linux/fs/ext2/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext2/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@dcs.ed.ac.uk), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/time.h>
  26#include <linux/highuid.h>
  27#include <linux/pagemap.h>
  28#include <linux/quotaops.h>
  29#include <linux/writeback.h>
  30#include <linux/buffer_head.h>
  31#include <linux/mpage.h>
  32#include <linux/fiemap.h>
  33#include <linux/namei.h>
  34#include <linux/aio.h>
  35#include "ext2.h"
  36#include "acl.h"
  37#include "xip.h"
  38#include "xattr.h"
  39
  40static int __ext2_write_inode(struct inode *inode, int do_sync);
  41
  42/*
  43 * Test whether an inode is a fast symlink.
  44 */
  45static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  46{
  47        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  48                (inode->i_sb->s_blocksize >> 9) : 0;
  49
  50        return (S_ISLNK(inode->i_mode) &&
  51                inode->i_blocks - ea_blocks == 0);
  52}
  53
  54static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  55
  56static void ext2_write_failed(struct address_space *mapping, loff_t to)
  57{
  58        struct inode *inode = mapping->host;
  59
  60        if (to > inode->i_size) {
  61                truncate_pagecache(inode, to, inode->i_size);
  62                ext2_truncate_blocks(inode, inode->i_size);
  63        }
  64}
  65
  66/*
  67 * Called at the last iput() if i_nlink is zero.
  68 */
  69void ext2_evict_inode(struct inode * inode)
  70{
  71        struct ext2_block_alloc_info *rsv;
  72        int want_delete = 0;
  73
  74        if (!inode->i_nlink && !is_bad_inode(inode)) {
  75                want_delete = 1;
  76                dquot_initialize(inode);
  77        } else {
  78                dquot_drop(inode);
  79        }
  80
  81        truncate_inode_pages(&inode->i_data, 0);
  82
  83        if (want_delete) {
  84                sb_start_intwrite(inode->i_sb);
  85                /* set dtime */
  86                EXT2_I(inode)->i_dtime  = get_seconds();
  87                mark_inode_dirty(inode);
  88                __ext2_write_inode(inode, inode_needs_sync(inode));
  89                /* truncate to 0 */
  90                inode->i_size = 0;
  91                if (inode->i_blocks)
  92                        ext2_truncate_blocks(inode, 0);
  93                ext2_xattr_delete_inode(inode);
  94        }
  95
  96        invalidate_inode_buffers(inode);
  97        clear_inode(inode);
  98
  99        ext2_discard_reservation(inode);
 100        rsv = EXT2_I(inode)->i_block_alloc_info;
 101        EXT2_I(inode)->i_block_alloc_info = NULL;
 102        if (unlikely(rsv))
 103                kfree(rsv);
 104
 105        if (want_delete) {
 106                ext2_free_inode(inode);
 107                sb_end_intwrite(inode->i_sb);
 108        }
 109}
 110
 111typedef struct {
 112        __le32  *p;
 113        __le32  key;
 114        struct buffer_head *bh;
 115} Indirect;
 116
 117static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 118{
 119        p->key = *(p->p = v);
 120        p->bh = bh;
 121}
 122
 123static inline int verify_chain(Indirect *from, Indirect *to)
 124{
 125        while (from <= to && from->key == *from->p)
 126                from++;
 127        return (from > to);
 128}
 129
 130/**
 131 *      ext2_block_to_path - parse the block number into array of offsets
 132 *      @inode: inode in question (we are only interested in its superblock)
 133 *      @i_block: block number to be parsed
 134 *      @offsets: array to store the offsets in
 135 *      @boundary: set this non-zero if the referred-to block is likely to be
 136 *             followed (on disk) by an indirect block.
 137 *      To store the locations of file's data ext2 uses a data structure common
 138 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 139 *      data blocks at leaves and indirect blocks in intermediate nodes.
 140 *      This function translates the block number into path in that tree -
 141 *      return value is the path length and @offsets[n] is the offset of
 142 *      pointer to (n+1)th node in the nth one. If @block is out of range
 143 *      (negative or too large) warning is printed and zero returned.
 144 *
 145 *      Note: function doesn't find node addresses, so no IO is needed. All
 146 *      we need to know is the capacity of indirect blocks (taken from the
 147 *      inode->i_sb).
 148 */
 149
 150/*
 151 * Portability note: the last comparison (check that we fit into triple
 152 * indirect block) is spelled differently, because otherwise on an
 153 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 154 * if our filesystem had 8Kb blocks. We might use long long, but that would
 155 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 156 * i_block would have to be negative in the very beginning, so we would not
 157 * get there at all.
 158 */
 159
 160static int ext2_block_to_path(struct inode *inode,
 161                        long i_block, int offsets[4], int *boundary)
 162{
 163        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 164        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 165        const long direct_blocks = EXT2_NDIR_BLOCKS,
 166                indirect_blocks = ptrs,
 167                double_blocks = (1 << (ptrs_bits * 2));
 168        int n = 0;
 169        int final = 0;
 170
 171        if (i_block < 0) {
 172                ext2_msg(inode->i_sb, KERN_WARNING,
 173                        "warning: %s: block < 0", __func__);
 174        } else if (i_block < direct_blocks) {
 175                offsets[n++] = i_block;
 176                final = direct_blocks;
 177        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 178                offsets[n++] = EXT2_IND_BLOCK;
 179                offsets[n++] = i_block;
 180                final = ptrs;
 181        } else if ((i_block -= indirect_blocks) < double_blocks) {
 182                offsets[n++] = EXT2_DIND_BLOCK;
 183                offsets[n++] = i_block >> ptrs_bits;
 184                offsets[n++] = i_block & (ptrs - 1);
 185                final = ptrs;
 186        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 187                offsets[n++] = EXT2_TIND_BLOCK;
 188                offsets[n++] = i_block >> (ptrs_bits * 2);
 189                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 190                offsets[n++] = i_block & (ptrs - 1);
 191                final = ptrs;
 192        } else {
 193                ext2_msg(inode->i_sb, KERN_WARNING,
 194                        "warning: %s: block is too big", __func__);
 195        }
 196        if (boundary)
 197                *boundary = final - 1 - (i_block & (ptrs - 1));
 198
 199        return n;
 200}
 201
 202/**
 203 *      ext2_get_branch - read the chain of indirect blocks leading to data
 204 *      @inode: inode in question
 205 *      @depth: depth of the chain (1 - direct pointer, etc.)
