2120        for (i = 0; i < num_pages; i++) {
2121                struct page *p = extent_buffer_page(eb, i);
2122                ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2123                                        start, p, mirror_num);
2124                if (ret)
2125                        break;
2126                start += PAGE_CACHE_SIZE;
2127        }
2128
2129        return ret;
2130}
2131
2132/*
2133 * each time an IO finishes, we do a fast check in the IO failure tree
2134 * to see if we need to process or clean up an io_failure_record
2135 */
2136static int clean_io_failure(u64 start, struct page *page)
2137{
2138        u64 private;
2139        u64 private_failure;
2140        struct io_failure_record *failrec;
2141        struct btrfs_fs_info *fs_info;
2142        struct extent_state *state;
2143        int num_copies;
2144        int did_repair = 0;
2145        int ret;
2146        struct inode *inode = page->mapping->host;
2147
2148        private = 0;
2149        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2150                                (u64)-1, 1, EXTENT_DIRTY, 0);
2151        if (!ret)
2152                return 0;
2153
2154        ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2155                                &private_failure);
2156        if (ret)
2157                return 0;
2158
2159        failrec = (struct io_failure_record *)(unsigned long) private_failure;
2160        BUG_ON(!failrec->this_mirror);
2161
2162        if (failrec->in_validation) {
2163                /* there was no real error, just free the record */
2164                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2165                         failrec->start);
2166                did_repair = 1;
2167                goto out;
2168        }
2169
2170        spin_lock(&BTRFS_I(inode)->io_tree.lock);
2171        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2172                                            failrec->start,
2173                                            EXTENT_LOCKED);
2174        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2175
2176        if (state && state->start == failrec->start) {
2177                fs_info = BTRFS_I(inode)->root->fs_info;
2178                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2179                                              failrec->len);
2180                if (num_copies > 1)  {
2181                        ret = repair_io_failure(fs_info, start, failrec->len,
2182                                                failrec->logical, page,
2183                                                failrec->failed_mirror);
2184                        did_repair = !ret;
2185                }
2186                ret = 0;
2187        }
2188
2189out:
2190        if (!ret)
2191                ret = free_io_failure(inode, failrec, did_repair);
2192
2193        return ret;
2194}
2195
2196/*
2197 * this is a generic handler for readpage errors (default
2198 * readpage_io_failed_hook). if other copies exist, read those and write back
2199 * good data to the failed position. does not investigate in remapping the
2200 * failed extent elsewhere, hoping the device will be smart enough to do this as
2201 * needed
2202 */
2203
2204static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2205                                u64 start, u64 end, int failed_mirror,
2206                                struct extent_state *state)
2207{
2208        struct io_failure_record *failrec = NULL;
2209        u64 private;
2210        struct extent_map *em;
2211        struct inode *inode = page->mapping->host;
2212        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2213        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2214        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2215        struct bio *bio;
2216        int num_copies;
2217        int ret;
2218        int read_mode;
2219        u64 logical;
2220
2221        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2222
2223        ret = get_state_private(failure_tree, start, &private);
2224        if (ret) {
2225                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2226                if (!failrec)
2227                        return -ENOMEM;
2228                failrec->start = start;
2229                failrec->len = end - start + 1;
2230                failrec->this_mirror = 0;
2231                failrec->bio_flags = 0;
2232                failrec->in_validation = 0;
2233
2234                read_lock(&em_tree->lock);
2235                em = lookup_extent_mapping(em_tree, start, failrec->len);
2236                if (!em) {
2237                        read_unlock(&em_tree->lock);
2238                        kfree(failrec);
2239                        return -EIO;
2240                }
2241
2242                if (em->start > start || em->start + em->len < start) {
2243                        free_extent_map(em);
2244                        em = NULL;
2245                }
2246                read_unlock(&em_tree->lock);
2247
2248                if (!em) {
2249                        kfree(failrec);
2250                        return -EIO;
2251                }
2252                logical = start - em->start;
2253                logical = em->block_start + logical;
2254                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2255                        logical = em->block_start;
2256                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2257                        extent_set_compress_type(&failrec->bio_flags,
2258                                                 em->compress_type);
2259                }
2260                pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2261                         "len=%llu\n", logical, start, failrec->len);
2262                failrec->logical = logical;
2263                free_extent_map(em);
2264
2265                /* set the bits in the private failure tree */
2266                ret = set_extent_bits(failure_tree, start, end,
2267                                        EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268                if (ret >= 0)
2269                        ret = set_state_private(failure_tree, start,
2270                                                (u64)(unsigned long)failrec);
2271                /* set the bits in the inode's tree */
2272                if (ret >= 0)
2273                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274                                                GFP_NOFS);
2275                if (ret < 0) {
2276                        kfree(failrec);
2277                        return ret;
2278                }
2279        } else {
2280                failrec = (struct io_failure_record *)(unsigned long)private;
2281                pr_debug("bio_readpage_error: (found) logical=%llu, "
2282                         "start=%llu, len=%llu, validation=%d\n",
2283                         failrec->logical, failrec->start, failrec->len,
2284                         failrec->in_validation);
2285                /*
2286                 * when data can be on disk more than twice, add to failrec here
2287                 * (e.g. with a list for failed_mirror) to make
2288                 * clean_io_failure() clean all those errors at once.
2289                 */
2290        }
2291        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2292                                      failrec->logical, failrec->len);
2293        if (num_copies == 1) {
2294                /*
2295                 * we only have a single copy of the data, so don't bother with
2296                 * all the retry and error correction code that follows. no
2297                 * matter what the error is, it is very likely to persist.
2298                 */
2299                pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2300                         "state=%p, num_copies=%d, next_mirror %d, "
2301                         "failed_mirror %d\n", state, num_copies,
2302                         failrec->this_mirror, failed_mirror);
2303                free_io_failure(inode, failrec, 0);
2304                return -EIO;
2305        }
2306
2307        if (!state) {
2308                spin_lock(&tree->lock);
2309                state = find_first_extent_bit_state(tree, failrec->start,
2310                                                    EXTENT_LOCKED);
2311                if (state && state->start != failrec->start)
2312                        state = NULL;
2313                spin_unlock(&tree->lock);
2314        }
2315
2316        /*
2317         * there are two premises:
2318         *      a) deliver good data to the caller
2319         *      b) correct the bad sectors on disk
2320         */
2321        if (failed_bio->bi_vcnt > 1) {
2322                /*
2323                 * to fulfill b), we need to know the exact failing sectors, as
2324                 * we don't want to rewrite any more than the failed ones. thus,
2325                 * we need separate read requests for the failed bio
2326                 *
2327                 * if the following BUG_ON triggers, our validation request got
2328                 * merged. we need separate requests for our algorithm to work.
2329                 */
2330                BUG_ON(failrec->in_validation);
2331                failrec->in_validation = 1;
2332                failrec->this_mirror = failed_mirror;
2333                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2334        } else {
2335                /*
2336                 * we're ready to fulfill a) and b) alongside. get a good copy
2337                 * of the failed sector and if we succeed, we have setup
2338                 * everything for repair_io_failure to do the rest for us.
2339                 */
2340                if (failrec->in_validation) {
2341                        BUG_ON(failrec->this_mirror != failed_mirror);
2342                        failrec->in_validation = 0;
2343                        failrec->this_mirror = 0;
2344                }
2345                failrec->failed_mirror = failed_mirror;
2346                failrec->this_mirror++;
2347                if (failrec->this_mirror == failed_mirror)
2348                        failrec->this_mirror++;
2349                read_mode = READ_SYNC;
2350        }
2351
2352        if (!state || failrec->this_mirror > num_copies) {
2353                pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2354                         "next_mirror %d, failed_mirror %d\n", state,
2355                         num_copies, failrec->this_mirror, failed_mirror);
2356                free_io_failure(inode, failrec, 0);
2357                return -EIO;
2358        }
2359
2360        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2361        if (!bio) {
2362                free_io_failure(inode, failrec, 0);
2363                return -EIO;
2364        }
2365        bio->bi_private = state;
2366        bio->bi_end_io = failed_bio->bi_end_io;
2367        bio->bi_sector = failrec->logical >> 9;
2368        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2369        bio->bi_size = 0;
2370
2371        bio_add_page(bio, page, failrec->len, start - page_offset(page));
2372
2373        pr_debug("bio_readpage_error: submitting new read[%#x] to "
2374                 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2375                 failrec->this_mirror, num_copies, failrec->in_validation);
2376
2377        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2378                                         failrec->this_mirror,
2379                                         failrec->bio_flags, 0);
2380        return ret;
2381}
2382
2383/* lots and lots of room for performance fixes in the end_bio funcs */
2384
2385int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2386{
2387        int uptodate = (err == 0);
2388        struct extent_io_tree *tree;
2389        int ret;
2390
2391        tree = &BTRFS_I(page->mapping->host)->io_tree;
2392
2393        if (tree->ops && tree->ops->writepage_end_io_hook) {
2394                ret = tree->ops->writepage_end_io_hook(page, start,
2395                                               end, NULL, uptodate);
2396                if (ret)
2397                        uptodate = 0;
2398        }
2399
2400        if (!uptodate) {
2401                ClearPageUptodate(page);
2402                SetPageError(page);
2403        }
2404        return 0;
2405}
2406
2407/*
2408 * after a writepage IO is done, we need to:
2409 * clear the uptodate bits on error
2410 * clear the writeback bits in the extent tree for this IO
2411 * end_page_writeback if the page has no more pending IO
2412 *
2413 * Scheduling is not allowed, so the extent state tree is expected
2414 * to have one and only one object corresponding to this IO.
2415 */
2416static void end_bio_extent_writepage(struct bio *bio, int err)
2417{
2418        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2419        struct extent_io_tree *tree;
2420        u64 start;
2421        u64 end;
2422
2423        do {
2424                struct page *page = bvec->bv_page;
2425                tree = &BTRFS_I(page->mapping->host)->io_tree;
2426
2427                /* We always issue full-page reads, but if some block
2428                 * in a page fails to read, blk_update_request() will
2429                 * advance bv_offset and adjust bv_len to compensate.
2430                 * Print a warning for nonzero offsets, and an error
2431                 * if they don't add up to a full page.  */
2432                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2433                        printk("%s page write in btrfs with offset %u and length %u\n",
2434                               bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2435                               ? KERN_ERR "partial" : KERN_INFO "incomplete",
2436                               bvec->bv_offset, bvec->bv_len);
2437
2438                start = page_offset(page);
2439                end = start + bvec->bv_offset + bvec->bv_len - 1;
2440
2441                if (--bvec >= bio->bi_io_vec)
2442                        prefetchw(&bvec->bv_page->flags);
2443
2444                if (end_extent_writepage(page, err, start, end))
2445                        continue;
2446
2447                end_page_writeback(page);
2448        } while (bvec >= bio->bi_io_vec);
2449
2450        bio_put(bio);
2451}
2452
2453/*
2454 * after a readpage IO is done, we need to:
2455 * clear the uptodate bits on error
2456 * set the uptodate bits if things worked
2457 * set the page up to date if all extents in the tree are uptodate
2458 * clear the lock bit in the extent tree
2459 * unlock the page if there are no other extents locked for it
2460 *
2461 * Scheduling is not allowed, so the extent state tree is expected
2462 * to have one and only one object corresponding to this IO.
