linux/fs/btrfs/file.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/aio.h>
  28#include <linux/falloc.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/statfs.h>
  32#include <linux/compat.h>
  33#include <linux/slab.h>
  34#include <linux/btrfs.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "print-tree.h"
  40#include "tree-log.h"
  41#include "locking.h"
  42#include "compat.h"
  43#include "volumes.h"
  44
  45static struct kmem_cache *btrfs_inode_defrag_cachep;
  46/*
  47 * when auto defrag is enabled we
  48 * queue up these defrag structs to remember which
  49 * inodes need defragging passes
  50 */
  51struct inode_defrag {
  52        struct rb_node rb_node;
  53        /* objectid */
  54        u64 ino;
  55        /*
  56         * transid where the defrag was added, we search for
  57         * extents newer than this
  58         */
  59        u64 transid;
  60
  61        /* root objectid */
  62        u64 root;
  63
  64        /* last offset we were able to defrag */
  65        u64 last_offset;
  66
  67        /* if we've wrapped around back to zero once already */
  68        int cycled;
  69};
  70
  71static int __compare_inode_defrag(struct inode_defrag *defrag1,
  72                                  struct inode_defrag *defrag2)
  73{
  74        if (defrag1->root > defrag2->root)
  75                return 1;
  76        else if (defrag1->root < defrag2->root)
  77                return -1;
  78        else if (defrag1->ino > defrag2->ino)
  79                return 1;
  80        else if (defrag1->ino < defrag2->ino)
  81                return -1;
  82        else
  83                return 0;
  84}
  85
  86/* pop a record for an inode into the defrag tree.  The lock
  87 * must be held already
  88 *
  89 * If you're inserting a record for an older transid than an
  90 * existing record, the transid already in the tree is lowered
  91 *
  92 * If an existing record is found the defrag item you
  93 * pass in is freed
  94 */
  95static int __btrfs_add_inode_defrag(struct inode *inode,
  96                                    struct inode_defrag *defrag)
  97{
  98        struct btrfs_root *root = BTRFS_I(inode)->root;
  99        struct inode_defrag *entry;
 100        struct rb_node **p;
 101        struct rb_node *parent = NULL;
 102        int ret;
 103
 104        p = &root->fs_info->defrag_inodes.rb_node;
 105        while (*p) {
 106                parent = *p;
 107                entry = rb_entry(parent, struct inode_defrag, rb_node);
 108
 109                ret = __compare_inode_defrag(defrag, entry);
 110                if (ret < 0)
 111                        p = &parent->rb_left;
 112                else if (ret > 0)
 113                        p = &parent->rb_right;
 114                else {
 115                        /* if we're reinserting an entry for
 116                         * an old defrag run, make sure to
 117                         * lower the transid of our existing record
 118                         */
 119                        if (defrag->transid < entry->transid)
 120                                entry->transid = defrag->transid;
 121                        if (defrag->last_offset > entry->last_offset)
 122                                entry->last_offset = defrag->last_offset;
 123                        return -EEXIST;
 124                }
 125        }
 126        set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 127        rb_link_node(&defrag->rb_node, parent, p);
 128        rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 129        return 0;
 130}
 131
 132static inline int __need_auto_defrag(struct btrfs_root *root)
 133{
 134        if (!btrfs_test_opt(root, AUTO_DEFRAG))
 135                return 0;
 136
 137        if (btrfs_fs_closing(root->fs_info))
 138                return 0;
 139
 140        return 1;
 141}
 142
 143/*
 144 * insert a defrag record for this inode if auto defrag is
 145 * enabled
 146 */
 147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 148                           struct inode *inode)
 149{
 150        struct btrfs_root *root = BTRFS_I(inode)->root;
 151        struct inode_defrag *defrag;
 152        u64 transid;
 153        int ret;
 154
 155        if (!__need_auto_defrag(root))
 156                return 0;
 157
 158        if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 159                return 0;
 160
 161        if (trans)
 162                transid = trans->transid;
 163        else
 164                transid = BTRFS_I(inode)->root->last_trans;
 165
 166        defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 167        if (!defrag)
 168                return -ENOMEM;
 169
 170        defrag->ino = btrfs_ino(inode);
 171        defrag->transid = transid;
 172        defrag->root = root->root_key.objectid;
 173
 174        spin_lock(&root->fs_info->defrag_inodes_lock);
 175        if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 176                /*
 177                 * If we set IN_DEFRAG flag and evict the inode from memory,
 178                 * and then re-read this inode, this new inode doesn't have
 179                 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 180                 */
 181                ret = __btrfs_add_inode_defrag(inode, defrag);
 182                if (ret)
 183                        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 184        } else {
 185                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 186        }
 187        spin_unlock(&root->fs_info->defrag_inodes_lock);
 188        return 0;
 189}
 190
 191/*
 192 * Requeue the defrag object. If there is a defrag object that points to
 193 * the same inode in the tree, we will merge them together (by
 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 195 */
 196static void btrfs_requeue_inode_defrag(struct inode *inode,
 197                                       struct inode_defrag *defrag)
 198{
 199        struct btrfs_root *root = BTRFS_I(inode)->root;
 200        int ret;
 201
 202        if (!__need_auto_defrag(root))
 203                goto out;
 204
 205        /*
 206         * Here we don't check the IN_DEFRAG flag, because we need merge
 207         * them together.
 208         */
 209        spin_lock(&root->fs_info->defrag_inodes_lock);
 210        ret = __btrfs_add_inode_defrag(inode, defrag);
 211        spin_unlock(&root->fs_info->defrag_inodes_lock);
 212        if (ret)
 213                goto out;
 214        return;
 215out:
 216        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 217}
 218
 219/*
 220 * pick the defragable inode that we want, if it doesn't exist, we will get
 221 * the next one.
 222 */
 223static struct inode_defrag *
 224btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 225{
 226        struct inode_defrag *entry = NULL;
 227        struct inode_defrag tmp;
 228        struct rb_node *p;
 229        struct rb_node *parent = NULL;
 230        int ret;
 231
 232        tmp.ino = ino;
 233        tmp.root = root;
 234
 235        spin_lock(&fs_info->defrag_inodes_lock);
 236        p = fs_info->defrag_inodes.rb_node;
 237        while (p) {
 238                parent = p;
 239                entry = rb_entry(parent, struct inode_defrag, rb_node);
 240
 241                ret = __compare_inode_defrag(&tmp, entry);
 242                if (ret < 0)
 243                        p = parent->rb_left;
 244                else if (ret > 0)
 245                        p = parent->rb_right;
 246                else
 247                        goto out;
 248        }
 249
 250        if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 251                parent = rb_next(parent);
 252                if (parent)
 253                        entry = rb_entry(parent, struct inode_defrag, rb_node);
 254                else
 255                        entry = NULL;
 256        }
 257out:
 258        if (entry)
 259                rb_erase(parent, &fs_info->defrag_inodes);
 260        spin_unlock(&fs_info->defrag_inodes_lock);
 261        return entry;
 262}
 263
 264void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 265{
 266        struct inode_defrag *defrag;
 267        struct rb_node *node;
 268
 269        spin_lock(&fs_info->defrag_inodes_lock);
 270        node = rb_first(&fs_info->defrag_inodes);
 271        while (node) {
 272                rb_erase(node, &fs_info->defrag_inodes);
 273                defrag = rb_entry(node, struct inode_defrag, rb_node);
 274                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 275
 276                if (need_resched()) {
 277                        spin_unlock(&fs_info->defrag_inodes_lock);
 278                        cond_resched();
 279                        spin_lock(&fs_info->defrag_inodes_lock);
 280                }
 281
 282                node = rb_first(&fs_info->defrag_inodes);
 283        }
 284        spin_unlock(&fs_info->defrag_inodes_lock);
 285}
 286
 287#define BTRFS_DEFRAG_BATCH      1024
 288
 289static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 290                                    struct inode_defrag *defrag)
 291{
 292        struct btrfs_root *inode_root;
 293        struct inode *inode;
 294        struct btrfs_key key;
 295        struct btrfs_ioctl_defrag_range_args range;
 296        int num_defrag;
 297        int index;
 298        int ret;
 299
 300        /* get the inode */
 301        key.objectid = defrag->root;
 302        btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 303        key.offset = (u64)-1;
 304
 305        index = srcu_read_lock(&fs_info->subvol_srcu);
 306
 307        inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 308        if (IS_ERR(inode_root)) {
 309                ret = PTR_ERR(inode_root);
 310                goto cleanup;
 311        }
 312
 313        key.objectid = defrag->ino;
 314        btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
 315        key.offset = 0;
 316        inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 317        if (IS_ERR(inode)) {
 318                ret = PTR_ERR(inode);
 319                goto cleanup;
 320        }
 321        srcu_read_unlock(&fs_info->subvol_srcu, index);
 322
 323        /* do a chunk of defrag */
 324        clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 325        memset(&range, 0, sizeof(range));
 326        range.len = (u64)-1;
 327        range.start = defrag->last_offset;
 328
 329        sb_start_write(fs_info->sb);
 330        num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 331                                       BTRFS_DEFRAG_BATCH);
 332        sb_end_write(fs_info->sb);
 333        /*
 334         * if we filled the whole defrag batch, there
 335         * must be more work to do.  Queue this defrag
 336         * again
 337         */
 338        if (num_defrag == BTRFS_DEFRAG_BATCH) {
 339                defrag->last_offset = range.start;
 340                btrfs_requeue_inode_defrag(inode, defrag);
 341        } else if (defrag->last_offset && !defrag->cycled) {
 342                /*
 343                 * we didn't fill our defrag batch, but
 344                 * we didn't start at zero.  Make sure we loop
 345                 * around to the start of the file.