 206 *      @offsets: offsets of pointers in inode/indirect blocks
 207 *      @chain: place to store the result
 208 *      @err: here we store the error value
 209 *
 210 *      Function fills the array of triples <key, p, bh> and returns %NULL
 211 *      if everything went OK or the pointer to the last filled triple
 212 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 213 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 214 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 215 *      number (it points into struct inode for i==0 and into the bh->b_data
 216 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 217 *      block for i>0 and NULL for i==0. In other words, it holds the block
 218 *      numbers of the chain, addresses they were taken from (and where we can
 219 *      verify that chain did not change) and buffer_heads hosting these
 220 *      numbers.
 221 *
 222 *      Function stops when it stumbles upon zero pointer (absent block)
 223 *              (pointer to last triple returned, *@err == 0)
 224 *      or when it gets an IO error reading an indirect block
 225 *              (ditto, *@err == -EIO)
 226 *      or when it notices that chain had been changed while it was reading
 227 *              (ditto, *@err == -EAGAIN)
 228 *      or when it reads all @depth-1 indirect blocks successfully and finds
 229 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 230 */
 231static Indirect *ext2_get_branch(struct inode *inode,
 232                                 int depth,
 233                                 int *offsets,
 234                                 Indirect chain[4],
 235                                 int *err)
 236{
 237        struct super_block *sb = inode->i_sb;
 238        Indirect *p = chain;
 239        struct buffer_head *bh;
 240
 241        *err = 0;
 242        /* i_data is not going away, no lock needed */
 243        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 244        if (!p->key)
 245                goto no_block;
 246        while (--depth) {
 247                bh = sb_bread(sb, le32_to_cpu(p->key));
 248                if (!bh)
 249                        goto failure;
 250                read_lock(&EXT2_I(inode)->i_meta_lock);
 251                if (!verify_chain(chain, p))
 252                        goto changed;
 253                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 254                read_unlock(&EXT2_I(inode)->i_meta_lock);
 255                if (!p->key)
 256                        goto no_block;
 257        }
 258        return NULL;
 259
 260changed:
 261        read_unlock(&EXT2_I(inode)->i_meta_lock);
 262        brelse(bh);
 263        *err = -EAGAIN;
 264        goto no_block;
 265failure:
 266        *err = -EIO;
 267no_block:
 268        return p;
 269}
 270
 271/**
 272 *      ext2_find_near - find a place for allocation with sufficient locality
 273 *      @inode: owner
 274 *      @ind: descriptor of indirect block.
 275 *
 276 *      This function returns the preferred place for block allocation.
 277 *      It is used when heuristic for sequential allocation fails.
 278 *      Rules are:
 279 *        + if there is a block to the left of our position - allocate near it.
 280 *        + if pointer will live in indirect block - allocate near that block.
 281 *        + if pointer will live in inode - allocate in the same cylinder group.
 282 *
 283 * In the latter case we colour the starting block by the callers PID to
 284 * prevent it from clashing with concurrent allocations for a different inode
 285 * in the same block group.   The PID is used here so that functionally related
 286 * files will be close-by on-disk.
 287 *
 288 *      Caller must make sure that @ind is valid and will stay that way.
 289 */
 290
 291static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 292{
 293        struct ext2_inode_info *ei = EXT2_I(inode);
 294        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 295        __le32 *p;
 296        ext2_fsblk_t bg_start;
 297        ext2_fsblk_t colour;
 298
 299        /* Try to find previous block */
 300        for (p = ind->p - 1; p >= start; p--)
 301                if (*p)
 302                        return le32_to_cpu(*p);
 303
 304        /* No such thing, so let's try location of indirect block */
 305        if (ind->bh)
 306                return ind->bh->b_blocknr;
 307
 308        /*
 309         * It is going to be referred from inode itself? OK, just put it into
 310         * the same cylinder group then.
 311         */
 312        bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 313        colour = (current->pid % 16) *
 314                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 315        return bg_start + colour;
 316}
 317
 318/**
 319 *      ext2_find_goal - find a preferred place for allocation.
 320 *      @inode: owner
 321 *      @block:  block we want
 322 *      @partial: pointer to the last triple within a chain
 323 *
 324 *      Returns preferred place for a block (the goal).
 325 */
 326
 327static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 328                                          Indirect *partial)
 329{
 330        struct ext2_block_alloc_info *block_i;
 331
 332        block_i = EXT2_I(inode)->i_block_alloc_info;
 333
 334        /*
 335         * try the heuristic for sequential allocation,
 336         * failing that at least try to get decent locality.
 337         */
 338        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 339                && (block_i->last_alloc_physical_block != 0)) {
 340                return block_i->last_alloc_physical_block + 1;
 341        }
 342
 343        return ext2_find_near(inode, partial);
 344}
 345
 346/**
 347 *      ext2_blks_to_allocate: Look up the block map and count the number
 348 *      of direct blocks need to be allocated for the given branch.
 349 *
 350 *      @branch: chain of indirect blocks
 351 *      @k: number of blocks need for indirect blocks
 352 *      @blks: number of data blocks to be mapped.
 353 *      @blocks_to_boundary:  the offset in the indirect block
 354 *
 355 *      return the total number of blocks to be allocate, including the
 356 *      direct and indirect blocks.
 357 */
 358static int
 359ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 360                int blocks_to_boundary)
 361{
 362        unsigned long count = 0;
 363
 364        /*
 365         * Simple case, [t,d]Indirect block(s) has not allocated yet
 366         * then it's clear blocks on that path have not allocated
 367         */
 368        if (k > 0) {
 369                /* right now don't hanel cross boundary allocation */
 370                if (blks < blocks_to_boundary + 1)
 371                        count += blks;
 372                else
 373                        count += blocks_to_boundary + 1;
 374                return count;
 375        }
 376
 377        count++;
 378        while (count < blks && count <= blocks_to_boundary
 379                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 380                count++;
 381        }
 382        return count;
 383}
 384
 385/**
 386 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 387 *      @indirect_blks: the number of blocks need to allocate for indirect
 388 *                      blocks
 389 *
 390 *      @new_blocks: on return it will store the new block numbers for
 391 *      the indirect blocks(if needed) and the first direct block,
 392 *      @blks:  on return it will store the total number of allocated
 393 *              direct blocks
 394 */
 395static int ext2_alloc_blocks(struct inode *inode,
 396                        ext2_fsblk_t goal, int indirect_blks, int blks,
 397                        ext2_fsblk_t new_blocks[4], int *err)
 398{
 399        int target, i;
 400        unsigned long count = 0;
 401        int index = 0;
 402        ext2_fsblk_t current_block = 0;
 403        int ret = 0;
 404
 405        /*
 406         * Here we try to allocate the requested multiple blocks at once,
 407         * on a best-effort basis.
