linux/fs/btrfs/inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/statfs.h>
  34#include <linux/compat.h>
  35#include <linux/aio.h>
  36#include <linux/bit_spinlock.h>
  37#include <linux/xattr.h>
  38#include <linux/posix_acl.h>
  39#include <linux/falloc.h>
  40#include <linux/slab.h>
  41#include <linux/ratelimit.h>
  42#include <linux/mount.h>
  43#include <linux/btrfs.h>
  44#include <linux/blkdev.h>
  45#include <linux/posix_acl_xattr.h>
  46#include "compat.h"
  47#include "ctree.h"
  48#include "disk-io.h"
  49#include "transaction.h"
  50#include "btrfs_inode.h"
  51#include "print-tree.h"
  52#include "ordered-data.h"
  53#include "xattr.h"
  54#include "tree-log.h"
  55#include "volumes.h"
  56#include "compression.h"
  57#include "locking.h"
  58#include "free-space-cache.h"
  59#include "inode-map.h"
  60#include "backref.h"
  61#include "hash.h"
  62
  63struct btrfs_iget_args {
  64        u64 ino;
  65        struct btrfs_root *root;
  66};
  67
  68static const struct inode_operations btrfs_dir_inode_operations;
  69static const struct inode_operations btrfs_symlink_inode_operations;
  70static const struct inode_operations btrfs_dir_ro_inode_operations;
  71static const struct inode_operations btrfs_special_inode_operations;
  72static const struct inode_operations btrfs_file_inode_operations;
  73static const struct address_space_operations btrfs_aops;
  74static const struct address_space_operations btrfs_symlink_aops;
  75static const struct file_operations btrfs_dir_file_operations;
  76static struct extent_io_ops btrfs_extent_io_ops;
  77
  78static struct kmem_cache *btrfs_inode_cachep;
  79static struct kmem_cache *btrfs_delalloc_work_cachep;
  80struct kmem_cache *btrfs_trans_handle_cachep;
  81struct kmem_cache *btrfs_transaction_cachep;
  82struct kmem_cache *btrfs_path_cachep;
  83struct kmem_cache *btrfs_free_space_cachep;
  84
  85#define S_SHIFT 12
  86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  87        [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
  88        [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
  89        [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
  90        [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
  91        [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
  92        [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
  93        [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
  94};
  95
  96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  97static int btrfs_truncate(struct inode *inode);
  98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  99static noinline int cow_file_range(struct inode *inode,
 100                                   struct page *locked_page,
 101                                   u64 start, u64 end, int *page_started,
 102                                   unsigned long *nr_written, int unlock);
 103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
 104                                           u64 len, u64 orig_start,
 105                                           u64 block_start, u64 block_len,
 106                                           u64 orig_block_len, u64 ram_bytes,
 107                                           int type);
 108
 109static int btrfs_dirty_inode(struct inode *inode);
 110
 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 112                                     struct inode *inode,  struct inode *dir,
 113                                     const struct qstr *qstr)
 114{
 115        int err;
 116
 117        err = btrfs_init_acl(trans, inode, dir);
 118        if (!err)
 119                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 120        return err;
 121}
 122
 123/*
 124 * this does all the hard work for inserting an inline extent into
 125 * the btree.  The caller should have done a btrfs_drop_extents so that
 126 * no overlapping inline items exist in the btree
 127 */
 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
 129                                struct btrfs_root *root, struct inode *inode,
 130                                u64 start, size_t size, size_t compressed_size,
 131                                int compress_type,
 132                                struct page **compressed_pages)
 133{
 134        struct btrfs_key key;
 135        struct btrfs_path *path;
 136        struct extent_buffer *leaf;
 137        struct page *page = NULL;
 138        char *kaddr;
 139        unsigned long ptr;
 140        struct btrfs_file_extent_item *ei;
 141        int err = 0;
 142        int ret;
 143        size_t cur_size = size;
 144        size_t datasize;
 145        unsigned long offset;
 146
 147        if (compressed_size && compressed_pages)
 148                cur_size = compressed_size;
 149
 150        path = btrfs_alloc_path();
 151        if (!path)
 152                return -ENOMEM;
 153
 154        path->leave_spinning = 1;
 155
 156        key.objectid = btrfs_ino(inode);
 157        key.offset = start;
 158        btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
 159        datasize = btrfs_file_extent_calc_inline_size(cur_size);
 160
 161        inode_add_bytes(inode, size);
 162        ret = btrfs_insert_empty_item(trans, root, path, &key,
 163                                      datasize);
 164        if (ret) {
 165                err = ret;
 166                goto fail;
 167        }
 168        leaf = path->nodes[0];
 169        ei = btrfs_item_ptr(leaf, path->slots[0],
 170                            struct btrfs_file_extent_item);
 171        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 172        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 173        btrfs_set_file_extent_encryption(leaf, ei, 0);
 174        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 175        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 176        ptr = btrfs_file_extent_inline_start(ei);
 177
 178        if (compress_type != BTRFS_COMPRESS_NONE) {
 179                struct page *cpage;
 180                int i = 0;
 181                while (compressed_size > 0) {
 182                        cpage = compressed_pages[i];
 183                        cur_size = min_t(unsigned long, compressed_size,
 184                                       PAGE_CACHE_SIZE);
 185
 186                        kaddr = kmap_atomic(cpage);
 187                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 188                        kunmap_atomic(kaddr);
 189
 190                        i++;
 191                        ptr += cur_size;
 192                        compressed_size -= cur_size;
 193                }
 194                btrfs_set_file_extent_compression(leaf, ei,
 195                                                  compress_type);
 196        } else {
 197                page = find_get_page(inode->i_mapping,
 198                                     start >> PAGE_CACHE_SHIFT);
 199                btrfs_set_file_extent_compression(leaf, ei, 0);
 200                kaddr = kmap_atomic(page);
 201                offset = start & (PAGE_CACHE_SIZE - 1);
 202                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 203                kunmap_atomic(kaddr);
 204                page_cache_release(page);
 205        }
 206        btrfs_mark_buffer_dirty(leaf);
 207        btrfs_free_path(path);
 208
 209        /*
 210         * we're an inline extent, so nobody can
 211         * extend the file past i_size without locking
 212         * a page we already have locked.
 213         *
 214         * We must do any isize and inode updates
 215         * before we unlock the pages.  Otherwise we
 216         * could end up racing with unlink.
 217         */
 218        BTRFS_I(inode)->disk_i_size = inode->i_size;
 219        ret = btrfs_update_inode(trans, root, inode);
 220
 221        return ret;
 222fail:
 223        btrfs_free_path(path);
 224        return err;
 225}
 226
 227
 228/*
 229 * conditionally insert an inline extent into the file.  This
 230 * does the checks required to make sure the data is small enough
 231 * to fit as an inline extent.
 232 */
 233static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
 234                                 struct btrfs_root *root,
 235                                 struct inode *inode, u64 start, u64 end,
 236                                 size_t compressed_size, int compress_type,
 237                                 struct page **compressed_pages)
 238{
 239        u64 isize = i_size_read(inode);
 240        u64 actual_end = min(end + 1, isize);
 241        u64 inline_len = actual_end - start;
 242        u64 aligned_end = ALIGN(end, root->sectorsize);
 243        u64 data_len = inline_len;
 244        int ret;
 245
 246        if (compressed_size)
 247                data_len = compressed_size;
 248
 249        if (start > 0 ||
 250            actual_end >= PAGE_CACHE_SIZE ||
 251            data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
 252            (!compressed_size &&
 253            (actual_end & (root->sectorsize - 1)) == 0) ||
 254            end + 1 < isize ||
 255            data_len > root->fs_info->max_inline) {
 256                return 1;
 257        }
 258
 259        ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
 260        if (ret)
 261                return ret;
 262
 263        if (isize > actual_end)
 264                inline_len = min_t(u64, isize, actual_end);
 265        ret = insert_inline_extent(trans, root, inode, start,
 266                                   inline_len, compressed_size,
 267                                   compress_type, compressed_pages);
 268        if (ret && ret != -ENOSPC) {
 269                btrfs_abort_transaction(trans, root, ret);
 270                return ret;
 271        } else if (ret == -ENOSPC) {
 272                return 1;
 273        }
 274
 275        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
 276        btrfs_delalloc_release_metadata(inode, end + 1 - start);
 277        btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
 278        return 0;
 279}
 280
 281struct async_extent {
 282        u64 start;
 283        u64 ram_size;
 284        u64 compressed_size;
 285        struct page **pages;
 286        unsigned long nr_pages;
 287        int compress_type;
 288        struct list_head list;
 289};
 290
 291struct async_cow {
 292        struct inode *inode;
 293        struct btrfs_root *root;
 294        struct page *locked_page;
 295        u64 start;
 296        u64 end;
 297        struct list_head extents;
 298        struct btrfs_work work;
 299};
 300
 301static noinline int add_async_extent(struct async_cow *cow,
 302                                     u64 start, u64 ram_size,
 303                                     u64 compressed_size,
 304                                     struct page **pages,
 305                                     unsigned long nr_pages,
 306                                     int compress_type)
 307{
 308        struct async_extent *async_extent;
 309
 310        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 311        BUG_ON(!async_extent); /* -ENOMEM */
 312        async_extent->start = start;
 313        async_extent->ram_size = ram_size;
 314        async_extent->compressed_size = compressed_size;
 315        async_extent->pages = pages;
 316        async_extent->nr_pages = nr_pages;
 317        async_extent->compress_type = compress_type;
 318        list_add_tail(&async_extent->list, &cow->extents);
 319        return 0;
 320}
 321
 322/*
 323 * we create compressed extents in two phases.  The first
 324 * phase compresses a range of pages that have already been
 325 * locked (both pages and state bits are locked).
 326 *
 327 * This is done inside an ordered work queue, and the compression
 328 * is spread across many cpus.  The actual IO submission is step
 329 * two, and the ordered work queue takes care of making sure that
 330 * happens in the same order things were put onto the queue by
 331 * writepages and friends.
 332 *
 333 * If this code finds it can't get good compression, it puts an
 334 * entry onto the work queue to write the uncompressed bytes.  This
 335 * makes sure that both compressed inodes and uncompressed inodes
 336 * are written in the same order that the flusher thread sent them
 337 * down.
 338 */
 339static noinline int compress_file_range(struct inode *inode,
 340                                        struct page *locked_page,
 341                                        u64 start, u64 end,
 342                                        struct async_cow *async_cow,
 343                                        int *num_added)
 344{
 345        struct btrfs_root *root = BTRFS_I(inode)->root;
 346        struct btrfs_trans_handle *trans;
 347        u64 num_bytes;
 348        u64 blocksize = root->sectorsize;
 349        u64 actual_end;
 350        u64 isize = i_size_read(inode);
 351        int ret = 0;
 352        struct page **pages = NULL;
 353        unsigned long nr_pages;
 354        unsigned long nr_pages_ret = 0;
 355        unsigned long total_compressed = 0;
 356        unsigned long total_in = 0;
 357        unsigned long max_compressed = 128 * 1024;
 358        unsigned long max_uncompressed = 128 * 1024;
 359        int i;
 360        int will_compress;
 361        int compress_type = root->fs_info->compress_type;
 362        int redirty = 0;
 363
 364        /* if this is a small write inside eof, kick off a defrag */
 365        if ((end - start + 1) < 16 * 1024 &&
 366            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 367                btrfs_add_inode_defrag(NULL, inode);
 368
 369        actual_end = min_t(u64, isize, end + 1);
 370again:
 371        will_compress = 0;
 372        nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
 373        nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
 374
 375        /*
 376         * we don't want to send crud past the end of i_size through
 377         * compression, that's just a waste of CPU time.  So, if the
 378         * end of the file is before the start of our current
 379         * requested range of bytes, we bail out to the uncompressed
 380         * cleanup code that can deal with all of this.
 381         *
 382         * It isn't really the fastest way to fix things, but this is a
 383         * very uncommon corner.
 384         */
 385        if (actual_end <= start)
 386                goto cleanup_and_bail_uncompressed;
 387
 388        total_compressed = actual_end - start;
 389
 390        /* we want to make sure that amount of ram required to uncompress
 391         * an extent is reasonable, so we limit the total size in ram
 392         * of a compressed extent to 128k.  This is a crucial number
 393         * because it also controls how easily we can spread reads across
 394         * cpus for decompression.
 395         *
 396         * We also want to make sure the amount of IO required to do
 397         * a random read is reasonably small, so we limit the size of
 398         * a compressed extent to 128k.
 399         */
 400        total_compressed = min(total_compressed, max_uncompressed);
 401        num_bytes = ALIGN(end - start + 1, blocksize);
 402        num_bytes = max(blocksize,  num_bytes);
 403        total_in = 0;
 404        ret = 0;
 405
 406        /*
 407         * we do compression for mount -o compress and when the
 408         * inode has not been flagged as nocompress.  This flag can
 409         * change at any time if we discover bad compression ratios.
 410         */
 411        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
 412            (btrfs_test_opt(root, COMPRESS) ||
 413             (BTRFS_I(inode)->force_compress) ||
 414             (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
 415                WARN_ON(pages);
 416                pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
 417                if (!pages) {
 418                        /* just bail out to the uncompressed code */
 419                        goto cont;
 420                }
 421
 422                if (BTRFS_I(inode)->force_compress)
 423                        compress_type = BTRFS_I(inode)->force_compress;
 424
 425                /*
 426                 * we need to call clear_page_dirty_for_io on each
 427                 * page in the range.  Otherwise applications with the file
 428                 * mmap'd can wander in and change the page contents while
 429                 * we are compressing them.
 430                 *
 431                 * If the compression fails for any reason, we set the pages
 432                 * dirty again later on.
 433                 */
 434                extent_range_clear_dirty_for_io(inode, start, end);
 435                redirty = 1;
 436                ret = btrfs_compress_pages(compress_type,
 437                                           inode->i_mapping, start,
 438                                           total_compressed, pages,
 439                                           nr_pages, &nr_pages_ret,
 440                                           &total_in,
 441                                           &total_compressed,
 442                                           max_compressed);
 443
 444                if (!ret) {
 445                        unsigned long offset = total_compressed &
 446                                (PAGE_CACHE_SIZE - 1);
 447                        struct page *page = pages[nr_pages_ret - 1];
 448                        char *kaddr;
 449
 450                        /* zero the tail end of the last page, we might be
 451                         * sending it down to disk
 452                         */
 453                        if (offset) {
 454                                kaddr = kmap_atomic(page);
 455                                memset(kaddr + offset, 0,
 456                                       PAGE_CACHE_SIZE - offset);
 457                                kunmap_atomic(kaddr);
 458                        }
 459                        will_compress = 1;
 460                }
 461        }
 462cont:
 463        if (start == 0) {
 464                trans = btrfs_join_transaction(root);
 465                if (IS_ERR(trans)) {
 466                        ret = PTR_ERR(trans);
 467                        trans = NULL;
 468                        goto cleanup_and_out;
 469                }
 470                trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 471
 472                /* lets try to make an inline extent */
 473                if (ret || total_in < (actual_end - start)) {
 474                        /* we didn't compress the entire range, try
 475                         * to make an uncompressed inline extent.
 476                         */
 477                        ret = cow_file_range_inline(trans, root, inode,
 478                                                    start, end, 0, 0, NULL);
 479                } else {
 480                        /* try making a compressed inline extent */
 481                        ret = cow_file_range_inline(trans, root, inode,
 482                                                    start, end,
 483                                                    total_compressed,
 484                                                    compress_type, pages);
 485                }
 486                if (ret <= 0) {
 487                        /*
 488                         * inline extent creation worked or returned error,
 489                         * we don't need to create any more async work items.
 490                         * Unlock and free up our temp pages.
 491                         */
 492                        extent_clear_unlock_delalloc(inode,
 493                             &BTRFS_I(inode)->io_tree,
 494                             start, end, NULL,
 495                             EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
 496                             EXTENT_CLEAR_DELALLOC |
 497                             EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
 498
 499                        btrfs_end_transaction(trans, root);
 500                        goto free_pages_out;
 501                }
 502                btrfs_end_transaction(trans, root);
 503        }
 504
 505        if (will_compress) {
 506                /*
 507                 * we aren't doing an inline extent round the compressed size
 508                 * up to a block size boundary so the allocator does sane
 509                 * things
 510                 */
 511                total_compressed = ALIGN(total_compressed, blocksize);
 512
 513                /*
 514                 * one last check to make sure the compression is really a
 515                 * win, compare the page count read with the blocks on disk
 516                 */
 517                total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
 518                if (total_compressed >= total_in) {
 519                        will_compress = 0;
 520                } else {
 521                        num_bytes = total_in;
 522                }
 523        }
 524        if (!will_compress && pages) {
 525                /*
 526                 * the compression code ran but failed to make things smaller,
 527                 * free any pages it allocated and our page pointer array
 528                 */
 529                for (i = 0; i < nr_pages_ret; i++) {
 530                        WARN_ON(pages[i]->mapping);
 531                        page_cache_release(pages[i]);
 532                }
 533                kfree(pages);
 534                pages = NULL;
 535                total_compressed = 0;
 536                nr_pages_ret = 0;
 537
 538                /* flag the file so we don't compress in the future */
 539                if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
 540                    !(BTRFS_I(inode)->force_compress)) {
 541                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 542                }
 543        }
 544        if (will_compress) {
 545                *num_added += 1;
 546
 547                /* the async work queues will take care of doing actual
 548                 * allocation on disk for these compressed pages,
 549                 * and will submit them to the elevator.
 550                 */
 551                add_async_extent(async_cow, start, num_bytes,
 552                                 total_compressed, pages, nr_pages_ret,
 553                                 compress_type);
 554
 555                if (start + num_bytes < end) {
 556                        start += num_bytes;
 557                        pages = NULL;
 558                        cond_resched();
 559                        goto again;
 560                }
 561        } else {
 562cleanup_and_bail_uncompressed:
 563                /*
 564                 * No compression, but we still need to write the pages in
 565                 * the file we've been given so far.  redirty the locked
 566                 * page if it corresponds to our extent and set things up
 567                 * for the async work queue to run cow_file_range to do
 568                 * the normal delalloc dance
 569                 */
 570                if (page_offset(locked_page) >= start &&
 571                    page_offset(locked_page) <= end) {
 572                        __set_page_dirty_nobuffers(locked_page);
 573                        /* unlocked later on in the async handlers */
 574                }
 575                if (redirty)
 576                        extent_range_redirty_for_io(inode, start, end);
 577                add_async_extent(async_cow, start, end - start + 1,
 578                                 0, NULL, 0, BTRFS_COMPRESS_NONE);
 579                *num_added += 1;
 580        }
 581
 582out:
 583        return ret;
 584
 585free_pages_out:
 586        for (i = 0; i < nr_pages_ret; i++) {
 587                WARN_ON(pages[i]->mapping);
 588                page_cache_release(pages[i]);
 589        }
 590        kfree(pages);
 591
 592        goto out;
 593
 594cleanup_and_out:
 595        extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
 596                                     start, end, NULL,
 597                                     EXTENT_CLEAR_UNLOCK_PAGE |
 598                                     EXTENT_CLEAR_DIRTY |
 599                                     EXTENT_CLEAR_DELALLOC |
 600                                     EXTENT_SET_WRITEBACK |
 601                                     EXTENT_END_WRITEBACK);
 602        if (!trans || IS_ERR(trans))
 603                btrfs_error(root->fs_info, ret, "Failed to join transaction");
 604        else
 605                btrfs_abort_transaction(trans, root, ret);
 606        goto free_pages_out;
 607}
 608
 609/*
 610 * phase two of compressed writeback.  This is the ordered portion
 611 * of the code, which only gets called in the order the work was
 612 * queued.  We walk all the async extents created by compress_file_range
 613 * and send them down to the disk.
 614 */
 615static noinline int submit_compressed_extents(struct inode *inode,
 616                                              struct async_cow *async_cow)
 617{
 618        struct async_extent *async_extent;
 619        u64 alloc_hint = 0;
 620        struct btrfs_trans_handle *trans;
 621        struct btrfs_key ins;
 622        struct extent_map *em;
 623        struct btrfs_root *root = BTRFS_I(inode)->root;
 624        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 625        struct extent_io_tree *io_tree;
 626        int ret = 0;
 627
 628        if (list_empty(&async_cow->extents))
 629                return 0;
 630
 631again:
 632        while (!list_empty(&async_cow->extents)) {
 633                async_extent = list_entry(async_cow->extents.next,
 634                                          struct async_extent, list);
 635                list_del(&async_extent->list);
 636
 637                io_tree = &BTRFS_I(inode)->io_tree;
 638
 639retry:
 640                /* did the compression code fall back to uncompressed IO? */
 641                if (!async_extent->pages) {
 642                        int page_started = 0;
 643                        unsigned long nr_written = 0;
 644
 645                        lock_extent(io_tree, async_extent->start,
 646                                         async_extent->start +
 647                                         async_extent->ram_size - 1);
 648
 649                        /* allocate blocks */
 650                        ret = cow_file_range(inode, async_cow->locked_page,
 651                                             async_extent->start,
 652                                             async_extent->start +
 653                                             async_extent->ram_size - 1,
 654                                             &page_started, &nr_written, 0);
 655
 656                        /* JDM XXX */
 657
 658                        /*
 659                         * if page_started, cow_file_range inserted an
 660                         * inline extent and took care of all the unlocking
 661                         * and IO for us.  Otherwise, we need to submit
 662                         * all those pages down to the drive.
 663                         */
 664                        if (!page_started && !ret)
 665                                extent_write_locked_range(io_tree,
 666                                                  inode, async_extent->start,
 667                                                  async_extent->start +
 668                                                  async_extent->ram_size - 1,
 669                                                  btrfs_get_extent,
 670                                                  WB_SYNC_ALL);
 671                        else if (ret)
 672                                unlock_page(async_cow->locked_page);
 673                        kfree(async_extent);
 674                        cond_resched();
 675                        continue;
 676                }
 677
 678                lock_extent(io_tree, async_extent->start,
 679                            async_extent->start + async_extent->ram_size - 1);
 680
 681                trans = btrfs_join_transaction(root);
 682                if (IS_ERR(trans)) {
 683                        ret = PTR_ERR(trans);
 684                } else {
 685                        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 686                        ret = btrfs_reserve_extent(trans, root,
 687                                           async_extent->compressed_size,
 688                                           async_extent->compressed_size,
 689                                           0, alloc_hint, &ins, 1);
 690                        if (ret && ret != -ENOSPC)
 691                                btrfs_abort_transaction(trans, root, ret);
 692                        btrfs_end_transaction(trans, root);
 693                }
 694
 695                if (ret) {
 696                        int i;
 697
 698                        for (i = 0; i < async_extent->nr_pages; i++) {
 699                                WARN_ON(async_extent->pages[i]->mapping);
 700                                page_cache_release(async_extent->pages[i]);
 701                        }
 702                        kfree(async_extent->pages);
 703                        async_extent->nr_pages = 0;
 704                        async_extent->pages = NULL;
 705
 706                        if (ret == -ENOSPC) {
 707                                unlock_extent(io_tree, async_extent->start,
 708                                              async_extent->start +
 709                                              async_extent->ram_size - 1);
 710                                goto retry;
 711                        }
 712                        goto out_free;
 713                }
 714
 715                /*
 716                 * here we're doing allocation and writeback of the
 717                 * compressed pages
 718                 */
 719                btrfs_drop_extent_cache(inode, async_extent->start,
 720                                        async_extent->start +
 721                                        async_extent->ram_size - 1, 0);
 722
 723                em = alloc_extent_map();
 724                if (!em) {
 725                        ret = -ENOMEM;
 726                        goto out_free_reserve;
 727                }
 728                em->start = async_extent->start;
 729                em->len = async_extent->ram_size;
 730                em->orig_start = em->start;
 731                em->mod_start = em->start;
 732                em->mod_len = em->len;
 733
 734                em->block_start = ins.objectid;
 735                em->block_len = ins.offset;
 736                em->orig_block_len = ins.offset;
 737                em->ram_bytes = async_extent->ram_size;
 738                em->bdev = root->fs_info->fs_devices->latest_bdev;
 739                em->compress_type = async_extent->compress_type;
 740                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 741                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 742                em->generation = -1;
 743
 744                while (1) {
 745                        write_lock(&em_tree->lock);
 746                        ret = add_extent_mapping(em_tree, em, 1);
 747                        write_unlock(&em_tree->lock);
 748                        if (ret != -EEXIST) {
 749                                free_extent_map(em);
 750                                break;
 751                        }
 752                        btrfs_drop_extent_cache(inode, async_extent->start,
 753                                                async_extent->start +
 754                                                async_extent->ram_size - 1, 0);
 755                }
 756
 757                if (ret)
 758                        goto out_free_reserve;
 759
 760                ret = btrfs_add_ordered_extent_compress(inode,
 761                                                async_extent->start,
 762                                                ins.objectid,
 763                                                async_extent->ram_size,
 764                                                ins.offset,
 765                                                BTRFS_ORDERED_COMPRESSED,
 766                                                async_extent->compress_type);
 767                if (ret)
 768                        goto out_free_reserve;
 769
 770                /*
 771                 * clear dirty, set writeback and unlock the pages.
 772                 */
 773                extent_clear_unlock_delalloc(inode,
 774                                &BTRFS_I(inode)->io_tree,
 775                                async_extent->start,
 776                                async_extent->start +
 777                                async_extent->ram_size - 1,
 778                                NULL, EXTENT_CLEAR_UNLOCK_PAGE |
 779                                EXTENT_CLEAR_UNLOCK |
 780                                EXTENT_CLEAR_DELALLOC |
 781                                EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
 782
 783                ret = btrfs_submit_compressed_write(inode,
 784                                    async_extent->start,
 785                                    async_extent->ram_size,
 786                                    ins.objectid,
 787                                    ins.offset, async_extent->pages,
 788                                    async_extent->nr_pages);
 789                alloc_hint = ins.objectid + ins.offset;
 790                kfree(async_extent);
 791                if (ret)
 792                        goto out;
 793                cond_resched();
 794        }
 795        ret = 0;
 796out:
 797        return ret;
 798out_free_reserve:
 799        btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
 800out_free:
 801        extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
 802                                     async_extent->start,
 803                                     async_extent->start +
 804                                     async_extent->ram_size - 1,
 805                                     NULL, EXTENT_CLEAR_UNLOCK_PAGE |
 806                                     EXTENT_CLEAR_UNLOCK |
 807                                     EXTENT_CLEAR_DELALLOC |
 808                                     EXTENT_CLEAR_DIRTY |
 809                                     EXTENT_SET_WRITEBACK |
 810                                     EXTENT_END_WRITEBACK);
 811        kfree(async_extent);
 812        goto again;
 813}
 814
 815static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
 816                                      u64 num_bytes)
 817{
 818        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 819        struct extent_map *em;
 820        u64 alloc_hint = 0;
 821
 822        read_lock(&em_tree->lock);
 823        em = search_extent_mapping(em_tree, start, num_bytes);
 824        if (em) {
 825                /*
 826                 * if block start isn't an actual block number then find the
 827                 * first block in this inode and use that as a hint.  If that
 828                 * block is also bogus then just don't worry about it.
 829                 */
 830                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 831                        free_extent_map(em);
 832                        em = search_extent_mapping(em_tree, 0, 0);
 833                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 834                                alloc_hint = em->block_start;
 835                        if (em)
 836                                free_extent_map(em);
 837                } else {
 838                        alloc_hint = em->block_start;
 839                        free_extent_map(em);
 840                }
 841        }
 842        read_unlock(&em_tree->lock);
 843
 844        return alloc_hint;
 845}
 846
 847/*
 848 * when extent_io.c finds a delayed allocation range in the file,
 849 * the call backs end up in this code.  The basic idea is to
 850 * allocate extents on disk for the range, and create ordered data structs
 851 * in ram to track those extents.
 852 *
 853 * locked_page is the page that writepage had locked already.  We use
 854 * it to make sure we don't do extra locks or unlocks.
 855 *
 856 * *page_started is set to one if we unlock locked_page and do everything
 857 * required to start IO on it.  It may be clean and already done with
 858 * IO when we return.
 859 */
 860static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
 861                                     struct inode *inode,
 862                                     struct btrfs_root *root,
 863                                     struct page *locked_page,
 864                                     u64 start, u64 end, int *page_started,
 865                                     unsigned long *nr_written,
 866                                     int unlock)
 867{
 868        u64 alloc_hint = 0;
 869        u64 num_bytes;
 870        unsigned long ram_size;
 871        u64 disk_num_bytes;
 872        u64 cur_alloc_size;
 873        u64 blocksize = root->sectorsize;
 874        struct btrfs_key ins;
 875        struct extent_map *em;
 876        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 877        int ret = 0;
 878
 879        BUG_ON(btrfs_is_free_space_inode(inode));
 880
 881        num_bytes = ALIGN(end - start + 1, blocksize);
 882        num_bytes = max(blocksize,  num_bytes);
 883        disk_num_bytes = num_bytes;
 884
 885        /* if this is a small write inside eof, kick off defrag */
 886        if (num_bytes < 64 * 1024 &&
 887            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 888                btrfs_add_inode_defrag(trans, inode);
 889
 890        if (start == 0) {
 891                /* lets try to make an inline extent */
 892                ret = cow_file_range_inline(trans, root, inode,
 893                                            start, end, 0, 0, NULL);
 894                if (ret == 0) {
 895                        extent_clear_unlock_delalloc(inode,
 896                                     &BTRFS_I(inode)->io_tree,
 897                                     start, end, NULL,
 898                                     EXTENT_CLEAR_UNLOCK_PAGE |
 899                                     EXTENT_CLEAR_UNLOCK |
 900                                     EXTENT_CLEAR_DELALLOC |
 901                                     EXTENT_CLEAR_DIRTY |
 902                                     EXTENT_SET_WRITEBACK |
 903                                     EXTENT_END_WRITEBACK);
 904
 905                        *nr_written = *nr_written +
 906                             (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
 907                        *page_started = 1;
 908                        goto out;
 909                } else if (ret < 0) {
 910                        btrfs_abort_transaction(trans, root, ret);
 911                        goto out_unlock;
 912                }
 913        }
 914
 915        BUG_ON(disk_num_bytes >
 916               btrfs_super_total_bytes(root->fs_info->super_copy));
 917
 918        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
 919        btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
 920
 921        while (disk_num_bytes > 0) {
 922                unsigned long op;
 923
 924                cur_alloc_size = disk_num_bytes;
 925                ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
 926                                           root->sectorsize, 0, alloc_hint,
 927                                           &ins, 1);
 928                if (ret < 0) {
 929                        btrfs_abort_transaction(trans, root, ret);
 930                        goto out_unlock;
 931                }
 932
 933                em = alloc_extent_map();
 934                if (!em) {
 935                        ret = -ENOMEM;
 936                        goto out_reserve;
 937                }
 938                em->start = start;
 939                em->orig_start = em->start;
 940                ram_size = ins.offset;
 941                em->len = ins.offset;
 942                em->mod_start = em->start;
 943                em->mod_len = em->len;
 944
 945                em->block_start = ins.objectid;
 946                em->block_len = ins.offset;
 947                em->orig_block_len = ins.offset;
 948                em->ram_bytes = ram_size;
 949                em->bdev = root->fs_info->fs_devices->latest_bdev;
 950                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 951                em->generation = -1;
 952
 953                while (1) {
 954                        write_lock(&em_tree->lock);
 955                        ret = add_extent_mapping(em_tree, em, 1);
 956                        write_unlock(&em_tree->lock);
 957                        if (ret != -EEXIST) {
 958                                free_extent_map(em);
 959                                break;
 960                        }
 961                        btrfs_drop_extent_cache(inode, start,
 962                                                start + ram_size - 1, 0);
 963                }
 964                if (ret)
 965                        goto out_reserve;
 966
 967                cur_alloc_size = ins.offset;
 968                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
 969                                               ram_size, cur_alloc_size, 0);
 970                if (ret)
 971                        goto out_reserve;
 972
 973                if (root->root_key.objectid ==
 974                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 975                        ret = btrfs_reloc_clone_csums(inode, start,
 976                                                      cur_alloc_size);
 977                        if (ret) {
 978                                btrfs_abort_transaction(trans, root, ret);
 979                                goto out_reserve;
 980                        }
 981                }
 982
 983                if (disk_num_bytes < cur_alloc_size)
 984                        break;
 985
 986                /* we're not doing compressed IO, don't unlock the first
 987                 * page (which the caller expects to stay locked), don't
 988                 * clear any dirty bits and don't set any writeback bits
 989                 *
 990                 * Do set the Private2 bit so we know this page was properly
 991                 * setup for writepage
 992                 */
 993                op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
 994                op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
 995                        EXTENT_SET_PRIVATE2;
 996
 997                extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
 998                                             start, start + ram_size - 1,
 999                                             locked_page, op);
1000                disk_num_bytes -= cur_alloc_size;
1001                num_bytes -= cur_alloc_size;
1002                alloc_hint = ins.objectid + ins.offset;
1003                start += cur_alloc_size;
1004        }
1005out:
1006        return ret;
1007
1008out_reserve:
1009        btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
1010out_unlock:
1011        extent_clear_unlock_delalloc(inode,
1012                     &BTRFS_I(inode)->io_tree,
1013                     start, end, locked_page,
1014                     EXTENT_CLEAR_UNLOCK_PAGE |
1015                     EXTENT_CLEAR_UNLOCK |
1016                     EXTENT_CLEAR_DELALLOC |
1017                     EXTENT_CLEAR_DIRTY |
1018                     EXTENT_SET_WRITEBACK |
1019                     EXTENT_END_WRITEBACK);
1020
1021        goto out;
1022}
1023
1024static noinline int cow_file_range(struct inode *inode,
1025                                   struct page *locked_page,
1026                                   u64 start, u64 end, int *page_started,
1027                                   unsigned long *nr_written,
1028                                   int unlock)
1029{
1030        struct btrfs_trans_handle *trans;
1031        struct btrfs_root *root = BTRFS_I(inode)->root;
1032        int ret;
1033
1034        trans = btrfs_join_transaction(root);
1035        if (IS_ERR(trans)) {
1036                extent_clear_unlock_delalloc(inode,
1037                             &BTRFS_I(inode)->io_tree,
1038                             start, end, locked_page,
1039                             EXTENT_CLEAR_UNLOCK_PAGE |
1040                             EXTENT_CLEAR_UNLOCK |
1041                             EXTENT_CLEAR_DELALLOC |
1042                             EXTENT_CLEAR_DIRTY |
1043                             EXTENT_SET_WRITEBACK |
1044                             EXTENT_END_WRITEBACK);
1045                return PTR_ERR(trans);
1046        }
1047        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1048
1049        ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1050                               page_started, nr_written, unlock);
1051
1052        btrfs_end_transaction(trans, root);
1053
1054        return ret;
1055}
1056
1057/*
1058 * work queue call back to started compression on a file and pages
1059 */
1060static noinline void async_cow_start(struct btrfs_work *work)
1061{
1062        struct async_cow *async_cow;
1063        int num_added = 0;
1064        async_cow = container_of(work, struct async_cow, work);
1065
1066        compress_file_range(async_cow->inode, async_cow->locked_page,
1067                            async_cow->start, async_cow->end, async_cow,
1068                            &num_added);
1069        if (num_added == 0) {
1070                btrfs_add_delayed_iput(async_cow->inode);
1071                async_cow->inode = NULL;
1072        }
1073}
1074
1075/*
1076 * work queue call back to submit previously compressed pages
1077 */
1078static noinline void async_cow_submit(struct btrfs_work *work)
1079{
1080        struct async_cow *async_cow;
1081        struct btrfs_root *root;
1082        unsigned long nr_pages;
1083
1084        async_cow = container_of(work, struct async_cow, work);
1085
1086        root = async_cow->root;
1087        nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1088                PAGE_CACHE_SHIFT;
1089
1090        if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1091            5 * 1024 * 1024 &&
1092            waitqueue_active(&root->fs_info->async_submit_wait))
1093                wake_up(&root->fs_info->async_submit_wait);
1094
1095        if (async_cow->inode)
1096                submit_compressed_extents(async_cow->inode, async_cow);
1097}
1098
1099static noinline void async_cow_free(struct btrfs_work *work)
1100{
1101        struct async_cow *async_cow;
1102        async_cow = container_of(work, struct async_cow, work);
1103        if (async_cow->inode)
1104                btrfs_add_delayed_iput(async_cow->inode);
1105        kfree(async_cow);
1106}
1107
1108static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1109                                u64 start, u64 end, int *page_started,
1110                                unsigned long *nr_written)
1111{
1112        struct async_cow *async_cow;
1113        struct btrfs_root *root = BTRFS_I(inode)->root;
1114        unsigned long nr_pages;
1115        u64 cur_end;
1116        int limit = 10 * 1024 * 1024;
1117
1118        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1119                         1, 0, NULL, GFP_NOFS);
1120        while (start < end) {
1121                async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1122                BUG_ON(!async_cow); /* -ENOMEM */
1123                async_cow->inode = igrab(inode);
1124                async_cow->root = root;
1125                async_cow->locked_page = locked_page;
1126                async_cow->start = start;
1127
1128                if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1129                        cur_end = end;
1130                else
1131                        cur_end = min(end, start + 512 * 1024 - 1);
1132
1133                async_cow->end = cur_end;
1134                INIT_LIST_HEAD(&async_cow->extents);
1135
1136                async_cow->work.func = async_cow_start;
1137                async_cow->work.ordered_func = async_cow_submit;
1138                async_cow->work.ordered_free = async_cow_free;
1139                async_cow->work.flags = 0;
1140
1141                nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1142                        PAGE_CACHE_SHIFT;
1143                atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1144
1145                btrfs_queue_worker(&root->fs_info->delalloc_workers,
1146                                   &async_cow->work);
1147
1148                if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1149                        wait_event(root->fs_info->async_submit_wait,
1150                           (atomic_read(&root->fs_info->async_delalloc_pages) <
1151                            limit));
1152                }
1153
1154                while (atomic_read(&root->fs_info->async_submit_draining) &&
1155                      atomic_read(&root->fs_info->async_delalloc_pages)) {
1156                        wait_event(root->fs_info->async_submit_wait,
1157                          (atomic_read(&root->fs_info->async_delalloc_pages) ==
1158                           0));
1159                }
1160
1161                *nr_written += nr_pages;
1162                start = cur_end + 1;
1163        }
1164        *page_started = 1;
1165        return 0;
1166}
1167
1168static noinline int csum_exist_in_range(struct btrfs_root *root,
1169                                        u64 bytenr, u64 num_bytes)
1170{
1171        int ret;
1172        struct btrfs_ordered_sum *sums;
1173        LIST_HEAD(list);
1174
1175        ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1176                                       bytenr + num_bytes - 1, &list, 0);
1177        if (ret == 0 && list_empty(&list))
1178                return 0;
1179
1180        while (!list_empty(&list)) {
1181                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1182                list_del(&sums->list);
1183                kfree(sums);
1184        }
1185        return 1;
1186}
1187
1188/*
1189 * when nowcow writeback call back.  This checks for snapshots or COW copies
1190 * of the extents that exist in the file, and COWs the file as required.
