linux/fs/btrfs/reada.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include <linux/workqueue.h>
  26#include "ctree.h"
  27#include "volumes.h"
  28#include "disk-io.h"
  29#include "transaction.h"
  30#include "dev-replace.h"
  31
  32#undef DEBUG
  33
  34/*
  35 * This is the implementation for the generic read ahead framework.
  36 *
  37 * To trigger a readahead, btrfs_reada_add must be called. It will start
  38 * a read ahead for the given range [start, end) on tree root. The returned
  39 * handle can either be used to wait on the readahead to finish
  40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  41 *
  42 * The read ahead works as follows:
  43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  44 * reada_start_machine will then search for extents to prefetch and trigger
  45 * some reads. When a read finishes for a node, all contained node/leaf
  46 * pointers that lie in the given range will also be enqueued. The reads will
  47 * be triggered in sequential order, thus giving a big win over a naive
  48 * enumeration. It will also make use of multi-device layouts. Each disk
  49 * will have its on read pointer and all disks will by utilized in parallel.
  50 * Also will no two disks read both sides of a mirror simultaneously, as this
  51 * would waste seeking capacity. Instead both disks will read different parts
  52 * of the filesystem.
  53 * Any number of readaheads can be started in parallel. The read order will be
  54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
  55 * than the 2 started one after another.
  56 */
  57
  58#define MAX_IN_FLIGHT 6
  59
  60struct reada_extctl {
  61        struct list_head        list;
  62        struct reada_control    *rc;
  63        u64                     generation;
  64};
  65
  66struct reada_extent {
  67        u64                     logical;
  68        struct btrfs_key        top;
  69        u32                     blocksize;
  70        int                     err;
  71        struct list_head        extctl;
  72        int                     refcnt;
  73        spinlock_t              lock;
  74        struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
  75        int                     nzones;
  76        struct btrfs_device     *scheduled_for;
  77};
  78
  79struct reada_zone {
  80        u64                     start;
  81        u64                     end;
  82        u64                     elems;
  83        struct list_head        list;
  84        spinlock_t              lock;
  85        int                     locked;
  86        struct btrfs_device     *device;
  87        struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  88                                                           * self */
  89        int                     ndevs;
  90        struct kref             refcnt;
  91};
  92
  93struct reada_machine_work {
  94        struct btrfs_work       work;
  95        struct btrfs_fs_info    *fs_info;
  96};
  97
  98static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  99static void reada_control_release(struct kref *kref);
 100static void reada_zone_release(struct kref *kref);
 101static void reada_start_machine(struct btrfs_fs_info *fs_info);
 102static void __reada_start_machine(struct btrfs_fs_info *fs_info);
 103
 104static int reada_add_block(struct reada_control *rc, u64 logical,
 105                           struct btrfs_key *top, int level, u64 generation);
 106
 107/* recurses */
 108/* in case of err, eb might be NULL */
 109static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 110                            u64 start, int err)
 111{
 112        int level = 0;
 113        int nritems;
 114        int i;
 115        u64 bytenr;
 116        u64 generation;
 117        struct reada_extent *re;
 118        struct btrfs_fs_info *fs_info = root->fs_info;
 119        struct list_head list;
 120        unsigned long index = start >> PAGE_CACHE_SHIFT;
 121        struct btrfs_device *for_dev;
 122
 123        if (eb)
 124                level = btrfs_header_level(eb);
 125
 126        /* find extent */
 127        spin_lock(&fs_info->reada_lock);
 128        re = radix_tree_lookup(&fs_info->reada_tree, index);
 129        if (re)
 130                re->refcnt++;
 131        spin_unlock(&fs_info->reada_lock);
 132
 133        if (!re)
 134                return -1;
 135
 136        spin_lock(&re->lock);
 137        /*
 138         * just take the full list from the extent. afterwards we
 139         * don't need the lock anymore
 140         */
 141        list_replace_init(&re->extctl, &list);
 142        for_dev = re->scheduled_for;
 143        re->scheduled_for = NULL;
 144        spin_unlock(&re->lock);
 145
 146        if (err == 0) {
 147                nritems = level ? btrfs_header_nritems(eb) : 0;
 148                generation = btrfs_header_generation(eb);
 149                /*
 150                 * FIXME: currently we just set nritems to 0 if this is a leaf,
 151                 * effectively ignoring the content. In a next step we could
 152                 * trigger more readahead depending from the content, e.g.
