linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/random.h>
  24#include <linux/iocontext.h>
  25#include <linux/capability.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <linux/raid/pq.h>
  29#include <asm/div64.h>
  30#include "compat.h"
  31#include "ctree.h"
  32#include "extent_map.h"
  33#include "disk-io.h"
  34#include "transaction.h"
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "raid56.h"
  38#include "async-thread.h"
  39#include "check-integrity.h"
  40#include "rcu-string.h"
  41#include "math.h"
  42#include "dev-replace.h"
  43
  44static int init_first_rw_device(struct btrfs_trans_handle *trans,
  45                                struct btrfs_root *root,
  46                                struct btrfs_device *device);
  47static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  48static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
  49static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
  50static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
  51
  52static DEFINE_MUTEX(uuid_mutex);
  53static LIST_HEAD(fs_uuids);
  54
  55static void lock_chunks(struct btrfs_root *root)
  56{
  57        mutex_lock(&root->fs_info->chunk_mutex);
  58}
  59
  60static void unlock_chunks(struct btrfs_root *root)
  61{
  62        mutex_unlock(&root->fs_info->chunk_mutex);
  63}
  64
  65static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
  66{
  67        struct btrfs_device *device;
  68        WARN_ON(fs_devices->opened);
  69        while (!list_empty(&fs_devices->devices)) {
  70                device = list_entry(fs_devices->devices.next,
  71                                    struct btrfs_device, dev_list);
  72                list_del(&device->dev_list);
  73                rcu_string_free(device->name);
  74                kfree(device);
  75        }
  76        kfree(fs_devices);
  77}
  78
  79static void btrfs_kobject_uevent(struct block_device *bdev,
  80                                 enum kobject_action action)
  81{
  82        int ret;
  83
  84        ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
  85        if (ret)
  86                pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
  87                        action,
  88                        kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
  89                        &disk_to_dev(bdev->bd_disk)->kobj);
  90}
  91
  92void btrfs_cleanup_fs_uuids(void)
  93{
  94        struct btrfs_fs_devices *fs_devices;
  95
  96        while (!list_empty(&fs_uuids)) {
  97                fs_devices = list_entry(fs_uuids.next,
  98                                        struct btrfs_fs_devices, list);
  99                list_del(&fs_devices->list);
 100                free_fs_devices(fs_devices);
 101        }
 102}
 103
 104static noinline struct btrfs_device *__find_device(struct list_head *head,
 105                                                   u64 devid, u8 *uuid)
 106{
 107        struct btrfs_device *dev;
 108
 109        list_for_each_entry(dev, head, dev_list) {
 110                if (dev->devid == devid &&
 111                    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 112                        return dev;
 113                }
 114        }
 115        return NULL;
 116}
 117
 118static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 119{
 120        struct btrfs_fs_devices *fs_devices;
 121
 122        list_for_each_entry(fs_devices, &fs_uuids, list) {
 123                if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 124                        return fs_devices;
 125        }
 126        return NULL;
 127}
 128
 129static int
 130btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 131                      int flush, struct block_device **bdev,
 132                      struct buffer_head **bh)
 133{
 134        int ret;
 135
 136        *bdev = blkdev_get_by_path(device_path, flags, holder);
 137
 138        if (IS_ERR(*bdev)) {
 139                ret = PTR_ERR(*bdev);
 140                printk(KERN_INFO "btrfs: open %s failed\n", device_path);
 141                goto error;
 142        }
 143
 144        if (flush)
 145                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 146        ret = set_blocksize(*bdev, 4096);
 147        if (ret) {
 148                blkdev_put(*bdev, flags);
 149                goto error;
 150        }
 151        invalidate_bdev(*bdev);
 152        *bh = btrfs_read_dev_super(*bdev);
 153        if (!*bh) {
 154                ret = -EINVAL;
 155                blkdev_put(*bdev, flags);
 156                goto error;
 157        }
 158
 159        return 0;
 160
 161error:
 162        *bdev = NULL;
 163        *bh = NULL;
 164        return ret;
 165}
 166
 167static void requeue_list(struct btrfs_pending_bios *pending_bios,
 168                        struct bio *head, struct bio *tail)
 169{
 170
 171        struct bio *old_head;
 172
 173        old_head = pending_bios->head;
 174        pending_bios->head = head;
 175        if (pending_bios->tail)
 176                tail->bi_next = old_head;
 177        else
 178                pending_bios->tail = tail;
 179}
 180
 181/*
 182 * we try to collect pending bios for a device so we don't get a large
 183 * number of procs sending bios down to the same device.  This greatly
 184 * improves the schedulers ability to collect and merge the bios.
 185 *
 186 * But, it also turns into a long list of bios to process and that is sure
 187 * to eventually make the worker thread block.  The solution here is to
 188 * make some progress and then put this work struct back at the end of
 189 * the list if the block device is congested.  This way, multiple devices
 190 * can make progress from a single worker thread.
 191 */
 192static noinline void run_scheduled_bios(struct btrfs_device *device)
 193{
 194        struct bio *pending;
 195        struct backing_dev_info *bdi;
 196        struct btrfs_fs_info *fs_info;
 197        struct btrfs_pending_bios *pending_bios;
 198        struct bio *tail;
 199        struct bio *cur;
 200        int again = 0;
 201        unsigned long num_run;
 202        unsigned long batch_run = 0;
 203        unsigned long limit;
 204        unsigned long last_waited = 0;
 205        int force_reg = 0;
 206        int sync_pending = 0;
 207        struct blk_plug plug;
 208
 209        /*
 210         * this function runs all the bios we've collected for
 211         * a particular device.  We don't want to wander off to
 212         * another device without first sending all of these down.
 213         * So, setup a plug here and finish it off before we return
 214         */
 215        blk_start_plug(&plug);
 216
 217        bdi = blk_get_backing_dev_info(device->bdev);
 218        fs_info = device->dev_root->fs_info;
 219        limit = btrfs_async_submit_limit(fs_info);
 220        limit = limit * 2 / 3;
 221
 222loop:
 223        spin_lock(&device->io_lock);
 224
 225loop_lock:
 226        num_run = 0;
 227
 228        /* take all the bios off the list at once and process them
 229         * later on (without the lock held).  But, remember the
 230         * tail and other pointers so the bios can be properly reinserted
 231         * into the list if we hit congestion
 232         */
 233        if (!force_reg && device->pending_sync_bios.head) {
 234                pending_bios = &device->pending_sync_bios;
 235                force_reg = 1;
 236        } else {
 237                pending_bios = &device->pending_bios;
 238                force_reg = 0;
 239        }
 240
 241        pending = pending_bios->head;
 242        tail = pending_bios->tail;
 243        WARN_ON(pending && !tail);
 244
 245        /*
 246         * if pending was null this time around, no bios need processing
 247         * at all and we can stop.  Otherwise it'll loop back up again
 248         * and do an additional check so no bios are missed.
 249         *
 250         * device->running_pending is used to synchronize with the
 251         * schedule_bio code.
 252         */
 253        if (device->pending_sync_bios.head == NULL &&
 254            device->pending_bios.head == NULL) {
 255                again = 0;
 256                device->running_pending = 0;
 257        } else {
 258                again = 1;
 259                device->running_pending = 1;
 260        }
 261
 262        pending_bios->head = NULL;
 263        pending_bios->tail = NULL;
 264
 265        spin_unlock(&device->io_lock);
 266
 267        while (pending) {
 268
 269                rmb();
 270                /* we want to work on both lists, but do more bios on the
 271                 * sync list than the regular list
 272                 */
 273                if ((num_run > 32 &&
 274                    pending_bios != &device->pending_sync_bios &&
 275                    device->pending_sync_bios.head) ||
 276                   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 277                    device->pending_bios.head)) {
 278                        spin_lock(&device->io_lock);
 279                        requeue_list(pending_bios, pending, tail);
 280                        goto loop_lock;
 281                }
 282
 283                cur = pending;
 284                pending = pending->bi_next;
 285                cur->bi_next = NULL;
 286
 287                if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
 288                    waitqueue_active(&fs_info->async_submit_wait))
 289                        wake_up(&fs_info->async_submit_wait);
 290
 291                BUG_ON(atomic_read(&cur->bi_cnt) == 0);
 292
 293                /*
 294                 * if we're doing the sync list, record that our
 295                 * plug has some sync requests on it
 296                 *
 297                 * If we're doing the regular list and there are
 298                 * sync requests sitting around, unplug before
 299                 * we add more
 300                 */
 301                if (pending_bios == &device->pending_sync_bios) {
 302                        sync_pending = 1;
 303                } else if (sync_pending) {
 304                        blk_finish_plug(&plug);
 305                        blk_start_plug(&plug);
 306                        sync_pending = 0;
 307                }
 308
 309                btrfsic_submit_bio(cur->bi_rw, cur);
 310                num_run++;
 311                batch_run++;
 312                if (need_resched())
 313                        cond_resched();
 314
 315                /*
 316                 * we made progress, there is more work to do and the bdi
 317                 * is now congested.  Back off and let other work structs
 318                 * run instead
 319                 */
 320                if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 321                    fs_info->fs_devices->open_devices > 1) {
 322                        struct io_context *ioc;
 323
 324                        ioc = current->io_context;
 325
 326                        /*
 327                         * the main goal here is that we don't want to
 328                         * block if we're going to be able to submit
 329                         * more requests without blocking.
 330                         *
 331                         * This code does two great things, it pokes into
 332                         * the elevator code from a filesystem _and_
 333                         * it makes assumptions about how batching works.
 334                         */
 335                        if (ioc && ioc->nr_batch_requests > 0 &&
 336                            time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 337                            (last_waited == 0 ||
 338                             ioc->last_waited == last_waited)) {
 339                                /*
 340                                 * we want to go through our batch of
 341                                 * requests and stop.  So, we copy out
 342                                 * the ioc->last_waited time and test
 343                                 * against it before looping
 344                                 */
 345                                last_waited = ioc->last_waited;
 346                                if (need_resched())
 347                                        cond_resched();
 348                                continue;
 349                        }
 350                        spin_lock(&device->io_lock);
 351                        requeue_list(pending_bios, pending, tail);
 352                        device->running_pending = 1;
 353
 354                        spin_unlock(&device->io_lock);
 355                        btrfs_requeue_work(&device->work);
 356                        goto done;
 357                }
 358                /* unplug every 64 requests just for good measure */
 359                if (batch_run % 64 == 0) {
 360                        blk_finish_plug(&plug);
 361                        blk_start_plug(&plug);
 362                        sync_pending = 0;
 363                }
 364        }
 365
 366        cond_resched();
 367        if (again)
 368                goto loop;
 369
 370        spin_lock(&device->io_lock);
 371        if (device->pending_bios.head || device->pending_sync_bios.head)
 372                goto loop_lock;
 373        spin_unlock(&device->io_lock);
 374
 375done:
 376        blk_finish_plug(&plug);
 377}
 378
 379static void pending_bios_fn(struct btrfs_work *work)
 380{
 381        struct btrfs_device *device;
 382
 383        device = container_of(work, struct btrfs_device, work);
 384        run_scheduled_bios(device);
 385}
 386
 387static noinline int device_list_add(const char *path,
 388                           struct btrfs_super_block *disk_super,
 389                           u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 390{
 391        struct btrfs_device *device;
 392        struct btrfs_fs_devices *fs_devices;
 393        struct rcu_string *name;
 394        u64 found_transid = btrfs_super_generation(disk_super);
 395
 396        fs_devices = find_fsid(disk_super->fsid);
 397        if (!fs_devices) {
 398                fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 399                if (!fs_devices)
 400                        return -ENOMEM;
 401                INIT_LIST_HEAD(&fs_devices->devices);
 402                INIT_LIST_HEAD(&fs_devices->alloc_list);
 403                list_add(&fs_devices->list, &fs_uuids);
 404                memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
 405                fs_devices->latest_devid = devid;
 406                fs_devices->latest_trans = found_transid;
 407                mutex_init(&fs_devices->device_list_mutex);
 408                device = NULL;
 409        } else {
 410                device = __find_device(&fs_devices->devices, devid,
 411                                       disk_super->dev_item.uuid);
 412        }
 413        if (!device) {
 414                if (fs_devices->opened)
 415                        return -EBUSY;
 416
 417                device = kzalloc(sizeof(*device), GFP_NOFS);
 418                if (!device) {
 419                        /* we can safely leave the fs_devices entry around */
 420                        return -ENOMEM;
 421                }
 422                device->devid = devid;
 423                device->dev_stats_valid = 0;
 424                device->work.func = pending_bios_fn;
 425                memcpy(device->uuid, disk_super->dev_item.uuid,
 426                       BTRFS_UUID_SIZE);
 427                spin_lock_init(&device->io_lock);
 428
 429                name = rcu_string_strdup(path, GFP_NOFS);
 430                if (!name) {
 431                        kfree(device);
 432                        return -ENOMEM;
 433                }
 434                rcu_assign_pointer(device->name, name);
 435                INIT_LIST_HEAD(&device->dev_alloc_list);
 436
 437                /* init readahead state */
 438                spin_lock_init(&device->reada_lock);
 439                device->reada_curr_zone = NULL;
 440                atomic_set(&device->reada_in_flight, 0);
 441                device->reada_next = 0;
 442                INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
 443                INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
 444
 445                mutex_lock(&fs_devices->device_list_mutex);
 446                list_add_rcu(&device->dev_list, &fs_devices->devices);
 447                mutex_unlock(&fs_devices->device_list_mutex);
 448
 449                device->fs_devices = fs_devices;
 450                fs_devices->num_devices++;
 451        } else if (!device->name || strcmp(device->name->str, path)) {
 452                name = rcu_string_strdup(path, GFP_NOFS);
 453                if (!name)
 454                        return -ENOMEM;
 455                rcu_string_free(device->name);
 456                rcu_assign_pointer(device->name, name);
 457                if (device->missing) {
 458                        fs_devices->missing_devices--;
 459                        device->missing = 0;
 460                }
 461        }
 462
 463        if (found_transid > fs_devices->latest_trans) {
 464                fs_devices->latest_devid = devid;
 465                fs_devices->latest_trans = found_transid;
 466        }
 467        *fs_devices_ret = fs_devices;
 468        return 0;
 469}
 470
 471static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 472{
 473        struct btrfs_fs_devices *fs_devices;
 474        struct btrfs_device *device;
 475        struct btrfs_device *orig_dev;
 476
 477        fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
 478        if (!fs_devices)
 479                return ERR_PTR(-ENOMEM);
 480
 481        INIT_LIST_HEAD(&fs_devices->devices);
 482        INIT_LIST_HEAD(&fs_devices->alloc_list);
 483        INIT_LIST_HEAD(&fs_devices->list);
 484        mutex_init(&fs_devices->device_list_mutex);
 485        fs_devices->latest_devid = orig->latest_devid;
 486        fs_devices->latest_trans = orig->latest_trans;
 487        fs_devices->total_devices = orig->total_devices;
 488        memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
 489
 490        /* We have held the volume lock, it is safe to get the devices. */
 491        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 492                struct rcu_string *name;
 493
 494                device = kzalloc(sizeof(*device), GFP_NOFS);
 495                if (!device)
 496                        goto error;
 497
 498                /*
 499                 * This is ok to do without rcu read locked because we hold the
 500                 * uuid mutex so nothing we touch in here is going to disappear.
 501                 */
 502                name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
 503                if (!name) {
 504                        kfree(device);
 505                        goto error;
 506                }
 507                rcu_assign_pointer(device->name, name);
 508
 509                device->devid = orig_dev->devid;
 510                device->work.func = pending_bios_fn;
 511                memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
 512                spin_lock_init(&device->io_lock);
 513                INIT_LIST_HEAD(&device->dev_list);
 514                INIT_LIST_HEAD(&device->dev_alloc_list);
 515
 516                list_add(&device->dev_list, &fs_devices->devices);
 517                device->fs_devices = fs_devices;
 518                fs_devices->num_devices++;
 519        }
 520        return fs_devices;
 521error:
 522        free_fs_devices(fs_devices);
 523        return ERR_PTR(-ENOMEM);
 524}
 525
 526void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
 527                               struct btrfs_fs_devices *fs_devices, int step)
 528{
 529        struct btrfs_device *device, *next;
 530
 531        struct block_device *latest_bdev = NULL;
 532        u64 latest_devid = 0;
 533        u64 latest_transid = 0;
 534
 535        mutex_lock(&uuid_mutex);
 536again:
 537        /* This is the initialized path, it is safe to release the devices. */
 538        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 539                if (device->in_fs_metadata) {
 540                        if (!device->is_tgtdev_for_dev_replace &&
 541                            (!latest_transid ||
 542                             device->generation > latest_transid)) {
 543                                latest_devid = device->devid;
 544                                latest_transid = device->generation;
 545                                latest_bdev = device->bdev;
 546                        }
 547                        continue;
 548                }
 549
 550                if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
 551                        /*
 552                         * In the first step, keep the device which has
 553                         * the correct fsid and the devid that is used
 554                         * for the dev_replace procedure.
 555                         * In the second step, the dev_replace state is
 556                         * read from the device tree and it is known
 557                         * whether the procedure is really active or
 558                         * not, which means whether this device is
 559                         * used or whether it should be removed.
 560                         */
 561                        if (step == 0 || device->is_tgtdev_for_dev_replace) {
 562                                continue;
 563                        }
 564                }
 565                if (device->bdev) {
 566                        blkdev_put(device->bdev, device->mode);
 567                        device->bdev = NULL;
 568                        fs_devices->open_devices--;
 569                }
 570                if (device->writeable) {
 571                        list_del_init(&device->dev_alloc_list);
 572                        device->writeable = 0;
 573                        if (!device->is_tgtdev_for_dev_replace)
 574                                fs_devices->rw_devices--;
 575                }
 576                list_del_init(&device->dev_list);
 577                fs_devices->num_devices--;
 578                rcu_string_free(device->name);
 579                kfree(device);
 580        }
 581
 582        if (fs_devices->seed) {
 583                fs_devices = fs_devices->seed;
 584                goto again;
 585        }
 586
 587        fs_devices->latest_bdev = latest_bdev;
 588        fs_devices->latest_devid = latest_devid;
 589        fs_devices->latest_trans = latest_transid;
 590
 591        mutex_unlock(&uuid_mutex);
 592}
 593
 594static void __free_device(struct work_struct *work)
 595{
 596        struct btrfs_device *device;
 597
 598        device = container_of(work, struct btrfs_device, rcu_work);
 599
 600        if (device->bdev)
 601                blkdev_put(device->bdev, device->mode);
 602
 603        rcu_string_free(device->name);
 604        kfree(device);
 605}
 606
 607static void free_device(struct rcu_head *head)
 608{
 609        struct btrfs_device *device;
 610
 611        device = container_of(head, struct btrfs_device, rcu);
 612
 613        INIT_WORK(&device->rcu_work, __free_device);
 614        schedule_work(&device->rcu_work);
 615}
 616
 617static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 618{
 619        struct btrfs_device *device;
 620
 621        if (--fs_devices->opened > 0)
 622                return 0;
 623
 624        mutex_lock(&fs_devices->device_list_mutex);
 625        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 626                struct btrfs_device *new_device;
 627                struct rcu_string *name;
 628
 629                if (device->bdev)
 630                        fs_devices->open_devices--;
 631
 632                if (device->writeable && !device->is_tgtdev_for_dev_replace) {
 633                        list_del_init(&device->dev_alloc_list);
 634                        fs_devices->rw_devices--;
 635                }
 636
 637                if (device->can_discard)
 638                        fs_devices->num_can_discard--;
 639
 640                new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
 641                BUG_ON(!new_device); /* -ENOMEM */
 642                memcpy(new_device, device, sizeof(*new_device));
 643
 644                /* Safe because we are under uuid_mutex */
 645                if (device->name) {
 646                        name = rcu_string_strdup(device->name->str, GFP_NOFS);
 647                        BUG_ON(device->name && !name); /* -ENOMEM */
 648                        rcu_assign_pointer(new_device->name, name);
 649                }
 650                new_device->bdev = NULL;
 651                new_device->writeable = 0;
 652                new_device->in_fs_metadata = 0;
 653                new_device->can_discard = 0;
 654                spin_lock_init(&new_device->io_lock);
 655                list_replace_rcu(&device->dev_list, &new_device->dev_list);
 656
 657                call_rcu(&device->rcu, free_device);
 658        }
 659        mutex_unlock(&fs_devices->device_list_mutex);
 660
 661        WARN_ON(fs_devices->open_devices);
 662        WARN_ON(fs_devices->rw_devices);
 663        fs_devices->opened = 0;
 664        fs_devices->seeding = 0;
 665
 666        return 0;
 667}
 668
 669int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 670{
 671        struct btrfs_fs_devices *seed_devices = NULL;
 672        int ret;
 673
 674        mutex_lock(&uuid_mutex);
 675        ret = __btrfs_close_devices(fs_devices);
 676        if (!fs_devices->opened) {
 677                seed_devices = fs_devices->seed;
 678                fs_devices->seed = NULL;
 679        }
 680        mutex_unlock(&uuid_mutex);
 681
 682        while (seed_devices) {
 683                fs_devices = seed_devices;
 684                seed_devices = fs_devices->seed;
 685                __btrfs_close_devices(fs_devices);
 686                free_fs_devices(fs_devices);
 687        }
 688        /*
 689         * Wait for rcu kworkers under __btrfs_close_devices
 690         * to finish all blkdev_puts so device is really
 691         * free when umount is done.