 408         * To build a branch, we should allocate blocks for
 409         * the indirect blocks(if not allocated yet), and at least
 410         * the first direct block of this branch.  That's the
 411         * minimum number of blocks need to allocate(required)
 412         */
 413        target = blks + indirect_blks;
 414
 415        while (1) {
 416                count = target;
 417                /* allocating blocks for indirect blocks and direct blocks */
 418                current_block = ext2_new_blocks(inode,goal,&count,err);
 419                if (*err)
 420                        goto failed_out;
 421
 422                target -= count;
 423                /* allocate blocks for indirect blocks */
 424                while (index < indirect_blks && count) {
 425                        new_blocks[index++] = current_block++;
 426                        count--;
 427                }
 428
 429                if (count > 0)
 430                        break;
 431        }
 432
 433        /* save the new block number for the first direct block */
 434        new_blocks[index] = current_block;
 435
 436        /* total number of blocks allocated for direct blocks */
 437        ret = count;
 438        *err = 0;
 439        return ret;
 440failed_out:
 441        for (i = 0; i <index; i++)
 442                ext2_free_blocks(inode, new_blocks[i], 1);
 443        if (index)
 444                mark_inode_dirty(inode);
 445        return ret;
 446}
 447
 448/**
 449 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 450 *      @inode: owner
 451 *      @num: depth of the chain (number of blocks to allocate)
 452 *      @offsets: offsets (in the blocks) to store the pointers to next.
 453 *      @branch: place to store the chain in.
 454 *
 455 *      This function allocates @num blocks, zeroes out all but the last one,
 456 *      links them into chain and (if we are synchronous) writes them to disk.
 457 *      In other words, it prepares a branch that can be spliced onto the
 458 *      inode. It stores the information about that chain in the branch[], in
 459 *      the same format as ext2_get_branch() would do. We are calling it after
 460 *      we had read the existing part of chain and partial points to the last
 461 *      triple of that (one with zero ->key). Upon the exit we have the same
 462 *      picture as after the successful ext2_get_block(), except that in one
 463 *      place chain is disconnected - *branch->p is still zero (we did not
 464 *      set the last link), but branch->key contains the number that should
 465 *      be placed into *branch->p to fill that gap.
 466 *
 467 *      If allocation fails we free all blocks we've allocated (and forget
 468 *      their buffer_heads) and return the error value the from failed
 469 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 470 *      as described above and return 0.
 471 */
 472
 473static int ext2_alloc_branch(struct inode *inode,
 474                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 475                        int *offsets, Indirect *branch)
 476{
 477        int blocksize = inode->i_sb->s_blocksize;
 478        int i, n = 0;
 479        int err = 0;
 480        struct buffer_head *bh;
 481        int num;
 482        ext2_fsblk_t new_blocks[4];
 483        ext2_fsblk_t current_block;
 484
 485        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 486                                *blks, new_blocks, &err);
 487        if (err)
 488                return err;
 489
 490        branch[0].key = cpu_to_le32(new_blocks[0]);
 491        /*
 492         * metadata blocks and data blocks are allocated.
 493         */
 494        for (n = 1; n <= indirect_blks;  n++) {
 495                /*
 496                 * Get buffer_head for parent block, zero it out
 497                 * and set the pointer to new one, then send
 498                 * parent to disk.
 499                 */
 500                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 501                if (unlikely(!bh)) {
 502                        err = -ENOMEM;
 503                        goto failed;
 504                }
 505                branch[n].bh = bh;
 506                lock_buffer(bh);
 507                memset(bh->b_data, 0, blocksize);
 508                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 509                branch[n].key = cpu_to_le32(new_blocks[n]);
 510                *branch[n].p = branch[n].key;
 511                if ( n == indirect_blks) {
 512                        current_block = new_blocks[n];
 513                        /*
 514                         * End of chain, update the last new metablock of
 515                         * the chain to point to the new allocated
 516                         * data blocks numbers
 517                         */
 518                        for (i=1; i < num; i++)
 519                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 520                }
 521                set_buffer_uptodate(bh);
 522                unlock_buffer(bh);
 523                mark_buffer_dirty_inode(bh, inode);
 524                /* We used to sync bh here if IS_SYNC(inode).
 525                 * But we now rely upon generic_write_sync()
 526                 * and b_inode_buffers.  But not for directories.
 527                 */
 528                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 529                        sync_dirty_buffer(bh);
 530        }
 531        *blks = num;
 532        return err;
 533
 534failed:
 535        for (i = 1; i < n; i++)
 536                bforget(branch[i].bh);
 537        for (i = 0; i < indirect_blks; i++)
 538                ext2_free_blocks(inode, new_blocks[i], 1);
 539        ext2_free_blocks(inode, new_blocks[i], num);
 540        return err;
 541}
 542
 543/**
 544 * ext2_splice_branch - splice the allocated branch onto inode.
 545 * @inode: owner
 546 * @block: (logical) number of block we are adding
 547 * @where: location of missing link
 548 * @num:   number of indirect blocks we are adding
 549 * @blks:  number of direct blocks we are adding
 550 *
 551 * This function fills the missing link and does all housekeeping needed in
 552 * inode (->i_blocks, etc.). In case of success we end up with the full
 553 * chain to new block and return 0.