2463 */
2464static void end_bio_extent_readpage(struct bio *bio, int err)
2465{
2466        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2467        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2468        struct bio_vec *bvec = bio->bi_io_vec;
2469        struct extent_io_tree *tree;
2470        u64 start;
2471        u64 end;
2472        int mirror;
2473        int ret;
2474
2475        if (err)
2476                uptodate = 0;
2477
2478        do {
2479                struct page *page = bvec->bv_page;
2480                struct extent_state *cached = NULL;
2481                struct extent_state *state;
2482                struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2483                struct inode *inode = page->mapping->host;
2484
2485                pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2486                         "mirror=%lu\n", (u64)bio->bi_sector, err,
2487                         io_bio->mirror_num);
2488                tree = &BTRFS_I(inode)->io_tree;
2489
2490                /* We always issue full-page reads, but if some block
2491                 * in a page fails to read, blk_update_request() will
2492                 * advance bv_offset and adjust bv_len to compensate.
2493                 * Print a warning for nonzero offsets, and an error
2494                 * if they don't add up to a full page.  */
2495                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2496                        printk("%s page read in btrfs with offset %u and length %u\n",
2497                               bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2498                               ? KERN_ERR "partial" : KERN_INFO "incomplete",
2499                               bvec->bv_offset, bvec->bv_len);
2500
2501                start = page_offset(page);
2502                end = start + bvec->bv_offset + bvec->bv_len - 1;
2503
2504                if (++bvec <= bvec_end)
2505                        prefetchw(&bvec->bv_page->flags);
2506
2507                spin_lock(&tree->lock);
2508                state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2509                if (state && state->start == start) {
2510                        /*
2511                         * take a reference on the state, unlock will drop
2512                         * the ref
2513                         */
2514                        cache_state(state, &cached);
2515                }
2516                spin_unlock(&tree->lock);
2517
2518                mirror = io_bio->mirror_num;
2519                if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2520                        ret = tree->ops->readpage_end_io_hook(page, start, end,
2521                                                              state, mirror);
2522                        if (ret)
2523                                uptodate = 0;
2524                        else
2525                                clean_io_failure(start, page);
2526                }
2527
2528                if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2529                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2530                        if (!ret && !err &&
2531                            test_bit(BIO_UPTODATE, &bio->bi_flags))
2532                                uptodate = 1;
2533                } else if (!uptodate) {
2534                        /*
2535                         * The generic bio_readpage_error handles errors the
2536                         * following way: If possible, new read requests are
2537                         * created and submitted and will end up in
2538                         * end_bio_extent_readpage as well (if we're lucky, not
2539                         * in the !uptodate case). In that case it returns 0 and
2540                         * we just go on with the next page in our bio. If it
2541                         * can't handle the error it will return -EIO and we
2542                         * remain responsible for that page.
2543                         */
2544                        ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2545                        if (ret == 0) {
2546                                uptodate =
2547                                        test_bit(BIO_UPTODATE, &bio->bi_flags);
2548                                if (err)
2549                                        uptodate = 0;
2550                                uncache_state(&cached);
2551                                continue;
2552                        }
2553                }
2554
2555                if (uptodate && tree->track_uptodate) {
2556                        set_extent_uptodate(tree, start, end, &cached,
2557                                            GFP_ATOMIC);
2558                }
2559                unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2560
2561                if (uptodate) {
2562                        loff_t i_size = i_size_read(inode);
2563                        pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2564                        unsigned offset;
2565
2566                        /* Zero out the end if this page straddles i_size */
2567                        offset = i_size & (PAGE_CACHE_SIZE-1);
2568                        if (page->index == end_index && offset)
2569                                zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2570                        SetPageUptodate(page);
2571                } else {
2572                        ClearPageUptodate(page);
2573                        SetPageError(page);
2574                }
2575                unlock_page(page);
2576        } while (bvec <= bvec_end);
2577
2578        bio_put(bio);
2579}
2580
2581/*
2582 * this allocates from the btrfs_bioset.  We're returning a bio right now
2583 * but you can call btrfs_io_bio for the appropriate container_of magic
2584 */
2585struct bio *
2586btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2587                gfp_t gfp_flags)
2588{
2589        struct bio *bio;
2590
2591        bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2592
2593        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2594                while (!bio && (nr_vecs /= 2)) {
2595                        bio = bio_alloc_bioset(gfp_flags,
2596                                               nr_vecs, btrfs_bioset);
2597                }
2598        }
2599
2600        if (bio) {
2601                bio->bi_size = 0;
2602                bio->bi_bdev = bdev;
2603                bio->bi_sector = first_sector;
2604        }
2605        return bio;
2606}
2607
2608struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2609{
2610        return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2611}
2612
2613
2614/* this also allocates from the btrfs_bioset */
2615struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2616{
2617        return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2618}
2619
2620
2621static int __must_check submit_one_bio(int rw, struct bio *bio,
2622                                       int mirror_num, unsigned long bio_flags)
2623{
2624        int ret = 0;
2625        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2626        struct page *page = bvec->bv_page;
2627        struct extent_io_tree *tree = bio->bi_private;
2628        u64 start;
2629
2630        start = page_offset(page) + bvec->bv_offset;
2631
2632        bio->bi_private = NULL;
2633
2634        bio_get(bio);
2635
2636        if (tree->ops && tree->ops->submit_bio_hook)
2637                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2638                                           mirror_num, bio_flags, start);
2639        else
2640                btrfsic_submit_bio(rw, bio);
2641
2642        if (bio_flagged(bio, BIO_EOPNOTSUPP))
2643                ret = -EOPNOTSUPP;
2644        bio_put(bio);
2645        return ret;
2646}
2647
2648static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2649                     unsigned long offset, size_t size, struct bio *bio,
2650                     unsigned long bio_flags)
2651{
2652        int ret = 0;
2653        if (tree->ops && tree->ops->merge_bio_hook)
2654                ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2655                                                bio_flags);
2656        BUG_ON(ret < 0);
2657        return ret;
2658
2659}
2660
2661static int submit_extent_page(int rw, struct extent_io_tree *tree,
2662                              struct page *page, sector_t sector,
2663                              size_t size, unsigned long offset,
2664                              struct block_device *bdev,
2665                              struct bio **bio_ret,
2666                              unsigned long max_pages,
2667                              bio_end_io_t end_io_func,
2668                              int mirror_num,
2669                              unsigned long prev_bio_flags,
2670                              unsigned long bio_flags)
2671{
2672        int ret = 0;
2673        struct bio *bio;
2674        int nr;
2675        int contig = 0;
2676        int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2677        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2678        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2679
2680        if (bio_ret && *bio_ret) {
2681                bio = *bio_ret;
2682                if (old_compressed)
2683                        contig = bio->bi_sector == sector;
2684                else
2685                        contig = bio_end_sector(bio) == sector;
2686
2687                if (prev_bio_flags != bio_flags || !contig ||
2688                    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2689                    bio_add_page(bio, page, page_size, offset) < page_size) {
2690                        ret = submit_one_bio(rw, bio, mirror_num,
2691                                             prev_bio_flags);
2692                        if (ret < 0)
2693                                return ret;
2694                        bio = NULL;
2695                } else {
2696                        return 0;
2697                }
2698        }
2699        if (this_compressed)
2700                nr = BIO_MAX_PAGES;
2701        else
2702                nr = bio_get_nr_vecs(bdev);
2703
2704        bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2705        if (!bio)
2706                return -ENOMEM;
2707
2708        bio_add_page(bio, page, page_size, offset);
2709        bio->bi_end_io = end_io_func;
2710        bio->bi_private = tree;
2711
2712        if (bio_ret)
2713                *bio_ret = bio;
2714        else
2715                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2716
2717        return ret;
2718}
2719
2720static void attach_extent_buffer_page(struct extent_buffer *eb,
2721                                      struct page *page)
2722{
2723        if (!PagePrivate(page)) {
2724                SetPagePrivate(page);
2725                page_cache_get(page);
2726                set_page_private(page, (unsigned long)eb);
2727        } else {
2728                WARN_ON(page->private != (unsigned long)eb);
2729        }
2730}
2731
2732void set_page_extent_mapped(struct page *page)
2733{
2734        if (!PagePrivate(page)) {
2735                SetPagePrivate(page);
2736                page_cache_get(page);
2737                set_page_private(page, EXTENT_PAGE_PRIVATE);
2738        }
2739}
2740
2741/*
2742 * basic readpage implementation.  Locked extent state structs are inserted
2743 * into the tree that are removed when the IO is done (by the end_io
2744 * handlers)
2745 * XXX JDM: This needs looking at to ensure proper page locking
2746 */
2747static int __extent_read_full_page(struct extent_io_tree *tree,
2748                                   struct page *page,
2749                                   get_extent_t *get_extent,
2750                                   struct bio **bio, int mirror_num,
2751                                   unsigned long *bio_flags, int rw)
2752{
2753        struct inode *inode = page->mapping->host;
2754        u64 start = page_offset(page);
2755        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2756        u64 end;
2757        u64 cur = start;
2758        u64 extent_offset;
2759        u64 last_byte = i_size_read(inode);
2760        u64 block_start;
2761        u64 cur_end;
2762        sector_t sector;
2763        struct extent_map *em;
2764        struct block_device *bdev;
2765        struct btrfs_ordered_extent *ordered;
2766        int ret;
2767        int nr = 0;
2768        size_t pg_offset = 0;
2769        size_t iosize;
2770        size_t disk_io_size;
2771        size_t blocksize = inode->i_sb->s_blocksize;
2772        unsigned long this_bio_flag = 0;
2773
2774        set_page_extent_mapped(page);
2775
2776        if (!PageUptodate(page)) {
2777                if (cleancache_get_page(page) == 0) {
2778                        BUG_ON(blocksize != PAGE_SIZE);
2779                        goto out;
2780                }
2781        }
2782
2783        end = page_end;
2784        while (1) {
2785                lock_extent(tree, start, end);
2786                ordered = btrfs_lookup_ordered_extent(inode, start);
2787                if (!ordered)
2788                        break;
2789                unlock_extent(tree, start, end);
2790                btrfs_start_ordered_extent(inode, ordered, 1);
2791                btrfs_put_ordered_extent(ordered);
2792        }
2793
2794        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2795                char *userpage;
2796                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2797
2798                if (zero_offset) {
2799                        iosize = PAGE_CACHE_SIZE - zero_offset;
2800                        userpage = kmap_atomic(page);
2801                        memset(userpage + zero_offset, 0, iosize);
2802                        flush_dcache_page(page);
2803                        kunmap_atomic(userpage);
2804                }
2805        }
2806        while (cur <= end) {
2807                unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2808
2809                if (cur >= last_byte) {
2810                        char *userpage;
2811                        struct extent_state *cached = NULL;
2812
2813                        iosize = PAGE_CACHE_SIZE - pg_offset;
2814                        userpage = kmap_atomic(page);
2815                        memset(userpage + pg_offset, 0, iosize);
2816                        flush_dcache_page(page);
2817                        kunmap_atomic(userpage);
2818                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2819                                            &cached, GFP_NOFS);
2820                        unlock_extent_cached(tree, cur, cur + iosize - 1,
2821                                             &cached, GFP_NOFS);
2822                        break;
2823                }
2824                em = get_extent(inode, page, pg_offset, cur,
2825                                end - cur + 1, 0);
2826                if (IS_ERR_OR_NULL(em)) {
2827                        SetPageError(page);
2828                        unlock_extent(tree, cur, end);
2829                        break;
2830                }
2831                extent_offset = cur - em->start;
2832                BUG_ON(extent_map_end(em) <= cur);
2833                BUG_ON(end < cur);
2834
2835                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2836                        this_bio_flag = EXTENT_BIO_COMPRESSED;
2837                        extent_set_compress_type(&this_bio_flag,
2838                                                 em->compress_type);
2839                }
2840
2841                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2842                cur_end = min(extent_map_end(em) - 1, end);
2843                iosize = ALIGN(iosize, blocksize);
2844                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2845                        disk_io_size = em->block_len;
2846                        sector = em->block_start >> 9;
2847                } else {
2848                        sector = (em->block_start + extent_offset) >> 9;
2849                        disk_io_size = iosize;
2850                }
2851                bdev = em->bdev;
2852                block_start = em->block_start;
2853                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2854                        block_start = EXTENT_MAP_HOLE;
2855                free_extent_map(em);
2856                em = NULL;
2857
2858                /* we've found a hole, just zero and go on */
2859                if (block_start == EXTENT_MAP_HOLE) {
2860                        char *userpage;
2861                        struct extent_state *cached = NULL;
2862
2863                        userpage = kmap_atomic(page);
2864                        memset(userpage + pg_offset, 0, iosize);
2865                        flush_dcache_page(page);
2866                        kunmap_atomic(userpage);
2867
2868                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2869                                            &cached, GFP_NOFS);
