linux/fs/ext4/indirect.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/indirect.c
   3 *
   4 *  from
   5 *
   6 *  linux/fs/ext4/inode.c
   7 *
   8 * Copyright (C) 1992, 1993, 1994, 1995
   9 * Remy Card (card@masi.ibp.fr)
  10 * Laboratoire MASI - Institut Blaise Pascal
  11 * Universite Pierre et Marie Curie (Paris VI)
  12 *
  13 *  from
  14 *
  15 *  linux/fs/minix/inode.c
  16 *
  17 *  Copyright (C) 1991, 1992  Linus Torvalds
  18 *
  19 *  Goal-directed block allocation by Stephen Tweedie
  20 *      (sct@redhat.com), 1993, 1998
  21 */
  22
  23#include <linux/aio.h>
  24#include "ext4_jbd2.h"
  25#include "truncate.h"
  26#include "ext4_extents.h"       /* Needed for EXT_MAX_BLOCKS */
  27
  28#include <trace/events/ext4.h>
  29
  30typedef struct {
  31        __le32  *p;
  32        __le32  key;
  33        struct buffer_head *bh;
  34} Indirect;
  35
  36static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  37{
  38        p->key = *(p->p = v);
  39        p->bh = bh;
  40}
  41
  42/**
  43 *      ext4_block_to_path - parse the block number into array of offsets
  44 *      @inode: inode in question (we are only interested in its superblock)
  45 *      @i_block: block number to be parsed
  46 *      @offsets: array to store the offsets in
  47 *      @boundary: set this non-zero if the referred-to block is likely to be
  48 *             followed (on disk) by an indirect block.
  49 *
  50 *      To store the locations of file's data ext4 uses a data structure common
  51 *      for UNIX filesystems - tree of pointers anchored in the inode, with
  52 *      data blocks at leaves and indirect blocks in intermediate nodes.
  53 *      This function translates the block number into path in that tree -
  54 *      return value is the path length and @offsets[n] is the offset of
  55 *      pointer to (n+1)th node in the nth one. If @block is out of range
  56 *      (negative or too large) warning is printed and zero returned.
  57 *
  58 *      Note: function doesn't find node addresses, so no IO is needed. All
  59 *      we need to know is the capacity of indirect blocks (taken from the
  60 *      inode->i_sb).
  61 */
  62
  63/*
  64 * Portability note: the last comparison (check that we fit into triple
  65 * indirect block) is spelled differently, because otherwise on an
  66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
  67 * if our filesystem had 8Kb blocks. We might use long long, but that would
  68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
  69 * i_block would have to be negative in the very beginning, so we would not
  70 * get there at all.
  71 */
  72
  73static int ext4_block_to_path(struct inode *inode,
  74                              ext4_lblk_t i_block,
  75                              ext4_lblk_t offsets[4], int *boundary)
  76{
  77        int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  78        int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  79        const long direct_blocks = EXT4_NDIR_BLOCKS,
  80                indirect_blocks = ptrs,
  81                double_blocks = (1 << (ptrs_bits * 2));
  82        int n = 0;
  83        int final = 0;
  84
  85        if (i_block < direct_blocks) {
  86                offsets[n++] = i_block;
  87                final = direct_blocks;
  88        } else if ((i_block -= direct_blocks) < indirect_blocks) {
  89                offsets[n++] = EXT4_IND_BLOCK;
  90                offsets[n++] = i_block;
  91                final = ptrs;
  92        } else if ((i_block -= indirect_blocks) < double_blocks) {
  93                offsets[n++] = EXT4_DIND_BLOCK;
  94                offsets[n++] = i_block >> ptrs_bits;
  95                offsets[n++] = i_block & (ptrs - 1);
  96                final = ptrs;
  97        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  98                offsets[n++] = EXT4_TIND_BLOCK;
  99                offsets[n++] = i_block >> (ptrs_bits * 2);
 100                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 101                offsets[n++] = i_block & (ptrs - 1);
 102                final = ptrs;
 103        } else {
 104                ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
 105                             i_block + direct_blocks +
 106                             indirect_blocks + double_blocks, inode->i_ino);
 107        }
 108        if (boundary)
 109                *boundary = final - 1 - (i_block & (ptrs - 1));
 110        return n;
 111}
 112
 113/**
 114 *      ext4_get_branch - read the chain of indirect blocks leading to data
 115 *      @inode: inode in question
 116 *      @depth: depth of the chain (1 - direct pointer, etc.)