 153                 * fetch the checksums for the extents in the leaf.
 154                 */
 155        } else {
 156                /*
 157                 * this is the error case, the extent buffer has not been
 158                 * read correctly. We won't access anything from it and
 159                 * just cleanup our data structures. Effectively this will
 160                 * cut the branch below this node from read ahead.
 161                 */
 162                nritems = 0;
 163                generation = 0;
 164        }
 165
 166        for (i = 0; i < nritems; i++) {
 167                struct reada_extctl *rec;
 168                u64 n_gen;
 169                struct btrfs_key key;
 170                struct btrfs_key next_key;
 171
 172                btrfs_node_key_to_cpu(eb, &key, i);
 173                if (i + 1 < nritems)
 174                        btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 175                else
 176                        next_key = re->top;
 177                bytenr = btrfs_node_blockptr(eb, i);
 178                n_gen = btrfs_node_ptr_generation(eb, i);
 179
 180                list_for_each_entry(rec, &list, list) {
 181                        struct reada_control *rc = rec->rc;
 182
 183                        /*
 184                         * if the generation doesn't match, just ignore this
 185                         * extctl. This will probably cut off a branch from
 186                         * prefetch. Alternatively one could start a new (sub-)
 187                         * prefetch for this branch, starting again from root.
 188                         * FIXME: move the generation check out of this loop
 189                         */
 190#ifdef DEBUG
 191                        if (rec->generation != generation) {
 192                                printk(KERN_DEBUG "generation mismatch for "
 193                                                "(%llu,%d,%llu) %llu != %llu\n",
 194                                       key.objectid, key.type, key.offset,
 195                                       rec->generation, generation);
 196                        }
 197#endif
 198                        if (rec->generation == generation &&
 199                            btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 200                            btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 201                                reada_add_block(rc, bytenr, &next_key,
 202                                                level - 1, n_gen);
 203                }
 204        }
 205        /*
 206         * free extctl records
 207         */
 208        while (!list_empty(&list)) {
 209                struct reada_control *rc;
 210                struct reada_extctl *rec;
 211
 212                rec = list_first_entry(&list, struct reada_extctl, list);
 213                list_del(&rec->list);
 214                rc = rec->rc;
 215                kfree(rec);
 216
 217                kref_get(&rc->refcnt);
 218                if (atomic_dec_and_test(&rc->elems)) {
 219                        kref_put(&rc->refcnt, reada_control_release);
 220                        wake_up(&rc->wait);
 221                }
 222                kref_put(&rc->refcnt, reada_control_release);
 223
 224                reada_extent_put(fs_info, re);  /* one ref for each entry */
 225        }
 226        reada_extent_put(fs_info, re);  /* our ref */
 227        if (for_dev)
 228                atomic_dec(&for_dev->reada_in_flight);
 229
 230        return 0;
 231}
 232
 233/*
 234 * start is passed separately in case eb in NULL, which may be the case with
 235 * failed I/O
 236 */
 237int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
 238                         u64 start, int err)
 239{
 240        int ret;
 241
 242        ret = __readahead_hook(root, eb, start, err);
 243
 244        reada_start_machine(root->fs_info);
 245
 246        return ret;
 247}
 248
 249static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
 250                                          struct btrfs_device *dev, u64 logical,
 251                                          struct btrfs_bio *bbio)
 252{
 253        int ret;
 254        struct reada_zone *zone;
 255        struct btrfs_block_group_cache *cache = NULL;
 256        u64 start;
 257        u64 end;
 258        int i;
 259
 260        zone = NULL;
 261        spin_lock(&fs_info->reada_lock);