 346                 */
 347                defrag->last_offset = 0;
 348                defrag->cycled = 1;
 349                btrfs_requeue_inode_defrag(inode, defrag);
 350        } else {
 351                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 352        }
 353
 354        iput(inode);
 355        return 0;
 356cleanup:
 357        srcu_read_unlock(&fs_info->subvol_srcu, index);
 358        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 359        return ret;
 360}
 361
 362/*
 363 * run through the list of inodes in the FS that need
 364 * defragging
 365 */
 366int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 367{
 368        struct inode_defrag *defrag;
 369        u64 first_ino = 0;
 370        u64 root_objectid = 0;
 371
 372        atomic_inc(&fs_info->defrag_running);
 373        while(1) {
 374                /* Pause the auto defragger. */
 375                if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 376                             &fs_info->fs_state))
 377                        break;
 378
 379                if (!__need_auto_defrag(fs_info->tree_root))
 380                        break;
 381
 382                /* find an inode to defrag */
 383                defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 384                                                 first_ino);
 385                if (!defrag) {
 386                        if (root_objectid || first_ino) {
 387                                root_objectid = 0;
 388                                first_ino = 0;
 389                                continue;
 390                        } else {
 391                                break;
 392                        }
 393                }
 394
 395                first_ino = defrag->ino + 1;
 396                root_objectid = defrag->root;
 397
 398                __btrfs_run_defrag_inode(fs_info, defrag);
 399        }
 400        atomic_dec(&fs_info->defrag_running);
 401
 402        /*
 403         * during unmount, we use the transaction_wait queue to
 404         * wait for the defragger to stop
 405         */
 406        wake_up(&fs_info->transaction_wait);
 407        return 0;
 408}
 409
 410/* simple helper to fault in pages and copy.  This should go away
 411 * and be replaced with calls into generic code.
 412 */
 413static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
 414                                         size_t write_bytes,
 415                                         struct page **prepared_pages,
 416                                         struct iov_iter *i)
 417{
 418        size_t copied = 0;
 419        size_t total_copied = 0;
 420        int pg = 0;
 421        int offset = pos & (PAGE_CACHE_SIZE - 1);
 422
 423        while (write_bytes > 0) {
 424                size_t count = min_t(size_t,
 425                                     PAGE_CACHE_SIZE - offset, write_bytes);
 426                struct page *page = prepared_pages[pg];
 427                /*
 428                 * Copy data from userspace to the current page
 429                 *
 430                 * Disable pagefault to avoid recursive lock since
 431                 * the pages are already locked
 432                 */
 433                pagefault_disable();
 434                copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 435                pagefault_enable();
 436
 437                /* Flush processor's dcache for this page */
 438                flush_dcache_page(page);
 439
 440                /*
 441                 * if we get a partial write, we can end up with
 442                 * partially up to date pages.  These add
 443                 * a lot of complexity, so make sure they don't
 444                 * happen by forcing this copy to be retried.
 445                 *
 446                 * The rest of the btrfs_file_write code will fall
 447                 * back to page at a time copies after we return 0.
 448                 */
 449                if (!PageUptodate(page) && copied < count)
 450                        copied = 0;
 451
 452                iov_iter_advance(i, copied);
 453                write_bytes -= copied;
 454                total_copied += copied;
 455
 456                /* Return to btrfs_file_aio_write to fault page */
 457                if (unlikely(copied == 0))
 458                        break;
 459
 460                if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
 461                        offset += copied;
 462                } else {
 463                        pg++;
 464                        offset = 0;
 465                }
 466        }
 467        return total_copied;
 468}
 469
 470/*
 471 * unlocks pages after btrfs_file_write is done with them
 472 */
 473static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 474{
 475        size_t i;
 476        for (i = 0; i < num_pages; i++) {
 477                /* page checked is some magic around finding pages that
 478                 * have been modified without going through btrfs_set_page_dirty
 479                 * clear it here
 480                 */
 481                ClearPageChecked(pages[i]);
 482                unlock_page(pages[i]);
 483                mark_page_accessed(pages[i]);
 484                page_cache_release(pages[i]);
 485        }
 486}
 487
 488/*
 489 * after copy_from_user, pages need to be dirtied and we need to make
 490 * sure holes are created between the current EOF and the start of
 491 * any next extents (if required).
 492 *
 493 * this also makes the decision about creating an inline extent vs
 494 * doing real data extents, marking pages dirty and delalloc as required.
 495 */
 496int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 497                             struct page **pages, size_t num_pages,
 498                             loff_t pos, size_t write_bytes,
 499                             struct extent_state **cached)
 500{
 501        int err = 0;
 502        int i;
 503        u64 num_bytes;
 504        u64 start_pos;
 505        u64 end_of_last_block;
 506        u64 end_pos = pos + write_bytes;
 507        loff_t isize = i_size_read(inode);
 508
 509        start_pos = pos & ~((u64)root->sectorsize - 1);
 510        num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
 511
 512        end_of_last_block = start_pos + num_bytes - 1;
 513        err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 514                                        cached);
 515        if (err)
 516                return err;
 517
 518        for (i = 0; i < num_pages; i++) {
 519                struct page *p = pages[i];
 520                SetPageUptodate(p);
 521                ClearPageChecked(p);
 522                set_page_dirty(p);
 523        }
 524
 525        /*
 526         * we've only changed i_size in ram, and we haven't updated
 527         * the disk i_size.  There is no need to log the inode
 528         * at this time.
 529         */
 530        if (end_pos > isize)
 531                i_size_write(inode, end_pos);
 532        return 0;
 533}
 534
 535/*
 536 * this drops all the extents in the cache that intersect the range
 537 * [start, end].  Existing extents are split as required.
 538 */
 539void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 540                             int skip_pinned)
 541{
 542        struct extent_map *em;
 543        struct extent_map *split = NULL;
 544        struct extent_map *split2 = NULL;
 545        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 546        u64 len = end - start + 1;
 547        u64 gen;
 548        int ret;
 549        int testend = 1;
 550        unsigned long flags;
 551        int compressed = 0;
 552        bool modified;
 553
 554        WARN_ON(end < start);
 555        if (end == (u64)-1) {
 556                len = (u64)-1;
 557                testend = 0;
 558        }
 559        while (1) {
 560                int no_splits = 0;
 561
 562                modified = false;
 563                if (!split)
 564                        split = alloc_extent_map();
 565                if (!split2)
 566                        split2 = alloc_extent_map();
 567                if (!split || !split2)
 568                        no_splits = 1;
 569
 570                write_lock(&em_tree->lock);
 571                em = lookup_extent_mapping(em_tree, start, len);
 572                if (!em) {
 573                        write_unlock(&em_tree->lock);
 574                        break;
 575                }
 576                flags = em->flags;
 577                gen = em->generation;
 578                if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 579                        if (testend && em->start + em->len >= start + len) {
 580                                free_extent_map(em);
 581                                write_unlock(&em_tree->lock);
 582                                break;
 583                        }
 584                        start = em->start + em->len;
 585                        if (testend)
 586                                len = start + len - (em->start + em->len);
 587                        free_extent_map(em);
 588                        write_unlock(&em_tree->lock);
 589                        continue;
 590                }
 591                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 592                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 593                clear_bit(EXTENT_FLAG_LOGGING, &flags);
 594                modified = !list_empty(&em->list);
 595                remove_extent_mapping(em_tree, em);
 596                if (no_splits)
 597                        goto next;
 598
 599                if (em->start < start) {
 600                        split->start = em->start;
 601                        split->len = start - em->start;
 602
 603                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 604                                split->orig_start = em->orig_start;
 605                                split->block_start = em->block_start;
 606
 607                                if (compressed)
 608                                        split->block_len = em->block_len;
 609                                else
 610                                        split->block_len = split->len;
 611                                split->orig_block_len = max(split->block_len,
 612                                                em->orig_block_len);
 613                                split->ram_bytes = em->ram_bytes;
 614                        } else {
 615                                split->orig_start = split->start;
 616                                split->block_len = 0;
 617                                split->block_start = em->block_start;
 618                                split->orig_block_len = 0;
 619                                split->ram_bytes = split->len;
 620                        }
 621
 622                        split->generation = gen;
 623                        split->bdev = em->bdev;
 624                        split->flags = flags;
 625                        split->compress_type = em->compress_type;
 626                        ret = add_extent_mapping(em_tree, split, modified);
 627                        BUG_ON(ret); /* Logic error */
 628                        free_extent_map(split);
 629                        split = split2;
 630                        split2 = NULL;
 631                }
 632                if (testend && em->start + em->len > start + len) {
 633                        u64 diff = start + len - em->start;
 634
 635                        split->start = start + len;
 636                        split->len = em->start + em->len - (start + len);
 637                        split->bdev = em->bdev;
 638                        split->flags = flags;
 639                        split->compress_type = em->compress_type;
 640                        split->generation = gen;
 641
 642                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 643                                split->orig_block_len = max(em->block_len,
 644                                                    em->orig_block_len);
 645
 646                                split->ram_bytes = em->ram_bytes;
 647                                if (compressed) {
 648                                        split->block_len = em->block_len;
 649                                        split->block_start = em->block_start;
 650                                        split->orig_start = em->orig_start;
 651                                } else {
 652                                        split->block_len = split->len;
 653                                        split->block_start = em->block_start
 654                                                + diff;
 655                                        split->orig_start = em->orig_start;
 656                                }
 657                        } else {
 658                                split->ram_bytes = split->len;
 659                                split->orig_start = split->start;
 660                                split->block_len = 0;
 661                                split->block_start = em->block_start;
 662                                split->orig_block_len = 0;
 663                        }
 664
 665                        ret = add_extent_mapping(em_tree, split, modified);
 666                        BUG_ON(ret); /* Logic error */
 667                        free_extent_map(split);
 668                        split = NULL;
 669                }
 670next:
 671                write_unlock(&em_tree->lock);
 672
 673                /* once for us */
 674                free_extent_map(em);
 675                /* once for the tree*/
 676                free_extent_map(em);
 677        }
 678        if (split)
 679                free_extent_map(split);
 680        if (split2)
 681                free_extent_map(split2);
 682}
 683
 684/*
 685 * this is very complex, but the basic idea is to drop all extents
 686 * in the range start - end.  hint_block is filled in with a block number
 687 * that would be a good hint to the block allocator for this file.
 688 *
 689 * If an extent intersects the range but is not entirely inside the range
 690 * it is either truncated or split.  Anything entirely inside the range
 691 * is deleted from the tree.