 554 */
 555static void ext2_splice_branch(struct inode *inode,
 556                        long block, Indirect *where, int num, int blks)
 557{
 558        int i;
 559        struct ext2_block_alloc_info *block_i;
 560        ext2_fsblk_t current_block;
 561
 562        block_i = EXT2_I(inode)->i_block_alloc_info;
 563
 564        /* XXX LOCKING probably should have i_meta_lock ?*/
 565        /* That's it */
 566
 567        *where->p = where->key;
 568
 569        /*
 570         * Update the host buffer_head or inode to point to more just allocated
 571         * direct blocks blocks
 572         */
 573        if (num == 0 && blks > 1) {
 574                current_block = le32_to_cpu(where->key) + 1;
 575                for (i = 1; i < blks; i++)
 576                        *(where->p + i ) = cpu_to_le32(current_block++);
 577        }
 578
 579        /*
 580         * update the most recently allocated logical & physical block
 581         * in i_block_alloc_info, to assist find the proper goal block for next
 582         * allocation
 583         */
 584        if (block_i) {
 585                block_i->last_alloc_logical_block = block + blks - 1;
 586                block_i->last_alloc_physical_block =
 587                                le32_to_cpu(where[num].key) + blks - 1;
 588        }
 589
 590        /* We are done with atomic stuff, now do the rest of housekeeping */
 591
 592        /* had we spliced it onto indirect block? */
 593        if (where->bh)
 594                mark_buffer_dirty_inode(where->bh, inode);
 595
 596        inode->i_ctime = CURRENT_TIME_SEC;
 597        mark_inode_dirty(inode);
 598}
 599
 600/*
 601 * Allocation strategy is simple: if we have to allocate something, we will
 602 * have to go the whole way to leaf. So let's do it before attaching anything
 603 * to tree, set linkage between the newborn blocks, write them if sync is
 604 * required, recheck the path, free and repeat if check fails, otherwise
 605 * set the last missing link (that will protect us from any truncate-generated
 606 * removals - all blocks on the path are immune now) and possibly force the
 607 * write on the parent block.
 608 * That has a nice additional property: no special recovery from the failed
 609 * allocations is needed - we simply release blocks and do not touch anything
 610 * reachable from inode.
 611 *
 612 * `handle' can be NULL if create == 0.
 613 *
 614 * return > 0, # of blocks mapped or allocated.
 615 * return = 0, if plain lookup failed.
 616 * return < 0, error case.
 617 */
 618static int ext2_get_blocks(struct inode *inode,
 619                           sector_t iblock, unsigned long maxblocks,
 620                           struct buffer_head *bh_result,
 621                           int create)
 622{
 623        int err = -EIO;
 624        int offsets[4];
 625        Indirect chain[4];
 626        Indirect *partial;
 627        ext2_fsblk_t goal;
 628        int indirect_blks;
 629        int blocks_to_boundary = 0;
 630        int depth;
 631        struct ext2_inode_info *ei = EXT2_I(inode);
 632        int count = 0;
 633        ext2_fsblk_t first_block = 0;
 634
 635        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 636
 637        if (depth == 0)
 638                return (err);
 639
 640        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 641        /* Simplest case - block found, no allocation needed */
 642        if (!partial) {
 643                first_block = le32_to_cpu(chain[depth - 1].key);
 644                clear_buffer_new(bh_result); /* What's this do? */
 645                count++;
 646                /*map more blocks*/
 647                while (count < maxblocks && count <= blocks_to_boundary) {
 648                        ext2_fsblk_t blk;
 649
 650                        if (!verify_chain(chain, chain + depth - 1)) {
 651                                /*
 652                                 * Indirect block might be removed by
 653                                 * truncate while we were reading it.
 654                                 * Handling of that case: forget what we've
 655                                 * got now, go to reread.
 656                                 */
 657                                err = -EAGAIN;
 658                                count = 0;
 659                                break;
 660                        }
 661                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 662                        if (blk == first_block + count)
 663                                count++;
 664                        else
 665                                break;
 666                }
 667                if (err != -EAGAIN)
 668                        goto got_it;
 669        }
 670
 671        /* Next simple case - plain lookup or failed read of indirect block */
 672        if (!create || err == -EIO)
 673                goto cleanup;
 674
 675        mutex_lock(&ei->truncate_mutex);
 676        /*
 677         * If the indirect block is missing while we are reading
 678         * the chain(ext2_get_branch() returns -EAGAIN err), or
 679         * if the chain has been changed after we grab the semaphore,
 680         * (either because another process truncated this branch, or
 681         * another get_block allocated this branch) re-grab the chain to see if
 682         * the request block has been allocated or not.
 683         *
 684         * Since we already block the truncate/other get_block
 685         * at this point, we will have the current copy of the chain when we
 686         * splice the branch into the tree.
 687         */
 688        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 689                while (partial > chain) {
 690                        brelse(partial->bh);
 691                        partial--;
 692                }
 693                partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 694                if (!partial) {
 695                        count++;
 696                        mutex_unlock(&ei->truncate_mutex);
 697                        if (err)
 698                                goto cleanup;
 699                        clear_buffer_new(bh_result);
 700                        goto got_it;
 701                }
 702        }
 703
 704        /*
 705         * Okay, we need to do block allocation.  Lazily initialize the block
 706         * allocation info here if necessary
 707        */
 708        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 709                ext2_init_block_alloc_info(inode);
 710
 711        goal = ext2_find_goal(inode, iblock, partial);
 712
 713        /* the number of blocks need to allocate for [d,t]indirect blocks */
 714        indirect_blks = (chain + depth) - partial - 1;
 715        /*
 716         * Next look up the indirect map to count the totoal number of
 717         * direct blocks to allocate for this branch.