1191 *
1192 * If no cow copies or snapshots exist, we write directly to the existing
1193 * blocks on disk
1194 */
1195static noinline int run_delalloc_nocow(struct inode *inode,
1196                                       struct page *locked_page,
1197                              u64 start, u64 end, int *page_started, int force,
1198                              unsigned long *nr_written)
1199{
1200        struct btrfs_root *root = BTRFS_I(inode)->root;
1201        struct btrfs_trans_handle *trans;
1202        struct extent_buffer *leaf;
1203        struct btrfs_path *path;
1204        struct btrfs_file_extent_item *fi;
1205        struct btrfs_key found_key;
1206        u64 cow_start;
1207        u64 cur_offset;
1208        u64 extent_end;
1209        u64 extent_offset;
1210        u64 disk_bytenr;
1211        u64 num_bytes;
1212        u64 disk_num_bytes;
1213        u64 ram_bytes;
1214        int extent_type;
1215        int ret, err;
1216        int type;
1217        int nocow;
1218        int check_prev = 1;
1219        bool nolock;
1220        u64 ino = btrfs_ino(inode);
1221
1222        path = btrfs_alloc_path();
1223        if (!path) {
1224                extent_clear_unlock_delalloc(inode,
1225                             &BTRFS_I(inode)->io_tree,
1226                             start, end, locked_page,
1227                             EXTENT_CLEAR_UNLOCK_PAGE |
1228                             EXTENT_CLEAR_UNLOCK |
1229                             EXTENT_CLEAR_DELALLOC |
1230                             EXTENT_CLEAR_DIRTY |
1231                             EXTENT_SET_WRITEBACK |
1232                             EXTENT_END_WRITEBACK);
1233                return -ENOMEM;
1234        }
1235
1236        nolock = btrfs_is_free_space_inode(inode);
1237
1238        if (nolock)
1239                trans = btrfs_join_transaction_nolock(root);
1240        else
1241                trans = btrfs_join_transaction(root);
1242
1243        if (IS_ERR(trans)) {
1244                extent_clear_unlock_delalloc(inode,
1245                             &BTRFS_I(inode)->io_tree,
1246                             start, end, locked_page,
1247                             EXTENT_CLEAR_UNLOCK_PAGE |
1248                             EXTENT_CLEAR_UNLOCK |
1249                             EXTENT_CLEAR_DELALLOC |
1250                             EXTENT_CLEAR_DIRTY |
1251                             EXTENT_SET_WRITEBACK |
1252                             EXTENT_END_WRITEBACK);
1253                btrfs_free_path(path);
1254                return PTR_ERR(trans);
1255        }
1256
1257        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1258
1259        cow_start = (u64)-1;
1260        cur_offset = start;
1261        while (1) {
1262                ret = btrfs_lookup_file_extent(trans, root, path, ino,
1263                                               cur_offset, 0);
1264                if (ret < 0) {
1265                        btrfs_abort_transaction(trans, root, ret);
1266                        goto error;
1267                }
1268                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1269                        leaf = path->nodes[0];
1270                        btrfs_item_key_to_cpu(leaf, &found_key,
1271                                              path->slots[0] - 1);
1272                        if (found_key.objectid == ino &&
1273                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1274                                path->slots[0]--;
1275                }
1276                check_prev = 0;
1277next_slot:
1278                leaf = path->nodes[0];
1279                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1280                        ret = btrfs_next_leaf(root, path);
1281                        if (ret < 0) {
1282                                btrfs_abort_transaction(trans, root, ret);
1283                                goto error;
1284                        }
1285                        if (ret > 0)
1286                                break;
1287                        leaf = path->nodes[0];
1288                }
1289
1290                nocow = 0;
1291                disk_bytenr = 0;
1292                num_bytes = 0;
1293                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1294
1295                if (found_key.objectid > ino ||
1296                    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1297                    found_key.offset > end)
1298                        break;
1299
1300                if (found_key.offset > cur_offset) {
1301                        extent_end = found_key.offset;
1302                        extent_type = 0;
1303                        goto out_check;
1304                }
1305
1306                fi = btrfs_item_ptr(leaf, path->slots[0],
1307                                    struct btrfs_file_extent_item);
1308                extent_type = btrfs_file_extent_type(leaf, fi);
1309
1310                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1311                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1312                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1313                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1314                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1315                        extent_end = found_key.offset +
1316                                btrfs_file_extent_num_bytes(leaf, fi);
1317                        disk_num_bytes =
1318                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1319                        if (extent_end <= start) {
1320                                path->slots[0]++;
1321                                goto next_slot;
1322                        }
1323                        if (disk_bytenr == 0)
1324                                goto out_check;
1325                        if (btrfs_file_extent_compression(leaf, fi) ||
1326                            btrfs_file_extent_encryption(leaf, fi) ||
1327                            btrfs_file_extent_other_encoding(leaf, fi))
1328                                goto out_check;
1329                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1330                                goto out_check;
1331                        if (btrfs_extent_readonly(root, disk_bytenr))
1332                                goto out_check;
1333                        if (btrfs_cross_ref_exist(trans, root, ino,
1334                                                  found_key.offset -
1335                                                  extent_offset, disk_bytenr))
1336                                goto out_check;
1337                        disk_bytenr += extent_offset;
1338                        disk_bytenr += cur_offset - found_key.offset;
1339                        num_bytes = min(end + 1, extent_end) - cur_offset;
1340                        /*
1341                         * force cow if csum exists in the range.
1342                         * this ensure that csum for a given extent are
1343                         * either valid or do not exist.
1344                         */
1345                        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1346                                goto out_check;
1347                        nocow = 1;
1348                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1349                        extent_end = found_key.offset +
1350                                btrfs_file_extent_inline_len(leaf, fi);
1351                        extent_end = ALIGN(extent_end, root->sectorsize);
1352                } else {
1353                        BUG_ON(1);
1354                }
1355out_check:
1356                if (extent_end <= start) {
1357                        path->slots[0]++;
1358                        goto next_slot;
1359                }
1360                if (!nocow) {
1361                        if (cow_start == (u64)-1)
1362                                cow_start = cur_offset;
1363                        cur_offset = extent_end;
1364                        if (cur_offset > end)
1365                                break;
1366                        path->slots[0]++;
1367                        goto next_slot;
1368                }
1369
1370                btrfs_release_path(path);
1371                if (cow_start != (u64)-1) {
1372                        ret = __cow_file_range(trans, inode, root, locked_page,
1373                                               cow_start, found_key.offset - 1,
1374                                               page_started, nr_written, 1);
1375                        if (ret) {
1376                                btrfs_abort_transaction(trans, root, ret);
1377                                goto error;
1378                        }
1379                        cow_start = (u64)-1;
1380                }
1381
1382                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1383                        struct extent_map *em;
1384                        struct extent_map_tree *em_tree;
1385                        em_tree = &BTRFS_I(inode)->extent_tree;
1386                        em = alloc_extent_map();
1387                        BUG_ON(!em); /* -ENOMEM */
1388                        em->start = cur_offset;
1389                        em->orig_start = found_key.offset - extent_offset;
1390                        em->len = num_bytes;
1391                        em->block_len = num_bytes;
1392                        em->block_start = disk_bytenr;
1393                        em->orig_block_len = disk_num_bytes;
1394                        em->ram_bytes = ram_bytes;
1395                        em->bdev = root->fs_info->fs_devices->latest_bdev;
1396                        em->mod_start = em->start;
1397                        em->mod_len = em->len;
1398                        set_bit(EXTENT_FLAG_PINNED, &em->flags);
1399                        set_bit(EXTENT_FLAG_FILLING, &em->flags);
1400                        em->generation = -1;
1401                        while (1) {
1402                                write_lock(&em_tree->lock);
1403                                ret = add_extent_mapping(em_tree, em, 1);
1404                                write_unlock(&em_tree->lock);
1405                                if (ret != -EEXIST) {
1406                                        free_extent_map(em);
1407                                        break;
1408                                }
1409                                btrfs_drop_extent_cache(inode, em->start,
1410                                                em->start + em->len - 1, 0);
1411                        }
1412                        type = BTRFS_ORDERED_PREALLOC;
1413                } else {
1414                        type = BTRFS_ORDERED_NOCOW;
1415                }
1416
1417                ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1418                                               num_bytes, num_bytes, type);
1419                BUG_ON(ret); /* -ENOMEM */
1420
1421                if (root->root_key.objectid ==
1422                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1424                                                      num_bytes);
1425                        if (ret) {
1426                                btrfs_abort_transaction(trans, root, ret);
1427                                goto error;
1428                        }
1429                }
1430
1431                extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1432                                cur_offset, cur_offset + num_bytes - 1,
1433                                locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1434                                EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1435                                EXTENT_SET_PRIVATE2);
1436                cur_offset = extent_end;
1437                if (cur_offset > end)
1438                        break;
1439        }
1440        btrfs_release_path(path);
1441
1442        if (cur_offset <= end && cow_start == (u64)-1) {
1443                cow_start = cur_offset;
1444                cur_offset = end;
1445        }
1446
1447        if (cow_start != (u64)-1) {
1448                ret = __cow_file_range(trans, inode, root, locked_page,
1449                                       cow_start, end,
1450                                       page_started, nr_written, 1);
1451                if (ret) {
1452                        btrfs_abort_transaction(trans, root, ret);
1453                        goto error;
1454                }
1455        }
1456
1457error:
1458        err = btrfs_end_transaction(trans, root);
1459        if (!ret)
1460                ret = err;
1461
1462        if (ret && cur_offset < end)
1463                extent_clear_unlock_delalloc(inode,
1464                             &BTRFS_I(inode)->io_tree,
1465                             cur_offset, end, locked_page,
1466                             EXTENT_CLEAR_UNLOCK_PAGE |
1467                             EXTENT_CLEAR_UNLOCK |
1468                             EXTENT_CLEAR_DELALLOC |
1469                             EXTENT_CLEAR_DIRTY |
1470                             EXTENT_SET_WRITEBACK |
1471                             EXTENT_END_WRITEBACK);
1472
1473        btrfs_free_path(path);
1474        return ret;
1475}
1476
1477/*
1478 * extent_io.c call back to do delayed allocation processing
1479 */
1480static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1481                              u64 start, u64 end, int *page_started,
1482                              unsigned long *nr_written)
1483{
1484        int ret;
1485        struct btrfs_root *root = BTRFS_I(inode)->root;
1486
1487        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1488                ret = run_delalloc_nocow(inode, locked_page, start, end,
1489                                         page_started, 1, nr_written);
1490        } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1491                ret = run_delalloc_nocow(inode, locked_page, start, end,
1492                                         page_started, 0, nr_written);
1493        } else if (!btrfs_test_opt(root, COMPRESS) &&
1494                   !(BTRFS_I(inode)->force_compress) &&
1495                   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1496                ret = cow_file_range(inode, locked_page, start, end,
1497                                      page_started, nr_written, 1);
1498        } else {
1499                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1500                        &BTRFS_I(inode)->runtime_flags);
1501                ret = cow_file_range_async(inode, locked_page, start, end,
1502                                           page_started, nr_written);
1503        }
1504        return ret;
1505}
1506
1507static void btrfs_split_extent_hook(struct inode *inode,
1508                                    struct extent_state *orig, u64 split)
1509{
1510        /* not delalloc, ignore it */
1511        if (!(orig->state & EXTENT_DELALLOC))
1512                return;
1513
1514        spin_lock(&BTRFS_I(inode)->lock);
1515        BTRFS_I(inode)->outstanding_extents++;
1516        spin_unlock(&BTRFS_I(inode)->lock);
1517}
1518
1519/*
1520 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1521 * extents so we can keep track of new extents that are just merged onto old
1522 * extents, such as when we are doing sequential writes, so we can properly
1523 * account for the metadata space we'll need.
1524 */
1525static void btrfs_merge_extent_hook(struct inode *inode,
1526                                    struct extent_state *new,
1527                                    struct extent_state *other)
1528{
1529        /* not delalloc, ignore it */
1530        if (!(other->state & EXTENT_DELALLOC))
1531                return;
1532
1533        spin_lock(&BTRFS_I(inode)->lock);
1534        BTRFS_I(inode)->outstanding_extents--;
1535        spin_unlock(&BTRFS_I(inode)->lock);
1536}
1537
1538static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1539                                      struct inode *inode)
1540{
1541        spin_lock(&root->delalloc_lock);
1542        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1543                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1544                              &root->delalloc_inodes);
1545                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1546                        &BTRFS_I(inode)->runtime_flags);
1547                root->nr_delalloc_inodes++;
1548                if (root->nr_delalloc_inodes == 1) {
1549                        spin_lock(&root->fs_info->delalloc_root_lock);
1550                        BUG_ON(!list_empty(&root->delalloc_root));
1551                        list_add_tail(&root->delalloc_root,
1552                                      &root->fs_info->delalloc_roots);
1553                        spin_unlock(&root->fs_info->delalloc_root_lock);
1554                }
1555        }
1556        spin_unlock(&root->delalloc_lock);
1557}
1558
1559static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1560                                     struct inode *inode)
1561{
1562        spin_lock(&root->delalloc_lock);
1563        if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1564                list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1565                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1566                          &BTRFS_I(inode)->runtime_flags);
1567                root->nr_delalloc_inodes--;
1568                if (!root->nr_delalloc_inodes) {
1569                        spin_lock(&root->fs_info->delalloc_root_lock);
1570                        BUG_ON(list_empty(&root->delalloc_root));
1571                        list_del_init(&root->delalloc_root);
1572                        spin_unlock(&root->fs_info->delalloc_root_lock);
1573                }
1574        }
1575        spin_unlock(&root->delalloc_lock);
1576}
1577
1578/*
1579 * extent_io.c set_bit_hook, used to track delayed allocation
1580 * bytes in this file, and to maintain the list of inodes that
1581 * have pending delalloc work to be done.
1582 */
1583static void btrfs_set_bit_hook(struct inode *inode,
1584                               struct extent_state *state, unsigned long *bits)
1585{
1586
1587        /*
1588         * set_bit and clear bit hooks normally require _irqsave/restore
1589         * but in this case, we are only testing for the DELALLOC
1590         * bit, which is only set or cleared with irqs on
1591         */
1592        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1593                struct btrfs_root *root = BTRFS_I(inode)->root;
1594                u64 len = state->end + 1 - state->start;
1595                bool do_list = !btrfs_is_free_space_inode(inode);
1596
1597                if (*bits & EXTENT_FIRST_DELALLOC) {
1598                        *bits &= ~EXTENT_FIRST_DELALLOC;
1599                } else {
1600                        spin_lock(&BTRFS_I(inode)->lock);
1601                        BTRFS_I(inode)->outstanding_extents++;
1602                        spin_unlock(&BTRFS_I(inode)->lock);
1603                }
1604
1605                __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1606                                     root->fs_info->delalloc_batch);
1607                spin_lock(&BTRFS_I(inode)->lock);
1608                BTRFS_I(inode)->delalloc_bytes += len;
1609                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1610                                         &BTRFS_I(inode)->runtime_flags))
1611                        btrfs_add_delalloc_inodes(root, inode);
1612                spin_unlock(&BTRFS_I(inode)->lock);
1613        }
1614}
1615
1616/*
1617 * extent_io.c clear_bit_hook, see set_bit_hook for why
1618 */
1619static void btrfs_clear_bit_hook(struct inode *inode,
1620                                 struct extent_state *state,
1621                                 unsigned long *bits)
1622{
1623        /*
1624         * set_bit and clear bit hooks normally require _irqsave/restore
1625         * but in this case, we are only testing for the DELALLOC
1626         * bit, which is only set or cleared with irqs on
1627         */
1628        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1629                struct btrfs_root *root = BTRFS_I(inode)->root;
1630                u64 len = state->end + 1 - state->start;
1631                bool do_list = !btrfs_is_free_space_inode(inode);
1632
1633                if (*bits & EXTENT_FIRST_DELALLOC) {
1634                        *bits &= ~EXTENT_FIRST_DELALLOC;
1635                } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1636                        spin_lock(&BTRFS_I(inode)->lock);
1637                        BTRFS_I(inode)->outstanding_extents--;
1638                        spin_unlock(&BTRFS_I(inode)->lock);
1639                }
1640
1641                if (*bits & EXTENT_DO_ACCOUNTING)
1642                        btrfs_delalloc_release_metadata(inode, len);
1643
1644                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1645                    && do_list && !(state->state & EXTENT_NORESERVE))
1646                        btrfs_free_reserved_data_space(inode, len);
1647
1648                __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1649                                     root->fs_info->delalloc_batch);
1650                spin_lock(&BTRFS_I(inode)->lock);
1651                BTRFS_I(inode)->delalloc_bytes -= len;
1652                if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1653                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1654                             &BTRFS_I(inode)->runtime_flags))
1655                        btrfs_del_delalloc_inode(root, inode);
1656                spin_unlock(&BTRFS_I(inode)->lock);
1657        }
1658}
1659
1660/*
1661 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1662 * we don't create bios that span stripes or chunks
1663 */
1664int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1665                         size_t size, struct bio *bio,
1666                         unsigned long bio_flags)
1667{
1668        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1669        u64 logical = (u64)bio->bi_sector << 9;
1670        u64 length = 0;
1671        u64 map_length;
1672        int ret;
1673
1674        if (bio_flags & EXTENT_BIO_COMPRESSED)
1675                return 0;
1676
1677        length = bio->bi_size;
1678        map_length = length;
1679        ret = btrfs_map_block(root->fs_info, rw, logical,
1680                              &map_length, NULL, 0);
1681        /* Will always return 0 with map_multi == NULL */
1682        BUG_ON(ret < 0);
1683        if (map_length < length + size)
1684                return 1;
1685        return 0;
1686}
1687
1688/*
1689 * in order to insert checksums into the metadata in large chunks,
1690 * we wait until bio submission time.   All the pages in the bio are
1691 * checksummed and sums are attached onto the ordered extent record.
1692 *
1693 * At IO completion time the cums attached on the ordered extent record
1694 * are inserted into the btree
1695 */
1696static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1697                                    struct bio *bio, int mirror_num,
1698                                    unsigned long bio_flags,
1699                                    u64 bio_offset)
1700{
1701        struct btrfs_root *root = BTRFS_I(inode)->root;
1702        int ret = 0;
1703
1704        ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1705        BUG_ON(ret); /* -ENOMEM */
1706        return 0;
1707}
1708
1709/*
1710 * in order to insert checksums into the metadata in large chunks,
1711 * we wait until bio submission time.   All the pages in the bio are
1712 * checksummed and sums are attached onto the ordered extent record.
1713 *
1714 * At IO completion time the cums attached on the ordered extent record
1715 * are inserted into the btree
1716 */
1717static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1718                          int mirror_num, unsigned long bio_flags,
1719                          u64 bio_offset)
1720{
1721        struct btrfs_root *root = BTRFS_I(inode)->root;
1722        int ret;
1723
1724        ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1725        if (ret)
1726                bio_endio(bio, ret);
1727        return ret;
1728}
1729
1730/*
1731 * extent_io.c submission hook. This does the right thing for csum calculation
1732 * on write, or reading the csums from the tree before a read
1733 */
1734static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1735                          int mirror_num, unsigned long bio_flags,
1736                          u64 bio_offset)
1737{
1738        struct btrfs_root *root = BTRFS_I(inode)->root;
1739        int ret = 0;
1740        int skip_sum;
1741        int metadata = 0;
1742        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1743
1744        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1745
1746        if (btrfs_is_free_space_inode(inode))
1747                metadata = 2;
1748
1749        if (!(rw & REQ_WRITE)) {
1750                ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1751                if (ret)
1752                        goto out;
1753
1754                if (bio_flags & EXTENT_BIO_COMPRESSED) {
1755                        ret = btrfs_submit_compressed_read(inode, bio,
1756                                                           mirror_num,
1757                                                           bio_flags);
1758                        goto out;
1759                } else if (!skip_sum) {
1760                        ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1761                        if (ret)
1762                                goto out;
1763                }
1764                goto mapit;
1765        } else if (async && !skip_sum) {
1766                /* csum items have already been cloned */
1767                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1768                        goto mapit;
1769                /* we're doing a write, do the async checksumming */
1770                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1771                                   inode, rw, bio, mirror_num,
1772                                   bio_flags, bio_offset,
1773                                   __btrfs_submit_bio_start,
1774                                   __btrfs_submit_bio_done);
1775                goto out;
1776        } else if (!skip_sum) {
1777                ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1778                if (ret)
1779                        goto out;
1780        }
1781
1782mapit:
1783        ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1784
1785out:
1786        if (ret < 0)
1787                bio_endio(bio, ret);
1788        return ret;
1789}
1790
1791/*
1792 * given a list of ordered sums record them in the inode.  This happens
1793 * at IO completion time based on sums calculated at bio submission time.
1794 */
1795static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1796                             struct inode *inode, u64 file_offset,
1797                             struct list_head *list)
1798{
1799        struct btrfs_ordered_sum *sum;
1800
1801        list_for_each_entry(sum, list, list) {
1802                trans->adding_csums = 1;
1803                btrfs_csum_file_blocks(trans,
1804                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1805                trans->adding_csums = 0;
1806        }
1807        return 0;
1808}
1809
1810int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1811                              struct extent_state **cached_state)
1812{
1813        WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1814        return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1815                                   cached_state, GFP_NOFS);
1816}
1817
1818/* see btrfs_writepage_start_hook for details on why this is required */
1819struct btrfs_writepage_fixup {
1820        struct page *page;
1821        struct btrfs_work work;
1822};
1823
1824static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1825{
1826        struct btrfs_writepage_fixup *fixup;
1827        struct btrfs_ordered_extent *ordered;
1828        struct extent_state *cached_state = NULL;
1829        struct page *page;
1830        struct inode *inode;
1831        u64 page_start;
1832        u64 page_end;
1833        int ret;
1834
1835        fixup = container_of(work, struct btrfs_writepage_fixup, work);
1836        page = fixup->page;
1837again:
1838        lock_page(page);
1839        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1840                ClearPageChecked(page);
1841                goto out_page;
1842        }
1843
1844        inode = page->mapping->host;
1845        page_start = page_offset(page);
1846        page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1847
1848        lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1849                         &cached_state);
1850
1851        /* already ordered? We're done */
1852        if (PagePrivate2(page))
1853                goto out;
1854
1855        ordered = btrfs_lookup_ordered_extent(inode, page_start);
1856        if (ordered) {
1857                unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1858                                     page_end, &cached_state, GFP_NOFS);
1859                unlock_page(page);
1860                btrfs_start_ordered_extent(inode, ordered, 1);
1861                btrfs_put_ordered_extent(ordered);
1862                goto again;
1863        }
1864
1865        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1866        if (ret) {
1867                mapping_set_error(page->mapping, ret);
1868                end_extent_writepage(page, ret, page_start, page_end);
1869                ClearPageChecked(page);
1870                goto out;
1871         }
1872
1873        btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1874        ClearPageChecked(page);
1875        set_page_dirty(page);
1876out:
1877        unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1878                             &cached_state, GFP_NOFS);
1879out_page:
1880        unlock_page(page);
1881        page_cache_release(page);
1882        kfree(fixup);
1883}
1884
1885/*
1886 * There are a few paths in the higher layers of the kernel that directly
1887 * set the page dirty bit without asking the filesystem if it is a
1888 * good idea.  This causes problems because we want to make sure COW
1889 * properly happens and the data=ordered rules are followed.
1890 *
1891 * In our case any range that doesn't have the ORDERED bit set
1892 * hasn't been properly setup for IO.  We kick off an async process
1893 * to fix it up.  The async helper will wait for ordered extents, set
1894 * the delalloc bit and make it safe to write the page.
1895 */
1896static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1897{
1898        struct inode *inode = page->mapping->host;
1899        struct btrfs_writepage_fixup *fixup;
1900        struct btrfs_root *root = BTRFS_I(inode)->root;
1901
1902        /* this page is properly in the ordered list */
1903        if (TestClearPagePrivate2(page))
1904                return 0;
1905
1906        if (PageChecked(page))
1907                return -EAGAIN;
1908
1909        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1910        if (!fixup)
1911                return -EAGAIN;
1912
1913        SetPageChecked(page);
1914        page_cache_get(page);
1915        fixup->work.func = btrfs_writepage_fixup_worker;
1916        fixup->page = page;
1917        btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1918        return -EBUSY;
1919}
1920
1921static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1922                                       struct inode *inode, u64 file_pos,
1923                                       u64 disk_bytenr, u64 disk_num_bytes,
1924                                       u64 num_bytes, u64 ram_bytes,
1925                                       u8 compression, u8 encryption,
1926                                       u16 other_encoding, int extent_type)
1927{
1928        struct btrfs_root *root = BTRFS_I(inode)->root;
1929        struct btrfs_file_extent_item *fi;
1930        struct btrfs_path *path;
1931        struct extent_buffer *leaf;
1932        struct btrfs_key ins;
1933        int ret;
1934
1935        path = btrfs_alloc_path();
1936        if (!path)
1937                return -ENOMEM;
1938
1939        path->leave_spinning = 1;
1940
1941        /*
1942         * we may be replacing one extent in the tree with another.
1943         * The new extent is pinned in the extent map, and we don't want
1944         * to drop it from the cache until it is completely in the btree.
1945         *
1946         * So, tell btrfs_drop_extents to leave this extent in the cache.
1947         * the caller is expected to unpin it and allow it to be merged
1948         * with the others.
1949         */
1950        ret = btrfs_drop_extents(trans, root, inode, file_pos,
1951                                 file_pos + num_bytes, 0);
1952        if (ret)
1953                goto out;
1954
1955        ins.objectid = btrfs_ino(inode);
1956        ins.offset = file_pos;
1957        ins.type = BTRFS_EXTENT_DATA_KEY;
1958        ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1959        if (ret)
1960                goto out;
1961        leaf = path->nodes[0];
1962        fi = btrfs_item_ptr(leaf, path->slots[0],
1963                            struct btrfs_file_extent_item);
1964        btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1965        btrfs_set_file_extent_type(leaf, fi, extent_type);
1966        btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1967        btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1968        btrfs_set_file_extent_offset(leaf, fi, 0);
1969        btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1970        btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1971        btrfs_set_file_extent_compression(leaf, fi, compression);
1972        btrfs_set_file_extent_encryption(leaf, fi, encryption);
1973        btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1974
1975        btrfs_mark_buffer_dirty(leaf);
1976        btrfs_release_path(path);
1977
1978        inode_add_bytes(inode, num_bytes);
1979
1980        ins.objectid = disk_bytenr;
1981        ins.offset = disk_num_bytes;
1982        ins.type = BTRFS_EXTENT_ITEM_KEY;
1983        ret = btrfs_alloc_reserved_file_extent(trans, root,
1984                                        root->root_key.objectid,
1985                                        btrfs_ino(inode), file_pos, &ins);
1986out:
1987        btrfs_free_path(path);
1988
1989        return ret;
1990}
1991
1992/* snapshot-aware defrag */
1993struct sa_defrag_extent_backref {
1994        struct rb_node node;
1995        struct old_sa_defrag_extent *old;
1996        u64 root_id;
1997        u64 inum;
1998        u64 file_pos;
1999        u64 extent_offset;
2000        u64 num_bytes;
2001        u64 generation;
2002};
2003
2004struct old_sa_defrag_extent {
2005        struct list_head list;
2006        struct new_sa_defrag_extent *new;
2007
2008        u64 extent_offset;
2009        u64 bytenr;
2010        u64 offset;
2011        u64 len;
2012        int count;
2013};
2014
2015struct new_sa_defrag_extent {
2016        struct rb_root root;
2017        struct list_head head;
2018        struct btrfs_path *path;
2019        struct inode *inode;
2020        u64 file_pos;
2021        u64 len;
2022        u64 bytenr;
2023        u64 disk_len;
2024        u8 compress_type;
2025};
2026
2027static int backref_comp(struct sa_defrag_extent_backref *b1,
2028                        struct sa_defrag_extent_backref *b2)
2029{
2030        if (b1->root_id < b2->root_id)
2031                return -1;
2032        else if (b1->root_id > b2->root_id)
2033                return 1;
2034
2035        if (b1->inum < b2->inum)
2036                return -1;
2037        else if (b1->inum > b2->inum)
2038                return 1;
2039
2040        if (b1->file_pos < b2->file_pos)
2041                return -1;
2042        else if (b1->file_pos > b2->file_pos)
2043                return 1;
2044
2045        /*
2046         * [------------------------------] ===> (a range of space)
2047         *     |<--->|   |<---->| =============> (fs/file tree A)
2048         * |<---------------------------->| ===> (fs/file tree B)
2049         *
2050         * A range of space can refer to two file extents in one tree while
2051         * refer to only one file extent in another tree.
2052         *
2053         * So we may process a disk offset more than one time(two extents in A)
2054         * and locate at the same extent(one extent in B), then insert two same
2055         * backrefs(both refer to the extent in B).
2056         */
2057        return 0;
2058}
2059
2060static void backref_insert(struct rb_root *root,
2061                           struct sa_defrag_extent_backref *backref)
2062{
2063        struct rb_node **p = &root->rb_node;
2064        struct rb_node *parent = NULL;
2065        struct sa_defrag_extent_backref *entry;
2066        int ret;
2067
2068        while (*p) {
2069                parent = *p;
2070                entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2071
2072                ret = backref_comp(backref, entry);
2073                if (ret < 0)
2074                        p = &(*p)->rb_left;
2075                else
2076                        p = &(*p)->rb_right;
2077        }
2078
2079        rb_link_node(&backref->node, parent, p);
2080        rb_insert_color(&backref->node, root);
2081}
2082
2083/*
2084 * Note the backref might has changed, and in this case we just return 0.
