linux/fs/btrfs/transaction.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/writeback.h>
  23#include <linux/pagemap.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include "ctree.h"
  27#include "disk-io.h"
  28#include "transaction.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "inode-map.h"
  32#include "volumes.h"
  33#include "dev-replace.h"
  34
  35#define BTRFS_ROOT_TRANS_TAG 0
  36
  37static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
  38        [TRANS_STATE_RUNNING]           = 0U,
  39        [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
  40                                           __TRANS_START),
  41        [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
  42                                           __TRANS_START |
  43                                           __TRANS_ATTACH),
  44        [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
  45                                           __TRANS_START |
  46                                           __TRANS_ATTACH |
  47                                           __TRANS_JOIN),
  48        [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
  49                                           __TRANS_START |
  50                                           __TRANS_ATTACH |
  51                                           __TRANS_JOIN |
  52                                           __TRANS_JOIN_NOLOCK),
  53        [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
  54                                           __TRANS_START |
  55                                           __TRANS_ATTACH |
  56                                           __TRANS_JOIN |
  57                                           __TRANS_JOIN_NOLOCK),
  58};
  59
  60static void put_transaction(struct btrfs_transaction *transaction)
  61{
  62        WARN_ON(atomic_read(&transaction->use_count) == 0);
  63        if (atomic_dec_and_test(&transaction->use_count)) {
  64                BUG_ON(!list_empty(&transaction->list));
  65                WARN_ON(transaction->delayed_refs.root.rb_node);
  66                while (!list_empty(&transaction->pending_chunks)) {
  67                        struct extent_map *em;
  68
  69                        em = list_first_entry(&transaction->pending_chunks,
  70                                              struct extent_map, list);
  71                        list_del_init(&em->list);
  72                        free_extent_map(em);
  73                }
  74                kmem_cache_free(btrfs_transaction_cachep, transaction);
  75        }
  76}
  77
  78static noinline void switch_commit_root(struct btrfs_root *root)
  79{
  80        free_extent_buffer(root->commit_root);
  81        root->commit_root = btrfs_root_node(root);
  82}
  83
  84static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
  85                                         unsigned int type)
  86{
  87        if (type & TRANS_EXTWRITERS)
  88                atomic_inc(&trans->num_extwriters);
  89}
  90
  91static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
  92                                         unsigned int type)
  93{
  94        if (type & TRANS_EXTWRITERS)
  95                atomic_dec(&trans->num_extwriters);
  96}
  97
  98static inline void extwriter_counter_init(struct btrfs_transaction *trans,
  99                                          unsigned int type)
 100{
 101        atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 102}
 103
 104static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 105{
 106        return atomic_read(&trans->num_extwriters);
 107}
 108
 109/*
 110 * either allocate a new transaction or hop into the existing one
 111 */
 112static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
 113{
 114        struct btrfs_transaction *cur_trans;
 115        struct btrfs_fs_info *fs_info = root->fs_info;
 116
 117        spin_lock(&fs_info->trans_lock);
 118loop:
 119        /* The file system has been taken offline. No new transactions. */
 120        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 121                spin_unlock(&fs_info->trans_lock);
 122                return -EROFS;
 123        }
 124
 125        cur_trans = fs_info->running_transaction;
 126        if (cur_trans) {
 127                if (cur_trans->aborted) {
 128                        spin_unlock(&fs_info->trans_lock);
 129                        return cur_trans->aborted;
 130                }
 131                if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 132                        spin_unlock(&fs_info->trans_lock);
 133                        return -EBUSY;
 134                }
 135                atomic_inc(&cur_trans->use_count);
 136                atomic_inc(&cur_trans->num_writers);
 137                extwriter_counter_inc(cur_trans, type);
 138                spin_unlock(&fs_info->trans_lock);
 139                return 0;
 140        }
 141        spin_unlock(&fs_info->trans_lock);
 142
 143        /*
 144         * If we are ATTACH, we just want to catch the current transaction,
 145         * and commit it. If there is no transaction, just return ENOENT.
 146         */
 147        if (type == TRANS_ATTACH)
 148                return -ENOENT;
 149
 150        /*
 151         * JOIN_NOLOCK only happens during the transaction commit, so
 152         * it is impossible that ->running_transaction is NULL
 153         */
 154        BUG_ON(type == TRANS_JOIN_NOLOCK);
 155
 156        cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
 157        if (!cur_trans)
 158                return -ENOMEM;
 159
 160        spin_lock(&fs_info->trans_lock);
 161        if (fs_info->running_transaction) {
 162                /*
 163                 * someone started a transaction after we unlocked.  Make sure
 164                 * to redo the checks above
 165                 */
 166                kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 167                goto loop;
 168        } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 169                spin_unlock(&fs_info->trans_lock);
 170                kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 171                return -EROFS;
 172        }
 173
 174        atomic_set(&cur_trans->num_writers, 1);
 175        extwriter_counter_init(cur_trans, type);
 176        init_waitqueue_head(&cur_trans->writer_wait);
 177        init_waitqueue_head(&cur_trans->commit_wait);
 178        cur_trans->state = TRANS_STATE_RUNNING;
 179        /*
 180         * One for this trans handle, one so it will live on until we
 181         * commit the transaction.
 182         */
 183        atomic_set(&cur_trans->use_count, 2);
 184        cur_trans->start_time = get_seconds();
 185
 186        cur_trans->delayed_refs.root = RB_ROOT;
 187        cur_trans->delayed_refs.num_entries = 0;
 188        cur_trans->delayed_refs.num_heads_ready = 0;
 189        cur_trans->delayed_refs.num_heads = 0;
 190        cur_trans->delayed_refs.flushing = 0;
 191        cur_trans->delayed_refs.run_delayed_start = 0;
 192
 193        /*
 194         * although the tree mod log is per file system and not per transaction,
 195         * the log must never go across transaction boundaries.
 196         */
 197        smp_mb();
 198        if (!list_empty(&fs_info->tree_mod_seq_list))
 199                WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
 200                        "creating a fresh transaction\n");
 201        if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 202                WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
 203                        "creating a fresh transaction\n");
 204        atomic64_set(&fs_info->tree_mod_seq, 0);
 205
 206        spin_lock_init(&cur_trans->delayed_refs.lock);
 207        atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
 208        atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
 209        init_waitqueue_head(&cur_trans->delayed_refs.wait);
 210
 211        INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 212        INIT_LIST_HEAD(&cur_trans->ordered_operations);
 213        INIT_LIST_HEAD(&cur_trans->pending_chunks);
 214        list_add_tail(&cur_trans->list, &fs_info->trans_list);
 215        extent_io_tree_init(&cur_trans->dirty_pages,
 216                             fs_info->btree_inode->i_mapping);
 217        fs_info->generation++;
 218        cur_trans->transid = fs_info->generation;
 219        fs_info->running_transaction = cur_trans;
 220        cur_trans->aborted = 0;
 221        spin_unlock(&fs_info->trans_lock);
 222
 223        return 0;
 224}
 225
 226/*
 227 * this does all the record keeping required to make sure that a reference
 228 * counted root is properly recorded in a given transaction.  This is required
 229 * to make sure the old root from before we joined the transaction is deleted
 230 * when the transaction commits
 231 */
 232static int record_root_in_trans(struct btrfs_trans_handle *trans,
 233                               struct btrfs_root *root)
 234{
 235        if (root->ref_cows && root->last_trans < trans->transid) {
 236                WARN_ON(root == root->fs_info->extent_root);
 237                WARN_ON(root->commit_root != root->node);
 238
 239                /*
 240                 * see below for in_trans_setup usage rules
 241                 * we have the reloc mutex held now, so there
 242                 * is only one writer in this function
 243                 */
 244                root->in_trans_setup = 1;
 245
 246                /* make sure readers find in_trans_setup before
 247                 * they find our root->last_trans update
 248                 */
 249                smp_wmb();
 250
 251                spin_lock(&root->fs_info->fs_roots_radix_lock);
 252                if (root->last_trans == trans->transid) {
 253                        spin_unlock(&root->fs_info->fs_roots_radix_lock);
 254                        return 0;
 255                }
 256                radix_tree_tag_set(&root->fs_info->fs_roots_radix,
 257                           (unsigned long)root->root_key.objectid,
 258                           BTRFS_ROOT_TRANS_TAG);
 259                spin_unlock(&root->fs_info->fs_roots_radix_lock);
 260                root->last_trans = trans->transid;
 261
 262                /* this is pretty tricky.  We don't want to
 263                 * take the relocation lock in btrfs_record_root_in_trans
 264                 * unless we're really doing the first setup for this root in
 265                 * this transaction.