 692         */
 693        rcu_barrier();
 694        return ret;
 695}
 696
 697static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 698                                fmode_t flags, void *holder)
 699{
 700        struct request_queue *q;
 701        struct block_device *bdev;
 702        struct list_head *head = &fs_devices->devices;
 703        struct btrfs_device *device;
 704        struct block_device *latest_bdev = NULL;
 705        struct buffer_head *bh;
 706        struct btrfs_super_block *disk_super;
 707        u64 latest_devid = 0;
 708        u64 latest_transid = 0;
 709        u64 devid;
 710        int seeding = 1;
 711        int ret = 0;
 712
 713        flags |= FMODE_EXCL;
 714
 715        list_for_each_entry(device, head, dev_list) {
 716                if (device->bdev)
 717                        continue;
 718                if (!device->name)
 719                        continue;
 720
 721                /* Just open everything we can; ignore failures here */
 722                if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 723                                            &bdev, &bh))
 724                        continue;
 725
 726                disk_super = (struct btrfs_super_block *)bh->b_data;
 727                devid = btrfs_stack_device_id(&disk_super->dev_item);
 728                if (devid != device->devid)
 729                        goto error_brelse;
 730
 731                if (memcmp(device->uuid, disk_super->dev_item.uuid,
 732                           BTRFS_UUID_SIZE))
 733                        goto error_brelse;
 734
 735                device->generation = btrfs_super_generation(disk_super);
 736                if (!latest_transid || device->generation > latest_transid) {
 737                        latest_devid = devid;
 738                        latest_transid = device->generation;
 739                        latest_bdev = bdev;
 740                }
 741
 742                if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 743                        device->writeable = 0;
 744                } else {
 745                        device->writeable = !bdev_read_only(bdev);
 746                        seeding = 0;
 747                }
 748
 749                q = bdev_get_queue(bdev);
 750                if (blk_queue_discard(q)) {
 751                        device->can_discard = 1;
 752                        fs_devices->num_can_discard++;
 753                }
 754
 755                device->bdev = bdev;
 756                device->in_fs_metadata = 0;
 757                device->mode = flags;
 758
 759                if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 760                        fs_devices->rotating = 1;
 761
 762                fs_devices->open_devices++;
 763                if (device->writeable && !device->is_tgtdev_for_dev_replace) {
 764                        fs_devices->rw_devices++;
 765                        list_add(&device->dev_alloc_list,
 766                                 &fs_devices->alloc_list);
 767                }
 768                brelse(bh);
 769                continue;
 770
 771error_brelse:
 772                brelse(bh);
 773                blkdev_put(bdev, flags);
 774                continue;
 775        }
 776        if (fs_devices->open_devices == 0) {
 777                ret = -EINVAL;
 778                goto out;
 779        }
 780        fs_devices->seeding = seeding;
 781        fs_devices->opened = 1;
 782        fs_devices->latest_bdev = latest_bdev;
 783        fs_devices->latest_devid = latest_devid;
 784        fs_devices->latest_trans = latest_transid;
 785        fs_devices->total_rw_bytes = 0;
 786out:
 787        return ret;
 788}
 789
 790int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 791                       fmode_t flags, void *holder)
 792{
 793        int ret;
 794
 795        mutex_lock(&uuid_mutex);
 796        if (fs_devices->opened) {
 797                fs_devices->opened++;
 798                ret = 0;
 799        } else {
 800                ret = __btrfs_open_devices(fs_devices, flags, holder);
 801        }
 802        mutex_unlock(&uuid_mutex);
 803        return ret;
 804}
 805
 806/*
 807 * Look for a btrfs signature on a device. This may be called out of the mount path
 808 * and we are not allowed to call set_blocksize during the scan. The superblock
 809 * is read via pagecache
 810 */
 811int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 812                          struct btrfs_fs_devices **fs_devices_ret)
 813{
 814        struct btrfs_super_block *disk_super;
 815        struct block_device *bdev;
 816        struct page *page;
 817        void *p;
 818        int ret = -EINVAL;
 819        u64 devid;
 820        u64 transid;
 821        u64 total_devices;
 822        u64 bytenr;
 823        pgoff_t index;
 824
 825        /*
 826         * we would like to check all the supers, but that would make
 827         * a btrfs mount succeed after a mkfs from a different FS.
 828         * So, we need to add a special mount option to scan for
 829         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
 830         */
 831        bytenr = btrfs_sb_offset(0);
 832        flags |= FMODE_EXCL;
 833        mutex_lock(&uuid_mutex);
 834
 835        bdev = blkdev_get_by_path(path, flags, holder);
 836
 837        if (IS_ERR(bdev)) {
 838                ret = PTR_ERR(bdev);
 839                goto error;
 840        }
 841
 842        /* make sure our super fits in the device */
 843        if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
 844                goto error_bdev_put;
 845
 846        /* make sure our super fits in the page */
 847        if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
 848                goto error_bdev_put;
 849
 850        /* make sure our super doesn't straddle pages on disk */
 851        index = bytenr >> PAGE_CACHE_SHIFT;
 852        if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
 853                goto error_bdev_put;
 854
 855        /* pull in the page with our super */
 856        page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
 857                                   index, GFP_NOFS);
 858
 859        if (IS_ERR_OR_NULL(page))
 860                goto error_bdev_put;
 861
 862        p = kmap(page);
 863
 864        /* align our pointer to the offset of the super block */
 865        disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
 866
 867        if (btrfs_super_bytenr(disk_super) != bytenr ||
 868            disk_super->magic != cpu_to_le64(BTRFS_MAGIC))
 869                goto error_unmap;
 870
 871        devid = btrfs_stack_device_id(&disk_super->dev_item);
 872        transid = btrfs_super_generation(disk_super);
 873        total_devices = btrfs_super_num_devices(disk_super);
 874
 875        if (disk_super->label[0]) {
 876                if (disk_super->label[BTRFS_LABEL_SIZE - 1])
 877                        disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
 878                printk(KERN_INFO "device label %s ", disk_super->label);
 879        } else {
 880                printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
 881        }
 882
 883        printk(KERN_CONT "devid %llu transid %llu %s\n",
 884               (unsigned long long)devid, (unsigned long long)transid, path);
 885
 886        ret = device_list_add(path, disk_super, devid, fs_devices_ret);
 887        if (!ret && fs_devices_ret)
 888                (*fs_devices_ret)->total_devices = total_devices;
 889
 890error_unmap:
 891        kunmap(page);
 892        page_cache_release(page);
 893
 894error_bdev_put:
 895        blkdev_put(bdev, flags);
 896error:
 897        mutex_unlock(&uuid_mutex);
 898        return ret;
 899}
 900
 901/* helper to account the used device space in the range */
 902int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
 903                                   u64 end, u64 *length)
 904{
 905        struct btrfs_key key;
 906        struct btrfs_root *root = device->dev_root;
 907        struct btrfs_dev_extent *dev_extent;
 908        struct btrfs_path *path;
 909        u64 extent_end;
 910        int ret;
 911        int slot;
 912        struct extent_buffer *l;
 913
 914        *length = 0;
 915
 916        if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
 917                return 0;
 918
 919        path = btrfs_alloc_path();
 920        if (!path)
 921                return -ENOMEM;
 922        path->reada = 2;
 923
 924        key.objectid = device->devid;
 925        key.offset = start;
 926        key.type = BTRFS_DEV_EXTENT_KEY;
 927
 928        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 929        if (ret < 0)
 930                goto out;
 931        if (ret > 0) {
 932                ret = btrfs_previous_item(root, path, key.objectid, key.type);
 933                if (ret < 0)
 934                        goto out;
 935        }
 936
 937        while (1) {
 938                l = path->nodes[0];
 939                slot = path->slots[0];
 940                if (slot >= btrfs_header_nritems(l)) {
 941                        ret = btrfs_next_leaf(root, path);
 942                        if (ret == 0)
 943                                continue;
 944                        if (ret < 0)
 945                                goto out;
 946
 947                        break;
 948                }
 949                btrfs_item_key_to_cpu(l, &key, slot);
 950
 951                if (key.objectid < device->devid)
 952                        goto next;
 953
 954                if (key.objectid > device->devid)
 955                        break;
 956
 957                if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
 958                        goto next;
 959
 960                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 961                extent_end = key.offset + btrfs_dev_extent_length(l,
 962                                                                  dev_extent);
 963                if (key.offset <= start && extent_end > end) {
 964                        *length = end - start + 1;
 965                        break;
 966                } else if (key.offset <= start && extent_end > start)
 967                        *length += extent_end - start;
 968                else if (key.offset > start && extent_end <= end)
 969                        *length += extent_end - key.offset;
 970                else if (key.offset > start && key.offset <= end) {
 971                        *length += end - key.offset + 1;
 972                        break;
 973                } else if (key.offset > end)
 974                        break;
 975
 976next:
 977                path->slots[0]++;
 978        }
 979        ret = 0;
 980out:
 981        btrfs_free_path(path);
 982        return ret;
 983}
 984
 985static int contains_pending_extent(struct btrfs_trans_handle *trans,
 986                                   struct btrfs_device *device,
 987                                   u64 *start, u64 len)
 988{
 989        struct extent_map *em;
 990        int ret = 0;
 991
 992        list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
 993                struct map_lookup *map;
 994                int i;
 995
 996                map = (struct map_lookup *)em->bdev;
 997                for (i = 0; i < map->num_stripes; i++) {
 998                        if (map->stripes[i].dev != device)
 999                                continue;
1000                        if (map->stripes[i].physical >= *start + len ||
1001                            map->stripes[i].physical + em->orig_block_len <=
1002                            *start)
1003                                continue;
1004                        *start = map->stripes[i].physical +
1005                                em->orig_block_len;
1006                        ret = 1;
1007                }
1008        }
1009
1010        return ret;
1011}
1012
1013
1014/*
1015 * find_free_dev_extent - find free space in the specified device
1016 * @device:     the device which we search the free space in
1017 * @num_bytes:  the size of the free space that we need
1018 * @start:      store the start of the free space.
1019 * @len:        the size of the free space. that we find, or the size of the max
1020 *              free space if we don't find suitable free space
1021 *
1022 * this uses a pretty simple search, the expectation is that it is
1023 * called very infrequently and that a given device has a small number
1024 * of extents
1025 *
1026 * @start is used to store the start of the free space if we find. But if we
1027 * don't find suitable free space, it will be used to store the start position
1028 * of the max free space.
1029 *
1030 * @len is used to store the size of the free space that we find.
1031 * But if we don't find suitable free space, it is used to store the size of
1032 * the max free space.
1033 */
1034int find_free_dev_extent(struct btrfs_trans_handle *trans,
1035                         struct btrfs_device *device, u64 num_bytes,
1036                         u64 *start, u64 *len)
1037{
1038        struct btrfs_key key;
1039        struct btrfs_root *root = device->dev_root;
1040        struct btrfs_dev_extent *dev_extent;
1041        struct btrfs_path *path;
1042        u64 hole_size;
1043        u64 max_hole_start;
1044        u64 max_hole_size;
1045        u64 extent_end;
1046        u64 search_start;
1047        u64 search_end = device->total_bytes;
1048        int ret;
1049        int slot;
1050        struct extent_buffer *l;
1051
1052        /* FIXME use last free of some kind */
1053
1054        /* we don't want to overwrite the superblock on the drive,
1055         * so we make sure to start at an offset of at least 1MB
1056         */
1057        search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1058
1059        path = btrfs_alloc_path();
1060        if (!path)
1061                return -ENOMEM;
1062again:
1063        max_hole_start = search_start;
1064        max_hole_size = 0;
1065        hole_size = 0;
1066
1067        if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1068                ret = -ENOSPC;
1069                goto out;
1070        }
1071
1072        path->reada = 2;
1073        path->search_commit_root = 1;
1074        path->skip_locking = 1;
1075
1076        key.objectid = device->devid;
1077        key.offset = search_start;
1078        key.type = BTRFS_DEV_EXTENT_KEY;
1079
1080        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1081        if (ret < 0)
1082                goto out;
1083        if (ret > 0) {
1084                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1085                if (ret < 0)
1086                        goto out;
1087        }
1088
1089        while (1) {
1090                l = path->nodes[0];
1091                slot = path->slots[0];
1092                if (slot >= btrfs_header_nritems(l)) {
1093                        ret = btrfs_next_leaf(root, path);
1094                        if (ret == 0)
1095                                continue;
1096                        if (ret < 0)
1097                                goto out;
1098
1099                        break;
1100                }
1101                btrfs_item_key_to_cpu(l, &key, slot);
1102
1103                if (key.objectid < device->devid)
1104                        goto next;
1105
1106                if (key.objectid > device->devid)
1107                        break;
1108
1109                if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1110                        goto next;
1111
1112                if (key.offset > search_start) {
1113                        hole_size = key.offset - search_start;
1114
1115                        /*
1116                         * Have to check before we set max_hole_start, otherwise
1117                         * we could end up sending back this offset anyway.
1118                         */
1119                        if (contains_pending_extent(trans, device,
1120                                                    &search_start,
1121                                                    hole_size))
1122                                hole_size = 0;
1123
1124                        if (hole_size > max_hole_size) {
1125                                max_hole_start = search_start;
1126                                max_hole_size = hole_size;
1127                        }
1128
1129                        /*
1130                         * If this free space is greater than which we need,
1131                         * it must be the max free space that we have found
1132                         * until now, so max_hole_start must point to the start
1133                         * of this free space and the length of this free space
1134                         * is stored in max_hole_size. Thus, we return
1135                         * max_hole_start and max_hole_size and go back to the
1136                         * caller.
1137                         */
1138                        if (hole_size >= num_bytes) {
1139                                ret = 0;
1140                                goto out;
1141                        }
1142                }
1143
1144                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1145                extent_end = key.offset + btrfs_dev_extent_length(l,
1146                                                                  dev_extent);
1147                if (extent_end > search_start)
1148                        search_start = extent_end;
1149next:
1150                path->slots[0]++;
1151                cond_resched();
1152        }
1153
1154        /*
1155         * At this point, search_start should be the end of
1156         * allocated dev extents, and when shrinking the device,
1157         * search_end may be smaller than search_start.
1158         */
1159        if (search_end > search_start)
1160                hole_size = search_end - search_start;
1161
1162        if (hole_size > max_hole_size) {
1163                max_hole_start = search_start;
1164                max_hole_size = hole_size;
1165        }
1166
1167        if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1168                btrfs_release_path(path);
1169                goto again;
1170        }
1171
1172        /* See above. */
1173        if (hole_size < num_bytes)
1174                ret = -ENOSPC;
1175        else
1176                ret = 0;
1177
1178out:
1179        btrfs_free_path(path);
1180        *start = max_hole_start;
1181        if (len)
1182                *len = max_hole_size;
1183        return ret;
1184}
1185
1186static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1187                          struct btrfs_device *device,
1188                          u64 start)
1189{
1190        int ret;
1191        struct btrfs_path *path;
1192        struct btrfs_root *root = device->dev_root;
1193        struct btrfs_key key;
1194        struct btrfs_key found_key;
1195        struct extent_buffer *leaf = NULL;
1196        struct btrfs_dev_extent *extent = NULL;
1197
1198        path = btrfs_alloc_path();
1199        if (!path)
1200                return -ENOMEM;
1201
1202        key.objectid = device->devid;
1203        key.offset = start;
1204        key.type = BTRFS_DEV_EXTENT_KEY;
1205again:
1206        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1207        if (ret > 0) {
1208                ret = btrfs_previous_item(root, path, key.objectid,
1209                                          BTRFS_DEV_EXTENT_KEY);
1210                if (ret)
1211                        goto out;
1212                leaf = path->nodes[0];
1213                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1214                extent = btrfs_item_ptr(leaf, path->slots[0],
1215                                        struct btrfs_dev_extent);
1216                BUG_ON(found_key.offset > start || found_key.offset +
1217                       btrfs_dev_extent_length(leaf, extent) < start);
1218                key = found_key;
1219                btrfs_release_path(path);
1220                goto again;
1221        } else if (ret == 0) {
1222                leaf = path->nodes[0];
1223                extent = btrfs_item_ptr(leaf, path->slots[0],
1224                                        struct btrfs_dev_extent);
1225        } else {
1226                btrfs_error(root->fs_info, ret, "Slot search failed");
1227                goto out;
1228        }
1229
1230        if (device->bytes_used > 0) {
1231                u64 len = btrfs_dev_extent_length(leaf, extent);
1232                device->bytes_used -= len;
1233                spin_lock(&root->fs_info->free_chunk_lock);
1234                root->fs_info->free_chunk_space += len;
1235                spin_unlock(&root->fs_info->free_chunk_lock);
1236        }
1237        ret = btrfs_del_item(trans, root, path);
1238        if (ret) {
1239                btrfs_error(root->fs_info, ret,
1240                            "Failed to remove dev extent item");
1241        }
1242out:
1243        btrfs_free_path(path);
1244        return ret;
1245}
1246
1247static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1248                                  struct btrfs_device *device,
1249                                  u64 chunk_tree, u64 chunk_objectid,
1250                                  u64 chunk_offset, u64 start, u64 num_bytes)
1251{
1252        int ret;
1253        struct btrfs_path *path;
1254        struct btrfs_root *root = device->dev_root;
1255        struct btrfs_dev_extent *extent;
1256        struct extent_buffer *leaf;
1257        struct btrfs_key key;
1258
1259        WARN_ON(!device->in_fs_metadata);
1260        WARN_ON(device->is_tgtdev_for_dev_replace);
1261        path = btrfs_alloc_path();
1262        if (!path)
1263                return -ENOMEM;
1264
1265        key.objectid = device->devid;
1266        key.offset = start;
1267        key.type = BTRFS_DEV_EXTENT_KEY;
1268        ret = btrfs_insert_empty_item(trans, root, path, &key,
1269                                      sizeof(*extent));
1270        if (ret)
1271                goto out;
1272
1273        leaf = path->nodes[0];
1274        extent = btrfs_item_ptr(leaf, path->slots[0],
1275                                struct btrfs_dev_extent);
1276        btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1277        btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1278        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1279
1280        write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1281                    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1282                    BTRFS_UUID_SIZE);
1283
1284        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1285        btrfs_mark_buffer_dirty(leaf);
1286out:
1287        btrfs_free_path(path);
1288        return ret;
1289}
1290
1291static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1292{
1293        struct extent_map_tree *em_tree;
1294        struct extent_map *em;
1295        struct rb_node *n;
1296        u64 ret = 0;
1297
1298        em_tree = &fs_info->mapping_tree.map_tree;
1299        read_lock(&em_tree->lock);
1300        n = rb_last(&em_tree->map);
1301        if (n) {
1302                em = rb_entry(n, struct extent_map, rb_node);
1303                ret = em->start + em->len;
1304        }
1305        read_unlock(&em_tree->lock);
1306
1307        return ret;
1308}
1309
1310static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1311{
1312        int ret;
1313        struct btrfs_key key;
1314        struct btrfs_key found_key;
1315        struct btrfs_path *path;
1316
1317        root = root->fs_info->chunk_root;
1318
1319        path = btrfs_alloc_path();
1320        if (!path)
1321                return -ENOMEM;
1322
1323        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1324        key.type = BTRFS_DEV_ITEM_KEY;
1325        key.offset = (u64)-1;
1326
1327        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328        if (ret < 0)
1329                goto error;
1330
1331        BUG_ON(ret == 0); /* Corruption */
1332
1333        ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1334                                  BTRFS_DEV_ITEM_KEY);
1335        if (ret) {
1336                *objectid = 1;
1337        } else {
1338                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1339                                      path->slots[0]);
1340                *objectid = found_key.offset + 1;
1341        }
1342        ret = 0;
1343error:
1344        btrfs_free_path(path);
1345        return ret;
1346}
1347
1348/*
1349 * the device information is stored in the chunk root
1350 * the btrfs_device struct should be fully filled in
1351 */
1352static int btrfs_add_device(struct btrfs_trans_handle *trans,
1353                            struct btrfs_root *root,
1354                            struct btrfs_device *device)
1355{
1356        int ret;
1357        struct btrfs_path *path;
1358        struct btrfs_dev_item *dev_item;
1359        struct extent_buffer *leaf;
1360        struct btrfs_key key;
1361        unsigned long ptr;
1362
1363        root = root->fs_info->chunk_root;
1364
1365        path = btrfs_alloc_path();
1366        if (!path)
1367                return -ENOMEM;
1368
1369        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1370        key.type = BTRFS_DEV_ITEM_KEY;
1371        key.offset = device->devid;
1372
1373        ret = btrfs_insert_empty_item(trans, root, path, &key,
1374                                      sizeof(*dev_item));
1375        if (ret)
1376                goto out;
1377
1378        leaf = path->nodes[0];
1379        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1380
1381        btrfs_set_device_id(leaf, dev_item, device->devid);
1382        btrfs_set_device_generation(leaf, dev_item, 0);
1383        btrfs_set_device_type(leaf, dev_item, device->type);
1384        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1385        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1386        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1387        btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1388        btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1389        btrfs_set_device_group(leaf, dev_item, 0);
1390        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1391        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1392        btrfs_set_device_start_offset(leaf, dev_item, 0);
1393
1394        ptr = (unsigned long)btrfs_device_uuid(dev_item);
1395        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1396        ptr = (unsigned long)btrfs_device_fsid(dev_item);
1397        write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1398        btrfs_mark_buffer_dirty(leaf);
1399
1400        ret = 0;
1401out:
1402        btrfs_free_path(path);
1403        return ret;
1404}
1405
1406static int btrfs_rm_dev_item(struct btrfs_root *root,
1407                             struct btrfs_device *device)
1408{
1409        int ret;
1410        struct btrfs_path *path;
1411        struct btrfs_key key;
1412        struct btrfs_trans_handle *trans;
1413
1414        root = root->fs_info->chunk_root;
1415
1416        path = btrfs_alloc_path();
1417        if (!path)
1418                return -ENOMEM;
1419
1420        trans = btrfs_start_transaction(root, 0);
1421        if (IS_ERR(trans)) {
1422                btrfs_free_path(path);
1423                return PTR_ERR(trans);
1424        }
1425        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1426        key.type = BTRFS_DEV_ITEM_KEY;
1427        key.offset = device->devid;
1428        lock_chunks(root);
1429
1430        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1431        if (ret < 0)
1432                goto out;
1433
1434        if (ret > 0) {
1435                ret = -ENOENT;
1436                goto out;
1437        }
1438
1439        ret = btrfs_del_item(trans, root, path);
1440        if (ret)
1441                goto out;
1442out:
1443        btrfs_free_path(path);
1444        unlock_chunks(root);
1445        btrfs_commit_transaction(trans, root);
1446        return ret;
1447}
1448
1449int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1450{
1451        struct btrfs_device *device;
1452        struct btrfs_device *next_device;
1453        struct block_device *bdev;
1454        struct buffer_head *bh = NULL;
1455        struct btrfs_super_block *disk_super;
1456        struct btrfs_fs_devices *cur_devices;
1457        u64 all_avail;
1458        u64 devid;
1459        u64 num_devices;
1460        u8 *dev_uuid;
1461        unsigned seq;
1462        int ret = 0;
1463        bool clear_super = false;
1464
1465        mutex_lock(&uuid_mutex);
1466
1467        do {
1468                seq = read_seqbegin(&root->fs_info->profiles_lock);
1469
1470                all_avail = root->fs_info->avail_data_alloc_bits |
1471                            root->fs_info->avail_system_alloc_bits |
1472                            root->fs_info->avail_metadata_alloc_bits;
1473        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1474
1475        num_devices = root->fs_info->fs_devices->num_devices;
1476        btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1477        if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1478                WARN_ON(num_devices < 1);
1479                num_devices--;
1480        }
1481        btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1482
1483        if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1484                ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1485                goto out;
1486        }
1487
1488        if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1489                ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1490                goto out;
1491        }
1492
1493        if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1494            root->fs_info->fs_devices->rw_devices <= 2) {
1495                ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1496                goto out;
1497        }
1498        if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1499            root->fs_info->fs_devices->rw_devices <= 3) {
1500                ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1501                goto out;
1502        }
1503
1504        if (strcmp(device_path, "missing") == 0) {
1505                struct list_head *devices;
1506                struct btrfs_device *tmp;
1507
1508                device = NULL;
1509                devices = &root->fs_info->fs_devices->devices;
1510                /*
1511                 * It is safe to read the devices since the volume_mutex
1512                 * is held.