 718         */
 719        count = ext2_blks_to_allocate(partial, indirect_blks,
 720                                        maxblocks, blocks_to_boundary);
 721        /*
 722         * XXX ???? Block out ext2_truncate while we alter the tree
 723         */
 724        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 725                                offsets + (partial - chain), partial);
 726
 727        if (err) {
 728                mutex_unlock(&ei->truncate_mutex);
 729                goto cleanup;
 730        }
 731
 732        if (ext2_use_xip(inode->i_sb)) {
 733                /*
 734                 * we need to clear the block
 735                 */
 736                err = ext2_clear_xip_target (inode,
 737                        le32_to_cpu(chain[depth-1].key));
 738                if (err) {
 739                        mutex_unlock(&ei->truncate_mutex);
 740                        goto cleanup;
 741                }
 742        }
 743
 744        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 745        mutex_unlock(&ei->truncate_mutex);
 746        set_buffer_new(bh_result);
 747got_it:
 748        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 749        if (count > blocks_to_boundary)
 750                set_buffer_boundary(bh_result);
 751        err = count;
 752        /* Clean up and exit */
 753        partial = chain + depth - 1;    /* the whole chain */
 754cleanup:
 755        while (partial > chain) {
 756                brelse(partial->bh);
 757                partial--;
 758        }
 759        return err;
 760}
 761
 762int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
 763{
 764        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 765        int ret = ext2_get_blocks(inode, iblock, max_blocks,
 766                              bh_result, create);
 767        if (ret > 0) {
 768                bh_result->b_size = (ret << inode->i_blkbits);
 769                ret = 0;
 770        }
 771        return ret;
 772
 773}
 774
 775int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 776                u64 start, u64 len)
 777{
 778        return generic_block_fiemap(inode, fieinfo, start, len,
 779                                    ext2_get_block);
 780}
 781
 782static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 783{
 784        return block_write_full_page(page, ext2_get_block, wbc);
 785}
 786
 787static int ext2_readpage(struct file *file, struct page *page)
 788{
 789        return mpage_readpage(page, ext2_get_block);
 790}
 791
 792static int
 793ext2_readpages(struct file *file, struct address_space *mapping,
 794                struct list_head *pages, unsigned nr_pages)
 795{
 796        return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 797}
 798
 799static int
 800ext2_write_begin(struct file *file, struct address_space *mapping,
 801                loff_t pos, unsigned len, unsigned flags,
 802                struct page **pagep, void **fsdata)
 803{
 804        int ret;
 805
 806        ret = block_write_begin(mapping, pos, len, flags, pagep,
 807                                ext2_get_block);
 808        if (ret < 0)
 809                ext2_write_failed(mapping, pos + len);
 810        return ret;
 811}
 812
 813static int ext2_write_end(struct file *file, struct address_space *mapping,
 814                        loff_t pos, unsigned len, unsigned copied,
 815                        struct page *page, void *fsdata)
 816{
 817        int ret;
 818
 819        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 820        if (ret < len)
 821                ext2_write_failed(mapping, pos + len);
 822        return ret;
 823}
 824
 825static int
 826ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 827                loff_t pos, unsigned len, unsigned flags,
 828                struct page **pagep, void **fsdata)
 829{
 830        int ret;
 831
 832        ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 833                               ext2_get_block);
 834        if (ret < 0)
 835                ext2_write_failed(mapping, pos + len);
 836        return ret;
 837}
 838
 839static int ext2_nobh_writepage(struct page *page,
 840                        struct writeback_control *wbc)
 841{
 842        return nobh_writepage(page, ext2_get_block, wbc);
 843}
 844
 845static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 846{
 847        return generic_block_bmap(mapping,block,ext2_get_block);
 848}
 849
 850static ssize_t
 851ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
 852                        loff_t offset, unsigned long nr_segs)
 853{
 854        struct file *file = iocb->ki_filp;
 855        struct address_space *mapping = file->f_mapping;
 856        struct inode *inode = mapping->host;
 857        ssize_t ret;
 858
 859        ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
 860                                 ext2_get_block);
 861        if (ret < 0 && (rw & WRITE))
 862                ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
 863        return ret;
 864}
 865
 866static int
 867ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 868{
 869        return mpage_writepages(mapping, wbc, ext2_get_block);
 870}
 871
 872const struct address_space_operations ext2_aops = {
 873        .readpage               = ext2_readpage,
 874        .readpages              = ext2_readpages,
 875        .writepage              = ext2_writepage,
 876        .write_begin            = ext2_write_begin,
 877        .write_end              = ext2_write_end,
 878        .bmap                   = ext2_bmap,
 879        .direct_IO              = ext2_direct_IO,
 880        .writepages             = ext2_writepages,
 881        .migratepage            = buffer_migrate_page,
 882        .is_partially_uptodate  = block_is_partially_uptodate,
 883        .error_remove_page      = generic_error_remove_page,
 884};
 885
 886const struct address_space_operations ext2_aops_xip = {
 887        .bmap                   = ext2_bmap,
 888        .get_xip_mem            = ext2_get_xip_mem,
 889};
 890
 891const struct address_space_operations ext2_nobh_aops = {
 892        .readpage               = ext2_readpage,
 893        .readpages              = ext2_readpages,
 894        .writepage              = ext2_nobh_writepage,
 895        .write_begin            = ext2_nobh_write_begin,
 896        .write_end              = nobh_write_end,
 897        .bmap                   = ext2_bmap,
 898        .direct_IO              = ext2_direct_IO,
 899        .writepages             = ext2_writepages,
 900        .migratepage            = buffer_migrate_page,
 901        .error_remove_page      = generic_error_remove_page,
 902};
 903
 904/*
 905 * Probably it should be a library function... search for first non-zero word
 906 * or memcmp with zero_page, whatever is better for particular architecture.
 907 * Linus?
 908 */
 909static inline int all_zeroes(__le32 *p, __le32 *q)
 910{
 911        while (p < q)
 912                if (*p++)
 913                        return 0;
 914        return 1;
 915}
 916
 917/**
 918 *      ext2_find_shared - find the indirect blocks for partial truncation.
 919 *      @inode:   inode in question
 920 *      @depth:   depth of the affected branch
 921 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
 922 *      @chain:   place to store the pointers to partial indirect blocks
 923 *      @top:     place to the (detached) top of branch
 924 *
 925 *      This is a helper function used by ext2_truncate().
 926 *
 927 *      When we do truncate() we may have to clean the ends of several indirect
 928 *      blocks but leave the blocks themselves alive. Block is partially
 929 *      truncated if some data below the new i_size is referred from it (and
 930 *      it is on the path to the first completely truncated data block, indeed).
 931 *      We have to free the top of that path along with everything to the right
 932 *      of the path. Since no allocation past the truncation point is possible
 933 *      until ext2_truncate() finishes, we may safely do the latter, but top
 934 *      of branch may require special attention - pageout below the truncation
 935 *      point might try to populate it.
 936 *
 937 *      We atomically detach the top of branch from the tree, store the block
 938 *      number of its root in *@top, pointers to buffer_heads of partially
 939 *      truncated blocks - in @chain[].bh and pointers to their last elements
 940 *      that should not be removed - in @chain[].p. Return value is the pointer
 941 *      to last filled element of @chain.
 942 *
 943 *      The work left to caller to do the actual freeing of subtrees:
 944 *              a) free the subtree starting from *@top
 945 *              b) free the subtrees whose roots are stored in
 946 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 947 *              c) free the subtrees growing from the inode past the @chain[0].p
 948 *                      (no partially truncated stuff there).
 949 */
 950
 951static Indirect *ext2_find_shared(struct inode *inode,
 952                                int depth,
 953                                int offsets[4],
 954                                Indirect chain[4],
 955                                __le32 *top)
 956{
 957        Indirect *partial, *p;
 958        int k, err;
 959
 960        *top = 0;
 961        for (k = depth; k > 1 && !offsets[k-1]; k--)
 962                ;
 963        partial = ext2_get_branch(inode, k, offsets, chain, &err);
 964        if (!partial)
 965                partial = chain + k-1;
 966        /*
 967         * If the branch acquired continuation since we've looked at it -
 968         * fine, it should all survive and (new) top doesn't belong to us.