 266                 *
 267                 * Normally we'd use root->last_trans as a flag to decide
 268                 * if we want to take the expensive mutex.
 269                 *
 270                 * But, we have to set root->last_trans before we
 271                 * init the relocation root, otherwise, we trip over warnings
 272                 * in ctree.c.  The solution used here is to flag ourselves
 273                 * with root->in_trans_setup.  When this is 1, we're still
 274                 * fixing up the reloc trees and everyone must wait.
 275                 *
 276                 * When this is zero, they can trust root->last_trans and fly
 277                 * through btrfs_record_root_in_trans without having to take the
 278                 * lock.  smp_wmb() makes sure that all the writes above are
 279                 * done before we pop in the zero below
 280                 */
 281                btrfs_init_reloc_root(trans, root);
 282                smp_wmb();
 283                root->in_trans_setup = 0;
 284        }
 285        return 0;
 286}
 287
 288
 289int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 290                               struct btrfs_root *root)
 291{
 292        if (!root->ref_cows)
 293                return 0;
 294
 295        /*
 296         * see record_root_in_trans for comments about in_trans_setup usage
 297         * and barriers
 298         */
 299        smp_rmb();
 300        if (root->last_trans == trans->transid &&
 301            !root->in_trans_setup)
 302                return 0;
 303
 304        mutex_lock(&root->fs_info->reloc_mutex);
 305        record_root_in_trans(trans, root);
 306        mutex_unlock(&root->fs_info->reloc_mutex);
 307
 308        return 0;
 309}
 310
 311static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 312{
 313        return (trans->state >= TRANS_STATE_BLOCKED &&
 314                trans->state < TRANS_STATE_UNBLOCKED &&
 315                !trans->aborted);
 316}
 317
 318/* wait for commit against the current transaction to become unblocked
 319 * when this is done, it is safe to start a new transaction, but the current
 320 * transaction might not be fully on disk.
 321 */
 322static void wait_current_trans(struct btrfs_root *root)
 323{
 324        struct btrfs_transaction *cur_trans;
 325
 326        spin_lock(&root->fs_info->trans_lock);
 327        cur_trans = root->fs_info->running_transaction;
 328        if (cur_trans && is_transaction_blocked(cur_trans)) {
 329                atomic_inc(&cur_trans->use_count);
 330                spin_unlock(&root->fs_info->trans_lock);
 331
 332                wait_event(root->fs_info->transaction_wait,
 333                           cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 334                           cur_trans->aborted);
 335                put_transaction(cur_trans);
 336        } else {
 337                spin_unlock(&root->fs_info->trans_lock);
 338        }
 339}
 340
 341static int may_wait_transaction(struct btrfs_root *root, int type)
 342{
 343        if (root->fs_info->log_root_recovering)
 344                return 0;
 345
 346        if (type == TRANS_USERSPACE)
 347                return 1;
 348
 349        if (type == TRANS_START &&
 350            !atomic_read(&root->fs_info->open_ioctl_trans))
 351                return 1;
 352
 353        return 0;
 354}
 355
 356static struct btrfs_trans_handle *
 357start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
 358                  enum btrfs_reserve_flush_enum flush)
 359{
 360        struct btrfs_trans_handle *h;
 361        struct btrfs_transaction *cur_trans;
 362        u64 num_bytes = 0;
 363        int ret;
 364        u64 qgroup_reserved = 0;
 365
 366        if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
 367                return ERR_PTR(-EROFS);
 368
 369        if (current->journal_info) {
 370                WARN_ON(type & TRANS_EXTWRITERS);
 371                h = current->journal_info;
 372                h->use_count++;
 373                WARN_ON(h->use_count > 2);
 374                h->orig_rsv = h->block_rsv;
 375                h->block_rsv = NULL;
 376                goto got_it;
 377        }
 378
 379        /*
 380         * Do the reservation before we join the transaction so we can do all
 381         * the appropriate flushing if need be.
 382         */
 383        if (num_items > 0 && root != root->fs_info->chunk_root) {
 384                if (root->fs_info->quota_enabled &&
 385                    is_fstree(root->root_key.objectid)) {
 386                        qgroup_reserved = num_items * root->leafsize;
 387                        ret = btrfs_qgroup_reserve(root, qgroup_reserved);
 388                        if (ret)
 389                                return ERR_PTR(ret);
 390                }
 391
 392                num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
 393                ret = btrfs_block_rsv_add(root,
 394                                          &root->fs_info->trans_block_rsv,
 395                                          num_bytes, flush);
 396                if (ret)
 397                        goto reserve_fail;
 398        }
 399again:
 400        h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
 401        if (!h) {
 402                ret = -ENOMEM;
 403                goto alloc_fail;
 404        }
 405
 406        /*
 407         * If we are JOIN_NOLOCK we're already committing a transaction and
 408         * waiting on this guy, so we don't need to do the sb_start_intwrite
 409         * because we're already holding a ref.  We need this because we could
 410         * have raced in and did an fsync() on a file which can kick a commit
 411         * and then we deadlock with somebody doing a freeze.
 412         *
 413         * If we are ATTACH, it means we just want to catch the current
 414         * transaction and commit it, so we needn't do sb_start_intwrite(). 
 415         */
 416        if (type & __TRANS_FREEZABLE)
 417                sb_start_intwrite(root->fs_info->sb);
 418
 419        if (may_wait_transaction(root, type))
 420                wait_current_trans(root);
 421
 422        do {
 423                ret = join_transaction(root, type);
 424                if (ret == -EBUSY) {
 425                        wait_current_trans(root);
 426                        if (unlikely(type == TRANS_ATTACH))
 427                                ret = -ENOENT;
 428                }
 429        } while (ret == -EBUSY);
 430
 431        if (ret < 0) {
 432                /* We must get the transaction if we are JOIN_NOLOCK. */
 433                BUG_ON(type == TRANS_JOIN_NOLOCK);
 434                goto join_fail;
 435        }
 436
 437        cur_trans = root->fs_info->running_transaction;
 438
 439        h->transid = cur_trans->transid;
 440        h->transaction = cur_trans;
 441        h->blocks_used = 0;
 442        h->bytes_reserved = 0;
 443        h->root = root;
 444        h->delayed_ref_updates = 0;
 445        h->use_count = 1;
 446        h->adding_csums = 0;
 447        h->block_rsv = NULL;
 448        h->orig_rsv = NULL;
 449        h->aborted = 0;
 450        h->qgroup_reserved = 0;
 451        h->delayed_ref_elem.seq = 0;
 452        h->type = type;
 453        h->allocating_chunk = false;
 454        INIT_LIST_HEAD(&h->qgroup_ref_list);
 455        INIT_LIST_HEAD(&h->new_bgs);
 456
 457        smp_mb();
 458        if (cur_trans->state >= TRANS_STATE_BLOCKED &&
 459            may_wait_transaction(root, type)) {
 460                btrfs_commit_transaction(h, root);
 461                goto again;
 462        }
 463
 464        if (num_bytes) {
 465                trace_btrfs_space_reservation(root->fs_info, "transaction",
 466                                              h->transid, num_bytes, 1);
 467                h->block_rsv = &root->fs_info->trans_block_rsv;
 468                h->bytes_reserved = num_bytes;
 469        }
 470        h->qgroup_reserved = qgroup_reserved;
 471
 472got_it:
 473        btrfs_record_root_in_trans(h, root);
 474
 475        if (!current->journal_info && type != TRANS_USERSPACE)
 476                current->journal_info = h;
 477        return h;
 478
 479join_fail:
 480        if (type & __TRANS_FREEZABLE)
 481                sb_end_intwrite(root->fs_info->sb);
 482        kmem_cache_free(btrfs_trans_handle_cachep, h);
 483alloc_fail:
 484        if (num_bytes)
 485                btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
 486                                        num_bytes);
 487reserve_fail:
 488        if (qgroup_reserved)
 489                btrfs_qgroup_free(root, qgroup_reserved);
 490        return ERR_PTR(ret);
 491}
 492
 493struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 494                                                   int num_items)
 495{
 496        return start_transaction(root, num_items, TRANS_START,
 497                                 BTRFS_RESERVE_FLUSH_ALL);
 498}
 499
 500struct btrfs_trans_handle *btrfs_start_transaction_lflush(
 501                                        struct btrfs_root *root, int num_items)
 502{
 503        return start_transaction(root, num_items, TRANS_START,
 504                                 BTRFS_RESERVE_FLUSH_LIMIT);
 505}
 506
 507struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 508{
 509        return start_transaction(root, 0, TRANS_JOIN, 0);
 510}
 511
 512struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 513{
 514        return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
 515}
 516
 517struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
 518{
 519        return start_transaction(root, 0, TRANS_USERSPACE, 0);
 520}
 521
 522/*
 523 * btrfs_attach_transaction() - catch the running transaction
 524 *
 525 * It is used when we want to commit the current the transaction, but
 526 * don't want to start a new one.