1513                 */
1514                list_for_each_entry(tmp, devices, dev_list) {
1515                        if (tmp->in_fs_metadata &&
1516                            !tmp->is_tgtdev_for_dev_replace &&
1517                            !tmp->bdev) {
1518                                device = tmp;
1519                                break;
1520                        }
1521                }
1522                bdev = NULL;
1523                bh = NULL;
1524                disk_super = NULL;
1525                if (!device) {
1526                        ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1527                        goto out;
1528                }
1529        } else {
1530                ret = btrfs_get_bdev_and_sb(device_path,
1531                                            FMODE_WRITE | FMODE_EXCL,
1532                                            root->fs_info->bdev_holder, 0,
1533                                            &bdev, &bh);
1534                if (ret)
1535                        goto out;
1536                disk_super = (struct btrfs_super_block *)bh->b_data;
1537                devid = btrfs_stack_device_id(&disk_super->dev_item);
1538                dev_uuid = disk_super->dev_item.uuid;
1539                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1540                                           disk_super->fsid);
1541                if (!device) {
1542                        ret = -ENOENT;
1543                        goto error_brelse;
1544                }
1545        }
1546
1547        if (device->is_tgtdev_for_dev_replace) {
1548                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1549                goto error_brelse;
1550        }
1551
1552        if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1553                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1554                goto error_brelse;
1555        }
1556
1557        if (device->writeable) {
1558                lock_chunks(root);
1559                list_del_init(&device->dev_alloc_list);
1560                unlock_chunks(root);
1561                root->fs_info->fs_devices->rw_devices--;
1562                clear_super = true;
1563        }
1564
1565        ret = btrfs_shrink_device(device, 0);
1566        if (ret)
1567                goto error_undo;
1568
1569        /*
1570         * TODO: the superblock still includes this device in its num_devices
1571         * counter although write_all_supers() is not locked out. This
1572         * could give a filesystem state which requires a degraded mount.
1573         */
1574        ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1575        if (ret)
1576                goto error_undo;
1577
1578        spin_lock(&root->fs_info->free_chunk_lock);
1579        root->fs_info->free_chunk_space = device->total_bytes -
1580                device->bytes_used;
1581        spin_unlock(&root->fs_info->free_chunk_lock);
1582
1583        device->in_fs_metadata = 0;
1584        btrfs_scrub_cancel_dev(root->fs_info, device);
1585
1586        /*
1587         * the device list mutex makes sure that we don't change
1588         * the device list while someone else is writing out all
1589         * the device supers.
1590         */
1591
1592        cur_devices = device->fs_devices;
1593        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1594        list_del_rcu(&device->dev_list);
1595
1596        device->fs_devices->num_devices--;
1597        device->fs_devices->total_devices--;
1598
1599        if (device->missing)
1600                root->fs_info->fs_devices->missing_devices--;
1601
1602        next_device = list_entry(root->fs_info->fs_devices->devices.next,
1603                                 struct btrfs_device, dev_list);
1604        if (device->bdev == root->fs_info->sb->s_bdev)
1605                root->fs_info->sb->s_bdev = next_device->bdev;
1606        if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1607                root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1608
1609        if (device->bdev)
1610                device->fs_devices->open_devices--;
1611
1612        call_rcu(&device->rcu, free_device);
1613        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1614
1615        num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1616        btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1617
1618        if (cur_devices->open_devices == 0) {
1619                struct btrfs_fs_devices *fs_devices;
1620                fs_devices = root->fs_info->fs_devices;
1621                while (fs_devices) {
1622                        if (fs_devices->seed == cur_devices)
1623                                break;
1624                        fs_devices = fs_devices->seed;
1625                }
1626                fs_devices->seed = cur_devices->seed;
1627                cur_devices->seed = NULL;
1628                lock_chunks(root);
1629                __btrfs_close_devices(cur_devices);
1630                unlock_chunks(root);
1631                free_fs_devices(cur_devices);
1632        }
1633
1634        root->fs_info->num_tolerated_disk_barrier_failures =
1635                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1636
1637        /*
1638         * at this point, the device is zero sized.  We want to
1639         * remove it from the devices list and zero out the old super
1640         */
1641        if (clear_super && disk_super) {
1642                /* make sure this device isn't detected as part of
1643                 * the FS anymore
1644                 */
1645                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1646                set_buffer_dirty(bh);
1647                sync_dirty_buffer(bh);
1648        }
1649
1650        ret = 0;
1651
1652        /* Notify udev that device has changed */
1653        if (bdev)
1654                btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1655
1656error_brelse:
1657        brelse(bh);
1658        if (bdev)
1659                blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1660out:
1661        mutex_unlock(&uuid_mutex);
1662        return ret;
1663error_undo:
1664        if (device->writeable) {
1665                lock_chunks(root);
1666                list_add(&device->dev_alloc_list,
1667                         &root->fs_info->fs_devices->alloc_list);
1668                unlock_chunks(root);
1669                root->fs_info->fs_devices->rw_devices++;
1670        }
1671        goto error_brelse;
1672}
1673
1674void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1675                                 struct btrfs_device *srcdev)
1676{
1677        WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1678        list_del_rcu(&srcdev->dev_list);
1679        list_del_rcu(&srcdev->dev_alloc_list);
1680        fs_info->fs_devices->num_devices--;
1681        if (srcdev->missing) {
1682                fs_info->fs_devices->missing_devices--;
1683                fs_info->fs_devices->rw_devices++;
1684        }
1685        if (srcdev->can_discard)
1686                fs_info->fs_devices->num_can_discard--;
1687        if (srcdev->bdev)
1688                fs_info->fs_devices->open_devices--;
1689
1690        call_rcu(&srcdev->rcu, free_device);
1691}
1692
1693void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1694                                      struct btrfs_device *tgtdev)
1695{
1696        struct btrfs_device *next_device;
1697
1698        WARN_ON(!tgtdev);
1699        mutex_lock(&fs_info->fs_devices->device_list_mutex);
1700        if (tgtdev->bdev) {
1701                btrfs_scratch_superblock(tgtdev);
1702                fs_info->fs_devices->open_devices--;
1703        }
1704        fs_info->fs_devices->num_devices--;
1705        if (tgtdev->can_discard)
1706                fs_info->fs_devices->num_can_discard++;
1707
1708        next_device = list_entry(fs_info->fs_devices->devices.next,
1709                                 struct btrfs_device, dev_list);
1710        if (tgtdev->bdev == fs_info->sb->s_bdev)
1711                fs_info->sb->s_bdev = next_device->bdev;
1712        if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1713                fs_info->fs_devices->latest_bdev = next_device->bdev;
1714        list_del_rcu(&tgtdev->dev_list);
1715
1716        call_rcu(&tgtdev->rcu, free_device);
1717
1718        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1719}
1720
1721static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1722                                     struct btrfs_device **device)
1723{
1724        int ret = 0;
1725        struct btrfs_super_block *disk_super;
1726        u64 devid;
1727        u8 *dev_uuid;
1728        struct block_device *bdev;
1729        struct buffer_head *bh;
1730
1731        *device = NULL;
1732        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1733                                    root->fs_info->bdev_holder, 0, &bdev, &bh);
1734        if (ret)
1735                return ret;
1736        disk_super = (struct btrfs_super_block *)bh->b_data;
1737        devid = btrfs_stack_device_id(&disk_super->dev_item);
1738        dev_uuid = disk_super->dev_item.uuid;
1739        *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1740                                    disk_super->fsid);
1741        brelse(bh);
1742        if (!*device)
1743                ret = -ENOENT;
1744        blkdev_put(bdev, FMODE_READ);
1745        return ret;
1746}
1747
1748int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1749                                         char *device_path,
1750                                         struct btrfs_device **device)
1751{
1752        *device = NULL;
1753        if (strcmp(device_path, "missing") == 0) {
1754                struct list_head *devices;
1755                struct btrfs_device *tmp;
1756
1757                devices = &root->fs_info->fs_devices->devices;
1758                /*
1759                 * It is safe to read the devices since the volume_mutex
1760                 * is held by the caller.
1761                 */
1762                list_for_each_entry(tmp, devices, dev_list) {
1763                        if (tmp->in_fs_metadata && !tmp->bdev) {
1764                                *device = tmp;
1765                                break;
1766                        }
1767                }
1768
1769                if (!*device) {
1770                        pr_err("btrfs: no missing device found\n");
1771                        return -ENOENT;
1772                }
1773
1774                return 0;
1775        } else {
1776                return btrfs_find_device_by_path(root, device_path, device);
1777        }
1778}
1779
1780/*
1781 * does all the dirty work required for changing file system's UUID.
1782 */
1783static int btrfs_prepare_sprout(struct btrfs_root *root)
1784{
1785        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1786        struct btrfs_fs_devices *old_devices;
1787        struct btrfs_fs_devices *seed_devices;
1788        struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1789        struct btrfs_device *device;
1790        u64 super_flags;
1791
1792        BUG_ON(!mutex_is_locked(&uuid_mutex));
1793        if (!fs_devices->seeding)
1794                return -EINVAL;
1795
1796        seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1797        if (!seed_devices)
1798                return -ENOMEM;
1799
1800        old_devices = clone_fs_devices(fs_devices);
1801        if (IS_ERR(old_devices)) {
1802                kfree(seed_devices);
1803                return PTR_ERR(old_devices);
1804        }
1805
1806        list_add(&old_devices->list, &fs_uuids);
1807
1808        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1809        seed_devices->opened = 1;
1810        INIT_LIST_HEAD(&seed_devices->devices);
1811        INIT_LIST_HEAD(&seed_devices->alloc_list);
1812        mutex_init(&seed_devices->device_list_mutex);
1813
1814        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1815        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1816                              synchronize_rcu);
1817        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1818
1819        list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1820        list_for_each_entry(device, &seed_devices->devices, dev_list) {
1821                device->fs_devices = seed_devices;
1822        }
1823
1824        fs_devices->seeding = 0;
1825        fs_devices->num_devices = 0;
1826        fs_devices->open_devices = 0;
1827        fs_devices->total_devices = 0;
1828        fs_devices->seed = seed_devices;
1829
1830        generate_random_uuid(fs_devices->fsid);
1831        memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1832        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1833        super_flags = btrfs_super_flags(disk_super) &
1834                      ~BTRFS_SUPER_FLAG_SEEDING;
1835        btrfs_set_super_flags(disk_super, super_flags);
1836
1837        return 0;
1838}
1839
1840/*
1841 * strore the expected generation for seed devices in device items.
1842 */
1843static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1844                               struct btrfs_root *root)
1845{
1846        struct btrfs_path *path;
1847        struct extent_buffer *leaf;
1848        struct btrfs_dev_item *dev_item;
1849        struct btrfs_device *device;
1850        struct btrfs_key key;
1851        u8 fs_uuid[BTRFS_UUID_SIZE];
1852        u8 dev_uuid[BTRFS_UUID_SIZE];
1853        u64 devid;
1854        int ret;
1855
1856        path = btrfs_alloc_path();
1857        if (!path)
1858                return -ENOMEM;
1859
1860        root = root->fs_info->chunk_root;
1861        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1862        key.offset = 0;
1863        key.type = BTRFS_DEV_ITEM_KEY;
1864
1865        while (1) {
1866                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1867                if (ret < 0)
1868                        goto error;
1869
1870                leaf = path->nodes[0];
1871next_slot:
1872                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1873                        ret = btrfs_next_leaf(root, path);
1874                        if (ret > 0)
1875                                break;
1876                        if (ret < 0)
1877                                goto error;
1878                        leaf = path->nodes[0];
1879                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1880                        btrfs_release_path(path);
1881                        continue;
1882                }
1883
1884                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1885                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1886                    key.type != BTRFS_DEV_ITEM_KEY)
1887                        break;
1888
1889                dev_item = btrfs_item_ptr(leaf, path->slots[0],
1890                                          struct btrfs_dev_item);
1891                devid = btrfs_device_id(leaf, dev_item);
1892                read_extent_buffer(leaf, dev_uuid,
1893                                   (unsigned long)btrfs_device_uuid(dev_item),
1894                                   BTRFS_UUID_SIZE);
1895                read_extent_buffer(leaf, fs_uuid,
1896                                   (unsigned long)btrfs_device_fsid(dev_item),
1897                                   BTRFS_UUID_SIZE);
1898                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1899                                           fs_uuid);
1900                BUG_ON(!device); /* Logic error */
1901
1902                if (device->fs_devices->seeding) {
1903                        btrfs_set_device_generation(leaf, dev_item,
1904                                                    device->generation);
1905                        btrfs_mark_buffer_dirty(leaf);
1906                }
1907
1908                path->slots[0]++;
1909                goto next_slot;
1910        }
1911        ret = 0;
1912error:
1913        btrfs_free_path(path);
1914        return ret;
1915}
1916
1917int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1918{
1919        struct request_queue *q;
1920        struct btrfs_trans_handle *trans;
1921        struct btrfs_device *device;
1922        struct block_device *bdev;
1923        struct list_head *devices;
1924        struct super_block *sb = root->fs_info->sb;
1925        struct rcu_string *name;
1926        u64 total_bytes;
1927        int seeding_dev = 0;
1928        int ret = 0;
1929
1930        if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1931                return -EROFS;
1932
1933        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1934                                  root->fs_info->bdev_holder);
1935        if (IS_ERR(bdev))
1936                return PTR_ERR(bdev);
1937
1938        if (root->fs_info->fs_devices->seeding) {
1939                seeding_dev = 1;
1940                down_write(&sb->s_umount);
1941                mutex_lock(&uuid_mutex);
1942        }
1943
1944        filemap_write_and_wait(bdev->bd_inode->i_mapping);
1945
1946        devices = &root->fs_info->fs_devices->devices;
1947
1948        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1949        list_for_each_entry(device, devices, dev_list) {
1950                if (device->bdev == bdev) {
1951                        ret = -EEXIST;
1952                        mutex_unlock(
1953                                &root->fs_info->fs_devices->device_list_mutex);
1954                        goto error;
1955                }
1956        }
1957        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1958
1959        device = kzalloc(sizeof(*device), GFP_NOFS);
1960        if (!device) {
1961                /* we can safely leave the fs_devices entry around */
1962                ret = -ENOMEM;
1963                goto error;
1964        }
1965
1966        name = rcu_string_strdup(device_path, GFP_NOFS);
1967        if (!name) {
1968                kfree(device);
1969                ret = -ENOMEM;
1970                goto error;
1971        }
1972        rcu_assign_pointer(device->name, name);
1973
1974        ret = find_next_devid(root, &device->devid);
1975        if (ret) {
1976                rcu_string_free(device->name);
1977                kfree(device);
1978                goto error;
1979        }
1980
1981        trans = btrfs_start_transaction(root, 0);
1982        if (IS_ERR(trans)) {
1983                rcu_string_free(device->name);
1984                kfree(device);
1985                ret = PTR_ERR(trans);
1986                goto error;
1987        }
1988
1989        lock_chunks(root);
1990
1991        q = bdev_get_queue(bdev);
1992        if (blk_queue_discard(q))
1993                device->can_discard = 1;
1994        device->writeable = 1;
1995        device->work.func = pending_bios_fn;
1996        generate_random_uuid(device->uuid);
1997        spin_lock_init(&device->io_lock);
1998        device->generation = trans->transid;
1999        device->io_width = root->sectorsize;
2000        device->io_align = root->sectorsize;
2001        device->sector_size = root->sectorsize;
2002        device->total_bytes = i_size_read(bdev->bd_inode);
2003        device->disk_total_bytes = device->total_bytes;
2004        device->dev_root = root->fs_info->dev_root;
2005        device->bdev = bdev;
2006        device->in_fs_metadata = 1;
2007        device->is_tgtdev_for_dev_replace = 0;
2008        device->mode = FMODE_EXCL;
2009        set_blocksize(device->bdev, 4096);
2010
2011        if (seeding_dev) {
2012                sb->s_flags &= ~MS_RDONLY;
2013                ret = btrfs_prepare_sprout(root);
2014                BUG_ON(ret); /* -ENOMEM */
2015        }
2016
2017        device->fs_devices = root->fs_info->fs_devices;
2018
2019        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2020        list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2021        list_add(&device->dev_alloc_list,
2022                 &root->fs_info->fs_devices->alloc_list);
2023        root->fs_info->fs_devices->num_devices++;
2024        root->fs_info->fs_devices->open_devices++;
2025        root->fs_info->fs_devices->rw_devices++;
2026        root->fs_info->fs_devices->total_devices++;
2027        if (device->can_discard)
2028                root->fs_info->fs_devices->num_can_discard++;
2029        root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2030
2031        spin_lock(&root->fs_info->free_chunk_lock);
2032        root->fs_info->free_chunk_space += device->total_bytes;
2033        spin_unlock(&root->fs_info->free_chunk_lock);
2034
2035        if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2036                root->fs_info->fs_devices->rotating = 1;
2037
2038        total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2039        btrfs_set_super_total_bytes(root->fs_info->super_copy,
2040                                    total_bytes + device->total_bytes);
2041
2042        total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2043        btrfs_set_super_num_devices(root->fs_info->super_copy,
2044                                    total_bytes + 1);
2045        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2046
2047        if (seeding_dev) {
2048                ret = init_first_rw_device(trans, root, device);
2049                if (ret) {
2050                        btrfs_abort_transaction(trans, root, ret);
2051                        goto error_trans;
2052                }
2053                ret = btrfs_finish_sprout(trans, root);
2054                if (ret) {
2055                        btrfs_abort_transaction(trans, root, ret);
2056                        goto error_trans;
2057                }
2058        } else {
2059                ret = btrfs_add_device(trans, root, device);
2060                if (ret) {
2061                        btrfs_abort_transaction(trans, root, ret);
2062                        goto error_trans;
2063                }
2064        }
2065
2066        /*
2067         * we've got more storage, clear any full flags on the space
2068         * infos
2069         */
2070        btrfs_clear_space_info_full(root->fs_info);
2071
2072        unlock_chunks(root);
2073        root->fs_info->num_tolerated_disk_barrier_failures =
2074                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2075        ret = btrfs_commit_transaction(trans, root);
2076
2077        if (seeding_dev) {
2078                mutex_unlock(&uuid_mutex);
2079                up_write(&sb->s_umount);
2080
2081                if (ret) /* transaction commit */
2082                        return ret;
2083
2084                ret = btrfs_relocate_sys_chunks(root);
2085                if (ret < 0)
2086                        btrfs_error(root->fs_info, ret,
2087                                    "Failed to relocate sys chunks after "
2088                                    "device initialization. This can be fixed "
2089                                    "using the \"btrfs balance\" command.");
2090                trans = btrfs_attach_transaction(root);
2091                if (IS_ERR(trans)) {
2092                        if (PTR_ERR(trans) == -ENOENT)
2093                                return 0;
2094                        return PTR_ERR(trans);
2095                }
2096                ret = btrfs_commit_transaction(trans, root);
2097        }
2098
2099        return ret;
2100
2101error_trans:
2102        unlock_chunks(root);
2103        btrfs_end_transaction(trans, root);
2104        rcu_string_free(device->name);
2105        kfree(device);
2106error:
2107        blkdev_put(bdev, FMODE_EXCL);
2108        if (seeding_dev) {
2109                mutex_unlock(&uuid_mutex);
2110                up_write(&sb->s_umount);
2111        }
2112        return ret;
2113}
2114
2115int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2116                                  struct btrfs_device **device_out)
2117{
2118        struct request_queue *q;
2119        struct btrfs_device *device;
2120        struct block_device *bdev;
2121        struct btrfs_fs_info *fs_info = root->fs_info;
2122        struct list_head *devices;
2123        struct rcu_string *name;
2124        int ret = 0;
2125
2126        *device_out = NULL;
2127        if (fs_info->fs_devices->seeding)
2128                return -EINVAL;
2129
2130        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2131                                  fs_info->bdev_holder);
2132        if (IS_ERR(bdev))
2133                return PTR_ERR(bdev);
2134
2135        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2136
2137        devices = &fs_info->fs_devices->devices;
2138        list_for_each_entry(device, devices, dev_list) {
2139                if (device->bdev == bdev) {
2140                        ret = -EEXIST;
2141                        goto error;
2142                }
2143        }
2144
2145        device = kzalloc(sizeof(*device), GFP_NOFS);
2146        if (!device) {
2147                ret = -ENOMEM;
2148                goto error;
2149        }
2150
2151        name = rcu_string_strdup(device_path, GFP_NOFS);
2152        if (!name) {
2153                kfree(device);
2154                ret = -ENOMEM;
2155                goto error;
2156        }
2157        rcu_assign_pointer(device->name, name);
2158
2159        q = bdev_get_queue(bdev);
2160        if (blk_queue_discard(q))
2161                device->can_discard = 1;
2162        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2163        device->writeable = 1;
2164        device->work.func = pending_bios_fn;
2165        generate_random_uuid(device->uuid);
2166        device->devid = BTRFS_DEV_REPLACE_DEVID;
2167        spin_lock_init(&device->io_lock);
2168        device->generation = 0;
2169        device->io_width = root->sectorsize;
2170        device->io_align = root->sectorsize;
2171        device->sector_size = root->sectorsize;
2172        device->total_bytes = i_size_read(bdev->bd_inode);
2173        device->disk_total_bytes = device->total_bytes;
2174        device->dev_root = fs_info->dev_root;
2175        device->bdev = bdev;
2176        device->in_fs_metadata = 1;
2177        device->is_tgtdev_for_dev_replace = 1;
2178        device->mode = FMODE_EXCL;
2179        set_blocksize(device->bdev, 4096);
2180        device->fs_devices = fs_info->fs_devices;
2181        list_add(&device->dev_list, &fs_info->fs_devices->devices);
2182        fs_info->fs_devices->num_devices++;
2183        fs_info->fs_devices->open_devices++;
2184        if (device->can_discard)
2185                fs_info->fs_devices->num_can_discard++;
2186        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2187
2188        *device_out = device;
2189        return ret;
2190
2191error:
2192        blkdev_put(bdev, FMODE_EXCL);
2193        return ret;
2194}
2195
2196void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2197                                              struct btrfs_device *tgtdev)
2198{
2199        WARN_ON(fs_info->fs_devices->rw_devices == 0);
2200        tgtdev->io_width = fs_info->dev_root->sectorsize;
2201        tgtdev->io_align = fs_info->dev_root->sectorsize;
2202        tgtdev->sector_size = fs_info->dev_root->sectorsize;
2203        tgtdev->dev_root = fs_info->dev_root;
2204        tgtdev->in_fs_metadata = 1;
2205}
2206
2207static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2208                                        struct btrfs_device *device)
2209{
2210        int ret;
2211        struct btrfs_path *path;
2212        struct btrfs_root *root;
2213        struct btrfs_dev_item *dev_item;
2214        struct extent_buffer *leaf;
2215        struct btrfs_key key;
2216
2217        root = device->dev_root->fs_info->chunk_root;
2218
2219        path = btrfs_alloc_path();
2220        if (!path)
2221                return -ENOMEM;
2222
2223        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2224        key.type = BTRFS_DEV_ITEM_KEY;
2225        key.offset = device->devid;
2226
2227        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2228        if (ret < 0)
2229                goto out;
2230
2231        if (ret > 0) {
2232                ret = -ENOENT;
2233                goto out;
2234        }
2235
2236        leaf = path->nodes[0];
2237        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2238
2239        btrfs_set_device_id(leaf, dev_item, device->devid);
2240        btrfs_set_device_type(leaf, dev_item, device->type);
2241        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2242        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2243        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2244        btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2245        btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2246        btrfs_mark_buffer_dirty(leaf);
2247
2248out:
2249        btrfs_free_path(path);
2250        return ret;
2251}
2252
2253static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2254                      struct btrfs_device *device, u64 new_size)
2255{
2256        struct btrfs_super_block *super_copy =
2257                device->dev_root->fs_info->super_copy;
2258        u64 old_total = btrfs_super_total_bytes(super_copy);
2259        u64 diff = new_size - device->total_bytes;
2260
2261        if (!device->writeable)
2262                return -EACCES;
2263        if (new_size <= device->total_bytes ||
2264            device->is_tgtdev_for_dev_replace)
2265                return -EINVAL;
2266
2267        btrfs_set_super_total_bytes(super_copy, old_total + diff);
2268        device->fs_devices->total_rw_bytes += diff;
2269
2270        device->total_bytes = new_size;
2271        device->disk_total_bytes = new_size;
2272        btrfs_clear_space_info_full(device->dev_root->fs_info);
2273
2274        return btrfs_update_device(trans, device);
2275}
2276
2277int btrfs_grow_device(struct btrfs_trans_handle *trans,