2870                        unlock_extent_cached(tree, cur, cur + iosize - 1,
2871                                             &cached, GFP_NOFS);
2872                        cur = cur + iosize;
2873                        pg_offset += iosize;
2874                        continue;
2875                }
2876                /* the get_extent function already copied into the page */
2877                if (test_range_bit(tree, cur, cur_end,
2878                                   EXTENT_UPTODATE, 1, NULL)) {
2879                        check_page_uptodate(tree, page);
2880                        unlock_extent(tree, cur, cur + iosize - 1);
2881                        cur = cur + iosize;
2882                        pg_offset += iosize;
2883                        continue;
2884                }
2885                /* we have an inline extent but it didn't get marked up
2886                 * to date.  Error out
2887                 */
2888                if (block_start == EXTENT_MAP_INLINE) {
2889                        SetPageError(page);
2890                        unlock_extent(tree, cur, cur + iosize - 1);
2891                        cur = cur + iosize;
2892                        pg_offset += iosize;
2893                        continue;
2894                }
2895
2896                pnr -= page->index;
2897                ret = submit_extent_page(rw, tree, page,
2898                                         sector, disk_io_size, pg_offset,
2899                                         bdev, bio, pnr,
2900                                         end_bio_extent_readpage, mirror_num,
2901                                         *bio_flags,
2902                                         this_bio_flag);
2903                if (!ret) {
2904                        nr++;
2905                        *bio_flags = this_bio_flag;
2906                } else {
2907                        SetPageError(page);
2908                        unlock_extent(tree, cur, cur + iosize - 1);
2909                }
2910                cur = cur + iosize;
2911                pg_offset += iosize;
2912        }
2913out:
2914        if (!nr) {
2915                if (!PageError(page))
2916                        SetPageUptodate(page);
2917                unlock_page(page);
2918        }
2919        return 0;
2920}
2921
2922int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2923                            get_extent_t *get_extent, int mirror_num)
2924{
2925        struct bio *bio = NULL;
2926        unsigned long bio_flags = 0;
2927        int ret;
2928
2929        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2930                                      &bio_flags, READ);
2931        if (bio)
2932                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2933        return ret;
2934}
2935
2936static noinline void update_nr_written(struct page *page,
2937                                      struct writeback_control *wbc,
2938                                      unsigned long nr_written)
2939{
2940        wbc->nr_to_write -= nr_written;
2941        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2942            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2943                page->mapping->writeback_index = page->index + nr_written;
2944}
2945
2946/*
2947 * the writepage semantics are similar to regular writepage.  extent
2948 * records are inserted to lock ranges in the tree, and as dirty areas
2949 * are found, they are marked writeback.  Then the lock bits are removed
2950 * and the end_io handler clears the writeback ranges
2951 */
2952static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2953                              void *data)
2954{
2955        struct inode *inode = page->mapping->host;
2956        struct extent_page_data *epd = data;
2957        struct extent_io_tree *tree = epd->tree;
2958        u64 start = page_offset(page);
2959        u64 delalloc_start;
2960        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2961        u64 end;
2962        u64 cur = start;
2963        u64 extent_offset;
2964        u64 last_byte = i_size_read(inode);
2965        u64 block_start;
2966        u64 iosize;
2967        sector_t sector;
2968        struct extent_state *cached_state = NULL;
2969        struct extent_map *em;
2970        struct block_device *bdev;
2971        int ret;
2972        int nr = 0;
2973        size_t pg_offset = 0;
2974        size_t blocksize;
2975        loff_t i_size = i_size_read(inode);
2976        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2977        u64 nr_delalloc;
2978        u64 delalloc_end;
2979        int page_started;
2980        int compressed;
2981        int write_flags;
2982        unsigned long nr_written = 0;
2983        bool fill_delalloc = true;
2984
2985        if (wbc->sync_mode == WB_SYNC_ALL)
2986                write_flags = WRITE_SYNC;
2987        else
2988                write_flags = WRITE;
2989
2990        trace___extent_writepage(page, inode, wbc);
2991
2992        WARN_ON(!PageLocked(page));
2993
2994        ClearPageError(page);
2995
2996        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2997        if (page->index > end_index ||
2998           (page->index == end_index && !pg_offset)) {
2999                page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3000                unlock_page(page);
3001                return 0;
3002        }
3003
3004        if (page->index == end_index) {
3005                char *userpage;
3006
3007                userpage = kmap_atomic(page);
3008                memset(userpage + pg_offset, 0,
3009                       PAGE_CACHE_SIZE - pg_offset);
3010                kunmap_atomic(userpage);
3011                flush_dcache_page(page);
3012        }
3013        pg_offset = 0;
3014
3015        set_page_extent_mapped(page);
3016
3017        if (!tree->ops || !tree->ops->fill_delalloc)
3018                fill_delalloc = false;
3019
3020        delalloc_start = start;
3021        delalloc_end = 0;
3022        page_started = 0;
3023        if (!epd->extent_locked && fill_delalloc) {
3024                u64 delalloc_to_write = 0;
3025                /*
3026                 * make sure the wbc mapping index is at least updated
3027                 * to this page.
3028                 */
3029                update_nr_written(page, wbc, 0);
3030
3031                while (delalloc_end < page_end) {
3032                        nr_delalloc = find_lock_delalloc_range(inode, tree,
3033                                                       page,
3034                                                       &delalloc_start,
3035                                                       &delalloc_end,
3036                                                       128 * 1024 * 1024);
3037                        if (nr_delalloc == 0) {
3038                                delalloc_start = delalloc_end + 1;
3039                                continue;
3040                        }
3041                        ret = tree->ops->fill_delalloc(inode, page,
3042                                                       delalloc_start,
3043                                                       delalloc_end,
3044                                                       &page_started,
3045                                                       &nr_written);
3046                        /* File system has been set read-only */
3047                        if (ret) {
3048                                SetPageError(page);
3049                                goto done;
3050                        }
3051                        /*
3052                         * delalloc_end is already one less than the total
3053                         * length, so we don't subtract one from
3054                         * PAGE_CACHE_SIZE
3055                         */
3056                        delalloc_to_write += (delalloc_end - delalloc_start +
3057                                              PAGE_CACHE_SIZE) >>
3058                                              PAGE_CACHE_SHIFT;
3059                        delalloc_start = delalloc_end + 1;
3060                }
3061                if (wbc->nr_to_write < delalloc_to_write) {
3062                        int thresh = 8192;
3063
3064                        if (delalloc_to_write < thresh * 2)
3065                                thresh = delalloc_to_write;
3066                        wbc->nr_to_write = min_t(u64, delalloc_to_write,
3067                                                 thresh);
3068                }
3069
3070                /* did the fill delalloc function already unlock and start
3071                 * the IO?
3072                 */
3073                if (page_started) {
3074                        ret = 0;
3075                        /*
3076                         * we've unlocked the page, so we can't update
3077                         * the mapping's writeback index, just update
3078                         * nr_to_write.
3079                         */
3080                        wbc->nr_to_write -= nr_written;
3081                        goto done_unlocked;
3082                }
3083        }
3084        if (tree->ops && tree->ops->writepage_start_hook) {
3085                ret = tree->ops->writepage_start_hook(page, start,
3086                                                      page_end);
3087                if (ret) {
3088                        /* Fixup worker will requeue */
3089                        if (ret == -EBUSY)
3090                                wbc->pages_skipped++;
3091                        else
3092                                redirty_page_for_writepage(wbc, page);
3093                        update_nr_written(page, wbc, nr_written);
3094                        unlock_page(page);
3095                        ret = 0;
3096                        goto done_unlocked;
3097                }
3098        }
3099
3100        /*
3101         * we don't want to touch the inode after unlocking the page,
3102         * so we update the mapping writeback index now
3103         */
3104        update_nr_written(page, wbc, nr_written + 1);
3105
3106        end = page_end;
3107        if (last_byte <= start) {
3108                if (tree->ops && tree->ops->writepage_end_io_hook)
3109                        tree->ops->writepage_end_io_hook(page, start,
3110                                                         page_end, NULL, 1);
3111                goto done;
3112        }
3113
3114        blocksize = inode->i_sb->s_blocksize;
3115
3116        while (cur <= end) {
3117                if (cur >= last_byte) {
3118                        if (tree->ops && tree->ops->writepage_end_io_hook)
3119                                tree->ops->writepage_end_io_hook(page, cur,
3120                                                         page_end, NULL, 1);
3121                        break;
3122                }
3123                em = epd->get_extent(inode, page, pg_offset, cur,
3124                                     end - cur + 1, 1);
3125                if (IS_ERR_OR_NULL(em)) {
3126                        SetPageError(page);
3127                        break;
3128                }
3129
3130                extent_offset = cur - em->start;
3131                BUG_ON(extent_map_end(em) <= cur);
3132                BUG_ON(end < cur);
3133                iosize = min(extent_map_end(em) - cur, end - cur + 1);
3134                iosize = ALIGN(iosize, blocksize);
3135                sector = (em->block_start + extent_offset) >> 9;
3136                bdev = em->bdev;
3137                block_start = em->block_start;
3138                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3139                free_extent_map(em);
3140                em = NULL;
3141
3142                /*
3143                 * compressed and inline extents are written through other
3144                 * paths in the FS
3145                 */
3146                if (compressed || block_start == EXTENT_MAP_HOLE ||
3147                    block_start == EXTENT_MAP_INLINE) {
3148                        /*
3149                         * end_io notification does not happen here for
3150                         * compressed extents
3151                         */
3152                        if (!compressed && tree->ops &&
3153                            tree->ops->writepage_end_io_hook)
3154                                tree->ops->writepage_end_io_hook(page, cur,
3155                                                         cur + iosize - 1,
3156                                                         NULL, 1);
3157                        else if (compressed) {
3158                                /* we don't want to end_page_writeback on
3159                                 * a compressed extent.  this happens
3160                                 * elsewhere
3161                                 */
3162                                nr++;
3163                        }
3164
3165                        cur += iosize;
3166                        pg_offset += iosize;
3167                        continue;
3168                }
3169                /* leave this out until we have a page_mkwrite call */
3170                if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3171                                   EXTENT_DIRTY, 0, NULL)) {
3172                        cur = cur + iosize;
3173                        pg_offset += iosize;
3174                        continue;
3175                }
3176
3177                if (tree->ops && tree->ops->writepage_io_hook) {
3178                        ret = tree->ops->writepage_io_hook(page, cur,
3179                                                cur + iosize - 1);
3180                } else {
3181                        ret = 0;
3182                }
3183                if (ret) {
3184                        SetPageError(page);
3185                } else {
3186                        unsigned long max_nr = end_index + 1;
3187
3188                        set_range_writeback(tree, cur, cur + iosize - 1);
3189                        if (!PageWriteback(page)) {
3190                                printk(KERN_ERR "btrfs warning page %lu not "
3191                                       "writeback, cur %llu end %llu\n",
3192                                       page->index, (unsigned long long)cur,
3193                                       (unsigned long long)end);
3194                        }
3195
3196                        ret = submit_extent_page(write_flags, tree, page,
3197                                                 sector, iosize, pg_offset,
3198                                                 bdev, &epd->bio, max_nr,
3199                                                 end_bio_extent_writepage,
3200                                                 0, 0, 0);
3201                        if (ret)
3202                                SetPageError(page);
3203                }
3204                cur = cur + iosize;
3205                pg_offset += iosize;
3206                nr++;
3207        }
3208done:
3209        if (nr == 0) {
3210                /* make sure the mapping tag for page dirty gets cleared */
3211                set_page_writeback(page);
3212                end_page_writeback(page);
3213        }
3214        unlock_page(page);
3215
3216done_unlocked:
3217
3218        /* drop our reference on any cached states */
3219        free_extent_state(cached_state);
3220        return 0;
3221}
3222
3223static int eb_wait(void *word)
3224{
3225        io_schedule();
3226        return 0;
3227}
3228
3229void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3230{
3231        wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3232                    TASK_UNINTERRUPTIBLE);
3233}
3234
3235static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3236                                     struct btrfs_fs_info *fs_info,
3237                                     struct extent_page_data *epd)
3238{
3239        unsigned long i, num_pages;
3240        int flush = 0;
3241        int ret = 0;
3242
3243        if (!btrfs_try_tree_write_lock(eb)) {
3244                flush = 1;
3245                flush_write_bio(epd);
3246                btrfs_tree_lock(eb);
3247        }
3248
3249        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3250                btrfs_tree_unlock(eb);
3251                if (!epd->sync_io)
3252                        return 0;
3253                if (!flush) {
3254                        flush_write_bio(epd);
3255                        flush = 1;
3256                }
3257                while (1) {
3258                        wait_on_extent_buffer_writeback(eb);
3259                        btrfs_tree_lock(eb);
3260                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3261                                break;
3262                        btrfs_tree_unlock(eb);
3263                }
3264        }
3265
3266        /*
3267         * We need to do this to prevent races in people who check if the eb is
3268         * under IO since we can end up having no IO bits set for a short period
3269         * of time.