 692 */
 693int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 694                         struct btrfs_root *root, struct inode *inode,
 695                         struct btrfs_path *path, u64 start, u64 end,
 696                         u64 *drop_end, int drop_cache)
 697{
 698        struct extent_buffer *leaf;
 699        struct btrfs_file_extent_item *fi;
 700        struct btrfs_key key;
 701        struct btrfs_key new_key;
 702        u64 ino = btrfs_ino(inode);
 703        u64 search_start = start;
 704        u64 disk_bytenr = 0;
 705        u64 num_bytes = 0;
 706        u64 extent_offset = 0;
 707        u64 extent_end = 0;
 708        int del_nr = 0;
 709        int del_slot = 0;
 710        int extent_type;
 711        int recow;
 712        int ret;
 713        int modify_tree = -1;
 714        int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
 715        int found = 0;
 716
 717        if (drop_cache)
 718                btrfs_drop_extent_cache(inode, start, end - 1, 0);
 719
 720        if (start >= BTRFS_I(inode)->disk_i_size)
 721                modify_tree = 0;
 722
 723        while (1) {
 724                recow = 0;
 725                ret = btrfs_lookup_file_extent(trans, root, path, ino,
 726                                               search_start, modify_tree);
 727                if (ret < 0)
 728                        break;
 729                if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 730                        leaf = path->nodes[0];
 731                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 732                        if (key.objectid == ino &&
 733                            key.type == BTRFS_EXTENT_DATA_KEY)
 734                                path->slots[0]--;
 735                }
 736                ret = 0;
 737next_slot:
 738                leaf = path->nodes[0];
 739                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 740                        BUG_ON(del_nr > 0);
 741                        ret = btrfs_next_leaf(root, path);
 742                        if (ret < 0)
 743                                break;
 744                        if (ret > 0) {
 745                                ret = 0;
 746                                break;
 747                        }
 748                        leaf = path->nodes[0];
 749                        recow = 1;
 750                }
 751
 752                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 753                if (key.objectid > ino ||
 754                    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 755                        break;
 756
 757                fi = btrfs_item_ptr(leaf, path->slots[0],
 758                                    struct btrfs_file_extent_item);
 759                extent_type = btrfs_file_extent_type(leaf, fi);
 760
 761                if (extent_type == BTRFS_FILE_EXTENT_REG ||
 762                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 763                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 764                        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 765                        extent_offset = btrfs_file_extent_offset(leaf, fi);
 766                        extent_end = key.offset +
 767                                btrfs_file_extent_num_bytes(leaf, fi);
 768                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 769                        extent_end = key.offset +
 770                                btrfs_file_extent_inline_len(leaf, fi);
 771                } else {
 772                        WARN_ON(1);
 773                        extent_end = search_start;
 774                }
 775
 776                if (extent_end <= search_start) {
 777                        path->slots[0]++;
 778                        goto next_slot;
 779                }
 780
 781                found = 1;
 782                search_start = max(key.offset, start);
 783                if (recow || !modify_tree) {
 784                        modify_tree = -1;
 785                        btrfs_release_path(path);
 786                        continue;
 787                }
 788
 789                /*
 790                 *     | - range to drop - |
 791                 *  | -------- extent -------- |
 792                 */
 793                if (start > key.offset && end < extent_end) {
 794                        BUG_ON(del_nr > 0);
 795                        BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 796
 797                        memcpy(&new_key, &key, sizeof(new_key));
 798                        new_key.offset = start;
 799                        ret = btrfs_duplicate_item(trans, root, path,
 800                                                   &new_key);
 801                        if (ret == -EAGAIN) {
 802                                btrfs_release_path(path);
 803                                continue;
 804                        }
 805                        if (ret < 0)
 806                                break;
 807
 808                        leaf = path->nodes[0];
 809                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 810                                            struct btrfs_file_extent_item);
 811                        btrfs_set_file_extent_num_bytes(leaf, fi,
 812                                                        start - key.offset);
 813
 814                        fi = btrfs_item_ptr(leaf, path->slots[0],
 815                                            struct btrfs_file_extent_item);
 816
 817                        extent_offset += start - key.offset;
 818                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 819                        btrfs_set_file_extent_num_bytes(leaf, fi,
 820                                                        extent_end - start);
 821                        btrfs_mark_buffer_dirty(leaf);
 822
 823                        if (update_refs && disk_bytenr > 0) {
 824                                ret = btrfs_inc_extent_ref(trans, root,
 825                                                disk_bytenr, num_bytes, 0,
 826                                                root->root_key.objectid,
 827                                                new_key.objectid,
 828                                                start - extent_offset, 0);
 829                                BUG_ON(ret); /* -ENOMEM */
 830                        }
 831                        key.offset = start;
 832                }
 833                /*
 834                 *  | ---- range to drop ----- |
 835                 *      | -------- extent -------- |
 836                 */
 837                if (start <= key.offset && end < extent_end) {
 838                        BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 839
 840                        memcpy(&new_key, &key, sizeof(new_key));
 841                        new_key.offset = end;
 842                        btrfs_set_item_key_safe(root, path, &new_key);
 843
 844                        extent_offset += end - key.offset;
 845                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 846                        btrfs_set_file_extent_num_bytes(leaf, fi,
 847                                                        extent_end - end);
 848                        btrfs_mark_buffer_dirty(leaf);
 849                        if (update_refs && disk_bytenr > 0)
 850                                inode_sub_bytes(inode, end - key.offset);
 851                        break;
 852                }
 853
 854                search_start = extent_end;
 855                /*
 856                 *       | ---- range to drop ----- |
 857                 *  | -------- extent -------- |
 858                 */
 859                if (start > key.offset && end >= extent_end) {
 860                        BUG_ON(del_nr > 0);
 861                        BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 862
 863                        btrfs_set_file_extent_num_bytes(leaf, fi,
 864                                                        start - key.offset);
 865                        btrfs_mark_buffer_dirty(leaf);
 866                        if (update_refs && disk_bytenr > 0)
 867                                inode_sub_bytes(inode, extent_end - start);
 868                        if (end == extent_end)
 869                                break;
 870
 871                        path->slots[0]++;
 872                        goto next_slot;
 873                }
 874
 875                /*
 876                 *  | ---- range to drop ----- |
 877                 *    | ------ extent ------ |
 878                 */
 879                if (start <= key.offset && end >= extent_end) {
 880                        if (del_nr == 0) {
 881                                del_slot = path->slots[0];
 882                                del_nr = 1;
 883                        } else {
 884                                BUG_ON(del_slot + del_nr != path->slots[0]);
 885                                del_nr++;
 886                        }
 887
 888                        if (update_refs &&
 889                            extent_type == BTRFS_FILE_EXTENT_INLINE) {
 890                                inode_sub_bytes(inode,
 891                                                extent_end - key.offset);
 892                                extent_end = ALIGN(extent_end,
 893                                                   root->sectorsize);
 894                        } else if (update_refs && disk_bytenr > 0) {
 895                                ret = btrfs_free_extent(trans, root,
 896                                                disk_bytenr, num_bytes, 0,
 897                                                root->root_key.objectid,
 898                                                key.objectid, key.offset -
 899                                                extent_offset, 0);
 900                                BUG_ON(ret); /* -ENOMEM */
 901                                inode_sub_bytes(inode,
 902                                                extent_end - key.offset);
 903                        }
 904
 905                        if (end == extent_end)
 906                                break;
 907
 908                        if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 909                                path->slots[0]++;
 910                                goto next_slot;
 911                        }
 912
 913                        ret = btrfs_del_items(trans, root, path, del_slot,
 914                                              del_nr);
 915                        if (ret) {
 916                                btrfs_abort_transaction(trans, root, ret);
 917                                break;
 918                        }
 919
 920                        del_nr = 0;
 921                        del_slot = 0;
 922
 923                        btrfs_release_path(path);
 924                        continue;
 925                }
 926
 927                BUG_ON(1);
 928        }
 929
 930        if (!ret && del_nr > 0) {
 931                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 932                if (ret)
 933                        btrfs_abort_transaction(trans, root, ret);
 934        }
 935
 936        if (drop_end)
 937                *drop_end = found ? min(end, extent_end) : end;
 938        btrfs_release_path(path);
 939        return ret;
 940}
 941
 942int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 943                       struct btrfs_root *root, struct inode *inode, u64 start,
 944                       u64 end, int drop_cache)
 945{
 946        struct btrfs_path *path;
 947        int ret;
 948
 949        path = btrfs_alloc_path();
 950        if (!path)
 951                return -ENOMEM;
 952        ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
 953                                   drop_cache);
 954        btrfs_free_path(path);
 955        return ret;
 956}
 957
 958static int extent_mergeable(struct extent_buffer *leaf, int slot,
 959                            u64 objectid, u64 bytenr, u64 orig_offset,
 960                            u64 *start, u64 *end)
 961{
 962        struct btrfs_file_extent_item *fi;
 963        struct btrfs_key key;
 964        u64 extent_end;
 965
 966        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 967                return 0;
 968
 969        btrfs_item_key_to_cpu(leaf, &key, slot);
 970        if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 971                return 0;
 972
 973        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 974        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 975            btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 976            btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 977            btrfs_file_extent_compression(leaf, fi) ||
 978            btrfs_file_extent_encryption(leaf, fi) ||
 979            btrfs_file_extent_other_encoding(leaf, fi))
 980                return 0;
 981
 982        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 983        if ((*start && *start != key.offset) || (*end && *end != extent_end))
 984                return 0;
 985
 986        *start = key.offset;
 987        *end = extent_end;
 988        return 1;
 989}
 990
 991/*
 992 * Mark extent in the range start - end as written.
 993 *
 994 * This changes extent type from 'pre-allocated' to 'regular'. If only
 995 * part of extent is marked as written, the extent will be split into
 996 * two or three.