 262        ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 263                                     logical >> PAGE_CACHE_SHIFT, 1);
 264        if (ret == 1)
 265                kref_get(&zone->refcnt);
 266        spin_unlock(&fs_info->reada_lock);
 267
 268        if (ret == 1) {
 269                if (logical >= zone->start && logical < zone->end)
 270                        return zone;
 271                spin_lock(&fs_info->reada_lock);
 272                kref_put(&zone->refcnt, reada_zone_release);
 273                spin_unlock(&fs_info->reada_lock);
 274        }
 275
 276        cache = btrfs_lookup_block_group(fs_info, logical);
 277        if (!cache)
 278                return NULL;
 279
 280        start = cache->key.objectid;
 281        end = start + cache->key.offset - 1;
 282        btrfs_put_block_group(cache);
 283
 284        zone = kzalloc(sizeof(*zone), GFP_NOFS);
 285        if (!zone)
 286                return NULL;
 287
 288        zone->start = start;
 289        zone->end = end;
 290        INIT_LIST_HEAD(&zone->list);
 291        spin_lock_init(&zone->lock);
 292        zone->locked = 0;
 293        kref_init(&zone->refcnt);
 294        zone->elems = 0;
 295        zone->device = dev; /* our device always sits at index 0 */
 296        for (i = 0; i < bbio->num_stripes; ++i) {
 297                /* bounds have already been checked */
 298                zone->devs[i] = bbio->stripes[i].dev;
 299        }
 300        zone->ndevs = bbio->num_stripes;
 301
 302        spin_lock(&fs_info->reada_lock);
 303        ret = radix_tree_insert(&dev->reada_zones,
 304                                (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
 305                                zone);
 306
 307        if (ret == -EEXIST) {
 308                kfree(zone);
 309                ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 310                                             logical >> PAGE_CACHE_SHIFT, 1);
 311                if (ret == 1)
 312                        kref_get(&zone->refcnt);
 313        }
 314        spin_unlock(&fs_info->reada_lock);
 315
 316        return zone;
 317}
 318
 319static struct reada_extent *reada_find_extent(struct btrfs_root *root,
 320                                              u64 logical,
 321                                              struct btrfs_key *top, int level)
 322{
 323        int ret;
 324        struct reada_extent *re = NULL;
 325        struct reada_extent *re_exist = NULL;
 326        struct btrfs_fs_info *fs_info = root->fs_info;
 327        struct btrfs_bio *bbio = NULL;
 328        struct btrfs_device *dev;
 329        struct btrfs_device *prev_dev;
 330        u32 blocksize;
 331        u64 length;
 332        int nzones = 0;
 333        int i;
 334        unsigned long index = logical >> PAGE_CACHE_SHIFT;
 335        int dev_replace_is_ongoing;
 336
 337        spin_lock(&fs_info->reada_lock);
 338        re = radix_tree_lookup(&fs_info->reada_tree, index);
 339        if (re)
 340                re->refcnt++;
 341        spin_unlock(&fs_info->reada_lock);
 342
 343        if (re)
 344                return re;
 345
 346        re = kzalloc(sizeof(*re), GFP_NOFS);
 347        if (!re)
 348                return NULL;
 349
 350        blocksize = btrfs_level_size(root, level);
 351        re->logical = logical;
 352        re->blocksize = blocksize;
 353        re->top = *top;
 354        INIT_LIST_HEAD(&re->extctl);
 355        spin_lock_init(&re->lock);
 356        re->refcnt = 1;
 357
 358        /*
 359         * map block
 360         */
 361        length = blocksize;
 362        ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
 363                              &bbio, 0);
 364        if (ret || !bbio || length < blocksize)
 365                goto error;
 366
 367        if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 368                printk(KERN_ERR "btrfs readahead: more than %d copies not "
 369                                "supported", BTRFS_MAX_MIRRORS);
 370                goto error;
 371        }
 372
 373        for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
 374                struct reada_zone *zone;
 375
 376                dev = bbio->stripes[nzones].dev;
 377                zone = reada_find_zone(fs_info, dev, logical, bbio);
 378                if (!zone)
 379                        break;
 380
 381                re->zones[nzones] = zone;
 382                spin_lock(&zone->lock);
 383                if (!zone->elems)