2085 */
2086static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2087                                       void *ctx)
2088{
2089        struct btrfs_file_extent_item *extent;
2090        struct btrfs_fs_info *fs_info;
2091        struct old_sa_defrag_extent *old = ctx;
2092        struct new_sa_defrag_extent *new = old->new;
2093        struct btrfs_path *path = new->path;
2094        struct btrfs_key key;
2095        struct btrfs_root *root;
2096        struct sa_defrag_extent_backref *backref;
2097        struct extent_buffer *leaf;
2098        struct inode *inode = new->inode;
2099        int slot;
2100        int ret;
2101        u64 extent_offset;
2102        u64 num_bytes;
2103
2104        if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2105            inum == btrfs_ino(inode))
2106                return 0;
2107
2108        key.objectid = root_id;
2109        key.type = BTRFS_ROOT_ITEM_KEY;
2110        key.offset = (u64)-1;
2111
2112        fs_info = BTRFS_I(inode)->root->fs_info;
2113        root = btrfs_read_fs_root_no_name(fs_info, &key);
2114        if (IS_ERR(root)) {
2115                if (PTR_ERR(root) == -ENOENT)
2116                        return 0;
2117                WARN_ON(1);
2118                pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2119                         inum, offset, root_id);
2120                return PTR_ERR(root);
2121        }
2122
2123        key.objectid = inum;
2124        key.type = BTRFS_EXTENT_DATA_KEY;
2125        if (offset > (u64)-1 << 32)
2126                key.offset = 0;
2127        else
2128                key.offset = offset;
2129
2130        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2131        if (ret < 0) {
2132                WARN_ON(1);
2133                return ret;
2134        }
2135
2136        while (1) {
2137                cond_resched();
2138
2139                leaf = path->nodes[0];
2140                slot = path->slots[0];
2141
2142                if (slot >= btrfs_header_nritems(leaf)) {
2143                        ret = btrfs_next_leaf(root, path);
2144                        if (ret < 0) {
2145                                goto out;
2146                        } else if (ret > 0) {
2147                                ret = 0;
2148                                goto out;
2149                        }
2150                        continue;
2151                }
2152
2153                path->slots[0]++;
2154
2155                btrfs_item_key_to_cpu(leaf, &key, slot);
2156
2157                if (key.objectid > inum)
2158                        goto out;
2159
2160                if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2161                        continue;
2162
2163                extent = btrfs_item_ptr(leaf, slot,
2164                                        struct btrfs_file_extent_item);
2165
2166                if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2167                        continue;
2168
2169                /*
2170                 * 'offset' refers to the exact key.offset,
2171                 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2172                 * (key.offset - extent_offset).
2173                 */
2174                if (key.offset != offset)
2175                        continue;
2176
2177                extent_offset = btrfs_file_extent_offset(leaf, extent);
2178                num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2179
2180                if (extent_offset >= old->extent_offset + old->offset +
2181                    old->len || extent_offset + num_bytes <=
2182                    old->extent_offset + old->offset)
2183                        continue;
2184
2185                ret = 0;
2186                break;
2187        }
2188
2189        backref = kmalloc(sizeof(*backref), GFP_NOFS);
2190        if (!backref) {
2191                ret = -ENOENT;
2192                goto out;
2193        }
2194
2195        backref->root_id = root_id;
2196        backref->inum = inum;
2197        backref->file_pos = offset;
2198        backref->num_bytes = num_bytes;
2199        backref->extent_offset = extent_offset;
2200        backref->generation = btrfs_file_extent_generation(leaf, extent);
2201        backref->old = old;
2202        backref_insert(&new->root, backref);
2203        old->count++;
2204out:
2205        btrfs_release_path(path);
2206        WARN_ON(ret);
2207        return ret;
2208}
2209
2210static noinline bool record_extent_backrefs(struct btrfs_path *path,
2211                                   struct new_sa_defrag_extent *new)
2212{
2213        struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2214        struct old_sa_defrag_extent *old, *tmp;
2215        int ret;
2216
2217        new->path = path;
2218
2219        list_for_each_entry_safe(old, tmp, &new->head, list) {
2220                ret = iterate_inodes_from_logical(old->bytenr +
2221                                                  old->extent_offset, fs_info,
2222                                                  path, record_one_backref,
2223                                                  old);
2224                BUG_ON(ret < 0 && ret != -ENOENT);
2225
2226                /* no backref to be processed for this extent */
2227                if (!old->count) {
2228                        list_del(&old->list);
2229                        kfree(old);
2230                }
2231        }
2232
2233        if (list_empty(&new->head))
2234                return false;
2235
2236        return true;
2237}
2238
2239static int relink_is_mergable(struct extent_buffer *leaf,
2240                              struct btrfs_file_extent_item *fi,
2241                              u64 disk_bytenr)
2242{
2243        if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2244                return 0;
2245
2246        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2247                return 0;
2248
2249        if (btrfs_file_extent_compression(leaf, fi) ||
2250            btrfs_file_extent_encryption(leaf, fi) ||
2251            btrfs_file_extent_other_encoding(leaf, fi))
2252                return 0;
2253
2254        return 1;
2255}
2256
2257/*
2258 * Note the backref might has changed, and in this case we just return 0.
2259 */
2260static noinline int relink_extent_backref(struct btrfs_path *path,
2261                                 struct sa_defrag_extent_backref *prev,
2262                                 struct sa_defrag_extent_backref *backref)
2263{
2264        struct btrfs_file_extent_item *extent;
2265        struct btrfs_file_extent_item *item;
2266        struct btrfs_ordered_extent *ordered;
2267        struct btrfs_trans_handle *trans;
2268        struct btrfs_fs_info *fs_info;
2269        struct btrfs_root *root;
2270        struct btrfs_key key;
2271        struct extent_buffer *leaf;
2272        struct old_sa_defrag_extent *old = backref->old;
2273        struct new_sa_defrag_extent *new = old->new;
2274        struct inode *src_inode = new->inode;
2275        struct inode *inode;
2276        struct extent_state *cached = NULL;
2277        int ret = 0;
2278        u64 start;
2279        u64 len;
2280        u64 lock_start;
2281        u64 lock_end;
2282        bool merge = false;
2283        int index;
2284
2285        if (prev && prev->root_id == backref->root_id &&
2286            prev->inum == backref->inum &&
2287            prev->file_pos + prev->num_bytes == backref->file_pos)
2288                merge = true;
2289
2290        /* step 1: get root */
2291        key.objectid = backref->root_id;
2292        key.type = BTRFS_ROOT_ITEM_KEY;
2293        key.offset = (u64)-1;
2294
2295        fs_info = BTRFS_I(src_inode)->root->fs_info;
2296        index = srcu_read_lock(&fs_info->subvol_srcu);
2297
2298        root = btrfs_read_fs_root_no_name(fs_info, &key);
2299        if (IS_ERR(root)) {
2300                srcu_read_unlock(&fs_info->subvol_srcu, index);
2301                if (PTR_ERR(root) == -ENOENT)
2302                        return 0;
2303                return PTR_ERR(root);
2304        }
2305
2306        /* step 2: get inode */
2307        key.objectid = backref->inum;
2308        key.type = BTRFS_INODE_ITEM_KEY;
2309        key.offset = 0;
2310
2311        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2312        if (IS_ERR(inode)) {
2313                srcu_read_unlock(&fs_info->subvol_srcu, index);
2314                return 0;
2315        }
2316
2317        srcu_read_unlock(&fs_info->subvol_srcu, index);
2318
2319        /* step 3: relink backref */
2320        lock_start = backref->file_pos;
2321        lock_end = backref->file_pos + backref->num_bytes - 1;
2322        lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2323                         0, &cached);
2324
2325        ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2326        if (ordered) {
2327                btrfs_put_ordered_extent(ordered);
2328                goto out_unlock;
2329        }
2330
2331        trans = btrfs_join_transaction(root);
2332        if (IS_ERR(trans)) {
2333                ret = PTR_ERR(trans);
2334                goto out_unlock;
2335        }
2336
2337        key.objectid = backref->inum;
2338        key.type = BTRFS_EXTENT_DATA_KEY;
2339        key.offset = backref->file_pos;
2340
2341        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2342        if (ret < 0) {
2343                goto out_free_path;
2344        } else if (ret > 0) {
2345                ret = 0;
2346                goto out_free_path;
2347        }
2348
2349        extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2350                                struct btrfs_file_extent_item);
2351
2352        if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2353            backref->generation)
2354                goto out_free_path;
2355
2356        btrfs_release_path(path);
2357
2358        start = backref->file_pos;
2359        if (backref->extent_offset < old->extent_offset + old->offset)
2360                start += old->extent_offset + old->offset -
2361                         backref->extent_offset;
2362
2363        len = min(backref->extent_offset + backref->num_bytes,
2364                  old->extent_offset + old->offset + old->len);
2365        len -= max(backref->extent_offset, old->extent_offset + old->offset);
2366
2367        ret = btrfs_drop_extents(trans, root, inode, start,
2368                                 start + len, 1);
2369        if (ret)
2370                goto out_free_path;
2371again:
2372        key.objectid = btrfs_ino(inode);
2373        key.type = BTRFS_EXTENT_DATA_KEY;
2374        key.offset = start;
2375
2376        path->leave_spinning = 1;
2377        if (merge) {
2378                struct btrfs_file_extent_item *fi;
2379                u64 extent_len;
2380                struct btrfs_key found_key;
2381
2382                ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2383                if (ret < 0)
2384                        goto out_free_path;
2385
2386                path->slots[0]--;
2387                leaf = path->nodes[0];
2388                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2389
2390                fi = btrfs_item_ptr(leaf, path->slots[0],
2391                                    struct btrfs_file_extent_item);
2392                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2393
2394                if (relink_is_mergable(leaf, fi, new->bytenr) &&
2395                    extent_len + found_key.offset == start) {
2396                        btrfs_set_file_extent_num_bytes(leaf, fi,
2397                                                        extent_len + len);
2398                        btrfs_mark_buffer_dirty(leaf);
2399                        inode_add_bytes(inode, len);
2400
2401                        ret = 1;
2402                        goto out_free_path;
2403                } else {
2404                        merge = false;
2405                        btrfs_release_path(path);
2406                        goto again;
2407                }
2408        }
2409
2410        ret = btrfs_insert_empty_item(trans, root, path, &key,
2411                                        sizeof(*extent));
2412        if (ret) {
2413                btrfs_abort_transaction(trans, root, ret);
2414                goto out_free_path;
2415        }
2416
2417        leaf = path->nodes[0];
2418        item = btrfs_item_ptr(leaf, path->slots[0],
2419                                struct btrfs_file_extent_item);
2420        btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2421        btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2422        btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2423        btrfs_set_file_extent_num_bytes(leaf, item, len);
2424        btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2425        btrfs_set_file_extent_generation(leaf, item, trans->transid);
2426        btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2427        btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2428        btrfs_set_file_extent_encryption(leaf, item, 0);
2429        btrfs_set_file_extent_other_encoding(leaf, item, 0);
2430
2431        btrfs_mark_buffer_dirty(leaf);
2432        inode_add_bytes(inode, len);
2433        btrfs_release_path(path);
2434
2435        ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2436                        new->disk_len, 0,
2437                        backref->root_id, backref->inum,
2438                        new->file_pos, 0);      /* start - extent_offset */
2439        if (ret) {
2440                btrfs_abort_transaction(trans, root, ret);
2441                goto out_free_path;
2442        }
2443
2444        ret = 1;
2445out_free_path:
2446        btrfs_release_path(path);
2447        path->leave_spinning = 0;
2448        btrfs_end_transaction(trans, root);
2449out_unlock:
2450        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2451                             &cached, GFP_NOFS);
2452        iput(inode);
2453        return ret;
2454}
2455
2456static void relink_file_extents(struct new_sa_defrag_extent *new)
2457{
2458        struct btrfs_path *path;
2459        struct old_sa_defrag_extent *old, *tmp;
2460        struct sa_defrag_extent_backref *backref;
2461        struct sa_defrag_extent_backref *prev = NULL;
2462        struct inode *inode;
2463        struct btrfs_root *root;
2464        struct rb_node *node;
2465        int ret;
2466
2467        inode = new->inode;
2468        root = BTRFS_I(inode)->root;
2469
2470        path = btrfs_alloc_path();
2471        if (!path)
2472                return;
2473
2474        if (!record_extent_backrefs(path, new)) {
2475                btrfs_free_path(path);
2476                goto out;
2477        }
2478        btrfs_release_path(path);
2479
2480        while (1) {
2481                node = rb_first(&new->root);
2482                if (!node)
2483                        break;
2484                rb_erase(node, &new->root);
2485
2486                backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2487
2488                ret = relink_extent_backref(path, prev, backref);
2489                WARN_ON(ret < 0);
2490
2491                kfree(prev);
2492
2493                if (ret == 1)
2494                        prev = backref;
2495                else
2496                        prev = NULL;
2497                cond_resched();
2498        }
2499        kfree(prev);
2500
2501        btrfs_free_path(path);
2502
2503        list_for_each_entry_safe(old, tmp, &new->head, list) {
2504                list_del(&old->list);
2505                kfree(old);
2506        }
2507out:
2508        atomic_dec(&root->fs_info->defrag_running);
2509        wake_up(&root->fs_info->transaction_wait);
2510
2511        kfree(new);
2512}
2513
2514static struct new_sa_defrag_extent *
2515record_old_file_extents(struct inode *inode,
2516                        struct btrfs_ordered_extent *ordered)
2517{
2518        struct btrfs_root *root = BTRFS_I(inode)->root;
2519        struct btrfs_path *path;
2520        struct btrfs_key key;
2521        struct old_sa_defrag_extent *old, *tmp;
2522        struct new_sa_defrag_extent *new;
2523        int ret;
2524
2525        new = kmalloc(sizeof(*new), GFP_NOFS);
2526        if (!new)
2527                return NULL;
2528
2529        new->inode = inode;
2530        new->file_pos = ordered->file_offset;
2531        new->len = ordered->len;
2532        new->bytenr = ordered->start;
2533        new->disk_len = ordered->disk_len;
2534        new->compress_type = ordered->compress_type;
2535        new->root = RB_ROOT;
2536        INIT_LIST_HEAD(&new->head);
2537
2538        path = btrfs_alloc_path();
2539        if (!path)
2540                goto out_kfree;
2541
2542        key.objectid = btrfs_ino(inode);
2543        key.type = BTRFS_EXTENT_DATA_KEY;
2544        key.offset = new->file_pos;
2545
2546        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2547        if (ret < 0)
2548                goto out_free_path;
2549        if (ret > 0 && path->slots[0] > 0)
2550                path->slots[0]--;
2551
2552        /* find out all the old extents for the file range */
2553        while (1) {
2554                struct btrfs_file_extent_item *extent;
2555                struct extent_buffer *l;
2556                int slot;
2557                u64 num_bytes;
2558                u64 offset;
2559                u64 end;
2560                u64 disk_bytenr;
2561                u64 extent_offset;
2562
2563                l = path->nodes[0];
2564                slot = path->slots[0];
2565
2566                if (slot >= btrfs_header_nritems(l)) {
2567                        ret = btrfs_next_leaf(root, path);
2568                        if (ret < 0)
2569                                goto out_free_list;
2570                        else if (ret > 0)
2571                                break;
2572                        continue;
2573                }
2574
2575                btrfs_item_key_to_cpu(l, &key, slot);
2576
2577                if (key.objectid != btrfs_ino(inode))
2578                        break;
2579                if (key.type != BTRFS_EXTENT_DATA_KEY)
2580                        break;
2581                if (key.offset >= new->file_pos + new->len)
2582                        break;
2583
2584                extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2585
2586                num_bytes = btrfs_file_extent_num_bytes(l, extent);
2587                if (key.offset + num_bytes < new->file_pos)
2588                        goto next;
2589
2590                disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2591                if (!disk_bytenr)
2592                        goto next;
2593
2594                extent_offset = btrfs_file_extent_offset(l, extent);
2595
2596                old = kmalloc(sizeof(*old), GFP_NOFS);
2597                if (!old)
2598                        goto out_free_list;
2599
2600                offset = max(new->file_pos, key.offset);
2601                end = min(new->file_pos + new->len, key.offset + num_bytes);
2602
2603                old->bytenr = disk_bytenr;
2604                old->extent_offset = extent_offset;
2605                old->offset = offset - key.offset;
2606                old->len = end - offset;
2607                old->new = new;
2608                old->count = 0;
2609                list_add_tail(&old->list, &new->head);
2610next:
2611                path->slots[0]++;
2612                cond_resched();
2613        }
2614
2615        btrfs_free_path(path);
2616        atomic_inc(&root->fs_info->defrag_running);
2617
2618        return new;
2619
2620out_free_list:
2621        list_for_each_entry_safe(old, tmp, &new->head, list) {
2622                list_del(&old->list);
2623                kfree(old);
2624        }
2625out_free_path:
2626        btrfs_free_path(path);
2627out_kfree:
2628        kfree(new);
2629        return NULL;
2630}
2631
2632/*
2633 * helper function for btrfs_finish_ordered_io, this
2634 * just reads in some of the csum leaves to prime them into ram
2635 * before we start the transaction.  It limits the amount of btree
2636 * reads required while inside the transaction.
2637 */
2638/* as ordered data IO finishes, this gets called so we can finish
2639 * an ordered extent if the range of bytes in the file it covers are
2640 * fully written.
2641 */
2642static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2643{
2644        struct inode *inode = ordered_extent->inode;
2645        struct btrfs_root *root = BTRFS_I(inode)->root;
2646        struct btrfs_trans_handle *trans = NULL;
2647        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2648        struct extent_state *cached_state = NULL;
2649        struct new_sa_defrag_extent *new = NULL;
2650        int compress_type = 0;
2651        int ret;
2652        bool nolock;
2653
2654        nolock = btrfs_is_free_space_inode(inode);
2655
2656        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2657                ret = -EIO;
2658                goto out;
2659        }
2660
2661        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2662                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2663                btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2664                if (nolock)
2665                        trans = btrfs_join_transaction_nolock(root);
2666                else
2667                        trans = btrfs_join_transaction(root);
2668                if (IS_ERR(trans)) {
2669                        ret = PTR_ERR(trans);
2670                        trans = NULL;
2671                        goto out;
2672                }
2673                trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2674                ret = btrfs_update_inode_fallback(trans, root, inode);
2675                if (ret) /* -ENOMEM or corruption */
2676                        btrfs_abort_transaction(trans, root, ret);
2677                goto out;
2678        }
2679
2680        lock_extent_bits(io_tree, ordered_extent->file_offset,
2681                         ordered_extent->file_offset + ordered_extent->len - 1,
2682                         0, &cached_state);
2683
2684        ret = test_range_bit(io_tree, ordered_extent->file_offset,
2685                        ordered_extent->file_offset + ordered_extent->len - 1,
2686                        EXTENT_DEFRAG, 1, cached_state);
2687        if (ret) {
2688                u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2689                if (last_snapshot >= BTRFS_I(inode)->generation)
2690                        /* the inode is shared */
2691                        new = record_old_file_extents(inode, ordered_extent);
2692
2693                clear_extent_bit(io_tree, ordered_extent->file_offset,
2694                        ordered_extent->file_offset + ordered_extent->len - 1,
2695                        EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2696        }
2697
2698        if (nolock)
2699                trans = btrfs_join_transaction_nolock(root);
2700        else
2701                trans = btrfs_join_transaction(root);
2702        if (IS_ERR(trans)) {
2703                ret = PTR_ERR(trans);
2704                trans = NULL;
2705                goto out_unlock;
2706        }
2707        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2708
2709        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2710                compress_type = ordered_extent->compress_type;
2711        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2712                BUG_ON(compress_type);
2713                ret = btrfs_mark_extent_written(trans, inode,
2714                                                ordered_extent->file_offset,
2715                                                ordered_extent->file_offset +
2716                                                ordered_extent->len);
2717        } else {
2718                BUG_ON(root == root->fs_info->tree_root);
2719                ret = insert_reserved_file_extent(trans, inode,
2720                                                ordered_extent->file_offset,
2721                                                ordered_extent->start,
2722                                                ordered_extent->disk_len,
2723                                                ordered_extent->len,
2724                                                ordered_extent->len,
2725                                                compress_type, 0, 0,
2726                                                BTRFS_FILE_EXTENT_REG);
2727        }
2728        unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2729                           ordered_extent->file_offset, ordered_extent->len,
2730                           trans->transid);
2731        if (ret < 0) {
2732                btrfs_abort_transaction(trans, root, ret);
2733                goto out_unlock;
2734        }
2735
2736        add_pending_csums(trans, inode, ordered_extent->file_offset,
2737                          &ordered_extent->list);
2738
2739        btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2740        ret = btrfs_update_inode_fallback(trans, root, inode);
2741        if (ret) { /* -ENOMEM or corruption */
2742                btrfs_abort_transaction(trans, root, ret);
2743                goto out_unlock;
2744        }
2745        ret = 0;
2746out_unlock:
2747        unlock_extent_cached(io_tree, ordered_extent->file_offset,
2748                             ordered_extent->file_offset +
2749                             ordered_extent->len - 1, &cached_state, GFP_NOFS);
2750out:
2751        if (root != root->fs_info->tree_root)
2752                btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2753        if (trans)
2754                btrfs_end_transaction(trans, root);
2755
2756        if (ret) {
2757                clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2758                                      ordered_extent->file_offset +
2759                                      ordered_extent->len - 1, NULL, GFP_NOFS);
2760
2761                /*
2762                 * If the ordered extent had an IOERR or something else went
2763                 * wrong we need to return the space for this ordered extent
2764                 * back to the allocator.
2765                 */
2766                if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2767                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2768                        btrfs_free_reserved_extent(root, ordered_extent->start,
2769                                                   ordered_extent->disk_len);
2770        }
2771
2772
2773        /*
2774         * This needs to be done to make sure anybody waiting knows we are done
2775         * updating everything for this ordered extent.
2776         */
2777        btrfs_remove_ordered_extent(inode, ordered_extent);
2778
2779        /* for snapshot-aware defrag */
2780        if (new)
2781                relink_file_extents(new);
2782
2783        /* once for us */
2784        btrfs_put_ordered_extent(ordered_extent);
2785        /* once for the tree */
2786        btrfs_put_ordered_extent(ordered_extent);
2787
2788        return ret;
2789}
2790
2791static void finish_ordered_fn(struct btrfs_work *work)
2792{
2793        struct btrfs_ordered_extent *ordered_extent;
2794        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2795        btrfs_finish_ordered_io(ordered_extent);
2796}
2797
2798static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2799                                struct extent_state *state, int uptodate)
2800{
2801        struct inode *inode = page->mapping->host;
2802        struct btrfs_root *root = BTRFS_I(inode)->root;
2803        struct btrfs_ordered_extent *ordered_extent = NULL;
2804        struct btrfs_workers *workers;
2805
2806        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2807
2808        ClearPagePrivate2(page);
2809        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2810                                            end - start + 1, uptodate))
2811                return 0;
2812
2813        ordered_extent->work.func = finish_ordered_fn;
2814        ordered_extent->work.flags = 0;
2815
2816        if (btrfs_is_free_space_inode(inode))
2817                workers = &root->fs_info->endio_freespace_worker;
2818        else
2819                workers = &root->fs_info->endio_write_workers;
2820        btrfs_queue_worker(workers, &ordered_extent->work);
2821
2822        return 0;
2823}
2824
2825/*
2826 * when reads are done, we need to check csums to verify the data is correct
2827 * if there's a match, we allow the bio to finish.  If not, the code in
2828 * extent_io.c will try to find good copies for us.
2829 */
2830static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2831                               struct extent_state *state, int mirror)
2832{
2833        size_t offset = start - page_offset(page);
2834        struct inode *inode = page->mapping->host;
2835        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2836        char *kaddr;
2837        u64 private = ~(u32)0;
2838        int ret;
2839        struct btrfs_root *root = BTRFS_I(inode)->root;
2840        u32 csum = ~(u32)0;
2841        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2842                                      DEFAULT_RATELIMIT_BURST);
2843
2844        if (PageChecked(page)) {
2845                ClearPageChecked(page);
2846                goto good;
2847        }
2848
2849        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2850                goto good;
2851
2852        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2853            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2854                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2855                                  GFP_NOFS);
2856                return 0;
2857        }
2858
2859        if (state && state->start == start) {
2860                private = state->private;
2861                ret = 0;
2862        } else {
2863                ret = get_state_private(io_tree, start, &private);
2864        }
2865        kaddr = kmap_atomic(page);
2866        if (ret)
2867                goto zeroit;
2868
2869        csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2870        btrfs_csum_final(csum, (char *)&csum);
2871        if (csum != private)
2872                goto zeroit;
2873
2874        kunmap_atomic(kaddr);
2875good:
2876        return 0;
2877
2878zeroit:
2879        if (__ratelimit(&_rs))
2880                btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2881                        (unsigned long long)btrfs_ino(page->mapping->host),
2882                        (unsigned long long)start, csum,
2883                        (unsigned long long)private);
2884        memset(kaddr + offset, 1, end - start + 1);
2885        flush_dcache_page(page);
2886        kunmap_atomic(kaddr);
2887        if (private == 0)
2888                return 0;
2889        return -EIO;
2890}
2891
2892struct delayed_iput {
2893        struct list_head list;
2894        struct inode *inode;
2895};
2896
2897/* JDM: If this is fs-wide, why can't we add a pointer to
2898 * btrfs_inode instead and avoid the allocation? */
2899void btrfs_add_delayed_iput(struct inode *inode)
2900{
2901        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2902        struct delayed_iput *delayed;
2903
2904        if (atomic_add_unless(&inode->i_count, -1, 1))
2905                return;
2906
2907        delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2908        delayed->inode = inode;
2909
2910        spin_lock(&fs_info->delayed_iput_lock);
2911        list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2912        spin_unlock(&fs_info->delayed_iput_lock);
2913}
2914
2915void btrfs_run_delayed_iputs(struct btrfs_root *root)
2916{
2917        LIST_HEAD(list);
2918        struct btrfs_fs_info *fs_info = root->fs_info;
2919        struct delayed_iput *delayed;
2920        int empty;
2921
2922        spin_lock(&fs_info->delayed_iput_lock);
2923        empty = list_empty(&fs_info->delayed_iputs);
2924        spin_unlock(&fs_info->delayed_iput_lock);
2925        if (empty)
2926                return;
2927
2928        spin_lock(&fs_info->delayed_iput_lock);
2929        list_splice_init(&fs_info->delayed_iputs, &list);
2930        spin_unlock(&fs_info->delayed_iput_lock);
2931
2932        while (!list_empty(&list)) {
2933                delayed = list_entry(list.next, struct delayed_iput, list);
2934                list_del(&delayed->list);
2935                iput(delayed->inode);
2936                kfree(delayed);
2937        }
2938}
2939
2940/*
2941 * This is called in transaction commit time. If there are no orphan
2942 * files in the subvolume, it removes orphan item and frees block_rsv
2943 * structure.
2944 */
2945void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2946                              struct btrfs_root *root)
2947{
2948        struct btrfs_block_rsv *block_rsv;
2949        int ret;
2950
2951        if (atomic_read(&root->orphan_inodes) ||
2952            root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2953                return;
2954
2955        spin_lock(&root->orphan_lock);
2956        if (atomic_read(&root->orphan_inodes)) {
2957                spin_unlock(&root->orphan_lock);
2958                return;
2959        }
2960
2961        if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2962                spin_unlock(&root->orphan_lock);
2963                return;
2964        }
2965
2966        block_rsv = root->orphan_block_rsv;
2967        root->orphan_block_rsv = NULL;
2968        spin_unlock(&root->orphan_lock);
2969
2970        if (root->orphan_item_inserted &&
2971            btrfs_root_refs(&root->root_item) > 0) {
2972                ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2973                                            root->root_key.objectid);
2974                BUG_ON(ret);
2975                root->orphan_item_inserted = 0;
2976        }
2977
2978        if (block_rsv) {
2979                WARN_ON(block_rsv->size > 0);
2980                btrfs_free_block_rsv(root, block_rsv);
2981        }
2982}
2983
2984/*
2985 * This creates an orphan entry for the given inode in case something goes
2986 * wrong in the middle of an unlink/truncate.
2987 *
2988 * NOTE: caller of this function should reserve 5 units of metadata for
2989 *       this function.
2990 */
2991int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2992{
2993        struct btrfs_root *root = BTRFS_I(inode)->root;
2994        struct btrfs_block_rsv *block_rsv = NULL;
2995        int reserve = 0;
2996        int insert = 0;
2997        int ret;
2998
2999        if (!root->orphan_block_rsv) {
3000                block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3001                if (!block_rsv)
3002                        return -ENOMEM;
3003        }
3004
3005        spin_lock(&root->orphan_lock);
3006        if (!root->orphan_block_rsv) {
3007                root->orphan_block_rsv = block_rsv;
3008        } else if (block_rsv) {
3009                btrfs_free_block_rsv(root, block_rsv);
3010                block_rsv = NULL;
3011        }
3012
3013        if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3014                              &BTRFS_I(inode)->runtime_flags)) {
3015#if 0
3016                /*
3017                 * For proper ENOSPC handling, we should do orphan
3018                 * cleanup when mounting. But this introduces backward
3019                 * compatibility issue.
3020                 */
3021                if (!xchg(&root->orphan_item_inserted, 1))
3022                        insert = 2;
3023                else
3024                        insert = 1;
3025#endif
3026                insert = 1;
3027                atomic_inc(&root->orphan_inodes);
3028        }
3029
3030        if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3031                              &BTRFS_I(inode)->runtime_flags))
3032                reserve = 1;
3033        spin_unlock(&root->orphan_lock);
3034
3035        /* grab metadata reservation from transaction handle */
3036        if (reserve) {
3037                ret = btrfs_orphan_reserve_metadata(trans, inode);
3038                BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3039        }
3040
3041        /* insert an orphan item to track this unlinked/truncated file */
3042        if (insert >= 1) {
3043                ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3044                if (ret && ret != -EEXIST) {
3045                        clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3046                                  &BTRFS_I(inode)->runtime_flags);
3047                        btrfs_abort_transaction(trans, root, ret);
3048                        return ret;
3049                }
3050                ret = 0;
3051        }
3052
3053        /* insert an orphan item to track subvolume contains orphan files */
3054        if (insert >= 2) {
3055                ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3056                                               root->root_key.objectid);
3057                if (ret && ret != -EEXIST) {
3058                        btrfs_abort_transaction(trans, root, ret);
3059                        return ret;
3060                }
3061        }
3062        return 0;
3063}
3064
3065/*
3066 * We have done the truncate/delete so we can go ahead and remove the orphan
3067 * item for this particular inode.
3068 */
3069static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3070                            struct inode *inode)
3071{
3072        struct btrfs_root *root = BTRFS_I(inode)->root;
3073        int delete_item = 0;
3074        int release_rsv = 0;
3075        int ret = 0;
3076
3077        spin_lock(&root->orphan_lock);
3078        if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3079                               &BTRFS_I(inode)->runtime_flags))
3080                delete_item = 1;
3081
3082        if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3083                               &BTRFS_I(inode)->runtime_flags))
3084                release_rsv = 1;
3085        spin_unlock(&root->orphan_lock);
3086
3087        if (trans && delete_item) {
3088                ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3089                BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3090        }
3091
3092        if (release_rsv) {
3093                btrfs_orphan_release_metadata(inode);
3094                atomic_dec(&root->orphan_inodes);
3095        }
3096
3097        return 0;
3098}
3099
3100/*
3101 * this cleans up any orphans that may be left on the list from the last use
3102 * of this root.
3103 */
3104int btrfs_orphan_cleanup(struct btrfs_root *root)
3105{
3106        struct btrfs_path *path;
3107        struct extent_buffer *leaf;
3108        struct btrfs_key key, found_key;
3109        struct btrfs_trans_handle *trans;
3110        struct inode *inode;
3111        u64 last_objectid = 0;
3112        int ret = 0, nr_unlink = 0, nr_truncate = 0;
3113
3114        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3115                return 0;
3116
3117        path = btrfs_alloc_path();
3118        if (!path) {
3119                ret = -ENOMEM;
3120                goto out;
3121        }
3122        path->reada = -1;
3123
3124        key.objectid = BTRFS_ORPHAN_OBJECTID;
3125        btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3126        key.offset = (u64)-1;
3127
3128        while (1) {
3129                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3130                if (ret < 0)
3131                        goto out;
3132
3133                /*
3134                 * if ret == 0 means we found what we were searching for, which
3135                 * is weird, but possible, so only screw with path if we didn't
3136                 * find the key and see if we have stuff that matches
3137                 */
3138                if (ret > 0) {
3139                        ret = 0;
3140                        if (path->slots[0] == 0)
3141                                break;
3142                        path->slots[0]--;
3143                }
3144
3145                /* pull out the item */
3146                leaf = path->nodes[0];
3147                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3148
3149                /* make sure the item matches what we want */
3150                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3151                        break;
3152                if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3153                        break;
3154
3155                /* release the path since we're done with it */
3156                btrfs_release_path(path);
3157
3158                /*
3159                 * this is where we are basically btrfs_lookup, without the
3160                 * crossing root thing.  we store the inode number in the
3161                 * offset of the orphan item.
3162                 */
3163
3164                if (found_key.offset == last_objectid) {
3165                        btrfs_err(root->fs_info,
3166                                "Error removing orphan entry, stopping orphan cleanup");
3167                        ret = -EINVAL;
3168                        goto out;
3169                }
3170
3171                last_objectid = found_key.offset;
3172
3173                found_key.objectid = found_key.offset;
3174                found_key.type = BTRFS_INODE_ITEM_KEY;
3175                found_key.offset = 0;
3176                inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3177                ret = PTR_RET(inode);
3178                if (ret && ret != -ESTALE)
3179                        goto out;
3180
3181                if (ret == -ESTALE && root == root->fs_info->tree_root) {
3182                        struct btrfs_root *dead_root;
3183                        struct btrfs_fs_info *fs_info = root->fs_info;
3184                        int is_dead_root = 0;
3185
3186                        /*
3187                         * this is an orphan in the tree root. Currently these
3188                         * could come from 2 sources:
3189                         *  a) a snapshot deletion in progress
3190                         *  b) a free space cache inode
3191                         * We need to distinguish those two, as the snapshot
3192                         * orphan must not get deleted.
3193                         * find_dead_roots already ran before us, so if this
3194                         * is a snapshot deletion, we should find the root
3195                         * in the dead_roots list
3196                         */
3197                        spin_lock(&fs_info->trans_lock);
3198                        list_for_each_entry(dead_root, &fs_info->dead_roots,
3199                                            root_list) {
3200                                if (dead_root->root_key.objectid ==
3201                                    found_key.objectid) {
3202                                        is_dead_root = 1;
3203                                        break;
3204                                }
3205                        }
3206                        spin_unlock(&fs_info->trans_lock);
3207                        if (is_dead_root) {
3208                                /* prevent this orphan from being found again */
3209                                key.offset = found_key.objectid - 1;
3210                                continue;
3211                        }
3212                }
3213                /*
3214                 * Inode is already gone but the orphan item is still there,
3215                 * kill the orphan item.