3270         */
3271        spin_lock(&eb->refs_lock);
3272        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3273                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3274                spin_unlock(&eb->refs_lock);
3275                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3276                __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3277                                     -eb->len,
3278                                     fs_info->dirty_metadata_batch);
3279                ret = 1;
3280        } else {
3281                spin_unlock(&eb->refs_lock);
3282        }
3283
3284        btrfs_tree_unlock(eb);
3285
3286        if (!ret)
3287                return ret;
3288
3289        num_pages = num_extent_pages(eb->start, eb->len);
3290        for (i = 0; i < num_pages; i++) {
3291                struct page *p = extent_buffer_page(eb, i);
3292
3293                if (!trylock_page(p)) {
3294                        if (!flush) {
3295                                flush_write_bio(epd);
3296                                flush = 1;
3297                        }
3298                        lock_page(p);
3299                }
3300        }
3301
3302        return ret;
3303}
3304
3305static void end_extent_buffer_writeback(struct extent_buffer *eb)
3306{
3307        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3308        smp_mb__after_clear_bit();
3309        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3310}
3311
3312static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3313{
3314        int uptodate = err == 0;
3315        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3316        struct extent_buffer *eb;
3317        int done;
3318
3319        do {
3320                struct page *page = bvec->bv_page;
3321
3322                bvec--;
3323                eb = (struct extent_buffer *)page->private;
3324                BUG_ON(!eb);
3325                done = atomic_dec_and_test(&eb->io_pages);
3326
3327                if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3328                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3329                        ClearPageUptodate(page);
3330                        SetPageError(page);
3331                }
3332
3333                end_page_writeback(page);
3334
3335                if (!done)
3336                        continue;
3337
3338                end_extent_buffer_writeback(eb);
3339        } while (bvec >= bio->bi_io_vec);
3340
3341        bio_put(bio);
3342
3343}
3344
3345static int write_one_eb(struct extent_buffer *eb,
3346                        struct btrfs_fs_info *fs_info,
3347                        struct writeback_control *wbc,
3348                        struct extent_page_data *epd)
3349{
3350        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3351        u64 offset = eb->start;
3352        unsigned long i, num_pages;
3353        unsigned long bio_flags = 0;
3354        int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3355        int ret = 0;
3356
3357        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3358        num_pages = num_extent_pages(eb->start, eb->len);
3359        atomic_set(&eb->io_pages, num_pages);
3360        if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3361                bio_flags = EXTENT_BIO_TREE_LOG;
3362
3363        for (i = 0; i < num_pages; i++) {
3364                struct page *p = extent_buffer_page(eb, i);
3365
3366                clear_page_dirty_for_io(p);
3367                set_page_writeback(p);
3368                ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3369                                         PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3370                                         -1, end_bio_extent_buffer_writepage,
3371                                         0, epd->bio_flags, bio_flags);
3372                epd->bio_flags = bio_flags;
3373                if (ret) {
3374                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3375                        SetPageError(p);
3376                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3377                                end_extent_buffer_writeback(eb);
3378                        ret = -EIO;
3379                        break;
3380                }
3381                offset += PAGE_CACHE_SIZE;
3382                update_nr_written(p, wbc, 1);
3383                unlock_page(p);
3384        }
3385
3386        if (unlikely(ret)) {
3387                for (; i < num_pages; i++) {
3388                        struct page *p = extent_buffer_page(eb, i);
3389                        unlock_page(p);
3390                }
3391        }
3392
3393        return ret;
3394}
3395
3396int btree_write_cache_pages(struct address_space *mapping,
3397                                   struct writeback_control *wbc)
3398{
3399        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3400        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3401        struct extent_buffer *eb, *prev_eb = NULL;
3402        struct extent_page_data epd = {
3403                .bio = NULL,
3404                .tree = tree,
3405                .extent_locked = 0,
3406                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3407                .bio_flags = 0,
3408        };
3409        int ret = 0;
3410        int done = 0;
3411        int nr_to_write_done = 0;
3412        struct pagevec pvec;
3413        int nr_pages;
3414        pgoff_t index;
3415        pgoff_t end;            /* Inclusive */
3416        int scanned = 0;
3417        int tag;
3418
3419        pagevec_init(&pvec, 0);
3420        if (wbc->range_cyclic) {
3421                index = mapping->writeback_index; /* Start from prev offset */
3422                end = -1;
3423        } else {
3424                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3425                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3426                scanned = 1;
3427        }
3428        if (wbc->sync_mode == WB_SYNC_ALL)
3429                tag = PAGECACHE_TAG_TOWRITE;
3430        else
3431                tag = PAGECACHE_TAG_DIRTY;
3432retry:
3433        if (wbc->sync_mode == WB_SYNC_ALL)
3434                tag_pages_for_writeback(mapping, index, end);
3435        while (!done && !nr_to_write_done && (index <= end) &&
3436               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3437                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3438                unsigned i;
3439
3440                scanned = 1;
3441                for (i = 0; i < nr_pages; i++) {
3442                        struct page *page = pvec.pages[i];
3443
3444                        if (!PagePrivate(page))
3445                                continue;
3446
3447                        if (!wbc->range_cyclic && page->index > end) {
3448                                done = 1;
3449                                break;
3450                        }
3451
3452                        spin_lock(&mapping->private_lock);
3453                        if (!PagePrivate(page)) {
3454                                spin_unlock(&mapping->private_lock);
3455                                continue;
3456                        }
3457
3458                        eb = (struct extent_buffer *)page->private;
3459
3460                        /*
3461                         * Shouldn't happen and normally this would be a BUG_ON
3462                         * but no sense in crashing the users box for something
3463                         * we can survive anyway.
3464                         */
3465                        if (!eb) {
3466                                spin_unlock(&mapping->private_lock);
3467                                WARN_ON(1);
3468                                continue;
3469                        }
3470
3471                        if (eb == prev_eb) {
3472                                spin_unlock(&mapping->private_lock);
3473                                continue;
3474                        }
3475
3476                        ret = atomic_inc_not_zero(&eb->refs);
3477                        spin_unlock(&mapping->private_lock);
3478                        if (!ret)
3479                                continue;
3480
3481                        prev_eb = eb;
3482                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3483                        if (!ret) {
3484                                free_extent_buffer(eb);
3485                                continue;
3486                        }
3487
3488                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3489                        if (ret) {
3490                                done = 1;
3491                                free_extent_buffer(eb);
3492                                break;
3493                        }
3494                        free_extent_buffer(eb);
3495
3496                        /*
3497                         * the filesystem may choose to bump up nr_to_write.
3498                         * We have to make sure to honor the new nr_to_write
3499                         * at any time
3500                         */
3501                        nr_to_write_done = wbc->nr_to_write <= 0;
3502                }
3503                pagevec_release(&pvec);
3504                cond_resched();
3505        }
3506        if (!scanned && !done) {
3507                /*
3508                 * We hit the last page and there is more work to be done: wrap
3509                 * back to the start of the file
3510                 */
3511                scanned = 1;
3512                index = 0;
3513                goto retry;
3514        }
3515        flush_write_bio(&epd);
3516        return ret;
3517}
3518
3519/**
3520 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3521 * @mapping: address space structure to write
3522 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3523 * @writepage: function called for each page
3524 * @data: data passed to writepage function
3525 *
3526 * If a page is already under I/O, write_cache_pages() skips it, even
3527 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3528 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3529 * and msync() need to guarantee that all the data which was dirty at the time
3530 * the call was made get new I/O started against them.  If wbc->sync_mode is
3531 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3532 * existing IO to complete.
3533 */
3534static int extent_write_cache_pages(struct extent_io_tree *tree,
3535                             struct address_space *mapping,
3536                             struct writeback_control *wbc,
3537                             writepage_t writepage, void *data,
3538                             void (*flush_fn)(void *))
3539{
3540        struct inode *inode = mapping->host;
3541        int ret = 0;
3542        int done = 0;
3543        int nr_to_write_done = 0;
3544        struct pagevec pvec;
3545        int nr_pages;
3546        pgoff_t index;
3547        pgoff_t end;            /* Inclusive */
3548        int scanned = 0;
3549        int tag;
3550
3551        /*
3552         * We have to hold onto the inode so that ordered extents can do their
3553         * work when the IO finishes.  The alternative to this is failing to add
3554         * an ordered extent if the igrab() fails there and that is a huge pain
3555         * to deal with, so instead just hold onto the inode throughout the
3556         * writepages operation.  If it fails here we are freeing up the inode
3557         * anyway and we'd rather not waste our time writing out stuff that is
3558         * going to be truncated anyway.