2278                      struct btrfs_device *device, u64 new_size)
2279{
2280        int ret;
2281        lock_chunks(device->dev_root);
2282        ret = __btrfs_grow_device(trans, device, new_size);
2283        unlock_chunks(device->dev_root);
2284        return ret;
2285}
2286
2287static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2288                            struct btrfs_root *root,
2289                            u64 chunk_tree, u64 chunk_objectid,
2290                            u64 chunk_offset)
2291{
2292        int ret;
2293        struct btrfs_path *path;
2294        struct btrfs_key key;
2295
2296        root = root->fs_info->chunk_root;
2297        path = btrfs_alloc_path();
2298        if (!path)
2299                return -ENOMEM;
2300
2301        key.objectid = chunk_objectid;
2302        key.offset = chunk_offset;
2303        key.type = BTRFS_CHUNK_ITEM_KEY;
2304
2305        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2306        if (ret < 0)
2307                goto out;
2308        else if (ret > 0) { /* Logic error or corruption */
2309                btrfs_error(root->fs_info, -ENOENT,
2310                            "Failed lookup while freeing chunk.");
2311                ret = -ENOENT;
2312                goto out;
2313        }
2314
2315        ret = btrfs_del_item(trans, root, path);
2316        if (ret < 0)
2317                btrfs_error(root->fs_info, ret,
2318                            "Failed to delete chunk item.");
2319out:
2320        btrfs_free_path(path);
2321        return ret;
2322}
2323
2324static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2325                        chunk_offset)
2326{
2327        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2328        struct btrfs_disk_key *disk_key;
2329        struct btrfs_chunk *chunk;
2330        u8 *ptr;
2331        int ret = 0;
2332        u32 num_stripes;
2333        u32 array_size;
2334        u32 len = 0;
2335        u32 cur;
2336        struct btrfs_key key;
2337
2338        array_size = btrfs_super_sys_array_size(super_copy);
2339
2340        ptr = super_copy->sys_chunk_array;
2341        cur = 0;
2342
2343        while (cur < array_size) {
2344                disk_key = (struct btrfs_disk_key *)ptr;
2345                btrfs_disk_key_to_cpu(&key, disk_key);
2346
2347                len = sizeof(*disk_key);
2348
2349                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2350                        chunk = (struct btrfs_chunk *)(ptr + len);
2351                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2352                        len += btrfs_chunk_item_size(num_stripes);
2353                } else {
2354                        ret = -EIO;
2355                        break;
2356                }
2357                if (key.objectid == chunk_objectid &&
2358                    key.offset == chunk_offset) {
2359                        memmove(ptr, ptr + len, array_size - (cur + len));
2360                        array_size -= len;
2361                        btrfs_set_super_sys_array_size(super_copy, array_size);
2362                } else {
2363                        ptr += len;
2364                        cur += len;
2365                }
2366        }
2367        return ret;
2368}
2369
2370static int btrfs_relocate_chunk(struct btrfs_root *root,
2371                         u64 chunk_tree, u64 chunk_objectid,
2372                         u64 chunk_offset)
2373{
2374        struct extent_map_tree *em_tree;
2375        struct btrfs_root *extent_root;
2376        struct btrfs_trans_handle *trans;
2377        struct extent_map *em;
2378        struct map_lookup *map;
2379        int ret;
2380        int i;
2381
2382        root = root->fs_info->chunk_root;
2383        extent_root = root->fs_info->extent_root;
2384        em_tree = &root->fs_info->mapping_tree.map_tree;
2385
2386        ret = btrfs_can_relocate(extent_root, chunk_offset);
2387        if (ret)
2388                return -ENOSPC;
2389
2390        /* step one, relocate all the extents inside this chunk */
2391        ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2392        if (ret)
2393                return ret;
2394
2395        trans = btrfs_start_transaction(root, 0);
2396        if (IS_ERR(trans)) {
2397                ret = PTR_ERR(trans);
2398                btrfs_std_error(root->fs_info, ret);
2399                return ret;
2400        }
2401
2402        lock_chunks(root);
2403
2404        /*
2405         * step two, delete the device extents and the
2406         * chunk tree entries
2407         */
2408        read_lock(&em_tree->lock);
2409        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2410        read_unlock(&em_tree->lock);
2411
2412        BUG_ON(!em || em->start > chunk_offset ||
2413               em->start + em->len < chunk_offset);
2414        map = (struct map_lookup *)em->bdev;
2415
2416        for (i = 0; i < map->num_stripes; i++) {
2417                ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2418                                            map->stripes[i].physical);
2419                BUG_ON(ret);
2420
2421                if (map->stripes[i].dev) {
2422                        ret = btrfs_update_device(trans, map->stripes[i].dev);
2423                        BUG_ON(ret);
2424                }
2425        }
2426        ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2427                               chunk_offset);
2428
2429        BUG_ON(ret);
2430
2431        trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2432
2433        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2434                ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2435                BUG_ON(ret);
2436        }
2437
2438        ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2439        BUG_ON(ret);
2440
2441        write_lock(&em_tree->lock);
2442        remove_extent_mapping(em_tree, em);
2443        write_unlock(&em_tree->lock);
2444
2445        kfree(map);
2446        em->bdev = NULL;
2447
2448        /* once for the tree */
2449        free_extent_map(em);
2450        /* once for us */
2451        free_extent_map(em);
2452
2453        unlock_chunks(root);
2454        btrfs_end_transaction(trans, root);
2455        return 0;
2456}
2457
2458static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2459{
2460        struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2461        struct btrfs_path *path;
2462        struct extent_buffer *leaf;
2463        struct btrfs_chunk *chunk;
2464        struct btrfs_key key;
2465        struct btrfs_key found_key;
2466        u64 chunk_tree = chunk_root->root_key.objectid;
2467        u64 chunk_type;
2468        bool retried = false;
2469        int failed = 0;
2470        int ret;
2471
2472        path = btrfs_alloc_path();
2473        if (!path)
2474                return -ENOMEM;
2475
2476again:
2477        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2478        key.offset = (u64)-1;
2479        key.type = BTRFS_CHUNK_ITEM_KEY;
2480
2481        while (1) {
2482                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2483                if (ret < 0)
2484                        goto error;
2485                BUG_ON(ret == 0); /* Corruption */
2486
2487                ret = btrfs_previous_item(chunk_root, path, key.objectid,
2488                                          key.type);
2489                if (ret < 0)
2490                        goto error;
2491                if (ret > 0)
2492                        break;
2493
2494                leaf = path->nodes[0];
2495                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2496
2497                chunk = btrfs_item_ptr(leaf, path->slots[0],
2498                                       struct btrfs_chunk);
2499                chunk_type = btrfs_chunk_type(leaf, chunk);
2500                btrfs_release_path(path);
2501
2502                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2503                        ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2504                                                   found_key.objectid,
2505                                                   found_key.offset);
2506                        if (ret == -ENOSPC)
2507                                failed++;
2508                        else if (ret)
2509                                BUG();
2510                }
2511
2512                if (found_key.offset == 0)
2513                        break;
2514                key.offset = found_key.offset - 1;
2515        }
2516        ret = 0;
2517        if (failed && !retried) {
2518                failed = 0;
2519                retried = true;
2520                goto again;
2521        } else if (failed && retried) {
2522                WARN_ON(1);
2523                ret = -ENOSPC;
2524        }
2525error:
2526        btrfs_free_path(path);
2527        return ret;
2528}
2529
2530static int insert_balance_item(struct btrfs_root *root,
2531                               struct btrfs_balance_control *bctl)
2532{
2533        struct btrfs_trans_handle *trans;
2534        struct btrfs_balance_item *item;
2535        struct btrfs_disk_balance_args disk_bargs;
2536        struct btrfs_path *path;
2537        struct extent_buffer *leaf;
2538        struct btrfs_key key;
2539        int ret, err;
2540
2541        path = btrfs_alloc_path();
2542        if (!path)
2543                return -ENOMEM;
2544
2545        trans = btrfs_start_transaction(root, 0);
2546        if (IS_ERR(trans)) {
2547                btrfs_free_path(path);
2548                return PTR_ERR(trans);
2549        }
2550
2551        key.objectid = BTRFS_BALANCE_OBJECTID;
2552        key.type = BTRFS_BALANCE_ITEM_KEY;
2553        key.offset = 0;
2554
2555        ret = btrfs_insert_empty_item(trans, root, path, &key,
2556                                      sizeof(*item));
2557        if (ret)
2558                goto out;
2559
2560        leaf = path->nodes[0];
2561        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2562
2563        memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2564
2565        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2566        btrfs_set_balance_data(leaf, item, &disk_bargs);
2567        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2568        btrfs_set_balance_meta(leaf, item, &disk_bargs);
2569        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2570        btrfs_set_balance_sys(leaf, item, &disk_bargs);
2571
2572        btrfs_set_balance_flags(leaf, item, bctl->flags);
2573
2574        btrfs_mark_buffer_dirty(leaf);
2575out:
2576        btrfs_free_path(path);
2577        err = btrfs_commit_transaction(trans, root);
2578        if (err && !ret)
2579                ret = err;
2580        return ret;
2581}
2582
2583static int del_balance_item(struct btrfs_root *root)
2584{
2585        struct btrfs_trans_handle *trans;
2586        struct btrfs_path *path;
2587        struct btrfs_key key;
2588        int ret, err;
2589
2590        path = btrfs_alloc_path();
2591        if (!path)
2592                return -ENOMEM;
2593
2594        trans = btrfs_start_transaction(root, 0);
2595        if (IS_ERR(trans)) {
2596                btrfs_free_path(path);
2597                return PTR_ERR(trans);
2598        }
2599
2600        key.objectid = BTRFS_BALANCE_OBJECTID;
2601        key.type = BTRFS_BALANCE_ITEM_KEY;
2602        key.offset = 0;
2603
2604        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2605        if (ret < 0)
2606                goto out;
2607        if (ret > 0) {
2608                ret = -ENOENT;
2609                goto out;
2610        }
2611
2612        ret = btrfs_del_item(trans, root, path);
2613out:
2614        btrfs_free_path(path);
2615        err = btrfs_commit_transaction(trans, root);
2616        if (err && !ret)
2617                ret = err;
2618        return ret;
2619}
2620
2621/*
2622 * This is a heuristic used to reduce the number of chunks balanced on
2623 * resume after balance was interrupted.
2624 */
2625static void update_balance_args(struct btrfs_balance_control *bctl)
2626{
2627        /*
2628         * Turn on soft mode for chunk types that were being converted.
2629         */
2630        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2631                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2632        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2633                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2634        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2635                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2636
2637        /*
2638         * Turn on usage filter if is not already used.  The idea is
2639         * that chunks that we have already balanced should be
2640         * reasonably full.  Don't do it for chunks that are being
2641         * converted - that will keep us from relocating unconverted
2642         * (albeit full) chunks.
2643         */
2644        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2645            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2646                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2647                bctl->data.usage = 90;
2648        }
2649        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2650            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2651                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2652                bctl->sys.usage = 90;
2653        }
2654        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2655            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2656                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2657                bctl->meta.usage = 90;
2658        }
2659}
2660
2661/*
2662 * Should be called with both balance and volume mutexes held to
2663 * serialize other volume operations (add_dev/rm_dev/resize) with
2664 * restriper.  Same goes for unset_balance_control.
2665 */
2666static void set_balance_control(struct btrfs_balance_control *bctl)
2667{
2668        struct btrfs_fs_info *fs_info = bctl->fs_info;
2669
2670        BUG_ON(fs_info->balance_ctl);
2671
2672        spin_lock(&fs_info->balance_lock);
2673        fs_info->balance_ctl = bctl;
2674        spin_unlock(&fs_info->balance_lock);
2675}
2676
2677static void unset_balance_control(struct btrfs_fs_info *fs_info)
2678{
2679        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2680
2681        BUG_ON(!fs_info->balance_ctl);
2682
2683        spin_lock(&fs_info->balance_lock);
2684        fs_info->balance_ctl = NULL;
2685        spin_unlock(&fs_info->balance_lock);
2686
2687        kfree(bctl);
2688}
2689
2690/*
2691 * Balance filters.  Return 1 if chunk should be filtered out
2692 * (should not be balanced).
2693 */
2694static int chunk_profiles_filter(u64 chunk_type,
2695                                 struct btrfs_balance_args *bargs)
2696{
2697        chunk_type = chunk_to_extended(chunk_type) &
2698                                BTRFS_EXTENDED_PROFILE_MASK;
2699
2700        if (bargs->profiles & chunk_type)
2701                return 0;
2702
2703        return 1;
2704}
2705
2706static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2707                              struct btrfs_balance_args *bargs)
2708{
2709        struct btrfs_block_group_cache *cache;
2710        u64 chunk_used, user_thresh;
2711        int ret = 1;
2712
2713        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2714        chunk_used = btrfs_block_group_used(&cache->item);
2715
2716        if (bargs->usage == 0)
2717                user_thresh = 1;
2718        else if (bargs->usage > 100)
2719                user_thresh = cache->key.offset;
2720        else
2721                user_thresh = div_factor_fine(cache->key.offset,
2722                                              bargs->usage);
2723
2724        if (chunk_used < user_thresh)
2725                ret = 0;
2726
2727        btrfs_put_block_group(cache);
2728        return ret;
2729}
2730
2731static int chunk_devid_filter(struct extent_buffer *leaf,
2732                              struct btrfs_chunk *chunk,
2733                              struct btrfs_balance_args *bargs)
2734{
2735        struct btrfs_stripe *stripe;
2736        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2737        int i;
2738
2739        for (i = 0; i < num_stripes; i++) {
2740                stripe = btrfs_stripe_nr(chunk, i);
2741                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2742                        return 0;
2743        }
2744
2745        return 1;
2746}
2747
2748/* [pstart, pend) */
2749static int chunk_drange_filter(struct extent_buffer *leaf,
2750                               struct btrfs_chunk *chunk,
2751                               u64 chunk_offset,
2752                               struct btrfs_balance_args *bargs)
2753{
2754        struct btrfs_stripe *stripe;
2755        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2756        u64 stripe_offset;
2757        u64 stripe_length;
2758        int factor;
2759        int i;
2760
2761        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2762                return 0;
2763
2764        if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2765             BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2766                factor = num_stripes / 2;
2767        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2768                factor = num_stripes - 1;
2769        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2770                factor = num_stripes - 2;
2771        } else {
2772                factor = num_stripes;
2773        }
2774
2775        for (i = 0; i < num_stripes; i++) {
2776                stripe = btrfs_stripe_nr(chunk, i);
2777                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2778                        continue;
2779
2780                stripe_offset = btrfs_stripe_offset(leaf, stripe);
2781                stripe_length = btrfs_chunk_length(leaf, chunk);
2782                do_div(stripe_length, factor);
2783
2784                if (stripe_offset < bargs->pend &&
2785                    stripe_offset + stripe_length > bargs->pstart)
2786                        return 0;
2787        }
2788
2789        return 1;
2790}
2791
2792/* [vstart, vend) */
2793static int chunk_vrange_filter(struct extent_buffer *leaf,
2794                               struct btrfs_chunk *chunk,
2795                               u64 chunk_offset,
2796                               struct btrfs_balance_args *bargs)
2797{
2798        if (chunk_offset < bargs->vend &&
2799            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2800                /* at least part of the chunk is inside this vrange */
2801                return 0;
2802
2803        return 1;
2804}
2805
2806static int chunk_soft_convert_filter(u64 chunk_type,
2807                                     struct btrfs_balance_args *bargs)
2808{
2809        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2810                return 0;
2811
2812        chunk_type = chunk_to_extended(chunk_type) &
2813                                BTRFS_EXTENDED_PROFILE_MASK;
2814
2815        if (bargs->target == chunk_type)
2816                return 1;
2817
2818        return 0;
2819}
2820
2821static int should_balance_chunk(struct btrfs_root *root,
2822                                struct extent_buffer *leaf,
2823                                struct btrfs_chunk *chunk, u64 chunk_offset)
2824{
2825        struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2826        struct btrfs_balance_args *bargs = NULL;
2827        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2828
2829        /* type filter */
2830        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2831              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2832                return 0;
2833        }
2834
2835        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2836                bargs = &bctl->data;
2837        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2838                bargs = &bctl->sys;
2839        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2840                bargs = &bctl->meta;
2841
2842        /* profiles filter */
2843        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2844            chunk_profiles_filter(chunk_type, bargs)) {
2845                return 0;
2846        }
2847
2848        /* usage filter */
2849        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2850            chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2851                return 0;
2852        }
2853
2854        /* devid filter */
2855        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2856            chunk_devid_filter(leaf, chunk, bargs)) {
2857                return 0;
2858        }
2859
2860        /* drange filter, makes sense only with devid filter */
2861        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2862            chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2863                return 0;
2864        }
2865
2866        /* vrange filter */
2867        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2868            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2869                return 0;
2870        }
2871
2872        /* soft profile changing mode */
2873        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2874            chunk_soft_convert_filter(chunk_type, bargs)) {
2875                return 0;
2876        }
2877
2878        return 1;
2879}
2880
2881static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2882{
2883        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2884        struct btrfs_root *chunk_root = fs_info->chunk_root;
2885        struct btrfs_root *dev_root = fs_info->dev_root;
2886        struct list_head *devices;
2887        struct btrfs_device *device;
2888        u64 old_size;
2889        u64 size_to_free;
2890        struct btrfs_chunk *chunk;
2891        struct btrfs_path *path;
2892        struct btrfs_key key;
2893        struct btrfs_key found_key;
2894        struct btrfs_trans_handle *trans;
2895        struct extent_buffer *leaf;
2896        int slot;
2897        int ret;
2898        int enospc_errors = 0;
2899        bool counting = true;
2900
2901        /* step one make some room on all the devices */
2902        devices = &fs_info->fs_devices->devices;
2903        list_for_each_entry(device, devices, dev_list) {
2904                old_size = device->total_bytes;
2905                size_to_free = div_factor(old_size, 1);
2906                size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2907                if (!device->writeable ||
2908                    device->total_bytes - device->bytes_used > size_to_free ||
2909                    device->is_tgtdev_for_dev_replace)
2910                        continue;
2911
2912                ret = btrfs_shrink_device(device, old_size - size_to_free);
2913                if (ret == -ENOSPC)
2914                        break;
2915                BUG_ON(ret);
2916
2917                trans = btrfs_start_transaction(dev_root, 0);
2918                BUG_ON(IS_ERR(trans));
2919
2920                ret = btrfs_grow_device(trans, device, old_size);
2921                BUG_ON(ret);
2922
2923                btrfs_end_transaction(trans, dev_root);
2924        }
2925
2926        /* step two, relocate all the chunks */
2927        path = btrfs_alloc_path();
2928        if (!path) {
2929                ret = -ENOMEM;
2930                goto error;
2931        }
2932
2933        /* zero out stat counters */
2934        spin_lock(&fs_info->balance_lock);
2935        memset(&bctl->stat, 0, sizeof(bctl->stat));
2936        spin_unlock(&fs_info->balance_lock);
2937again:
2938        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2939        key.offset = (u64)-1;
2940        key.type = BTRFS_CHUNK_ITEM_KEY;
2941
2942        while (1) {
2943                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2944                    atomic_read(&fs_info->balance_cancel_req)) {
2945                        ret = -ECANCELED;
2946                        goto error;
2947                }
2948
2949                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2950                if (ret < 0)
2951                        goto error;
2952
2953                /*
2954                 * this shouldn't happen, it means the last relocate
2955                 * failed
2956                 */
2957                if (ret == 0)
2958                        BUG(); /* FIXME break ? */
2959
2960                ret = btrfs_previous_item(chunk_root, path, 0,
2961                                          BTRFS_CHUNK_ITEM_KEY);
2962                if (ret) {
2963                        ret = 0;
2964                        break;
2965                }
2966
2967                leaf = path->nodes[0];
2968                slot = path->slots[0];
2969                btrfs_item_key_to_cpu(leaf, &found_key, slot);
2970
2971                if (found_key.objectid != key.objectid)
2972                        break;
2973
2974                /* chunk zero is special */
2975                if (found_key.offset == 0)
2976                        break;
2977
2978                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2979
2980                if (!counting) {
2981                        spin_lock(&fs_info->balance_lock);
2982                        bctl->stat.considered++;
2983                        spin_unlock(&fs_info->balance_lock);
2984                }
2985
2986                ret = should_balance_chunk(chunk_root, leaf, chunk,
2987                                           found_key.offset);
2988                btrfs_release_path(path);
2989                if (!ret)
2990                        goto loop;
2991
2992                if (counting) {
2993                        spin_lock(&fs_info->balance_lock);
2994                        bctl->stat.expected++;
2995                        spin_unlock(&fs_info->balance_lock);
2996                        goto loop;
2997                }
2998
2999                ret = btrfs_relocate_chunk(chunk_root,
3000                                           chunk_root->root_key.objectid,
3001                                           found_key.objectid,
3002                                           found_key.offset);
3003                if (ret && ret != -ENOSPC)
3004                        goto error;
3005                if (ret == -ENOSPC) {
3006                        enospc_errors++;
3007                } else {
3008                        spin_lock(&fs_info->balance_lock);
3009                        bctl->stat.completed++;
3010                        spin_unlock(&fs_info->balance_lock);
3011                }
3012loop:
3013                key.offset = found_key.offset - 1;
3014        }
3015
3016        if (counting) {
3017                btrfs_release_path(path);
3018                counting = false;
3019                goto again;
3020        }
3021error:
3022        btrfs_free_path(path);
3023        if (enospc_errors) {
3024                printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3025                       enospc_errors);
3026                if (!ret)
3027                        ret = -ENOSPC;
3028        }
3029
3030        return ret;
3031}
3032
3033/**
3034 * alloc_profile_is_valid - see if a given profile is valid and reduced
3035 * @flags: profile to validate
3036 * @extended: if true @flags is treated as an extended profile
3037 */
3038static int alloc_profile_is_valid(u64 flags, int extended)
3039{
3040        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3041                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3042
3043        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3044
3045        /* 1) check that all other bits are zeroed */
3046        if (flags & ~mask)
3047                return 0;
3048
3049        /* 2) see if profile is reduced */
3050        if (flags == 0)
3051                return !extended; /* "0" is valid for usual profiles */
3052
3053        /* true if exactly one bit set */
3054        return (flags & (flags - 1)) == 0;
3055}
3056
3057static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3058{
3059        /* cancel requested || normal exit path */
3060        return atomic_read(&fs_info->balance_cancel_req) ||
3061                (atomic_read(&fs_info->balance_pause_req) == 0 &&
3062                 atomic_read(&fs_info->balance_cancel_req) == 0);
3063}
3064
3065static void __cancel_balance(struct btrfs_fs_info *fs_info)
3066{
3067        int ret;
3068
3069        unset_balance_control(fs_info);
3070        ret = del_balance_item(fs_info->tree_root);
3071        if (ret)
3072                btrfs_std_error(fs_info, ret);
3073
3074        atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3075}
3076
3077void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3078                               struct btrfs_ioctl_balance_args *bargs);
3079
3080/*
3081 * Should be called with both balance and volume mutexes held
3082 */
3083int btrfs_balance(struct btrfs_balance_control *bctl,
3084                  struct btrfs_ioctl_balance_args *bargs)
3085{
3086        struct btrfs_fs_info *fs_info = bctl->fs_info;
3087        u64 allowed;
3088        int mixed = 0;
3089        int ret;
3090        u64 num_devices;
3091        unsigned seq;
3092
3093        if (btrfs_fs_closing(fs_info) ||
3094            atomic_read(&fs_info->balance_pause_req) ||
3095            atomic_read(&fs_info->balance_cancel_req)) {
3096                ret = -EINVAL;
3097                goto out;
3098        }
3099
3100        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3101        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3102                mixed = 1;
3103
3104        /*
3105         * In case of mixed groups both data and meta should be picked,
3106         * and identical options should be given for both of them.