 997 */
 998int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 999                              struct inode *inode, u64 start, u64 end)
1000{
1001        struct btrfs_root *root = BTRFS_I(inode)->root;
1002        struct extent_buffer *leaf;
1003        struct btrfs_path *path;
1004        struct btrfs_file_extent_item *fi;
1005        struct btrfs_key key;
1006        struct btrfs_key new_key;
1007        u64 bytenr;
1008        u64 num_bytes;
1009        u64 extent_end;
1010        u64 orig_offset;
1011        u64 other_start;
1012        u64 other_end;
1013        u64 split;
1014        int del_nr = 0;
1015        int del_slot = 0;
1016        int recow;
1017        int ret;
1018        u64 ino = btrfs_ino(inode);
1019
1020        path = btrfs_alloc_path();
1021        if (!path)
1022                return -ENOMEM;
1023again:
1024        recow = 0;
1025        split = start;
1026        key.objectid = ino;
1027        key.type = BTRFS_EXTENT_DATA_KEY;
1028        key.offset = split;
1029
1030        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1031        if (ret < 0)
1032                goto out;
1033        if (ret > 0 && path->slots[0] > 0)
1034                path->slots[0]--;
1035
1036        leaf = path->nodes[0];
1037        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1038        BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1039        fi = btrfs_item_ptr(leaf, path->slots[0],
1040                            struct btrfs_file_extent_item);
1041        BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1042               BTRFS_FILE_EXTENT_PREALLOC);
1043        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1044        BUG_ON(key.offset > start || extent_end < end);
1045
1046        bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1047        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1048        orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1049        memcpy(&new_key, &key, sizeof(new_key));
1050
1051        if (start == key.offset && end < extent_end) {
1052                other_start = 0;
1053                other_end = start;
1054                if (extent_mergeable(leaf, path->slots[0] - 1,
1055                                     ino, bytenr, orig_offset,
1056                                     &other_start, &other_end)) {
1057                        new_key.offset = end;
1058                        btrfs_set_item_key_safe(root, path, &new_key);
1059                        fi = btrfs_item_ptr(leaf, path->slots[0],
1060                                            struct btrfs_file_extent_item);
1061                        btrfs_set_file_extent_generation(leaf, fi,
1062                                                         trans->transid);
1063                        btrfs_set_file_extent_num_bytes(leaf, fi,
1064                                                        extent_end - end);
1065                        btrfs_set_file_extent_offset(leaf, fi,
1066                                                     end - orig_offset);
1067                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1068                                            struct btrfs_file_extent_item);
1069                        btrfs_set_file_extent_generation(leaf, fi,
1070                                                         trans->transid);
1071                        btrfs_set_file_extent_num_bytes(leaf, fi,
1072                                                        end - other_start);
1073                        btrfs_mark_buffer_dirty(leaf);
1074                        goto out;
1075                }
1076        }
1077
1078        if (start > key.offset && end == extent_end) {
1079                other_start = end;
1080                other_end = 0;
1081                if (extent_mergeable(leaf, path->slots[0] + 1,
1082                                     ino, bytenr, orig_offset,
1083                                     &other_start, &other_end)) {
1084                        fi = btrfs_item_ptr(leaf, path->slots[0],
1085                                            struct btrfs_file_extent_item);
1086                        btrfs_set_file_extent_num_bytes(leaf, fi,
1087                                                        start - key.offset);
1088                        btrfs_set_file_extent_generation(leaf, fi,
1089                                                         trans->transid);
1090                        path->slots[0]++;
1091                        new_key.offset = start;
1092                        btrfs_set_item_key_safe(root, path, &new_key);
1093
1094                        fi = btrfs_item_ptr(leaf, path->slots[0],
1095                                            struct btrfs_file_extent_item);
1096                        btrfs_set_file_extent_generation(leaf, fi,
1097                                                         trans->transid);
1098                        btrfs_set_file_extent_num_bytes(leaf, fi,
1099                                                        other_end - start);
1100                        btrfs_set_file_extent_offset(leaf, fi,
1101                                                     start - orig_offset);
1102                        btrfs_mark_buffer_dirty(leaf);
1103                        goto out;
1104                }
1105        }
1106
1107        while (start > key.offset || end < extent_end) {
1108                if (key.offset == start)
1109                        split = end;
1110
1111                new_key.offset = split;
1112                ret = btrfs_duplicate_item(trans, root, path, &new_key);
1113                if (ret == -EAGAIN) {
1114                        btrfs_release_path(path);
1115                        goto again;
1116                }
1117                if (ret < 0) {
1118                        btrfs_abort_transaction(trans, root, ret);
1119                        goto out;
1120                }
1121
1122                leaf = path->nodes[0];
1123                fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1124                                    struct btrfs_file_extent_item);
1125                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1126                btrfs_set_file_extent_num_bytes(leaf, fi,
1127                                                split - key.offset);
1128
1129                fi = btrfs_item_ptr(leaf, path->slots[0],
1130                                    struct btrfs_file_extent_item);
1131
1132                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1133                btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1134                btrfs_set_file_extent_num_bytes(leaf, fi,
1135                                                extent_end - split);
1136                btrfs_mark_buffer_dirty(leaf);
1137
1138                ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1139                                           root->root_key.objectid,
1140                                           ino, orig_offset, 0);
1141                BUG_ON(ret); /* -ENOMEM */
1142
1143                if (split == start) {
1144                        key.offset = start;
1145                } else {
1146                        BUG_ON(start != key.offset);
1147                        path->slots[0]--;
1148                        extent_end = end;
1149                }
1150                recow = 1;
1151        }
1152
1153        other_start = end;
1154        other_end = 0;
1155        if (extent_mergeable(leaf, path->slots[0] + 1,
1156                             ino, bytenr, orig_offset,
1157                             &other_start, &other_end)) {
1158                if (recow) {
1159                        btrfs_release_path(path);
1160                        goto again;
1161                }
1162                extent_end = other_end;
1163                del_slot = path->slots[0] + 1;
1164                del_nr++;
1165                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1166                                        0, root->root_key.objectid,
1167                                        ino, orig_offset, 0);
1168                BUG_ON(ret); /* -ENOMEM */
1169        }
1170        other_start = 0;
1171        other_end = start;
1172        if (extent_mergeable(leaf, path->slots[0] - 1,
1173                             ino, bytenr, orig_offset,
1174                             &other_start, &other_end)) {
1175                if (recow) {
1176                        btrfs_release_path(path);
1177                        goto again;
1178                }
1179                key.offset = other_start;
1180                del_slot = path->slots[0];
1181                del_nr++;
1182                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1183                                        0, root->root_key.objectid,
1184                                        ino, orig_offset, 0);
1185                BUG_ON(ret); /* -ENOMEM */
1186        }
1187        if (del_nr == 0) {
1188                fi = btrfs_item_ptr(leaf, path->slots[0],
1189                           struct btrfs_file_extent_item);
1190                btrfs_set_file_extent_type(leaf, fi,
1191                                           BTRFS_FILE_EXTENT_REG);
1192                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1193                btrfs_mark_buffer_dirty(leaf);
1194        } else {
1195                fi = btrfs_item_ptr(leaf, del_slot - 1,
1196                           struct btrfs_file_extent_item);
1197                btrfs_set_file_extent_type(leaf, fi,
1198                                           BTRFS_FILE_EXTENT_REG);
1199                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200                btrfs_set_file_extent_num_bytes(leaf, fi,
1201                                                extent_end - key.offset);
1202                btrfs_mark_buffer_dirty(leaf);
1203
1204                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1205                if (ret < 0) {
1206                        btrfs_abort_transaction(trans, root, ret);
1207                        goto out;
1208                }
1209        }
1210out:
1211        btrfs_free_path(path);
1212        return 0;
1213}
1214
1215/*
1216 * on error we return an unlocked page and the error value
1217 * on success we return a locked page and 0
1218 */
1219static int prepare_uptodate_page(struct page *page, u64 pos,
1220                                 bool force_uptodate)
1221{
1222        int ret = 0;
1223
1224        if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1225            !PageUptodate(page)) {
1226                ret = btrfs_readpage(NULL, page);
1227                if (ret)
1228                        return ret;
1229                lock_page(page);
1230                if (!PageUptodate(page)) {
1231                        unlock_page(page);
1232                        return -EIO;
1233                }
1234        }
1235        return 0;
1236}
1237
1238/*
1239 * this gets pages into the page cache and locks them down, it also properly
1240 * waits for data=ordered extents to finish before allowing the pages to be
1241 * modified.