3559         */
3560        if (!igrab(inode))
3561                return 0;
3562
3563        pagevec_init(&pvec, 0);
3564        if (wbc->range_cyclic) {
3565                index = mapping->writeback_index; /* Start from prev offset */
3566                end = -1;
3567        } else {
3568                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3569                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3570                scanned = 1;
3571        }
3572        if (wbc->sync_mode == WB_SYNC_ALL)
3573                tag = PAGECACHE_TAG_TOWRITE;
3574        else
3575                tag = PAGECACHE_TAG_DIRTY;
3576retry:
3577        if (wbc->sync_mode == WB_SYNC_ALL)
3578                tag_pages_for_writeback(mapping, index, end);
3579        while (!done && !nr_to_write_done && (index <= end) &&
3580               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3581                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3582                unsigned i;
3583
3584                scanned = 1;
3585                for (i = 0; i < nr_pages; i++) {
3586                        struct page *page = pvec.pages[i];
3587
3588                        /*
3589                         * At this point we hold neither mapping->tree_lock nor
3590                         * lock on the page itself: the page may be truncated or
3591                         * invalidated (changing page->mapping to NULL), or even
3592                         * swizzled back from swapper_space to tmpfs file
3593                         * mapping
3594                         */
3595                        if (!trylock_page(page)) {
3596                                flush_fn(data);
3597                                lock_page(page);
3598                        }
3599
3600                        if (unlikely(page->mapping != mapping)) {
3601                                unlock_page(page);
3602                                continue;
3603                        }
3604
3605                        if (!wbc->range_cyclic && page->index > end) {
3606                                done = 1;
3607                                unlock_page(page);
3608                                continue;
3609                        }
3610
3611                        if (wbc->sync_mode != WB_SYNC_NONE) {
3612                                if (PageWriteback(page))
3613                                        flush_fn(data);
3614                                wait_on_page_writeback(page);
3615                        }
3616
3617                        if (PageWriteback(page) ||
3618                            !clear_page_dirty_for_io(page)) {
3619                                unlock_page(page);
3620                                continue;
3621                        }
3622
3623                        ret = (*writepage)(page, wbc, data);
3624
3625                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3626                                unlock_page(page);
3627                                ret = 0;
3628                        }
3629                        if (ret)
3630                                done = 1;
3631
3632                        /*
3633                         * the filesystem may choose to bump up nr_to_write.
3634                         * We have to make sure to honor the new nr_to_write
3635                         * at any time
3636                         */
3637                        nr_to_write_done = wbc->nr_to_write <= 0;
3638                }
3639                pagevec_release(&pvec);
3640                cond_resched();
3641        }
3642        if (!scanned && !done) {
3643                /*
3644                 * We hit the last page and there is more work to be done: wrap
3645                 * back to the start of the file
3646                 */
3647                scanned = 1;
3648                index = 0;
3649                goto retry;
3650        }
3651        btrfs_add_delayed_iput(inode);
3652        return ret;
3653}
3654
3655static void flush_epd_write_bio(struct extent_page_data *epd)
3656{
3657        if (epd->bio) {
3658                int rw = WRITE;
3659                int ret;
3660
3661                if (epd->sync_io)
3662                        rw = WRITE_SYNC;
3663
3664                ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3665                BUG_ON(ret < 0); /* -ENOMEM */
3666                epd->bio = NULL;
3667        }
3668}
3669
3670static noinline void flush_write_bio(void *data)
3671{
3672        struct extent_page_data *epd = data;
3673        flush_epd_write_bio(epd);
3674}
3675
3676int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3677                          get_extent_t *get_extent,
3678                          struct writeback_control *wbc)
3679{
3680        int ret;
3681        struct extent_page_data epd = {
3682                .bio = NULL,
3683                .tree = tree,
3684                .get_extent = get_extent,
3685                .extent_locked = 0,
3686                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3687                .bio_flags = 0,
3688        };
3689
3690        ret = __extent_writepage(page, wbc, &epd);
3691
3692        flush_epd_write_bio(&epd);
3693        return ret;
3694}
3695
3696int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3697                              u64 start, u64 end, get_extent_t *get_extent,
3698                              int mode)
3699{
3700        int ret = 0;
3701        struct address_space *mapping = inode->i_mapping;
3702        struct page *page;
3703        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3704                PAGE_CACHE_SHIFT;
3705
3706        struct extent_page_data epd = {
3707                .bio = NULL,
3708                .tree = tree,
3709                .get_extent = get_extent,
3710                .extent_locked = 1,
3711                .sync_io = mode == WB_SYNC_ALL,
3712                .bio_flags = 0,
3713        };
3714        struct writeback_control wbc_writepages = {
3715                .sync_mode      = mode,
3716                .nr_to_write    = nr_pages * 2,
3717                .range_start    = start,
3718                .range_end      = end + 1,
3719        };
3720
3721        while (start <= end) {
3722                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3723                if (clear_page_dirty_for_io(page))
3724                        ret = __extent_writepage(page, &wbc_writepages, &epd);
3725                else {
3726                        if (tree->ops && tree->ops->writepage_end_io_hook)
3727                                tree->ops->writepage_end_io_hook(page, start,
3728                                                 start + PAGE_CACHE_SIZE - 1,
3729                                                 NULL, 1);
3730                        unlock_page(page);
3731                }
3732                page_cache_release(page);
3733                start += PAGE_CACHE_SIZE;
3734        }
3735
3736        flush_epd_write_bio(&epd);
3737        return ret;
3738}
3739
3740int extent_writepages(struct extent_io_tree *tree,
3741                      struct address_space *mapping,
3742                      get_extent_t *get_extent,
3743                      struct writeback_control *wbc)
3744{
3745        int ret = 0;
3746        struct extent_page_data epd = {
3747                .bio = NULL,
3748                .tree = tree,
3749                .get_extent = get_extent,
3750                .extent_locked = 0,
3751                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3752                .bio_flags = 0,
3753        };
3754
3755        ret = extent_write_cache_pages(tree, mapping, wbc,
3756                                       __extent_writepage, &epd,
3757                                       flush_write_bio);
3758        flush_epd_write_bio(&epd);
3759        return ret;
3760}
3761
3762int extent_readpages(struct extent_io_tree *tree,
3763                     struct address_space *mapping,
3764                     struct list_head *pages, unsigned nr_pages,
3765                     get_extent_t get_extent)
3766{
3767        struct bio *bio = NULL;
3768        unsigned page_idx;
3769        unsigned long bio_flags = 0;
3770        struct page *pagepool[16];
3771        struct page *page;
3772        int i = 0;
3773        int nr = 0;
3774
3775        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3776                page = list_entry(pages->prev, struct page, lru);
3777
3778                prefetchw(&page->flags);
3779                list_del(&page->lru);
3780                if (add_to_page_cache_lru(page, mapping,
3781                                        page->index, GFP_NOFS)) {
3782                        page_cache_release(page);
3783                        continue;
3784                }
3785
3786                pagepool[nr++] = page;
3787                if (nr < ARRAY_SIZE(pagepool))
3788                        continue;
3789                for (i = 0; i < nr; i++) {
3790                        __extent_read_full_page(tree, pagepool[i], get_extent,
3791                                        &bio, 0, &bio_flags, READ);
3792                        page_cache_release(pagepool[i]);
3793                }
3794                nr = 0;
3795        }
3796        for (i = 0; i < nr; i++) {
3797                __extent_read_full_page(tree, pagepool[i], get_extent,
3798                                        &bio, 0, &bio_flags, READ);
3799                page_cache_release(pagepool[i]);
3800        }
3801
3802        BUG_ON(!list_empty(pages));
3803        if (bio)
3804                return submit_one_bio(READ, bio, 0, bio_flags);
3805        return 0;
3806}
3807
3808/*
3809 * basic invalidatepage code, this waits on any locked or writeback
3810 * ranges corresponding to the page, and then deletes any extent state
3811 * records from the tree
3812 */
3813int extent_invalidatepage(struct extent_io_tree *tree,
3814                          struct page *page, unsigned long offset)
3815{
3816        struct extent_state *cached_state = NULL;
3817        u64 start = page_offset(page);
3818        u64 end = start + PAGE_CACHE_SIZE - 1;
3819        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3820
3821        start += ALIGN(offset, blocksize);
3822        if (start > end)
3823                return 0;
3824
3825        lock_extent_bits(tree, start, end, 0, &cached_state);
3826        wait_on_page_writeback(page);
3827        clear_extent_bit(tree, start, end,
3828                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3829                         EXTENT_DO_ACCOUNTING,
3830                         1, 1, &cached_state, GFP_NOFS);
3831        return 0;
3832}
3833
3834/*
3835 * a helper for releasepage, this tests for areas of the page that
3836 * are locked or under IO and drops the related state bits if it is safe
3837 * to drop the page.
3838 */
3839static int try_release_extent_state(struct extent_map_tree *map,
3840                                    struct extent_io_tree *tree,
3841                                    struct page *page, gfp_t mask)
3842{
3843        u64 start = page_offset(page);
3844        u64 end = start + PAGE_CACHE_SIZE - 1;
3845        int ret = 1;
3846
3847        if (test_range_bit(tree, start, end,
3848                           EXTENT_IOBITS, 0, NULL))
3849                ret = 0;
3850        else {
3851                if ((mask & GFP_NOFS) == GFP_NOFS)
3852                        mask = GFP_NOFS;
3853                /*
3854                 * at this point we can safely clear everything except the
3855                 * locked bit and the nodatasum bit
3856                 */
3857                ret = clear_extent_bit(tree, start, end,
3858                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3859                                 0, 0, NULL, mask);
3860
3861                /* if clear_extent_bit failed for enomem reasons,
3862                 * we can't allow the release to continue.
3863                 */
3864                if (ret < 0)
3865                        ret = 0;
3866                else
3867                        ret = 1;
3868        }
3869        return ret;
3870}
3871
3872/*
3873 * a helper for releasepage.  As long as there are no locked extents
3874 * in the range corresponding to the page, both state records and extent
3875 * map records are removed
3876 */
3877int try_release_extent_mapping(struct extent_map_tree *map,
3878                               struct extent_io_tree *tree, struct page *page,
3879                               gfp_t mask)
3880{
3881        struct extent_map *em;
3882        u64 start = page_offset(page);
3883        u64 end = start + PAGE_CACHE_SIZE - 1;
3884
3885        if ((mask & __GFP_WAIT) &&
3886            page->mapping->host->i_size > 16 * 1024 * 1024) {
3887                u64 len;
3888                while (start <= end) {
3889                        len = end - start + 1;
3890                        write_lock(&map->lock);
3891                        em = lookup_extent_mapping(map, start, len);
3892                        if (!em) {
3893                                write_unlock(&map->lock);
3894                                break;
3895                        }
3896                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3897                            em->start != start) {
3898                                write_unlock(&map->lock);
3899                                free_extent_map(em);
3900                                break;
3901                        }
3902                        if (!test_range_bit(tree, em->start,
3903                                            extent_map_end(em) - 1,
3904                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
3905                                            0, NULL)) {
3906                                remove_extent_mapping(map, em);
3907                                /* once for the rb tree */
3908                                free_extent_map(em);
3909                        }
3910                        start = extent_map_end(em);
3911                        write_unlock(&map->lock);
3912
3913                        /* once for us */
3914                        free_extent_map(em);
3915                }
3916        }
3917        return try_release_extent_state(map, tree, page, mask);
3918}
3919
3920/*
3921 * helper function for fiemap, which doesn't want to see any holes.