3107         */
3108        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3109        if (mixed && (bctl->flags & allowed)) {
3110                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3111                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3112                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3113                        printk(KERN_ERR "btrfs: with mixed groups data and "
3114                               "metadata balance options must be the same\n");
3115                        ret = -EINVAL;
3116                        goto out;
3117                }
3118        }
3119
3120        num_devices = fs_info->fs_devices->num_devices;
3121        btrfs_dev_replace_lock(&fs_info->dev_replace);
3122        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3123                BUG_ON(num_devices < 1);
3124                num_devices--;
3125        }
3126        btrfs_dev_replace_unlock(&fs_info->dev_replace);
3127        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3128        if (num_devices == 1)
3129                allowed |= BTRFS_BLOCK_GROUP_DUP;
3130        else if (num_devices > 1)
3131                allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3132        if (num_devices > 2)
3133                allowed |= BTRFS_BLOCK_GROUP_RAID5;
3134        if (num_devices > 3)
3135                allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3136                            BTRFS_BLOCK_GROUP_RAID6);
3137        if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3138            (!alloc_profile_is_valid(bctl->data.target, 1) ||
3139             (bctl->data.target & ~allowed))) {
3140                printk(KERN_ERR "btrfs: unable to start balance with target "
3141                       "data profile %llu\n",
3142                       (unsigned long long)bctl->data.target);
3143                ret = -EINVAL;
3144                goto out;
3145        }
3146        if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3147            (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3148             (bctl->meta.target & ~allowed))) {
3149                printk(KERN_ERR "btrfs: unable to start balance with target "
3150                       "metadata profile %llu\n",
3151                       (unsigned long long)bctl->meta.target);
3152                ret = -EINVAL;
3153                goto out;
3154        }
3155        if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3156            (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3157             (bctl->sys.target & ~allowed))) {
3158                printk(KERN_ERR "btrfs: unable to start balance with target "
3159                       "system profile %llu\n",
3160                       (unsigned long long)bctl->sys.target);
3161                ret = -EINVAL;
3162                goto out;
3163        }
3164
3165        /* allow dup'ed data chunks only in mixed mode */
3166        if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3167            (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3168                printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3169                ret = -EINVAL;
3170                goto out;
3171        }
3172
3173        /* allow to reduce meta or sys integrity only if force set */
3174        allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3175                        BTRFS_BLOCK_GROUP_RAID10 |
3176                        BTRFS_BLOCK_GROUP_RAID5 |
3177                        BTRFS_BLOCK_GROUP_RAID6;
3178        do {
3179                seq = read_seqbegin(&fs_info->profiles_lock);
3180
3181                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3182                     (fs_info->avail_system_alloc_bits & allowed) &&
3183                     !(bctl->sys.target & allowed)) ||
3184                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3185                     (fs_info->avail_metadata_alloc_bits & allowed) &&
3186                     !(bctl->meta.target & allowed))) {
3187                        if (bctl->flags & BTRFS_BALANCE_FORCE) {
3188                                printk(KERN_INFO "btrfs: force reducing metadata "
3189                                       "integrity\n");
3190                        } else {
3191                                printk(KERN_ERR "btrfs: balance will reduce metadata "
3192                                       "integrity, use force if you want this\n");
3193                                ret = -EINVAL;
3194                                goto out;
3195                        }
3196                }
3197        } while (read_seqretry(&fs_info->profiles_lock, seq));
3198
3199        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3200                int num_tolerated_disk_barrier_failures;
3201                u64 target = bctl->sys.target;
3202
3203                num_tolerated_disk_barrier_failures =
3204                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3205                if (num_tolerated_disk_barrier_failures > 0 &&
3206                    (target &
3207                     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3208                      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3209                        num_tolerated_disk_barrier_failures = 0;
3210                else if (num_tolerated_disk_barrier_failures > 1 &&
3211                         (target &
3212                          (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3213                        num_tolerated_disk_barrier_failures = 1;
3214
3215                fs_info->num_tolerated_disk_barrier_failures =
3216                        num_tolerated_disk_barrier_failures;
3217        }
3218
3219        ret = insert_balance_item(fs_info->tree_root, bctl);
3220        if (ret && ret != -EEXIST)
3221                goto out;
3222
3223        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3224                BUG_ON(ret == -EEXIST);
3225                set_balance_control(bctl);
3226        } else {
3227                BUG_ON(ret != -EEXIST);
3228                spin_lock(&fs_info->balance_lock);
3229                update_balance_args(bctl);
3230                spin_unlock(&fs_info->balance_lock);
3231        }
3232
3233        atomic_inc(&fs_info->balance_running);
3234        mutex_unlock(&fs_info->balance_mutex);
3235
3236        ret = __btrfs_balance(fs_info);
3237
3238        mutex_lock(&fs_info->balance_mutex);
3239        atomic_dec(&fs_info->balance_running);
3240
3241        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3242                fs_info->num_tolerated_disk_barrier_failures =
3243                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3244        }
3245
3246        if (bargs) {
3247                memset(bargs, 0, sizeof(*bargs));
3248                update_ioctl_balance_args(fs_info, 0, bargs);
3249        }
3250
3251        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3252            balance_need_close(fs_info)) {
3253                __cancel_balance(fs_info);
3254        }
3255
3256        wake_up(&fs_info->balance_wait_q);
3257
3258        return ret;
3259out:
3260        if (bctl->flags & BTRFS_BALANCE_RESUME)
3261                __cancel_balance(fs_info);
3262        else {
3263                kfree(bctl);
3264                atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3265        }
3266        return ret;
3267}
3268
3269static int balance_kthread(void *data)
3270{
3271        struct btrfs_fs_info *fs_info = data;
3272        int ret = 0;
3273
3274        mutex_lock(&fs_info->volume_mutex);
3275        mutex_lock(&fs_info->balance_mutex);
3276
3277        if (fs_info->balance_ctl) {
3278                printk(KERN_INFO "btrfs: continuing balance\n");
3279                ret = btrfs_balance(fs_info->balance_ctl, NULL);
3280        }
3281
3282        mutex_unlock(&fs_info->balance_mutex);
3283        mutex_unlock(&fs_info->volume_mutex);
3284
3285        return ret;
3286}
3287
3288int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3289{
3290        struct task_struct *tsk;
3291
3292        spin_lock(&fs_info->balance_lock);
3293        if (!fs_info->balance_ctl) {
3294                spin_unlock(&fs_info->balance_lock);
3295                return 0;
3296        }
3297        spin_unlock(&fs_info->balance_lock);
3298
3299        if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3300                printk(KERN_INFO "btrfs: force skipping balance\n");
3301                return 0;
3302        }
3303
3304        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3305        return PTR_RET(tsk);
3306}
3307
3308int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3309{
3310        struct btrfs_balance_control *bctl;
3311        struct btrfs_balance_item *item;
3312        struct btrfs_disk_balance_args disk_bargs;
3313        struct btrfs_path *path;
3314        struct extent_buffer *leaf;
3315        struct btrfs_key key;
3316        int ret;
3317
3318        path = btrfs_alloc_path();
3319        if (!path)
3320                return -ENOMEM;
3321
3322        key.objectid = BTRFS_BALANCE_OBJECTID;
3323        key.type = BTRFS_BALANCE_ITEM_KEY;
3324        key.offset = 0;
3325
3326        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3327        if (ret < 0)
3328                goto out;
3329        if (ret > 0) { /* ret = -ENOENT; */
3330                ret = 0;
3331                goto out;
3332        }
3333
3334        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3335        if (!bctl) {
3336                ret = -ENOMEM;
3337                goto out;
3338        }
3339
3340        leaf = path->nodes[0];
3341        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3342
3343        bctl->fs_info = fs_info;
3344        bctl->flags = btrfs_balance_flags(leaf, item);
3345        bctl->flags |= BTRFS_BALANCE_RESUME;
3346
3347        btrfs_balance_data(leaf, item, &disk_bargs);
3348        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3349        btrfs_balance_meta(leaf, item, &disk_bargs);
3350        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3351        btrfs_balance_sys(leaf, item, &disk_bargs);
3352        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3353
3354        WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3355
3356        mutex_lock(&fs_info->volume_mutex);
3357        mutex_lock(&fs_info->balance_mutex);
3358
3359        set_balance_control(bctl);
3360
3361        mutex_unlock(&fs_info->balance_mutex);
3362        mutex_unlock(&fs_info->volume_mutex);
3363out:
3364        btrfs_free_path(path);
3365        return ret;
3366}
3367
3368int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3369{
3370        int ret = 0;
3371
3372        mutex_lock(&fs_info->balance_mutex);
3373        if (!fs_info->balance_ctl) {
3374                mutex_unlock(&fs_info->balance_mutex);
3375                return -ENOTCONN;
3376        }
3377
3378        if (atomic_read(&fs_info->balance_running)) {
3379                atomic_inc(&fs_info->balance_pause_req);
3380                mutex_unlock(&fs_info->balance_mutex);
3381
3382                wait_event(fs_info->balance_wait_q,
3383                           atomic_read(&fs_info->balance_running) == 0);
3384
3385                mutex_lock(&fs_info->balance_mutex);
3386                /* we are good with balance_ctl ripped off from under us */
3387                BUG_ON(atomic_read(&fs_info->balance_running));
3388                atomic_dec(&fs_info->balance_pause_req);
3389        } else {
3390                ret = -ENOTCONN;
3391        }
3392
3393        mutex_unlock(&fs_info->balance_mutex);
3394        return ret;
3395}
3396
3397int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3398{
3399        mutex_lock(&fs_info->balance_mutex);
3400        if (!fs_info->balance_ctl) {
3401                mutex_unlock(&fs_info->balance_mutex);
3402                return -ENOTCONN;
3403        }
3404
3405        atomic_inc(&fs_info->balance_cancel_req);
3406        /*
3407         * if we are running just wait and return, balance item is
3408         * deleted in btrfs_balance in this case
3409         */
3410        if (atomic_read(&fs_info->balance_running)) {
3411                mutex_unlock(&fs_info->balance_mutex);
3412                wait_event(fs_info->balance_wait_q,
3413                           atomic_read(&fs_info->balance_running) == 0);
3414                mutex_lock(&fs_info->balance_mutex);
3415        } else {
3416                /* __cancel_balance needs volume_mutex */
3417                mutex_unlock(&fs_info->balance_mutex);
3418                mutex_lock(&fs_info->volume_mutex);
3419                mutex_lock(&fs_info->balance_mutex);
3420
3421                if (fs_info->balance_ctl)
3422                        __cancel_balance(fs_info);
3423
3424                mutex_unlock(&fs_info->volume_mutex);
3425        }
3426
3427        BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3428        atomic_dec(&fs_info->balance_cancel_req);
3429        mutex_unlock(&fs_info->balance_mutex);
3430        return 0;
3431}
3432
3433/*
3434 * shrinking a device means finding all of the device extents past
3435 * the new size, and then following the back refs to the chunks.
3436 * The chunk relocation code actually frees the device extent
3437 */
3438int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3439{
3440        struct btrfs_trans_handle *trans;
3441        struct btrfs_root *root = device->dev_root;
3442        struct btrfs_dev_extent *dev_extent = NULL;
3443        struct btrfs_path *path;
3444        u64 length;
3445        u64 chunk_tree;
3446        u64 chunk_objectid;
3447        u64 chunk_offset;
3448        int ret;
3449        int slot;
3450        int failed = 0;
3451        bool retried = false;
3452        struct extent_buffer *l;
3453        struct btrfs_key key;
3454        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3455        u64 old_total = btrfs_super_total_bytes(super_copy);
3456        u64 old_size = device->total_bytes;
3457        u64 diff = device->total_bytes - new_size;
3458
3459        if (device->is_tgtdev_for_dev_replace)
3460                return -EINVAL;
3461
3462        path = btrfs_alloc_path();
3463        if (!path)
3464                return -ENOMEM;
3465
3466        path->reada = 2;
3467
3468        lock_chunks(root);
3469
3470        device->total_bytes = new_size;
3471        if (device->writeable) {
3472                device->fs_devices->total_rw_bytes -= diff;
3473                spin_lock(&root->fs_info->free_chunk_lock);
3474                root->fs_info->free_chunk_space -= diff;
3475                spin_unlock(&root->fs_info->free_chunk_lock);
3476        }
3477        unlock_chunks(root);
3478
3479again:
3480        key.objectid = device->devid;
3481        key.offset = (u64)-1;
3482        key.type = BTRFS_DEV_EXTENT_KEY;
3483
3484        do {
3485                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3486                if (ret < 0)
3487                        goto done;
3488
3489                ret = btrfs_previous_item(root, path, 0, key.type);
3490                if (ret < 0)
3491                        goto done;
3492                if (ret) {
3493                        ret = 0;
3494                        btrfs_release_path(path);
3495                        break;
3496                }
3497
3498                l = path->nodes[0];
3499                slot = path->slots[0];
3500                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3501
3502                if (key.objectid != device->devid) {
3503                        btrfs_release_path(path);
3504                        break;
3505                }
3506
3507                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3508                length = btrfs_dev_extent_length(l, dev_extent);
3509
3510                if (key.offset + length <= new_size) {
3511                        btrfs_release_path(path);
3512                        break;
3513                }
3514
3515                chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3516                chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3517                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3518                btrfs_release_path(path);
3519
3520                ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3521                                           chunk_offset);
3522                if (ret && ret != -ENOSPC)
3523                        goto done;
3524                if (ret == -ENOSPC)
3525                        failed++;
3526        } while (key.offset-- > 0);
3527
3528        if (failed && !retried) {
3529                failed = 0;
3530                retried = true;
3531                goto again;
3532        } else if (failed && retried) {
3533                ret = -ENOSPC;
3534                lock_chunks(root);
3535
3536                device->total_bytes = old_size;
3537                if (device->writeable)
3538                        device->fs_devices->total_rw_bytes += diff;
3539                spin_lock(&root->fs_info->free_chunk_lock);
3540                root->fs_info->free_chunk_space += diff;
3541                spin_unlock(&root->fs_info->free_chunk_lock);
3542                unlock_chunks(root);
3543                goto done;
3544        }
3545
3546        /* Shrinking succeeded, else we would be at "done". */
3547        trans = btrfs_start_transaction(root, 0);
3548        if (IS_ERR(trans)) {
3549                ret = PTR_ERR(trans);
3550                goto done;
3551        }
3552
3553        lock_chunks(root);
3554
3555        device->disk_total_bytes = new_size;
3556        /* Now btrfs_update_device() will change the on-disk size. */
3557        ret = btrfs_update_device(trans, device);
3558        if (ret) {
3559                unlock_chunks(root);
3560                btrfs_end_transaction(trans, root);
3561                goto done;
3562        }
3563        WARN_ON(diff > old_total);
3564        btrfs_set_super_total_bytes(super_copy, old_total - diff);
3565        unlock_chunks(root);
3566        btrfs_end_transaction(trans, root);
3567done:
3568        btrfs_free_path(path);
3569        return ret;
3570}
3571
3572static int btrfs_add_system_chunk(struct btrfs_root *root,
3573                           struct btrfs_key *key,
3574                           struct btrfs_chunk *chunk, int item_size)
3575{
3576        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3577        struct btrfs_disk_key disk_key;
3578        u32 array_size;
3579        u8 *ptr;
3580
3581        array_size = btrfs_super_sys_array_size(super_copy);
3582        if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3583                return -EFBIG;
3584
3585        ptr = super_copy->sys_chunk_array + array_size;
3586        btrfs_cpu_key_to_disk(&disk_key, key);
3587        memcpy(ptr, &disk_key, sizeof(disk_key));
3588        ptr += sizeof(disk_key);
3589        memcpy(ptr, chunk, item_size);
3590        item_size += sizeof(disk_key);
3591        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3592        return 0;
3593}
3594
3595/*
3596 * sort the devices in descending order by max_avail, total_avail
3597 */
3598static int btrfs_cmp_device_info(const void *a, const void *b)
3599{
3600        const struct btrfs_device_info *di_a = a;
3601        const struct btrfs_device_info *di_b = b;
3602
3603        if (di_a->max_avail > di_b->max_avail)
3604                return -1;
3605        if (di_a->max_avail < di_b->max_avail)
3606                return 1;
3607        if (di_a->total_avail > di_b->total_avail)
3608                return -1;
3609        if (di_a->total_avail < di_b->total_avail)
3610                return 1;
3611        return 0;
3612}
3613
3614static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3615        [BTRFS_RAID_RAID10] = {
3616                .sub_stripes    = 2,
3617                .dev_stripes    = 1,
3618                .devs_max       = 0,    /* 0 == as many as possible */
3619                .devs_min       = 4,
3620                .devs_increment = 2,
3621                .ncopies        = 2,
3622        },
3623        [BTRFS_RAID_RAID1] = {
3624                .sub_stripes    = 1,
3625                .dev_stripes    = 1,
3626                .devs_max       = 2,
3627                .devs_min       = 2,
3628                .devs_increment = 2,
3629                .ncopies        = 2,
3630        },
3631        [BTRFS_RAID_DUP] = {
3632                .sub_stripes    = 1,
3633                .dev_stripes    = 2,
3634                .devs_max       = 1,
3635                .devs_min       = 1,
3636                .devs_increment = 1,
3637                .ncopies        = 2,
3638        },
3639        [BTRFS_RAID_RAID0] = {
3640                .sub_stripes    = 1,
3641                .dev_stripes    = 1,
3642                .devs_max       = 0,
3643                .devs_min       = 2,
3644                .devs_increment = 1,
3645                .ncopies        = 1,
3646        },
3647        [BTRFS_RAID_SINGLE] = {
3648                .sub_stripes    = 1,
3649                .dev_stripes    = 1,
3650                .devs_max       = 1,
3651                .devs_min       = 1,
3652                .devs_increment = 1,
3653                .ncopies        = 1,
3654        },
3655        [BTRFS_RAID_RAID5] = {
3656                .sub_stripes    = 1,
3657                .dev_stripes    = 1,
3658                .devs_max       = 0,
3659                .devs_min       = 2,
3660                .devs_increment = 1,
3661                .ncopies        = 2,
3662        },
3663        [BTRFS_RAID_RAID6] = {
3664                .sub_stripes    = 1,
3665                .dev_stripes    = 1,
3666                .devs_max       = 0,
3667                .devs_min       = 3,
3668                .devs_increment = 1,
3669                .ncopies        = 3,
3670        },
3671};
3672
3673static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3674{
3675        /* TODO allow them to set a preferred stripe size */
3676        return 64 * 1024;
3677}
3678
3679static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3680{
3681        if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3682                return;
3683
3684        btrfs_set_fs_incompat(info, RAID56);
3685}
3686
3687static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3688                               struct btrfs_root *extent_root, u64 start,
3689                               u64 type)
3690{
3691        struct btrfs_fs_info *info = extent_root->fs_info;
3692        struct btrfs_fs_devices *fs_devices = info->fs_devices;
3693        struct list_head *cur;
3694        struct map_lookup *map = NULL;
3695        struct extent_map_tree *em_tree;
3696        struct extent_map *em;
3697        struct btrfs_device_info *devices_info = NULL;
3698        u64 total_avail;
3699        int num_stripes;        /* total number of stripes to allocate */
3700        int data_stripes;       /* number of stripes that count for
3701                                   block group size */
3702        int sub_stripes;        /* sub_stripes info for map */
3703        int dev_stripes;        /* stripes per dev */
3704        int devs_max;           /* max devs to use */
3705        int devs_min;           /* min devs needed */
3706        int devs_increment;     /* ndevs has to be a multiple of this */
3707        int ncopies;            /* how many copies to data has */
3708        int ret;
3709        u64 max_stripe_size;
3710        u64 max_chunk_size;
3711        u64 stripe_size;
3712        u64 num_bytes;
3713        u64 raid_stripe_len = BTRFS_STRIPE_LEN;
3714        int ndevs;
3715        int i;
3716        int j;
3717        int index;
3718
3719        BUG_ON(!alloc_profile_is_valid(type, 0));
3720
3721        if (list_empty(&fs_devices->alloc_list))
3722                return -ENOSPC;
3723
3724        index = __get_raid_index(type);
3725
3726        sub_stripes = btrfs_raid_array[index].sub_stripes;
3727        dev_stripes = btrfs_raid_array[index].dev_stripes;
3728        devs_max = btrfs_raid_array[index].devs_max;
3729        devs_min = btrfs_raid_array[index].devs_min;
3730        devs_increment = btrfs_raid_array[index].devs_increment;
3731        ncopies = btrfs_raid_array[index].ncopies;
3732
3733        if (type & BTRFS_BLOCK_GROUP_DATA) {
3734                max_stripe_size = 1024 * 1024 * 1024;
3735                max_chunk_size = 10 * max_stripe_size;
3736        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3737                /* for larger filesystems, use larger metadata chunks */
3738                if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3739                        max_stripe_size = 1024 * 1024 * 1024;
3740                else
3741                        max_stripe_size = 256 * 1024 * 1024;
3742                max_chunk_size = max_stripe_size;
3743        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3744                max_stripe_size = 32 * 1024 * 1024;
3745                max_chunk_size = 2 * max_stripe_size;
3746        } else {
3747                printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3748                       type);
3749                BUG_ON(1);
3750        }
3751
3752        /* we don't want a chunk larger than 10% of writeable space */
3753        max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3754                             max_chunk_size);
3755
3756        devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3757                               GFP_NOFS);
3758        if (!devices_info)
3759                return -ENOMEM;
3760
3761        cur = fs_devices->alloc_list.next;
3762
3763        /*
3764         * in the first pass through the devices list, we gather information
3765         * about the available holes on each device.