 527 *
 528 * Note: If this function return -ENOENT, it just means there is no
 529 * running transaction. But it is possible that the inactive transaction
 530 * is still in the memory, not fully on disk. If you hope there is no
 531 * inactive transaction in the fs when -ENOENT is returned, you should
 532 * invoke
 533 *     btrfs_attach_transaction_barrier()
 534 */
 535struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 536{
 537        return start_transaction(root, 0, TRANS_ATTACH, 0);
 538}
 539
 540/*
 541 * btrfs_attach_transaction_barrier() - catch the running transaction
 542 *
 543 * It is similar to the above function, the differentia is this one
 544 * will wait for all the inactive transactions until they fully
 545 * complete.
 546 */
 547struct btrfs_trans_handle *
 548btrfs_attach_transaction_barrier(struct btrfs_root *root)
 549{
 550        struct btrfs_trans_handle *trans;
 551
 552        trans = start_transaction(root, 0, TRANS_ATTACH, 0);
 553        if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
 554                btrfs_wait_for_commit(root, 0);
 555
 556        return trans;
 557}
 558
 559/* wait for a transaction commit to be fully complete */
 560static noinline void wait_for_commit(struct btrfs_root *root,
 561                                    struct btrfs_transaction *commit)
 562{
 563        wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 564}
 565
 566int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
 567{
 568        struct btrfs_transaction *cur_trans = NULL, *t;
 569        int ret = 0;
 570
 571        if (transid) {
 572                if (transid <= root->fs_info->last_trans_committed)
 573                        goto out;
 574
 575                ret = -EINVAL;
 576                /* find specified transaction */
 577                spin_lock(&root->fs_info->trans_lock);
 578                list_for_each_entry(t, &root->fs_info->trans_list, list) {
 579                        if (t->transid == transid) {
 580                                cur_trans = t;
 581                                atomic_inc(&cur_trans->use_count);
 582                                ret = 0;
 583                                break;
 584                        }
 585                        if (t->transid > transid) {
 586                                ret = 0;
 587                                break;
 588                        }
 589                }
 590                spin_unlock(&root->fs_info->trans_lock);
 591                /* The specified transaction doesn't exist */
 592                if (!cur_trans)
 593                        goto out;
 594        } else {
 595                /* find newest transaction that is committing | committed */
 596                spin_lock(&root->fs_info->trans_lock);
 597                list_for_each_entry_reverse(t, &root->fs_info->trans_list,
 598                                            list) {
 599                        if (t->state >= TRANS_STATE_COMMIT_START) {
 600                                if (t->state == TRANS_STATE_COMPLETED)
 601                                        break;
 602                                cur_trans = t;
 603                                atomic_inc(&cur_trans->use_count);
 604                                break;
 605                        }
 606                }
 607                spin_unlock(&root->fs_info->trans_lock);
 608                if (!cur_trans)
 609                        goto out;  /* nothing committing|committed */
 610        }
 611
 612        wait_for_commit(root, cur_trans);
 613        put_transaction(cur_trans);
 614out:
 615        return ret;
 616}
 617
 618void btrfs_throttle(struct btrfs_root *root)
 619{
 620        if (!atomic_read(&root->fs_info->open_ioctl_trans))
 621                wait_current_trans(root);
 622}
 623
 624static int should_end_transaction(struct btrfs_trans_handle *trans,
 625                                  struct btrfs_root *root)
 626{
 627        if (root->fs_info->global_block_rsv.space_info->full &&
 628            btrfs_should_throttle_delayed_refs(trans, root))
 629                return 1;
 630
 631        return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
 632}
 633
 634int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
 635                                 struct btrfs_root *root)
 636{
 637        struct btrfs_transaction *cur_trans = trans->transaction;
 638        int updates;
 639        int err;
 640
 641        smp_mb();
 642        if (cur_trans->state >= TRANS_STATE_BLOCKED ||
 643            cur_trans->delayed_refs.flushing)
 644                return 1;
 645
 646        updates = trans->delayed_ref_updates;
 647        trans->delayed_ref_updates = 0;
 648        if (updates) {
 649                err = btrfs_run_delayed_refs(trans, root, updates);
 650                if (err) /* Error code will also eval true */
 651                        return err;
 652        }
 653
 654        return should_end_transaction(trans, root);
 655}
 656
 657static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 658                          struct btrfs_root *root, int throttle)
 659{
 660        struct btrfs_transaction *cur_trans = trans->transaction;
 661        struct btrfs_fs_info *info = root->fs_info;
 662        unsigned long cur = trans->delayed_ref_updates;
 663        int lock = (trans->type != TRANS_JOIN_NOLOCK);
 664        int err = 0;
 665
 666        if (--trans->use_count) {
 667                trans->block_rsv = trans->orig_rsv;
 668                return 0;
 669        }
 670
 671        /*
 672         * do the qgroup accounting as early as possible
 673         */
 674        err = btrfs_delayed_refs_qgroup_accounting(trans, info);
 675
 676        btrfs_trans_release_metadata(trans, root);
 677        trans->block_rsv = NULL;
 678
 679        if (trans->qgroup_reserved) {
 680                /*
 681                 * the same root has to be passed here between start_transaction
 682                 * and end_transaction. Subvolume quota depends on this.
 683                 */
 684                btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
 685                trans->qgroup_reserved = 0;
 686        }
 687
 688        if (!list_empty(&trans->new_bgs))
 689                btrfs_create_pending_block_groups(trans, root);
 690
 691        trans->delayed_ref_updates = 0;
 692        if (btrfs_should_throttle_delayed_refs(trans, root)) {
 693                cur = max_t(unsigned long, cur, 1);
 694                trans->delayed_ref_updates = 0;
 695                btrfs_run_delayed_refs(trans, root, cur);
 696        }
 697
 698        btrfs_trans_release_metadata(trans, root);
 699        trans->block_rsv = NULL;
 700
 701        if (!list_empty(&trans->new_bgs))
 702                btrfs_create_pending_block_groups(trans, root);
 703
 704        if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
 705            should_end_transaction(trans, root) &&
 706            ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
 707                spin_lock(&info->trans_lock);
 708                if (cur_trans->state == TRANS_STATE_RUNNING)
 709                        cur_trans->state = TRANS_STATE_BLOCKED;
 710                spin_unlock(&info->trans_lock);
 711        }
 712
 713        if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
 714                if (throttle) {
 715                        /*
 716                         * We may race with somebody else here so end up having
 717                         * to call end_transaction on ourselves again, so inc
 718                         * our use_count.