 384                        kref_get(&zone->refcnt);
 385                ++zone->elems;
 386                spin_unlock(&zone->lock);
 387                spin_lock(&fs_info->reada_lock);
 388                kref_put(&zone->refcnt, reada_zone_release);
 389                spin_unlock(&fs_info->reada_lock);
 390        }
 391        re->nzones = nzones;
 392        if (nzones == 0) {
 393                /* not a single zone found, error and out */
 394                goto error;
 395        }
 396
 397        /* insert extent in reada_tree + all per-device trees, all or nothing */
 398        btrfs_dev_replace_lock(&fs_info->dev_replace);
 399        spin_lock(&fs_info->reada_lock);
 400        ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 401        if (ret == -EEXIST) {
 402                re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 403                BUG_ON(!re_exist);
 404                re_exist->refcnt++;
 405                spin_unlock(&fs_info->reada_lock);
 406                btrfs_dev_replace_unlock(&fs_info->dev_replace);
 407                goto error;
 408        }
 409        if (ret) {
 410                spin_unlock(&fs_info->reada_lock);
 411                btrfs_dev_replace_unlock(&fs_info->dev_replace);
 412                goto error;
 413        }
 414        prev_dev = NULL;
 415        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 416                        &fs_info->dev_replace);
 417        for (i = 0; i < nzones; ++i) {
 418                dev = bbio->stripes[i].dev;
 419                if (dev == prev_dev) {
 420                        /*
 421                         * in case of DUP, just add the first zone. As both
 422                         * are on the same device, there's nothing to gain
 423                         * from adding both.
 424                         * Also, it wouldn't work, as the tree is per device
 425                         * and adding would fail with EEXIST
 426                         */
 427                        continue;
 428                }
 429                if (!dev->bdev) {
 430                        /* cannot read ahead on missing device */
 431                        continue;
 432                }
 433                if (dev_replace_is_ongoing &&
 434                    dev == fs_info->dev_replace.tgtdev) {
 435                        /*
 436                         * as this device is selected for reading only as
 437                         * a last resort, skip it for read ahead.
 438                         */
 439                        continue;
 440                }
 441                prev_dev = dev;
 442                ret = radix_tree_insert(&dev->reada_extents, index, re);
 443                if (ret) {
 444                        while (--i >= 0) {
 445                                dev = bbio->stripes[i].dev;
 446                                BUG_ON(dev == NULL);
 447                                /* ignore whether the entry was inserted */
 448                                radix_tree_delete(&dev->reada_extents, index);
 449                        }
 450                        BUG_ON(fs_info == NULL);
 451                        radix_tree_delete(&fs_info->reada_tree, index);
 452                        spin_unlock(&fs_info->reada_lock);
 453                        btrfs_dev_replace_unlock(&fs_info->dev_replace);
 454                        goto error;
 455                }
 456        }
 457        spin_unlock(&fs_info->reada_lock);
 458        btrfs_dev_replace_unlock(&fs_info->dev_replace);
 459
 460        kfree(bbio);
 461        return re;
 462
 463error:
 464        while (nzones) {
 465                struct reada_zone *zone;
 466
 467                --nzones;
 468                zone = re->zones[nzones];
 469                kref_get(&zone->refcnt);
 470                spin_lock(&zone->lock);
 471                --zone->elems;
 472                if (zone->elems == 0) {
 473                        /*
 474                         * no fs_info->reada_lock needed, as this can't be
 475                         * the last ref
 476                         */
 477                        kref_put(&zone->refcnt, reada_zone_release);
 478                }
 479                spin_unlock(&zone->lock);
 480
 481                spin_lock(&fs_info->reada_lock);
 482                kref_put(&zone->refcnt, reada_zone_release);
 483                spin_unlock(&fs_info->reada_lock);
 484        }
 485        kfree(bbio);