3216                 */
3217                if (ret == -ESTALE) {
3218                        trans = btrfs_start_transaction(root, 1);
3219                        if (IS_ERR(trans)) {
3220                                ret = PTR_ERR(trans);
3221                                goto out;
3222                        }
3223                        btrfs_debug(root->fs_info, "auto deleting %Lu",
3224                                found_key.objectid);
3225                        ret = btrfs_del_orphan_item(trans, root,
3226                                                    found_key.objectid);
3227                        BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3228                        btrfs_end_transaction(trans, root);
3229                        continue;
3230                }
3231
3232                /*
3233                 * add this inode to the orphan list so btrfs_orphan_del does
3234                 * the proper thing when we hit it
3235                 */
3236                set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3237                        &BTRFS_I(inode)->runtime_flags);
3238                atomic_inc(&root->orphan_inodes);
3239
3240                /* if we have links, this was a truncate, lets do that */
3241                if (inode->i_nlink) {
3242                        if (!S_ISREG(inode->i_mode)) {
3243                                WARN_ON(1);
3244                                iput(inode);
3245                                continue;
3246                        }
3247                        nr_truncate++;
3248
3249                        /* 1 for the orphan item deletion. */
3250                        trans = btrfs_start_transaction(root, 1);
3251                        if (IS_ERR(trans)) {
3252                                iput(inode);
3253                                ret = PTR_ERR(trans);
3254                                goto out;
3255                        }
3256                        ret = btrfs_orphan_add(trans, inode);
3257                        btrfs_end_transaction(trans, root);
3258                        if (ret) {
3259                                iput(inode);
3260                                goto out;
3261                        }
3262
3263                        ret = btrfs_truncate(inode);
3264                        if (ret)
3265                                btrfs_orphan_del(NULL, inode);
3266                } else {
3267                        nr_unlink++;
3268                }
3269
3270                /* this will do delete_inode and everything for us */
3271                iput(inode);
3272                if (ret)
3273                        goto out;
3274        }
3275        /* release the path since we're done with it */
3276        btrfs_release_path(path);
3277
3278        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3279
3280        if (root->orphan_block_rsv)
3281                btrfs_block_rsv_release(root, root->orphan_block_rsv,
3282                                        (u64)-1);
3283
3284        if (root->orphan_block_rsv || root->orphan_item_inserted) {
3285                trans = btrfs_join_transaction(root);
3286                if (!IS_ERR(trans))
3287                        btrfs_end_transaction(trans, root);
3288        }
3289
3290        if (nr_unlink)
3291                btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3292        if (nr_truncate)
3293                btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3294
3295out:
3296        if (ret)
3297                btrfs_crit(root->fs_info,
3298                        "could not do orphan cleanup %d", ret);
3299        btrfs_free_path(path);
3300        return ret;
3301}
3302
3303/*
3304 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3305 * don't find any xattrs, we know there can't be any acls.
3306 *
3307 * slot is the slot the inode is in, objectid is the objectid of the inode
3308 */
3309static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3310                                          int slot, u64 objectid)
3311{
3312        u32 nritems = btrfs_header_nritems(leaf);
3313        struct btrfs_key found_key;
3314        static u64 xattr_access = 0;
3315        static u64 xattr_default = 0;
3316        int scanned = 0;
3317
3318        if (!xattr_access) {
3319                xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3320                                        strlen(POSIX_ACL_XATTR_ACCESS));
3321                xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3322                                        strlen(POSIX_ACL_XATTR_DEFAULT));
3323        }
3324
3325        slot++;
3326        while (slot < nritems) {
3327                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3328
3329                /* we found a different objectid, there must not be acls */
3330                if (found_key.objectid != objectid)
3331                        return 0;
3332
3333                /* we found an xattr, assume we've got an acl */
3334                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3335                        if (found_key.offset == xattr_access ||
3336                            found_key.offset == xattr_default)
3337                                return 1;
3338                }
3339
3340                /*
3341                 * we found a key greater than an xattr key, there can't
3342                 * be any acls later on
3343                 */
3344                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3345                        return 0;
3346
3347                slot++;
3348                scanned++;
3349
3350                /*
3351                 * it goes inode, inode backrefs, xattrs, extents,
3352                 * so if there are a ton of hard links to an inode there can
3353                 * be a lot of backrefs.  Don't waste time searching too hard,
3354                 * this is just an optimization
3355                 */
3356                if (scanned >= 8)
3357                        break;
3358        }
3359        /* we hit the end of the leaf before we found an xattr or
3360         * something larger than an xattr.  We have to assume the inode
3361         * has acls
3362         */
3363        return 1;
3364}
3365
3366/*
3367 * read an inode from the btree into the in-memory inode
3368 */
3369static void btrfs_read_locked_inode(struct inode *inode)
3370{
3371        struct btrfs_path *path;
3372        struct extent_buffer *leaf;
3373        struct btrfs_inode_item *inode_item;
3374        struct btrfs_timespec *tspec;
3375        struct btrfs_root *root = BTRFS_I(inode)->root;
3376        struct btrfs_key location;
3377        int maybe_acls;
3378        u32 rdev;
3379        int ret;
3380        bool filled = false;
3381
3382        ret = btrfs_fill_inode(inode, &rdev);
3383        if (!ret)
3384                filled = true;
3385
3386        path = btrfs_alloc_path();
3387        if (!path)
3388                goto make_bad;
3389
3390        path->leave_spinning = 1;
3391        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3392
3393        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3394        if (ret)
3395                goto make_bad;
3396
3397        leaf = path->nodes[0];
3398
3399        if (filled)
3400                goto cache_acl;
3401
3402        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3403                                    struct btrfs_inode_item);
3404        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3405        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3406        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3407        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3408        btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3409
3410        tspec = btrfs_inode_atime(inode_item);
3411        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3412        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3413
3414        tspec = btrfs_inode_mtime(inode_item);
3415        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3416        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3417
3418        tspec = btrfs_inode_ctime(inode_item);
3419        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3420        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3421
3422        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3423        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3424        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3425
3426        /*
3427         * If we were modified in the current generation and evicted from memory
3428         * and then re-read we need to do a full sync since we don't have any
3429         * idea about which extents were modified before we were evicted from
3430         * cache.
3431         */
3432        if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3433                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3434                        &BTRFS_I(inode)->runtime_flags);
3435
3436        inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3437        inode->i_generation = BTRFS_I(inode)->generation;
3438        inode->i_rdev = 0;
3439        rdev = btrfs_inode_rdev(leaf, inode_item);
3440
3441        BTRFS_I(inode)->index_cnt = (u64)-1;
3442        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3443cache_acl:
3444        /*
3445         * try to precache a NULL acl entry for files that don't have
3446         * any xattrs or acls
3447         */
3448        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3449                                           btrfs_ino(inode));
3450        if (!maybe_acls)
3451                cache_no_acl(inode);
3452
3453        btrfs_free_path(path);
3454
3455        switch (inode->i_mode & S_IFMT) {
3456        case S_IFREG:
3457                inode->i_mapping->a_ops = &btrfs_aops;
3458                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3459                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3460                inode->i_fop = &btrfs_file_operations;
3461                inode->i_op = &btrfs_file_inode_operations;
3462                break;
3463        case S_IFDIR:
3464                inode->i_fop = &btrfs_dir_file_operations;
3465                if (root == root->fs_info->tree_root)
3466                        inode->i_op = &btrfs_dir_ro_inode_operations;
3467                else
3468                        inode->i_op = &btrfs_dir_inode_operations;
3469                break;
3470        case S_IFLNK:
3471                inode->i_op = &btrfs_symlink_inode_operations;
3472                inode->i_mapping->a_ops = &btrfs_symlink_aops;
3473                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3474                break;
3475        default:
3476                inode->i_op = &btrfs_special_inode_operations;
3477                init_special_inode(inode, inode->i_mode, rdev);
3478                break;
3479        }
3480
3481        btrfs_update_iflags(inode);
3482        return;
3483
3484make_bad:
3485        btrfs_free_path(path);
3486        make_bad_inode(inode);
3487}
3488
3489/*
3490 * given a leaf and an inode, copy the inode fields into the leaf
3491 */
3492static void fill_inode_item(struct btrfs_trans_handle *trans,
3493                            struct extent_buffer *leaf,
3494                            struct btrfs_inode_item *item,
3495                            struct inode *inode)
3496{
3497        struct btrfs_map_token token;
3498
3499        btrfs_init_map_token(&token);
3500
3501        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3502        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3503        btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3504                                   &token);
3505        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3506        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3507
3508        btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3509                                     inode->i_atime.tv_sec, &token);
3510        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3511                                      inode->i_atime.tv_nsec, &token);
3512
3513        btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3514                                     inode->i_mtime.tv_sec, &token);
3515        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3516                                      inode->i_mtime.tv_nsec, &token);
3517
3518        btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3519                                     inode->i_ctime.tv_sec, &token);
3520        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3521                                      inode->i_ctime.tv_nsec, &token);
3522
3523        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3524                                     &token);
3525        btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3526                                         &token);
3527        btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3528        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3529        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3530        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3531        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3532}
3533
3534/*
3535 * copy everything in the in-memory inode into the btree.
3536 */
3537static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3538                                struct btrfs_root *root, struct inode *inode)
3539{
3540        struct btrfs_inode_item *inode_item;
3541        struct btrfs_path *path;
3542        struct extent_buffer *leaf;
3543        int ret;
3544
3545        path = btrfs_alloc_path();
3546        if (!path)
3547                return -ENOMEM;
3548
3549        path->leave_spinning = 1;
3550        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3551                                 1);
3552        if (ret) {
3553                if (ret > 0)
3554                        ret = -ENOENT;
3555                goto failed;
3556        }
3557
3558        btrfs_unlock_up_safe(path, 1);
3559        leaf = path->nodes[0];
3560        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3561                                    struct btrfs_inode_item);
3562
3563        fill_inode_item(trans, leaf, inode_item, inode);
3564        btrfs_mark_buffer_dirty(leaf);
3565        btrfs_set_inode_last_trans(trans, inode);
3566        ret = 0;
3567failed:
3568        btrfs_free_path(path);
3569        return ret;
3570}
3571
3572/*
3573 * copy everything in the in-memory inode into the btree.
3574 */
3575noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3576                                struct btrfs_root *root, struct inode *inode)
3577{
3578        int ret;
3579
3580        /*
3581         * If the inode is a free space inode, we can deadlock during commit
3582         * if we put it into the delayed code.
3583         *
3584         * The data relocation inode should also be directly updated
3585         * without delay
3586         */
3587        if (!btrfs_is_free_space_inode(inode)
3588            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3589                btrfs_update_root_times(trans, root);
3590
3591                ret = btrfs_delayed_update_inode(trans, root, inode);
3592                if (!ret)
3593                        btrfs_set_inode_last_trans(trans, inode);
3594                return ret;
3595        }
3596
3597        return btrfs_update_inode_item(trans, root, inode);
3598}
3599
3600noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3601                                         struct btrfs_root *root,
3602                                         struct inode *inode)
3603{
3604        int ret;
3605
3606        ret = btrfs_update_inode(trans, root, inode);
3607        if (ret == -ENOSPC)
3608                return btrfs_update_inode_item(trans, root, inode);
3609        return ret;
3610}
3611
3612/*
3613 * unlink helper that gets used here in inode.c and in the tree logging
3614 * recovery code.  It remove a link in a directory with a given name, and
3615 * also drops the back refs in the inode to the directory
3616 */
3617static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3618                                struct btrfs_root *root,
3619                                struct inode *dir, struct inode *inode,
3620                                const char *name, int name_len)
3621{
3622        struct btrfs_path *path;
3623        int ret = 0;
3624        struct extent_buffer *leaf;
3625        struct btrfs_dir_item *di;
3626        struct btrfs_key key;
3627        u64 index;
3628        u64 ino = btrfs_ino(inode);
3629        u64 dir_ino = btrfs_ino(dir);
3630
3631        path = btrfs_alloc_path();
3632        if (!path) {
3633                ret = -ENOMEM;
3634                goto out;
3635        }
3636
3637        path->leave_spinning = 1;
3638        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3639                                    name, name_len, -1);
3640        if (IS_ERR(di)) {
3641                ret = PTR_ERR(di);
3642                goto err;
3643        }
3644        if (!di) {
3645                ret = -ENOENT;
3646                goto err;
3647        }
3648        leaf = path->nodes[0];
3649        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3650        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3651        if (ret)
3652                goto err;
3653        btrfs_release_path(path);
3654
3655        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3656                                  dir_ino, &index);
3657        if (ret) {
3658                btrfs_info(root->fs_info,
3659                        "failed to delete reference to %.*s, inode %llu parent %llu",
3660                        name_len, name,
3661                        (unsigned long long)ino, (unsigned long long)dir_ino);
3662                btrfs_abort_transaction(trans, root, ret);
3663                goto err;
3664        }
3665
3666        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3667        if (ret) {
3668                btrfs_abort_transaction(trans, root, ret);
3669                goto err;
3670        }
3671
3672        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3673                                         inode, dir_ino);
3674        if (ret != 0 && ret != -ENOENT) {
3675                btrfs_abort_transaction(trans, root, ret);
3676                goto err;
3677        }
3678
3679        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3680                                           dir, index);
3681        if (ret == -ENOENT)
3682                ret = 0;
3683        else if (ret)
3684                btrfs_abort_transaction(trans, root, ret);
3685err:
3686        btrfs_free_path(path);
3687        if (ret)
3688                goto out;
3689
3690        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3691        inode_inc_iversion(inode);
3692        inode_inc_iversion(dir);
3693        inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3694        ret = btrfs_update_inode(trans, root, dir);
3695out:
3696        return ret;
3697}
3698
3699int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3700                       struct btrfs_root *root,
3701                       struct inode *dir, struct inode *inode,
3702                       const char *name, int name_len)
3703{
3704        int ret;
3705        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3706        if (!ret) {
3707                btrfs_drop_nlink(inode);
3708                ret = btrfs_update_inode(trans, root, inode);
3709        }
3710        return ret;
3711}
3712
3713/*
3714 * helper to start transaction for unlink and rmdir.
3715 *
3716 * unlink and rmdir are special in btrfs, they do not always free space, so
3717 * if we cannot make our reservations the normal way try and see if there is
3718 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3719 * allow the unlink to occur.
3720 */
3721static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3722{
3723        struct btrfs_trans_handle *trans;
3724        struct btrfs_root *root = BTRFS_I(dir)->root;
3725        int ret;
3726
3727        /*
3728         * 1 for the possible orphan item
3729         * 1 for the dir item
3730         * 1 for the dir index
3731         * 1 for the inode ref
3732         * 1 for the inode
3733         */
3734        trans = btrfs_start_transaction(root, 5);
3735        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3736                return trans;
3737
3738        if (PTR_ERR(trans) == -ENOSPC) {
3739                u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3740
3741                trans = btrfs_start_transaction(root, 0);
3742                if (IS_ERR(trans))
3743                        return trans;
3744                ret = btrfs_cond_migrate_bytes(root->fs_info,
3745                                               &root->fs_info->trans_block_rsv,
3746                                               num_bytes, 5);
3747                if (ret) {
3748                        btrfs_end_transaction(trans, root);
3749                        return ERR_PTR(ret);
3750                }
3751                trans->block_rsv = &root->fs_info->trans_block_rsv;
3752                trans->bytes_reserved = num_bytes;
3753        }
3754        return trans;
3755}
3756
3757static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3758{
3759        struct btrfs_root *root = BTRFS_I(dir)->root;
3760        struct btrfs_trans_handle *trans;
3761        struct inode *inode = dentry->d_inode;
3762        int ret;
3763
3764        trans = __unlink_start_trans(dir);
3765        if (IS_ERR(trans))
3766                return PTR_ERR(trans);
3767
3768        btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3769
3770        ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3771                                 dentry->d_name.name, dentry->d_name.len);
3772        if (ret)
3773                goto out;
3774
3775        if (inode->i_nlink == 0) {
3776                ret = btrfs_orphan_add(trans, inode);
3777                if (ret)
3778                        goto out;
3779        }
3780
3781out:
3782        btrfs_end_transaction(trans, root);
3783        btrfs_btree_balance_dirty(root);
3784        return ret;
3785}
3786
3787int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3788                        struct btrfs_root *root,
3789                        struct inode *dir, u64 objectid,
3790                        const char *name, int name_len)
3791{
3792        struct btrfs_path *path;
3793        struct extent_buffer *leaf;
3794        struct btrfs_dir_item *di;
3795        struct btrfs_key key;
3796        u64 index;
3797        int ret;
3798        u64 dir_ino = btrfs_ino(dir);
3799
3800        path = btrfs_alloc_path();
3801        if (!path)
3802                return -ENOMEM;
3803
3804        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3805                                   name, name_len, -1);
3806        if (IS_ERR_OR_NULL(di)) {
3807                if (!di)
3808                        ret = -ENOENT;
3809                else
3810                        ret = PTR_ERR(di);
3811                goto out;
3812        }
3813
3814        leaf = path->nodes[0];
3815        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3816        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3817        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3818        if (ret) {
3819                btrfs_abort_transaction(trans, root, ret);
3820                goto out;
3821        }
3822        btrfs_release_path(path);
3823
3824        ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3825                                 objectid, root->root_key.objectid,
3826                                 dir_ino, &index, name, name_len);
3827        if (ret < 0) {
3828                if (ret != -ENOENT) {
3829                        btrfs_abort_transaction(trans, root, ret);
3830                        goto out;
3831                }
3832                di = btrfs_search_dir_index_item(root, path, dir_ino,
3833                                                 name, name_len);
3834                if (IS_ERR_OR_NULL(di)) {
3835                        if (!di)
3836                                ret = -ENOENT;
3837                        else
3838                                ret = PTR_ERR(di);
3839                        btrfs_abort_transaction(trans, root, ret);
3840                        goto out;
3841                }
3842
3843                leaf = path->nodes[0];
3844                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3845                btrfs_release_path(path);
3846                index = key.offset;
3847        }
3848        btrfs_release_path(path);
3849
3850        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3851        if (ret) {
3852                btrfs_abort_transaction(trans, root, ret);
3853                goto out;
3854        }
3855
3856        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3857        inode_inc_iversion(dir);
3858        dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3859        ret = btrfs_update_inode_fallback(trans, root, dir);
3860        if (ret)
3861                btrfs_abort_transaction(trans, root, ret);
3862out:
3863        btrfs_free_path(path);
3864        return ret;
3865}
3866
3867static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3868{
3869        struct inode *inode = dentry->d_inode;
3870        int err = 0;
3871        struct btrfs_root *root = BTRFS_I(dir)->root;
3872        struct btrfs_trans_handle *trans;
3873
3874        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3875                return -ENOTEMPTY;
3876        if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3877                return -EPERM;
3878
3879        trans = __unlink_start_trans(dir);
3880        if (IS_ERR(trans))
3881                return PTR_ERR(trans);
3882
3883        if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3884                err = btrfs_unlink_subvol(trans, root, dir,
3885                                          BTRFS_I(inode)->location.objectid,
3886                                          dentry->d_name.name,
3887                                          dentry->d_name.len);
3888                goto out;
3889        }
3890
3891        err = btrfs_orphan_add(trans, inode);
3892        if (err)
3893                goto out;
3894
3895        /* now the directory is empty */
3896        err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3897                                 dentry->d_name.name, dentry->d_name.len);
3898        if (!err)
3899                btrfs_i_size_write(inode, 0);
3900out:
3901        btrfs_end_transaction(trans, root);
3902        btrfs_btree_balance_dirty(root);
3903
3904        return err;
3905}
3906
3907/*
3908 * this can truncate away extent items, csum items and directory items.
3909 * It starts at a high offset and removes keys until it can't find
3910 * any higher than new_size
3911 *
3912 * csum items that cross the new i_size are truncated to the new size
3913 * as well.
3914 *
3915 * min_type is the minimum key type to truncate down to.  If set to 0, this
3916 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3917 */
3918int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3919                               struct btrfs_root *root,
3920                               struct inode *inode,
3921                               u64 new_size, u32 min_type)
3922{
3923        struct btrfs_path *path;
3924        struct extent_buffer *leaf;
3925        struct btrfs_file_extent_item *fi;
3926        struct btrfs_key key;
3927        struct btrfs_key found_key;
3928        u64 extent_start = 0;
3929        u64 extent_num_bytes = 0;
3930        u64 extent_offset = 0;
3931        u64 item_end = 0;
3932        u32 found_type = (u8)-1;
3933        int found_extent;
3934        int del_item;
3935        int pending_del_nr = 0;
3936        int pending_del_slot = 0;
3937        int extent_type = -1;
3938        int ret;
3939        int err = 0;
3940        u64 ino = btrfs_ino(inode);
3941
3942        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3943
3944        path = btrfs_alloc_path();
3945        if (!path)
3946                return -ENOMEM;
3947        path->reada = -1;
3948
3949        /*
3950         * We want to drop from the next block forward in case this new size is
3951         * not block aligned since we will be keeping the last block of the
3952         * extent just the way it is.
3953         */
3954        if (root->ref_cows || root == root->fs_info->tree_root)
3955                btrfs_drop_extent_cache(inode, ALIGN(new_size,
3956                                        root->sectorsize), (u64)-1, 0);
3957
3958        /*
3959         * This function is also used to drop the items in the log tree before
3960         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3961         * it is used to drop the loged items. So we shouldn't kill the delayed
3962         * items.
3963         */
3964        if (min_type == 0 && root == BTRFS_I(inode)->root)
3965                btrfs_kill_delayed_inode_items(inode);
3966
3967        key.objectid = ino;
3968        key.offset = (u64)-1;
3969        key.type = (u8)-1;
3970
3971search_again:
3972        path->leave_spinning = 1;
3973        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3974        if (ret < 0) {
3975                err = ret;
3976                goto out;
3977        }
3978
3979        if (ret > 0) {
3980                /* there are no items in the tree for us to truncate, we're
3981                 * done
3982                 */
3983                if (path->slots[0] == 0)
3984                        goto out;
3985                path->slots[0]--;
3986        }
3987
3988        while (1) {
3989                fi = NULL;
3990                leaf = path->nodes[0];
3991                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3992                found_type = btrfs_key_type(&found_key);
3993
3994                if (found_key.objectid != ino)
3995                        break;
3996
3997                if (found_type < min_type)
3998                        break;
3999
4000                item_end = found_key.offset;
4001                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4002                        fi = btrfs_item_ptr(leaf, path->slots[0],
4003                                            struct btrfs_file_extent_item);
4004                        extent_type = btrfs_file_extent_type(leaf, fi);
4005                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4006                                item_end +=
4007                                    btrfs_file_extent_num_bytes(leaf, fi);
4008                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4009                                item_end += btrfs_file_extent_inline_len(leaf,
4010                                                                         fi);
4011                        }
4012                        item_end--;
4013                }
4014                if (found_type > min_type) {
4015                        del_item = 1;
4016                } else {
4017                        if (item_end < new_size)
4018                                break;
4019                        if (found_key.offset >= new_size)
4020                                del_item = 1;
4021                        else
4022                                del_item = 0;
4023                }
4024                found_extent = 0;
4025                /* FIXME, shrink the extent if the ref count is only 1 */
4026                if (found_type != BTRFS_EXTENT_DATA_KEY)
4027                        goto delete;
4028
4029                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4030                        u64 num_dec;
4031                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4032                        if (!del_item) {
4033                                u64 orig_num_bytes =
4034                                        btrfs_file_extent_num_bytes(leaf, fi);
4035                                extent_num_bytes = ALIGN(new_size -
4036                                                found_key.offset,
4037                                                root->sectorsize);
4038                                btrfs_set_file_extent_num_bytes(leaf, fi,
4039                                                         extent_num_bytes);
4040                                num_dec = (orig_num_bytes -
4041                                           extent_num_bytes);
4042                                if (root->ref_cows && extent_start != 0)
4043                                        inode_sub_bytes(inode, num_dec);
4044                                btrfs_mark_buffer_dirty(leaf);
4045                        } else {
4046                                extent_num_bytes =
4047                                        btrfs_file_extent_disk_num_bytes(leaf,
4048                                                                         fi);
4049                                extent_offset = found_key.offset -
4050                                        btrfs_file_extent_offset(leaf, fi);
4051
4052                                /* FIXME blocksize != 4096 */
4053                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4054                                if (extent_start != 0) {
4055                                        found_extent = 1;
4056                                        if (root->ref_cows)
4057                                                inode_sub_bytes(inode, num_dec);
4058                                }
4059                        }
4060                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4061                        /*
4062                         * we can't truncate inline items that have had
4063                         * special encodings
4064                         */
4065                        if (!del_item &&
4066                            btrfs_file_extent_compression(leaf, fi) == 0 &&
4067                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4068                            btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4069                                u32 size = new_size - found_key.offset;
4070
4071                                if (root->ref_cows) {
4072                                        inode_sub_bytes(inode, item_end + 1 -
4073                                                        new_size);
4074                                }
4075                                size =
4076                                    btrfs_file_extent_calc_inline_size(size);
4077                                btrfs_truncate_item(root, path, size, 1);
4078                        } else if (root->ref_cows) {
4079                                inode_sub_bytes(inode, item_end + 1 -
4080                                                found_key.offset);
4081                        }
4082                }
4083delete:
4084                if (del_item) {
4085                        if (!pending_del_nr) {
4086                                /* no pending yet, add ourselves */
4087                                pending_del_slot = path->slots[0];
4088                                pending_del_nr = 1;
4089                        } else if (pending_del_nr &&
4090                                   path->slots[0] + 1 == pending_del_slot) {
4091                                /* hop on the pending chunk */
4092                                pending_del_nr++;
4093                                pending_del_slot = path->slots[0];
4094                        } else {
4095                                BUG();
4096                        }
4097                } else {
4098                        break;
4099                }
4100                if (found_extent && (root->ref_cows ||
4101                                     root == root->fs_info->tree_root)) {
4102                        btrfs_set_path_blocking(path);
4103                        ret = btrfs_free_extent(trans, root, extent_start,
4104                                                extent_num_bytes, 0,
4105                                                btrfs_header_owner(leaf),
4106                                                ino, extent_offset, 0);
4107                        BUG_ON(ret);
4108                }
4109
4110                if (found_type == BTRFS_INODE_ITEM_KEY)
4111                        break;
4112
4113                if (path->slots[0] == 0 ||
4114                    path->slots[0] != pending_del_slot) {
4115                        if (pending_del_nr) {
4116                                ret = btrfs_del_items(trans, root, path,
4117                                                pending_del_slot,
4118                                                pending_del_nr);
4119                                if (ret) {
4120                                        btrfs_abort_transaction(trans,
4121                                                                root, ret);
4122                                        goto error;
4123                                }
4124                                pending_del_nr = 0;
4125                        }
4126                        btrfs_release_path(path);
4127                        goto search_again;
4128                } else {
4129                        path->slots[0]--;
4130                }
4131        }
4132out:
4133        if (pending_del_nr) {
4134                ret = btrfs_del_items(trans, root, path, pending_del_slot,
4135                                      pending_del_nr);
4136                if (ret)
4137                        btrfs_abort_transaction(trans, root, ret);
4138        }
4139error:
4140        btrfs_free_path(path);
4141        return err;
4142}
4143
4144/*
4145 * btrfs_truncate_page - read, zero a chunk and write a page
4146 * @inode - inode that we're zeroing
4147 * @from - the offset to start zeroing
4148 * @len - the length to zero, 0 to zero the entire range respective to the
4149 *      offset
4150 * @front - zero up to the offset instead of from the offset on
4151 *
4152 * This will find the page for the "from" offset and cow the page and zero the
4153 * part we want to zero.  This is used with truncate and hole punching.
4154 */
4155int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4156                        int front)
4157{
4158        struct address_space *mapping = inode->i_mapping;
4159        struct btrfs_root *root = BTRFS_I(inode)->root;
4160        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4161        struct btrfs_ordered_extent *ordered;
4162        struct extent_state *cached_state = NULL;
4163        char *kaddr;
4164        u32 blocksize = root->sectorsize;
4165        pgoff_t index = from >> PAGE_CACHE_SHIFT;
4166        unsigned offset = from & (PAGE_CACHE_SIZE-1);
4167        struct page *page;
4168        gfp_t mask = btrfs_alloc_write_mask(mapping);
4169        int ret = 0;
4170        u64 page_start;
4171        u64 page_end;
4172
4173        if ((offset & (blocksize - 1)) == 0 &&
4174            (!len || ((len & (blocksize - 1)) == 0)))
4175                goto out;
4176        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4177        if (ret)
4178                goto out;
4179
4180again:
4181        page = find_or_create_page(mapping, index, mask);
4182        if (!page) {
4183                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4184                ret = -ENOMEM;
4185                goto out;
4186        }
4187
4188        page_start = page_offset(page);
4189        page_end = page_start + PAGE_CACHE_SIZE - 1;
4190
4191        if (!PageUptodate(page)) {
4192                ret = btrfs_readpage(NULL, page);
4193                lock_page(page);
4194                if (page->mapping != mapping) {
4195                        unlock_page(page);
4196                        page_cache_release(page);
4197                        goto again;
4198                }
4199                if (!PageUptodate(page)) {
4200                        ret = -EIO;
4201                        goto out_unlock;
4202                }
4203        }
4204        wait_on_page_writeback(page);
4205
4206        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4207        set_page_extent_mapped(page);
4208
4209        ordered = btrfs_lookup_ordered_extent(inode, page_start);
4210        if (ordered) {
4211                unlock_extent_cached(io_tree, page_start, page_end,
4212                                     &cached_state, GFP_NOFS);
4213                unlock_page(page);
4214                page_cache_release(page);
4215                btrfs_start_ordered_extent(inode, ordered, 1);
4216                btrfs_put_ordered_extent(ordered);
4217                goto again;
4218        }
4219
4220        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4221                          EXTENT_DIRTY | EXTENT_DELALLOC |
4222                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4223                          0, 0, &cached_state, GFP_NOFS);
4224
4225        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4226                                        &cached_state);
4227        if (ret) {
4228                unlock_extent_cached(io_tree, page_start, page_end,
4229                                     &cached_state, GFP_NOFS);
4230                goto out_unlock;
4231        }
4232
4233        if (offset != PAGE_CACHE_SIZE) {
4234                if (!len)
4235                        len = PAGE_CACHE_SIZE - offset;
4236                kaddr = kmap(page);
4237                if (front)
4238                        memset(kaddr, 0, offset);
4239                else
4240                        memset(kaddr + offset, 0, len);
4241                flush_dcache_page(page);
4242                kunmap(page);
4243        }
4244        ClearPageChecked(page);
4245        set_page_dirty(page);
4246        unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4247                             GFP_NOFS);
4248
4249out_unlock:
4250        if (ret)
4251                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4252        unlock_page(page);
4253        page_cache_release(page);
4254out:
4255        return ret;
4256}
4257
4258/*
4259 * This function puts in dummy file extents for the area we're creating a hole
4260 * for.  So if we are truncating this file to a larger size we need to insert
4261 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4262 * the range between oldsize and size
4263 */
4264int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4265{
4266        struct btrfs_trans_handle *trans;
4267        struct btrfs_root *root = BTRFS_I(inode)->root;
4268        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4269        struct extent_map *em = NULL;
4270        struct extent_state *cached_state = NULL;
4271        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4272        u64 hole_start = ALIGN(oldsize, root->sectorsize);
4273        u64 block_end = ALIGN(size, root->sectorsize);
4274        u64 last_byte;
4275        u64 cur_offset;
4276        u64 hole_size;
4277        int err = 0;
4278
4279        /*
4280         * If our size started in the middle of a page we need to zero out the
4281         * rest of the page before we expand the i_size, otherwise we could
4282         * expose stale data.
4283         */
4284        err = btrfs_truncate_page(inode, oldsize, 0, 0);
4285        if (err)
4286                return err;
4287
4288        if (size <= hole_start)
4289                return 0;
4290
4291        while (1) {
4292                struct btrfs_ordered_extent *ordered;
4293                btrfs_wait_ordered_range(inode, hole_start,
4294                                         block_end - hole_start);
4295                lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4296                                 &cached_state);
4297                ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4298                if (!ordered)
4299                        break;
4300                unlock_extent_cached(io_tree, hole_start, block_end - 1,
4301                                     &cached_state, GFP_NOFS);
4302                btrfs_put_ordered_extent(ordered);
4303        }
4304
4305        cur_offset = hole_start;
4306        while (1) {
4307                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4308                                block_end - cur_offset, 0);
4309                if (IS_ERR(em)) {
4310                        err = PTR_ERR(em);
4311                        em = NULL;
4312                        break;
4313                }
4314                last_byte = min(extent_map_end(em), block_end);
4315                last_byte = ALIGN(last_byte , root->sectorsize);
4316                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4317                        struct extent_map *hole_em;
4318                        hole_size = last_byte - cur_offset;
4319
4320                        trans = btrfs_start_transaction(root, 3);
4321                        if (IS_ERR(trans)) {
4322                                err = PTR_ERR(trans);
4323                                break;
4324                        }
4325
4326                        err = btrfs_drop_extents(trans, root, inode,
4327                                                 cur_offset,
4328                                                 cur_offset + hole_size, 1);
4329                        if (err) {
4330                                btrfs_abort_transaction(trans, root, err);
4331                                btrfs_end_transaction(trans, root);
4332                                break;
4333                        }
4334
4335                        err = btrfs_insert_file_extent(trans, root,
4336                                        btrfs_ino(inode), cur_offset, 0,
4337                                        0, hole_size, 0, hole_size,
4338                                        0, 0, 0);
4339                        if (err) {
4340                                btrfs_abort_transaction(trans, root, err);
4341                                btrfs_end_transaction(trans, root);
4342                                break;
4343                        }
4344
4345                        btrfs_drop_extent_cache(inode, cur_offset,
4346                                                cur_offset + hole_size - 1, 0);
4347                        hole_em = alloc_extent_map();
4348                        if (!hole_em) {
4349                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4350                                        &BTRFS_I(inode)->runtime_flags);
4351                                goto next;
4352                        }
4353                        hole_em->start = cur_offset;
4354                        hole_em->len = hole_size;
4355                        hole_em->orig_start = cur_offset;
4356
4357                        hole_em->block_start = EXTENT_MAP_HOLE;
4358                        hole_em->block_len = 0;
4359                        hole_em->orig_block_len = 0;
4360                        hole_em->ram_bytes = hole_size;
4361                        hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4362                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
4363                        hole_em->generation = trans->transid;
4364
4365                        while (1) {
4366                                write_lock(&em_tree->lock);
4367                                err = add_extent_mapping(em_tree, hole_em, 1);
4368                                write_unlock(&em_tree->lock);
4369                                if (err != -EEXIST)
4370                                        break;
4371                                btrfs_drop_extent_cache(inode, cur_offset,
4372                                                        cur_offset +
4373                                                        hole_size - 1, 0);
4374                        }
4375                        free_extent_map(hole_em);
4376next:
4377                        btrfs_update_inode(trans, root, inode);
4378                        btrfs_end_transaction(trans, root);
4379                }
4380                free_extent_map(em);
4381                em = NULL;
4382                cur_offset = last_byte;
4383                if (cur_offset >= block_end)
4384                        break;
4385        }
4386
4387        free_extent_map(em);
4388        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4389                             GFP_NOFS);
4390        return err;
4391}
4392
4393static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4394{
4395        struct btrfs_root *root = BTRFS_I(inode)->root;
4396        struct btrfs_trans_handle *trans;
4397        loff_t oldsize = i_size_read(inode);
4398        loff_t newsize = attr->ia_size;
4399        int mask = attr->ia_valid;
4400        int ret;
4401
4402        /*
4403         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4404         * special case where we need to update the times despite not having
4405         * these flags set.  For all other operations the VFS set these flags
4406         * explicitly if it wants a timestamp update.