 969         */
 970        write_lock(&EXT2_I(inode)->i_meta_lock);
 971        if (!partial->key && *partial->p) {
 972                write_unlock(&EXT2_I(inode)->i_meta_lock);
 973                goto no_top;
 974        }
 975        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
 976                ;
 977        /*
 978         * OK, we've found the last block that must survive. The rest of our
 979         * branch should be detached before unlocking. However, if that rest
 980         * of branch is all ours and does not grow immediately from the inode
 981         * it's easier to cheat and just decrement partial->p.
 982         */
 983        if (p == chain + k - 1 && p > chain) {
 984                p->p--;
 985        } else {
 986                *top = *p->p;
 987                *p->p = 0;
 988        }
 989        write_unlock(&EXT2_I(inode)->i_meta_lock);
 990
 991        while(partial > p)
 992        {
 993                brelse(partial->bh);
 994                partial--;
 995        }
 996no_top:
 997        return partial;
 998}
 999
1000/**
1001 *      ext2_free_data - free a list of data blocks
1002 *      @inode: inode we are dealing with
1003 *      @p:     array of block numbers
1004 *      @q:     points immediately past the end of array
1005 *
1006 *      We are freeing all blocks referred from that array (numbers are
1007 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1008 *      appropriately.
1009 */
1010static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1011{
1012        unsigned long block_to_free = 0, count = 0;
1013        unsigned long nr;
1014
1015        for ( ; p < q ; p++) {
1016                nr = le32_to_cpu(*p);
1017                if (nr) {
1018                        *p = 0;
1019                        /* accumulate blocks to free if they're contiguous */
1020                        if (count == 0)
1021                                goto free_this;
1022                        else if (block_to_free == nr - count)
1023                                count++;
1024                        else {
1025                                ext2_free_blocks (inode, block_to_free, count);
1026                                mark_inode_dirty(inode);
1027                        free_this:
1028                                block_to_free = nr;
1029                                count = 1;
1030                        }
1031                }
1032        }
1033        if (count > 0) {
1034                ext2_free_blocks (inode, block_to_free, count);
1035                mark_inode_dirty(inode);
1036        }
1037}
1038
1039/**
1040 *      ext2_free_branches - free an array of branches
1041 *      @inode: inode we are dealing with
1042 *      @p:     array of block numbers
1043 *      @q:     pointer immediately past the end of array
1044 *      @depth: depth of the branches to free
1045 *
1046 *      We are freeing all blocks referred from these branches (numbers are
1047 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1048 *      appropriately.
1049 */
1050static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1051{
1052        struct buffer_head * bh;
1053        unsigned long nr;
1054
1055        if (depth--) {
1056                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1057                for ( ; p < q ; p++) {
1058                        nr = le32_to_cpu(*p);
1059                        if (!nr)
1060                                continue;
1061                        *p = 0;
1062                        bh = sb_bread(inode->i_sb, nr);
1063                        /*
1064                         * A read failure? Report error and clear slot
1065                         * (should be rare).
1066                         */ 
1067                        if (!bh) {
1068                                ext2_error(inode->i_sb, "ext2_free_branches",
1069                                        "Read failure, inode=%ld, block=%ld",
1070                                        inode->i_ino, nr);
1071                                continue;
1072                        }
1073                        ext2_free_branches(inode,
1074                                           (__le32*)bh->b_data,
1075                                           (__le32*)bh->b_data + addr_per_block,
1076                                           depth);
1077                        bforget(bh);
1078                        ext2_free_blocks(inode, nr, 1);
1079                        mark_inode_dirty(inode);
1080                }
1081        } else
1082                ext2_free_data(inode, p, q);
1083}
1084
1085static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1086{
1087        __le32 *i_data = EXT2_I(inode)->i_data;
1088        struct ext2_inode_info *ei = EXT2_I(inode);
1089        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1090        int offsets[4];
1091        Indirect chain[4];
1092        Indirect *partial;
1093        __le32 nr = 0;
1094        int n;
1095        long iblock;
1096        unsigned blocksize;
1097        blocksize = inode->i_sb->s_blocksize;
1098        iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1099
1100        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1101        if (n == 0)
1102                return;
1103
1104        /*
1105         * From here we block out all ext2_get_block() callers who want to
1106         * modify the block allocation tree.
1107         */
1108        mutex_lock(&ei->truncate_mutex);
1109
1110        if (n == 1) {
1111                ext2_free_data(inode, i_data+offsets[0],
1112                                        i_data + EXT2_NDIR_BLOCKS);
1113                goto do_indirects;
1114        }
1115
1116        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1117        /* Kill the top of shared branch (already detached) */
1118        if (nr) {
1119                if (partial == chain)
1120                        mark_inode_dirty(inode);
1121                else
1122                        mark_buffer_dirty_inode(partial->bh, inode);
1123                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1124        }
1125        /* Clear the ends of indirect blocks on the shared branch */
1126        while (partial > chain) {
1127                ext2_free_branches(inode,
1128                                   partial->p + 1,
1129                                   (__le32*)partial->bh->b_data+addr_per_block,
1130                                   (chain+n-1) - partial);
1131                mark_buffer_dirty_inode(partial->bh, inode);
1132                brelse (partial->bh);
1133                partial--;
1134        }
1135do_indirects:
1136        /* Kill the remaining (whole) subtrees */
1137        switch (offsets[0]) {
1138                default:
1139                        nr = i_data[EXT2_IND_BLOCK];
1140                        if (nr) {
1141                                i_data[EXT2_IND_BLOCK] = 0;
1142                                mark_inode_dirty(inode);
1143                                ext2_free_branches(inode, &nr, &nr+1, 1);
1144                        }
1145                case EXT2_IND_BLOCK:
1146                        nr = i_data[EXT2_DIND_BLOCK];
1147                        if (nr) {
1148                                i_data[EXT2_DIND_BLOCK] = 0;
1149                                mark_inode_dirty(inode);
1150                                ext2_free_branches(inode, &nr, &nr+1, 2);
1151                        }
1152                case EXT2_DIND_BLOCK:
1153                        nr = i_data[EXT2_TIND_BLOCK];
1154                        if (nr) {
1155                                i_data[EXT2_TIND_BLOCK] = 0;
1156                                mark_inode_dirty(inode);
1157                                ext2_free_branches(inode, &nr, &nr+1, 3);
1158                        }
1159                case EXT2_TIND_BLOCK:
1160                        ;
1161        }
1162
1163        ext2_discard_reservation(inode);
1164
1165        mutex_unlock(&ei->truncate_mutex);
1166}
1167
1168static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1169{
1170        /*
1171         * XXX: it seems like a bug here that we don't allow
1172         * IS_APPEND inode to have blocks-past-i_size trimmed off.