 486        kfree(re);
 487        return re_exist;
 488}
 489
 490static void reada_extent_put(struct btrfs_fs_info *fs_info,
 491                             struct reada_extent *re)
 492{
 493        int i;
 494        unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
 495
 496        spin_lock(&fs_info->reada_lock);
 497        if (--re->refcnt) {
 498                spin_unlock(&fs_info->reada_lock);
 499                return;
 500        }
 501
 502        radix_tree_delete(&fs_info->reada_tree, index);
 503        for (i = 0; i < re->nzones; ++i) {
 504                struct reada_zone *zone = re->zones[i];
 505
 506                radix_tree_delete(&zone->device->reada_extents, index);
 507        }
 508
 509        spin_unlock(&fs_info->reada_lock);
 510
 511        for (i = 0; i < re->nzones; ++i) {
 512                struct reada_zone *zone = re->zones[i];
 513
 514                kref_get(&zone->refcnt);
 515                spin_lock(&zone->lock);
 516                --zone->elems;
 517                if (zone->elems == 0) {
 518                        /* no fs_info->reada_lock needed, as this can't be
 519                         * the last ref */
 520                        kref_put(&zone->refcnt, reada_zone_release);
 521                }
 522                spin_unlock(&zone->lock);
 523
 524                spin_lock(&fs_info->reada_lock);
 525                kref_put(&zone->refcnt, reada_zone_release);
 526                spin_unlock(&fs_info->reada_lock);
 527        }
 528        if (re->scheduled_for)
 529                atomic_dec(&re->scheduled_for->reada_in_flight);
 530
 531        kfree(re);
 532}
 533
 534static void reada_zone_release(struct kref *kref)
 535{
 536        struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 537
 538        radix_tree_delete(&zone->device->reada_zones,
 539                          zone->end >> PAGE_CACHE_SHIFT);
 540
 541        kfree(zone);
 542}
 543
 544static void reada_control_release(struct kref *kref)
 545{
 546        struct reada_control *rc = container_of(kref, struct reada_control,
 547                                                refcnt);
 548
 549        kfree(rc);
 550}
 551
 552static int reada_add_block(struct reada_control *rc, u64 logical,
 553                           struct btrfs_key *top, int level, u64 generation)
 554{
 555        struct btrfs_root *root = rc->root;
 556        struct reada_extent *re;
 557        struct reada_extctl *rec;
 558
 559        re = reada_find_extent(root, logical, top, level); /* takes one ref */
 560        if (!re)
 561                return -1;
 562
 563        rec = kzalloc(sizeof(*rec), GFP_NOFS);
 564        if (!rec) {
 565                reada_extent_put(root->fs_info, re);
 566                return -1;
 567        }
 568
 569        rec->rc = rc;
 570        rec->generation = generation;
 571        atomic_inc(&rc->elems);
 572
 573        spin_lock(&re->lock);
 574        list_add_tail(&rec->list, &re->extctl);
 575        spin_unlock(&re->lock);
 576
 577        /* leave the ref on the extent */
 578
 579        return 0;
 580}
 581
 582/*
 583 * called with fs_info->reada_lock held
 584 */
 585static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 586{
 587        int i;
 588        unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
 589
 590        for (i = 0; i < zone->ndevs; ++i) {
 591                struct reada_zone *peer;
 592                peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 593                if (peer && peer->device != zone->device)
 594                        peer->locked = lock;
 595        }
 596}
 597
 598/*
 599 * called with fs_info->reada_lock held
 600 */
 601static int reada_pick_zone(struct btrfs_device *dev)
 602{
 603        struct reada_zone *top_zone = NULL;
 604        struct reada_zone *top_locked_zone = NULL;
 605        u64 top_elems = 0;
 606        u64 top_locked_elems = 0;
 607        unsigned long index = 0;
 608        int ret;
 609
 610        if (dev->reada_curr_zone) {
 611                reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 612                kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 613                dev->reada_curr_zone = NULL;
 614        }
 615        /* pick the zone with the most elements */
 616        while (1) {
 617                struct reada_zone *zone;
 618
 619                ret = radix_tree_gang_lookup(&dev->reada_zones,
 620                                             (void **)&zone, index, 1);