4407         */
4408        if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4409                inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4410
4411        if (newsize > oldsize) {
4412                truncate_pagecache(inode, oldsize, newsize);
4413                ret = btrfs_cont_expand(inode, oldsize, newsize);
4414                if (ret)
4415                        return ret;
4416
4417                trans = btrfs_start_transaction(root, 1);
4418                if (IS_ERR(trans))
4419                        return PTR_ERR(trans);
4420
4421                i_size_write(inode, newsize);
4422                btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4423                ret = btrfs_update_inode(trans, root, inode);
4424                btrfs_end_transaction(trans, root);
4425        } else {
4426
4427                /*
4428                 * We're truncating a file that used to have good data down to
4429                 * zero. Make sure it gets into the ordered flush list so that
4430                 * any new writes get down to disk quickly.
4431                 */
4432                if (newsize == 0)
4433                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4434                                &BTRFS_I(inode)->runtime_flags);
4435
4436                /*
4437                 * 1 for the orphan item we're going to add
4438                 * 1 for the orphan item deletion.
4439                 */
4440                trans = btrfs_start_transaction(root, 2);
4441                if (IS_ERR(trans))
4442                        return PTR_ERR(trans);
4443
4444                /*
4445                 * We need to do this in case we fail at _any_ point during the
4446                 * actual truncate.  Once we do the truncate_setsize we could
4447                 * invalidate pages which forces any outstanding ordered io to
4448                 * be instantly completed which will give us extents that need
4449                 * to be truncated.  If we fail to get an orphan inode down we
4450                 * could have left over extents that were never meant to live,
4451                 * so we need to garuntee from this point on that everything
4452                 * will be consistent.
4453                 */
4454                ret = btrfs_orphan_add(trans, inode);
4455                btrfs_end_transaction(trans, root);
4456                if (ret)
4457                        return ret;
4458
4459                /* we don't support swapfiles, so vmtruncate shouldn't fail */
4460                truncate_setsize(inode, newsize);
4461
4462                /* Disable nonlocked read DIO to avoid the end less truncate */
4463                btrfs_inode_block_unlocked_dio(inode);
4464                inode_dio_wait(inode);
4465                btrfs_inode_resume_unlocked_dio(inode);
4466
4467                ret = btrfs_truncate(inode);
4468                if (ret && inode->i_nlink)
4469                        btrfs_orphan_del(NULL, inode);
4470        }
4471
4472        return ret;
4473}
4474
4475static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4476{
4477        struct inode *inode = dentry->d_inode;
4478        struct btrfs_root *root = BTRFS_I(inode)->root;
4479        int err;
4480
4481        if (btrfs_root_readonly(root))
4482                return -EROFS;
4483
4484        err = inode_change_ok(inode, attr);
4485        if (err)
4486                return err;
4487
4488        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4489                err = btrfs_setsize(inode, attr);
4490                if (err)
4491                        return err;
4492        }
4493
4494        if (attr->ia_valid) {
4495                setattr_copy(inode, attr);
4496                inode_inc_iversion(inode);
4497                err = btrfs_dirty_inode(inode);
4498
4499                if (!err && attr->ia_valid & ATTR_MODE)
4500                        err = btrfs_acl_chmod(inode);
4501        }
4502
4503        return err;
4504}
4505
4506void btrfs_evict_inode(struct inode *inode)
4507{
4508        struct btrfs_trans_handle *trans;
4509        struct btrfs_root *root = BTRFS_I(inode)->root;
4510        struct btrfs_block_rsv *rsv, *global_rsv;
4511        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4512        int ret;
4513
4514        trace_btrfs_inode_evict(inode);
4515
4516        truncate_inode_pages(&inode->i_data, 0);
4517        if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
4518                               btrfs_is_free_space_inode(inode)))
4519                goto no_delete;
4520
4521        if (is_bad_inode(inode)) {
4522                btrfs_orphan_del(NULL, inode);
4523                goto no_delete;
4524        }
4525        /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4526        btrfs_wait_ordered_range(inode, 0, (u64)-1);
4527
4528        if (root->fs_info->log_root_recovering) {
4529                BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4530                                 &BTRFS_I(inode)->runtime_flags));
4531                goto no_delete;
4532        }
4533
4534        if (inode->i_nlink > 0) {
4535                BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4536                goto no_delete;
4537        }
4538
4539        ret = btrfs_commit_inode_delayed_inode(inode);
4540        if (ret) {
4541                btrfs_orphan_del(NULL, inode);
4542                goto no_delete;
4543        }
4544
4545        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4546        if (!rsv) {
4547                btrfs_orphan_del(NULL, inode);
4548                goto no_delete;
4549        }
4550        rsv->size = min_size;
4551        rsv->failfast = 1;
4552        global_rsv = &root->fs_info->global_block_rsv;
4553
4554        btrfs_i_size_write(inode, 0);
4555
4556        /*
4557         * This is a bit simpler than btrfs_truncate since we've already
4558         * reserved our space for our orphan item in the unlink, so we just
4559         * need to reserve some slack space in case we add bytes and update
4560         * inode item when doing the truncate.
4561         */
4562        while (1) {
4563                ret = btrfs_block_rsv_refill(root, rsv, min_size,
4564                                             BTRFS_RESERVE_FLUSH_LIMIT);
4565
4566                /*
4567                 * Try and steal from the global reserve since we will
4568                 * likely not use this space anyway, we want to try as
4569                 * hard as possible to get this to work.
4570                 */
4571                if (ret)
4572                        ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4573
4574                if (ret) {
4575                        btrfs_warn(root->fs_info,
4576                                "Could not get space for a delete, will truncate on mount %d",
4577                                ret);
4578                        btrfs_orphan_del(NULL, inode);
4579                        btrfs_free_block_rsv(root, rsv);
4580                        goto no_delete;
4581                }
4582
4583                trans = btrfs_join_transaction(root);
4584                if (IS_ERR(trans)) {
4585                        btrfs_orphan_del(NULL, inode);
4586                        btrfs_free_block_rsv(root, rsv);
4587                        goto no_delete;
4588                }
4589
4590                trans->block_rsv = rsv;
4591
4592                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4593                if (ret != -ENOSPC)
4594                        break;
4595
4596                trans->block_rsv = &root->fs_info->trans_block_rsv;
4597                btrfs_end_transaction(trans, root);
4598                trans = NULL;
4599                btrfs_btree_balance_dirty(root);
4600        }
4601
4602        btrfs_free_block_rsv(root, rsv);
4603
4604        if (ret == 0) {
4605                trans->block_rsv = root->orphan_block_rsv;
4606                ret = btrfs_orphan_del(trans, inode);
4607                BUG_ON(ret);
4608        }
4609
4610        trans->block_rsv = &root->fs_info->trans_block_rsv;
4611        if (!(root == root->fs_info->tree_root ||
4612              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4613                btrfs_return_ino(root, btrfs_ino(inode));
4614
4615        btrfs_end_transaction(trans, root);
4616        btrfs_btree_balance_dirty(root);
4617no_delete:
4618        btrfs_remove_delayed_node(inode);
4619        clear_inode(inode);
4620        return;
4621}
4622
4623/*
4624 * this returns the key found in the dir entry in the location pointer.
4625 * If no dir entries were found, location->objectid is 0.
4626 */
4627static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4628                               struct btrfs_key *location)
4629{
4630        const char *name = dentry->d_name.name;
4631        int namelen = dentry->d_name.len;
4632        struct btrfs_dir_item *di;
4633        struct btrfs_path *path;
4634        struct btrfs_root *root = BTRFS_I(dir)->root;
4635        int ret = 0;
4636
4637        path = btrfs_alloc_path();
4638        if (!path)
4639                return -ENOMEM;
4640
4641        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4642                                    namelen, 0);
4643        if (IS_ERR(di))
4644                ret = PTR_ERR(di);
4645
4646        if (IS_ERR_OR_NULL(di))
4647                goto out_err;
4648
4649        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4650out:
4651        btrfs_free_path(path);
4652        return ret;
4653out_err:
4654        location->objectid = 0;
4655        goto out;
4656}
4657
4658/*
4659 * when we hit a tree root in a directory, the btrfs part of the inode
4660 * needs to be changed to reflect the root directory of the tree root.  This
4661 * is kind of like crossing a mount point.
4662 */
4663static int fixup_tree_root_location(struct btrfs_root *root,
4664                                    struct inode *dir,
4665                                    struct dentry *dentry,
4666                                    struct btrfs_key *location,
4667                                    struct btrfs_root **sub_root)
4668{
4669        struct btrfs_path *path;
4670        struct btrfs_root *new_root;
4671        struct btrfs_root_ref *ref;
4672        struct extent_buffer *leaf;
4673        int ret;
4674        int err = 0;
4675
4676        path = btrfs_alloc_path();
4677        if (!path) {
4678                err = -ENOMEM;
4679                goto out;
4680        }
4681
4682        err = -ENOENT;
4683        ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4684                                  BTRFS_I(dir)->root->root_key.objectid,
4685                                  location->objectid);
4686        if (ret) {
4687                if (ret < 0)
4688                        err = ret;
4689                goto out;
4690        }
4691
4692        leaf = path->nodes[0];
4693        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4694        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4695            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4696                goto out;
4697
4698        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4699                                   (unsigned long)(ref + 1),
4700                                   dentry->d_name.len);
4701        if (ret)
4702                goto out;
4703
4704        btrfs_release_path(path);
4705
4706        new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4707        if (IS_ERR(new_root)) {
4708                err = PTR_ERR(new_root);
4709                goto out;
4710        }
4711
4712        *sub_root = new_root;
4713        location->objectid = btrfs_root_dirid(&new_root->root_item);
4714        location->type = BTRFS_INODE_ITEM_KEY;
4715        location->offset = 0;
4716        err = 0;
4717out:
4718        btrfs_free_path(path);
4719        return err;
4720}
4721
4722static void inode_tree_add(struct inode *inode)
4723{
4724        struct btrfs_root *root = BTRFS_I(inode)->root;
4725        struct btrfs_inode *entry;
4726        struct rb_node **p;
4727        struct rb_node *parent;
4728        u64 ino = btrfs_ino(inode);
4729
4730        if (inode_unhashed(inode))
4731                return;
4732again:
4733        parent = NULL;
4734        spin_lock(&root->inode_lock);
4735        p = &root->inode_tree.rb_node;
4736        while (*p) {
4737                parent = *p;
4738                entry = rb_entry(parent, struct btrfs_inode, rb_node);
4739
4740                if (ino < btrfs_ino(&entry->vfs_inode))
4741                        p = &parent->rb_left;
4742                else if (ino > btrfs_ino(&entry->vfs_inode))
4743                        p = &parent->rb_right;
4744                else {
4745                        WARN_ON(!(entry->vfs_inode.i_state &
4746                                  (I_WILL_FREE | I_FREEING)));
4747                        rb_erase(parent, &root->inode_tree);
4748                        RB_CLEAR_NODE(parent);
4749                        spin_unlock(&root->inode_lock);
4750                        goto again;
4751                }
4752        }
4753        rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4754        rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4755        spin_unlock(&root->inode_lock);
4756}
4757
4758static void inode_tree_del(struct inode *inode)
4759{
4760        struct btrfs_root *root = BTRFS_I(inode)->root;
4761        int empty = 0;
4762
4763        spin_lock(&root->inode_lock);
4764        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4765                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4766                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4767                empty = RB_EMPTY_ROOT(&root->inode_tree);
4768        }
4769        spin_unlock(&root->inode_lock);
4770
4771        /*
4772         * Free space cache has inodes in the tree root, but the tree root has a
4773         * root_refs of 0, so this could end up dropping the tree root as a
4774         * snapshot, so we need the extra !root->fs_info->tree_root check to
4775         * make sure we don't drop it.
4776         */
4777        if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4778            root != root->fs_info->tree_root) {
4779                synchronize_srcu(&root->fs_info->subvol_srcu);
4780                spin_lock(&root->inode_lock);
4781                empty = RB_EMPTY_ROOT(&root->inode_tree);
4782                spin_unlock(&root->inode_lock);
4783                if (empty)
4784                        btrfs_add_dead_root(root);
4785        }
4786}
4787
4788void btrfs_invalidate_inodes(struct btrfs_root *root)
4789{
4790        struct rb_node *node;
4791        struct rb_node *prev;
4792        struct btrfs_inode *entry;
4793        struct inode *inode;
4794        u64 objectid = 0;
4795
4796        WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4797
4798        spin_lock(&root->inode_lock);
4799again:
4800        node = root->inode_tree.rb_node;
4801        prev = NULL;
4802        while (node) {
4803                prev = node;
4804                entry = rb_entry(node, struct btrfs_inode, rb_node);
4805
4806                if (objectid < btrfs_ino(&entry->vfs_inode))
4807                        node = node->rb_left;
4808                else if (objectid > btrfs_ino(&entry->vfs_inode))
4809                        node = node->rb_right;
4810                else
4811                        break;
4812        }
4813        if (!node) {
4814                while (prev) {
4815                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
4816                        if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4817                                node = prev;
4818                                break;
4819                        }
4820                        prev = rb_next(prev);
4821                }
4822        }
4823        while (node) {
4824                entry = rb_entry(node, struct btrfs_inode, rb_node);
4825                objectid = btrfs_ino(&entry->vfs_inode) + 1;
4826                inode = igrab(&entry->vfs_inode);
4827                if (inode) {
4828                        spin_unlock(&root->inode_lock);
4829                        if (atomic_read(&inode->i_count) > 1)
4830                                d_prune_aliases(inode);
4831                        /*
4832                         * btrfs_drop_inode will have it removed from
4833                         * the inode cache when its usage count
4834                         * hits zero.
4835                         */
4836                        iput(inode);
4837                        cond_resched();
4838                        spin_lock(&root->inode_lock);
4839                        goto again;
4840                }
4841
4842                if (cond_resched_lock(&root->inode_lock))
4843                        goto again;
4844
4845                node = rb_next(node);
4846        }
4847        spin_unlock(&root->inode_lock);
4848}
4849
4850static int btrfs_init_locked_inode(struct inode *inode, void *p)
4851{
4852        struct btrfs_iget_args *args = p;
4853        inode->i_ino = args->ino;
4854        BTRFS_I(inode)->root = args->root;
4855        return 0;
4856}
4857
4858static int btrfs_find_actor(struct inode *inode, void *opaque)
4859{
4860        struct btrfs_iget_args *args = opaque;
4861        return args->ino == btrfs_ino(inode) &&
4862                args->root == BTRFS_I(inode)->root;
4863}
4864
4865static struct inode *btrfs_iget_locked(struct super_block *s,
4866                                       u64 objectid,
4867                                       struct btrfs_root *root)
4868{
4869        struct inode *inode;
4870        struct btrfs_iget_args args;
4871        args.ino = objectid;
4872        args.root = root;
4873
4874        inode = iget5_locked(s, objectid, btrfs_find_actor,
4875                             btrfs_init_locked_inode,
4876                             (void *)&args);
4877        return inode;
4878}
4879
4880/* Get an inode object given its location and corresponding root.
4881 * Returns in *is_new if the inode was read from disk
4882 */
4883struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4884                         struct btrfs_root *root, int *new)
4885{
4886        struct inode *inode;
4887
4888        inode = btrfs_iget_locked(s, location->objectid, root);
4889        if (!inode)
4890                return ERR_PTR(-ENOMEM);
4891
4892        if (inode->i_state & I_NEW) {
4893                BTRFS_I(inode)->root = root;
4894                memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4895                btrfs_read_locked_inode(inode);
4896                if (!is_bad_inode(inode)) {
4897                        inode_tree_add(inode);
4898                        unlock_new_inode(inode);
4899                        if (new)
4900                                *new = 1;
4901                } else {
4902                        unlock_new_inode(inode);
4903                        iput(inode);
4904                        inode = ERR_PTR(-ESTALE);
4905                }
4906        }
4907
4908        return inode;
4909}
4910
4911static struct inode *new_simple_dir(struct super_block *s,
4912                                    struct btrfs_key *key,
4913                                    struct btrfs_root *root)
4914{
4915        struct inode *inode = new_inode(s);
4916
4917        if (!inode)
4918                return ERR_PTR(-ENOMEM);
4919
4920        BTRFS_I(inode)->root = root;
4921        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4922        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4923
4924        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4925        inode->i_op = &btrfs_dir_ro_inode_operations;
4926        inode->i_fop = &simple_dir_operations;
4927        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4928        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4929
4930        return inode;
4931}
4932
4933struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4934{
4935        struct inode *inode;
4936        struct btrfs_root *root = BTRFS_I(dir)->root;
4937        struct btrfs_root *sub_root = root;
4938        struct btrfs_key location;
4939        int index;
4940        int ret = 0;
4941
4942        if (dentry->d_name.len > BTRFS_NAME_LEN)
4943                return ERR_PTR(-ENAMETOOLONG);
4944
4945        ret = btrfs_inode_by_name(dir, dentry, &location);
4946        if (ret < 0)
4947                return ERR_PTR(ret);
4948
4949        if (location.objectid == 0)
4950                return NULL;
4951
4952        if (location.type == BTRFS_INODE_ITEM_KEY) {
4953                inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4954                return inode;
4955        }
4956
4957        BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4958
4959        index = srcu_read_lock(&root->fs_info->subvol_srcu);
4960        ret = fixup_tree_root_location(root, dir, dentry,
4961                                       &location, &sub_root);
4962        if (ret < 0) {
4963                if (ret != -ENOENT)
4964                        inode = ERR_PTR(ret);
4965                else
4966                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
4967        } else {
4968                inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4969        }
4970        srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4971
4972        if (!IS_ERR(inode) && root != sub_root) {
4973                down_read(&root->fs_info->cleanup_work_sem);
4974                if (!(inode->i_sb->s_flags & MS_RDONLY))
4975                        ret = btrfs_orphan_cleanup(sub_root);
4976                up_read(&root->fs_info->cleanup_work_sem);
4977                if (ret) {
4978                        iput(inode);
4979                        inode = ERR_PTR(ret);
4980                }
4981        }
4982
4983        return inode;
4984}
4985
4986static int btrfs_dentry_delete(const struct dentry *dentry)
4987{
4988        struct btrfs_root *root;
4989        struct inode *inode = dentry->d_inode;
4990
4991        if (!inode && !IS_ROOT(dentry))
4992                inode = dentry->d_parent->d_inode;
4993
4994        if (inode) {
4995                root = BTRFS_I(inode)->root;
4996                if (btrfs_root_refs(&root->root_item) == 0)
4997                        return 1;
4998
4999                if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5000                        return 1;
5001        }
5002        return 0;
5003}
5004
5005static void btrfs_dentry_release(struct dentry *dentry)
5006{
5007        if (dentry->d_fsdata)
5008                kfree(dentry->d_fsdata);
5009}
5010
5011static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5012                                   unsigned int flags)
5013{
5014        struct dentry *ret;
5015
5016        ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
5017        return ret;
5018}
5019
5020unsigned char btrfs_filetype_table[] = {
5021        DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5022};
5023
5024static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5025{
5026        struct inode *inode = file_inode(file);
5027        struct btrfs_root *root = BTRFS_I(inode)->root;
5028        struct btrfs_item *item;
5029        struct btrfs_dir_item *di;
5030        struct btrfs_key key;
5031        struct btrfs_key found_key;
5032        struct btrfs_path *path;
5033        struct list_head ins_list;
5034        struct list_head del_list;
5035        int ret;
5036        struct extent_buffer *leaf;
5037        int slot;
5038        unsigned char d_type;
5039        int over = 0;
5040        u32 di_cur;
5041        u32 di_total;
5042        u32 di_len;
5043        int key_type = BTRFS_DIR_INDEX_KEY;
5044        char tmp_name[32];
5045        char *name_ptr;
5046        int name_len;
5047        int is_curr = 0;        /* ctx->pos points to the current index? */
5048
5049        /* FIXME, use a real flag for deciding about the key type */
5050        if (root->fs_info->tree_root == root)
5051                key_type = BTRFS_DIR_ITEM_KEY;
5052
5053        if (!dir_emit_dots(file, ctx))
5054                return 0;
5055
5056        path = btrfs_alloc_path();
5057        if (!path)
5058                return -ENOMEM;
5059
5060        path->reada = 1;
5061
5062        if (key_type == BTRFS_DIR_INDEX_KEY) {
5063                INIT_LIST_HEAD(&ins_list);
5064                INIT_LIST_HEAD(&del_list);
5065                btrfs_get_delayed_items(inode, &ins_list, &del_list);
5066        }
5067
5068        btrfs_set_key_type(&key, key_type);
5069        key.offset = ctx->pos;
5070        key.objectid = btrfs_ino(inode);
5071
5072        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5073        if (ret < 0)
5074                goto err;
5075
5076        while (1) {
5077                leaf = path->nodes[0];
5078                slot = path->slots[0];
5079                if (slot >= btrfs_header_nritems(leaf)) {
5080                        ret = btrfs_next_leaf(root, path);
5081                        if (ret < 0)
5082                                goto err;
5083                        else if (ret > 0)
5084                                break;
5085                        continue;
5086                }
5087
5088                item = btrfs_item_nr(leaf, slot);
5089                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5090
5091                if (found_key.objectid != key.objectid)
5092                        break;
5093                if (btrfs_key_type(&found_key) != key_type)
5094                        break;
5095                if (found_key.offset < ctx->pos)
5096                        goto next;
5097                if (key_type == BTRFS_DIR_INDEX_KEY &&
5098                    btrfs_should_delete_dir_index(&del_list,
5099                                                  found_key.offset))
5100                        goto next;
5101
5102                ctx->pos = found_key.offset;
5103                is_curr = 1;
5104
5105                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5106                di_cur = 0;
5107                di_total = btrfs_item_size(leaf, item);
5108
5109                while (di_cur < di_total) {
5110                        struct btrfs_key location;
5111
5112                        if (verify_dir_item(root, leaf, di))
5113                                break;
5114
5115                        name_len = btrfs_dir_name_len(leaf, di);
5116                        if (name_len <= sizeof(tmp_name)) {
5117                                name_ptr = tmp_name;
5118                        } else {
5119                                name_ptr = kmalloc(name_len, GFP_NOFS);
5120                                if (!name_ptr) {
5121                                        ret = -ENOMEM;
5122                                        goto err;
5123                                }
5124                        }
5125                        read_extent_buffer(leaf, name_ptr,
5126                                           (unsigned long)(di + 1), name_len);
5127
5128                        d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5129                        btrfs_dir_item_key_to_cpu(leaf, di, &location);
5130
5131
5132                        /* is this a reference to our own snapshot? If so
5133                         * skip it.
5134                         *
5135                         * In contrast to old kernels, we insert the snapshot's
5136                         * dir item and dir index after it has been created, so
5137                         * we won't find a reference to our own snapshot. We
5138                         * still keep the following code for backward
5139                         * compatibility.
5140                         */
5141                        if (location.type == BTRFS_ROOT_ITEM_KEY &&
5142                            location.objectid == root->root_key.objectid) {
5143                                over = 0;
5144                                goto skip;
5145                        }
5146                        over = !dir_emit(ctx, name_ptr, name_len,
5147                                       location.objectid, d_type);
5148
5149skip:
5150                        if (name_ptr != tmp_name)
5151                                kfree(name_ptr);
5152
5153                        if (over)
5154                                goto nopos;
5155                        di_len = btrfs_dir_name_len(leaf, di) +
5156                                 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5157                        di_cur += di_len;
5158                        di = (struct btrfs_dir_item *)((char *)di + di_len);
5159                }
5160next:
5161                path->slots[0]++;
5162        }
5163
5164        if (key_type == BTRFS_DIR_INDEX_KEY) {
5165                if (is_curr)
5166                        ctx->pos++;
5167                ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5168                if (ret)
5169                        goto nopos;
5170        }
5171
5172        /* Reached end of directory/root. Bump pos past the last item. */
5173        ctx->pos++;
5174
5175        /*
5176         * Stop new entries from being returned after we return the last
5177         * entry.
5178         *
5179         * New directory entries are assigned a strictly increasing
5180         * offset.  This means that new entries created during readdir
5181         * are *guaranteed* to be seen in the future by that readdir.
5182         * This has broken buggy programs which operate on names as
5183         * they're returned by readdir.  Until we re-use freed offsets
5184         * we have this hack to stop new entries from being returned
5185         * under the assumption that they'll never reach this huge
5186         * offset.
5187         *
5188         * This is being careful not to overflow 32bit loff_t unless the
5189         * last entry requires it because doing so has broken 32bit apps
5190         * in the past.
5191         */
5192        if (key_type == BTRFS_DIR_INDEX_KEY) {
5193                if (ctx->pos >= INT_MAX)
5194                        ctx->pos = LLONG_MAX;
5195                else
5196                        ctx->pos = INT_MAX;
5197        }
5198nopos:
5199        ret = 0;
5200err:
5201        if (key_type == BTRFS_DIR_INDEX_KEY)
5202                btrfs_put_delayed_items(&ins_list, &del_list);
5203        btrfs_free_path(path);
5204        return ret;
5205}
5206
5207int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5208{
5209        struct btrfs_root *root = BTRFS_I(inode)->root;
5210        struct btrfs_trans_handle *trans;
5211        int ret = 0;
5212        bool nolock = false;
5213
5214        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5215                return 0;
5216
5217        if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5218                nolock = true;
5219
5220        if (wbc->sync_mode == WB_SYNC_ALL) {
5221                if (nolock)
5222                        trans = btrfs_join_transaction_nolock(root);
5223                else
5224                        trans = btrfs_join_transaction(root);
5225                if (IS_ERR(trans))
5226                        return PTR_ERR(trans);
5227                ret = btrfs_commit_transaction(trans, root);
5228        }
5229        return ret;
5230}
5231
5232/*
5233 * This is somewhat expensive, updating the tree every time the
5234 * inode changes.  But, it is most likely to find the inode in cache.
5235 * FIXME, needs more benchmarking...there are no reasons other than performance
5236 * to keep or drop this code.
5237 */
5238static int btrfs_dirty_inode(struct inode *inode)
5239{
5240        struct btrfs_root *root = BTRFS_I(inode)->root;
5241        struct btrfs_trans_handle *trans;
5242        int ret;
5243
5244        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5245                return 0;
5246
5247        trans = btrfs_join_transaction(root);
5248        if (IS_ERR(trans))
5249                return PTR_ERR(trans);
5250
5251        ret = btrfs_update_inode(trans, root, inode);
5252        if (ret && ret == -ENOSPC) {
5253                /* whoops, lets try again with the full transaction */
5254                btrfs_end_transaction(trans, root);
5255                trans = btrfs_start_transaction(root, 1);
5256                if (IS_ERR(trans))
5257                        return PTR_ERR(trans);
5258
5259                ret = btrfs_update_inode(trans, root, inode);
5260        }
5261        btrfs_end_transaction(trans, root);
5262        if (BTRFS_I(inode)->delayed_node)
5263                btrfs_balance_delayed_items(root);
5264
5265        return ret;
5266}
5267
5268/*
5269 * This is a copy of file_update_time.  We need this so we can return error on
5270 * ENOSPC for updating the inode in the case of file write and mmap writes.
5271 */
5272static int btrfs_update_time(struct inode *inode, struct timespec *now,
5273                             int flags)
5274{
5275        struct btrfs_root *root = BTRFS_I(inode)->root;
5276
5277        if (btrfs_root_readonly(root))
5278                return -EROFS;
5279
5280        if (flags & S_VERSION)
5281                inode_inc_iversion(inode);
5282        if (flags & S_CTIME)
5283                inode->i_ctime = *now;
5284        if (flags & S_MTIME)
5285                inode->i_mtime = *now;
5286        if (flags & S_ATIME)
5287                inode->i_atime = *now;
5288        return btrfs_dirty_inode(inode);
5289}
5290
5291/*
5292 * find the highest existing sequence number in a directory
5293 * and then set the in-memory index_cnt variable to reflect
5294 * free sequence numbers
5295 */
5296static int btrfs_set_inode_index_count(struct inode *inode)
5297{
5298        struct btrfs_root *root = BTRFS_I(inode)->root;
5299        struct btrfs_key key, found_key;
5300        struct btrfs_path *path;
5301        struct extent_buffer *leaf;
5302        int ret;
5303
5304        key.objectid = btrfs_ino(inode);
5305        btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5306        key.offset = (u64)-1;
5307
5308        path = btrfs_alloc_path();
5309        if (!path)
5310                return -ENOMEM;
5311
5312        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5313        if (ret < 0)
5314                goto out;
5315        /* FIXME: we should be able to handle this */
5316        if (ret == 0)
5317                goto out;
5318        ret = 0;
5319
5320        /*
5321         * MAGIC NUMBER EXPLANATION:
5322         * since we search a directory based on f_pos we have to start at 2
5323         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5324         * else has to start at 2
5325         */
5326        if (path->slots[0] == 0) {
5327                BTRFS_I(inode)->index_cnt = 2;
5328                goto out;
5329        }
5330
5331        path->slots[0]--;
5332
5333        leaf = path->nodes[0];
5334        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5335
5336        if (found_key.objectid != btrfs_ino(inode) ||
5337            btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5338                BTRFS_I(inode)->index_cnt = 2;
5339                goto out;
5340        }
5341
5342        BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5343out:
5344        btrfs_free_path(path);
5345        return ret;
5346}
5347
5348/*
5349 * helper to find a free sequence number in a given directory.  This current
5350 * code is very simple, later versions will do smarter things in the btree
5351 */
5352int btrfs_set_inode_index(struct inode *dir, u64 *index)
5353{
5354        int ret = 0;
5355
5356        if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5357                ret = btrfs_inode_delayed_dir_index_count(dir);
5358                if (ret) {
5359                        ret = btrfs_set_inode_index_count(dir);
5360                        if (ret)
5361                                return ret;
5362                }
5363        }
5364
5365        *index = BTRFS_I(dir)->index_cnt;
5366        BTRFS_I(dir)->index_cnt++;
5367
5368        return ret;
5369}
5370
5371static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5372                                     struct btrfs_root *root,
5373                                     struct inode *dir,
5374                                     const char *name, int name_len,
5375                                     u64 ref_objectid, u64 objectid,
5376                                     umode_t mode, u64 *index)
5377{
5378        struct inode *inode;
5379        struct btrfs_inode_item *inode_item;
5380        struct btrfs_key *location;
5381        struct btrfs_path *path;
5382        struct btrfs_inode_ref *ref;
5383        struct btrfs_key key[2];
5384        u32 sizes[2];
5385        unsigned long ptr;
5386        int ret;
5387        int owner;
5388
5389        path = btrfs_alloc_path();
5390        if (!path)
5391                return ERR_PTR(-ENOMEM);
5392
5393        inode = new_inode(root->fs_info->sb);
5394        if (!inode) {
5395                btrfs_free_path(path);
5396                return ERR_PTR(-ENOMEM);
5397        }
5398
5399        /*
5400         * we have to initialize this early, so we can reclaim the inode
5401         * number if we fail afterwards in this function.
5402         */
5403        inode->i_ino = objectid;
5404
5405        if (dir) {
5406                trace_btrfs_inode_request(dir);
5407
5408                ret = btrfs_set_inode_index(dir, index);
5409                if (ret) {
5410                        btrfs_free_path(path);
5411                        iput(inode);
5412                        return ERR_PTR(ret);
5413                }
5414        }
5415        /*
5416         * index_cnt is ignored for everything but a dir,
5417         * btrfs_get_inode_index_count has an explanation for the magic
5418         * number
5419         */
5420        BTRFS_I(inode)->index_cnt = 2;
5421        BTRFS_I(inode)->root = root;
5422        BTRFS_I(inode)->generation = trans->transid;
5423        inode->i_generation = BTRFS_I(inode)->generation;
5424
5425        /*
5426         * We could have gotten an inode number from somebody who was fsynced
5427         * and then removed in this same transaction, so let's just set full
5428         * sync since it will be a full sync anyway and this will blow away the
5429         * old info in the log.
5430         */
5431        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5432
5433        if (S_ISDIR(mode))
5434                owner = 0;
5435        else
5436                owner = 1;
5437
5438        key[0].objectid = objectid;
5439        btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5440        key[0].offset = 0;
5441
5442        /*
5443         * Start new inodes with an inode_ref. This is slightly more
5444         * efficient for small numbers of hard links since they will
5445         * be packed into one item. Extended refs will kick in if we
5446         * add more hard links than can fit in the ref item.
5447         */
5448        key[1].objectid = objectid;
5449        btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5450        key[1].offset = ref_objectid;
5451
5452        sizes[0] = sizeof(struct btrfs_inode_item);
5453        sizes[1] = name_len + sizeof(*ref);
5454
5455        path->leave_spinning = 1;
5456        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5457        if (ret != 0)
5458                goto fail;
5459
5460        inode_init_owner(inode, dir, mode);
5461        inode_set_bytes(inode, 0);
5462        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5463        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5464                                  struct btrfs_inode_item);
5465        memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5466                             sizeof(*inode_item));
5467        fill_inode_item(trans, path->nodes[0], inode_item, inode);
5468
5469        ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5470                             struct btrfs_inode_ref);
5471        btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5472        btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5473        ptr = (unsigned long)(ref + 1);
5474        write_extent_buffer(path->nodes[0], name, ptr, name_len);
5475
5476        btrfs_mark_buffer_dirty(path->nodes[0]);
5477        btrfs_free_path(path);
5478
5479        location = &BTRFS_I(inode)->location;
5480        location->objectid = objectid;
5481        location->offset = 0;
5482        btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5483
5484        btrfs_inherit_iflags(inode, dir);
5485
5486        if (S_ISREG(mode)) {
5487                if (btrfs_test_opt(root, NODATASUM))
5488                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5489                if (btrfs_test_opt(root, NODATACOW))
5490                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5491                                BTRFS_INODE_NODATASUM;
5492        }
5493
5494        insert_inode_hash(inode);
5495        inode_tree_add(inode);
5496
5497        trace_btrfs_inode_new(inode);
5498        btrfs_set_inode_last_trans(trans, inode);
5499
5500        btrfs_update_root_times(trans, root);
5501
5502        return inode;
5503fail:
5504        if (dir)
5505                BTRFS_I(dir)->index_cnt--;
5506        btrfs_free_path(path);
5507        iput(inode);
5508        return ERR_PTR(ret);
5509}
5510
5511static inline u8 btrfs_inode_type(struct inode *inode)
5512{
5513        return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5514}
5515
5516/*
5517 * utility function to add 'inode' into 'parent_inode' with
5518 * a give name and a given sequence number.
5519 * if 'add_backref' is true, also insert a backref from the
5520 * inode to the parent directory.