3766         */
3767        ndevs = 0;
3768        while (cur != &fs_devices->alloc_list) {
3769                struct btrfs_device *device;
3770                u64 max_avail;
3771                u64 dev_offset;
3772
3773                device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3774
3775                cur = cur->next;
3776
3777                if (!device->writeable) {
3778                        WARN(1, KERN_ERR
3779                               "btrfs: read-only device in alloc_list\n");
3780                        continue;
3781                }
3782
3783                if (!device->in_fs_metadata ||
3784                    device->is_tgtdev_for_dev_replace)
3785                        continue;
3786
3787                if (device->total_bytes > device->bytes_used)
3788                        total_avail = device->total_bytes - device->bytes_used;
3789                else
3790                        total_avail = 0;
3791
3792                /* If there is no space on this device, skip it. */
3793                if (total_avail == 0)
3794                        continue;
3795
3796                ret = find_free_dev_extent(trans, device,
3797                                           max_stripe_size * dev_stripes,
3798                                           &dev_offset, &max_avail);
3799                if (ret && ret != -ENOSPC)
3800                        goto error;
3801
3802                if (ret == 0)
3803                        max_avail = max_stripe_size * dev_stripes;
3804
3805                if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3806                        continue;
3807
3808                if (ndevs == fs_devices->rw_devices) {
3809                        WARN(1, "%s: found more than %llu devices\n",
3810                             __func__, fs_devices->rw_devices);
3811                        break;
3812                }
3813                devices_info[ndevs].dev_offset = dev_offset;
3814                devices_info[ndevs].max_avail = max_avail;
3815                devices_info[ndevs].total_avail = total_avail;
3816                devices_info[ndevs].dev = device;
3817                ++ndevs;
3818        }
3819
3820        /*
3821         * now sort the devices by hole size / available space
3822         */
3823        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3824             btrfs_cmp_device_info, NULL);
3825
3826        /* round down to number of usable stripes */
3827        ndevs -= ndevs % devs_increment;
3828
3829        if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3830                ret = -ENOSPC;
3831                goto error;
3832        }
3833
3834        if (devs_max && ndevs > devs_max)
3835                ndevs = devs_max;
3836        /*
3837         * the primary goal is to maximize the number of stripes, so use as many
3838         * devices as possible, even if the stripes are not maximum sized.
3839         */
3840        stripe_size = devices_info[ndevs-1].max_avail;
3841        num_stripes = ndevs * dev_stripes;
3842
3843        /*
3844         * this will have to be fixed for RAID1 and RAID10 over
3845         * more drives
3846         */
3847        data_stripes = num_stripes / ncopies;
3848
3849        if (type & BTRFS_BLOCK_GROUP_RAID5) {
3850                raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
3851                                 btrfs_super_stripesize(info->super_copy));
3852                data_stripes = num_stripes - 1;
3853        }
3854        if (type & BTRFS_BLOCK_GROUP_RAID6) {
3855                raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
3856                                 btrfs_super_stripesize(info->super_copy));
3857                data_stripes = num_stripes - 2;
3858        }
3859
3860        /*
3861         * Use the number of data stripes to figure out how big this chunk
3862         * is really going to be in terms of logical address space,
3863         * and compare that answer with the max chunk size
3864         */
3865        if (stripe_size * data_stripes > max_chunk_size) {
3866                u64 mask = (1ULL << 24) - 1;
3867                stripe_size = max_chunk_size;
3868                do_div(stripe_size, data_stripes);
3869
3870                /* bump the answer up to a 16MB boundary */
3871                stripe_size = (stripe_size + mask) & ~mask;
3872
3873                /* but don't go higher than the limits we found
3874                 * while searching for free extents
3875                 */
3876                if (stripe_size > devices_info[ndevs-1].max_avail)
3877                        stripe_size = devices_info[ndevs-1].max_avail;
3878        }
3879
3880        do_div(stripe_size, dev_stripes);
3881
3882        /* align to BTRFS_STRIPE_LEN */
3883        do_div(stripe_size, raid_stripe_len);
3884        stripe_size *= raid_stripe_len;
3885
3886        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3887        if (!map) {
3888                ret = -ENOMEM;
3889                goto error;
3890        }
3891        map->num_stripes = num_stripes;
3892
3893        for (i = 0; i < ndevs; ++i) {
3894                for (j = 0; j < dev_stripes; ++j) {
3895                        int s = i * dev_stripes + j;
3896                        map->stripes[s].dev = devices_info[i].dev;
3897                        map->stripes[s].physical = devices_info[i].dev_offset +
3898                                                   j * stripe_size;
3899                }
3900        }
3901        map->sector_size = extent_root->sectorsize;
3902        map->stripe_len = raid_stripe_len;
3903        map->io_align = raid_stripe_len;
3904        map->io_width = raid_stripe_len;
3905        map->type = type;
3906        map->sub_stripes = sub_stripes;
3907
3908        num_bytes = stripe_size * data_stripes;
3909
3910        trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3911
3912        em = alloc_extent_map();
3913        if (!em) {
3914                ret = -ENOMEM;
3915                goto error;
3916        }
3917        em->bdev = (struct block_device *)map;
3918        em->start = start;
3919        em->len = num_bytes;
3920        em->block_start = 0;
3921        em->block_len = em->len;
3922        em->orig_block_len = stripe_size;
3923
3924        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3925        write_lock(&em_tree->lock);
3926        ret = add_extent_mapping(em_tree, em, 0);
3927        if (!ret) {
3928                list_add_tail(&em->list, &trans->transaction->pending_chunks);
3929                atomic_inc(&em->refs);
3930        }
3931        write_unlock(&em_tree->lock);
3932        if (ret) {
3933                free_extent_map(em);
3934                goto error;
3935        }
3936
3937        ret = btrfs_make_block_group(trans, extent_root, 0, type,
3938                                     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3939                                     start, num_bytes);
3940        if (ret)
3941                goto error_del_extent;
3942
3943        free_extent_map(em);
3944        check_raid56_incompat_flag(extent_root->fs_info, type);
3945
3946        kfree(devices_info);
3947        return 0;
3948
3949error_del_extent:
3950        write_lock(&em_tree->lock);
3951        remove_extent_mapping(em_tree, em);
3952        write_unlock(&em_tree->lock);
3953
3954        /* One for our allocation */
3955        free_extent_map(em);
3956        /* One for the tree reference */
3957        free_extent_map(em);
3958error:
3959        kfree(map);
3960        kfree(devices_info);
3961        return ret;
3962}
3963
3964int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
3965                                struct btrfs_root *extent_root,
3966                                u64 chunk_offset, u64 chunk_size)
3967{
3968        struct btrfs_key key;
3969        struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3970        struct btrfs_device *device;
3971        struct btrfs_chunk *chunk;
3972        struct btrfs_stripe *stripe;
3973        struct extent_map_tree *em_tree;
3974        struct extent_map *em;
3975        struct map_lookup *map;
3976        size_t item_size;
3977        u64 dev_offset;
3978        u64 stripe_size;
3979        int i = 0;
3980        int ret;
3981
3982        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3983        read_lock(&em_tree->lock);
3984        em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
3985        read_unlock(&em_tree->lock);
3986
3987        if (!em) {
3988                btrfs_crit(extent_root->fs_info, "unable to find logical "
3989                           "%Lu len %Lu", chunk_offset, chunk_size);
3990                return -EINVAL;
3991        }
3992
3993        if (em->start != chunk_offset || em->len != chunk_size) {
3994                btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
3995                          " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
3996                          chunk_size, em->start, em->len);
3997                free_extent_map(em);
3998                return -EINVAL;
3999        }
4000
4001        map = (struct map_lookup *)em->bdev;
4002        item_size = btrfs_chunk_item_size(map->num_stripes);
4003        stripe_size = em->orig_block_len;
4004
4005        chunk = kzalloc(item_size, GFP_NOFS);
4006        if (!chunk) {
4007                ret = -ENOMEM;
4008                goto out;
4009        }
4010
4011        for (i = 0; i < map->num_stripes; i++) {
4012                device = map->stripes[i].dev;
4013                dev_offset = map->stripes[i].physical;
4014
4015                device->bytes_used += stripe_size;
4016                ret = btrfs_update_device(trans, device);
4017                if (ret)
4018                        goto out;
4019                ret = btrfs_alloc_dev_extent(trans, device,
4020                                             chunk_root->root_key.objectid,
4021                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4022                                             chunk_offset, dev_offset,
4023                                             stripe_size);
4024                if (ret)
4025                        goto out;
4026        }
4027
4028        spin_lock(&extent_root->fs_info->free_chunk_lock);
4029        extent_root->fs_info->free_chunk_space -= (stripe_size *
4030                                                   map->num_stripes);
4031        spin_unlock(&extent_root->fs_info->free_chunk_lock);
4032
4033        stripe = &chunk->stripe;
4034        for (i = 0; i < map->num_stripes; i++) {
4035                device = map->stripes[i].dev;
4036                dev_offset = map->stripes[i].physical;
4037
4038                btrfs_set_stack_stripe_devid(stripe, device->devid);
4039                btrfs_set_stack_stripe_offset(stripe, dev_offset);
4040                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4041                stripe++;
4042        }
4043
4044        btrfs_set_stack_chunk_length(chunk, chunk_size);
4045        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4046        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4047        btrfs_set_stack_chunk_type(chunk, map->type);
4048        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4049        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4050        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4051        btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4052        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4053
4054        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4055        key.type = BTRFS_CHUNK_ITEM_KEY;
4056        key.offset = chunk_offset;
4057
4058        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4059        if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4060                /*
4061                 * TODO: Cleanup of inserted chunk root in case of
4062                 * failure.
4063                 */
4064                ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4065                                             item_size);
4066        }
4067
4068out:
4069        kfree(chunk);
4070        free_extent_map(em);
4071        return ret;
4072}
4073
4074/*
4075 * Chunk allocation falls into two parts. The first part does works
4076 * that make the new allocated chunk useable, but not do any operation
4077 * that modifies the chunk tree. The second part does the works that
4078 * require modifying the chunk tree. This division is important for the
4079 * bootstrap process of adding storage to a seed btrfs.
4080 */
4081int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4082                      struct btrfs_root *extent_root, u64 type)
4083{
4084        u64 chunk_offset;
4085
4086        chunk_offset = find_next_chunk(extent_root->fs_info);
4087        return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4088}
4089
4090static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4091                                         struct btrfs_root *root,
4092                                         struct btrfs_device *device)
4093{
4094        u64 chunk_offset;
4095        u64 sys_chunk_offset;
4096        u64 alloc_profile;
4097        struct btrfs_fs_info *fs_info = root->fs_info;
4098        struct btrfs_root *extent_root = fs_info->extent_root;
4099        int ret;
4100
4101        chunk_offset = find_next_chunk(fs_info);
4102        alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4103        ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4104                                  alloc_profile);
4105        if (ret)
4106                return ret;
4107
4108        sys_chunk_offset = find_next_chunk(root->fs_info);
4109        alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4110        ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4111                                  alloc_profile);
4112        if (ret) {
4113                btrfs_abort_transaction(trans, root, ret);
4114                goto out;
4115        }
4116
4117        ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4118        if (ret)
4119                btrfs_abort_transaction(trans, root, ret);
4120out:
4121        return ret;
4122}
4123
4124int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4125{
4126        struct extent_map *em;
4127        struct map_lookup *map;
4128        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4129        int readonly = 0;
4130        int i;
4131
4132        read_lock(&map_tree->map_tree.lock);
4133        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4134        read_unlock(&map_tree->map_tree.lock);
4135        if (!em)
4136                return 1;
4137
4138        if (btrfs_test_opt(root, DEGRADED)) {
4139                free_extent_map(em);
4140                return 0;
4141        }
4142
4143        map = (struct map_lookup *)em->bdev;
4144        for (i = 0; i < map->num_stripes; i++) {
4145                if (!map->stripes[i].dev->writeable) {
4146                        readonly = 1;
4147                        break;
4148                }
4149        }
4150        free_extent_map(em);
4151        return readonly;
4152}
4153
4154void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4155{
4156        extent_map_tree_init(&tree->map_tree);
4157}
4158
4159void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4160{
4161        struct extent_map *em;
4162
4163        while (1) {
4164                write_lock(&tree->map_tree.lock);
4165                em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4166                if (em)
4167                        remove_extent_mapping(&tree->map_tree, em);
4168                write_unlock(&tree->map_tree.lock);
4169                if (!em)
4170                        break;
4171                kfree(em->bdev);
4172                /* once for us */
4173                free_extent_map(em);
4174                /* once for the tree */
4175                free_extent_map(em);
4176        }
4177}
4178
4179int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4180{
4181        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4182        struct extent_map *em;
4183        struct map_lookup *map;
4184        struct extent_map_tree *em_tree = &map_tree->map_tree;
4185        int ret;
4186
4187        read_lock(&em_tree->lock);
4188        em = lookup_extent_mapping(em_tree, logical, len);
4189        read_unlock(&em_tree->lock);
4190
4191        /*
4192         * We could return errors for these cases, but that could get ugly and
4193         * we'd probably do the same thing which is just not do anything else
4194         * and exit, so return 1 so the callers don't try to use other copies.
4195         */
4196        if (!em) {
4197                btrfs_emerg(fs_info, "No mapping for %Lu-%Lu\n", logical,
4198                            logical+len);
4199                return 1;
4200        }
4201
4202        if (em->start > logical || em->start + em->len < logical) {
4203                btrfs_emerg(fs_info, "Invalid mapping for %Lu-%Lu, got "
4204                            "%Lu-%Lu\n", logical, logical+len, em->start,
4205                            em->start + em->len);
4206                return 1;
4207        }
4208
4209        map = (struct map_lookup *)em->bdev;
4210        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4211                ret = map->num_stripes;
4212        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4213                ret = map->sub_stripes;
4214        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4215                ret = 2;
4216        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4217                ret = 3;
4218        else
4219                ret = 1;
4220        free_extent_map(em);
4221
4222        btrfs_dev_replace_lock(&fs_info->dev_replace);
4223        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4224                ret++;
4225        btrfs_dev_replace_unlock(&fs_info->dev_replace);
4226
4227        return ret;
4228}
4229
4230unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4231                                    struct btrfs_mapping_tree *map_tree,
4232                                    u64 logical)
4233{
4234        struct extent_map *em;
4235        struct map_lookup *map;
4236        struct extent_map_tree *em_tree = &map_tree->map_tree;
4237        unsigned long len = root->sectorsize;
4238
4239        read_lock(&em_tree->lock);
4240        em = lookup_extent_mapping(em_tree, logical, len);
4241        read_unlock(&em_tree->lock);
4242        BUG_ON(!em);
4243
4244        BUG_ON(em->start > logical || em->start + em->len < logical);
4245        map = (struct map_lookup *)em->bdev;
4246        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4247                         BTRFS_BLOCK_GROUP_RAID6)) {
4248                len = map->stripe_len * nr_data_stripes(map);
4249        }
4250        free_extent_map(em);
4251        return len;
4252}
4253
4254int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4255                           u64 logical, u64 len, int mirror_num)
4256{
4257        struct extent_map *em;
4258        struct map_lookup *map;
4259        struct extent_map_tree *em_tree = &map_tree->map_tree;
4260        int ret = 0;
4261
4262        read_lock(&em_tree->lock);
4263        em = lookup_extent_mapping(em_tree, logical, len);
4264        read_unlock(&em_tree->lock);
4265        BUG_ON(!em);
4266
4267        BUG_ON(em->start > logical || em->start + em->len < logical);
4268        map = (struct map_lookup *)em->bdev;
4269        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4270                         BTRFS_BLOCK_GROUP_RAID6))
4271                ret = 1;
4272        free_extent_map(em);
4273        return ret;
4274}
4275
4276static int find_live_mirror(struct btrfs_fs_info *fs_info,
4277                            struct map_lookup *map, int first, int num,
4278                            int optimal, int dev_replace_is_ongoing)
4279{
4280        int i;
4281        int tolerance;
4282        struct btrfs_device *srcdev;
4283
4284        if (dev_replace_is_ongoing &&
4285            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4286             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4287                srcdev = fs_info->dev_replace.srcdev;
4288        else
4289                srcdev = NULL;
4290
4291        /*
4292         * try to avoid the drive that is the source drive for a
4293         * dev-replace procedure, only choose it if no other non-missing
4294         * mirror is available
4295         */
4296        for (tolerance = 0; tolerance < 2; tolerance++) {
4297                if (map->stripes[optimal].dev->bdev &&
4298                    (tolerance || map->stripes[optimal].dev != srcdev))
4299                        return optimal;
4300                for (i = first; i < first + num; i++) {
4301                        if (map->stripes[i].dev->bdev &&
4302                            (tolerance || map->stripes[i].dev != srcdev))
4303                                return i;
4304                }
4305        }
4306
4307        /* we couldn't find one that doesn't fail.  Just return something
4308         * and the io error handling code will clean up eventually
4309         */
4310        return optimal;
4311}
4312
4313static inline int parity_smaller(u64 a, u64 b)
4314{
4315        return a > b;
4316}
4317
4318/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4319static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4320{
4321        struct btrfs_bio_stripe s;
4322        int i;
4323        u64 l;
4324        int again = 1;
4325
4326        while (again) {
4327                again = 0;
4328                for (i = 0; i < bbio->num_stripes - 1; i++) {
4329                        if (parity_smaller(raid_map[i], raid_map[i+1])) {
4330                                s = bbio->stripes[i];
4331                                l = raid_map[i];
4332                                bbio->stripes[i] = bbio->stripes[i+1];
4333                                raid_map[i] = raid_map[i+1];
4334                                bbio->stripes[i+1] = s;
4335                                raid_map[i+1] = l;
4336                                again = 1;
4337                        }
4338                }
4339        }
4340}
4341
4342static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4343                             u64 logical, u64 *length,
4344                             struct btrfs_bio **bbio_ret,
4345                             int mirror_num, u64 **raid_map_ret)
4346{
4347        struct extent_map *em;
4348        struct map_lookup *map;
4349        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4350        struct extent_map_tree *em_tree = &map_tree->map_tree;
4351        u64 offset;
4352        u64 stripe_offset;
4353        u64 stripe_end_offset;
4354        u64 stripe_nr;
4355        u64 stripe_nr_orig;
4356        u64 stripe_nr_end;
4357        u64 stripe_len;
4358        u64 *raid_map = NULL;
4359        int stripe_index;
4360        int i;
4361        int ret = 0;
4362        int num_stripes;
4363        int max_errors = 0;
4364        struct btrfs_bio *bbio = NULL;
4365        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4366        int dev_replace_is_ongoing = 0;
4367        int num_alloc_stripes;
4368        int patch_the_first_stripe_for_dev_replace = 0;
4369        u64 physical_to_patch_in_first_stripe = 0;
4370        u64 raid56_full_stripe_start = (u64)-1;
4371
4372        read_lock(&em_tree->lock);
4373        em = lookup_extent_mapping(em_tree, logical, *length);
4374        read_unlock(&em_tree->lock);
4375
4376        if (!em) {
4377                btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4378                        (unsigned long long)logical,
4379                        (unsigned long long)*length);
4380                return -EINVAL;
4381        }
4382
4383        if (em->start > logical || em->start + em->len < logical) {
4384                btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4385                           "found %Lu-%Lu\n", logical, em->start,
4386                           em->start + em->len);
4387                return -EINVAL;
4388        }
4389
4390        map = (struct map_lookup *)em->bdev;
4391        offset = logical - em->start;
4392
4393        stripe_len = map->stripe_len;
4394        stripe_nr = offset;
4395        /*
4396         * stripe_nr counts the total number of stripes we have to stride
4397         * to get to this block
4398         */
4399        do_div(stripe_nr, stripe_len);
4400
4401        stripe_offset = stripe_nr * stripe_len;
4402        BUG_ON(offset < stripe_offset);
4403
4404        /* stripe_offset is the offset of this block in its stripe*/
4405        stripe_offset = offset - stripe_offset;
4406
4407        /* if we're here for raid56, we need to know the stripe aligned start */
4408        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4409                unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4410                raid56_full_stripe_start = offset;
4411
4412                /* allow a write of a full stripe, but make sure we don't
4413                 * allow straddling of stripes
4414                 */
4415                do_div(raid56_full_stripe_start, full_stripe_len);
4416                raid56_full_stripe_start *= full_stripe_len;
4417        }
4418
4419        if (rw & REQ_DISCARD) {
4420                /* we don't discard raid56 yet */
4421                if (map->type &
4422                    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4423                        ret = -EOPNOTSUPP;
4424                        goto out;
4425                }
4426                *length = min_t(u64, em->len - offset, *length);
4427        } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4428                u64 max_len;
4429                /* For writes to RAID[56], allow a full stripeset across all disks.
4430                   For other RAID types and for RAID[56] reads, just allow a single
4431                   stripe (on a single disk). */
4432                if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4433                    (rw & REQ_WRITE)) {
4434                        max_len = stripe_len * nr_data_stripes(map) -
4435                                (offset - raid56_full_stripe_start);
4436                } else {
4437                        /* we limit the length of each bio to what fits in a stripe */
4438                        max_len = stripe_len - stripe_offset;
4439                }
4440                *length = min_t(u64, em->len - offset, max_len);
4441        } else {
4442                *length = em->len - offset;
4443        }
4444
4445        /* This is for when we're called from btrfs_merge_bio_hook() and all
4446           it cares about is the length */
4447        if (!bbio_ret)
4448                goto out;
4449
4450        btrfs_dev_replace_lock(dev_replace);
4451        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4452        if (!dev_replace_is_ongoing)
4453                btrfs_dev_replace_unlock(dev_replace);
4454
4455        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4456            !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4457            dev_replace->tgtdev != NULL) {
4458                /*
4459                 * in dev-replace case, for repair case (that's the only
4460                 * case where the mirror is selected explicitly when
4461                 * calling btrfs_map_block), blocks left of the left cursor
4462                 * can also be read from the target drive.
4463                 * For REQ_GET_READ_MIRRORS, the target drive is added as
4464                 * the last one to the array of stripes. For READ, it also
4465                 * needs to be supported using the same mirror number.
4466                 * If the requested block is not left of the left cursor,
4467                 * EIO is returned. This can happen because btrfs_num_copies()
4468                 * returns one more in the dev-replace case.
4469                 */
4470                u64 tmp_length = *length;
4471                struct btrfs_bio *tmp_bbio = NULL;
4472                int tmp_num_stripes;
4473                u64 srcdev_devid = dev_replace->srcdev->devid;
4474                int index_srcdev = 0;
4475                int found = 0;
4476                u64 physical_of_found = 0;
4477
4478                ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4479                             logical, &tmp_length, &tmp_bbio, 0, NULL);
4480                if (ret) {
4481                        WARN_ON(tmp_bbio != NULL);
4482                        goto out;
4483                }
4484
4485                tmp_num_stripes = tmp_bbio->num_stripes;
4486                if (mirror_num > tmp_num_stripes) {
4487                        /*
4488                         * REQ_GET_READ_MIRRORS does not contain this
4489                         * mirror, that means that the requested area
4490                         * is not left of the left cursor
4491                         */
4492                        ret = -EIO;
4493                        kfree(tmp_bbio);
4494                        goto out;
4495                }
4496
4497                /*
4498                 * process the rest of the function using the mirror_num
4499                 * of the source drive. Therefore look it up first.
4500                 * At the end, patch the device pointer to the one of the
4501                 * target drive.