 621                if (ret == 0)
 622                        break;
 623                index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 624                if (zone->locked) {
 625                        if (zone->elems > top_locked_elems) {
 626                                top_locked_elems = zone->elems;
 627                                top_locked_zone = zone;
 628                        }
 629                } else {
 630                        if (zone->elems > top_elems) {
 631                                top_elems = zone->elems;
 632                                top_zone = zone;
 633                        }
 634                }
 635        }
 636        if (top_zone)
 637                dev->reada_curr_zone = top_zone;
 638        else if (top_locked_zone)
 639                dev->reada_curr_zone = top_locked_zone;
 640        else
 641                return 0;
 642
 643        dev->reada_next = dev->reada_curr_zone->start;
 644        kref_get(&dev->reada_curr_zone->refcnt);
 645        reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 646
 647        return 1;
 648}
 649
 650static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
 651                                   struct btrfs_device *dev)
 652{
 653        struct reada_extent *re = NULL;
 654        int mirror_num = 0;
 655        struct extent_buffer *eb = NULL;
 656        u64 logical;
 657        u32 blocksize;
 658        int ret;
 659        int i;
 660        int need_kick = 0;
 661
 662        spin_lock(&fs_info->reada_lock);
 663        if (dev->reada_curr_zone == NULL) {
 664                ret = reada_pick_zone(dev);
 665                if (!ret) {
 666                        spin_unlock(&fs_info->reada_lock);
 667                        return 0;
 668                }
 669        }
 670        /*
 671         * FIXME currently we issue the reads one extent at a time. If we have
 672         * a contiguous block of extents, we could also coagulate them or use
 673         * plugging to speed things up
 674         */
 675        ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 676                                     dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 677        if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
 678                ret = reada_pick_zone(dev);
 679                if (!ret) {
 680                        spin_unlock(&fs_info->reada_lock);
 681                        return 0;
 682                }
 683                re = NULL;
 684                ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 685                                        dev->reada_next >> PAGE_CACHE_SHIFT, 1);
 686        }
 687        if (ret == 0) {
 688                spin_unlock(&fs_info->reada_lock);
 689                return 0;
 690        }
 691        dev->reada_next = re->logical + re->blocksize;
 692        re->refcnt++;
 693
 694        spin_unlock(&fs_info->reada_lock);
 695
 696        /*
 697         * find mirror num
 698         */
 699        for (i = 0; i < re->nzones; ++i) {
 700                if (re->zones[i]->device == dev) {
 701                        mirror_num = i + 1;
 702                        break;
 703                }
 704        }
 705        logical = re->logical;
 706        blocksize = re->blocksize;
 707
 708        spin_lock(&re->lock);
 709        if (re->scheduled_for == NULL) {
 710                re->scheduled_for = dev;
 711                need_kick = 1;
 712        }
 713        spin_unlock(&re->lock);
 714
 715        reada_extent_put(fs_info, re);
 716
 717        if (!need_kick)
 718                return 0;
 719
 720        atomic_inc(&dev->reada_in_flight);
 721        ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
 722                         mirror_num, &eb);
 723        if (ret)
 724                __readahead_hook(fs_info->extent_root, NULL, logical, ret);
 725        else if (eb)
 726                __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
 727
 728        if (eb)
 729                free_extent_buffer(eb);
 730
 731        return 1;
 732
 733}
 734
 735static void reada_start_machine_worker(struct btrfs_work *work)
 736{
 737        struct reada_machine_work *rmw;
 738        struct btrfs_fs_info *fs_info;
 739        int old_ioprio;
 740
 741        rmw = container_of(work, struct reada_machine_work, work);
 742        fs_info = rmw->fs_info;
 743
 744        kfree(rmw);
 745