1242 */
1243static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1244                         struct page **pages, size_t num_pages,
1245                         loff_t pos, unsigned long first_index,
1246                         size_t write_bytes, bool force_uptodate)
1247{
1248        struct extent_state *cached_state = NULL;
1249        int i;
1250        unsigned long index = pos >> PAGE_CACHE_SHIFT;
1251        struct inode *inode = file_inode(file);
1252        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1253        int err = 0;
1254        int faili = 0;
1255        u64 start_pos;
1256        u64 last_pos;
1257
1258        start_pos = pos & ~((u64)root->sectorsize - 1);
1259        last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1260
1261again:
1262        for (i = 0; i < num_pages; i++) {
1263                pages[i] = find_or_create_page(inode->i_mapping, index + i,
1264                                               mask | __GFP_WRITE);
1265                if (!pages[i]) {
1266                        faili = i - 1;
1267                        err = -ENOMEM;
1268                        goto fail;
1269                }
1270
1271                if (i == 0)
1272                        err = prepare_uptodate_page(pages[i], pos,
1273                                                    force_uptodate);
1274                if (i == num_pages - 1)
1275                        err = prepare_uptodate_page(pages[i],
1276                                                    pos + write_bytes, false);
1277                if (err) {
1278                        page_cache_release(pages[i]);
1279                        faili = i - 1;
1280                        goto fail;
1281                }
1282                wait_on_page_writeback(pages[i]);
1283        }
1284        err = 0;
1285        if (start_pos < inode->i_size) {
1286                struct btrfs_ordered_extent *ordered;
1287                lock_extent_bits(&BTRFS_I(inode)->io_tree,
1288                                 start_pos, last_pos - 1, 0, &cached_state);
1289                ordered = btrfs_lookup_first_ordered_extent(inode,
1290                                                            last_pos - 1);
1291                if (ordered &&
1292                    ordered->file_offset + ordered->len > start_pos &&
1293                    ordered->file_offset < last_pos) {
1294                        btrfs_put_ordered_extent(ordered);
1295                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296                                             start_pos, last_pos - 1,
1297                                             &cached_state, GFP_NOFS);
1298                        for (i = 0; i < num_pages; i++) {
1299                                unlock_page(pages[i]);
1300                                page_cache_release(pages[i]);
1301                        }
1302                        btrfs_wait_ordered_range(inode, start_pos,
1303                                                 last_pos - start_pos);
1304                        goto again;
1305                }
1306                if (ordered)
1307                        btrfs_put_ordered_extent(ordered);
1308
1309                clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1310                                  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1311                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1312                                  0, 0, &cached_state, GFP_NOFS);
1313                unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1314                                     start_pos, last_pos - 1, &cached_state,
1315                                     GFP_NOFS);
1316        }
1317        for (i = 0; i < num_pages; i++) {
1318                if (clear_page_dirty_for_io(pages[i]))
1319                        account_page_redirty(pages[i]);
1320                set_page_extent_mapped(pages[i]);
1321                WARN_ON(!PageLocked(pages[i]));
1322        }
1323        return 0;
1324fail:
1325        while (faili >= 0) {
1326                unlock_page(pages[faili]);
1327                page_cache_release(pages[faili]);
1328                faili--;
1329        }
1330        return err;
1331
1332}
1333
1334static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1335                                    size_t *write_bytes)
1336{
1337        struct btrfs_trans_handle *trans;
1338        struct btrfs_root *root = BTRFS_I(inode)->root;
1339        struct btrfs_ordered_extent *ordered;
1340        u64 lockstart, lockend;
1341        u64 num_bytes;
1342        int ret;
1343
1344        lockstart = round_down(pos, root->sectorsize);
1345        lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1346
1347        while (1) {
1348                lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1349                ordered = btrfs_lookup_ordered_range(inode, lockstart,
1350                                                     lockend - lockstart + 1);
1351                if (!ordered) {
1352                        break;
1353                }
1354                unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1355                btrfs_start_ordered_extent(inode, ordered, 1);
1356                btrfs_put_ordered_extent(ordered);
1357        }
1358
1359        trans = btrfs_join_transaction(root);
1360        if (IS_ERR(trans)) {
1361                unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1362                return PTR_ERR(trans);
1363        }
1364
1365        num_bytes = lockend - lockstart + 1;
1366        ret = can_nocow_extent(trans, inode, lockstart, &num_bytes, NULL, NULL,
1367                               NULL);
1368        btrfs_end_transaction(trans, root);
1369        if (ret <= 0) {
1370                ret = 0;
1371        } else {
1372                clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1373                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1374                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1375                                 NULL, GFP_NOFS);
1376                *write_bytes = min_t(size_t, *write_bytes, num_bytes);
1377        }
1378
1379        unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1380
1381        return ret;
1382}
1383
1384static noinline ssize_t __btrfs_buffered_write(struct file *file,
1385                                               struct iov_iter *i,
1386                                               loff_t pos)
1387{
1388        struct inode *inode = file_inode(file);
1389        struct btrfs_root *root = BTRFS_I(inode)->root;
1390        struct page **pages = NULL;
1391        u64 release_bytes = 0;
1392        unsigned long first_index;
1393        size_t num_written = 0;
1394        int nrptrs;
1395        int ret = 0;
1396        bool only_release_metadata = false;
1397        bool force_page_uptodate = false;
1398
1399        nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1400                     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1401                     (sizeof(struct page *)));
1402        nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1403        nrptrs = max(nrptrs, 8);
1404        pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1405        if (!pages)
1406                return -ENOMEM;
1407
1408        first_index = pos >> PAGE_CACHE_SHIFT;
1409
1410        while (iov_iter_count(i) > 0) {
1411                size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1412                size_t write_bytes = min(iov_iter_count(i),
1413                                         nrptrs * (size_t)PAGE_CACHE_SIZE -
1414                                         offset);
1415                size_t num_pages = (write_bytes + offset +
1416                                    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1417                size_t reserve_bytes;
1418                size_t dirty_pages;
1419                size_t copied;
1420
1421                WARN_ON(num_pages > nrptrs);
1422
1423                /*
1424                 * Fault pages before locking them in prepare_pages
1425                 * to avoid recursive lock
1426                 */
1427                if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1428                        ret = -EFAULT;
1429                        break;
1430                }
1431
1432                reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1433                ret = btrfs_check_data_free_space(inode, reserve_bytes);
1434                if (ret == -ENOSPC &&
1435                    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1436                                              BTRFS_INODE_PREALLOC))) {
1437                        ret = check_can_nocow(inode, pos, &write_bytes);
1438                        if (ret > 0) {
1439                                only_release_metadata = true;
1440                                /*
1441                                 * our prealloc extent may be smaller than
1442                                 * write_bytes, so scale down.
1443                                 */
1444                                num_pages = (write_bytes + offset +
1445                                             PAGE_CACHE_SIZE - 1) >>
1446                                        PAGE_CACHE_SHIFT;
1447                                reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1448                                ret = 0;
1449                        } else {
1450                                ret = -ENOSPC;
1451                        }
1452                }
1453
1454                if (ret)
1455                        break;
1456
1457                ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1458                if (ret) {
1459                        if (!only_release_metadata)
1460                                btrfs_free_reserved_data_space(inode,
1461                                                               reserve_bytes);
1462                        break;
1463                }
1464
1465                release_bytes = reserve_bytes;
1466
1467                /*
1468                 * This is going to setup the pages array with the number of
1469                 * pages we want, so we don't really need to worry about the
1470                 * contents of pages from loop to loop
1471                 */
1472                ret = prepare_pages(root, file, pages, num_pages,
1473                                    pos, first_index, write_bytes,
1474                                    force_page_uptodate);
1475                if (ret)
1476                        break;
1477
1478                copied = btrfs_copy_from_user(pos, num_pages,
1479                                           write_bytes, pages, i);
1480
1481                /*
1482                 * if we have trouble faulting in the pages, fall
1483                 * back to one page at a time
1484                 */
1485                if (copied < write_bytes)
1486                        nrptrs = 1;
1487
1488                if (copied == 0) {
1489                        force_page_uptodate = true;
1490                        dirty_pages = 0;
1491                } else {
1492                        force_page_uptodate = false;
1493                        dirty_pages = (copied + offset +
1494                                       PAGE_CACHE_SIZE - 1) >>
1495                                       PAGE_CACHE_SHIFT;
1496                }
1497
1498                /*
1499                 * If we had a short copy we need to release the excess delaloc
1500                 * bytes we reserved.  We need to increment outstanding_extents
1501                 * because btrfs_delalloc_release_space will decrement it, but
1502                 * we still have an outstanding extent for the chunk we actually
1503                 * managed to copy.
1504                 */
1505                if (num_pages > dirty_pages) {
1506                        release_bytes = (num_pages - dirty_pages) <<
1507                                PAGE_CACHE_SHIFT;
1508                        if (copied > 0) {
1509                                spin_lock(&BTRFS_I(inode)->lock);
1510                                BTRFS_I(inode)->outstanding_extents++;
1511                                spin_unlock(&BTRFS_I(inode)->lock);
1512                        }
1513                        if (only_release_metadata)
1514                                btrfs_delalloc_release_metadata(inode,
1515                                                                release_bytes);
1516                        else
1517                                btrfs_delalloc_release_space(inode,
1518                                                             release_bytes);
1519                }
1520
1521                release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1522                if (copied > 0) {
1523                        ret = btrfs_dirty_pages(root, inode, pages,
1524                                                dirty_pages, pos, copied,
1525                                                NULL);
1526                        if (ret) {
1527                                btrfs_drop_pages(pages, num_pages);
1528                                break;
1529                        }
1530                }
1531
1532                release_bytes = 0;
1533                btrfs_drop_pages(pages, num_pages);
1534
1535                if (only_release_metadata && copied > 0) {
1536                        u64 lockstart = round_down(pos, root->sectorsize);
1537                        u64 lockend = lockstart +
1538                                (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1539
1540                        set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1541                                       lockend, EXTENT_NORESERVE, NULL,
1542                                       NULL, GFP_NOFS);
1543                        only_release_metadata = false;
1544                }
1545
1546                cond_resched();
1547
1548                balance_dirty_pages_ratelimited(inode->i_mapping);
1549                if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1550                        btrfs_btree_balance_dirty(root);
1551
1552                pos += copied;
1553                num_written += copied;
1554        }
1555
1556        kfree(pages);
1557
1558        if (release_bytes) {
1559                if (only_release_metadata)
1560                        btrfs_delalloc_release_metadata(inode, release_bytes);
1561                else
1562                        btrfs_delalloc_release_space(inode, release_bytes);
1563        }
1564
1565        return num_written ? num_written : ret;
1566}
1567
1568static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1569                                    const struct iovec *iov,
1570                                    unsigned long nr_segs, loff_t pos,
1571                                    loff_t *ppos, size_t count, size_t ocount)
1572{
1573        struct file *file = iocb->ki_filp;
1574        struct iov_iter i;
1575        ssize_t written;
1576        ssize_t written_buffered;
1577        loff_t endbyte;
1578        int err;
1579
1580        written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1581                                            count, ocount);
1582
1583        if (written < 0 || written == count)
1584                return written;
1585
1586        pos += written;
1587        count -= written;
1588        iov_iter_init(&i, iov, nr_segs, count, written);
1589        written_buffered = __btrfs_buffered_write(file, &i, pos);
1590        if (written_buffered < 0) {
1591                err = written_buffered;
1592                goto out;
1593        }
1594        endbyte = pos + written_buffered - 1;
1595        err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1596        if (err)
1597                goto out;
1598        written += written_buffered;
1599        *ppos = pos + written_buffered;
1600        invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1601                                 endbyte >> PAGE_CACHE_SHIFT);
1602out:
1603        return written ? written : err;
1604}
1605
1606static void update_time_for_write(struct inode *inode)
1607{
1608        struct timespec now;
1609
1610        if (IS_NOCMTIME(inode))
1611                return;
1612
1613        now = current_fs_time(inode->i_sb);
1614        if (!timespec_equal(&inode->i_mtime, &now))
1615                inode->i_mtime = now;
1616
1617        if (!timespec_equal(&inode->i_ctime, &now))
1618                inode->i_ctime = now;
1619
1620        if (IS_I_VERSION(inode))
1621                inode_inc_iversion(inode);
1622}
1623
1624static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1625                                    const struct iovec *iov,
1626                                    unsigned long nr_segs, loff_t pos)
1627{
1628        struct file *file = iocb->ki_filp;
1629        struct inode *inode = file_inode(file);
1630        struct btrfs_root *root = BTRFS_I(inode)->root;
1631        loff_t *ppos = &iocb->ki_pos;
1632        u64 start_pos;
1633        ssize_t num_written = 0;
1634        ssize_t err = 0;
1635        size_t count, ocount;
1636        bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1637
1638        mutex_lock(&inode->i_mutex);
1639
1640        err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1641        if (err) {
1642                mutex_unlock(&inode->i_mutex);
1643                goto out;
1644        }
1645        count = ocount;
1646
1647        current->backing_dev_info = inode->i_mapping->backing_dev_info;
1648        err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1649        if (err) {
1650                mutex_unlock(&inode->i_mutex);
1651                goto out;
1652        }
1653
1654        if (count == 0) {
1655                mutex_unlock(&inode->i_mutex);
1656                goto out;
1657        }
1658
1659        err = file_remove_suid(file);
1660        if (err) {
1661                mutex_unlock(&inode->i_mutex);
1662                goto out;
1663        }
1664
1665        /*
1666         * If BTRFS flips readonly due to some impossible error
1667         * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1668         * although we have opened a file as writable, we have
1669         * to stop this write operation to ensure FS consistency.