5521 */
5522int btrfs_add_link(struct btrfs_trans_handle *trans,
5523                   struct inode *parent_inode, struct inode *inode,
5524                   const char *name, int name_len, int add_backref, u64 index)
5525{
5526        int ret = 0;
5527        struct btrfs_key key;
5528        struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5529        u64 ino = btrfs_ino(inode);
5530        u64 parent_ino = btrfs_ino(parent_inode);
5531
5532        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5533                memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5534        } else {
5535                key.objectid = ino;
5536                btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5537                key.offset = 0;
5538        }
5539
5540        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5541                ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5542                                         key.objectid, root->root_key.objectid,
5543                                         parent_ino, index, name, name_len);
5544        } else if (add_backref) {
5545                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5546                                             parent_ino, index);
5547        }
5548
5549        /* Nothing to clean up yet */
5550        if (ret)
5551                return ret;
5552
5553        ret = btrfs_insert_dir_item(trans, root, name, name_len,
5554                                    parent_inode, &key,
5555                                    btrfs_inode_type(inode), index);
5556        if (ret == -EEXIST || ret == -EOVERFLOW)
5557                goto fail_dir_item;
5558        else if (ret) {
5559                btrfs_abort_transaction(trans, root, ret);
5560                return ret;
5561        }
5562
5563        btrfs_i_size_write(parent_inode, parent_inode->i_size +
5564                           name_len * 2);
5565        inode_inc_iversion(parent_inode);
5566        parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5567        ret = btrfs_update_inode(trans, root, parent_inode);
5568        if (ret)
5569                btrfs_abort_transaction(trans, root, ret);
5570        return ret;
5571
5572fail_dir_item:
5573        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5574                u64 local_index;
5575                int err;
5576                err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5577                                 key.objectid, root->root_key.objectid,
5578                                 parent_ino, &local_index, name, name_len);
5579
5580        } else if (add_backref) {
5581                u64 local_index;
5582                int err;
5583
5584                err = btrfs_del_inode_ref(trans, root, name, name_len,
5585                                          ino, parent_ino, &local_index);
5586        }
5587        return ret;
5588}
5589
5590static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5591                            struct inode *dir, struct dentry *dentry,
5592                            struct inode *inode, int backref, u64 index)
5593{
5594        int err = btrfs_add_link(trans, dir, inode,
5595                                 dentry->d_name.name, dentry->d_name.len,
5596                                 backref, index);
5597        if (err > 0)
5598                err = -EEXIST;
5599        return err;
5600}
5601
5602static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5603                        umode_t mode, dev_t rdev)
5604{
5605        struct btrfs_trans_handle *trans;
5606        struct btrfs_root *root = BTRFS_I(dir)->root;
5607        struct inode *inode = NULL;
5608        int err;
5609        int drop_inode = 0;
5610        u64 objectid;
5611        u64 index = 0;
5612
5613        if (!new_valid_dev(rdev))
5614                return -EINVAL;
5615
5616        /*
5617         * 2 for inode item and ref
5618         * 2 for dir items
5619         * 1 for xattr if selinux is on
5620         */
5621        trans = btrfs_start_transaction(root, 5);
5622        if (IS_ERR(trans))
5623                return PTR_ERR(trans);
5624
5625        err = btrfs_find_free_ino(root, &objectid);
5626        if (err)
5627                goto out_unlock;
5628
5629        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5630                                dentry->d_name.len, btrfs_ino(dir), objectid,
5631                                mode, &index);
5632        if (IS_ERR(inode)) {
5633                err = PTR_ERR(inode);
5634                goto out_unlock;
5635        }
5636
5637        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5638        if (err) {
5639                drop_inode = 1;
5640                goto out_unlock;
5641        }
5642
5643        /*
5644        * If the active LSM wants to access the inode during
5645        * d_instantiate it needs these. Smack checks to see
5646        * if the filesystem supports xattrs by looking at the
5647        * ops vector.
5648        */
5649
5650        inode->i_op = &btrfs_special_inode_operations;
5651        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5652        if (err)
5653                drop_inode = 1;
5654        else {
5655                init_special_inode(inode, inode->i_mode, rdev);
5656                btrfs_update_inode(trans, root, inode);
5657                d_instantiate(dentry, inode);
5658        }
5659out_unlock:
5660        btrfs_end_transaction(trans, root);
5661        btrfs_btree_balance_dirty(root);
5662        if (drop_inode) {
5663                inode_dec_link_count(inode);
5664                iput(inode);
5665        }
5666        return err;
5667}
5668
5669static int btrfs_create(struct inode *dir, struct dentry *dentry,
5670                        umode_t mode, bool excl)
5671{
5672        struct btrfs_trans_handle *trans;
5673        struct btrfs_root *root = BTRFS_I(dir)->root;
5674        struct inode *inode = NULL;
5675        int drop_inode_on_err = 0;
5676        int err;
5677        u64 objectid;
5678        u64 index = 0;
5679
5680        /*
5681         * 2 for inode item and ref
5682         * 2 for dir items
5683         * 1 for xattr if selinux is on
5684         */
5685        trans = btrfs_start_transaction(root, 5);
5686        if (IS_ERR(trans))
5687                return PTR_ERR(trans);
5688
5689        err = btrfs_find_free_ino(root, &objectid);
5690        if (err)
5691                goto out_unlock;
5692
5693        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5694                                dentry->d_name.len, btrfs_ino(dir), objectid,
5695                                mode, &index);
5696        if (IS_ERR(inode)) {
5697                err = PTR_ERR(inode);
5698                goto out_unlock;
5699        }
5700        drop_inode_on_err = 1;
5701
5702        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5703        if (err)
5704                goto out_unlock;
5705
5706        err = btrfs_update_inode(trans, root, inode);
5707        if (err)
5708                goto out_unlock;
5709
5710        /*
5711        * If the active LSM wants to access the inode during
5712        * d_instantiate it needs these. Smack checks to see
5713        * if the filesystem supports xattrs by looking at the
5714        * ops vector.
5715        */
5716        inode->i_fop = &btrfs_file_operations;
5717        inode->i_op = &btrfs_file_inode_operations;
5718
5719        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5720        if (err)
5721                goto out_unlock;
5722
5723        inode->i_mapping->a_ops = &btrfs_aops;
5724        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5725        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5726        d_instantiate(dentry, inode);
5727
5728out_unlock:
5729        btrfs_end_transaction(trans, root);
5730        if (err && drop_inode_on_err) {
5731                inode_dec_link_count(inode);
5732                iput(inode);
5733        }
5734        btrfs_btree_balance_dirty(root);
5735        return err;
5736}
5737
5738static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5739                      struct dentry *dentry)
5740{
5741        struct btrfs_trans_handle *trans;
5742        struct btrfs_root *root = BTRFS_I(dir)->root;
5743        struct inode *inode = old_dentry->d_inode;
5744        u64 index;
5745        int err;
5746        int drop_inode = 0;
5747
5748        /* do not allow sys_link's with other subvols of the same device */
5749        if (root->objectid != BTRFS_I(inode)->root->objectid)
5750                return -EXDEV;
5751
5752        if (inode->i_nlink >= BTRFS_LINK_MAX)
5753                return -EMLINK;
5754
5755        err = btrfs_set_inode_index(dir, &index);
5756        if (err)
5757                goto fail;
5758
5759        /*
5760         * 2 items for inode and inode ref
5761         * 2 items for dir items
5762         * 1 item for parent inode
5763         */
5764        trans = btrfs_start_transaction(root, 5);
5765        if (IS_ERR(trans)) {
5766                err = PTR_ERR(trans);
5767                goto fail;
5768        }
5769
5770        btrfs_inc_nlink(inode);
5771        inode_inc_iversion(inode);
5772        inode->i_ctime = CURRENT_TIME;
5773        ihold(inode);
5774        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5775
5776        err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5777
5778        if (err) {
5779                drop_inode = 1;
5780        } else {
5781                struct dentry *parent = dentry->d_parent;
5782                err = btrfs_update_inode(trans, root, inode);
5783                if (err)
5784                        goto fail;
5785                d_instantiate(dentry, inode);
5786                btrfs_log_new_name(trans, inode, NULL, parent);
5787        }
5788
5789        btrfs_end_transaction(trans, root);
5790fail:
5791        if (drop_inode) {
5792                inode_dec_link_count(inode);
5793                iput(inode);
5794        }
5795        btrfs_btree_balance_dirty(root);
5796        return err;
5797}
5798
5799static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5800{
5801        struct inode *inode = NULL;
5802        struct btrfs_trans_handle *trans;
5803        struct btrfs_root *root = BTRFS_I(dir)->root;
5804        int err = 0;
5805        int drop_on_err = 0;
5806        u64 objectid = 0;
5807        u64 index = 0;
5808
5809        /*
5810         * 2 items for inode and ref
5811         * 2 items for dir items
5812         * 1 for xattr if selinux is on
5813         */
5814        trans = btrfs_start_transaction(root, 5);
5815        if (IS_ERR(trans))
5816                return PTR_ERR(trans);
5817
5818        err = btrfs_find_free_ino(root, &objectid);
5819        if (err)
5820                goto out_fail;
5821
5822        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5823                                dentry->d_name.len, btrfs_ino(dir), objectid,
5824                                S_IFDIR | mode, &index);
5825        if (IS_ERR(inode)) {
5826                err = PTR_ERR(inode);
5827                goto out_fail;
5828        }
5829
5830        drop_on_err = 1;
5831
5832        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5833        if (err)
5834                goto out_fail;
5835
5836        inode->i_op = &btrfs_dir_inode_operations;
5837        inode->i_fop = &btrfs_dir_file_operations;
5838
5839        btrfs_i_size_write(inode, 0);
5840        err = btrfs_update_inode(trans, root, inode);
5841        if (err)
5842                goto out_fail;
5843
5844        err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5845                             dentry->d_name.len, 0, index);
5846        if (err)
5847                goto out_fail;
5848
5849        d_instantiate(dentry, inode);
5850        drop_on_err = 0;
5851
5852out_fail:
5853        btrfs_end_transaction(trans, root);
5854        if (drop_on_err)
5855                iput(inode);
5856        btrfs_btree_balance_dirty(root);
5857        return err;
5858}
5859
5860/* helper for btfs_get_extent.  Given an existing extent in the tree,
5861 * and an extent that you want to insert, deal with overlap and insert
5862 * the new extent into the tree.
5863 */
5864static int merge_extent_mapping(struct extent_map_tree *em_tree,
5865                                struct extent_map *existing,
5866                                struct extent_map *em,
5867                                u64 map_start, u64 map_len)
5868{
5869        u64 start_diff;
5870
5871        BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5872        start_diff = map_start - em->start;
5873        em->start = map_start;
5874        em->len = map_len;
5875        if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5876            !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5877                em->block_start += start_diff;
5878                em->block_len -= start_diff;
5879        }
5880        return add_extent_mapping(em_tree, em, 0);
5881}
5882
5883static noinline int uncompress_inline(struct btrfs_path *path,
5884                                      struct inode *inode, struct page *page,
5885                                      size_t pg_offset, u64 extent_offset,
5886                                      struct btrfs_file_extent_item *item)
5887{
5888        int ret;
5889        struct extent_buffer *leaf = path->nodes[0];
5890        char *tmp;
5891        size_t max_size;
5892        unsigned long inline_size;
5893        unsigned long ptr;
5894        int compress_type;
5895
5896        WARN_ON(pg_offset != 0);
5897        compress_type = btrfs_file_extent_compression(leaf, item);
5898        max_size = btrfs_file_extent_ram_bytes(leaf, item);
5899        inline_size = btrfs_file_extent_inline_item_len(leaf,
5900                                        btrfs_item_nr(leaf, path->slots[0]));
5901        tmp = kmalloc(inline_size, GFP_NOFS);
5902        if (!tmp)
5903                return -ENOMEM;
5904        ptr = btrfs_file_extent_inline_start(item);
5905
5906        read_extent_buffer(leaf, tmp, ptr, inline_size);
5907
5908        max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5909        ret = btrfs_decompress(compress_type, tmp, page,
5910                               extent_offset, inline_size, max_size);
5911        if (ret) {
5912                char *kaddr = kmap_atomic(page);
5913                unsigned long copy_size = min_t(u64,
5914                                  PAGE_CACHE_SIZE - pg_offset,
5915                                  max_size - extent_offset);
5916                memset(kaddr + pg_offset, 0, copy_size);
5917                kunmap_atomic(kaddr);
5918        }
5919        kfree(tmp);
5920        return 0;
5921}
5922
5923/*
5924 * a bit scary, this does extent mapping from logical file offset to the disk.
5925 * the ugly parts come from merging extents from the disk with the in-ram
5926 * representation.  This gets more complex because of the data=ordered code,
5927 * where the in-ram extents might be locked pending data=ordered completion.
5928 *
5929 * This also copies inline extents directly into the page.
5930 */
5931
5932struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5933                                    size_t pg_offset, u64 start, u64 len,
5934                                    int create)
5935{
5936        int ret;
5937        int err = 0;
5938        u64 bytenr;
5939        u64 extent_start = 0;
5940        u64 extent_end = 0;
5941        u64 objectid = btrfs_ino(inode);
5942        u32 found_type;
5943        struct btrfs_path *path = NULL;
5944        struct btrfs_root *root = BTRFS_I(inode)->root;
5945        struct btrfs_file_extent_item *item;
5946        struct extent_buffer *leaf;
5947        struct btrfs_key found_key;
5948        struct extent_map *em = NULL;
5949        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5950        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5951        struct btrfs_trans_handle *trans = NULL;
5952        int compress_type;
5953
5954again:
5955        read_lock(&em_tree->lock);
5956        em = lookup_extent_mapping(em_tree, start, len);
5957        if (em)
5958                em->bdev = root->fs_info->fs_devices->latest_bdev;
5959        read_unlock(&em_tree->lock);
5960
5961        if (em) {
5962                if (em->start > start || em->start + em->len <= start)
5963                        free_extent_map(em);
5964                else if (em->block_start == EXTENT_MAP_INLINE && page)
5965                        free_extent_map(em);
5966                else
5967                        goto out;
5968        }
5969        em = alloc_extent_map();
5970        if (!em) {
5971                err = -ENOMEM;
5972                goto out;
5973        }
5974        em->bdev = root->fs_info->fs_devices->latest_bdev;
5975        em->start = EXTENT_MAP_HOLE;
5976        em->orig_start = EXTENT_MAP_HOLE;
5977        em->len = (u64)-1;
5978        em->block_len = (u64)-1;
5979
5980        if (!path) {
5981                path = btrfs_alloc_path();
5982                if (!path) {
5983                        err = -ENOMEM;
5984                        goto out;
5985                }
5986                /*
5987                 * Chances are we'll be called again, so go ahead and do
5988                 * readahead
5989                 */
5990                path->reada = 1;
5991        }
5992
5993        ret = btrfs_lookup_file_extent(trans, root, path,
5994                                       objectid, start, trans != NULL);
5995        if (ret < 0) {
5996                err = ret;
5997                goto out;
5998        }
5999
6000        if (ret != 0) {
6001                if (path->slots[0] == 0)
6002                        goto not_found;
6003                path->slots[0]--;
6004        }
6005
6006        leaf = path->nodes[0];
6007        item = btrfs_item_ptr(leaf, path->slots[0],
6008                              struct btrfs_file_extent_item);
6009        /* are we inside the extent that was found? */
6010        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6011        found_type = btrfs_key_type(&found_key);
6012        if (found_key.objectid != objectid ||
6013            found_type != BTRFS_EXTENT_DATA_KEY) {
6014                goto not_found;
6015        }
6016
6017        found_type = btrfs_file_extent_type(leaf, item);
6018        extent_start = found_key.offset;
6019        compress_type = btrfs_file_extent_compression(leaf, item);
6020        if (found_type == BTRFS_FILE_EXTENT_REG ||
6021            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6022                extent_end = extent_start +
6023                       btrfs_file_extent_num_bytes(leaf, item);
6024        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6025                size_t size;
6026                size = btrfs_file_extent_inline_len(leaf, item);
6027                extent_end = ALIGN(extent_start + size, root->sectorsize);
6028        }
6029
6030        if (start >= extent_end) {
6031                path->slots[0]++;
6032                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6033                        ret = btrfs_next_leaf(root, path);
6034                        if (ret < 0) {
6035                                err = ret;
6036                                goto out;
6037                        }
6038                        if (ret > 0)
6039                                goto not_found;
6040                        leaf = path->nodes[0];
6041                }
6042                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6043                if (found_key.objectid != objectid ||
6044                    found_key.type != BTRFS_EXTENT_DATA_KEY)
6045                        goto not_found;
6046                if (start + len <= found_key.offset)
6047                        goto not_found;
6048                em->start = start;
6049                em->orig_start = start;
6050                em->len = found_key.offset - start;
6051                goto not_found_em;
6052        }
6053
6054        em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6055        if (found_type == BTRFS_FILE_EXTENT_REG ||
6056            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6057                em->start = extent_start;
6058                em->len = extent_end - extent_start;
6059                em->orig_start = extent_start -
6060                                 btrfs_file_extent_offset(leaf, item);
6061                em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6062                                                                      item);
6063                bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6064                if (bytenr == 0) {
6065                        em->block_start = EXTENT_MAP_HOLE;
6066                        goto insert;
6067                }
6068                if (compress_type != BTRFS_COMPRESS_NONE) {
6069                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6070                        em->compress_type = compress_type;
6071                        em->block_start = bytenr;
6072                        em->block_len = em->orig_block_len;
6073                } else {
6074                        bytenr += btrfs_file_extent_offset(leaf, item);
6075                        em->block_start = bytenr;
6076                        em->block_len = em->len;
6077                        if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6078                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6079                }
6080                goto insert;
6081        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6082                unsigned long ptr;
6083                char *map;
6084                size_t size;
6085                size_t extent_offset;
6086                size_t copy_size;
6087
6088                em->block_start = EXTENT_MAP_INLINE;
6089                if (!page || create) {
6090                        em->start = extent_start;
6091                        em->len = extent_end - extent_start;
6092                        goto out;
6093                }
6094
6095                size = btrfs_file_extent_inline_len(leaf, item);
6096                extent_offset = page_offset(page) + pg_offset - extent_start;
6097                copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6098                                size - extent_offset);
6099                em->start = extent_start + extent_offset;
6100                em->len = ALIGN(copy_size, root->sectorsize);
6101                em->orig_block_len = em->len;
6102                em->orig_start = em->start;
6103                if (compress_type) {
6104                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6105                        em->compress_type = compress_type;
6106                }
6107                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6108                if (create == 0 && !PageUptodate(page)) {
6109                        if (btrfs_file_extent_compression(leaf, item) !=
6110                            BTRFS_COMPRESS_NONE) {
6111                                ret = uncompress_inline(path, inode, page,
6112                                                        pg_offset,
6113                                                        extent_offset, item);
6114                                BUG_ON(ret); /* -ENOMEM */
6115                        } else {
6116                                map = kmap(page);
6117                                read_extent_buffer(leaf, map + pg_offset, ptr,
6118                                                   copy_size);
6119                                if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6120                                        memset(map + pg_offset + copy_size, 0,
6121                                               PAGE_CACHE_SIZE - pg_offset -
6122                                               copy_size);
6123                                }
6124                                kunmap(page);
6125                        }
6126                        flush_dcache_page(page);
6127                } else if (create && PageUptodate(page)) {
6128                        BUG();
6129                        if (!trans) {
6130                                kunmap(page);
6131                                free_extent_map(em);
6132                                em = NULL;
6133
6134                                btrfs_release_path(path);
6135                                trans = btrfs_join_transaction(root);
6136
6137                                if (IS_ERR(trans))
6138                                        return ERR_CAST(trans);
6139                                goto again;
6140                        }
6141                        map = kmap(page);
6142                        write_extent_buffer(leaf, map + pg_offset, ptr,
6143                                            copy_size);
6144                        kunmap(page);
6145                        btrfs_mark_buffer_dirty(leaf);
6146                }
6147                set_extent_uptodate(io_tree, em->start,
6148                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
6149                goto insert;
6150        } else {
6151                WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6152        }
6153not_found:
6154        em->start = start;
6155        em->orig_start = start;
6156        em->len = len;
6157not_found_em:
6158        em->block_start = EXTENT_MAP_HOLE;
6159        set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6160insert:
6161        btrfs_release_path(path);
6162        if (em->start > start || extent_map_end(em) <= start) {
6163                btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6164                        (unsigned long long)em->start,
6165                        (unsigned long long)em->len,
6166                        (unsigned long long)start,
6167                        (unsigned long long)len);
6168                err = -EIO;
6169                goto out;
6170        }
6171
6172        err = 0;
6173        write_lock(&em_tree->lock);
6174        ret = add_extent_mapping(em_tree, em, 0);
6175        /* it is possible that someone inserted the extent into the tree
6176         * while we had the lock dropped.  It is also possible that
6177         * an overlapping map exists in the tree
6178         */
6179        if (ret == -EEXIST) {
6180                struct extent_map *existing;
6181
6182                ret = 0;
6183
6184                existing = lookup_extent_mapping(em_tree, start, len);
6185                if (existing && (existing->start > start ||
6186                    existing->start + existing->len <= start)) {
6187                        free_extent_map(existing);
6188                        existing = NULL;
6189                }
6190                if (!existing) {
6191                        existing = lookup_extent_mapping(em_tree, em->start,
6192                                                         em->len);
6193                        if (existing) {
6194                                err = merge_extent_mapping(em_tree, existing,
6195                                                           em, start,
6196                                                           root->sectorsize);
6197                                free_extent_map(existing);
6198                                if (err) {
6199                                        free_extent_map(em);
6200                                        em = NULL;
6201                                }
6202                        } else {
6203                                err = -EIO;
6204                                free_extent_map(em);
6205                                em = NULL;
6206                        }
6207                } else {
6208                        free_extent_map(em);
6209                        em = existing;
6210                        err = 0;
6211                }
6212        }
6213        write_unlock(&em_tree->lock);
6214out:
6215
6216        if (em)
6217                trace_btrfs_get_extent(root, em);
6218
6219        if (path)
6220                btrfs_free_path(path);
6221        if (trans) {
6222                ret = btrfs_end_transaction(trans, root);
6223                if (!err)
6224                        err = ret;
6225        }
6226        if (err) {
6227                free_extent_map(em);
6228                return ERR_PTR(err);
6229        }
6230        BUG_ON(!em); /* Error is always set */
6231        return em;
6232}
6233
6234struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6235                                           size_t pg_offset, u64 start, u64 len,
6236                                           int create)
6237{
6238        struct extent_map *em;
6239        struct extent_map *hole_em = NULL;
6240        u64 range_start = start;
6241        u64 end;
6242        u64 found;
6243        u64 found_end;
6244        int err = 0;
6245
6246        em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6247        if (IS_ERR(em))
6248                return em;
6249        if (em) {
6250                /*
6251                 * if our em maps to
6252                 * -  a hole or
6253                 * -  a pre-alloc extent,
6254                 * there might actually be delalloc bytes behind it.
6255                 */
6256                if (em->block_start != EXTENT_MAP_HOLE &&
6257                    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6258                        return em;
6259                else
6260                        hole_em = em;
6261        }
6262
6263        /* check to see if we've wrapped (len == -1 or similar) */
6264        end = start + len;
6265        if (end < start)
6266                end = (u64)-1;
6267        else
6268                end -= 1;
6269
6270        em = NULL;
6271
6272        /* ok, we didn't find anything, lets look for delalloc */
6273        found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6274                                 end, len, EXTENT_DELALLOC, 1);
6275        found_end = range_start + found;
6276        if (found_end < range_start)
6277                found_end = (u64)-1;
6278
6279        /*
6280         * we didn't find anything useful, return
6281         * the original results from get_extent()
6282         */
6283        if (range_start > end || found_end <= start) {
6284                em = hole_em;
6285                hole_em = NULL;
6286                goto out;
6287        }
6288
6289        /* adjust the range_start to make sure it doesn't
6290         * go backwards from the start they passed in
6291         */
6292        range_start = max(start,range_start);
6293        found = found_end - range_start;
6294
6295        if (found > 0) {
6296                u64 hole_start = start;
6297                u64 hole_len = len;
6298
6299                em = alloc_extent_map();
6300                if (!em) {
6301                        err = -ENOMEM;
6302                        goto out;
6303                }
6304                /*
6305                 * when btrfs_get_extent can't find anything it
6306                 * returns one huge hole
6307                 *
6308                 * make sure what it found really fits our range, and
6309                 * adjust to make sure it is based on the start from
6310                 * the caller
6311                 */
6312                if (hole_em) {
6313                        u64 calc_end = extent_map_end(hole_em);
6314
6315                        if (calc_end <= start || (hole_em->start > end)) {
6316                                free_extent_map(hole_em);
6317                                hole_em = NULL;
6318                        } else {
6319                                hole_start = max(hole_em->start, start);
6320                                hole_len = calc_end - hole_start;
6321                        }
6322                }
6323                em->bdev = NULL;
6324                if (hole_em && range_start > hole_start) {
6325                        /* our hole starts before our delalloc, so we
6326                         * have to return just the parts of the hole
6327                         * that go until  the delalloc starts
6328                         */
6329                        em->len = min(hole_len,
6330                                      range_start - hole_start);
6331                        em->start = hole_start;
6332                        em->orig_start = hole_start;
6333                        /*
6334                         * don't adjust block start at all,
6335                         * it is fixed at EXTENT_MAP_HOLE
6336                         */
6337                        em->block_start = hole_em->block_start;
6338                        em->block_len = hole_len;
6339                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6340                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6341                } else {
6342                        em->start = range_start;
6343                        em->len = found;
6344                        em->orig_start = range_start;
6345                        em->block_start = EXTENT_MAP_DELALLOC;
6346                        em->block_len = found;
6347                }
6348        } else if (hole_em) {
6349                return hole_em;
6350        }
6351out:
6352
6353        free_extent_map(hole_em);
6354        if (err) {
6355                free_extent_map(em);
6356                return ERR_PTR(err);
6357        }
6358        return em;
6359}
6360
6361static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6362                                                  u64 start, u64 len)
6363{
6364        struct btrfs_root *root = BTRFS_I(inode)->root;
6365        struct btrfs_trans_handle *trans;
6366        struct extent_map *em;
6367        struct btrfs_key ins;
6368        u64 alloc_hint;
6369        int ret;
6370
6371        trans = btrfs_join_transaction(root);
6372        if (IS_ERR(trans))
6373                return ERR_CAST(trans);
6374
6375        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6376
6377        alloc_hint = get_extent_allocation_hint(inode, start, len);
6378        ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
6379                                   alloc_hint, &ins, 1);
6380        if (ret) {
6381                em = ERR_PTR(ret);
6382                goto out;
6383        }
6384
6385        em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6386                              ins.offset, ins.offset, ins.offset, 0);
6387        if (IS_ERR(em))
6388                goto out;
6389
6390        ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6391                                           ins.offset, ins.offset, 0);
6392        if (ret) {
6393                btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6394                em = ERR_PTR(ret);
6395        }
6396out:
6397        btrfs_end_transaction(trans, root);
6398        return em;
6399}
6400
6401/*
6402 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6403 * block must be cow'd
6404 */
6405noinline int can_nocow_extent(struct btrfs_trans_handle *trans,
6406                              struct inode *inode, u64 offset, u64 *len,
6407                              u64 *orig_start, u64 *orig_block_len,
6408                              u64 *ram_bytes)
6409{
6410        struct btrfs_path *path;
6411        int ret;
6412        struct extent_buffer *leaf;
6413        struct btrfs_root *root = BTRFS_I(inode)->root;
6414        struct btrfs_file_extent_item *fi;
6415        struct btrfs_key key;
6416        u64 disk_bytenr;
6417        u64 backref_offset;
6418        u64 extent_end;
6419        u64 num_bytes;
6420        int slot;
6421        int found_type;
6422        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6423        path = btrfs_alloc_path();
6424        if (!path)
6425                return -ENOMEM;
6426
6427        ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
6428                                       offset, 0);
6429        if (ret < 0)
6430                goto out;
6431
6432        slot = path->slots[0];
6433        if (ret == 1) {
6434                if (slot == 0) {
6435                        /* can't find the item, must cow */
6436                        ret = 0;
6437                        goto out;
6438                }
6439                slot--;
6440        }
6441        ret = 0;
6442        leaf = path->nodes[0];
6443        btrfs_item_key_to_cpu(leaf, &key, slot);
6444        if (key.objectid != btrfs_ino(inode) ||
6445            key.type != BTRFS_EXTENT_DATA_KEY) {
6446                /* not our file or wrong item type, must cow */
6447                goto out;
6448        }
6449
6450        if (key.offset > offset) {
6451                /* Wrong offset, must cow */
6452                goto out;
6453        }
6454
6455        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6456        found_type = btrfs_file_extent_type(leaf, fi);
6457        if (found_type != BTRFS_FILE_EXTENT_REG &&
6458            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6459                /* not a regular extent, must cow */
6460                goto out;
6461        }
6462
6463        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6464                goto out;
6465
6466        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6467        if (disk_bytenr == 0)
6468                goto out;
6469
6470        if (btrfs_file_extent_compression(leaf, fi) ||
6471            btrfs_file_extent_encryption(leaf, fi) ||
6472            btrfs_file_extent_other_encoding(leaf, fi))
6473                goto out;
6474
6475        backref_offset = btrfs_file_extent_offset(leaf, fi);
6476
6477        if (orig_start) {
6478                *orig_start = key.offset - backref_offset;
6479                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6480                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6481        }
6482
6483        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6484
6485        if (btrfs_extent_readonly(root, disk_bytenr))
6486                goto out;
6487
6488        /*
6489         * look for other files referencing this extent, if we
6490         * find any we must cow
6491         */
6492        if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6493                                  key.offset - backref_offset, disk_bytenr))
6494                goto out;
6495
6496        /*
6497         * adjust disk_bytenr and num_bytes to cover just the bytes
6498         * in this extent we are about to write.  If there
6499         * are any csums in that range we have to cow in order
6500         * to keep the csums correct
6501         */
6502        disk_bytenr += backref_offset;
6503        disk_bytenr += offset - key.offset;
6504        num_bytes = min(offset + *len, extent_end) - offset;
6505        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6506                                goto out;
6507        /*
6508         * all of the above have passed, it is safe to overwrite this extent
6509         * without cow
6510         */
6511        *len = num_bytes;
6512        ret = 1;
6513out:
6514        btrfs_free_path(path);
6515        return ret;
6516}
6517
6518static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6519                              struct extent_state **cached_state, int writing)
6520{
6521        struct btrfs_ordered_extent *ordered;
6522        int ret = 0;
6523
6524        while (1) {
6525                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6526                                 0, cached_state);
6527                /*
6528                 * We're concerned with the entire range that we're going to be
6529                 * doing DIO to, so we need to make sure theres no ordered
6530                 * extents in this range.
6531                 */
6532                ordered = btrfs_lookup_ordered_range(inode, lockstart,
6533                                                     lockend - lockstart + 1);
6534
6535                /*
6536                 * We need to make sure there are no buffered pages in this
6537                 * range either, we could have raced between the invalidate in
6538                 * generic_file_direct_write and locking the extent.  The
6539                 * invalidate needs to happen so that reads after a write do not
6540                 * get stale data.
6541                 */
6542                if (!ordered && (!writing ||
6543                    !test_range_bit(&BTRFS_I(inode)->io_tree,
6544                                    lockstart, lockend, EXTENT_UPTODATE, 0,
6545                                    *cached_state)))
6546                        break;
6547
6548                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6549                                     cached_state, GFP_NOFS);
6550
6551                if (ordered) {
6552                        btrfs_start_ordered_extent(inode, ordered, 1);
6553                        btrfs_put_ordered_extent(ordered);
6554                } else {
6555                        /* Screw you mmap */
6556                        ret = filemap_write_and_wait_range(inode->i_mapping,
6557                                                           lockstart,
6558                                                           lockend);
6559                        if (ret)
6560                                break;
6561
6562                        /*
6563                         * If we found a page that couldn't be invalidated just
6564                         * fall back to buffered.
6565                         */
6566                        ret = invalidate_inode_pages2_range(inode->i_mapping,
6567                                        lockstart >> PAGE_CACHE_SHIFT,
6568                                        lockend >> PAGE_CACHE_SHIFT);
6569                        if (ret)
6570                                break;
6571                }
6572
6573                cond_resched();
6574        }
6575
6576        return ret;
6577}
6578
6579static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6580                                           u64 len, u64 orig_start,
6581                                           u64 block_start, u64 block_len,
6582                                           u64 orig_block_len, u64 ram_bytes,
6583                                           int type)
6584{
6585        struct extent_map_tree *em_tree;
6586        struct extent_map *em;
6587        struct btrfs_root *root = BTRFS_I(inode)->root;
6588        int ret;
6589
6590        em_tree = &BTRFS_I(inode)->extent_tree;
6591        em = alloc_extent_map();
6592        if (!em)
6593                return ERR_PTR(-ENOMEM);
6594
6595        em->start = start;
6596        em->orig_start = orig_start;
6597        em->mod_start = start;
6598        em->mod_len = len;
6599        em->len = len;
6600        em->block_len = block_len;
6601        em->block_start = block_start;
6602        em->bdev = root->fs_info->fs_devices->latest_bdev;
6603        em->orig_block_len = orig_block_len;
6604        em->ram_bytes = ram_bytes;
6605        em->generation = -1;
6606        set_bit(EXTENT_FLAG_PINNED, &em->flags);
6607        if (type == BTRFS_ORDERED_PREALLOC)
6608                set_bit(EXTENT_FLAG_FILLING, &em->flags);
6609
6610        do {
6611                btrfs_drop_extent_cache(inode, em->start,
6612                                em->start + em->len - 1, 0);
6613                write_lock(&em_tree->lock);
6614                ret = add_extent_mapping(em_tree, em, 1);
6615                write_unlock(&em_tree->lock);
6616        } while (ret == -EEXIST);
6617
6618        if (ret) {
6619                free_extent_map(em);
6620                return ERR_PTR(ret);
6621        }
6622
6623        return em;
6624}
6625
6626
6627static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6628                                   struct buffer_head *bh_result, int create)
6629{
6630        struct extent_map *em;
6631        struct btrfs_root *root = BTRFS_I(inode)->root;
6632        struct extent_state *cached_state = NULL;
6633        u64 start = iblock << inode->i_blkbits;
6634        u64 lockstart, lockend;
6635        u64 len = bh_result->b_size;
6636        struct btrfs_trans_handle *trans;
6637        int unlock_bits = EXTENT_LOCKED;
6638        int ret = 0;
6639
6640        if (create)
6641                unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6642        else
6643                len = min_t(u64, len, root->sectorsize);
6644
6645        lockstart = start;
6646        lockend = start + len - 1;
6647
6648        /*
6649         * If this errors out it's because we couldn't invalidate pagecache for
6650         * this range and we need to fallback to buffered.