 746        old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 747                                       task_nice_ioprio(current));
 748        set_task_ioprio(current, BTRFS_IOPRIO_READA);
 749        __reada_start_machine(fs_info);
 750        set_task_ioprio(current, old_ioprio);
 751}
 752
 753static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 754{
 755        struct btrfs_device *device;
 756        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 757        u64 enqueued;
 758        u64 total = 0;
 759        int i;
 760
 761        do {
 762                enqueued = 0;
 763                list_for_each_entry(device, &fs_devices->devices, dev_list) {
 764                        if (atomic_read(&device->reada_in_flight) <
 765                            MAX_IN_FLIGHT)
 766                                enqueued += reada_start_machine_dev(fs_info,
 767                                                                    device);
 768                }
 769                total += enqueued;
 770        } while (enqueued && total < 10000);
 771
 772        if (enqueued == 0)
 773                return;
 774
 775        /*
 776         * If everything is already in the cache, this is effectively single
 777         * threaded. To a) not hold the caller for too long and b) to utilize
 778         * more cores, we broke the loop above after 10000 iterations and now
 779         * enqueue to workers to finish it. This will distribute the load to
 780         * the cores.
 781         */
 782        for (i = 0; i < 2; ++i)
 783                reada_start_machine(fs_info);
 784}
 785
 786static void reada_start_machine(struct btrfs_fs_info *fs_info)
 787{
 788        struct reada_machine_work *rmw;
 789
 790        rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
 791        if (!rmw) {
 792                /* FIXME we cannot handle this properly right now */
 793                BUG();
 794        }
 795        rmw->work.func = reada_start_machine_worker;
 796        rmw->fs_info = fs_info;
 797
 798        btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
 799}
 800
 801#ifdef DEBUG
 802static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 803{
 804        struct btrfs_device *device;
 805        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 806        unsigned long index;
 807        int ret;
 808        int i;
 809        int j;
 810        int cnt;
 811
 812        spin_lock(&fs_info->reada_lock);
 813        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 814                printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
 815                        atomic_read(&device->reada_in_flight));
 816                index = 0;
 817                while (1) {
 818                        struct reada_zone *zone;
 819                        ret = radix_tree_gang_lookup(&device->reada_zones,
 820                                                     (void **)&zone, index, 1);
 821                        if (ret == 0)
 822                                break;
 823                        printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
 824                                "%d devs", zone->start, zone->end, zone->elems,
 825                                zone->locked);
 826                        for (j = 0; j < zone->ndevs; ++j) {
 827                                printk(KERN_CONT " %lld",
 828                                        zone->devs[j]->devid);
 829                        }
 830                        if (device->reada_curr_zone == zone)
 831                                printk(KERN_CONT " curr off %llu",
 832                                        device->reada_next - zone->start);
 833                        printk(KERN_CONT "\n");
 834                        index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
 835                }
 836                cnt = 0;
 837                index = 0;
 838                while (all) {
 839                        struct reada_extent *re = NULL;
 840
 841                        ret = radix_tree_gang_lookup(&device->reada_extents,
 842                                                     (void **)&re, index, 1);
 843                        if (ret == 0)
 844                                break;
 845                        printk(KERN_DEBUG
 846                                "  re: logical %llu size %u empty %d for %lld",
 847                                re->logical, re->blocksize,
 848                                list_empty(&re->extctl), re->scheduled_for ?