3922 * This maps until we find something past 'last'
3923 */
3924static struct extent_map *get_extent_skip_holes(struct inode *inode,
3925                                                u64 offset,
3926                                                u64 last,
3927                                                get_extent_t *get_extent)
3928{
3929        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3930        struct extent_map *em;
3931        u64 len;
3932
3933        if (offset >= last)
3934                return NULL;
3935
3936        while(1) {
3937                len = last - offset;
3938                if (len == 0)
3939                        break;
3940                len = ALIGN(len, sectorsize);
3941                em = get_extent(inode, NULL, 0, offset, len, 0);
3942                if (IS_ERR_OR_NULL(em))
3943                        return em;
3944
3945                /* if this isn't a hole return it */
3946                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3947                    em->block_start != EXTENT_MAP_HOLE) {
3948                        return em;
3949                }
3950
3951                /* this is a hole, advance to the next extent */
3952                offset = extent_map_end(em);
3953                free_extent_map(em);
3954                if (offset >= last)
3955                        break;
3956        }
3957        return NULL;
3958}
3959
3960int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3961                __u64 start, __u64 len, get_extent_t *get_extent)
3962{
3963        int ret = 0;
3964        u64 off = start;
3965        u64 max = start + len;
3966        u32 flags = 0;
3967        u32 found_type;
3968        u64 last;
3969        u64 last_for_get_extent = 0;
3970        u64 disko = 0;
3971        u64 isize = i_size_read(inode);
3972        struct btrfs_key found_key;
3973        struct extent_map *em = NULL;
3974        struct extent_state *cached_state = NULL;
3975        struct btrfs_path *path;
3976        struct btrfs_file_extent_item *item;
3977        int end = 0;
3978        u64 em_start = 0;
3979        u64 em_len = 0;
3980        u64 em_end = 0;
3981        unsigned long emflags;
3982
3983        if (len == 0)
3984                return -EINVAL;
3985
3986        path = btrfs_alloc_path();
3987        if (!path)
3988                return -ENOMEM;
3989        path->leave_spinning = 1;
3990
3991        start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3992        len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3993
3994        /*
3995         * lookup the last file extent.  We're not using i_size here
3996         * because there might be preallocation past i_size
3997         */
3998        ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3999                                       path, btrfs_ino(inode), -1, 0);
4000        if (ret < 0) {
4001                btrfs_free_path(path);
4002                return ret;
4003        }
4004        WARN_ON(!ret);
4005        path->slots[0]--;
4006        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4007                              struct btrfs_file_extent_item);
4008        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4009        found_type = btrfs_key_type(&found_key);
4010
4011        /* No extents, but there might be delalloc bits */
4012        if (found_key.objectid != btrfs_ino(inode) ||
4013            found_type != BTRFS_EXTENT_DATA_KEY) {
4014                /* have to trust i_size as the end */
4015                last = (u64)-1;
4016                last_for_get_extent = isize;
4017        } else {
4018                /*
4019                 * remember the start of the last extent.  There are a
4020                 * bunch of different factors that go into the length of the
4021                 * extent, so its much less complex to remember where it started
4022                 */
4023                last = found_key.offset;
4024                last_for_get_extent = last + 1;
4025        }
4026        btrfs_free_path(path);
4027
4028        /*
4029         * we might have some extents allocated but more delalloc past those
4030         * extents.  so, we trust isize unless the start of the last extent is
4031         * beyond isize
4032         */
4033        if (last < isize) {
4034                last = (u64)-1;
4035                last_for_get_extent = isize;
4036        }
4037
4038        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4039                         &cached_state);
4040
4041        em = get_extent_skip_holes(inode, start, last_for_get_extent,
4042                                   get_extent);
4043        if (!em)
4044                goto out;
4045        if (IS_ERR(em)) {
4046                ret = PTR_ERR(em);
4047                goto out;
4048        }
4049
4050        while (!end) {
4051                u64 offset_in_extent = 0;
4052
4053                /* break if the extent we found is outside the range */
4054                if (em->start >= max || extent_map_end(em) < off)
4055                        break;
4056
4057                /*
4058                 * get_extent may return an extent that starts before our
4059                 * requested range.  We have to make sure the ranges
4060                 * we return to fiemap always move forward and don't
4061                 * overlap, so adjust the offsets here
4062                 */
4063                em_start = max(em->start, off);
4064
4065                /*
4066                 * record the offset from the start of the extent
4067                 * for adjusting the disk offset below.  Only do this if the
4068                 * extent isn't compressed since our in ram offset may be past
4069                 * what we have actually allocated on disk.
4070                 */
4071                if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4072                        offset_in_extent = em_start - em->start;
4073                em_end = extent_map_end(em);
4074                em_len = em_end - em_start;
4075                emflags = em->flags;
4076                disko = 0;
4077                flags = 0;
4078
4079                /*
4080                 * bump off for our next call to get_extent
4081                 */
4082                off = extent_map_end(em);
4083                if (off >= max)
4084                        end = 1;
4085
4086                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4087                        end = 1;
4088                        flags |= FIEMAP_EXTENT_LAST;
4089                } else if (em->block_start == EXTENT_MAP_INLINE) {
4090                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
4091                                  FIEMAP_EXTENT_NOT_ALIGNED);
4092                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4093                        flags |= (FIEMAP_EXTENT_DELALLOC |
4094                                  FIEMAP_EXTENT_UNKNOWN);
4095                } else {
4096                        disko = em->block_start + offset_in_extent;
4097                }
4098                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4099                        flags |= FIEMAP_EXTENT_ENCODED;
4100
4101                free_extent_map(em);
4102                em = NULL;
4103                if ((em_start >= last) || em_len == (u64)-1 ||
4104                   (last == (u64)-1 && isize <= em_end)) {
4105                        flags |= FIEMAP_EXTENT_LAST;
4106                        end = 1;
4107                }
4108
4109                /* now scan forward to see if this is really the last extent. */
4110                em = get_extent_skip_holes(inode, off, last_for_get_extent,
4111                                           get_extent);
4112                if (IS_ERR(em)) {
4113                        ret = PTR_ERR(em);
4114                        goto out;
4115                }
4116                if (!em) {
4117                        flags |= FIEMAP_EXTENT_LAST;
4118                        end = 1;
4119                }
4120                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4121                                              em_len, flags);
4122                if (ret)
4123                        goto out_free;
4124        }
4125out_free:
4126        free_extent_map(em);
4127out:
4128        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4129                             &cached_state, GFP_NOFS);
4130        return ret;
4131}
4132
4133static void __free_extent_buffer(struct extent_buffer *eb)
4134{
4135        btrfs_leak_debug_del(&eb->leak_list);
4136        kmem_cache_free(extent_buffer_cache, eb);
4137}
4138
4139static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4140                                                   u64 start,
4141                                                   unsigned long len,
4142                                                   gfp_t mask)
4143{
4144        struct extent_buffer *eb = NULL;
4145
4146        eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4147        if (eb == NULL)
4148                return NULL;
4149        eb->start = start;
4150        eb->len = len;
4151        eb->tree = tree;
4152        eb->bflags = 0;
4153        rwlock_init(&eb->lock);
4154        atomic_set(&eb->write_locks, 0);
4155        atomic_set(&eb->read_locks, 0);
4156        atomic_set(&eb->blocking_readers, 0);
4157        atomic_set(&eb->blocking_writers, 0);
4158        atomic_set(&eb->spinning_readers, 0);
4159        atomic_set(&eb->spinning_writers, 0);
4160        eb->lock_nested = 0;
4161        init_waitqueue_head(&eb->write_lock_wq);
4162        init_waitqueue_head(&eb->read_lock_wq);
4163
4164        btrfs_leak_debug_add(&eb->leak_list, &buffers);
4165
4166        spin_lock_init(&eb->refs_lock);
4167        atomic_set(&eb->refs, 1);
4168        atomic_set(&eb->io_pages, 0);
4169
4170        /*
4171         * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4172         */
4173        BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4174                > MAX_INLINE_EXTENT_BUFFER_SIZE);
4175        BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4176
4177        return eb;
4178}
4179
4180struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4181{
4182        unsigned long i;
4183        struct page *p;
4184        struct extent_buffer *new;
4185        unsigned long num_pages = num_extent_pages(src->start, src->len);
4186
4187        new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4188        if (new == NULL)
4189                return NULL;
4190
4191        for (i = 0; i < num_pages; i++) {
4192                p = alloc_page(GFP_ATOMIC);
4193                BUG_ON(!p);
4194                attach_extent_buffer_page(new, p);
4195                WARN_ON(PageDirty(p));
4196                SetPageUptodate(p);
4197                new->pages[i] = p;
4198        }
4199
4200        copy_extent_buffer(new, src, 0, 0, src->len);
4201        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4202        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4203
4204        return new;
4205}
4206
4207struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4208{
4209        struct extent_buffer *eb;
4210        unsigned long num_pages = num_extent_pages(0, len);
4211        unsigned long i;
4212
4213        eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4214        if (!eb)
4215                return NULL;
4216
4217        for (i = 0; i < num_pages; i++) {
4218                eb->pages[i] = alloc_page(GFP_ATOMIC);
4219                if (!eb->pages[i])
4220                        goto err;
4221        }
4222        set_extent_buffer_uptodate(eb);
4223        btrfs_set_header_nritems(eb, 0);
4224        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4225
4226        return eb;
4227err:
4228        for (; i > 0; i--)
4229                __free_page(eb->pages[i - 1]);
4230        __free_extent_buffer(eb);
4231        return NULL;
4232}
4233
4234static int extent_buffer_under_io(struct extent_buffer *eb)
4235{
4236        return (atomic_read(&eb->io_pages) ||
4237                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4238                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4239}
4240
4241/*
4242 * Helper for releasing extent buffer page.
4243 */
4244static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4245                                                unsigned long start_idx)
4246{
4247        unsigned long index;
4248        unsigned long num_pages;
4249        struct page *page;
4250        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4251
4252        BUG_ON(extent_buffer_under_io(eb));
4253
4254        num_pages = num_extent_pages(eb->start, eb->len);
4255        index = start_idx + num_pages;
4256        if (start_idx >= index)
4257                return;
4258
4259        do {
4260                index--;
4261                page = extent_buffer_page(eb, index);
4262                if (page && mapped) {
4263                        spin_lock(&page->mapping->private_lock);
4264                        /*
4265                         * We do this since we'll remove the pages after we've
4266                         * removed the eb from the radix tree, so we could race
4267                         * and have this page now attached to the new eb.  So
4268                         * only clear page_private if it's still connected to
4269                         * this eb.
4270                         */
4271                        if (PagePrivate(page) &&
4272                            page->private == (unsigned long)eb) {
4273                                BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4274                                BUG_ON(PageDirty(page));
4275                                BUG_ON(PageWriteback(page));
4276                                /*
4277                                 * We need to make sure we haven't be attached
4278                                 * to a new eb.
4279                                 */
4280                                ClearPagePrivate(page);
4281                                set_page_private(page, 0);
4282                                /* One for the page private */
4283                                page_cache_release(page);
4284                        }
4285                        spin_unlock(&page->mapping->private_lock);
4286
4287                }
4288                if (page) {
4289                        /* One for when we alloced the page */
4290                        page_cache_release(page);
4291                }
4292        } while (index != start_idx);
4293}
4294
4295/*
4296 * Helper for releasing the extent buffer.
4297 */
4298static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4299{
4300        btrfs_release_extent_buffer_page(eb, 0);
4301        __free_extent_buffer(eb);
4302}
4303
4304static void check_buffer_tree_ref(struct extent_buffer *eb)
4305{
4306        int refs;
4307        /* the ref bit is tricky.  We have to make sure it is set
4308         * if we have the buffer dirty.   Otherwise the
4309         * code to free a buffer can end up dropping a dirty
4310         * page
4311         *
4312         * Once the ref bit is set, it won't go away while the
4313         * buffer is dirty or in writeback, and it also won't
4314         * go away while we have the reference count on the
4315         * eb bumped.
4316         *
4317         * We can't just set the ref bit without bumping the
4318         * ref on the eb because free_extent_buffer might
4319         * see the ref bit and try to clear it.  If this happens
4320         * free_extent_buffer might end up dropping our original
4321         * ref by mistake and freeing the page before we are able
4322         * to add one more ref.
4323         *
4324         * So bump the ref count first, then set the bit.  If someone
4325         * beat us to it, drop the ref we added.