1173         * review and fix this.
1174         *
1175         * Also would be nice to be able to handle IO errors and such,
1176         * but that's probably too much to ask.
1177         */
1178        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1179            S_ISLNK(inode->i_mode)))
1180                return;
1181        if (ext2_inode_is_fast_symlink(inode))
1182                return;
1183        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1184                return;
1185        __ext2_truncate_blocks(inode, offset);
1186}
1187
1188static int ext2_setsize(struct inode *inode, loff_t newsize)
1189{
1190        int error;
1191
1192        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1193            S_ISLNK(inode->i_mode)))
1194                return -EINVAL;
1195        if (ext2_inode_is_fast_symlink(inode))
1196                return -EINVAL;
1197        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1198                return -EPERM;
1199
1200        inode_dio_wait(inode);
1201
1202        if (mapping_is_xip(inode->i_mapping))
1203                error = xip_truncate_page(inode->i_mapping, newsize);
1204        else if (test_opt(inode->i_sb, NOBH))
1205                error = nobh_truncate_page(inode->i_mapping,
1206                                newsize, ext2_get_block);
1207        else
1208                error = block_truncate_page(inode->i_mapping,
1209                                newsize, ext2_get_block);
1210        if (error)
1211                return error;
1212
1213        truncate_setsize(inode, newsize);
1214        __ext2_truncate_blocks(inode, newsize);
1215
1216        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1217        if (inode_needs_sync(inode)) {
1218                sync_mapping_buffers(inode->i_mapping);
1219                sync_inode_metadata(inode, 1);
1220        } else {
1221                mark_inode_dirty(inode);
1222        }
1223
1224        return 0;
1225}
1226
1227static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1228                                        struct buffer_head **p)
1229{
1230        struct buffer_head * bh;
1231        unsigned long block_group;
1232        unsigned long block;
1233        unsigned long offset;
1234        struct ext2_group_desc * gdp;
1235
1236        *p = NULL;
1237        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1238            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1239                goto Einval;
1240
1241        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1242        gdp = ext2_get_group_desc(sb, block_group, NULL);
1243        if (!gdp)
1244                goto Egdp;
1245        /*
1246         * Figure out the offset within the block group inode table
1247         */
1248        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1249        block = le32_to_cpu(gdp->bg_inode_table) +
1250                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1251        if (!(bh = sb_bread(sb, block)))
1252                goto Eio;
1253
1254        *p = bh;
1255        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1256        return (struct ext2_inode *) (bh->b_data + offset);
1257
1258Einval:
1259        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1260                   (unsigned long) ino);
1261        return ERR_PTR(-EINVAL);
1262Eio:
1263        ext2_error(sb, "ext2_get_inode",
1264                   "unable to read inode block - inode=%lu, block=%lu",
1265                   (unsigned long) ino, block);
1266Egdp:
1267        return ERR_PTR(-EIO);
1268}
1269
1270void ext2_set_inode_flags(struct inode *inode)
1271{
1272        unsigned int flags = EXT2_I(inode)->i_flags;
1273
1274        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1275        if (flags & EXT2_SYNC_FL)
1276                inode->i_flags |= S_SYNC;
1277        if (flags & EXT2_APPEND_FL)
1278                inode->i_flags |= S_APPEND;
1279        if (flags & EXT2_IMMUTABLE_FL)
1280                inode->i_flags |= S_IMMUTABLE;
1281        if (flags & EXT2_NOATIME_FL)
1282                inode->i_flags |= S_NOATIME;
1283        if (flags & EXT2_DIRSYNC_FL)
1284                inode->i_flags |= S_DIRSYNC;
1285}
1286
1287/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1288void ext2_get_inode_flags(struct ext2_inode_info *ei)
1289{
1290        unsigned int flags = ei->vfs_inode.i_flags;
1291
1292        ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1293                        EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1294        if (flags & S_SYNC)
1295                ei->i_flags |= EXT2_SYNC_FL;
1296        if (flags & S_APPEND)
1297                ei->i_flags |= EXT2_APPEND_FL;
1298        if (flags & S_IMMUTABLE)
1299                ei->i_flags |= EXT2_IMMUTABLE_FL;
1300        if (flags & S_NOATIME)
1301                ei->i_flags |= EXT2_NOATIME_FL;
1302        if (flags & S_DIRSYNC)
1303                ei->i_flags |= EXT2_DIRSYNC_FL;
1304}
1305
1306struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1307{
1308        struct ext2_inode_info *ei;
1309        struct buffer_head * bh;
1310        struct ext2_inode *raw_inode;
1311        struct inode *inode;
1312        long ret = -EIO;
1313        int n;
1314        uid_t i_uid;
1315        gid_t i_gid;
1316
1317        inode = iget_locked(sb, ino);
1318        if (!inode)
1319                return ERR_PTR(-ENOMEM);
1320        if (!(inode->i_state & I_NEW))
1321                return inode;
1322
1323        ei = EXT2_I(inode);
1324        ei->i_block_alloc_info = NULL;
1325
1326        raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1327        if (IS_ERR(raw_inode)) {
1328                ret = PTR_ERR(raw_inode);
1329                goto bad_inode;
1330        }
1331
1332        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1333        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1334        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1335        if (!(test_opt (inode->i_sb, NO_UID32))) {
1336                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1337                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1338        }
1339        i_uid_write(inode, i_uid);
1340        i_gid_write(inode, i_gid);
1341        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1342        inode->i_size = le32_to_cpu(raw_inode->i_size);
1343        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1344        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1345        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1346        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1347        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1348        /* We now have enough fields to check if the inode was active or not.
1349         * This is needed because nfsd might try to access dead inodes
1350         * the test is that same one that e2fsck uses
1351         * NeilBrown 1999oct15
1352         */
1353        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1354                /* this inode is deleted */
1355                brelse (bh);
1356                ret = -ESTALE;
1357                goto bad_inode;
1358        }
1359        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1360        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1361        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1362        ei->i_frag_no = raw_inode->i_frag;
1363        ei->i_frag_size = raw_inode->i_fsize;
1364        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1365        ei->i_dir_acl = 0;
1366        if (S_ISREG(inode->i_mode))
1367                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1368        else
1369                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1370        ei->i_dtime = 0;
1371        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1372        ei->i_state = 0;
1373        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1374        ei->i_dir_start_lookup = 0;
1375
1376        /*
1377         * NOTE! The in-memory inode i_data array is in little-endian order
1378         * even on big-endian machines: we do NOT byteswap the block numbers!