 117 *      @offsets: offsets of pointers in inode/indirect blocks
 118 *      @chain: place to store the result
 119 *      @err: here we store the error value
 120 *
 121 *      Function fills the array of triples <key, p, bh> and returns %NULL
 122 *      if everything went OK or the pointer to the last filled triple
 123 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 124 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 125 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 126 *      number (it points into struct inode for i==0 and into the bh->b_data
 127 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 128 *      block for i>0 and NULL for i==0. In other words, it holds the block
 129 *      numbers of the chain, addresses they were taken from (and where we can
 130 *      verify that chain did not change) and buffer_heads hosting these
 131 *      numbers.
 132 *
 133 *      Function stops when it stumbles upon zero pointer (absent block)
 134 *              (pointer to last triple returned, *@err == 0)
 135 *      or when it gets an IO error reading an indirect block
 136 *              (ditto, *@err == -EIO)
 137 *      or when it reads all @depth-1 indirect blocks successfully and finds
 138 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 139 *
 140 *      Need to be called with
 141 *      down_read(&EXT4_I(inode)->i_data_sem)
 142 */
 143static Indirect *ext4_get_branch(struct inode *inode, int depth,
 144                                 ext4_lblk_t  *offsets,
 145                                 Indirect chain[4], int *err)
 146{
 147        struct super_block *sb = inode->i_sb;
 148        Indirect *p = chain;
 149        struct buffer_head *bh;
 150        int ret = -EIO;
 151
 152        *err = 0;
 153        /* i_data is not going away, no lock needed */
 154        add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
 155        if (!p->key)
 156                goto no_block;
 157        while (--depth) {
 158                bh = sb_getblk(sb, le32_to_cpu(p->key));
 159                if (unlikely(!bh)) {
 160                        ret = -ENOMEM;
 161                        goto failure;
 162                }
 163
 164                if (!bh_uptodate_or_lock(bh)) {
 165                        if (bh_submit_read(bh) < 0) {
 166                                put_bh(bh);
 167                                goto failure;
 168                        }
 169                        /* validate block references */
 170                        if (ext4_check_indirect_blockref(inode, bh)) {
 171                                put_bh(bh);
 172                                goto failure;
 173                        }
 174                }
 175
 176                add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
 177                /* Reader: end */
 178                if (!p->key)
 179                        goto no_block;
 180        }
 181        return NULL;
 182
 183failure:
 184        *err = ret;
 185no_block:
 186        return p;
 187}
 188
 189/**
 190 *      ext4_find_near - find a place for allocation with sufficient locality
 191 *      @inode: owner
 192 *      @ind: descriptor of indirect block.
 193 *
 194 *      This function returns the preferred place for block allocation.
 195 *      It is used when heuristic for sequential allocation fails.
 196 *      Rules are:
 197 *        + if there is a block to the left of our position - allocate near it.
 198 *        + if pointer will live in indirect block - allocate near that block.
 199 *        + if pointer will live in inode - allocate in the same
 200 *          cylinder group.
 201 *
 202 * In the latter case we colour the starting block by the callers PID to
 203 * prevent it from clashing with concurrent allocations for a different inode
 204 * in the same block group.   The PID is used here so that functionally related
 205 * files will be close-by on-disk.
 206 *
 207 *      Caller must make sure that @ind is valid and will stay that way.
 208 */
 209static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
 210{
 211        struct ext4_inode_info *ei = EXT4_I(inode);
 212        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 213        __le32 *p;
 214
 215        /* Try to find previous block */
 216        for (p = ind->p - 1; p >= start; p--) {
 217                if (*p)
 218                        return le32_to_cpu(*p);
 219        }
 220
 221        /* No such thing, so let's try location of indirect block */
 222        if (ind->bh)
 223                return ind->bh->b_blocknr;
 224
 225        /*
 226         * It is going to be referred to from the inode itself? OK, just put it
 227         * into the same cylinder group then.
 228         */
 229        return ext4_inode_to_goal_block(inode);
 230}
 231
 232/**
 233 *      ext4_find_goal - find a preferred place for allocation.