4502                 */
4503                for (i = 0; i < tmp_num_stripes; i++) {
4504                        if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4505                                /*
4506                                 * In case of DUP, in order to keep it
4507                                 * simple, only add the mirror with the
4508                                 * lowest physical address
4509                                 */
4510                                if (found &&
4511                                    physical_of_found <=
4512                                     tmp_bbio->stripes[i].physical)
4513                                        continue;
4514                                index_srcdev = i;
4515                                found = 1;
4516                                physical_of_found =
4517                                        tmp_bbio->stripes[i].physical;
4518                        }
4519                }
4520
4521                if (found) {
4522                        mirror_num = index_srcdev + 1;
4523                        patch_the_first_stripe_for_dev_replace = 1;
4524                        physical_to_patch_in_first_stripe = physical_of_found;
4525                } else {
4526                        WARN_ON(1);
4527                        ret = -EIO;
4528                        kfree(tmp_bbio);
4529                        goto out;
4530                }
4531
4532                kfree(tmp_bbio);
4533        } else if (mirror_num > map->num_stripes) {
4534                mirror_num = 0;
4535        }
4536
4537        num_stripes = 1;
4538        stripe_index = 0;
4539        stripe_nr_orig = stripe_nr;
4540        stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4541        do_div(stripe_nr_end, map->stripe_len);
4542        stripe_end_offset = stripe_nr_end * map->stripe_len -
4543                            (offset + *length);
4544
4545        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4546                if (rw & REQ_DISCARD)
4547                        num_stripes = min_t(u64, map->num_stripes,
4548                                            stripe_nr_end - stripe_nr_orig);
4549                stripe_index = do_div(stripe_nr, map->num_stripes);
4550        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4551                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4552                        num_stripes = map->num_stripes;
4553                else if (mirror_num)
4554                        stripe_index = mirror_num - 1;
4555                else {
4556                        stripe_index = find_live_mirror(fs_info, map, 0,
4557                                            map->num_stripes,
4558                                            current->pid % map->num_stripes,
4559                                            dev_replace_is_ongoing);
4560                        mirror_num = stripe_index + 1;
4561                }
4562
4563        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4564                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4565                        num_stripes = map->num_stripes;
4566                } else if (mirror_num) {
4567                        stripe_index = mirror_num - 1;
4568                } else {
4569                        mirror_num = 1;
4570                }
4571
4572        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4573                int factor = map->num_stripes / map->sub_stripes;
4574
4575                stripe_index = do_div(stripe_nr, factor);
4576                stripe_index *= map->sub_stripes;
4577
4578                if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4579                        num_stripes = map->sub_stripes;
4580                else if (rw & REQ_DISCARD)
4581                        num_stripes = min_t(u64, map->sub_stripes *
4582                                            (stripe_nr_end - stripe_nr_orig),
4583                                            map->num_stripes);
4584                else if (mirror_num)
4585                        stripe_index += mirror_num - 1;
4586                else {
4587                        int old_stripe_index = stripe_index;
4588                        stripe_index = find_live_mirror(fs_info, map,
4589                                              stripe_index,
4590                                              map->sub_stripes, stripe_index +
4591                                              current->pid % map->sub_stripes,
4592                                              dev_replace_is_ongoing);
4593                        mirror_num = stripe_index - old_stripe_index + 1;
4594                }
4595
4596        } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4597                                BTRFS_BLOCK_GROUP_RAID6)) {
4598                u64 tmp;
4599
4600                if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4601                    && raid_map_ret) {
4602                        int i, rot;
4603
4604                        /* push stripe_nr back to the start of the full stripe */
4605                        stripe_nr = raid56_full_stripe_start;
4606                        do_div(stripe_nr, stripe_len);
4607
4608                        stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4609
4610                        /* RAID[56] write or recovery. Return all stripes */
4611                        num_stripes = map->num_stripes;
4612                        max_errors = nr_parity_stripes(map);
4613
4614                        raid_map = kmalloc(sizeof(u64) * num_stripes,
4615                                           GFP_NOFS);
4616                        if (!raid_map) {
4617                                ret = -ENOMEM;
4618                                goto out;
4619                        }
4620
4621                        /* Work out the disk rotation on this stripe-set */
4622                        tmp = stripe_nr;
4623                        rot = do_div(tmp, num_stripes);
4624
4625                        /* Fill in the logical address of each stripe */
4626                        tmp = stripe_nr * nr_data_stripes(map);
4627                        for (i = 0; i < nr_data_stripes(map); i++)
4628                                raid_map[(i+rot) % num_stripes] =
4629                                        em->start + (tmp + i) * map->stripe_len;
4630
4631                        raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4632                        if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4633                                raid_map[(i+rot+1) % num_stripes] =
4634                                        RAID6_Q_STRIPE;
4635
4636                        *length = map->stripe_len;
4637                        stripe_index = 0;
4638                        stripe_offset = 0;
4639                } else {
4640                        /*
4641                         * Mirror #0 or #1 means the original data block.
4642                         * Mirror #2 is RAID5 parity block.
4643                         * Mirror #3 is RAID6 Q block.
4644                         */
4645                        stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4646                        if (mirror_num > 1)
4647                                stripe_index = nr_data_stripes(map) +
4648                                                mirror_num - 2;
4649
4650                        /* We distribute the parity blocks across stripes */
4651                        tmp = stripe_nr + stripe_index;
4652                        stripe_index = do_div(tmp, map->num_stripes);
4653                }
4654        } else {
4655                /*
4656                 * after this do_div call, stripe_nr is the number of stripes
4657                 * on this device we have to walk to find the data, and
4658                 * stripe_index is the number of our device in the stripe array
4659                 */
4660                stripe_index = do_div(stripe_nr, map->num_stripes);
4661                mirror_num = stripe_index + 1;
4662        }
4663        BUG_ON(stripe_index >= map->num_stripes);
4664
4665        num_alloc_stripes = num_stripes;
4666        if (dev_replace_is_ongoing) {
4667                if (rw & (REQ_WRITE | REQ_DISCARD))
4668                        num_alloc_stripes <<= 1;
4669                if (rw & REQ_GET_READ_MIRRORS)
4670                        num_alloc_stripes++;
4671        }
4672        bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
4673        if (!bbio) {
4674                ret = -ENOMEM;
4675                goto out;
4676        }
4677        atomic_set(&bbio->error, 0);
4678
4679        if (rw & REQ_DISCARD) {
4680                int factor = 0;
4681                int sub_stripes = 0;
4682                u64 stripes_per_dev = 0;
4683                u32 remaining_stripes = 0;
4684                u32 last_stripe = 0;
4685
4686                if (map->type &
4687                    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4688                        if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4689                                sub_stripes = 1;
4690                        else
4691                                sub_stripes = map->sub_stripes;
4692
4693                        factor = map->num_stripes / sub_stripes;
4694                        stripes_per_dev = div_u64_rem(stripe_nr_end -
4695                                                      stripe_nr_orig,
4696                                                      factor,
4697                                                      &remaining_stripes);
4698                        div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4699                        last_stripe *= sub_stripes;
4700                }
4701
4702                for (i = 0; i < num_stripes; i++) {
4703                        bbio->stripes[i].physical =
4704                                map->stripes[stripe_index].physical +
4705                                stripe_offset + stripe_nr * map->stripe_len;
4706                        bbio->stripes[i].dev = map->stripes[stripe_index].dev;
4707
4708                        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4709                                         BTRFS_BLOCK_GROUP_RAID10)) {
4710                                bbio->stripes[i].length = stripes_per_dev *
4711                                                          map->stripe_len;
4712
4713                                if (i / sub_stripes < remaining_stripes)
4714                                        bbio->stripes[i].length +=
4715                                                map->stripe_len;
4716
4717                                /*
4718                                 * Special for the first stripe and
4719                                 * the last stripe:
4720                                 *
4721                                 * |-------|...|-------|
4722                                 *     |----------|
4723                                 *    off     end_off
4724                                 */
4725                                if (i < sub_stripes)
4726                                        bbio->stripes[i].length -=
4727                                                stripe_offset;
4728
4729                                if (stripe_index >= last_stripe &&
4730                                    stripe_index <= (last_stripe +
4731                                                     sub_stripes - 1))
4732                                        bbio->stripes[i].length -=
4733                                                stripe_end_offset;
4734
4735                                if (i == sub_stripes - 1)
4736                                        stripe_offset = 0;
4737                        } else
4738                                bbio->stripes[i].length = *length;
4739
4740                        stripe_index++;
4741                        if (stripe_index == map->num_stripes) {
4742                                /* This could only happen for RAID0/10 */
4743                                stripe_index = 0;
4744                                stripe_nr++;
4745                        }
4746                }
4747        } else {
4748                for (i = 0; i < num_stripes; i++) {
4749                        bbio->stripes[i].physical =
4750                                map->stripes[stripe_index].physical +
4751                                stripe_offset +
4752                                stripe_nr * map->stripe_len;
4753                        bbio->stripes[i].dev =
4754                                map->stripes[stripe_index].dev;
4755                        stripe_index++;
4756                }
4757        }
4758
4759        if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
4760                if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4761                                 BTRFS_BLOCK_GROUP_RAID10 |
4762                                 BTRFS_BLOCK_GROUP_RAID5 |
4763                                 BTRFS_BLOCK_GROUP_DUP)) {
4764                        max_errors = 1;
4765                } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4766                        max_errors = 2;
4767                }
4768        }
4769
4770        if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
4771            dev_replace->tgtdev != NULL) {
4772                int index_where_to_add;
4773                u64 srcdev_devid = dev_replace->srcdev->devid;
4774
4775                /*
4776                 * duplicate the write operations while the dev replace
4777                 * procedure is running. Since the copying of the old disk
4778                 * to the new disk takes place at run time while the
4779                 * filesystem is mounted writable, the regular write
4780                 * operations to the old disk have to be duplicated to go
4781                 * to the new disk as well.
4782                 * Note that device->missing is handled by the caller, and
4783                 * that the write to the old disk is already set up in the
4784                 * stripes array.
4785                 */
4786                index_where_to_add = num_stripes;
4787                for (i = 0; i < num_stripes; i++) {
4788                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
4789                                /* write to new disk, too */
4790                                struct btrfs_bio_stripe *new =
4791                                        bbio->stripes + index_where_to_add;
4792                                struct btrfs_bio_stripe *old =
4793                                        bbio->stripes + i;
4794
4795                                new->physical = old->physical;
4796                                new->length = old->length;
4797                                new->dev = dev_replace->tgtdev;
4798                                index_where_to_add++;
4799                                max_errors++;
4800                        }
4801                }
4802                num_stripes = index_where_to_add;
4803        } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
4804                   dev_replace->tgtdev != NULL) {
4805                u64 srcdev_devid = dev_replace->srcdev->devid;
4806                int index_srcdev = 0;
4807                int found = 0;
4808                u64 physical_of_found = 0;
4809
4810                /*
4811                 * During the dev-replace procedure, the target drive can
4812                 * also be used to read data in case it is needed to repair
4813                 * a corrupt block elsewhere. This is possible if the
4814                 * requested area is left of the left cursor. In this area,
4815                 * the target drive is a full copy of the source drive.
4816                 */
4817                for (i = 0; i < num_stripes; i++) {
4818                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
4819                                /*
4820                                 * In case of DUP, in order to keep it
4821                                 * simple, only add the mirror with the
4822                                 * lowest physical address
4823                                 */
4824                                if (found &&
4825                                    physical_of_found <=
4826                                     bbio->stripes[i].physical)
4827                                        continue;
4828                                index_srcdev = i;
4829                                found = 1;
4830                                physical_of_found = bbio->stripes[i].physical;
4831                        }
4832                }
4833                if (found) {
4834                        u64 length = map->stripe_len;
4835
4836                        if (physical_of_found + length <=
4837                            dev_replace->cursor_left) {
4838                                struct btrfs_bio_stripe *tgtdev_stripe =
4839                                        bbio->stripes + num_stripes;
4840
4841                                tgtdev_stripe->physical = physical_of_found;
4842                                tgtdev_stripe->length =
4843                                        bbio->stripes[index_srcdev].length;
4844                                tgtdev_stripe->dev = dev_replace->tgtdev;
4845
4846                                num_stripes++;
4847                        }
4848                }
4849        }
4850
4851        *bbio_ret = bbio;
4852        bbio->num_stripes = num_stripes;
4853        bbio->max_errors = max_errors;
4854        bbio->mirror_num = mirror_num;
4855
4856        /*
4857         * this is the case that REQ_READ && dev_replace_is_ongoing &&
4858         * mirror_num == num_stripes + 1 && dev_replace target drive is
4859         * available as a mirror
4860         */
4861        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
4862                WARN_ON(num_stripes > 1);
4863                bbio->stripes[0].dev = dev_replace->tgtdev;
4864                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
4865                bbio->mirror_num = map->num_stripes + 1;
4866        }
4867        if (raid_map) {
4868                sort_parity_stripes(bbio, raid_map);
4869                *raid_map_ret = raid_map;
4870        }
4871out:
4872        if (dev_replace_is_ongoing)
4873                btrfs_dev_replace_unlock(dev_replace);
4874        free_extent_map(em);
4875        return ret;
4876}
4877
4878int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4879                      u64 logical, u64 *length,
4880                      struct btrfs_bio **bbio_ret, int mirror_num)
4881{
4882        return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
4883                                 mirror_num, NULL);
4884}
4885
4886int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
4887                     u64 chunk_start, u64 physical, u64 devid,
4888                     u64 **logical, int *naddrs, int *stripe_len)
4889{
4890        struct extent_map_tree *em_tree = &map_tree->map_tree;
4891        struct extent_map *em;
4892        struct map_lookup *map;
4893        u64 *buf;
4894        u64 bytenr;
4895        u64 length;
4896        u64 stripe_nr;
4897        u64 rmap_len;
4898        int i, j, nr = 0;
4899
4900        read_lock(&em_tree->lock);
4901        em = lookup_extent_mapping(em_tree, chunk_start, 1);
4902        read_unlock(&em_tree->lock);
4903
4904        if (!em) {
4905                printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
4906                       chunk_start);
4907                return -EIO;
4908        }
4909
4910        if (em->start != chunk_start) {
4911                printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
4912                       em->start, chunk_start);
4913                free_extent_map(em);
4914                return -EIO;
4915        }
4916        map = (struct map_lookup *)em->bdev;
4917
4918        length = em->len;
4919        rmap_len = map->stripe_len;
4920
4921        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4922                do_div(length, map->num_stripes / map->sub_stripes);
4923        else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4924                do_div(length, map->num_stripes);
4925        else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4926                              BTRFS_BLOCK_GROUP_RAID6)) {
4927                do_div(length, nr_data_stripes(map));
4928                rmap_len = map->stripe_len * nr_data_stripes(map);
4929        }
4930
4931        buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4932        BUG_ON(!buf); /* -ENOMEM */
4933
4934        for (i = 0; i < map->num_stripes; i++) {
4935                if (devid && map->stripes[i].dev->devid != devid)
4936                        continue;
4937                if (map->stripes[i].physical > physical ||
4938                    map->stripes[i].physical + length <= physical)
4939                        continue;
4940
4941                stripe_nr = physical - map->stripes[i].physical;
4942                do_div(stripe_nr, map->stripe_len);
4943
4944                if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4945                        stripe_nr = stripe_nr * map->num_stripes + i;
4946                        do_div(stripe_nr, map->sub_stripes);
4947                } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4948                        stripe_nr = stripe_nr * map->num_stripes + i;
4949                } /* else if RAID[56], multiply by nr_data_stripes().
4950                   * Alternatively, just use rmap_len below instead of
4951                   * map->stripe_len */
4952
4953                bytenr = chunk_start + stripe_nr * rmap_len;
4954                WARN_ON(nr >= map->num_stripes);
4955                for (j = 0; j < nr; j++) {
4956                        if (buf[j] == bytenr)
4957                                break;
4958                }
4959                if (j == nr) {
4960                        WARN_ON(nr >= map->num_stripes);
4961                        buf[nr++] = bytenr;
4962                }
4963        }
4964
4965        *logical = buf;
4966        *naddrs = nr;
4967        *stripe_len = rmap_len;
4968
4969        free_extent_map(em);
4970        return 0;
4971}
4972
4973static void btrfs_end_bio(struct bio *bio, int err)
4974{
4975        struct btrfs_bio *bbio = bio->bi_private;
4976        int is_orig_bio = 0;
4977
4978        if (err) {
4979                atomic_inc(&bbio->error);
4980                if (err == -EIO || err == -EREMOTEIO) {
4981                        unsigned int stripe_index =
4982                                btrfs_io_bio(bio)->stripe_index;
4983                        struct btrfs_device *dev;
4984
4985                        BUG_ON(stripe_index >= bbio->num_stripes);
4986                        dev = bbio->stripes[stripe_index].dev;
4987                        if (dev->bdev) {
4988                                if (bio->bi_rw & WRITE)
4989                                        btrfs_dev_stat_inc(dev,
4990                                                BTRFS_DEV_STAT_WRITE_ERRS);
4991                                else
4992                                        btrfs_dev_stat_inc(dev,
4993                                                BTRFS_DEV_STAT_READ_ERRS);
4994                                if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4995                                        btrfs_dev_stat_inc(dev,
4996                                                BTRFS_DEV_STAT_FLUSH_ERRS);
4997                                btrfs_dev_stat_print_on_error(dev);
4998                        }
4999                }
5000        }
5001
5002        if (bio == bbio->orig_bio)
5003                is_orig_bio = 1;
5004
5005        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5006                if (!is_orig_bio) {
5007                        bio_put(bio);
5008                        bio = bbio->orig_bio;
5009                }
5010                bio->bi_private = bbio->private;
5011                bio->bi_end_io = bbio->end_io;
5012                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5013                /* only send an error to the higher layers if it is
5014                 * beyond the tolerance of the btrfs bio
5015                 */
5016                if (atomic_read(&bbio->error) > bbio->max_errors) {
5017                        err = -EIO;
5018                } else {
5019                        /*
5020                         * this bio is actually up to date, we didn't
5021                         * go over the max number of errors
5022                         */
5023                        set_bit(BIO_UPTODATE, &bio->bi_flags);
5024                        err = 0;
5025                }
5026                kfree(bbio);
5027
5028                bio_endio(bio, err);
5029        } else if (!is_orig_bio) {
5030                bio_put(bio);
5031        }
5032}
5033
5034struct async_sched {
5035        struct bio *bio;
5036        int rw;
5037        struct btrfs_fs_info *info;
5038        struct btrfs_work work;
5039};
5040
5041/*
5042 * see run_scheduled_bios for a description of why bios are collected for
5043 * async submit.
5044 *
5045 * This will add one bio to the pending list for a device and make sure
5046 * the work struct is scheduled.
5047 */
5048static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5049                                        struct btrfs_device *device,
5050                                        int rw, struct bio *bio)
5051{
5052        int should_queue = 1;
5053        struct btrfs_pending_bios *pending_bios;
5054
5055        if (device->missing || !device->bdev) {
5056                bio_endio(bio, -EIO);
5057                return;
5058        }
5059
5060        /* don't bother with additional async steps for reads, right now */
5061        if (!(rw & REQ_WRITE)) {
5062                bio_get(bio);
5063                btrfsic_submit_bio(rw, bio);
5064                bio_put(bio);
5065                return;
5066        }
5067
5068        /*
5069         * nr_async_bios allows us to reliably return congestion to the
5070         * higher layers.  Otherwise, the async bio makes it appear we have
5071         * made progress against dirty pages when we've really just put it
5072         * on a queue for later
5073         */
5074        atomic_inc(&root->fs_info->nr_async_bios);
5075        WARN_ON(bio->bi_next);
5076        bio->bi_next = NULL;
5077        bio->bi_rw |= rw;
5078
5079        spin_lock(&device->io_lock);
5080        if (bio->bi_rw & REQ_SYNC)
5081                pending_bios = &device->pending_sync_bios;
5082        else
5083                pending_bios = &device->pending_bios;
5084
5085        if (pending_bios->tail)
5086                pending_bios->tail->bi_next = bio;
5087
5088        pending_bios->tail = bio;
5089        if (!pending_bios->head)
5090                pending_bios->head = bio;
5091        if (device->running_pending)
5092                should_queue = 0;
5093
5094        spin_unlock(&device->io_lock);
5095
5096        if (should_queue)
5097                btrfs_queue_worker(&root->fs_info->submit_workers,
5098                                   &device->work);
5099}
5100
5101static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5102                       sector_t sector)
5103{
5104        struct bio_vec *prev;
5105        struct request_queue *q = bdev_get_queue(bdev);
5106        unsigned short max_sectors = queue_max_sectors(q);
5107        struct bvec_merge_data bvm = {
5108                .bi_bdev = bdev,
5109                .bi_sector = sector,
5110                .bi_rw = bio->bi_rw,
5111        };
5112
5113        if (bio->bi_vcnt == 0) {
5114                WARN_ON(1);
5115                return 1;
5116        }
5117
5118        prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5119        if (bio_sectors(bio) > max_sectors)
5120                return 0;
5121
5122        if (!q->merge_bvec_fn)
5123                return 1;
5124
5125        bvm.bi_size = bio->bi_size - prev->bv_len;
5126        if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5127                return 0;
5128        return 1;
5129}
5130
5131static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5132                              struct bio *bio, u64 physical, int dev_nr,
5133                              int rw, int async)
5134{
5135        struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5136
5137        bio->bi_private = bbio;
5138        btrfs_io_bio(bio)->stripe_index = dev_nr;
5139        bio->bi_end_io = btrfs_end_bio;
5140        bio->bi_sector = physical >> 9;
5141#ifdef DEBUG
5142        {
5143                struct rcu_string *name;
5144
5145                rcu_read_lock();
5146                name = rcu_dereference(dev->name);
5147                pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5148                         "(%s id %llu), size=%u\n", rw,
5149                         (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5150                         name->str, dev->devid, bio->bi_size);
5151                rcu_read_unlock();
5152        }
5153#endif
5154        bio->bi_bdev = dev->bdev;
5155        if (async)
5156                btrfs_schedule_bio(root, dev, rw, bio);
5157        else
5158                btrfsic_submit_bio(rw, bio);
5159}
5160
5161static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5162                              struct bio *first_bio, struct btrfs_device *dev,
5163                              int dev_nr, int rw, int async)
5164{
5165        struct bio_vec *bvec = first_bio->bi_io_vec;
5166        struct bio *bio;
5167        int nr_vecs = bio_get_nr_vecs(dev->bdev);
5168        u64 physical = bbio->stripes[dev_nr].physical;
5169
5170again:
5171        bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5172        if (!bio)
5173                return -ENOMEM;
5174
5175        while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5176                if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5177                                 bvec->bv_offset) < bvec->bv_len) {
5178                        u64 len = bio->bi_size;
5179
5180                        atomic_inc(&bbio->stripes_pending);
5181                        submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5182                                          rw, async);
5183                        physical += len;
5184                        goto again;
5185                }
5186                bvec++;
5187        }
5188
5189        submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5190        return 0;
5191}
5192
5193static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5194{
5195        atomic_inc(&bbio->error);
5196        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5197                bio->bi_private = bbio->private;
5198                bio->bi_end_io = bbio->end_io;
5199                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5200                bio->bi_sector = logical >> 9;
5201                kfree(bbio);
5202                bio_endio(bio, -EIO);
5203        }
5204}
5205
5206int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5207                  int mirror_num, int async_submit)
5208{
5209        struct btrfs_device *dev;
5210        struct bio *first_bio = bio;
5211        u64 logical = (u64)bio->bi_sector << 9;
5212        u64 length = 0;
5213        u64 map_length;
5214        u64 *raid_map = NULL;
5215        int ret;
5216        int dev_nr = 0;
5217        int total_devs = 1;
5218        struct btrfs_bio *bbio = NULL;
5219
5220        length = bio->bi_size;
5221        map_length = length;
5222
5223        ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5224                              mirror_num, &raid_map);
5225        if (ret) /* -ENOMEM */
5226                return ret;
5227
5228        total_devs = bbio->num_stripes;
5229        bbio->orig_bio = first_bio;
5230        bbio->private = first_bio->bi_private;
5231        bbio->end_io = first_bio->bi_end_io;
5232        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5233
5234        if (raid_map) {
5235                /* In this case, map_length has been set to the length of
5236                   a single stripe; not the whole write */
5237                if (rw & WRITE) {
5238                        return raid56_parity_write(root, bio, bbio,
5239                                                   raid_map, map_length);
5240                } else {
5241                        return raid56_parity_recover(root, bio, bbio,
5242                                                     raid_map, map_length,
5243                                                     mirror_num);
5244                }
5245        }
5246
5247        if (map_length < length) {
5248                btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5249                        (unsigned long long)logical,
5250                        (unsigned long long)length,
5251                        (unsigned long long)map_length);
5252                BUG();
5253        }
5254
5255        while (dev_nr < total_devs) {
5256                dev = bbio->stripes[dev_nr].dev;
5257                if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5258                        bbio_error(bbio, first_bio, logical);
5259                        dev_nr++;
5260                        continue;
5261                }
5262
5263                /*
5264                 * Check and see if we're ok with this bio based on it's size
5265                 * and offset with the given device.