1379         */
1380        for (n = 0; n < EXT2_N_BLOCKS; n++)
1381                ei->i_data[n] = raw_inode->i_block[n];
1382
1383        if (S_ISREG(inode->i_mode)) {
1384                inode->i_op = &ext2_file_inode_operations;
1385                if (ext2_use_xip(inode->i_sb)) {
1386                        inode->i_mapping->a_ops = &ext2_aops_xip;
1387                        inode->i_fop = &ext2_xip_file_operations;
1388                } else if (test_opt(inode->i_sb, NOBH)) {
1389                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1390                        inode->i_fop = &ext2_file_operations;
1391                } else {
1392                        inode->i_mapping->a_ops = &ext2_aops;
1393                        inode->i_fop = &ext2_file_operations;
1394                }
1395        } else if (S_ISDIR(inode->i_mode)) {
1396                inode->i_op = &ext2_dir_inode_operations;
1397                inode->i_fop = &ext2_dir_operations;
1398                if (test_opt(inode->i_sb, NOBH))
1399                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1400                else
1401                        inode->i_mapping->a_ops = &ext2_aops;
1402        } else if (S_ISLNK(inode->i_mode)) {
1403                if (ext2_inode_is_fast_symlink(inode)) {
1404                        inode->i_op = &ext2_fast_symlink_inode_operations;
1405                        nd_terminate_link(ei->i_data, inode->i_size,
1406                                sizeof(ei->i_data) - 1);
1407                } else {
1408                        inode->i_op = &ext2_symlink_inode_operations;
1409                        if (test_opt(inode->i_sb, NOBH))
1410                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1411                        else
1412                                inode->i_mapping->a_ops = &ext2_aops;
1413                }
1414        } else {
1415                inode->i_op = &ext2_special_inode_operations;
1416                if (raw_inode->i_block[0])
1417                        init_special_inode(inode, inode->i_mode,
1418                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1419                else 
1420                        init_special_inode(inode, inode->i_mode,
1421                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1422        }
1423        brelse (bh);
1424        ext2_set_inode_flags(inode);
1425        unlock_new_inode(inode);
1426        return inode;
1427        
1428bad_inode:
1429        iget_failed(inode);
1430        return ERR_PTR(ret);
1431}
1432
1433static int __ext2_write_inode(struct inode *inode, int do_sync)
1434{
1435        struct ext2_inode_info *ei = EXT2_I(inode);
1436        struct super_block *sb = inode->i_sb;
1437        ino_t ino = inode->i_ino;
1438        uid_t uid = i_uid_read(inode);
1439        gid_t gid = i_gid_read(inode);
1440        struct buffer_head * bh;
1441        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1442        int n;
1443        int err = 0;
1444
1445        if (IS_ERR(raw_inode))
1446                return -EIO;
1447
1448        /* For fields not not tracking in the in-memory inode,
1449         * initialise them to zero for new inodes. */
1450        if (ei->i_state & EXT2_STATE_NEW)
1451                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1452
1453        ext2_get_inode_flags(ei);
1454        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1455        if (!(test_opt(sb, NO_UID32))) {
1456                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1457                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1458/*
1459 * Fix up interoperability with old kernels. Otherwise, old inodes get
1460 * re-used with the upper 16 bits of the uid/gid intact
1461 */
1462                if (!ei->i_dtime) {
1463                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1464                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1465                } else {
1466                        raw_inode->i_uid_high = 0;
1467                        raw_inode->i_gid_high = 0;
1468                }
1469        } else {
1470                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1471                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1472                raw_inode->i_uid_high = 0;
1473                raw_inode->i_gid_high = 0;
1474        }
1475        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1476        raw_inode->i_size = cpu_to_le32(inode->i_size);
1477        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1478        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1479        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1480
1481        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1482        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1483        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1484        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1485        raw_inode->i_frag = ei->i_frag_no;
1486        raw_inode->i_fsize = ei->i_frag_size;
1487        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1488        if (!S_ISREG(inode->i_mode))
1489                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1490        else {
1491                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1492                if (inode->i_size > 0x7fffffffULL) {
1493                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1494                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1495                            EXT2_SB(sb)->s_es->s_rev_level ==
1496                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1497                               /* If this is the first large file
1498                                * created, add a flag to the superblock.
1499                                */
1500                                spin_lock(&EXT2_SB(sb)->s_lock);
1501                                ext2_update_dynamic_rev(sb);
1502                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1503                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1504                                spin_unlock(&EXT2_SB(sb)->s_lock);
1505                                ext2_write_super(sb);
1506                        }
1507                }
1508        }
1509        
1510        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1511        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1512                if (old_valid_dev(inode->i_rdev)) {
1513                        raw_inode->i_block[0] =
1514                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1515                        raw_inode->i_block[1] = 0;
1516                } else {
1517                        raw_inode->i_block[0] = 0;
1518                        raw_inode->i_block[1] =
1519                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1520                        raw_inode->i_block[2] = 0;
1521                }
1522        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1523                raw_inode->i_block[n] = ei->i_data[n];
1524        mark_buffer_dirty(bh);
1525        if (do_sync) {
1526                sync_dirty_buffer(bh);
1527                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1528                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1529                                sb->s_id, (unsigned long) ino);
1530                        err = -EIO;
1531                }
1532        }
1533        ei->i_state &= ~EXT2_STATE_NEW;
1534        brelse (bh);
1535        return err;
1536}
1537
1538int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1539{
1540        return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1541}
1542
1543int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1544{
1545        struct inode *inode = dentry->d_inode;
1546        int error;
1547
1548        error = inode_change_ok(inode, iattr);
1549        if (error)
1550                return error;
1551
1552        if (is_quota_modification(inode, iattr))
1553                dquot_initialize(inode);
1554        if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1555            (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1556                error = dquot_transfer(inode, iattr);
1557                if (error)
1558                        return error;
1559        }
1560        if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1561                error = ext2_setsize(inode, iattr->ia_size);
1562                if (error)
1563                        return error;
1564        }
1565        setattr_copy(inode, iattr);
1566        if (iattr->ia_valid & ATTR_MODE)
1567                error = ext2_acl_chmod(inode);
1568        mark_inode_dirty(inode);
1569
1570        return error;
1571}
1572