4326         */
4327        refs = atomic_read(&eb->refs);
4328        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4329                return;
4330
4331        spin_lock(&eb->refs_lock);
4332        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4333                atomic_inc(&eb->refs);
4334        spin_unlock(&eb->refs_lock);
4335}
4336
4337static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4338{
4339        unsigned long num_pages, i;
4340
4341        check_buffer_tree_ref(eb);
4342
4343        num_pages = num_extent_pages(eb->start, eb->len);
4344        for (i = 0; i < num_pages; i++) {
4345                struct page *p = extent_buffer_page(eb, i);
4346                mark_page_accessed(p);
4347        }
4348}
4349
4350struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4351                                          u64 start, unsigned long len)
4352{
4353        unsigned long num_pages = num_extent_pages(start, len);
4354        unsigned long i;
4355        unsigned long index = start >> PAGE_CACHE_SHIFT;
4356        struct extent_buffer *eb;
4357        struct extent_buffer *exists = NULL;
4358        struct page *p;
4359        struct address_space *mapping = tree->mapping;
4360        int uptodate = 1;
4361        int ret;
4362
4363        rcu_read_lock();
4364        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4365        if (eb && atomic_inc_not_zero(&eb->refs)) {
4366                rcu_read_unlock();
4367                mark_extent_buffer_accessed(eb);
4368                return eb;
4369        }
4370        rcu_read_unlock();
4371
4372        eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4373        if (!eb)
4374                return NULL;
4375
4376        for (i = 0; i < num_pages; i++, index++) {
4377                p = find_or_create_page(mapping, index, GFP_NOFS);
4378                if (!p)
4379                        goto free_eb;
4380
4381                spin_lock(&mapping->private_lock);
4382                if (PagePrivate(p)) {
4383                        /*
4384                         * We could have already allocated an eb for this page
4385                         * and attached one so lets see if we can get a ref on
4386                         * the existing eb, and if we can we know it's good and
4387                         * we can just return that one, else we know we can just
4388                         * overwrite page->private.
4389                         */
4390                        exists = (struct extent_buffer *)p->private;
4391                        if (atomic_inc_not_zero(&exists->refs)) {
4392                                spin_unlock(&mapping->private_lock);
4393                                unlock_page(p);
4394                                page_cache_release(p);
4395                                mark_extent_buffer_accessed(exists);
4396                                goto free_eb;
4397                        }
4398
4399                        /*
4400                         * Do this so attach doesn't complain and we need to
4401                         * drop the ref the old guy had.
4402                         */
4403                        ClearPagePrivate(p);
4404                        WARN_ON(PageDirty(p));
4405                        page_cache_release(p);
4406                }
4407                attach_extent_buffer_page(eb, p);
4408                spin_unlock(&mapping->private_lock);
4409                WARN_ON(PageDirty(p));
4410                mark_page_accessed(p);
4411                eb->pages[i] = p;
4412                if (!PageUptodate(p))
4413                        uptodate = 0;
4414
4415                /*
4416                 * see below about how we avoid a nasty race with release page
4417                 * and why we unlock later
4418                 */
4419        }
4420        if (uptodate)
4421                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4422again:
4423        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4424        if (ret)
4425                goto free_eb;
4426
4427        spin_lock(&tree->buffer_lock);
4428        ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4429        if (ret == -EEXIST) {
4430                exists = radix_tree_lookup(&tree->buffer,
4431                                                start >> PAGE_CACHE_SHIFT);
4432                if (!atomic_inc_not_zero(&exists->refs)) {
4433                        spin_unlock(&tree->buffer_lock);
4434                        radix_tree_preload_end();
4435                        exists = NULL;
4436                        goto again;
4437                }
4438                spin_unlock(&tree->buffer_lock);
4439                radix_tree_preload_end();
4440                mark_extent_buffer_accessed(exists);
4441                goto free_eb;
4442        }
4443        /* add one reference for the tree */
4444        check_buffer_tree_ref(eb);
4445        spin_unlock(&tree->buffer_lock);
4446        radix_tree_preload_end();
4447
4448        /*
4449         * there is a race where release page may have
4450         * tried to find this extent buffer in the radix
4451         * but failed.  It will tell the VM it is safe to
4452         * reclaim the, and it will clear the page private bit.
4453         * We must make sure to set the page private bit properly
4454         * after the extent buffer is in the radix tree so
4455         * it doesn't get lost
4456         */
4457        SetPageChecked(eb->pages[0]);
4458        for (i = 1; i < num_pages; i++) {
4459                p = extent_buffer_page(eb, i);
4460                ClearPageChecked(p);
4461                unlock_page(p);
4462        }
4463        unlock_page(eb->pages[0]);
4464        return eb;
4465
4466free_eb:
4467        for (i = 0; i < num_pages; i++) {
4468                if (eb->pages[i])
4469                        unlock_page(eb->pages[i]);
4470        }
4471
4472        WARN_ON(!atomic_dec_and_test(&eb->refs));
4473        btrfs_release_extent_buffer(eb);
4474        return exists;
4475}
4476
4477struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4478                                         u64 start, unsigned long len)
4479{
4480        struct extent_buffer *eb;
4481
4482        rcu_read_lock();
4483        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4484        if (eb && atomic_inc_not_zero(&eb->refs)) {
4485                rcu_read_unlock();
4486                mark_extent_buffer_accessed(eb);
4487                return eb;
4488        }
4489        rcu_read_unlock();
4490
4491        return NULL;
4492}
4493
4494static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4495{
4496        struct extent_buffer *eb =
4497                        container_of(head, struct extent_buffer, rcu_head);
4498
4499        __free_extent_buffer(eb);
4500}
4501
4502/* Expects to have eb->eb_lock already held */
4503static int release_extent_buffer(struct extent_buffer *eb)
4504{
4505        WARN_ON(atomic_read(&eb->refs) == 0);
4506        if (atomic_dec_and_test(&eb->refs)) {
4507                if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4508                        spin_unlock(&eb->refs_lock);
4509                } else {
4510                        struct extent_io_tree *tree = eb->tree;
4511
4512                        spin_unlock(&eb->refs_lock);
4513
4514                        spin_lock(&tree->buffer_lock);
4515                        radix_tree_delete(&tree->buffer,
4516                                          eb->start >> PAGE_CACHE_SHIFT);
4517                        spin_unlock(&tree->buffer_lock);
4518                }
4519
4520                /* Should be safe to release our pages at this point */
4521                btrfs_release_extent_buffer_page(eb, 0);
4522                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4523                return 1;
4524        }
4525        spin_unlock(&eb->refs_lock);
4526
4527        return 0;
4528}
4529
4530void free_extent_buffer(struct extent_buffer *eb)
4531{
4532        int refs;
4533        int old;
4534        if (!eb)
4535                return;
4536
4537        while (1) {
4538                refs = atomic_read(&eb->refs);
4539                if (refs <= 3)
4540                        break;
4541                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4542                if (old == refs)
4543                        return;
4544        }
4545
4546        spin_lock(&eb->refs_lock);
4547        if (atomic_read(&eb->refs) == 2 &&
4548            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4549                atomic_dec(&eb->refs);
4550
4551        if (atomic_read(&eb->refs) == 2 &&
4552            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4553            !extent_buffer_under_io(eb) &&
4554            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4555                atomic_dec(&eb->refs);
4556
4557        /*
4558         * I know this is terrible, but it's temporary until we stop tracking
4559         * the uptodate bits and such for the extent buffers.
4560         */
4561        release_extent_buffer(eb);
4562}
4563
4564void free_extent_buffer_stale(struct extent_buffer *eb)
4565{
4566        if (!eb)
4567                return;
4568
4569        spin_lock(&eb->refs_lock);
4570        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4571
4572        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4573            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4574                atomic_dec(&eb->refs);
4575        release_extent_buffer(eb);
4576}
4577
4578void clear_extent_buffer_dirty(struct extent_buffer *eb)
4579{
4580        unsigned long i;
4581        unsigned long num_pages;
4582        struct page *page;
4583
4584        num_pages = num_extent_pages(eb->start, eb->len);
4585
4586        for (i = 0; i < num_pages; i++) {
4587                page = extent_buffer_page(eb, i);
4588                if (!PageDirty(page))
4589                        continue;
4590
4591                lock_page(page);
4592                WARN_ON(!PagePrivate(page));
4593
4594                clear_page_dirty_for_io(page);
4595                spin_lock_irq(&page->mapping->tree_lock);
4596                if (!PageDirty(page)) {
4597                        radix_tree_tag_clear(&page->mapping->page_tree,
4598                                                page_index(page),
4599                                                PAGECACHE_TAG_DIRTY);
4600                }
4601                spin_unlock_irq(&page->mapping->tree_lock);
4602                ClearPageError(page);
4603                unlock_page(page);
4604        }
4605        WARN_ON(atomic_read(&eb->refs) == 0);
4606}
4607
4608int set_extent_buffer_dirty(struct extent_buffer *eb)
4609{
4610        unsigned long i;
4611        unsigned long num_pages;
4612        int was_dirty = 0;
4613
4614        check_buffer_tree_ref(eb);
4615
4616        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4617
4618        num_pages = num_extent_pages(eb->start, eb->len);
4619        WARN_ON(atomic_read(&eb->refs) == 0);
4620        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4621
4622        for (i = 0; i < num_pages; i++)
4623                set_page_dirty(extent_buffer_page(eb, i));
4624        return was_dirty;
4625}
4626
4627int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4628{
4629        unsigned long i;
4630        struct page *page;
4631        unsigned long num_pages;
4632
4633        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4634        num_pages = num_extent_pages(eb->start, eb->len);
4635        for (i = 0; i < num_pages; i++) {
4636                page = extent_buffer_page(eb, i);
4637                if (page)
4638                        ClearPageUptodate(page);
4639        }
4640        return 0;
4641}
4642
4643int set_extent_buffer_uptodate(struct extent_buffer *eb)
4644{
4645        unsigned long i;
4646        struct page *page;
4647        unsigned long num_pages;
4648
4649        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4650        num_pages = num_extent_pages(eb->start, eb->len);
4651        for (i = 0; i < num_pages; i++) {
4652                page = extent_buffer_page(eb, i);
4653                SetPageUptodate(page);
4654        }
4655        return 0;
4656}
4657
4658int extent_buffer_uptodate(struct extent_buffer *eb)
4659{
4660        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4661}
4662
4663int read_extent_buffer_pages(struct extent_io_tree *tree,
4664                             struct extent_buffer *eb, u64 start, int wait,
4665                             get_extent_t *get_extent, int mirror_num)
4666{
4667        unsigned long i;
4668        unsigned long start_i;
4669        struct page *page;
4670        int err;
4671        int ret = 0;
4672        int locked_pages = 0;
4673        int all_uptodate = 1;
4674        unsigned long num_pages;
4675        unsigned long num_reads = 0;
4676        struct bio *bio = NULL;
4677        unsigned long bio_flags = 0;
4678
4679        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4680                return 0;
4681
4682        if (start) {
4683                WARN_ON(start < eb->start);
4684                start_i = (start >> PAGE_CACHE_SHIFT) -
4685                        (eb->start >> PAGE_CACHE_SHIFT);
4686        } else {
4687                start_i = 0;
4688        }
4689
4690        num_pages = num_extent_pages(eb->start, eb->len);
4691        for (i = start_i; i < num_pages; i++) {
4692                page = extent_buffer_page(eb, i);
4693                if (wait == WAIT_NONE) {
4694                        if (!trylock_page(page))
4695                                goto unlock_exit;
4696                } else {
4697                        lock_page(page);
4698                }
4699                locked_pages++;
4700                if (!PageUptodate(page)) {
4701                        num_reads++;
4702                        all_uptodate = 0;
4703                }
4704        }
4705        if (all_uptodate) {
4706                if (start_i == 0)
4707                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4708                goto unlock_exit;
4709        }
4710
4711        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4712        eb->read_mirror = 0;
4713        atomic_set(&eb->io_pages, num_reads);
4714        for (i = start_i; i < num_pages; i++) {
4715                page = extent_buffer_page(eb, i);
4716                if (!PageUptodate(page)) {
4717                        ClearPageError(page);
4718                        err = __extent_read_full_page(tree, page,
4719                                                      get_extent, &bio,
4720                                                      mirror_num, &bio_flags,
4721                                                      READ | REQ_META);