6651         */
6652        if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6653                return -ENOTBLK;
6654
6655        em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6656        if (IS_ERR(em)) {
6657                ret = PTR_ERR(em);
6658                goto unlock_err;
6659        }
6660
6661        /*
6662         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6663         * io.  INLINE is special, and we could probably kludge it in here, but
6664         * it's still buffered so for safety lets just fall back to the generic
6665         * buffered path.
6666         *
6667         * For COMPRESSED we _have_ to read the entire extent in so we can
6668         * decompress it, so there will be buffering required no matter what we
6669         * do, so go ahead and fallback to buffered.
6670         *
6671         * We return -ENOTBLK because thats what makes DIO go ahead and go back
6672         * to buffered IO.  Don't blame me, this is the price we pay for using
6673         * the generic code.
6674         */
6675        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6676            em->block_start == EXTENT_MAP_INLINE) {
6677                free_extent_map(em);
6678                ret = -ENOTBLK;
6679                goto unlock_err;
6680        }
6681
6682        /* Just a good old fashioned hole, return */
6683        if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6684                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6685                free_extent_map(em);
6686                goto unlock_err;
6687        }
6688
6689        /*
6690         * We don't allocate a new extent in the following cases
6691         *
6692         * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6693         * existing extent.
6694         * 2) The extent is marked as PREALLOC.  We're good to go here and can
6695         * just use the extent.
6696         *
6697         */
6698        if (!create) {
6699                len = min(len, em->len - (start - em->start));
6700                lockstart = start + len;
6701                goto unlock;
6702        }
6703
6704        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6705            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6706             em->block_start != EXTENT_MAP_HOLE)) {
6707                int type;
6708                int ret;
6709                u64 block_start, orig_start, orig_block_len, ram_bytes;
6710
6711                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6712                        type = BTRFS_ORDERED_PREALLOC;
6713                else
6714                        type = BTRFS_ORDERED_NOCOW;
6715                len = min(len, em->len - (start - em->start));
6716                block_start = em->block_start + (start - em->start);
6717
6718                /*
6719                 * we're not going to log anything, but we do need
6720                 * to make sure the current transaction stays open
6721                 * while we look for nocow cross refs
6722                 */
6723                trans = btrfs_join_transaction(root);
6724                if (IS_ERR(trans))
6725                        goto must_cow;
6726
6727                if (can_nocow_extent(trans, inode, start, &len, &orig_start,
6728                                     &orig_block_len, &ram_bytes) == 1) {
6729                        if (type == BTRFS_ORDERED_PREALLOC) {
6730                                free_extent_map(em);
6731                                em = create_pinned_em(inode, start, len,
6732                                                       orig_start,
6733                                                       block_start, len,
6734                                                       orig_block_len,
6735                                                       ram_bytes, type);
6736                                if (IS_ERR(em)) {
6737                                        btrfs_end_transaction(trans, root);
6738                                        goto unlock_err;
6739                                }
6740                        }
6741
6742                        ret = btrfs_add_ordered_extent_dio(inode, start,
6743                                           block_start, len, len, type);
6744                        btrfs_end_transaction(trans, root);
6745                        if (ret) {
6746                                free_extent_map(em);
6747                                goto unlock_err;
6748                        }
6749                        goto unlock;
6750                }
6751                btrfs_end_transaction(trans, root);
6752        }
6753must_cow:
6754        /*
6755         * this will cow the extent, reset the len in case we changed
6756         * it above
6757         */
6758        len = bh_result->b_size;
6759        free_extent_map(em);
6760        em = btrfs_new_extent_direct(inode, start, len);
6761        if (IS_ERR(em)) {
6762                ret = PTR_ERR(em);
6763                goto unlock_err;
6764        }
6765        len = min(len, em->len - (start - em->start));
6766unlock:
6767        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6768                inode->i_blkbits;
6769        bh_result->b_size = len;
6770        bh_result->b_bdev = em->bdev;
6771        set_buffer_mapped(bh_result);
6772        if (create) {
6773                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6774                        set_buffer_new(bh_result);
6775
6776                /*
6777                 * Need to update the i_size under the extent lock so buffered
6778                 * readers will get the updated i_size when we unlock.
6779                 */
6780                if (start + len > i_size_read(inode))
6781                        i_size_write(inode, start + len);
6782
6783                spin_lock(&BTRFS_I(inode)->lock);
6784                BTRFS_I(inode)->outstanding_extents++;
6785                spin_unlock(&BTRFS_I(inode)->lock);
6786
6787                ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6788                                     lockstart + len - 1, EXTENT_DELALLOC, NULL,
6789                                     &cached_state, GFP_NOFS);
6790                BUG_ON(ret);
6791        }
6792
6793        /*
6794         * In the case of write we need to clear and unlock the entire range,
6795         * in the case of read we need to unlock only the end area that we
6796         * aren't using if there is any left over space.
6797         */
6798        if (lockstart < lockend) {
6799                clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6800                                 lockend, unlock_bits, 1, 0,
6801                                 &cached_state, GFP_NOFS);
6802        } else {
6803                free_extent_state(cached_state);
6804        }
6805
6806        free_extent_map(em);
6807
6808        return 0;
6809
6810unlock_err:
6811        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6812                         unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6813        return ret;
6814}
6815
6816struct btrfs_dio_private {
6817        struct inode *inode;
6818        u64 logical_offset;
6819        u64 disk_bytenr;
6820        u64 bytes;
6821        void *private;
6822
6823        /* number of bios pending for this dio */
6824        atomic_t pending_bios;
6825
6826        /* IO errors */
6827        int errors;
6828
6829        /* orig_bio is our btrfs_io_bio */
6830        struct bio *orig_bio;
6831
6832        /* dio_bio came from fs/direct-io.c */
6833        struct bio *dio_bio;
6834};
6835
6836static void btrfs_endio_direct_read(struct bio *bio, int err)
6837{
6838        struct btrfs_dio_private *dip = bio->bi_private;
6839        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6840        struct bio_vec *bvec = bio->bi_io_vec;
6841        struct inode *inode = dip->inode;
6842        struct btrfs_root *root = BTRFS_I(inode)->root;
6843        struct bio *dio_bio;
6844        u64 start;
6845
6846        start = dip->logical_offset;
6847        do {
6848                if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6849                        struct page *page = bvec->bv_page;
6850                        char *kaddr;
6851                        u32 csum = ~(u32)0;
6852                        u64 private = ~(u32)0;
6853                        unsigned long flags;
6854
6855                        if (get_state_private(&BTRFS_I(inode)->io_tree,
6856                                              start, &private))
6857                                goto failed;
6858                        local_irq_save(flags);
6859                        kaddr = kmap_atomic(page);
6860                        csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6861                                               csum, bvec->bv_len);
6862                        btrfs_csum_final(csum, (char *)&csum);
6863                        kunmap_atomic(kaddr);
6864                        local_irq_restore(flags);
6865
6866                        flush_dcache_page(bvec->bv_page);
6867                        if (csum != private) {
6868failed:
6869                                btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6870                                        (unsigned long long)btrfs_ino(inode),
6871                                        (unsigned long long)start,
6872                                        csum, (unsigned)private);
6873                                err = -EIO;
6874                        }
6875                }
6876
6877                start += bvec->bv_len;
6878                bvec++;
6879        } while (bvec <= bvec_end);
6880
6881        unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6882                      dip->logical_offset + dip->bytes - 1);
6883        dio_bio = dip->dio_bio;
6884
6885        kfree(dip);
6886
6887        /* If we had a csum failure make sure to clear the uptodate flag */
6888        if (err)
6889                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6890        dio_end_io(dio_bio, err);
6891        bio_put(bio);
6892}
6893
6894static void btrfs_endio_direct_write(struct bio *bio, int err)
6895{
6896        struct btrfs_dio_private *dip = bio->bi_private;
6897        struct inode *inode = dip->inode;
6898        struct btrfs_root *root = BTRFS_I(inode)->root;
6899        struct btrfs_ordered_extent *ordered = NULL;
6900        u64 ordered_offset = dip->logical_offset;
6901        u64 ordered_bytes = dip->bytes;
6902        struct bio *dio_bio;
6903        int ret;
6904
6905        if (err)
6906                goto out_done;
6907again:
6908        ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6909                                                   &ordered_offset,
6910                                                   ordered_bytes, !err);
6911        if (!ret)
6912                goto out_test;
6913
6914        ordered->work.func = finish_ordered_fn;
6915        ordered->work.flags = 0;
6916        btrfs_queue_worker(&root->fs_info->endio_write_workers,
6917                           &ordered->work);
6918out_test:
6919        /*
6920         * our bio might span multiple ordered extents.  If we haven't
6921         * completed the accounting for the whole dio, go back and try again
6922         */
6923        if (ordered_offset < dip->logical_offset + dip->bytes) {
6924                ordered_bytes = dip->logical_offset + dip->bytes -
6925                        ordered_offset;
6926                ordered = NULL;
6927                goto again;
6928        }
6929out_done:
6930        dio_bio = dip->dio_bio;
6931
6932        kfree(dip);
6933
6934        /* If we had an error make sure to clear the uptodate flag */
6935        if (err)
6936                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6937        dio_end_io(dio_bio, err);
6938        bio_put(bio);
6939}
6940
6941static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6942                                    struct bio *bio, int mirror_num,
6943                                    unsigned long bio_flags, u64 offset)
6944{
6945        int ret;
6946        struct btrfs_root *root = BTRFS_I(inode)->root;
6947        ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6948        BUG_ON(ret); /* -ENOMEM */
6949        return 0;
6950}
6951
6952static void btrfs_end_dio_bio(struct bio *bio, int err)
6953{
6954        struct btrfs_dio_private *dip = bio->bi_private;
6955
6956        if (err) {
6957                printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6958                      "sector %#Lx len %u err no %d\n",
6959                      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6960                      (unsigned long long)bio->bi_sector, bio->bi_size, err);
6961                dip->errors = 1;
6962
6963                /*
6964                 * before atomic variable goto zero, we must make sure
6965                 * dip->errors is perceived to be set.
6966                 */
6967                smp_mb__before_atomic_dec();
6968        }
6969
6970        /* if there are more bios still pending for this dio, just exit */
6971        if (!atomic_dec_and_test(&dip->pending_bios))
6972                goto out;
6973
6974        if (dip->errors) {
6975                bio_io_error(dip->orig_bio);
6976        } else {
6977                set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
6978                bio_endio(dip->orig_bio, 0);
6979        }
6980out:
6981        bio_put(bio);
6982}
6983
6984static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6985                                       u64 first_sector, gfp_t gfp_flags)
6986{
6987        int nr_vecs = bio_get_nr_vecs(bdev);
6988        return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6989}
6990
6991static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6992                                         int rw, u64 file_offset, int skip_sum,
6993                                         int async_submit)
6994{
6995        int write = rw & REQ_WRITE;
6996        struct btrfs_root *root = BTRFS_I(inode)->root;
6997        int ret;
6998
6999        if (async_submit)
7000                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7001
7002        bio_get(bio);
7003
7004        if (!write) {
7005                ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7006                if (ret)
7007                        goto err;
7008        }
7009
7010        if (skip_sum)
7011                goto map;
7012
7013        if (write && async_submit) {
7014                ret = btrfs_wq_submit_bio(root->fs_info,
7015                                   inode, rw, bio, 0, 0,
7016                                   file_offset,
7017                                   __btrfs_submit_bio_start_direct_io,
7018                                   __btrfs_submit_bio_done);
7019                goto err;
7020        } else if (write) {
7021                /*
7022                 * If we aren't doing async submit, calculate the csum of the
7023                 * bio now.
7024                 */
7025                ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7026                if (ret)
7027                        goto err;
7028        } else if (!skip_sum) {
7029                ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
7030                if (ret)
7031                        goto err;
7032        }
7033
7034map:
7035        ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7036err:
7037        bio_put(bio);
7038        return ret;
7039}
7040
7041static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7042                                    int skip_sum)
7043{
7044        struct inode *inode = dip->inode;
7045        struct btrfs_root *root = BTRFS_I(inode)->root;
7046        struct bio *bio;
7047        struct bio *orig_bio = dip->orig_bio;
7048        struct bio_vec *bvec = orig_bio->bi_io_vec;
7049        u64 start_sector = orig_bio->bi_sector;
7050        u64 file_offset = dip->logical_offset;
7051        u64 submit_len = 0;
7052        u64 map_length;
7053        int nr_pages = 0;
7054        int ret = 0;
7055        int async_submit = 0;
7056
7057        map_length = orig_bio->bi_size;
7058        ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7059                              &map_length, NULL, 0);
7060        if (ret) {
7061                bio_put(orig_bio);
7062                return -EIO;
7063        }
7064        if (map_length >= orig_bio->bi_size) {
7065                bio = orig_bio;
7066                goto submit;
7067        }
7068
7069        /* async crcs make it difficult to collect full stripe writes. */
7070        if (btrfs_get_alloc_profile(root, 1) &
7071            (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7072                async_submit = 0;
7073        else
7074                async_submit = 1;
7075
7076        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7077        if (!bio)
7078                return -ENOMEM;
7079        bio->bi_private = dip;
7080        bio->bi_end_io = btrfs_end_dio_bio;
7081        atomic_inc(&dip->pending_bios);
7082
7083        while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7084                if (unlikely(map_length < submit_len + bvec->bv_len ||
7085                    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7086                                 bvec->bv_offset) < bvec->bv_len)) {
7087                        /*
7088                         * inc the count before we submit the bio so
7089                         * we know the end IO handler won't happen before
7090                         * we inc the count. Otherwise, the dip might get freed
7091                         * before we're done setting it up
7092                         */
7093                        atomic_inc(&dip->pending_bios);
7094                        ret = __btrfs_submit_dio_bio(bio, inode, rw,
7095                                                     file_offset, skip_sum,
7096                                                     async_submit);
7097                        if (ret) {
7098                                bio_put(bio);
7099                                atomic_dec(&dip->pending_bios);
7100                                goto out_err;
7101                        }
7102
7103                        start_sector += submit_len >> 9;
7104                        file_offset += submit_len;
7105
7106                        submit_len = 0;
7107                        nr_pages = 0;
7108
7109                        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7110                                                  start_sector, GFP_NOFS);
7111                        if (!bio)
7112                                goto out_err;
7113                        bio->bi_private = dip;
7114                        bio->bi_end_io = btrfs_end_dio_bio;
7115
7116                        map_length = orig_bio->bi_size;
7117                        ret = btrfs_map_block(root->fs_info, rw,
7118                                              start_sector << 9,
7119                                              &map_length, NULL, 0);
7120                        if (ret) {
7121                                bio_put(bio);
7122                                goto out_err;
7123                        }
7124                } else {
7125                        submit_len += bvec->bv_len;
7126                        nr_pages ++;
7127                        bvec++;
7128                }
7129        }
7130
7131submit:
7132        ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7133                                     async_submit);
7134        if (!ret)
7135                return 0;
7136
7137        bio_put(bio);
7138out_err:
7139        dip->errors = 1;
7140        /*
7141         * before atomic variable goto zero, we must
7142         * make sure dip->errors is perceived to be set.
7143         */
7144        smp_mb__before_atomic_dec();
7145        if (atomic_dec_and_test(&dip->pending_bios))
7146                bio_io_error(dip->orig_bio);
7147
7148        /* bio_end_io() will handle error, so we needn't return it */
7149        return 0;
7150}
7151
7152static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7153                                struct inode *inode, loff_t file_offset)
7154{
7155        struct btrfs_root *root = BTRFS_I(inode)->root;
7156        struct btrfs_dio_private *dip;
7157        struct bio *io_bio;
7158        int skip_sum;
7159        int write = rw & REQ_WRITE;
7160        int ret = 0;
7161
7162        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7163
7164        io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7165
7166        if (!io_bio) {
7167                ret = -ENOMEM;
7168                goto free_ordered;
7169        }
7170
7171        dip = kmalloc(sizeof(*dip), GFP_NOFS);
7172        if (!dip) {
7173                ret = -ENOMEM;
7174                goto free_io_bio;
7175        }
7176
7177        dip->private = dio_bio->bi_private;
7178        dip->inode = inode;
7179        dip->logical_offset = file_offset;
7180        dip->bytes = dio_bio->bi_size;
7181        dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7182        io_bio->bi_private = dip;
7183        dip->errors = 0;
7184        dip->orig_bio = io_bio;
7185        dip->dio_bio = dio_bio;
7186        atomic_set(&dip->pending_bios, 0);
7187
7188        if (write)
7189                io_bio->bi_end_io = btrfs_endio_direct_write;
7190        else
7191                io_bio->bi_end_io = btrfs_endio_direct_read;
7192
7193        ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7194        if (!ret)
7195                return;
7196
7197free_io_bio:
7198        bio_put(io_bio);
7199
7200free_ordered:
7201        /*
7202         * If this is a write, we need to clean up the reserved space and kill
7203         * the ordered extent.
7204         */
7205        if (write) {
7206                struct btrfs_ordered_extent *ordered;
7207                ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7208                if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7209                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7210                        btrfs_free_reserved_extent(root, ordered->start,
7211                                                   ordered->disk_len);
7212                btrfs_put_ordered_extent(ordered);
7213                btrfs_put_ordered_extent(ordered);
7214        }
7215        bio_endio(dio_bio, ret);
7216}
7217
7218static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7219                        const struct iovec *iov, loff_t offset,
7220                        unsigned long nr_segs)
7221{
7222        int seg;
7223        int i;
7224        size_t size;
7225        unsigned long addr;
7226        unsigned blocksize_mask = root->sectorsize - 1;
7227        ssize_t retval = -EINVAL;
7228        loff_t end = offset;
7229
7230        if (offset & blocksize_mask)
7231                goto out;
7232
7233        /* Check the memory alignment.  Blocks cannot straddle pages */
7234        for (seg = 0; seg < nr_segs; seg++) {
7235                addr = (unsigned long)iov[seg].iov_base;
7236                size = iov[seg].iov_len;
7237                end += size;
7238                if ((addr & blocksize_mask) || (size & blocksize_mask))
7239                        goto out;
7240
7241                /* If this is a write we don't need to check anymore */
7242                if (rw & WRITE)
7243                        continue;
7244
7245                /*
7246                 * Check to make sure we don't have duplicate iov_base's in this
7247                 * iovec, if so return EINVAL, otherwise we'll get csum errors
7248                 * when reading back.
7249                 */
7250                for (i = seg + 1; i < nr_segs; i++) {
7251                        if (iov[seg].iov_base == iov[i].iov_base)
7252                                goto out;
7253                }
7254        }
7255        retval = 0;
7256out:
7257        return retval;
7258}
7259
7260static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7261                        const struct iovec *iov, loff_t offset,
7262                        unsigned long nr_segs)
7263{
7264        struct file *file = iocb->ki_filp;
7265        struct inode *inode = file->f_mapping->host;
7266        size_t count = 0;
7267        int flags = 0;
7268        bool wakeup = true;
7269        bool relock = false;
7270        ssize_t ret;
7271
7272        if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7273                            offset, nr_segs))
7274                return 0;
7275
7276        atomic_inc(&inode->i_dio_count);
7277        smp_mb__after_atomic_inc();
7278
7279        /*
7280         * The generic stuff only does filemap_write_and_wait_range, which isn't
7281         * enough if we've written compressed pages to this area, so we need to
7282         * call btrfs_wait_ordered_range to make absolutely sure that any
7283         * outstanding dirty pages are on disk.
7284         */
7285        count = iov_length(iov, nr_segs);
7286        btrfs_wait_ordered_range(inode, offset, count);
7287
7288        if (rw & WRITE) {
7289                /*
7290                 * If the write DIO is beyond the EOF, we need update
7291                 * the isize, but it is protected by i_mutex. So we can
7292                 * not unlock the i_mutex at this case.
7293                 */
7294                if (offset + count <= inode->i_size) {
7295                        mutex_unlock(&inode->i_mutex);
7296                        relock = true;
7297                }
7298                ret = btrfs_delalloc_reserve_space(inode, count);
7299                if (ret)
7300                        goto out;
7301        } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7302                                     &BTRFS_I(inode)->runtime_flags))) {
7303                inode_dio_done(inode);
7304                flags = DIO_LOCKING | DIO_SKIP_HOLES;
7305                wakeup = false;
7306        }
7307
7308        ret = __blockdev_direct_IO(rw, iocb, inode,
7309                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7310                        iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7311                        btrfs_submit_direct, flags);
7312        if (rw & WRITE) {
7313                if (ret < 0 && ret != -EIOCBQUEUED)
7314                        btrfs_delalloc_release_space(inode, count);
7315                else if (ret >= 0 && (size_t)ret < count)
7316                        btrfs_delalloc_release_space(inode,
7317                                                     count - (size_t)ret);
7318                else
7319                        btrfs_delalloc_release_metadata(inode, 0);
7320        }
7321out:
7322        if (wakeup)
7323                inode_dio_done(inode);
7324        if (relock)
7325                mutex_lock(&inode->i_mutex);
7326
7327        return ret;
7328}
7329
7330#define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
7331
7332static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7333                __u64 start, __u64 len)
7334{
7335        int     ret;
7336
7337        ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7338        if (ret)
7339                return ret;
7340
7341        return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7342}
7343
7344int btrfs_readpage(struct file *file, struct page *page)
7345{
7346        struct extent_io_tree *tree;
7347        tree = &BTRFS_I(page->mapping->host)->io_tree;
7348        return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7349}
7350
7351static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7352{
7353        struct extent_io_tree *tree;
7354
7355
7356        if (current->flags & PF_MEMALLOC) {
7357                redirty_page_for_writepage(wbc, page);
7358                unlock_page(page);
7359                return 0;
7360        }
7361        tree = &BTRFS_I(page->mapping->host)->io_tree;
7362        return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7363}
7364
7365static int btrfs_writepages(struct address_space *mapping,
7366                            struct writeback_control *wbc)
7367{
7368        struct extent_io_tree *tree;
7369
7370        tree = &BTRFS_I(mapping->host)->io_tree;
7371        return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7372}
7373
7374static int
7375btrfs_readpages(struct file *file, struct address_space *mapping,
7376                struct list_head *pages, unsigned nr_pages)
7377{
7378        struct extent_io_tree *tree;
7379        tree = &BTRFS_I(mapping->host)->io_tree;
7380        return extent_readpages(tree, mapping, pages, nr_pages,
7381                                btrfs_get_extent);
7382}
7383static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7384{
7385        struct extent_io_tree *tree;
7386        struct extent_map_tree *map;
7387        int ret;
7388
7389        tree = &BTRFS_I(page->mapping->host)->io_tree;
7390        map = &BTRFS_I(page->mapping->host)->extent_tree;
7391        ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7392        if (ret == 1) {
7393                ClearPagePrivate(page);
7394                set_page_private(page, 0);
7395                page_cache_release(page);
7396        }
7397        return ret;
7398}
7399
7400static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7401{
7402        if (PageWriteback(page) || PageDirty(page))
7403                return 0;
7404        return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7405}
7406
7407static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7408                                 unsigned int length)
7409{
7410        struct inode *inode = page->mapping->host;
7411        struct extent_io_tree *tree;
7412        struct btrfs_ordered_extent *ordered;
7413        struct extent_state *cached_state = NULL;
7414        u64 page_start = page_offset(page);
7415        u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7416
7417        /*
7418         * we have the page locked, so new writeback can't start,
7419         * and the dirty bit won't be cleared while we are here.
7420         *
7421         * Wait for IO on this page so that we can safely clear
7422         * the PagePrivate2 bit and do ordered accounting
7423         */
7424        wait_on_page_writeback(page);
7425
7426        tree = &BTRFS_I(inode)->io_tree;
7427        if (offset) {
7428                btrfs_releasepage(page, GFP_NOFS);
7429                return;
7430        }
7431        lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7432        ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7433        if (ordered) {
7434                /*
7435                 * IO on this page will never be started, so we need
7436                 * to account for any ordered extents now
7437                 */
7438                clear_extent_bit(tree, page_start, page_end,
7439                                 EXTENT_DIRTY | EXTENT_DELALLOC |
7440                                 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7441                                 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7442                /*
7443                 * whoever cleared the private bit is responsible
7444                 * for the finish_ordered_io
7445                 */
7446                if (TestClearPagePrivate2(page) &&
7447                    btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7448                                                   PAGE_CACHE_SIZE, 1)) {
7449                        btrfs_finish_ordered_io(ordered);
7450                }
7451                btrfs_put_ordered_extent(ordered);
7452                cached_state = NULL;
7453                lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7454        }
7455        clear_extent_bit(tree, page_start, page_end,
7456                 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7457                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7458                 &cached_state, GFP_NOFS);
7459        __btrfs_releasepage(page, GFP_NOFS);
7460
7461        ClearPageChecked(page);
7462        if (PagePrivate(page)) {
7463                ClearPagePrivate(page);
7464                set_page_private(page, 0);
7465                page_cache_release(page);
7466        }
7467}
7468
7469/*
7470 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7471 * called from a page fault handler when a page is first dirtied. Hence we must
7472 * be careful to check for EOF conditions here. We set the page up correctly
7473 * for a written page which means we get ENOSPC checking when writing into
7474 * holes and correct delalloc and unwritten extent mapping on filesystems that
7475 * support these features.
7476 *
7477 * We are not allowed to take the i_mutex here so we have to play games to
7478 * protect against truncate races as the page could now be beyond EOF.  Because
7479 * vmtruncate() writes the inode size before removing pages, once we have the
7480 * page lock we can determine safely if the page is beyond EOF. If it is not
7481 * beyond EOF, then the page is guaranteed safe against truncation until we
7482 * unlock the page.
7483 */
7484int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7485{
7486        struct page *page = vmf->page;
7487        struct inode *inode = file_inode(vma->vm_file);
7488        struct btrfs_root *root = BTRFS_I(inode)->root;
7489        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7490        struct btrfs_ordered_extent *ordered;
7491        struct extent_state *cached_state = NULL;
7492        char *kaddr;
7493        unsigned long zero_start;
7494        loff_t size;
7495        int ret;
7496        int reserved = 0;
7497        u64 page_start;
7498        u64 page_end;
7499
7500        sb_start_pagefault(inode->i_sb);
7501        ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7502        if (!ret) {
7503                ret = file_update_time(vma->vm_file);
7504                reserved = 1;
7505        }
7506        if (ret) {
7507                if (ret == -ENOMEM)
7508                        ret = VM_FAULT_OOM;
7509                else /* -ENOSPC, -EIO, etc */
7510                        ret = VM_FAULT_SIGBUS;
7511                if (reserved)
7512                        goto out;
7513                goto out_noreserve;
7514        }
7515
7516        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7517again:
7518        lock_page(page);
7519        size = i_size_read(inode);
7520        page_start = page_offset(page);
7521        page_end = page_start + PAGE_CACHE_SIZE - 1;
7522
7523        if ((page->mapping != inode->i_mapping) ||
7524            (page_start >= size)) {
7525                /* page got truncated out from underneath us */
7526                goto out_unlock;
7527        }
7528        wait_on_page_writeback(page);
7529
7530        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7531        set_page_extent_mapped(page);
7532
7533        /*
7534         * we can't set the delalloc bits if there are pending ordered
7535         * extents.  Drop our locks and wait for them to finish
7536         */
7537        ordered = btrfs_lookup_ordered_extent(inode, page_start);
7538        if (ordered) {
7539                unlock_extent_cached(io_tree, page_start, page_end,
7540                                     &cached_state, GFP_NOFS);
7541                unlock_page(page);
7542                btrfs_start_ordered_extent(inode, ordered, 1);
7543                btrfs_put_ordered_extent(ordered);
7544                goto again;
7545        }
7546
7547        /*
7548         * XXX - page_mkwrite gets called every time the page is dirtied, even
7549         * if it was already dirty, so for space accounting reasons we need to
7550         * clear any delalloc bits for the range we are fixing to save.  There
7551         * is probably a better way to do this, but for now keep consistent with
7552         * prepare_pages in the normal write path.
7553         */
7554        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7555                          EXTENT_DIRTY | EXTENT_DELALLOC |
7556                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7557                          0, 0, &cached_state, GFP_NOFS);
7558
7559        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7560                                        &cached_state);
7561        if (ret) {
7562                unlock_extent_cached(io_tree, page_start, page_end,
7563                                     &cached_state, GFP_NOFS);
7564                ret = VM_FAULT_SIGBUS;
7565                goto out_unlock;
7566        }
7567        ret = 0;
7568
7569        /* page is wholly or partially inside EOF */
7570        if (page_start + PAGE_CACHE_SIZE > size)
7571                zero_start = size & ~PAGE_CACHE_MASK;
7572        else
7573                zero_start = PAGE_CACHE_SIZE;
7574
7575        if (zero_start != PAGE_CACHE_SIZE) {
7576                kaddr = kmap(page);
7577                memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7578                flush_dcache_page(page);
7579                kunmap(page);
7580        }
7581        ClearPageChecked(page);
7582        set_page_dirty(page);
7583        SetPageUptodate(page);
7584
7585        BTRFS_I(inode)->last_trans = root->fs_info->generation;
7586        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7587        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7588
7589        unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7590
7591out_unlock:
7592        if (!ret) {
7593                sb_end_pagefault(inode->i_sb);
7594                return VM_FAULT_LOCKED;
7595        }
7596        unlock_page(page);
7597out:
7598        btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7599out_noreserve:
7600        sb_end_pagefault(inode->i_sb);
7601        return ret;
7602}
7603
7604static int btrfs_truncate(struct inode *inode)
7605{
7606        struct btrfs_root *root = BTRFS_I(inode)->root;
7607        struct btrfs_block_rsv *rsv;
7608        int ret = 0;
7609        int err = 0;
7610        struct btrfs_trans_handle *trans;
7611        u64 mask = root->sectorsize - 1;
7612        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7613
7614        btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
7615        btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
7616
7617        /*
7618         * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7619         * 3 things going on here
7620         *
7621         * 1) We need to reserve space for our orphan item and the space to
7622         * delete our orphan item.  Lord knows we don't want to have a dangling
7623         * orphan item because we didn't reserve space to remove it.
7624         *
7625         * 2) We need to reserve space to update our inode.
7626         *
7627         * 3) We need to have something to cache all the space that is going to
7628         * be free'd up by the truncate operation, but also have some slack
7629         * space reserved in case it uses space during the truncate (thank you
7630         * very much snapshotting).
7631         *
7632         * And we need these to all be seperate.  The fact is we can use alot of
7633         * space doing the truncate, and we have no earthly idea how much space
7634         * we will use, so we need the truncate reservation to be seperate so it
7635         * doesn't end up using space reserved for updating the inode or
7636         * removing the orphan item.  We also need to be able to stop the
7637         * transaction and start a new one, which means we need to be able to
7638         * update the inode several times, and we have no idea of knowing how
7639         * many times that will be, so we can't just reserve 1 item for the
7640         * entirety of the opration, so that has to be done seperately as well.
7641         * Then there is the orphan item, which does indeed need to be held on
7642         * to for the whole operation, and we need nobody to touch this reserved
7643         * space except the orphan code.
7644         *
7645         * So that leaves us with
7646         *
7647         * 1) root->orphan_block_rsv - for the orphan deletion.
7648         * 2) rsv - for the truncate reservation, which we will steal from the
7649         * transaction reservation.
7650         * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7651         * updating the inode.
7652         */
7653        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7654        if (!rsv)
7655                return -ENOMEM;
7656        rsv->size = min_size;
7657        rsv->failfast = 1;
7658
7659        /*
7660         * 1 for the truncate slack space
7661         * 1 for updating the inode.
7662         */
7663        trans = btrfs_start_transaction(root, 2);
7664        if (IS_ERR(trans)) {
7665                err = PTR_ERR(trans);
7666                goto out;
7667        }
7668
7669        /* Migrate the slack space for the truncate to our reserve */
7670        ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7671                                      min_size);
7672        BUG_ON(ret);
7673
7674        /*
7675         * setattr is responsible for setting the ordered_data_close flag,
7676         * but that is only tested during the last file release.  That
7677         * could happen well after the next commit, leaving a great big
7678         * window where new writes may get lost if someone chooses to write
7679         * to this file after truncating to zero
7680         *
7681         * The inode doesn't have any dirty data here, and so if we commit
7682         * this is a noop.  If someone immediately starts writing to the inode
7683         * it is very likely we'll catch some of their writes in this
7684         * transaction, and the commit will find this file on the ordered
7685         * data list with good things to send down.
7686         *
7687         * This is a best effort solution, there is still a window where
7688         * using truncate to replace the contents of the file will
7689         * end up with a zero length file after a crash.
7690         */
7691        if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7692                                           &BTRFS_I(inode)->runtime_flags))
7693                btrfs_add_ordered_operation(trans, root, inode);
7694
7695        /*
7696         * So if we truncate and then write and fsync we normally would just
7697         * write the extents that changed, which is a problem if we need to
7698         * first truncate that entire inode.  So set this flag so we write out
7699         * all of the extents in the inode to the sync log so we're completely
7700         * safe.
7701         */
7702        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7703        trans->block_rsv = rsv;
7704
7705        while (1) {
7706                ret = btrfs_truncate_inode_items(trans, root, inode,
7707                                                 inode->i_size,
7708                                                 BTRFS_EXTENT_DATA_KEY);
7709                if (ret != -ENOSPC) {
7710                        err = ret;
7711                        break;
7712                }
7713
7714                trans->block_rsv = &root->fs_info->trans_block_rsv;
7715                ret = btrfs_update_inode(trans, root, inode);
7716                if (ret) {
7717                        err = ret;
7718                        break;
7719                }
7720
7721                btrfs_end_transaction(trans, root);
7722                btrfs_btree_balance_dirty(root);
7723
7724                trans = btrfs_start_transaction(root, 2);
7725                if (IS_ERR(trans)) {
7726                        ret = err = PTR_ERR(trans);
7727                        trans = NULL;
7728                        break;
7729                }
7730
7731                ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7732                                              rsv, min_size);
7733                BUG_ON(ret);    /* shouldn't happen */
7734                trans->block_rsv = rsv;
7735        }
7736
7737        if (ret == 0 && inode->i_nlink > 0) {
7738                trans->block_rsv = root->orphan_block_rsv;
7739                ret = btrfs_orphan_del(trans, inode);
7740                if (ret)
7741                        err = ret;
7742        }
7743
7744        if (trans) {
7745                trans->block_rsv = &root->fs_info->trans_block_rsv;
7746                ret = btrfs_update_inode(trans, root, inode);
7747                if (ret && !err)
7748                        err = ret;
7749
7750                ret = btrfs_end_transaction(trans, root);
7751                btrfs_btree_balance_dirty(root);
7752        }
7753
7754out:
7755        btrfs_free_block_rsv(root, rsv);
7756
7757        if (ret && !err)
7758                err = ret;
7759
7760        return err;
7761}
7762
7763/*
7764 * create a new subvolume directory/inode (helper for the ioctl).