 719                         */
 720                        trans->use_count++;
 721                        return btrfs_commit_transaction(trans, root);
 722                } else {
 723                        wake_up_process(info->transaction_kthread);
 724                }
 725        }
 726
 727        if (trans->type & __TRANS_FREEZABLE)
 728                sb_end_intwrite(root->fs_info->sb);
 729
 730        WARN_ON(cur_trans != info->running_transaction);
 731        WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 732        atomic_dec(&cur_trans->num_writers);
 733        extwriter_counter_dec(cur_trans, trans->type);
 734
 735        smp_mb();
 736        if (waitqueue_active(&cur_trans->writer_wait))
 737                wake_up(&cur_trans->writer_wait);
 738        put_transaction(cur_trans);
 739
 740        if (current->journal_info == trans)
 741                current->journal_info = NULL;
 742
 743        if (throttle)
 744                btrfs_run_delayed_iputs(root);
 745
 746        if (trans->aborted ||
 747            test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
 748                err = -EIO;
 749        assert_qgroups_uptodate(trans);
 750
 751        kmem_cache_free(btrfs_trans_handle_cachep, trans);
 752        return err;
 753}
 754
 755int btrfs_end_transaction(struct btrfs_trans_handle *trans,
 756                          struct btrfs_root *root)
 757{
 758        return __btrfs_end_transaction(trans, root, 0);
 759}
 760
 761int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
 762                                   struct btrfs_root *root)
 763{
 764        return __btrfs_end_transaction(trans, root, 1);
 765}
 766
 767int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
 768                                struct btrfs_root *root)
 769{
 770        return __btrfs_end_transaction(trans, root, 1);
 771}
 772
 773/*
 774 * when btree blocks are allocated, they have some corresponding bits set for
 775 * them in one of two extent_io trees.  This is used to make sure all of
 776 * those extents are sent to disk but does not wait on them
 777 */
 778int btrfs_write_marked_extents(struct btrfs_root *root,
 779                               struct extent_io_tree *dirty_pages, int mark)
 780{
 781        int err = 0;
 782        int werr = 0;
 783        struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
 784        struct extent_state *cached_state = NULL;
 785        u64 start = 0;
 786        u64 end;
 787
 788        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 789                                      mark, &cached_state)) {
 790                convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
 791                                   mark, &cached_state, GFP_NOFS);
 792                cached_state = NULL;
 793                err = filemap_fdatawrite_range(mapping, start, end);
 794                if (err)
 795                        werr = err;
 796                cond_resched();
 797                start = end + 1;
 798        }
 799        if (err)
 800                werr = err;
 801        return werr;
 802}
 803
 804/*
 805 * when btree blocks are allocated, they have some corresponding bits set for
 806 * them in one of two extent_io trees.  This is used to make sure all of
 807 * those extents are on disk for transaction or log commit.  We wait
 808 * on all the pages and clear them from the dirty pages state tree
 809 */
 810int btrfs_wait_marked_extents(struct btrfs_root *root,
 811                              struct extent_io_tree *dirty_pages, int mark)
 812{
 813        int err = 0;
 814        int werr = 0;
 815        struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
 816        struct extent_state *cached_state = NULL;
 817        u64 start = 0;
 818        u64 end;
 819
 820        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 821                                      EXTENT_NEED_WAIT, &cached_state)) {
 822                clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
 823                                 0, 0, &cached_state, GFP_NOFS);
 824                err = filemap_fdatawait_range(mapping, start, end);
 825                if (err)
 826                        werr = err;
 827                cond_resched();
 828                start = end + 1;
 829        }
 830        if (err)
 831                werr = err;
 832        return werr;
 833}
 834
 835/*
 836 * when btree blocks are allocated, they have some corresponding bits set for
 837 * them in one of two extent_io trees.  This is used to make sure all of
 838 * those extents are on disk for transaction or log commit
 839 */
 840int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
 841                                struct extent_io_tree *dirty_pages, int mark)
 842{
 843        int ret;
 844        int ret2;
 845        struct blk_plug plug;
 846
 847        blk_start_plug(&plug);
 848        ret = btrfs_write_marked_extents(root, dirty_pages, mark);
 849        blk_finish_plug(&plug);
 850        ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
 851
 852        if (ret)
 853                return ret;
 854        if (ret2)
 855                return ret2;
 856        return 0;
 857}
 858
 859int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
 860                                     struct btrfs_root *root)
 861{
 862        if (!trans || !trans->transaction) {
 863                struct inode *btree_inode;
 864                btree_inode = root->fs_info->btree_inode;
 865                return filemap_write_and_wait(btree_inode->i_mapping);
 866        }
 867        return btrfs_write_and_wait_marked_extents(root,
 868                                           &trans->transaction->dirty_pages,
 869                                           EXTENT_DIRTY);
 870}
 871
 872/*
 873 * this is used to update the root pointer in the tree of tree roots.
 874 *
 875 * But, in the case of the extent allocation tree, updating the root
 876 * pointer may allocate blocks which may change the root of the extent
 877 * allocation tree.
 878 *
 879 * So, this loops and repeats and makes sure the cowonly root didn't
 880 * change while the root pointer was being updated in the metadata.
 881 */
 882static int update_cowonly_root(struct btrfs_trans_handle *trans,
 883                               struct btrfs_root *root)
 884{
 885        int ret;
 886        u64 old_root_bytenr;
 887        u64 old_root_used;
 888        struct btrfs_root *tree_root = root->fs_info->tree_root;
 889
 890        old_root_used = btrfs_root_used(&root->root_item);
 891        btrfs_write_dirty_block_groups(trans, root);
 892
 893        while (1) {
 894                old_root_bytenr = btrfs_root_bytenr(&root->root_item);
 895                if (old_root_bytenr == root->node->start &&
 896                    old_root_used == btrfs_root_used(&root->root_item))
 897                        break;
 898
 899                btrfs_set_root_node(&root->root_item, root->node);
 900                ret = btrfs_update_root(trans, tree_root,
 901                                        &root->root_key,
 902                                        &root->root_item);
 903                if (ret)
 904                        return ret;
 905
 906                old_root_used = btrfs_root_used(&root->root_item);
 907                ret = btrfs_write_dirty_block_groups(trans, root);
 908                if (ret)
 909                        return ret;
 910        }
 911
 912        if (root != root->fs_info->extent_root)
 913                switch_commit_root(root);
 914
 915        return 0;
 916}
 917
 918/*
 919 * update all the cowonly tree roots on disk
 920 *
 921 * The error handling in this function may not be obvious. Any of the
 922 * failures will cause the file system to go offline. We still need
 923 * to clean up the delayed refs.