4722                        if (err)
4723                                ret = err;
4724                } else {
4725                        unlock_page(page);
4726                }
4727        }
4728
4729        if (bio) {
4730                err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4731                                     bio_flags);
4732                if (err)
4733                        return err;
4734        }
4735
4736        if (ret || wait != WAIT_COMPLETE)
4737                return ret;
4738
4739        for (i = start_i; i < num_pages; i++) {
4740                page = extent_buffer_page(eb, i);
4741                wait_on_page_locked(page);
4742                if (!PageUptodate(page))
4743                        ret = -EIO;
4744        }
4745
4746        return ret;
4747
4748unlock_exit:
4749        i = start_i;
4750        while (locked_pages > 0) {
4751                page = extent_buffer_page(eb, i);
4752                i++;
4753                unlock_page(page);
4754                locked_pages--;
4755        }
4756        return ret;
4757}
4758
4759void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4760                        unsigned long start,
4761                        unsigned long len)
4762{
4763        size_t cur;
4764        size_t offset;
4765        struct page *page;
4766        char *kaddr;
4767        char *dst = (char *)dstv;
4768        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4769        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4770
4771        WARN_ON(start > eb->len);
4772        WARN_ON(start + len > eb->start + eb->len);
4773
4774        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4775
4776        while (len > 0) {
4777                page = extent_buffer_page(eb, i);
4778
4779                cur = min(len, (PAGE_CACHE_SIZE - offset));
4780                kaddr = page_address(page);
4781                memcpy(dst, kaddr + offset, cur);
4782
4783                dst += cur;
4784                len -= cur;
4785                offset = 0;
4786                i++;
4787        }
4788}
4789
4790int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4791                               unsigned long min_len, char **map,
4792                               unsigned long *map_start,
4793                               unsigned long *map_len)
4794{
4795        size_t offset = start & (PAGE_CACHE_SIZE - 1);
4796        char *kaddr;
4797        struct page *p;
4798        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4799        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4800        unsigned long end_i = (start_offset + start + min_len - 1) >>
4801                PAGE_CACHE_SHIFT;
4802
4803        if (i != end_i)
4804                return -EINVAL;
4805
4806        if (i == 0) {
4807                offset = start_offset;
4808                *map_start = 0;
4809        } else {
4810                offset = 0;
4811                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4812        }
4813
4814        if (start + min_len > eb->len) {
4815                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4816                       "wanted %lu %lu\n", (unsigned long long)eb->start,
4817                       eb->len, start, min_len);
4818                return -EINVAL;
4819        }
4820
4821        p = extent_buffer_page(eb, i);
4822        kaddr = page_address(p);
4823        *map = kaddr + offset;
4824        *map_len = PAGE_CACHE_SIZE - offset;
4825        return 0;
4826}
4827
4828int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4829                          unsigned long start,
4830                          unsigned long len)
4831{
4832        size_t cur;
4833        size_t offset;
4834        struct page *page;
4835        char *kaddr;
4836        char *ptr = (char *)ptrv;
4837        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4838        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4839        int ret = 0;
4840
4841        WARN_ON(start > eb->len);
4842        WARN_ON(start + len > eb->start + eb->len);
4843
4844        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4845
4846        while (len > 0) {
4847                page = extent_buffer_page(eb, i);
4848
4849                cur = min(len, (PAGE_CACHE_SIZE - offset));
4850
4851                kaddr = page_address(page);
4852                ret = memcmp(ptr, kaddr + offset, cur);
4853                if (ret)
4854                        break;
4855
4856                ptr += cur;
4857                len -= cur;
4858                offset = 0;
4859                i++;
4860        }
4861        return ret;
4862}
4863
4864void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4865                         unsigned long start, unsigned long len)
4866{
4867        size_t cur;
4868        size_t offset;
4869        struct page *page;
4870        char *kaddr;
4871        char *src = (char *)srcv;
4872        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4873        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4874
4875        WARN_ON(start > eb->len);
4876        WARN_ON(start + len > eb->start + eb->len);
4877
4878        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4879
4880        while (len > 0) {
4881                page = extent_buffer_page(eb, i);
4882                WARN_ON(!PageUptodate(page));
4883
4884                cur = min(len, PAGE_CACHE_SIZE - offset);
4885                kaddr = page_address(page);
4886                memcpy(kaddr + offset, src, cur);
4887
4888                src += cur;
4889                len -= cur;
4890                offset = 0;
4891                i++;
4892        }
4893}
4894
4895void memset_extent_buffer(struct extent_buffer *eb, char c,
4896                          unsigned long start, unsigned long len)
4897{
4898        size_t cur;
4899        size_t offset;
4900        struct page *page;
4901        char *kaddr;
4902        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4903        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4904
4905        WARN_ON(start > eb->len);
4906        WARN_ON(start + len > eb->start + eb->len);
4907
4908        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4909
4910        while (len > 0) {
4911                page = extent_buffer_page(eb, i);
4912                WARN_ON(!PageUptodate(page));
4913
4914                cur = min(len, PAGE_CACHE_SIZE - offset);
4915                kaddr = page_address(page);
4916                memset(kaddr + offset, c, cur);
4917
4918                len -= cur;
4919                offset = 0;
4920                i++;
4921        }
4922}
4923
4924void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4925                        unsigned long dst_offset, unsigned long src_offset,
4926                        unsigned long len)
4927{
4928        u64 dst_len = dst->len;
4929        size_t cur;
4930        size_t offset;
4931        struct page *page;
4932        char *kaddr;
4933        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4934        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4935
4936        WARN_ON(src->len != dst_len);
4937
4938        offset = (start_offset + dst_offset) &
4939                ((unsigned long)PAGE_CACHE_SIZE - 1);
4940
4941        while (len > 0) {
4942                page = extent_buffer_page(dst, i);
4943                WARN_ON(!PageUptodate(page));
4944
4945                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4946
4947                kaddr = page_address(page);
4948                read_extent_buffer(src, kaddr + offset, src_offset, cur);
4949
4950                src_offset += cur;
4951                len -= cur;
4952                offset = 0;
4953                i++;
4954        }
4955}
4956
4957static void move_pages(struct page *dst_page, struct page *src_page,
4958                       unsigned long dst_off, unsigned long src_off,
4959                       unsigned long len)
4960{
4961        char *dst_kaddr = page_address(dst_page);
4962        if (dst_page == src_page) {
4963                memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4964        } else {
4965                char *src_kaddr = page_address(src_page);
4966                char *p = dst_kaddr + dst_off + len;
4967                char *s = src_kaddr + src_off + len;
4968
4969                while (len--)
4970                        *--p = *--s;
4971        }
4972}
4973
4974static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4975{
4976        unsigned long distance = (src > dst) ? src - dst : dst - src;
4977        return distance < len;
4978}
4979
4980static void copy_pages(struct page *dst_page, struct page *src_page,
4981                       unsigned long dst_off, unsigned long src_off,
4982                       unsigned long len)
4983{
4984        char *dst_kaddr = page_address(dst_page);
4985        char *src_kaddr;
4986        int must_memmove = 0;
4987
4988        if (dst_page != src_page) {
4989                src_kaddr = page_address(src_page);
4990        } else {
4991                src_kaddr = dst_kaddr;
4992                if (areas_overlap(src_off, dst_off, len))
4993                        must_memmove = 1;
4994        }
4995
4996        if (must_memmove)
4997                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4998        else
4999                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5000}
5001
5002void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5003                           unsigned long src_offset, unsigned long len)
5004{
5005        size_t cur;
5006        size_t dst_off_in_page;
5007        size_t src_off_in_page;
5008        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5009        unsigned long dst_i;
5010        unsigned long src_i;
5011
5012        if (src_offset + len > dst->len) {
5013                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5014                       "len %lu dst len %lu\n", src_offset, len, dst->len);
5015                BUG_ON(1);
5016        }
5017        if (dst_offset + len > dst->len) {
5018                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5019                       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5020                BUG_ON(1);
5021        }
5022
5023        while (len > 0) {
5024                dst_off_in_page = (start_offset + dst_offset) &
5025                        ((unsigned long)PAGE_CACHE_SIZE - 1);
5026                src_off_in_page = (start_offset + src_offset) &
5027                        ((unsigned long)PAGE_CACHE_SIZE - 1);
5028
5029                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5030                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5031
5032                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5033                                               src_off_in_page));
5034                cur = min_t(unsigned long, cur,
5035                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5036
5037                copy_pages(extent_buffer_page(dst, dst_i),
5038                           extent_buffer_page(dst, src_i),
5039                           dst_off_in_page, src_off_in_page, cur);
5040
5041                src_offset += cur;
5042                dst_offset += cur;
5043                len -= cur;
5044        }
5045}
5046
5047void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5048                           unsigned long src_offset, unsigned long len)
5049{
5050        size_t cur;
5051        size_t dst_off_in_page;
5052        size_t src_off_in_page;
5053        unsigned long dst_end = dst_offset + len - 1;
5054        unsigned long src_end = src_offset + len - 1;
5055        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5056        unsigned long dst_i;
5057        unsigned long src_i;
5058
5059        if (src_offset + len > dst->len) {
5060                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5061                       "len %lu len %lu\n", src_offset, len, dst->len);
5062                BUG_ON(1);
5063        }
5064        if (dst_offset + len > dst->len) {
5065                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5066                       "len %lu len %lu\n", dst_offset, len, dst->len);
5067                BUG_ON(1);
5068        }
5069        if (dst_offset < src_offset) {
5070                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5071                return;
5072        }
5073        while (len > 0) {
5074                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5075                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5076
5077                dst_off_in_page = (start_offset + dst_end) &
5078                        ((unsigned long)PAGE_CACHE_SIZE - 1);
5079                src_off_in_page = (start_offset + src_end) &
5080                        ((unsigned long)PAGE_CACHE_SIZE - 1);
5081
5082                cur = min_t(unsigned long, len, src_off_in_page + 1);
5083                cur = min(cur, dst_off_in_page + 1);
5084                move_pages(extent_buffer_page(dst, dst_i),
5085                           extent_buffer_page(dst, src_i),
5086                           dst_off_in_page - cur + 1,
5087                           src_off_in_page - cur + 1, cur);
5088
5089                dst_end -= cur;
5090                src_end -= cur;
5091                len -= cur;
5092        }
5093}
5094
5095int try_release_extent_buffer(struct page *page)
5096{
5097        struct extent_buffer *eb;
5098
5099        /*
5100         * We need to make sure noboody is attaching this page to an eb right
5101         * now.
5102         */
5103        spin_lock(&page->mapping->private_lock);
5104        if (!PagePrivate(page)) {
5105                spin_unlock(&page->mapping->private_lock);
5106                return 1;
5107        }
5108
5109        eb = (struct extent_buffer *)page->private;
5110        BUG_ON(!eb);
5111
5112        /*
5113         * This is a little awful but should be ok, we need to make sure that
5114         * the eb doesn't disappear out from under us while we're looking at
5115         * this page.
5116         */
5117        spin_lock(&eb->refs_lock);
5118        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5119                spin_unlock(&eb->refs_lock);
5120                spin_unlock(&page->mapping->private_lock);
5121                return 0;
5122        }
5123        spin_unlock(&page->mapping->private_lock);
5124
5125        /*
5126         * If tree ref isn't set then we know the ref on this eb is a real ref,
5127         * so just return, this page will likely be freed soon anyway.
5128         */
5129        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5130                spin_unlock(&eb->refs_lock);
5131                return 0;
5132        }
5133
5134        return release_extent_buffer(eb);
5135}
5136