 234 *      @inode: owner
 235 *      @block:  block we want
 236 *      @partial: pointer to the last triple within a chain
 237 *
 238 *      Normally this function find the preferred place for block allocation,
 239 *      returns it.
 240 *      Because this is only used for non-extent files, we limit the block nr
 241 *      to 32 bits.
 242 */
 243static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
 244                                   Indirect *partial)
 245{
 246        ext4_fsblk_t goal;
 247
 248        /*
 249         * XXX need to get goal block from mballoc's data structures
 250         */
 251
 252        goal = ext4_find_near(inode, partial);
 253        goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
 254        return goal;
 255}
 256
 257/**
 258 *      ext4_blks_to_allocate - Look up the block map and count the number
 259 *      of direct blocks need to be allocated for the given branch.
 260 *
 261 *      @branch: chain of indirect blocks
 262 *      @k: number of blocks need for indirect blocks
 263 *      @blks: number of data blocks to be mapped.
 264 *      @blocks_to_boundary:  the offset in the indirect block
 265 *
 266 *      return the total number of blocks to be allocate, including the
 267 *      direct and indirect blocks.
 268 */
 269static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
 270                                 int blocks_to_boundary)
 271{
 272        unsigned int count = 0;
 273
 274        /*
 275         * Simple case, [t,d]Indirect block(s) has not allocated yet
 276         * then it's clear blocks on that path have not allocated
 277         */
 278        if (k > 0) {
 279                /* right now we don't handle cross boundary allocation */
 280                if (blks < blocks_to_boundary + 1)
 281                        count += blks;
 282                else
 283                        count += blocks_to_boundary + 1;
 284                return count;
 285        }
 286
 287        count++;
 288        while (count < blks && count <= blocks_to_boundary &&
 289                le32_to_cpu(*(branch[0].p + count)) == 0) {
 290                count++;
 291        }
 292        return count;
 293}
 294
 295/**
 296 *      ext4_alloc_branch - allocate and set up a chain of blocks.
 297 *      @handle: handle for this transaction
 298 *      @inode: owner
 299 *      @indirect_blks: number of allocated indirect blocks
 300 *      @blks: number of allocated direct blocks
 301 *      @goal: preferred place for allocation
 302 *      @offsets: offsets (in the blocks) to store the pointers to next.
 303 *      @branch: place to store the chain in.
 304 *
 305 *      This function allocates blocks, zeroes out all but the last one,
 306 *      links them into chain and (if we are synchronous) writes them to disk.
 307 *      In other words, it prepares a branch that can be spliced onto the
 308 *      inode. It stores the information about that chain in the branch[], in
 309 *      the same format as ext4_get_branch() would do. We are calling it after
 310 *      we had read the existing part of chain and partial points to the last
 311 *      triple of that (one with zero ->key). Upon the exit we have the same
 312 *      picture as after the successful ext4_get_block(), except that in one
 313 *      place chain is disconnected - *branch->p is still zero (we did not
 314 *      set the last link), but branch->key contains the number that should
 315 *      be placed into *branch->p to fill that gap.
 316 *
 317 *      If allocation fails we free all blocks we've allocated (and forget
 318 *      their buffer_heads) and return the error value the from failed
 319 *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 320 *      as described above and return 0.