 924 */
 925static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
 926                                         struct btrfs_root *root)
 927{
 928        struct btrfs_fs_info *fs_info = root->fs_info;
 929        struct list_head *next;
 930        struct extent_buffer *eb;
 931        int ret;
 932
 933        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 934        if (ret)
 935                return ret;
 936
 937        eb = btrfs_lock_root_node(fs_info->tree_root);
 938        ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
 939                              0, &eb);
 940        btrfs_tree_unlock(eb);
 941        free_extent_buffer(eb);
 942
 943        if (ret)
 944                return ret;
 945
 946        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 947        if (ret)
 948                return ret;
 949
 950        ret = btrfs_run_dev_stats(trans, root->fs_info);
 951        WARN_ON(ret);
 952        ret = btrfs_run_dev_replace(trans, root->fs_info);
 953        WARN_ON(ret);
 954
 955        ret = btrfs_run_qgroups(trans, root->fs_info);
 956        BUG_ON(ret);
 957
 958        /* run_qgroups might have added some more refs */
 959        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 960        BUG_ON(ret);
 961
 962        while (!list_empty(&fs_info->dirty_cowonly_roots)) {
 963                next = fs_info->dirty_cowonly_roots.next;
 964                list_del_init(next);
 965                root = list_entry(next, struct btrfs_root, dirty_list);
 966
 967                ret = update_cowonly_root(trans, root);
 968                if (ret)
 969                        return ret;
 970        }
 971
 972        down_write(&fs_info->extent_commit_sem);
 973        switch_commit_root(fs_info->extent_root);
 974        up_write(&fs_info->extent_commit_sem);
 975
 976        btrfs_after_dev_replace_commit(fs_info);
 977
 978        return 0;
 979}
 980
 981/*
 982 * dead roots are old snapshots that need to be deleted.  This allocates
 983 * a dirty root struct and adds it into the list of dead roots that need to
 984 * be deleted
 985 */
 986void btrfs_add_dead_root(struct btrfs_root *root)
 987{
 988        spin_lock(&root->fs_info->trans_lock);
 989        if (list_empty(&root->root_list))
 990                list_add_tail(&root->root_list, &root->fs_info->dead_roots);
 991        spin_unlock(&root->fs_info->trans_lock);
 992}
 993
 994/*
 995 * update all the cowonly tree roots on disk
 996 */
 997static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
 998                                    struct btrfs_root *root)
 999{
1000        struct btrfs_root *gang[8];
1001        struct btrfs_fs_info *fs_info = root->fs_info;
1002        int i;
1003        int ret;
1004        int err = 0;
1005
1006        spin_lock(&fs_info->fs_roots_radix_lock);
1007        while (1) {
1008                ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1009                                                 (void **)gang, 0,
1010                                                 ARRAY_SIZE(gang),
1011                                                 BTRFS_ROOT_TRANS_TAG);
1012                if (ret == 0)
1013                        break;
1014                for (i = 0; i < ret; i++) {
1015                        root = gang[i];
1016                        radix_tree_tag_clear(&fs_info->fs_roots_radix,
1017                                        (unsigned long)root->root_key.objectid,
1018                                        BTRFS_ROOT_TRANS_TAG);
1019                        spin_unlock(&fs_info->fs_roots_radix_lock);
1020
1021                        btrfs_free_log(trans, root);
1022                        btrfs_update_reloc_root(trans, root);
1023                        btrfs_orphan_commit_root(trans, root);
1024
1025                        btrfs_save_ino_cache(root, trans);
1026
1027                        /* see comments in should_cow_block() */
1028                        root->force_cow = 0;
1029                        smp_wmb();
1030
1031                        if (root->commit_root != root->node) {
1032                                mutex_lock(&root->fs_commit_mutex);
1033                                switch_commit_root(root);
1034                                btrfs_unpin_free_ino(root);
1035                                mutex_unlock(&root->fs_commit_mutex);
1036
1037                                btrfs_set_root_node(&root->root_item,
1038                                                    root->node);
1039                        }
1040
1041                        err = btrfs_update_root(trans, fs_info->tree_root,
1042                                                &root->root_key,
1043                                                &root->root_item);
1044                        spin_lock(&fs_info->fs_roots_radix_lock);
1045                        if (err)
1046                                break;
1047                }
1048        }
1049        spin_unlock(&fs_info->fs_roots_radix_lock);
1050        return err;
1051}
1052
1053/*
1054 * defrag a given btree.
1055 * Every leaf in the btree is read and defragged.
1056 */
1057int btrfs_defrag_root(struct btrfs_root *root)
1058{
1059        struct btrfs_fs_info *info = root->fs_info;
1060        struct btrfs_trans_handle *trans;
1061        int ret;
1062
1063        if (xchg(&root->defrag_running, 1))
1064                return 0;
1065
1066        while (1) {
1067                trans = btrfs_start_transaction(root, 0);
1068                if (IS_ERR(trans))
1069                        return PTR_ERR(trans);
1070
1071                ret = btrfs_defrag_leaves(trans, root);
1072
1073                btrfs_end_transaction(trans, root);
1074                btrfs_btree_balance_dirty(info->tree_root);
1075                cond_resched();
1076
1077                if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1078                        break;
1079
1080                if (btrfs_defrag_cancelled(root->fs_info)) {
1081                        printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1082                        ret = -EAGAIN;
1083                        break;
1084                }
1085        }
1086        root->defrag_running = 0;
1087        return ret;
1088}
1089
1090/*
1091 * new snapshots need to be created at a very specific time in the
1092 * transaction commit.  This does the actual creation.
1093 *
1094 * Note:
1095 * If the error which may affect the commitment of the current transaction
1096 * happens, we should return the error number. If the error which just affect
1097 * the creation of the pending snapshots, just return 0.
1098 */
1099static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1100                                   struct btrfs_fs_info *fs_info,
1101                                   struct btrfs_pending_snapshot *pending)
1102{
1103        struct btrfs_key key;
1104        struct btrfs_root_item *new_root_item;
1105        struct btrfs_root *tree_root = fs_info->tree_root;
1106        struct btrfs_root *root = pending->root;
1107        struct btrfs_root *parent_root;
1108        struct btrfs_block_rsv *rsv;
1109        struct inode *parent_inode;
1110        struct btrfs_path *path;
1111        struct btrfs_dir_item *dir_item;
1112        struct dentry *dentry;
1113        struct extent_buffer *tmp;
1114        struct extent_buffer *old;
1115        struct timespec cur_time = CURRENT_TIME;
1116        int ret = 0;
1117        u64 to_reserve = 0;
1118        u64 index = 0;
1119        u64 objectid;
1120        u64 root_flags;
1121        uuid_le new_uuid;
1122
1123        path = btrfs_alloc_path();
1124        if (!path) {
1125                pending->error = -ENOMEM;
1126                return 0;
1127        }
1128
1129        new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1130        if (!new_root_item) {
1131                pending->error = -ENOMEM;
1132                goto root_item_alloc_fail;
1133        }
1134
1135        pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1136        if (pending->error)
1137                goto no_free_objectid;
1138
1139        btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1140
1141        if (to_reserve > 0) {
1142                pending->error = btrfs_block_rsv_add(root,
1143                                                     &pending->block_rsv,
1144                                                     to_reserve,
1145                                                     BTRFS_RESERVE_NO_FLUSH);
1146                if (pending->error)
1147                        goto no_free_objectid;
1148        }
1149
1150        pending->error = btrfs_qgroup_inherit(trans, fs_info,
1151                                              root->root_key.objectid,
1152                                              objectid, pending->inherit);
1153        if (pending->error)
1154                goto no_free_objectid;
1155
1156        key.objectid = objectid;
1157        key.offset = (u64)-1;
1158        key.type = BTRFS_ROOT_ITEM_KEY;
1159
1160        rsv = trans->block_rsv;
1161        trans->block_rsv = &pending->block_rsv;
1162        trans->bytes_reserved = trans->block_rsv->reserved;
1163
1164        dentry = pending->dentry;
1165        parent_inode = pending->dir;
1166        parent_root = BTRFS_I(parent_inode)->root;
1167        record_root_in_trans(trans, parent_root);
1168
1169        /*
1170         * insert the directory item
1171         */
1172        ret = btrfs_set_inode_index(parent_inode, &index);
1173        BUG_ON(ret); /* -ENOMEM */
1174
1175        /* check if there is a file/dir which has the same name. */
1176        dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1177                                         btrfs_ino(parent_inode),
1178                                         dentry->d_name.name,
1179                                         dentry->d_name.len, 0);
1180        if (dir_item != NULL && !IS_ERR(dir_item)) {
1181                pending->error = -EEXIST;
1182                goto dir_item_existed;
1183        } else if (IS_ERR(dir_item)) {
1184                ret = PTR_ERR(dir_item);
1185                btrfs_abort_transaction(trans, root, ret);
1186                goto fail;
1187        }
1188        btrfs_release_path(path);
1189
1190        /*
1191         * pull in the delayed directory update
1192         * and the delayed inode item
1193         * otherwise we corrupt the FS during
1194         * snapshot
1195         */
1196        ret = btrfs_run_delayed_items(trans, root);
1197        if (ret) {      /* Transaction aborted */