 849                                re->scheduled_for->devid : -1);
 850
 851                        for (i = 0; i < re->nzones; ++i) {
 852                                printk(KERN_CONT " zone %llu-%llu devs",
 853                                        re->zones[i]->start,
 854                                        re->zones[i]->end);
 855                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 856                                        printk(KERN_CONT " %lld",
 857                                                re->zones[i]->devs[j]->devid);
 858                                }
 859                        }
 860                        printk(KERN_CONT "\n");
 861                        index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 862                        if (++cnt > 15)
 863                                break;
 864                }
 865        }
 866
 867        index = 0;
 868        cnt = 0;
 869        while (all) {
 870                struct reada_extent *re = NULL;
 871
 872                ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 873                                             index, 1);
 874                if (ret == 0)
 875                        break;
 876                if (!re->scheduled_for) {
 877                        index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 878                        continue;
 879                }
 880                printk(KERN_DEBUG
 881                        "re: logical %llu size %u list empty %d for %lld",
 882                        re->logical, re->blocksize, list_empty(&re->extctl),
 883                        re->scheduled_for ? re->scheduled_for->devid : -1);
 884                for (i = 0; i < re->nzones; ++i) {
 885                        printk(KERN_CONT " zone %llu-%llu devs",
 886                                re->zones[i]->start,
 887                                re->zones[i]->end);
 888                        for (i = 0; i < re->nzones; ++i) {
 889                                printk(KERN_CONT " zone %llu-%llu devs",
 890                                        re->zones[i]->start,
 891                                        re->zones[i]->end);
 892                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 893                                        printk(KERN_CONT " %lld",
 894                                                re->zones[i]->devs[j]->devid);
 895                                }
 896                        }
 897                }
 898                printk(KERN_CONT "\n");
 899                index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
 900        }
 901        spin_unlock(&fs_info->reada_lock);
 902}
 903#endif
 904
 905/*
 906 * interface
 907 */
 908struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 909                        struct btrfs_key *key_start, struct btrfs_key *key_end)
 910{
 911        struct reada_control *rc;
 912        u64 start;
 913        u64 generation;
 914        int level;
 915        struct extent_buffer *node;
 916        static struct btrfs_key max_key = {
 917                .objectid = (u64)-1,
 918                .type = (u8)-1,
 919                .offset = (u64)-1
 920        };
 921
 922        rc = kzalloc(sizeof(*rc), GFP_NOFS);
 923        if (!rc)
 924                return ERR_PTR(-ENOMEM);
 925
 926        rc->root = root;
 927        rc->key_start = *key_start;
 928        rc->key_end = *key_end;
 929        atomic_set(&rc->elems, 0);
 930        init_waitqueue_head(&rc->wait);
 931        kref_init(&rc->refcnt);
 932        kref_get(&rc->refcnt); /* one ref for having elements */
 933
 934        node = btrfs_root_node(root);
 935        start = node->start;
 936        level = btrfs_header_level(node);
 937        generation = btrfs_header_generation(node);
 938        free_extent_buffer(node);
 939
 940        if (reada_add_block(rc, start, &max_key, level, generation)) {
 941                kfree(rc);
 942                return ERR_PTR(-ENOMEM);
 943        }
 944
 945        reada_start_machine(root->fs_info);
 946
 947        return rc;
 948}
 949
 950#ifdef DEBUG
 951int btrfs_reada_wait(void *handle)
 952{
 953        struct reada_control *rc = handle;
 954
 955        while (atomic_read(&rc->elems)) {
 956                wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 957                                   5 * HZ);
 958                dump_devs(rc->root->fs_info,
 959                          atomic_read(&rc->elems) < 10 ? 1 : 0);
 960        }
 961
 962        dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 963
 964        kref_put(&rc->refcnt, reada_control_release);
 965
 966        return 0;
 967}
 968#else
 969int btrfs_reada_wait(void *handle)
 970{
 971        struct reada_control *rc = handle;
 972
 973        while (atomic_read(&rc->elems)) {
 974                wait_event(rc->wait, atomic_read(&rc->elems) == 0);
 975        }
 976
 977        kref_put(&rc->refcnt, reada_control_release);
 978
 979        return 0;
 980}
 981#endif
 982
 983void btrfs_reada_detach(void *handle)
 984{
 985        struct reada_control *rc = handle;
 986
 987        kref_put(&rc->refcnt, reada_control_release);
 988}
 989