1670         */
1671        if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1672                mutex_unlock(&inode->i_mutex);
1673                err = -EROFS;
1674                goto out;
1675        }
1676
1677        /*
1678         * We reserve space for updating the inode when we reserve space for the
1679         * extent we are going to write, so we will enospc out there.  We don't
1680         * need to start yet another transaction to update the inode as we will
1681         * update the inode when we finish writing whatever data we write.
1682         */
1683        update_time_for_write(inode);
1684
1685        start_pos = round_down(pos, root->sectorsize);
1686        if (start_pos > i_size_read(inode)) {
1687                err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1688                if (err) {
1689                        mutex_unlock(&inode->i_mutex);
1690                        goto out;
1691                }
1692        }
1693
1694        if (sync)
1695                atomic_inc(&BTRFS_I(inode)->sync_writers);
1696
1697        if (unlikely(file->f_flags & O_DIRECT)) {
1698                num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1699                                                   pos, ppos, count, ocount);
1700        } else {
1701                struct iov_iter i;
1702
1703                iov_iter_init(&i, iov, nr_segs, count, num_written);
1704
1705                num_written = __btrfs_buffered_write(file, &i, pos);
1706                if (num_written > 0)
1707                        *ppos = pos + num_written;
1708        }
1709
1710        mutex_unlock(&inode->i_mutex);
1711
1712        /*
1713         * we want to make sure fsync finds this change
1714         * but we haven't joined a transaction running right now.
1715         *
1716         * Later on, someone is sure to update the inode and get the
1717         * real transid recorded.
1718         *
1719         * We set last_trans now to the fs_info generation + 1,
1720         * this will either be one more than the running transaction
1721         * or the generation used for the next transaction if there isn't
1722         * one running right now.
1723         *
1724         * We also have to set last_sub_trans to the current log transid,
1725         * otherwise subsequent syncs to a file that's been synced in this
1726         * transaction will appear to have already occured.
1727         */
1728        BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1729        BTRFS_I(inode)->last_sub_trans = root->log_transid;
1730        if (num_written > 0 || num_written == -EIOCBQUEUED) {
1731                err = generic_write_sync(file, pos, num_written);
1732                if (err < 0 && num_written > 0)
1733                        num_written = err;
1734        }
1735
1736        if (sync)
1737                atomic_dec(&BTRFS_I(inode)->sync_writers);
1738out:
1739        current->backing_dev_info = NULL;
1740        return num_written ? num_written : err;
1741}
1742
1743int btrfs_release_file(struct inode *inode, struct file *filp)
1744{
1745        /*
1746         * ordered_data_close is set by settattr when we are about to truncate
1747         * a file from a non-zero size to a zero size.  This tries to
1748         * flush down new bytes that may have been written if the
1749         * application were using truncate to replace a file in place.
1750         */
1751        if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1752                               &BTRFS_I(inode)->runtime_flags)) {
1753                struct btrfs_trans_handle *trans;
1754                struct btrfs_root *root = BTRFS_I(inode)->root;
1755
1756                /*
1757                 * We need to block on a committing transaction to keep us from
1758                 * throwing a ordered operation on to the list and causing
1759                 * something like sync to deadlock trying to flush out this
1760                 * inode.
1761                 */
1762                trans = btrfs_start_transaction(root, 0);
1763                if (IS_ERR(trans))
1764                        return PTR_ERR(trans);
1765                btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1766                btrfs_end_transaction(trans, root);
1767                if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1768                        filemap_flush(inode->i_mapping);
1769        }
1770        if (filp->private_data)
1771                btrfs_ioctl_trans_end(filp);
1772        return 0;
1773}
1774
1775/*
1776 * fsync call for both files and directories.  This logs the inode into
1777 * the tree log instead of forcing full commits whenever possible.
1778 *
1779 * It needs to call filemap_fdatawait so that all ordered extent updates are
1780 * in the metadata btree are up to date for copying to the log.
1781 *
1782 * It drops the inode mutex before doing the tree log commit.  This is an
1783 * important optimization for directories because holding the mutex prevents
1784 * new operations on the dir while we write to disk.
1785 */
1786int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1787{
1788        struct dentry *dentry = file->f_path.dentry;
1789        struct inode *inode = dentry->d_inode;
1790        struct btrfs_root *root = BTRFS_I(inode)->root;
1791        int ret = 0;
1792        struct btrfs_trans_handle *trans;
1793        bool full_sync = 0;
1794
1795        trace_btrfs_sync_file(file, datasync);
1796
1797        /*
1798         * We write the dirty pages in the range and wait until they complete
1799         * out of the ->i_mutex. If so, we can flush the dirty pages by
1800         * multi-task, and make the performance up.  See
1801         * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1802         */
1803        atomic_inc(&BTRFS_I(inode)->sync_writers);
1804        ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1805        if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1806                             &BTRFS_I(inode)->runtime_flags))
1807                ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1808        atomic_dec(&BTRFS_I(inode)->sync_writers);
1809        if (ret)
1810                return ret;
1811
1812        mutex_lock(&inode->i_mutex);
1813
1814        /*
1815         * We flush the dirty pages again to avoid some dirty pages in the
1816         * range being left.
1817         */
1818        atomic_inc(&root->log_batch);
1819        full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1820                             &BTRFS_I(inode)->runtime_flags);
1821        if (full_sync)
1822                btrfs_wait_ordered_range(inode, start, end - start + 1);
1823        atomic_inc(&root->log_batch);
1824
1825        /*
1826         * check the transaction that last modified this inode
1827         * and see if its already been committed
1828         */
1829        if (!BTRFS_I(inode)->last_trans) {
1830                mutex_unlock(&inode->i_mutex);
1831                goto out;
1832        }
1833
1834        /*
1835         * if the last transaction that changed this file was before
1836         * the current transaction, we can bail out now without any
1837         * syncing
1838         */
1839        smp_mb();
1840        if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1841            BTRFS_I(inode)->last_trans <=
1842            root->fs_info->last_trans_committed) {
1843                BTRFS_I(inode)->last_trans = 0;
1844
1845                /*
1846                 * We'v had everything committed since the last time we were
1847                 * modified so clear this flag in case it was set for whatever
1848                 * reason, it's no longer relevant.
1849                 */
1850                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1851                          &BTRFS_I(inode)->runtime_flags);
1852                mutex_unlock(&inode->i_mutex);
1853                goto out;
1854        }
1855
1856        /*
1857         * ok we haven't committed the transaction yet, lets do a commit
1858         */
1859        if (file->private_data)
1860                btrfs_ioctl_trans_end(file);
1861
1862        trans = btrfs_start_transaction(root, 0);
1863        if (IS_ERR(trans)) {
1864                ret = PTR_ERR(trans);
1865                mutex_unlock(&inode->i_mutex);
1866                goto out;
1867        }
1868
1869        ret = btrfs_log_dentry_safe(trans, root, dentry);
1870        if (ret < 0) {
1871                mutex_unlock(&inode->i_mutex);
1872                goto out;
1873        }
1874
1875        /* we've logged all the items and now have a consistent
1876         * version of the file in the log.  It is possible that
1877         * someone will come in and modify the file, but that's
1878         * fine because the log is consistent on disk, and we
1879         * have references to all of the file's extents
1880         *
1881         * It is possible that someone will come in and log the
1882         * file again, but that will end up using the synchronization
1883         * inside btrfs_sync_log to keep things safe.
1884         */
1885        mutex_unlock(&inode->i_mutex);
1886
1887        if (ret != BTRFS_NO_LOG_SYNC) {
1888                if (ret > 0) {
1889                        /*
1890                         * If we didn't already wait for ordered extents we need
1891                         * to do that now.