 321 */
 322static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
 323                             ext4_lblk_t iblock, int indirect_blks,
 324                             int *blks, ext4_fsblk_t goal,
 325                             ext4_lblk_t *offsets, Indirect *branch)
 326{
 327        struct ext4_allocation_request  ar;
 328        struct buffer_head *            bh;
 329        ext4_fsblk_t                    b, new_blocks[4];
 330        __le32                          *p;
 331        int                             i, j, err, len = 1;
 332
 333        /*
 334         * Set up for the direct block allocation
 335         */
 336        memset(&ar, 0, sizeof(ar));
 337        ar.inode = inode;
 338        ar.len = *blks;
 339        ar.logical = iblock;
 340        if (S_ISREG(inode->i_mode))
 341                ar.flags = EXT4_MB_HINT_DATA;
 342
 343        for (i = 0; i <= indirect_blks; i++) {
 344                if (i == indirect_blks) {
 345                        ar.goal = goal;
 346                        new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
 347                } else
 348                        goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
 349                                                        goal, 0, NULL, &err);
 350                if (err) {
 351                        i--;
 352                        goto failed;
 353                }
 354                branch[i].key = cpu_to_le32(new_blocks[i]);
 355                if (i == 0)
 356                        continue;
 357
 358                bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
 359                if (unlikely(!bh)) {
 360                        err = -ENOMEM;
 361                        goto failed;
 362                }
 363                lock_buffer(bh);
 364                BUFFER_TRACE(bh, "call get_create_access");
 365                err = ext4_journal_get_create_access(handle, bh);
 366                if (err) {
 367                        unlock_buffer(bh);
 368                        goto failed;
 369                }
 370
 371                memset(bh->b_data, 0, bh->b_size);
 372                p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
 373                b = new_blocks[i];
 374
 375                if (i == indirect_blks)
 376                        len = ar.len;
 377                for (j = 0; j < len; j++)
 378                        *p++ = cpu_to_le32(b++);
 379
 380                BUFFER_TRACE(bh, "marking uptodate");
 381                set_buffer_uptodate(bh);
 382                unlock_buffer(bh);
 383
 384                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 385                err = ext4_handle_dirty_metadata(handle, inode, bh);
 386                if (err)
 387                        goto failed;
 388        }
 389        *blks = ar.len;
 390        return 0;
 391failed:
 392        for (; i >= 0; i--) {
 393                if (i != indirect_blks && branch[i].bh)
 394                        ext4_forget(handle, 1, inode, branch[i].bh,
 395                                    branch[i].bh->b_blocknr);
 396                ext4_free_blocks(handle, inode, NULL, new_blocks[i],
 397                                 (i == indirect_blks) ? ar.len : 1, 0);
 398        }
 399        return err;
 400}
 401
 402/**
 403 * ext4_splice_branch - splice the allocated branch onto inode.
 404 * @handle: handle for this transaction
 405 * @inode: owner
 406 * @block: (logical) number of block we are adding
 407 * @chain: chain of indirect blocks (with a missing link - see
 408 *      ext4_alloc_branch)
 409 * @where: location of missing link
 410 * @num:   number of indirect blocks we are adding
 411 * @blks:  number of direct blocks we are adding
 412 *
 413 * This function fills the missing link and does all housekeeping needed in
 414 * inode (->i_blocks, etc.). In case of success we end up with the full
 415 * chain to new block and return 0.
 416 */
 417static int ext4_splice_branch(handle_t *handle, struct inode *inode,
 418                              ext4_lblk_t block, Indirect *where, int num,
 419                              int blks)
 420{
 421        int i;
 422        int err = 0;
 423        ext4_fsblk_t current_block;
 424
 425        /*
 426         * If we're splicing into a [td]indirect block (as opposed to the
 427         * inode) then we need to get write access to the [td]indirect block
 428         * before the splice.
 429         */
 430        if (where->bh) {
 431                BUFFER_TRACE(where->bh, "get_write_access");
 432                err = ext4_journal_get_write_access(handle, where->bh);
 433                if (err)
 434                        goto err_out;
 435        }
 436        /* That's it */
 437
 438        *where->p = where->key;
 439
 440        /*
 441         * Update the host buffer_head or inode to point to more just allocated
 442         * direct blocks blocks
 443         */
 444        if (num == 0 && blks > 1) {
 445                current_block = le32_to_cpu(where->key) + 1;
 446                for (i = 1; i < blks; i++)
 447                        *(where->p + i) = cpu_to_le32(current_block++);
 448        }
 449
 450        /* We are done with atomic stuff, now do the rest of housekeeping */
 451        /* had we spliced it onto indirect block? */
 452        if (where->bh) {
 453                /*
 454                 * If we spliced it onto an indirect block, we haven't
 455                 * altered the inode.  Note however that if it is being spliced
 456                 * onto an indirect block at the very end of the file (the
 457                 * file is growing) then we *will* alter the inode to reflect
 458                 * the new i_size.  But that is not done here - it is done in
 459                 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
 460                 */
 461                jbd_debug(5, "splicing indirect only\n");
 462                BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
 463                err = ext4_handle_dirty_metadata(handle, inode, where->bh);
 464                if (err)
 465                        goto err_out;
 466        } else {
 467                /*
 468                 * OK, we spliced it into the inode itself on a direct block.