1198                btrfs_abort_transaction(trans, root, ret);
1199                goto fail;
1200        }
1201
1202        record_root_in_trans(trans, root);
1203        btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1204        memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1205        btrfs_check_and_init_root_item(new_root_item);
1206
1207        root_flags = btrfs_root_flags(new_root_item);
1208        if (pending->readonly)
1209                root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1210        else
1211                root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1212        btrfs_set_root_flags(new_root_item, root_flags);
1213
1214        btrfs_set_root_generation_v2(new_root_item,
1215                        trans->transid);
1216        uuid_le_gen(&new_uuid);
1217        memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1218        memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1219                        BTRFS_UUID_SIZE);
1220        if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1221                memset(new_root_item->received_uuid, 0,
1222                       sizeof(new_root_item->received_uuid));
1223                memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1224                memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1225                btrfs_set_root_stransid(new_root_item, 0);
1226                btrfs_set_root_rtransid(new_root_item, 0);
1227        }
1228        new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1229        new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1230        btrfs_set_root_otransid(new_root_item, trans->transid);
1231
1232        old = btrfs_lock_root_node(root);
1233        ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1234        if (ret) {
1235                btrfs_tree_unlock(old);
1236                free_extent_buffer(old);
1237                btrfs_abort_transaction(trans, root, ret);
1238                goto fail;
1239        }
1240
1241        btrfs_set_lock_blocking(old);
1242
1243        ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1244        /* clean up in any case */
1245        btrfs_tree_unlock(old);
1246        free_extent_buffer(old);
1247        if (ret) {
1248                btrfs_abort_transaction(trans, root, ret);
1249                goto fail;
1250        }
1251
1252        /* see comments in should_cow_block() */
1253        root->force_cow = 1;
1254        smp_wmb();
1255
1256        btrfs_set_root_node(new_root_item, tmp);
1257        /* record when the snapshot was created in key.offset */
1258        key.offset = trans->transid;
1259        ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1260        btrfs_tree_unlock(tmp);
1261        free_extent_buffer(tmp);
1262        if (ret) {
1263                btrfs_abort_transaction(trans, root, ret);
1264                goto fail;
1265        }
1266
1267        /*
1268         * insert root back/forward references
1269         */
1270        ret = btrfs_add_root_ref(trans, tree_root, objectid,
1271                                 parent_root->root_key.objectid,
1272                                 btrfs_ino(parent_inode), index,
1273                                 dentry->d_name.name, dentry->d_name.len);
1274        if (ret) {
1275                btrfs_abort_transaction(trans, root, ret);
1276                goto fail;
1277        }
1278
1279        key.offset = (u64)-1;
1280        pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1281        if (IS_ERR(pending->snap)) {
1282                ret = PTR_ERR(pending->snap);
1283                btrfs_abort_transaction(trans, root, ret);
1284                goto fail;
1285        }
1286
1287        ret = btrfs_reloc_post_snapshot(trans, pending);
1288        if (ret) {
1289                btrfs_abort_transaction(trans, root, ret);
1290                goto fail;
1291        }
1292
1293        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1294        if (ret) {
1295                btrfs_abort_transaction(trans, root, ret);
1296                goto fail;
1297        }
1298
1299        ret = btrfs_insert_dir_item(trans, parent_root,
1300                                    dentry->d_name.name, dentry->d_name.len,
1301                                    parent_inode, &key,
1302                                    BTRFS_FT_DIR, index);
1303        /* We have check then name at the beginning, so it is impossible. */
1304        BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1305        if (ret) {
1306                btrfs_abort_transaction(trans, root, ret);
1307                goto fail;
1308        }
1309
1310        btrfs_i_size_write(parent_inode, parent_inode->i_size +
1311                                         dentry->d_name.len * 2);
1312        parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1313        ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1314        if (ret)
1315                btrfs_abort_transaction(trans, root, ret);
1316fail:
1317        pending->error = ret;
1318dir_item_existed:
1319        trans->block_rsv = rsv;
1320        trans->bytes_reserved = 0;
1321no_free_objectid:
1322        kfree(new_root_item);
1323root_item_alloc_fail:
1324        btrfs_free_path(path);
1325        return ret;
1326}
1327
1328/*
1329 * create all the snapshots we've scheduled for creation
1330 */
1331static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1332                                             struct btrfs_fs_info *fs_info)
1333{
1334        struct btrfs_pending_snapshot *pending, *next;
1335        struct list_head *head = &trans->transaction->pending_snapshots;
1336        int ret = 0;
1337
1338        list_for_each_entry_safe(pending, next, head, list) {
1339                list_del(&pending->list);
1340                ret = create_pending_snapshot(trans, fs_info, pending);
1341                if (ret)
1342                        break;
1343        }
1344        return ret;
1345}
1346
1347static void update_super_roots(struct btrfs_root *root)
1348{
1349        struct btrfs_root_item *root_item;
1350        struct btrfs_super_block *super;
1351
1352        super = root->fs_info->super_copy;
1353
1354        root_item = &root->fs_info->chunk_root->root_item;
1355        super->chunk_root = root_item->bytenr;
1356        super->chunk_root_generation = root_item->generation;
1357        super->chunk_root_level = root_item->level;
1358
1359        root_item = &root->fs_info->tree_root->root_item;
1360        super->root = root_item->bytenr;
1361        super->generation = root_item->generation;
1362        super->root_level = root_item->level;
1363        if (btrfs_test_opt(root, SPACE_CACHE))
1364                super->cache_generation = root_item->generation;
1365}
1366
1367int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1368{
1369        struct btrfs_transaction *trans;
1370        int ret = 0;
1371
1372        spin_lock(&info->trans_lock);
1373        trans = info->running_transaction;
1374        if (trans)
1375                ret = (trans->state >= TRANS_STATE_COMMIT_START);
1376        spin_unlock(&info->trans_lock);
1377        return ret;
1378}
1379
1380int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1381{
1382        struct btrfs_transaction *trans;
1383        int ret = 0;
1384
1385        spin_lock(&info->trans_lock);
1386        trans = info->running_transaction;
1387        if (trans)
1388                ret = is_transaction_blocked(trans);
1389        spin_unlock(&info->trans_lock);
1390        return ret;
1391}
1392
1393/*
1394 * wait for the current transaction commit to start and block subsequent
1395 * transaction joins
1396 */
1397static void wait_current_trans_commit_start(struct btrfs_root *root,
1398                                            struct btrfs_transaction *trans)
1399{
1400        wait_event(root->fs_info->transaction_blocked_wait,
1401                   trans->state >= TRANS_STATE_COMMIT_START ||
1402                   trans->aborted);
1403}
1404
1405/*
1406 * wait for the current transaction to start and then become unblocked.
1407 * caller holds ref.
1408 */
1409static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1410                                         struct btrfs_transaction *trans)
1411{
1412        wait_event(root->fs_info->transaction_wait,
1413                   trans->state >= TRANS_STATE_UNBLOCKED ||
1414                   trans->aborted);
1415}
1416
1417/*
1418 * commit transactions asynchronously. once btrfs_commit_transaction_async
1419 * returns, any subsequent transaction will not be allowed to join.
1420 */
1421struct btrfs_async_commit {
1422        struct btrfs_trans_handle *newtrans;
1423        struct btrfs_root *root;
1424        struct work_struct work;
1425};
1426
1427static void do_async_commit(struct work_struct *work)
1428{
1429        struct btrfs_async_commit *ac =
1430                container_of(work, struct btrfs_async_commit, work);
1431
1432        /*
1433         * We've got freeze protection passed with the transaction.
1434         * Tell lockdep about it.
1435         */
1436        if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1437                rwsem_acquire_read(
1438                     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1439                     0, 1, _THIS_IP_);
1440
1441        current->journal_info = ac->newtrans;
1442
1443        btrfs_commit_transaction(ac->newtrans, ac->root);
1444        kfree(ac);
1445}
1446
1447int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1448                                   struct btrfs_root *root,
1449                                   int wait_for_unblock)
1450{
1451        struct btrfs_async_commit *ac;
1452        struct btrfs_transaction *cur_trans;
1453
1454        ac = kmalloc(sizeof(*ac), GFP_NOFS);
1455        if (!ac)
1456                return -ENOMEM;
1457
1458        INIT_WORK(&ac->work, do_async_commit);
1459        ac->root = root;
1460        ac->newtrans = btrfs_join_transaction(root);
1461        if (IS_ERR(ac->newtrans)) {
1462                int err = PTR_ERR(ac->newtrans);
1463                kfree(ac);
1464                return err;
1465        }
1466
1467        /* take transaction reference */
1468        cur_trans = trans->transaction;
1469        atomic_inc(&cur_trans->use_count);
1470
1471        btrfs_end_transaction(trans, root);
1472
1473        /*
1474         * Tell lockdep we've released the freeze rwsem, since the
1475         * async commit thread will be the one to unlock it.