1892                         */
1893                        if (!full_sync)
1894                                btrfs_wait_ordered_range(inode, start,
1895                                                         end - start + 1);
1896                        ret = btrfs_commit_transaction(trans, root);
1897                } else {
1898                        ret = btrfs_sync_log(trans, root);
1899                        if (ret == 0) {
1900                                ret = btrfs_end_transaction(trans, root);
1901                        } else {
1902                                if (!full_sync)
1903                                        btrfs_wait_ordered_range(inode, start,
1904                                                                 end -
1905                                                                 start + 1);
1906                                ret = btrfs_commit_transaction(trans, root);
1907                        }
1908                }
1909        } else {
1910                ret = btrfs_end_transaction(trans, root);
1911        }
1912out:
1913        return ret > 0 ? -EIO : ret;
1914}
1915
1916static const struct vm_operations_struct btrfs_file_vm_ops = {
1917        .fault          = filemap_fault,
1918        .page_mkwrite   = btrfs_page_mkwrite,
1919        .remap_pages    = generic_file_remap_pages,
1920};
1921
1922static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
1923{
1924        struct address_space *mapping = filp->f_mapping;
1925
1926        if (!mapping->a_ops->readpage)
1927                return -ENOEXEC;
1928
1929        file_accessed(filp);
1930        vma->vm_ops = &btrfs_file_vm_ops;
1931
1932        return 0;
1933}
1934
1935static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1936                          int slot, u64 start, u64 end)
1937{
1938        struct btrfs_file_extent_item *fi;
1939        struct btrfs_key key;
1940
1941        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1942                return 0;
1943
1944        btrfs_item_key_to_cpu(leaf, &key, slot);
1945        if (key.objectid != btrfs_ino(inode) ||
1946            key.type != BTRFS_EXTENT_DATA_KEY)
1947                return 0;
1948
1949        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1950
1951        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1952                return 0;
1953
1954        if (btrfs_file_extent_disk_bytenr(leaf, fi))
1955                return 0;
1956
1957        if (key.offset == end)
1958                return 1;
1959        if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1960                return 1;
1961        return 0;
1962}
1963
1964static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1965                      struct btrfs_path *path, u64 offset, u64 end)
1966{
1967        struct btrfs_root *root = BTRFS_I(inode)->root;
1968        struct extent_buffer *leaf;
1969        struct btrfs_file_extent_item *fi;
1970        struct extent_map *hole_em;
1971        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1972        struct btrfs_key key;
1973        int ret;
1974
1975        key.objectid = btrfs_ino(inode);
1976        key.type = BTRFS_EXTENT_DATA_KEY;
1977        key.offset = offset;
1978
1979
1980        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1981        if (ret < 0)
1982                return ret;
1983        BUG_ON(!ret);
1984
1985        leaf = path->nodes[0];
1986        if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1987                u64 num_bytes;
1988
1989                path->slots[0]--;
1990                fi = btrfs_item_ptr(leaf, path->slots[0],
1991                                    struct btrfs_file_extent_item);
1992                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1993                        end - offset;
1994                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1995                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1996                btrfs_set_file_extent_offset(leaf, fi, 0);
1997                btrfs_mark_buffer_dirty(leaf);
1998                goto out;
1999        }
2000
2001        if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2002                u64 num_bytes;
2003
2004                path->slots[0]++;
2005                key.offset = offset;
2006                btrfs_set_item_key_safe(root, path, &key);
2007                fi = btrfs_item_ptr(leaf, path->slots[0],
2008                                    struct btrfs_file_extent_item);
2009                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2010                        offset;
2011                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2012                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2013                btrfs_set_file_extent_offset(leaf, fi, 0);
2014                btrfs_mark_buffer_dirty(leaf);
2015                goto out;
2016        }
2017        btrfs_release_path(path);
2018
2019        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2020                                       0, 0, end - offset, 0, end - offset,
2021                                       0, 0, 0);
2022        if (ret)
2023                return ret;
2024
2025out:
2026        btrfs_release_path(path);
2027
2028        hole_em = alloc_extent_map();
2029        if (!hole_em) {
2030                btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2031                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2032                        &BTRFS_I(inode)->runtime_flags);
2033        } else {
2034                hole_em->start = offset;
2035                hole_em->len = end - offset;
2036                hole_em->ram_bytes = hole_em->len;
2037                hole_em->orig_start = offset;
2038
2039                hole_em->block_start = EXTENT_MAP_HOLE;
2040                hole_em->block_len = 0;
2041                hole_em->orig_block_len = 0;
2042                hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2043                hole_em->compress_type = BTRFS_COMPRESS_NONE;
2044                hole_em->generation = trans->transid;
2045
2046                do {
2047                        btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2048                        write_lock(&em_tree->lock);
2049                        ret = add_extent_mapping(em_tree, hole_em, 1);
2050                        write_unlock(&em_tree->lock);
2051                } while (ret == -EEXIST);
2052                free_extent_map(hole_em);
2053                if (ret)
2054                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2055                                &BTRFS_I(inode)->runtime_flags);
2056        }
2057
2058        return 0;
2059}
2060
2061static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2062{
2063        struct btrfs_root *root = BTRFS_I(inode)->root;
2064        struct extent_state *cached_state = NULL;
2065        struct btrfs_path *path;
2066        struct btrfs_block_rsv *rsv;
2067        struct btrfs_trans_handle *trans;
2068        u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2069        u64 lockend = round_down(offset + len,
2070                                 BTRFS_I(inode)->root->sectorsize) - 1;
2071        u64 cur_offset = lockstart;
2072        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2073        u64 drop_end;
2074        int ret = 0;
2075        int err = 0;
2076        bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2077                          ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2078
2079        btrfs_wait_ordered_range(inode, offset, len);
2080
2081        mutex_lock(&inode->i_mutex);
2082        /*
2083         * We needn't truncate any page which is beyond the end of the file
2084         * because we are sure there is no data there.
2085         */
2086        /*
2087         * Only do this if we are in the same page and we aren't doing the
2088         * entire page.
2089         */
2090        if (same_page && len < PAGE_CACHE_SIZE) {
2091                if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2092                        ret = btrfs_truncate_page(inode, offset, len, 0);
2093                mutex_unlock(&inode->i_mutex);
2094                return ret;
2095        }
2096
2097        /* zero back part of the first page */
2098        if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2099                ret = btrfs_truncate_page(inode, offset, 0, 0);
2100                if (ret) {
2101                        mutex_unlock(&inode->i_mutex);
2102                        return ret;
2103                }
2104        }
2105
2106        /* zero the front end of the last page */
2107        if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2108                ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2109                if (ret) {
2110                        mutex_unlock(&inode->i_mutex);
2111                        return ret;
2112                }
2113        }
2114
2115        if (lockend < lockstart) {
2116                mutex_unlock(&inode->i_mutex);
2117                return 0;
2118        }
2119
2120        while (1) {
2121                struct btrfs_ordered_extent *ordered;
2122
2123                truncate_pagecache_range(inode, lockstart, lockend);
2124
2125                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2126                                 0, &cached_state);
2127                ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2128
2129                /*
2130                 * We need to make sure we have no ordered extents in this range
2131                 * and nobody raced in and read a page in this range, if we did
2132                 * we need to try again.
2133                 */
2134                if ((!ordered ||
2135                    (ordered->file_offset + ordered->len < lockstart ||
2136                     ordered->file_offset > lockend)) &&
2137                     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2138                                     lockend, EXTENT_UPTODATE, 0,
2139                                     cached_state)) {
2140                        if (ordered)
2141                                btrfs_put_ordered_extent(ordered);
2142                        break;
2143                }
2144                if (ordered)
2145                        btrfs_put_ordered_extent(ordered);
2146                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2147                                     lockend, &cached_state, GFP_NOFS);
2148                btrfs_wait_ordered_range(inode, lockstart,
2149                                         lockend - lockstart + 1);
2150        }
2151
2152        path = btrfs_alloc_path();
2153        if (!path) {
2154                ret = -ENOMEM;
2155                goto out;
2156        }
2157
2158        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2159        if (!rsv) {
2160                ret = -ENOMEM;
2161                goto out_free;
2162        }
2163        rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2164        rsv->failfast = 1;
2165
2166        /*
2167         * 1 - update the inode
2168         * 1 - removing the extents in the range
2169         * 1 - adding the hole extent
2170         */
2171        trans = btrfs_start_transaction(root, 3);
2172        if (IS_ERR(trans)) {
2173                err = PTR_ERR(trans);
2174                goto out_free;
2175        }
2176
2177        ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2178                                      min_size);
2179        BUG_ON(ret);
2180        trans->block_rsv = rsv;
2181
2182        while (cur_offset < lockend) {
2183                ret = __btrfs_drop_extents(trans, root, inode, path,
2184                                           cur_offset, lockend + 1,
2185                                           &drop_end, 1);
2186                if (ret != -ENOSPC)
2187                        break;
2188
2189                trans->block_rsv = &root->fs_info->trans_block_rsv;
2190
2191                ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2192                if (ret) {
2193                        err = ret;
2194                        break;
2195                }
2196
2197                cur_offset = drop_end;
2198
2199                ret = btrfs_update_inode(trans, root, inode);
2200                if (ret) {
2201                        err = ret;
2202                        break;
2203                }
2204
2205                btrfs_end_transaction(trans, root);
2206                btrfs_btree_balance_dirty(root);
2207
2208                trans = btrfs_start_transaction(root, 3);
2209                if (IS_ERR(trans)) {
2210                        ret = PTR_ERR(trans);
2211                        trans = NULL;
2212                        break;
2213                }
2214
2215                ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2216                                              rsv, min_size);
2217                BUG_ON(ret);    /* shouldn't happen */
2218                trans->block_rsv = rsv;
2219        }
2220
2221        if (ret) {
2222                err = ret;
2223                goto out_trans;
2224        }
2225
2226        trans->block_rsv = &root->fs_info->trans_block_rsv;
2227        ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2228        if (ret) {
2229                err = ret;
2230                goto out_trans;
2231        }
2232
2233out_trans:
2234        if (!trans)
2235                goto out_free;
2236
2237        inode_inc_iversion(inode);
2238        inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2239
2240        trans->block_rsv = &root->fs_info->trans_block_rsv;
2241        ret = btrfs_update_inode(trans, root, inode);
2242        btrfs_end_transaction(trans, root);
2243        btrfs_btree_balance_dirty(root);
2244out_free:
2245        btrfs_free_path(path);
2246        btrfs_free_block_rsv(root, rsv);
2247out:
2248        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2249                             &cached_state, GFP_NOFS);
2250        mutex_unlock(&inode->i_mutex);
2251        if (ret && !err)
2252                err = ret;
2253        return err;
2254}
2255
2256static long btrfs_fallocate(struct file *file, int mode,
2257                            loff_t offset, loff_t len)
2258{
2259        struct inode *inode = file_inode(file);
2260        struct extent_state *cached_state = NULL;
2261        struct btrfs_root *root = BTRFS_I(inode)->root;
2262        u64 cur_offset;
2263        u64 last_byte;
2264        u64 alloc_start;
2265        u64 alloc_end;
2266        u64 alloc_hint = 0;
2267        u64 locked_end;
2268        struct extent_map *em;
2269        int blocksize = BTRFS_I(inode)->root->sectorsize;
2270        int ret;
2271
2272        alloc_start = round_down(offset, blocksize);
2273        alloc_end = round_up(offset + len, blocksize);
2274
2275        /* Make sure we aren't being give some crap mode */
2276        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2277                return -EOPNOTSUPP;
2278
2279        if (mode & FALLOC_FL_PUNCH_HOLE)
2280                return btrfs_punch_hole(inode, offset, len);
2281
2282        /*
2283         * Make sure we have enough space before we do the
2284         * allocation.