5266                 */
5267                if (!bio_size_ok(dev->bdev, first_bio,
5268                                 bbio->stripes[dev_nr].physical >> 9)) {
5269                        ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5270                                                 dev_nr, rw, async_submit);
5271                        BUG_ON(ret);
5272                        dev_nr++;
5273                        continue;
5274                }
5275
5276                if (dev_nr < total_devs - 1) {
5277                        bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5278                        BUG_ON(!bio); /* -ENOMEM */
5279                } else {
5280                        bio = first_bio;
5281                }
5282
5283                submit_stripe_bio(root, bbio, bio,
5284                                  bbio->stripes[dev_nr].physical, dev_nr, rw,
5285                                  async_submit);
5286                dev_nr++;
5287        }
5288        return 0;
5289}
5290
5291struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5292                                       u8 *uuid, u8 *fsid)
5293{
5294        struct btrfs_device *device;
5295        struct btrfs_fs_devices *cur_devices;
5296
5297        cur_devices = fs_info->fs_devices;
5298        while (cur_devices) {
5299                if (!fsid ||
5300                    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5301                        device = __find_device(&cur_devices->devices,
5302                                               devid, uuid);
5303                        if (device)
5304                                return device;
5305                }
5306                cur_devices = cur_devices->seed;
5307        }
5308        return NULL;
5309}
5310
5311static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5312                                            u64 devid, u8 *dev_uuid)
5313{
5314        struct btrfs_device *device;
5315        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5316
5317        device = kzalloc(sizeof(*device), GFP_NOFS);
5318        if (!device)
5319                return NULL;
5320        list_add(&device->dev_list,
5321                 &fs_devices->devices);
5322        device->devid = devid;
5323        device->work.func = pending_bios_fn;
5324        device->fs_devices = fs_devices;
5325        device->missing = 1;
5326        fs_devices->num_devices++;
5327        fs_devices->missing_devices++;
5328        spin_lock_init(&device->io_lock);
5329        INIT_LIST_HEAD(&device->dev_alloc_list);
5330        memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
5331        return device;
5332}
5333
5334static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5335                          struct extent_buffer *leaf,
5336                          struct btrfs_chunk *chunk)
5337{
5338        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5339        struct map_lookup *map;
5340        struct extent_map *em;
5341        u64 logical;
5342        u64 length;
5343        u64 devid;
5344        u8 uuid[BTRFS_UUID_SIZE];
5345        int num_stripes;
5346        int ret;
5347        int i;
5348
5349        logical = key->offset;
5350        length = btrfs_chunk_length(leaf, chunk);
5351
5352        read_lock(&map_tree->map_tree.lock);
5353        em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5354        read_unlock(&map_tree->map_tree.lock);
5355
5356        /* already mapped? */
5357        if (em && em->start <= logical && em->start + em->len > logical) {
5358                free_extent_map(em);
5359                return 0;
5360        } else if (em) {
5361                free_extent_map(em);
5362        }
5363
5364        em = alloc_extent_map();
5365        if (!em)
5366                return -ENOMEM;
5367        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5368        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5369        if (!map) {
5370                free_extent_map(em);
5371                return -ENOMEM;
5372        }
5373
5374        em->bdev = (struct block_device *)map;
5375        em->start = logical;
5376        em->len = length;
5377        em->orig_start = 0;
5378        em->block_start = 0;
5379        em->block_len = em->len;
5380
5381        map->num_stripes = num_stripes;
5382        map->io_width = btrfs_chunk_io_width(leaf, chunk);
5383        map->io_align = btrfs_chunk_io_align(leaf, chunk);
5384        map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5385        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5386        map->type = btrfs_chunk_type(leaf, chunk);
5387        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5388        for (i = 0; i < num_stripes; i++) {
5389                map->stripes[i].physical =
5390                        btrfs_stripe_offset_nr(leaf, chunk, i);
5391                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5392                read_extent_buffer(leaf, uuid, (unsigned long)
5393                                   btrfs_stripe_dev_uuid_nr(chunk, i),
5394                                   BTRFS_UUID_SIZE);
5395                map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5396                                                        uuid, NULL);
5397                if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5398                        kfree(map);
5399                        free_extent_map(em);
5400                        return -EIO;
5401                }
5402                if (!map->stripes[i].dev) {
5403                        map->stripes[i].dev =
5404                                add_missing_dev(root, devid, uuid);
5405                        if (!map->stripes[i].dev) {
5406                                kfree(map);
5407                                free_extent_map(em);
5408                                return -EIO;
5409                        }
5410                }
5411                map->stripes[i].dev->in_fs_metadata = 1;
5412        }
5413
5414        write_lock(&map_tree->map_tree.lock);
5415        ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5416        write_unlock(&map_tree->map_tree.lock);
5417        BUG_ON(ret); /* Tree corruption */
5418        free_extent_map(em);
5419
5420        return 0;
5421}
5422
5423static void fill_device_from_item(struct extent_buffer *leaf,
5424                                 struct btrfs_dev_item *dev_item,
5425                                 struct btrfs_device *device)
5426{
5427        unsigned long ptr;
5428
5429        device->devid = btrfs_device_id(leaf, dev_item);
5430        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5431        device->total_bytes = device->disk_total_bytes;
5432        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5433        device->type = btrfs_device_type(leaf, dev_item);
5434        device->io_align = btrfs_device_io_align(leaf, dev_item);
5435        device->io_width = btrfs_device_io_width(leaf, dev_item);
5436        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5437        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5438        device->is_tgtdev_for_dev_replace = 0;
5439
5440        ptr = (unsigned long)btrfs_device_uuid(dev_item);
5441        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5442}
5443
5444static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5445{
5446        struct btrfs_fs_devices *fs_devices;
5447        int ret;
5448
5449        BUG_ON(!mutex_is_locked(&uuid_mutex));
5450
5451        fs_devices = root->fs_info->fs_devices->seed;
5452        while (fs_devices) {
5453                if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5454                        ret = 0;
5455                        goto out;
5456                }
5457                fs_devices = fs_devices->seed;
5458        }
5459
5460        fs_devices = find_fsid(fsid);
5461        if (!fs_devices) {
5462                ret = -ENOENT;
5463                goto out;
5464        }
5465
5466        fs_devices = clone_fs_devices(fs_devices);
5467        if (IS_ERR(fs_devices)) {
5468                ret = PTR_ERR(fs_devices);
5469                goto out;
5470        }
5471
5472        ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5473                                   root->fs_info->bdev_holder);
5474        if (ret) {
5475                free_fs_devices(fs_devices);
5476                goto out;
5477        }
5478
5479        if (!fs_devices->seeding) {
5480                __btrfs_close_devices(fs_devices);
5481                free_fs_devices(fs_devices);
5482                ret = -EINVAL;
5483                goto out;
5484        }
5485
5486        fs_devices->seed = root->fs_info->fs_devices->seed;
5487        root->fs_info->fs_devices->seed = fs_devices;
5488out:
5489        return ret;
5490}
5491
5492static int read_one_dev(struct btrfs_root *root,
5493                        struct extent_buffer *leaf,
5494                        struct btrfs_dev_item *dev_item)
5495{
5496        struct btrfs_device *device;
5497        u64 devid;
5498        int ret;
5499        u8 fs_uuid[BTRFS_UUID_SIZE];
5500        u8 dev_uuid[BTRFS_UUID_SIZE];
5501
5502        devid = btrfs_device_id(leaf, dev_item);
5503        read_extent_buffer(leaf, dev_uuid,
5504                           (unsigned long)btrfs_device_uuid(dev_item),
5505                           BTRFS_UUID_SIZE);
5506        read_extent_buffer(leaf, fs_uuid,
5507                           (unsigned long)btrfs_device_fsid(dev_item),
5508                           BTRFS_UUID_SIZE);
5509
5510        if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5511                ret = open_seed_devices(root, fs_uuid);
5512                if (ret && !btrfs_test_opt(root, DEGRADED))
5513                        return ret;
5514        }
5515
5516        device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5517        if (!device || !device->bdev) {
5518                if (!btrfs_test_opt(root, DEGRADED))
5519                        return -EIO;
5520
5521                if (!device) {
5522                        btrfs_warn(root->fs_info, "devid %llu missing",
5523                                (unsigned long long)devid);
5524                        device = add_missing_dev(root, devid, dev_uuid);
5525                        if (!device)
5526                                return -ENOMEM;
5527                } else if (!device->missing) {
5528                        /*
5529                         * this happens when a device that was properly setup
5530                         * in the device info lists suddenly goes bad.
5531                         * device->bdev is NULL, and so we have to set
5532                         * device->missing to one here
5533                         */
5534                        root->fs_info->fs_devices->missing_devices++;
5535                        device->missing = 1;
5536                }
5537        }
5538
5539        if (device->fs_devices != root->fs_info->fs_devices) {
5540                BUG_ON(device->writeable);
5541                if (device->generation !=
5542                    btrfs_device_generation(leaf, dev_item))
5543                        return -EINVAL;
5544        }
5545
5546        fill_device_from_item(leaf, dev_item, device);
5547        device->in_fs_metadata = 1;
5548        if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5549                device->fs_devices->total_rw_bytes += device->total_bytes;
5550                spin_lock(&root->fs_info->free_chunk_lock);
5551                root->fs_info->free_chunk_space += device->total_bytes -
5552                        device->bytes_used;
5553                spin_unlock(&root->fs_info->free_chunk_lock);
5554        }
5555        ret = 0;
5556        return ret;
5557}
5558
5559int btrfs_read_sys_array(struct btrfs_root *root)
5560{
5561        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
5562        struct extent_buffer *sb;
5563        struct btrfs_disk_key *disk_key;
5564        struct btrfs_chunk *chunk;
5565        u8 *ptr;
5566        unsigned long sb_ptr;
5567        int ret = 0;
5568        u32 num_stripes;
5569        u32 array_size;
5570        u32 len = 0;
5571        u32 cur;
5572        struct btrfs_key key;
5573
5574        sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
5575                                          BTRFS_SUPER_INFO_SIZE);
5576        if (!sb)
5577                return -ENOMEM;
5578        btrfs_set_buffer_uptodate(sb);
5579        btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
5580        /*
5581         * The sb extent buffer is artifical and just used to read the system array.
5582         * btrfs_set_buffer_uptodate() call does not properly mark all it's
5583         * pages up-to-date when the page is larger: extent does not cover the
5584         * whole page and consequently check_page_uptodate does not find all
5585         * the page's extents up-to-date (the hole beyond sb),
5586         * write_extent_buffer then triggers a WARN_ON.
5587         *
5588         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5589         * but sb spans only this function. Add an explicit SetPageUptodate call
5590         * to silence the warning eg. on PowerPC 64.
5591         */
5592        if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
5593                SetPageUptodate(sb->pages[0]);
5594
5595        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
5596        array_size = btrfs_super_sys_array_size(super_copy);
5597
5598        ptr = super_copy->sys_chunk_array;
5599        sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5600        cur = 0;
5601
5602        while (cur < array_size) {
5603                disk_key = (struct btrfs_disk_key *)ptr;
5604                btrfs_disk_key_to_cpu(&key, disk_key);
5605
5606                len = sizeof(*disk_key); ptr += len;
5607                sb_ptr += len;
5608                cur += len;
5609
5610                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
5611                        chunk = (struct btrfs_chunk *)sb_ptr;
5612                        ret = read_one_chunk(root, &key, sb, chunk);
5613                        if (ret)
5614                                break;
5615                        num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5616                        len = btrfs_chunk_item_size(num_stripes);
5617                } else {
5618                        ret = -EIO;
5619                        break;
5620                }
5621                ptr += len;
5622                sb_ptr += len;
5623                cur += len;
5624        }
5625        free_extent_buffer(sb);
5626        return ret;
5627}
5628
5629int btrfs_read_chunk_tree(struct btrfs_root *root)
5630{
5631        struct btrfs_path *path;
5632        struct extent_buffer *leaf;
5633        struct btrfs_key key;
5634        struct btrfs_key found_key;
5635        int ret;
5636        int slot;
5637
5638        root = root->fs_info->chunk_root;
5639
5640        path = btrfs_alloc_path();
5641        if (!path)
5642                return -ENOMEM;
5643
5644        mutex_lock(&uuid_mutex);
5645        lock_chunks(root);
5646
5647        /* first we search for all of the device items, and then we
5648         * read in all of the chunk items.  This way we can create chunk
5649         * mappings that reference all of the devices that are afound
5650         */
5651        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5652        key.offset = 0;
5653        key.type = 0;
5654again:
5655        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5656        if (ret < 0)
5657                goto error;
5658        while (1) {
5659                leaf = path->nodes[0];
5660                slot = path->slots[0];
5661                if (slot >= btrfs_header_nritems(leaf)) {
5662                        ret = btrfs_next_leaf(root, path);
5663                        if (ret == 0)
5664                                continue;
5665                        if (ret < 0)
5666                                goto error;
5667                        break;
5668                }
5669                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5670                if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
5671                        if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
5672                                break;
5673                        if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5674                                struct btrfs_dev_item *dev_item;
5675                                dev_item = btrfs_item_ptr(leaf, slot,
5676                                                  struct btrfs_dev_item);
5677                                ret = read_one_dev(root, leaf, dev_item);
5678                                if (ret)
5679                                        goto error;
5680                        }
5681                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
5682                        struct btrfs_chunk *chunk;
5683                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
5684                        ret = read_one_chunk(root, &found_key, leaf, chunk);
5685                        if (ret)
5686                                goto error;
5687                }
5688                path->slots[0]++;
5689        }
5690        if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
5691                key.objectid = 0;
5692                btrfs_release_path(path);
5693                goto again;
5694        }
5695        ret = 0;
5696error:
5697        unlock_chunks(root);
5698        mutex_unlock(&uuid_mutex);
5699
5700        btrfs_free_path(path);
5701        return ret;
5702}
5703
5704void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
5705{
5706        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5707        struct btrfs_device *device;
5708
5709        mutex_lock(&fs_devices->device_list_mutex);
5710        list_for_each_entry(device, &fs_devices->devices, dev_list)
5711                device->dev_root = fs_info->dev_root;
5712        mutex_unlock(&fs_devices->device_list_mutex);
5713}
5714
5715static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
5716{
5717        int i;
5718
5719        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5720                btrfs_dev_stat_reset(dev, i);
5721}
5722
5723int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
5724{
5725        struct btrfs_key key;
5726        struct btrfs_key found_key;
5727        struct btrfs_root *dev_root = fs_info->dev_root;
5728        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5729        struct extent_buffer *eb;
5730        int slot;
5731        int ret = 0;
5732        struct btrfs_device *device;
5733        struct btrfs_path *path = NULL;
5734        int i;
5735
5736        path = btrfs_alloc_path();
5737        if (!path) {
5738                ret = -ENOMEM;
5739                goto out;
5740        }
5741
5742        mutex_lock(&fs_devices->device_list_mutex);
5743        list_for_each_entry(device, &fs_devices->devices, dev_list) {
5744                int item_size;
5745                struct btrfs_dev_stats_item *ptr;
5746
5747                key.objectid = 0;
5748                key.type = BTRFS_DEV_STATS_KEY;
5749                key.offset = device->devid;
5750                ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
5751                if (ret) {
5752                        __btrfs_reset_dev_stats(device);
5753                        device->dev_stats_valid = 1;
5754                        btrfs_release_path(path);
5755                        continue;
5756                }
5757                slot = path->slots[0];
5758                eb = path->nodes[0];
5759                btrfs_item_key_to_cpu(eb, &found_key, slot);
5760                item_size = btrfs_item_size_nr(eb, slot);
5761
5762                ptr = btrfs_item_ptr(eb, slot,
5763                                     struct btrfs_dev_stats_item);
5764
5765                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5766                        if (item_size >= (1 + i) * sizeof(__le64))
5767                                btrfs_dev_stat_set(device, i,
5768                                        btrfs_dev_stats_value(eb, ptr, i));
5769                        else
5770                                btrfs_dev_stat_reset(device, i);
5771                }
5772
5773                device->dev_stats_valid = 1;
5774                btrfs_dev_stat_print_on_load(device);
5775                btrfs_release_path(path);
5776        }
5777        mutex_unlock(&fs_devices->device_list_mutex);
5778
5779out:
5780        btrfs_free_path(path);
5781        return ret < 0 ? ret : 0;
5782}
5783
5784static int update_dev_stat_item(struct btrfs_trans_handle *trans,
5785                                struct btrfs_root *dev_root,
5786                                struct btrfs_device *device)
5787{
5788        struct btrfs_path *path;
5789        struct btrfs_key key;
5790        struct extent_buffer *eb;
5791        struct btrfs_dev_stats_item *ptr;
5792        int ret;
5793        int i;
5794
5795        key.objectid = 0;
5796        key.type = BTRFS_DEV_STATS_KEY;
5797        key.offset = device->devid;
5798
5799        path = btrfs_alloc_path();
5800        BUG_ON(!path);
5801        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
5802        if (ret < 0) {
5803                printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
5804                              ret, rcu_str_deref(device->name));
5805                goto out;
5806        }
5807
5808        if (ret == 0 &&
5809            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
5810                /* need to delete old one and insert a new one */
5811                ret = btrfs_del_item(trans, dev_root, path);
5812                if (ret != 0) {
5813                        printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
5814                                      rcu_str_deref(device->name), ret);
5815                        goto out;
5816                }
5817                ret = 1;
5818        }
5819
5820        if (ret == 1) {
5821                /* need to insert a new item */
5822                btrfs_release_path(path);
5823                ret = btrfs_insert_empty_item(trans, dev_root, path,
5824                                              &key, sizeof(*ptr));
5825                if (ret < 0) {
5826                        printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
5827                                      rcu_str_deref(device->name), ret);
5828                        goto out;
5829                }
5830        }
5831
5832        eb = path->nodes[0];
5833        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
5834        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5835                btrfs_set_dev_stats_value(eb, ptr, i,
5836                                          btrfs_dev_stat_read(device, i));
5837        btrfs_mark_buffer_dirty(eb);
5838
5839out:
5840        btrfs_free_path(path);
5841        return ret;
5842}
5843
5844/*
5845 * called from commit_transaction. Writes all changed device stats to disk.
5846 */
5847int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
5848                        struct btrfs_fs_info *fs_info)
5849{
5850        struct btrfs_root *dev_root = fs_info->dev_root;
5851        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5852        struct btrfs_device *device;
5853        int ret = 0;
5854
5855        mutex_lock(&fs_devices->device_list_mutex);
5856        list_for_each_entry(device, &fs_devices->devices, dev_list) {
5857                if (!device->dev_stats_valid || !device->dev_stats_dirty)
5858                        continue;
5859
5860                ret = update_dev_stat_item(trans, dev_root, device);
5861                if (!ret)
5862                        device->dev_stats_dirty = 0;
5863        }
5864        mutex_unlock(&fs_devices->device_list_mutex);
5865
5866        return ret;
5867}
5868
5869void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
5870{
5871        btrfs_dev_stat_inc(dev, index);
5872        btrfs_dev_stat_print_on_error(dev);
5873}
5874
5875static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
5876{
5877        if (!dev->dev_stats_valid)
5878                return;
5879        printk_ratelimited_in_rcu(KERN_ERR
5880                           "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
5881                           rcu_str_deref(dev->name),
5882                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5883                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5884                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5885                           btrfs_dev_stat_read(dev,
5886                                               BTRFS_DEV_STAT_CORRUPTION_ERRS),
5887                           btrfs_dev_stat_read(dev,
5888                                               BTRFS_DEV_STAT_GENERATION_ERRS));
5889}
5890
5891static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
5892{
5893        int i;
5894
5895        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5896                if (btrfs_dev_stat_read(dev, i) != 0)
5897                        break;
5898        if (i == BTRFS_DEV_STAT_VALUES_MAX)
5899                return; /* all values == 0, suppress message */
5900
5901        printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
5902               rcu_str_deref(dev->name),
5903               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5904               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5905               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5906               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
5907               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
5908}
5909
5910int btrfs_get_dev_stats(struct btrfs_root *root,
5911                        struct btrfs_ioctl_get_dev_stats *stats)
5912{
5913        struct btrfs_device *dev;
5914        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5915        int i;
5916
5917        mutex_lock(&fs_devices->device_list_mutex);
5918        dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
5919        mutex_unlock(&fs_devices->device_list_mutex);
5920
5921        if (!dev) {
5922                printk(KERN_WARNING
5923                       "btrfs: get dev_stats failed, device not found\n");
5924                return -ENODEV;
5925        } else if (!dev->dev_stats_valid) {
5926                printk(KERN_WARNING
5927                       "btrfs: get dev_stats failed, not yet valid\n");
5928                return -ENODEV;
5929        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
5930                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5931                        if (stats->nr_items > i)
5932                                stats->values[i] =
5933                                        btrfs_dev_stat_read_and_reset(dev, i);
5934                        else
5935                                btrfs_dev_stat_reset(dev, i);
5936                }
5937        } else {
5938                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5939                        if (stats->nr_items > i)
5940                                stats->values[i] = btrfs_dev_stat_read(dev, i);
5941        }
5942        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
5943                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
5944        return 0;
5945}
5946
5947int btrfs_scratch_superblock(struct btrfs_device *device)
5948{
5949        struct buffer_head *bh;
5950        struct btrfs_super_block *disk_super;
5951
5952        bh = btrfs_read_dev_super(device->bdev);
5953        if (!bh)
5954                return -EINVAL;
5955        disk_super = (struct btrfs_super_block *)bh->b_data;
5956
5957        memset(&disk_super->magic, 0, sizeof(disk_super->magic));
5958        set_buffer_dirty(bh);
5959        sync_dirty_buffer(bh);
5960        brelse(bh);
5961
5962        return 0;
5963}
5964