1476         */
1477        if (trans->type < TRANS_JOIN_NOLOCK)
1478                rwsem_release(
1479                        &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1480                        1, _THIS_IP_);
1481
1482        schedule_work(&ac->work);
1483
1484        /* wait for transaction to start and unblock */
1485        if (wait_for_unblock)
1486                wait_current_trans_commit_start_and_unblock(root, cur_trans);
1487        else
1488                wait_current_trans_commit_start(root, cur_trans);
1489
1490        if (current->journal_info == trans)
1491                current->journal_info = NULL;
1492
1493        put_transaction(cur_trans);
1494        return 0;
1495}
1496
1497
1498static void cleanup_transaction(struct btrfs_trans_handle *trans,
1499                                struct btrfs_root *root, int err)
1500{
1501        struct btrfs_transaction *cur_trans = trans->transaction;
1502        DEFINE_WAIT(wait);
1503
1504        WARN_ON(trans->use_count > 1);
1505
1506        btrfs_abort_transaction(trans, root, err);
1507
1508        spin_lock(&root->fs_info->trans_lock);
1509
1510        /*
1511         * If the transaction is removed from the list, it means this
1512         * transaction has been committed successfully, so it is impossible
1513         * to call the cleanup function.
1514         */
1515        BUG_ON(list_empty(&cur_trans->list));
1516
1517        list_del_init(&cur_trans->list);
1518        if (cur_trans == root->fs_info->running_transaction) {
1519                cur_trans->state = TRANS_STATE_COMMIT_DOING;
1520                spin_unlock(&root->fs_info->trans_lock);
1521                wait_event(cur_trans->writer_wait,
1522                           atomic_read(&cur_trans->num_writers) == 1);
1523
1524                spin_lock(&root->fs_info->trans_lock);
1525        }
1526        spin_unlock(&root->fs_info->trans_lock);
1527
1528        btrfs_cleanup_one_transaction(trans->transaction, root);
1529
1530        spin_lock(&root->fs_info->trans_lock);
1531        if (cur_trans == root->fs_info->running_transaction)
1532                root->fs_info->running_transaction = NULL;
1533        spin_unlock(&root->fs_info->trans_lock);
1534
1535        put_transaction(cur_trans);
1536        put_transaction(cur_trans);
1537
1538        trace_btrfs_transaction_commit(root);
1539
1540        btrfs_scrub_continue(root);
1541
1542        if (current->journal_info == trans)
1543                current->journal_info = NULL;
1544
1545        kmem_cache_free(btrfs_trans_handle_cachep, trans);
1546}
1547
1548static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1549                                          struct btrfs_root *root)
1550{
1551        int ret;
1552
1553        ret = btrfs_run_delayed_items(trans, root);
1554        if (ret)
1555                return ret;
1556
1557        /*
1558         * running the delayed items may have added new refs. account
1559         * them now so that they hinder processing of more delayed refs
1560         * as little as possible.
1561         */
1562        btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1563
1564        /*
1565         * rename don't use btrfs_join_transaction, so, once we
1566         * set the transaction to blocked above, we aren't going
1567         * to get any new ordered operations.  We can safely run
1568         * it here and no for sure that nothing new will be added
1569         * to the list
1570         */
1571        ret = btrfs_run_ordered_operations(trans, root, 1);
1572
1573        return ret;
1574}
1575
1576static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1577{
1578        if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1579                return btrfs_start_all_delalloc_inodes(fs_info, 1);
1580        return 0;
1581}
1582
1583static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1584{
1585        if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1586                btrfs_wait_all_ordered_extents(fs_info, 1);
1587}
1588
1589int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1590                             struct btrfs_root *root)
1591{
1592        struct btrfs_transaction *cur_trans = trans->transaction;
1593        struct btrfs_transaction *prev_trans = NULL;
1594        int ret;
1595
1596        ret = btrfs_run_ordered_operations(trans, root, 0);
1597        if (ret) {
1598                btrfs_abort_transaction(trans, root, ret);
1599                btrfs_end_transaction(trans, root);
1600                return ret;
1601        }
1602
1603        /* Stop the commit early if ->aborted is set */
1604        if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1605                ret = cur_trans->aborted;
1606                btrfs_end_transaction(trans, root);
1607                return ret;
1608        }
1609
1610        /* make a pass through all the delayed refs we have so far
1611         * any runnings procs may add more while we are here
1612         */
1613        ret = btrfs_run_delayed_refs(trans, root, 0);
1614        if (ret) {
1615                btrfs_end_transaction(trans, root);
1616                return ret;
1617        }
1618
1619        btrfs_trans_release_metadata(trans, root);
1620        trans->block_rsv = NULL;
1621        if (trans->qgroup_reserved) {
1622                btrfs_qgroup_free(root, trans->qgroup_reserved);
1623                trans->qgroup_reserved = 0;
1624        }
1625
1626        cur_trans = trans->transaction;
1627
1628        /*
1629         * set the flushing flag so procs in this transaction have to
1630         * start sending their work down.
1631         */
1632        cur_trans->delayed_refs.flushing = 1;
1633        smp_wmb();
1634
1635        if (!list_empty(&trans->new_bgs))
1636                btrfs_create_pending_block_groups(trans, root);
1637
1638        ret = btrfs_run_delayed_refs(trans, root, 0);
1639        if (ret) {
1640                btrfs_end_transaction(trans, root);
1641                return ret;
1642        }
1643
1644        spin_lock(&root->fs_info->trans_lock);
1645        if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1646                spin_unlock(&root->fs_info->trans_lock);
1647                atomic_inc(&cur_trans->use_count);
1648                ret = btrfs_end_transaction(trans, root);
1649
1650                wait_for_commit(root, cur_trans);
1651
1652                put_transaction(cur_trans);
1653
1654                return ret;
1655        }
1656
1657        cur_trans->state = TRANS_STATE_COMMIT_START;
1658        wake_up(&root->fs_info->transaction_blocked_wait);
1659
1660        if (cur_trans->list.prev != &root->fs_info->trans_list) {
1661                prev_trans = list_entry(cur_trans->list.prev,
1662                                        struct btrfs_transaction, list);
1663                if (prev_trans->state != TRANS_STATE_COMPLETED) {
1664                        atomic_inc(&prev_trans->use_count);
1665                        spin_unlock(&root->fs_info->trans_lock);
1666
1667                        wait_for_commit(root, prev_trans);
1668
1669                        put_transaction(prev_trans);
1670                } else {
1671                        spin_unlock(&root->fs_info->trans_lock);
1672                }
1673        } else {
1674                spin_unlock(&root->fs_info->trans_lock);
1675        }
1676
1677        extwriter_counter_dec(cur_trans, trans->type);
1678
1679        ret = btrfs_start_delalloc_flush(root->fs_info);
1680        if (ret)
1681                goto cleanup_transaction;
1682
1683        ret = btrfs_flush_all_pending_stuffs(trans, root);
1684        if (ret)
1685                goto cleanup_transaction;
1686
1687        wait_event(cur_trans->writer_wait,
1688                   extwriter_counter_read(cur_trans) == 0);
1689
1690        /* some pending stuffs might be added after the previous flush. */
1691        ret = btrfs_flush_all_pending_stuffs(trans, root);
1692        if (ret)
1693                goto cleanup_transaction;
1694
1695        btrfs_wait_delalloc_flush(root->fs_info);
1696        /*
1697         * Ok now we need to make sure to block out any other joins while we
1698         * commit the transaction.  We could have started a join before setting
1699         * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1700         */
1701        spin_lock(&root->fs_info->trans_lock);
1702        cur_trans->state = TRANS_STATE_COMMIT_DOING;
1703        spin_unlock(&root->fs_info->trans_lock);
1704        wait_event(cur_trans->writer_wait,
1705                   atomic_read(&cur_trans->num_writers) == 1);
1706
1707        /* ->aborted might be set after the previous check, so check it */
1708        if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1709                ret = cur_trans->aborted;
1710                goto cleanup_transaction;
1711        }
1712        /*
1713         * the reloc mutex makes sure that we stop
1714         * the balancing code from coming in and moving
1715         * extents around in the middle of the commit
1716         */
1717        mutex_lock(&root->fs_info->reloc_mutex);
1718
1719        /*
1720         * We needn't worry about the delayed items because we will
1721         * deal with them in create_pending_snapshot(), which is the
1722         * core function of the snapshot creation.