2285         */
2286        ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2287        if (ret)
2288                return ret;
2289        if (root->fs_info->quota_enabled) {
2290                ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2291                if (ret)
2292                        goto out_reserve_fail;
2293        }
2294
2295        mutex_lock(&inode->i_mutex);
2296        ret = inode_newsize_ok(inode, alloc_end);
2297        if (ret)
2298                goto out;
2299
2300        if (alloc_start > inode->i_size) {
2301                ret = btrfs_cont_expand(inode, i_size_read(inode),
2302                                        alloc_start);
2303                if (ret)
2304                        goto out;
2305        } else {
2306                /*
2307                 * If we are fallocating from the end of the file onward we
2308                 * need to zero out the end of the page if i_size lands in the
2309                 * middle of a page.
2310                 */
2311                ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2312                if (ret)
2313                        goto out;
2314        }
2315
2316        /*
2317         * wait for ordered IO before we have any locks.  We'll loop again
2318         * below with the locks held.
2319         */
2320        btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2321
2322        locked_end = alloc_end - 1;
2323        while (1) {
2324                struct btrfs_ordered_extent *ordered;
2325
2326                /* the extent lock is ordered inside the running
2327                 * transaction
2328                 */
2329                lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2330                                 locked_end, 0, &cached_state);
2331                ordered = btrfs_lookup_first_ordered_extent(inode,
2332                                                            alloc_end - 1);
2333                if (ordered &&
2334                    ordered->file_offset + ordered->len > alloc_start &&
2335                    ordered->file_offset < alloc_end) {
2336                        btrfs_put_ordered_extent(ordered);
2337                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2338                                             alloc_start, locked_end,
2339                                             &cached_state, GFP_NOFS);
2340                        /*
2341                         * we can't wait on the range with the transaction
2342                         * running or with the extent lock held
2343                         */
2344                        btrfs_wait_ordered_range(inode, alloc_start,
2345                                                 alloc_end - alloc_start);
2346                } else {
2347                        if (ordered)
2348                                btrfs_put_ordered_extent(ordered);
2349                        break;
2350                }
2351        }
2352
2353        cur_offset = alloc_start;
2354        while (1) {
2355                u64 actual_end;
2356
2357                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2358                                      alloc_end - cur_offset, 0);
2359                if (IS_ERR_OR_NULL(em)) {
2360                        if (!em)
2361                                ret = -ENOMEM;
2362                        else
2363                                ret = PTR_ERR(em);
2364                        break;
2365                }
2366                last_byte = min(extent_map_end(em), alloc_end);
2367                actual_end = min_t(u64, extent_map_end(em), offset + len);
2368                last_byte = ALIGN(last_byte, blocksize);
2369
2370                if (em->block_start == EXTENT_MAP_HOLE ||
2371                    (cur_offset >= inode->i_size &&
2372                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2373                        ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2374                                                        last_byte - cur_offset,
2375                                                        1 << inode->i_blkbits,
2376                                                        offset + len,
2377                                                        &alloc_hint);
2378
2379                        if (ret < 0) {
2380                                free_extent_map(em);
2381                                break;
2382                        }
2383                } else if (actual_end > inode->i_size &&
2384                           !(mode & FALLOC_FL_KEEP_SIZE)) {
2385                        /*
2386                         * We didn't need to allocate any more space, but we
2387                         * still extended the size of the file so we need to
2388                         * update i_size.
2389                         */
2390                        inode->i_ctime = CURRENT_TIME;
2391                        i_size_write(inode, actual_end);
2392                        btrfs_ordered_update_i_size(inode, actual_end, NULL);
2393                }
2394                free_extent_map(em);
2395
2396                cur_offset = last_byte;
2397                if (cur_offset >= alloc_end) {
2398                        ret = 0;
2399                        break;
2400                }
2401        }
2402        unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2403                             &cached_state, GFP_NOFS);
2404out:
2405        mutex_unlock(&inode->i_mutex);
2406        if (root->fs_info->quota_enabled)
2407                btrfs_qgroup_free(root, alloc_end - alloc_start);
2408out_reserve_fail:
2409        /* Let go of our reservation. */
2410        btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2411        return ret;
2412}
2413
2414static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2415{
2416        struct btrfs_root *root = BTRFS_I(inode)->root;
2417        struct extent_map *em;
2418        struct extent_state *cached_state = NULL;
2419        u64 lockstart = *offset;
2420        u64 lockend = i_size_read(inode);
2421        u64 start = *offset;
2422        u64 orig_start = *offset;
2423        u64 len = i_size_read(inode);
2424        u64 last_end = 0;
2425        int ret = 0;
2426
2427        lockend = max_t(u64, root->sectorsize, lockend);
2428        if (lockend <= lockstart)
2429                lockend = lockstart + root->sectorsize;
2430
2431        lockend--;
2432        len = lockend - lockstart + 1;
2433
2434        len = max_t(u64, len, root->sectorsize);
2435        if (inode->i_size == 0)
2436                return -ENXIO;
2437
2438        lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2439                         &cached_state);
2440
2441        /*
2442         * Delalloc is such a pain.  If we have a hole and we have pending
2443         * delalloc for a portion of the hole we will get back a hole that
2444         * exists for the entire range since it hasn't been actually written
2445         * yet.  So to take care of this case we need to look for an extent just
2446         * before the position we want in case there is outstanding delalloc
2447         * going on here.
2448         */
2449        if (whence == SEEK_HOLE && start != 0) {
2450                if (start <= root->sectorsize)
2451                        em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2452                                                     root->sectorsize, 0);
2453                else
2454                        em = btrfs_get_extent_fiemap(inode, NULL, 0,
2455                                                     start - root->sectorsize,
2456                                                     root->sectorsize, 0);
2457                if (IS_ERR(em)) {
2458                        ret = PTR_ERR(em);
2459                        goto out;
2460                }
2461                last_end = em->start + em->len;
2462                if (em->block_start == EXTENT_MAP_DELALLOC)
2463                        last_end = min_t(u64, last_end, inode->i_size);
2464                free_extent_map(em);
2465        }
2466
2467        while (1) {
2468                em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2469                if (IS_ERR(em)) {
2470                        ret = PTR_ERR(em);
2471                        break;
2472                }
2473
2474                if (em->block_start == EXTENT_MAP_HOLE) {
2475                        if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2476                                if (last_end <= orig_start) {
2477                                        free_extent_map(em);
2478                                        ret = -ENXIO;
2479                                        break;
2480                                }
2481                        }
2482
2483                        if (whence == SEEK_HOLE) {
2484                                *offset = start;
2485                                free_extent_map(em);
2486                                break;
2487                        }
2488                } else {
2489                        if (whence == SEEK_DATA) {
2490                                if (em->block_start == EXTENT_MAP_DELALLOC) {
2491                                        if (start >= inode->i_size) {
2492                                                free_extent_map(em);
2493                                                ret = -ENXIO;
2494                                                break;
2495                                        }
2496                                }
2497
2498                                if (!test_bit(EXTENT_FLAG_PREALLOC,
2499                                              &em->flags)) {
2500                                        *offset = start;
2501                                        free_extent_map(em);
2502                                        break;
2503                                }
2504                        }
2505                }
2506
2507                start = em->start + em->len;
2508                last_end = em->start + em->len;
2509
2510                if (em->block_start == EXTENT_MAP_DELALLOC)
2511                        last_end = min_t(u64, last_end, inode->i_size);
2512
2513                if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2514                        free_extent_map(em);
2515                        ret = -ENXIO;
2516                        break;
2517                }
2518                free_extent_map(em);
2519                cond_resched();
2520        }
2521        if (!ret)
2522                *offset = min(*offset, inode->i_size);
2523out:
2524        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2525                             &cached_state, GFP_NOFS);
2526        return ret;
2527}
2528
2529static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2530{
2531        struct inode *inode = file->f_mapping->host;
2532        int ret;
2533
2534        mutex_lock(&inode->i_mutex);
2535        switch (whence) {
2536        case SEEK_END:
2537        case SEEK_CUR:
2538                offset = generic_file_llseek(file, offset, whence);
2539                goto out;
2540        case SEEK_DATA:
2541        case SEEK_HOLE:
2542                if (offset >= i_size_read(inode)) {
2543                        mutex_unlock(&inode->i_mutex);
2544                        return -ENXIO;
2545                }
2546
2547                ret = find_desired_extent(inode, &offset, whence);
2548                if (ret) {
2549                        mutex_unlock(&inode->i_mutex);
2550                        return ret;
2551                }
2552        }
2553
2554        offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2555out:
2556        mutex_unlock(&inode->i_mutex);
2557        return offset;
2558}
2559
2560const struct file_operations btrfs_file_operations = {
2561        .llseek         = btrfs_file_llseek,
2562        .read           = do_sync_read,
2563        .write          = do_sync_write,
2564        .aio_read       = generic_file_aio_read,
2565        .splice_read    = generic_file_splice_read,
2566        .aio_write      = btrfs_file_aio_write,
2567        .mmap           = btrfs_file_mmap,
2568        .open           = generic_file_open,
2569        .release        = btrfs_release_file,
2570        .fsync          = btrfs_sync_file,
2571        .fallocate      = btrfs_fallocate,
2572        .unlocked_ioctl = btrfs_ioctl,
2573#ifdef CONFIG_COMPAT
2574        .compat_ioctl   = btrfs_ioctl,
2575#endif
2576};
2577
2578void btrfs_auto_defrag_exit(void)
2579{
2580        if (btrfs_inode_defrag_cachep)
2581                kmem_cache_destroy(btrfs_inode_defrag_cachep);
2582}
2583
2584int btrfs_auto_defrag_init(void)
2585{
2586        btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2587                                        sizeof(struct inode_defrag), 0,
2588                                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2589                                        NULL);
2590        if (!btrfs_inode_defrag_cachep)
2591                return -ENOMEM;
2592
2593        return 0;
2594}
2595