7765 */
7766int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7767                             struct btrfs_root *new_root, u64 new_dirid)
7768{
7769        struct inode *inode;
7770        int err;
7771        u64 index = 0;
7772
7773        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7774                                new_dirid, new_dirid,
7775                                S_IFDIR | (~current_umask() & S_IRWXUGO),
7776                                &index);
7777        if (IS_ERR(inode))
7778                return PTR_ERR(inode);
7779        inode->i_op = &btrfs_dir_inode_operations;
7780        inode->i_fop = &btrfs_dir_file_operations;
7781
7782        set_nlink(inode, 1);
7783        btrfs_i_size_write(inode, 0);
7784
7785        err = btrfs_update_inode(trans, new_root, inode);
7786
7787        iput(inode);
7788        return err;
7789}
7790
7791struct inode *btrfs_alloc_inode(struct super_block *sb)
7792{
7793        struct btrfs_inode *ei;
7794        struct inode *inode;
7795
7796        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7797        if (!ei)
7798                return NULL;
7799
7800        ei->root = NULL;
7801        ei->generation = 0;
7802        ei->last_trans = 0;
7803        ei->last_sub_trans = 0;
7804        ei->logged_trans = 0;
7805        ei->delalloc_bytes = 0;
7806        ei->disk_i_size = 0;
7807        ei->flags = 0;
7808        ei->csum_bytes = 0;
7809        ei->index_cnt = (u64)-1;
7810        ei->last_unlink_trans = 0;
7811        ei->last_log_commit = 0;
7812
7813        spin_lock_init(&ei->lock);
7814        ei->outstanding_extents = 0;
7815        ei->reserved_extents = 0;
7816
7817        ei->runtime_flags = 0;
7818        ei->force_compress = BTRFS_COMPRESS_NONE;
7819
7820        ei->delayed_node = NULL;
7821
7822        inode = &ei->vfs_inode;
7823        extent_map_tree_init(&ei->extent_tree);
7824        extent_io_tree_init(&ei->io_tree, &inode->i_data);
7825        extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7826        ei->io_tree.track_uptodate = 1;
7827        ei->io_failure_tree.track_uptodate = 1;
7828        atomic_set(&ei->sync_writers, 0);
7829        mutex_init(&ei->log_mutex);
7830        mutex_init(&ei->delalloc_mutex);
7831        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7832        INIT_LIST_HEAD(&ei->delalloc_inodes);
7833        INIT_LIST_HEAD(&ei->ordered_operations);
7834        RB_CLEAR_NODE(&ei->rb_node);
7835
7836        return inode;
7837}
7838
7839static void btrfs_i_callback(struct rcu_head *head)
7840{
7841        struct inode *inode = container_of(head, struct inode, i_rcu);
7842        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7843}
7844
7845void btrfs_destroy_inode(struct inode *inode)
7846{
7847        struct btrfs_ordered_extent *ordered;
7848        struct btrfs_root *root = BTRFS_I(inode)->root;
7849
7850        WARN_ON(!hlist_empty(&inode->i_dentry));
7851        WARN_ON(inode->i_data.nrpages);
7852        WARN_ON(BTRFS_I(inode)->outstanding_extents);
7853        WARN_ON(BTRFS_I(inode)->reserved_extents);
7854        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7855        WARN_ON(BTRFS_I(inode)->csum_bytes);
7856
7857        /*
7858         * This can happen where we create an inode, but somebody else also
7859         * created the same inode and we need to destroy the one we already
7860         * created.
7861         */
7862        if (!root)
7863                goto free;
7864
7865        /*
7866         * Make sure we're properly removed from the ordered operation
7867         * lists.
7868         */
7869        smp_mb();
7870        if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7871                spin_lock(&root->fs_info->ordered_root_lock);
7872                list_del_init(&BTRFS_I(inode)->ordered_operations);
7873                spin_unlock(&root->fs_info->ordered_root_lock);
7874        }
7875
7876        if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7877                     &BTRFS_I(inode)->runtime_flags)) {
7878                btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7879                        (unsigned long long)btrfs_ino(inode));
7880                atomic_dec(&root->orphan_inodes);
7881        }
7882
7883        while (1) {
7884                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7885                if (!ordered)
7886                        break;
7887                else {
7888                        btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7889                                (unsigned long long)ordered->file_offset,
7890                                (unsigned long long)ordered->len);
7891                        btrfs_remove_ordered_extent(inode, ordered);
7892                        btrfs_put_ordered_extent(ordered);
7893                        btrfs_put_ordered_extent(ordered);
7894                }
7895        }
7896        inode_tree_del(inode);
7897        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7898free:
7899        call_rcu(&inode->i_rcu, btrfs_i_callback);
7900}
7901
7902int btrfs_drop_inode(struct inode *inode)
7903{
7904        struct btrfs_root *root = BTRFS_I(inode)->root;
7905
7906        if (root == NULL)
7907                return 1;
7908
7909        /* the snap/subvol tree is on deleting */
7910        if (btrfs_root_refs(&root->root_item) == 0 &&
7911            root != root->fs_info->tree_root)
7912                return 1;
7913        else
7914                return generic_drop_inode(inode);
7915}
7916
7917static void init_once(void *foo)
7918{
7919        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7920
7921        inode_init_once(&ei->vfs_inode);
7922}
7923
7924void btrfs_destroy_cachep(void)
7925{
7926        /*
7927         * Make sure all delayed rcu free inodes are flushed before we
7928         * destroy cache.
7929         */
7930        rcu_barrier();
7931        if (btrfs_inode_cachep)
7932                kmem_cache_destroy(btrfs_inode_cachep);
7933        if (btrfs_trans_handle_cachep)
7934                kmem_cache_destroy(btrfs_trans_handle_cachep);
7935        if (btrfs_transaction_cachep)
7936                kmem_cache_destroy(btrfs_transaction_cachep);
7937        if (btrfs_path_cachep)
7938                kmem_cache_destroy(btrfs_path_cachep);
7939        if (btrfs_free_space_cachep)
7940                kmem_cache_destroy(btrfs_free_space_cachep);
7941        if (btrfs_delalloc_work_cachep)
7942                kmem_cache_destroy(btrfs_delalloc_work_cachep);
7943}
7944
7945int btrfs_init_cachep(void)
7946{
7947        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7948                        sizeof(struct btrfs_inode), 0,
7949                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7950        if (!btrfs_inode_cachep)
7951                goto fail;
7952
7953        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7954                        sizeof(struct btrfs_trans_handle), 0,
7955                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7956        if (!btrfs_trans_handle_cachep)
7957                goto fail;
7958
7959        btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7960                        sizeof(struct btrfs_transaction), 0,
7961                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7962        if (!btrfs_transaction_cachep)
7963                goto fail;
7964
7965        btrfs_path_cachep = kmem_cache_create("btrfs_path",
7966                        sizeof(struct btrfs_path), 0,
7967                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7968        if (!btrfs_path_cachep)
7969                goto fail;
7970
7971        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7972                        sizeof(struct btrfs_free_space), 0,
7973                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7974        if (!btrfs_free_space_cachep)
7975                goto fail;
7976
7977        btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7978                        sizeof(struct btrfs_delalloc_work), 0,
7979                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7980                        NULL);
7981        if (!btrfs_delalloc_work_cachep)
7982                goto fail;
7983
7984        return 0;
7985fail:
7986        btrfs_destroy_cachep();
7987        return -ENOMEM;
7988}
7989
7990static int btrfs_getattr(struct vfsmount *mnt,
7991                         struct dentry *dentry, struct kstat *stat)
7992{
7993        u64 delalloc_bytes;
7994        struct inode *inode = dentry->d_inode;
7995        u32 blocksize = inode->i_sb->s_blocksize;
7996
7997        generic_fillattr(inode, stat);
7998        stat->dev = BTRFS_I(inode)->root->anon_dev;
7999        stat->blksize = PAGE_CACHE_SIZE;
8000
8001        spin_lock(&BTRFS_I(inode)->lock);
8002        delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8003        spin_unlock(&BTRFS_I(inode)->lock);
8004        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8005                        ALIGN(delalloc_bytes, blocksize)) >> 9;
8006        return 0;
8007}
8008
8009static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8010                           struct inode *new_dir, struct dentry *new_dentry)
8011{
8012        struct btrfs_trans_handle *trans;
8013        struct btrfs_root *root = BTRFS_I(old_dir)->root;
8014        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8015        struct inode *new_inode = new_dentry->d_inode;
8016        struct inode *old_inode = old_dentry->d_inode;
8017        struct timespec ctime = CURRENT_TIME;
8018        u64 index = 0;
8019        u64 root_objectid;
8020        int ret;
8021        u64 old_ino = btrfs_ino(old_inode);
8022
8023        if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8024                return -EPERM;
8025
8026        /* we only allow rename subvolume link between subvolumes */
8027        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8028                return -EXDEV;
8029
8030        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8031            (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8032                return -ENOTEMPTY;
8033
8034        if (S_ISDIR(old_inode->i_mode) && new_inode &&
8035            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8036                return -ENOTEMPTY;
8037
8038
8039        /* check for collisions, even if the  name isn't there */
8040        ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8041                             new_dentry->d_name.name,
8042                             new_dentry->d_name.len);
8043
8044        if (ret) {
8045                if (ret == -EEXIST) {
8046                        /* we shouldn't get
8047                         * eexist without a new_inode */
8048                        if (!new_inode) {
8049                                WARN_ON(1);
8050                                return ret;
8051                        }
8052                } else {
8053                        /* maybe -EOVERFLOW */
8054                        return ret;
8055                }
8056        }
8057        ret = 0;
8058
8059        /*
8060         * we're using rename to replace one file with another.
8061         * and the replacement file is large.  Start IO on it now so
8062         * we don't add too much work to the end of the transaction
8063         */
8064        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8065            old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8066                filemap_flush(old_inode->i_mapping);
8067
8068        /* close the racy window with snapshot create/destroy ioctl */
8069        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8070                down_read(&root->fs_info->subvol_sem);
8071        /*
8072         * We want to reserve the absolute worst case amount of items.  So if
8073         * both inodes are subvols and we need to unlink them then that would
8074         * require 4 item modifications, but if they are both normal inodes it
8075         * would require 5 item modifications, so we'll assume their normal
8076         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8077         * should cover the worst case number of items we'll modify.
8078         */
8079        trans = btrfs_start_transaction(root, 11);
8080        if (IS_ERR(trans)) {
8081                ret = PTR_ERR(trans);
8082                goto out_notrans;
8083        }
8084
8085        if (dest != root)
8086                btrfs_record_root_in_trans(trans, dest);
8087
8088        ret = btrfs_set_inode_index(new_dir, &index);
8089        if (ret)
8090                goto out_fail;
8091
8092        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8093                /* force full log commit if subvolume involved. */
8094                root->fs_info->last_trans_log_full_commit = trans->transid;
8095        } else {
8096                ret = btrfs_insert_inode_ref(trans, dest,
8097                                             new_dentry->d_name.name,
8098                                             new_dentry->d_name.len,
8099                                             old_ino,
8100                                             btrfs_ino(new_dir), index);
8101                if (ret)
8102                        goto out_fail;
8103                /*
8104                 * this is an ugly little race, but the rename is required
8105                 * to make sure that if we crash, the inode is either at the
8106                 * old name or the new one.  pinning the log transaction lets
8107                 * us make sure we don't allow a log commit to come in after
8108                 * we unlink the name but before we add the new name back in.
8109                 */
8110                btrfs_pin_log_trans(root);
8111        }
8112        /*
8113         * make sure the inode gets flushed if it is replacing
8114         * something.
8115         */
8116        if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8117                btrfs_add_ordered_operation(trans, root, old_inode);
8118
8119        inode_inc_iversion(old_dir);
8120        inode_inc_iversion(new_dir);
8121        inode_inc_iversion(old_inode);
8122        old_dir->i_ctime = old_dir->i_mtime = ctime;
8123        new_dir->i_ctime = new_dir->i_mtime = ctime;
8124        old_inode->i_ctime = ctime;
8125
8126        if (old_dentry->d_parent != new_dentry->d_parent)
8127                btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8128
8129        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8130                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8131                ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8132                                        old_dentry->d_name.name,
8133                                        old_dentry->d_name.len);
8134        } else {
8135                ret = __btrfs_unlink_inode(trans, root, old_dir,
8136                                        old_dentry->d_inode,
8137                                        old_dentry->d_name.name,
8138                                        old_dentry->d_name.len);
8139                if (!ret)
8140                        ret = btrfs_update_inode(trans, root, old_inode);
8141        }
8142        if (ret) {
8143                btrfs_abort_transaction(trans, root, ret);
8144                goto out_fail;
8145        }
8146
8147        if (new_inode) {
8148                inode_inc_iversion(new_inode);
8149                new_inode->i_ctime = CURRENT_TIME;
8150                if (unlikely(btrfs_ino(new_inode) ==
8151                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8152                        root_objectid = BTRFS_I(new_inode)->location.objectid;
8153                        ret = btrfs_unlink_subvol(trans, dest, new_dir,
8154                                                root_objectid,
8155                                                new_dentry->d_name.name,
8156                                                new_dentry->d_name.len);
8157                        BUG_ON(new_inode->i_nlink == 0);
8158                } else {
8159                        ret = btrfs_unlink_inode(trans, dest, new_dir,
8160                                                 new_dentry->d_inode,
8161                                                 new_dentry->d_name.name,
8162                                                 new_dentry->d_name.len);
8163                }
8164                if (!ret && new_inode->i_nlink == 0) {
8165                        ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8166                        BUG_ON(ret);
8167                }
8168                if (ret) {
8169                        btrfs_abort_transaction(trans, root, ret);
8170                        goto out_fail;
8171                }
8172        }
8173
8174        ret = btrfs_add_link(trans, new_dir, old_inode,
8175                             new_dentry->d_name.name,
8176                             new_dentry->d_name.len, 0, index);
8177        if (ret) {
8178                btrfs_abort_transaction(trans, root, ret);
8179                goto out_fail;
8180        }
8181
8182        if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8183                struct dentry *parent = new_dentry->d_parent;
8184                btrfs_log_new_name(trans, old_inode, old_dir, parent);
8185                btrfs_end_log_trans(root);
8186        }
8187out_fail:
8188        btrfs_end_transaction(trans, root);
8189out_notrans:
8190        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8191                up_read(&root->fs_info->subvol_sem);
8192
8193        return ret;
8194}
8195
8196static void btrfs_run_delalloc_work(struct btrfs_work *work)
8197{
8198        struct btrfs_delalloc_work *delalloc_work;
8199
8200        delalloc_work = container_of(work, struct btrfs_delalloc_work,
8201                                     work);
8202        if (delalloc_work->wait)
8203                btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8204        else
8205                filemap_flush(delalloc_work->inode->i_mapping);
8206
8207        if (delalloc_work->delay_iput)
8208                btrfs_add_delayed_iput(delalloc_work->inode);
8209        else
8210                iput(delalloc_work->inode);
8211        complete(&delalloc_work->completion);
8212}
8213
8214struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8215                                                    int wait, int delay_iput)
8216{
8217        struct btrfs_delalloc_work *work;
8218
8219        work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8220        if (!work)
8221                return NULL;
8222
8223        init_completion(&work->completion);
8224        INIT_LIST_HEAD(&work->list);
8225        work->inode = inode;
8226        work->wait = wait;
8227        work->delay_iput = delay_iput;
8228        work->work.func = btrfs_run_delalloc_work;
8229
8230        return work;
8231}
8232
8233void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8234{
8235        wait_for_completion(&work->completion);
8236        kmem_cache_free(btrfs_delalloc_work_cachep, work);
8237}
8238
8239/*
8240 * some fairly slow code that needs optimization. This walks the list
8241 * of all the inodes with pending delalloc and forces them to disk.
8242 */
8243static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8244{
8245        struct btrfs_inode *binode;
8246        struct inode *inode;
8247        struct btrfs_delalloc_work *work, *next;
8248        struct list_head works;
8249        struct list_head splice;
8250        int ret = 0;
8251
8252        INIT_LIST_HEAD(&works);
8253        INIT_LIST_HEAD(&splice);
8254
8255        spin_lock(&root->delalloc_lock);
8256        list_splice_init(&root->delalloc_inodes, &splice);
8257        while (!list_empty(&splice)) {
8258                binode = list_entry(splice.next, struct btrfs_inode,
8259                                    delalloc_inodes);
8260
8261                list_move_tail(&binode->delalloc_inodes,
8262                               &root->delalloc_inodes);
8263                inode = igrab(&binode->vfs_inode);
8264                if (!inode) {
8265                        cond_resched_lock(&root->delalloc_lock);
8266                        continue;
8267                }
8268                spin_unlock(&root->delalloc_lock);
8269
8270                work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8271                if (unlikely(!work)) {
8272                        ret = -ENOMEM;
8273                        goto out;
8274                }
8275                list_add_tail(&work->list, &works);
8276                btrfs_queue_worker(&root->fs_info->flush_workers,
8277                                   &work->work);
8278
8279                cond_resched();
8280                spin_lock(&root->delalloc_lock);
8281        }
8282        spin_unlock(&root->delalloc_lock);
8283
8284        list_for_each_entry_safe(work, next, &works, list) {
8285                list_del_init(&work->list);
8286                btrfs_wait_and_free_delalloc_work(work);
8287        }
8288        return 0;
8289out:
8290        list_for_each_entry_safe(work, next, &works, list) {
8291                list_del_init(&work->list);
8292                btrfs_wait_and_free_delalloc_work(work);
8293        }
8294
8295        if (!list_empty_careful(&splice)) {
8296                spin_lock(&root->delalloc_lock);
8297                list_splice_tail(&splice, &root->delalloc_inodes);
8298                spin_unlock(&root->delalloc_lock);
8299        }
8300        return ret;
8301}
8302
8303int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8304{
8305        int ret;
8306
8307        if (root->fs_info->sb->s_flags & MS_RDONLY)
8308                return -EROFS;
8309
8310        ret = __start_delalloc_inodes(root, delay_iput);
8311        /*
8312         * the filemap_flush will queue IO into the worker threads, but
8313         * we have to make sure the IO is actually started and that
8314         * ordered extents get created before we return
8315         */
8316        atomic_inc(&root->fs_info->async_submit_draining);
8317        while (atomic_read(&root->fs_info->nr_async_submits) ||
8318              atomic_read(&root->fs_info->async_delalloc_pages)) {
8319                wait_event(root->fs_info->async_submit_wait,
8320                   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8321                    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8322        }
8323        atomic_dec(&root->fs_info->async_submit_draining);
8324        return ret;
8325}
8326
8327int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8328                                    int delay_iput)
8329{
8330        struct btrfs_root *root;
8331        struct list_head splice;
8332        int ret;
8333
8334        if (fs_info->sb->s_flags & MS_RDONLY)
8335                return -EROFS;
8336
8337        INIT_LIST_HEAD(&splice);
8338
8339        spin_lock(&fs_info->delalloc_root_lock);
8340        list_splice_init(&fs_info->delalloc_roots, &splice);
8341        while (!list_empty(&splice)) {
8342                root = list_first_entry(&splice, struct btrfs_root,
8343                                        delalloc_root);
8344                root = btrfs_grab_fs_root(root);
8345                BUG_ON(!root);
8346                list_move_tail(&root->delalloc_root,
8347                               &fs_info->delalloc_roots);
8348                spin_unlock(&fs_info->delalloc_root_lock);
8349
8350                ret = __start_delalloc_inodes(root, delay_iput);
8351                btrfs_put_fs_root(root);
8352                if (ret)
8353                        goto out;
8354
8355                spin_lock(&fs_info->delalloc_root_lock);
8356        }
8357        spin_unlock(&fs_info->delalloc_root_lock);
8358
8359        atomic_inc(&fs_info->async_submit_draining);
8360        while (atomic_read(&fs_info->nr_async_submits) ||
8361              atomic_read(&fs_info->async_delalloc_pages)) {
8362                wait_event(fs_info->async_submit_wait,
8363                   (atomic_read(&fs_info->nr_async_submits) == 0 &&
8364                    atomic_read(&fs_info->async_delalloc_pages) == 0));
8365        }
8366        atomic_dec(&fs_info->async_submit_draining);
8367        return 0;
8368out:
8369        if (!list_empty_careful(&splice)) {
8370                spin_lock(&fs_info->delalloc_root_lock);
8371                list_splice_tail(&splice, &fs_info->delalloc_roots);
8372                spin_unlock(&fs_info->delalloc_root_lock);
8373        }
8374        return ret;
8375}
8376
8377static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8378                         const char *symname)
8379{
8380        struct btrfs_trans_handle *trans;
8381        struct btrfs_root *root = BTRFS_I(dir)->root;
8382        struct btrfs_path *path;
8383        struct btrfs_key key;
8384        struct inode *inode = NULL;
8385        int err;
8386        int drop_inode = 0;
8387        u64 objectid;
8388        u64 index = 0 ;
8389        int name_len;
8390        int datasize;
8391        unsigned long ptr;
8392        struct btrfs_file_extent_item *ei;
8393        struct extent_buffer *leaf;
8394
8395        name_len = strlen(symname) + 1;
8396        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8397                return -ENAMETOOLONG;
8398
8399        /*
8400         * 2 items for inode item and ref
8401         * 2 items for dir items
8402         * 1 item for xattr if selinux is on
8403         */
8404        trans = btrfs_start_transaction(root, 5);
8405        if (IS_ERR(trans))
8406                return PTR_ERR(trans);
8407
8408        err = btrfs_find_free_ino(root, &objectid);
8409        if (err)
8410                goto out_unlock;
8411
8412        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8413                                dentry->d_name.len, btrfs_ino(dir), objectid,
8414                                S_IFLNK|S_IRWXUGO, &index);
8415        if (IS_ERR(inode)) {
8416                err = PTR_ERR(inode);
8417                goto out_unlock;
8418        }
8419
8420        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8421        if (err) {
8422                drop_inode = 1;
8423                goto out_unlock;
8424        }
8425
8426        /*
8427        * If the active LSM wants to access the inode during
8428        * d_instantiate it needs these. Smack checks to see
8429        * if the filesystem supports xattrs by looking at the
8430        * ops vector.
8431        */
8432        inode->i_fop = &btrfs_file_operations;
8433        inode->i_op = &btrfs_file_inode_operations;
8434
8435        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8436        if (err)
8437                drop_inode = 1;
8438        else {
8439                inode->i_mapping->a_ops = &btrfs_aops;
8440                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8441                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8442        }
8443        if (drop_inode)
8444                goto out_unlock;
8445
8446        path = btrfs_alloc_path();
8447        if (!path) {
8448                err = -ENOMEM;
8449                drop_inode = 1;
8450                goto out_unlock;
8451        }
8452        key.objectid = btrfs_ino(inode);
8453        key.offset = 0;
8454        btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8455        datasize = btrfs_file_extent_calc_inline_size(name_len);
8456        err = btrfs_insert_empty_item(trans, root, path, &key,
8457                                      datasize);
8458        if (err) {
8459                drop_inode = 1;
8460                btrfs_free_path(path);
8461                goto out_unlock;
8462        }
8463        leaf = path->nodes[0];
8464        ei = btrfs_item_ptr(leaf, path->slots[0],
8465                            struct btrfs_file_extent_item);
8466        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8467        btrfs_set_file_extent_type(leaf, ei,
8468                                   BTRFS_FILE_EXTENT_INLINE);
8469        btrfs_set_file_extent_encryption(leaf, ei, 0);
8470        btrfs_set_file_extent_compression(leaf, ei, 0);
8471        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8472        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8473
8474        ptr = btrfs_file_extent_inline_start(ei);
8475        write_extent_buffer(leaf, symname, ptr, name_len);
8476        btrfs_mark_buffer_dirty(leaf);
8477        btrfs_free_path(path);
8478
8479        inode->i_op = &btrfs_symlink_inode_operations;
8480        inode->i_mapping->a_ops = &btrfs_symlink_aops;
8481        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8482        inode_set_bytes(inode, name_len);
8483        btrfs_i_size_write(inode, name_len - 1);
8484        err = btrfs_update_inode(trans, root, inode);
8485        if (err)
8486                drop_inode = 1;
8487
8488out_unlock:
8489        if (!err)
8490                d_instantiate(dentry, inode);
8491        btrfs_end_transaction(trans, root);
8492        if (drop_inode) {
8493                inode_dec_link_count(inode);
8494                iput(inode);
8495        }
8496        btrfs_btree_balance_dirty(root);
8497        return err;
8498}
8499
8500static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8501                                       u64 start, u64 num_bytes, u64 min_size,
8502                                       loff_t actual_len, u64 *alloc_hint,
8503                                       struct btrfs_trans_handle *trans)
8504{
8505        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8506        struct extent_map *em;
8507        struct btrfs_root *root = BTRFS_I(inode)->root;
8508        struct btrfs_key ins;
8509        u64 cur_offset = start;
8510        u64 i_size;
8511        u64 cur_bytes;
8512        int ret = 0;
8513        bool own_trans = true;
8514
8515        if (trans)
8516                own_trans = false;
8517        while (num_bytes > 0) {
8518                if (own_trans) {
8519                        trans = btrfs_start_transaction(root, 3);
8520                        if (IS_ERR(trans)) {
8521                                ret = PTR_ERR(trans);
8522                                break;
8523                        }
8524                }
8525
8526                cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8527                cur_bytes = max(cur_bytes, min_size);
8528                ret = btrfs_reserve_extent(trans, root, cur_bytes,
8529                                           min_size, 0, *alloc_hint, &ins, 1);
8530                if (ret) {
8531                        if (own_trans)
8532                                btrfs_end_transaction(trans, root);
8533                        break;
8534                }
8535
8536                ret = insert_reserved_file_extent(trans, inode,
8537                                                  cur_offset, ins.objectid,
8538                                                  ins.offset, ins.offset,
8539                                                  ins.offset, 0, 0, 0,
8540                                                  BTRFS_FILE_EXTENT_PREALLOC);
8541                if (ret) {
8542                        btrfs_abort_transaction(trans, root, ret);
8543                        if (own_trans)
8544                                btrfs_end_transaction(trans, root);
8545                        break;
8546                }
8547                btrfs_drop_extent_cache(inode, cur_offset,
8548                                        cur_offset + ins.offset -1, 0);
8549
8550                em = alloc_extent_map();
8551                if (!em) {
8552                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8553                                &BTRFS_I(inode)->runtime_flags);
8554                        goto next;
8555                }
8556
8557                em->start = cur_offset;
8558                em->orig_start = cur_offset;
8559                em->len = ins.offset;
8560                em->block_start = ins.objectid;
8561                em->block_len = ins.offset;
8562                em->orig_block_len = ins.offset;
8563                em->ram_bytes = ins.offset;
8564                em->bdev = root->fs_info->fs_devices->latest_bdev;
8565                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8566                em->generation = trans->transid;
8567
8568                while (1) {
8569                        write_lock(&em_tree->lock);
8570                        ret = add_extent_mapping(em_tree, em, 1);
8571                        write_unlock(&em_tree->lock);
8572                        if (ret != -EEXIST)
8573                                break;
8574                        btrfs_drop_extent_cache(inode, cur_offset,
8575                                                cur_offset + ins.offset - 1,
8576                                                0);
8577                }
8578                free_extent_map(em);
8579next:
8580                num_bytes -= ins.offset;
8581                cur_offset += ins.offset;
8582                *alloc_hint = ins.objectid + ins.offset;
8583
8584                inode_inc_iversion(inode);
8585                inode->i_ctime = CURRENT_TIME;
8586                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8587                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8588                    (actual_len > inode->i_size) &&
8589                    (cur_offset > inode->i_size)) {
8590                        if (cur_offset > actual_len)
8591                                i_size = actual_len;
8592                        else
8593                                i_size = cur_offset;
8594                        i_size_write(inode, i_size);
8595                        btrfs_ordered_update_i_size(inode, i_size, NULL);
8596                }
8597
8598                ret = btrfs_update_inode(trans, root, inode);
8599
8600                if (ret) {
8601                        btrfs_abort_transaction(trans, root, ret);
8602                        if (own_trans)
8603                                btrfs_end_transaction(trans, root);
8604                        break;
8605                }
8606
8607                if (own_trans)
8608                        btrfs_end_transaction(trans, root);
8609        }
8610        return ret;
8611}
8612
8613int btrfs_prealloc_file_range(struct inode *inode, int mode,
8614                              u64 start, u64 num_bytes, u64 min_size,
8615                              loff_t actual_len, u64 *alloc_hint)
8616{
8617        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8618                                           min_size, actual_len, alloc_hint,
8619                                           NULL);
8620}
8621
8622int btrfs_prealloc_file_range_trans(struct inode *inode,
8623                                    struct btrfs_trans_handle *trans, int mode,
8624                                    u64 start, u64 num_bytes, u64 min_size,
8625                                    loff_t actual_len, u64 *alloc_hint)
8626{
8627        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8628                                           min_size, actual_len, alloc_hint, trans);
8629}
8630
8631static int btrfs_set_page_dirty(struct page *page)
8632{
8633        return __set_page_dirty_nobuffers(page);
8634}
8635
8636static int btrfs_permission(struct inode *inode, int mask)
8637{
8638        struct btrfs_root *root = BTRFS_I(inode)->root;
8639        umode_t mode = inode->i_mode;
8640
8641        if (mask & MAY_WRITE &&
8642            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8643                if (btrfs_root_readonly(root))
8644                        return -EROFS;
8645                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8646                        return -EACCES;
8647        }
8648        return generic_permission(inode, mask);
8649}
8650
8651static const struct inode_operations btrfs_dir_inode_operations = {
8652        .getattr        = btrfs_getattr,
8653        .lookup         = btrfs_lookup,
8654        .create         = btrfs_create,
8655        .unlink         = btrfs_unlink,
8656        .link           = btrfs_link,
8657        .mkdir          = btrfs_mkdir,
8658        .rmdir          = btrfs_rmdir,
8659        .rename         = btrfs_rename,
8660        .symlink        = btrfs_symlink,
8661        .setattr        = btrfs_setattr,
8662        .mknod          = btrfs_mknod,
8663        .setxattr       = btrfs_setxattr,
8664        .getxattr       = btrfs_getxattr,
8665        .listxattr      = btrfs_listxattr,
8666        .removexattr    = btrfs_removexattr,
8667        .permission     = btrfs_permission,
8668        .get_acl        = btrfs_get_acl,
8669};
8670static const struct inode_operations btrfs_dir_ro_inode_operations = {
8671        .lookup         = btrfs_lookup,
8672        .permission     = btrfs_permission,
8673        .get_acl        = btrfs_get_acl,
8674};
8675
8676static const struct file_operations btrfs_dir_file_operations = {
8677        .llseek         = generic_file_llseek,
8678        .read           = generic_read_dir,
8679        .iterate        = btrfs_real_readdir,
8680        .unlocked_ioctl = btrfs_ioctl,
8681#ifdef CONFIG_COMPAT
8682        .compat_ioctl   = btrfs_ioctl,
8683#endif
8684        .release        = btrfs_release_file,
8685        .fsync          = btrfs_sync_file,
8686};
8687
8688static struct extent_io_ops btrfs_extent_io_ops = {
8689        .fill_delalloc = run_delalloc_range,
8690        .submit_bio_hook = btrfs_submit_bio_hook,
8691        .merge_bio_hook = btrfs_merge_bio_hook,
8692        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8693        .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8694        .writepage_start_hook = btrfs_writepage_start_hook,
8695        .set_bit_hook = btrfs_set_bit_hook,
8696        .clear_bit_hook = btrfs_clear_bit_hook,
8697        .merge_extent_hook = btrfs_merge_extent_hook,
8698        .split_extent_hook = btrfs_split_extent_hook,
8699};
8700
8701/*
8702 * btrfs doesn't support the bmap operation because swapfiles
8703 * use bmap to make a mapping of extents in the file.  They assume
8704 * these extents won't change over the life of the file and they
8705 * use the bmap result to do IO directly to the drive.
8706 *
8707 * the btrfs bmap call would return logical addresses that aren't
8708 * suitable for IO and they also will change frequently as COW
8709 * operations happen.  So, swapfile + btrfs == corruption.
8710 *
8711 * For now we're avoiding this by dropping bmap.
8712 */
8713static const struct address_space_operations btrfs_aops = {
8714        .readpage       = btrfs_readpage,
8715        .writepage      = btrfs_writepage,
8716        .writepages     = btrfs_writepages,
8717        .readpages      = btrfs_readpages,
8718        .direct_IO      = btrfs_direct_IO,
8719        .invalidatepage = btrfs_invalidatepage,
8720        .releasepage    = btrfs_releasepage,
8721        .set_page_dirty = btrfs_set_page_dirty,
8722        .error_remove_page = generic_error_remove_page,
8723};
8724
8725static const struct address_space_operations btrfs_symlink_aops = {
8726        .readpage       = btrfs_readpage,
8727        .writepage      = btrfs_writepage,
8728        .invalidatepage = btrfs_invalidatepage,
8729        .releasepage    = btrfs_releasepage,
8730};
8731
8732static const struct inode_operations btrfs_file_inode_operations = {
8733        .getattr        = btrfs_getattr,
8734        .setattr        = btrfs_setattr,
8735        .setxattr       = btrfs_setxattr,
8736        .getxattr       = btrfs_getxattr,
8737        .listxattr      = btrfs_listxattr,
8738        .removexattr    = btrfs_removexattr,
8739        .permission     = btrfs_permission,
8740        .fiemap         = btrfs_fiemap,
8741        .get_acl        = btrfs_get_acl,
8742        .update_time    = btrfs_update_time,
8743};
8744static const struct inode_operations btrfs_special_inode_operations = {
8745        .getattr        = btrfs_getattr,
8746        .setattr        = btrfs_setattr,
8747        .permission     = btrfs_permission,
8748        .setxattr       = btrfs_setxattr,
8749        .getxattr       = btrfs_getxattr,
8750        .listxattr      = btrfs_listxattr,
8751        .removexattr    = btrfs_removexattr,
8752        .get_acl        = btrfs_get_acl,
8753        .update_time    = btrfs_update_time,
8754};
8755static const struct inode_operations btrfs_symlink_inode_operations = {
8756        .readlink       = generic_readlink,
8757        .follow_link    = page_follow_link_light,
8758        .put_link       = page_put_link,
8759        .getattr        = btrfs_getattr,
8760        .setattr        = btrfs_setattr,
8761        .permission     = btrfs_permission,
8762        .setxattr       = btrfs_setxattr,
8763        .getxattr       = btrfs_getxattr,
8764        .listxattr      = btrfs_listxattr,
8765        .removexattr    = btrfs_removexattr,
8766        .get_acl        = btrfs_get_acl,
8767        .update_time    = btrfs_update_time,
8768};
8769
8770const struct dentry_operations btrfs_dentry_operations = {
8771        .d_delete       = btrfs_dentry_delete,
8772        .d_release      = btrfs_dentry_release,
8773};
8774