1723         */
1724        ret = create_pending_snapshots(trans, root->fs_info);
1725        if (ret) {
1726                mutex_unlock(&root->fs_info->reloc_mutex);
1727                goto cleanup_transaction;
1728        }
1729
1730        /*
1731         * We insert the dir indexes of the snapshots and update the inode
1732         * of the snapshots' parents after the snapshot creation, so there
1733         * are some delayed items which are not dealt with. Now deal with
1734         * them.
1735         *
1736         * We needn't worry that this operation will corrupt the snapshots,
1737         * because all the tree which are snapshoted will be forced to COW
1738         * the nodes and leaves.
1739         */
1740        ret = btrfs_run_delayed_items(trans, root);
1741        if (ret) {
1742                mutex_unlock(&root->fs_info->reloc_mutex);
1743                goto cleanup_transaction;
1744        }
1745
1746        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1747        if (ret) {
1748                mutex_unlock(&root->fs_info->reloc_mutex);
1749                goto cleanup_transaction;
1750        }
1751
1752        /*
1753         * make sure none of the code above managed to slip in a
1754         * delayed item
1755         */
1756        btrfs_assert_delayed_root_empty(root);
1757
1758        WARN_ON(cur_trans != trans->transaction);
1759
1760        btrfs_scrub_pause(root);
1761        /* btrfs_commit_tree_roots is responsible for getting the
1762         * various roots consistent with each other.  Every pointer
1763         * in the tree of tree roots has to point to the most up to date
1764         * root for every subvolume and other tree.  So, we have to keep
1765         * the tree logging code from jumping in and changing any
1766         * of the trees.
1767         *
1768         * At this point in the commit, there can't be any tree-log
1769         * writers, but a little lower down we drop the trans mutex
1770         * and let new people in.  By holding the tree_log_mutex
1771         * from now until after the super is written, we avoid races
1772         * with the tree-log code.
1773         */
1774        mutex_lock(&root->fs_info->tree_log_mutex);
1775
1776        ret = commit_fs_roots(trans, root);
1777        if (ret) {
1778                mutex_unlock(&root->fs_info->tree_log_mutex);
1779                mutex_unlock(&root->fs_info->reloc_mutex);
1780                goto cleanup_transaction;
1781        }
1782
1783        /* commit_fs_roots gets rid of all the tree log roots, it is now
1784         * safe to free the root of tree log roots
1785         */
1786        btrfs_free_log_root_tree(trans, root->fs_info);
1787
1788        ret = commit_cowonly_roots(trans, root);
1789        if (ret) {
1790                mutex_unlock(&root->fs_info->tree_log_mutex);
1791                mutex_unlock(&root->fs_info->reloc_mutex);
1792                goto cleanup_transaction;
1793        }
1794
1795        /*
1796         * The tasks which save the space cache and inode cache may also
1797         * update ->aborted, check it.
1798         */
1799        if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1800                ret = cur_trans->aborted;
1801                mutex_unlock(&root->fs_info->tree_log_mutex);
1802                mutex_unlock(&root->fs_info->reloc_mutex);
1803                goto cleanup_transaction;
1804        }
1805
1806        btrfs_prepare_extent_commit(trans, root);
1807
1808        cur_trans = root->fs_info->running_transaction;
1809
1810        btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1811                            root->fs_info->tree_root->node);
1812        switch_commit_root(root->fs_info->tree_root);
1813
1814        btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1815                            root->fs_info->chunk_root->node);
1816        switch_commit_root(root->fs_info->chunk_root);
1817
1818        assert_qgroups_uptodate(trans);
1819        update_super_roots(root);
1820
1821        if (!root->fs_info->log_root_recovering) {
1822                btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1823                btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1824        }
1825
1826        memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1827               sizeof(*root->fs_info->super_copy));
1828
1829        spin_lock(&root->fs_info->trans_lock);
1830        cur_trans->state = TRANS_STATE_UNBLOCKED;
1831        root->fs_info->running_transaction = NULL;
1832        spin_unlock(&root->fs_info->trans_lock);
1833        mutex_unlock(&root->fs_info->reloc_mutex);
1834
1835        wake_up(&root->fs_info->transaction_wait);
1836
1837        ret = btrfs_write_and_wait_transaction(trans, root);
1838        if (ret) {
1839                btrfs_error(root->fs_info, ret,
1840                            "Error while writing out transaction");
1841                mutex_unlock(&root->fs_info->tree_log_mutex);
1842                goto cleanup_transaction;
1843        }
1844
1845        ret = write_ctree_super(trans, root, 0);
1846        if (ret) {
1847                mutex_unlock(&root->fs_info->tree_log_mutex);
1848                goto cleanup_transaction;
1849        }
1850
1851        /*
1852         * the super is written, we can safely allow the tree-loggers
1853         * to go about their business
1854         */
1855        mutex_unlock(&root->fs_info->tree_log_mutex);
1856
1857        btrfs_finish_extent_commit(trans, root);
1858
1859        root->fs_info->last_trans_committed = cur_trans->transid;
1860        /*
1861         * We needn't acquire the lock here because there is no other task
1862         * which can change it.
1863         */
1864        cur_trans->state = TRANS_STATE_COMPLETED;
1865        wake_up(&cur_trans->commit_wait);
1866
1867        spin_lock(&root->fs_info->trans_lock);
1868        list_del_init(&cur_trans->list);
1869        spin_unlock(&root->fs_info->trans_lock);
1870
1871        put_transaction(cur_trans);
1872        put_transaction(cur_trans);
1873
1874        if (trans->type & __TRANS_FREEZABLE)
1875                sb_end_intwrite(root->fs_info->sb);
1876
1877        trace_btrfs_transaction_commit(root);
1878
1879        btrfs_scrub_continue(root);
1880
1881        if (current->journal_info == trans)
1882                current->journal_info = NULL;
1883
1884        kmem_cache_free(btrfs_trans_handle_cachep, trans);
1885
1886        if (current != root->fs_info->transaction_kthread)
1887                btrfs_run_delayed_iputs(root);
1888
1889        return ret;
1890
1891cleanup_transaction:
1892        btrfs_trans_release_metadata(trans, root);
1893        trans->block_rsv = NULL;
1894        if (trans->qgroup_reserved) {
1895                btrfs_qgroup_free(root, trans->qgroup_reserved);
1896                trans->qgroup_reserved = 0;
1897        }
1898        btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1899        if (current->journal_info == trans)
1900                current->journal_info = NULL;
1901        cleanup_transaction(trans, root, ret);
1902
1903        return ret;
1904}
1905
1906/*
1907 * return < 0 if error
1908 * 0 if there are no more dead_roots at the time of call
1909 * 1 there are more to be processed, call me again
1910 *
1911 * The return value indicates there are certainly more snapshots to delete, but
1912 * if there comes a new one during processing, it may return 0. We don't mind,
1913 * because btrfs_commit_super will poke cleaner thread and it will process it a
1914 * few seconds later.
1915 */
1916int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1917{
1918        int ret;
1919        struct btrfs_fs_info *fs_info = root->fs_info;
1920
1921        spin_lock(&fs_info->trans_lock);
1922        if (list_empty(&fs_info->dead_roots)) {
1923                spin_unlock(&fs_info->trans_lock);
1924                return 0;
1925        }
1926        root = list_first_entry(&fs_info->dead_roots,
1927                        struct btrfs_root, root_list);
1928        list_del_init(&root->root_list);
1929        spin_unlock(&fs_info->trans_lock);
1930
1931        pr_debug("btrfs: cleaner removing %llu\n",
1932                        (unsigned long long)root->objectid);
1933
1934        btrfs_kill_all_delayed_nodes(root);
1935
1936        if (btrfs_header_backref_rev(root->node) <
1937                        BTRFS_MIXED_BACKREF_REV)
1938                ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1939        else
1940                ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1941        /*
1942         * If we encounter a transaction abort during snapshot cleaning, we
1943         * don't want to crash here
1944         */
1945        BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS);
1946        return 1;
1947}
1948