 469                 */
 470                ext4_mark_inode_dirty(handle, inode);
 471                jbd_debug(5, "splicing direct\n");
 472        }
 473        return err;
 474
 475err_out:
 476        for (i = 1; i <= num; i++) {
 477                /*
 478                 * branch[i].bh is newly allocated, so there is no
 479                 * need to revoke the block, which is why we don't
 480                 * need to set EXT4_FREE_BLOCKS_METADATA.
 481                 */
 482                ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
 483                                 EXT4_FREE_BLOCKS_FORGET);
 484        }
 485        ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
 486                         blks, 0);
 487
 488        return err;
 489}
 490
 491/*
 492 * The ext4_ind_map_blocks() function handles non-extents inodes
 493 * (i.e., using the traditional indirect/double-indirect i_blocks
 494 * scheme) for ext4_map_blocks().
 495 *
 496 * Allocation strategy is simple: if we have to allocate something, we will
 497 * have to go the whole way to leaf. So let's do it before attaching anything
 498 * to tree, set linkage between the newborn blocks, write them if sync is
 499 * required, recheck the path, free and repeat if check fails, otherwise
 500 * set the last missing link (that will protect us from any truncate-generated
 501 * removals - all blocks on the path are immune now) and possibly force the
 502 * write on the parent block.
 503 * That has a nice additional property: no special recovery from the failed
 504 * allocations is needed - we simply release blocks and do not touch anything
 505 * reachable from inode.
 506 *
 507 * `handle' can be NULL if create == 0.
 508 *
 509 * return > 0, # of blocks mapped or allocated.
 510 * return = 0, if plain lookup failed.
 511 * return < 0, error case.
 512 *
 513 * The ext4_ind_get_blocks() function should be called with
 514 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 515 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 516 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 517 * blocks.
 518 */
 519int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
 520                        struct ext4_map_blocks *map,
 521                        int flags)
 522{
 523        int err = -EIO;
 524        ext4_lblk_t offsets[4];
 525        Indirect chain[4];
 526        Indirect *partial;
 527        ext4_fsblk_t goal;
 528        int indirect_blks;
 529        int blocks_to_boundary = 0;
 530        int depth;
 531        int count = 0;
 532        ext4_fsblk_t first_block = 0;
 533
 534        trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
 535        J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
 536        J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
 537        depth = ext4_block_to_path(inode, map->m_lblk, offsets,
 538                                   &blocks_to_boundary);
 539
 540        if (depth == 0)
 541                goto out;
 542
 543        partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 544
 545        /* Simplest case - block found, no allocation needed */
 546        if (!partial) {
 547                first_block = le32_to_cpu(chain[depth - 1].key);
 548                count++;
 549                /*map more blocks*/
 550                while (count < map->m_len && count <= blocks_to_boundary) {
 551                        ext4_fsblk_t blk;
 552
 553                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 554
 555                        if (blk == first_block + count)
 556                                count++;
 557                        else
 558                                break;
 559                }
 560                goto got_it;
 561        }
 562
 563        /* Next simple case - plain lookup or failed read of indirect block */
 564        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
 565                goto cleanup;
 566
 567        /*
 568         * Okay, we need to do block allocation.
 569        */
 570        if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 571                                       EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
 572                EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
 573                                 "non-extent mapped inodes with bigalloc");
 574                return -ENOSPC;
 575        }
 576
 577        goal = ext4_find_goal(inode, map->m_lblk, partial);
 578
 579        /* the number of blocks need to allocate for [d,t]indirect blocks */
 580        indirect_blks = (chain + depth) - partial - 1;
 581
 582        /*
 583         * Next look up the indirect map to count the totoal number of
 584         * direct blocks to allocate for this branch.
 585         */
 586        count = ext4_blks_to_allocate(partial, indirect_blks,
 587                                      map->m_len, blocks_to_boundary);
 588        /*
 589         * Block out ext4_truncate while we alter the tree
 590         */
 591        err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
 592                                &count, goal,
 593                                offsets + (partial - chain), partial);
 594
 595        /*
 596         * The ext4_splice_branch call will free and forget any buffers
 597         * on the new chain if there is a failure, but that risks using
 598         * up transaction credits, especially for bitmaps where the
 599         * credits cannot be returned.  Can we handle this somehow?  We
 600         * may need to return -EAGAIN upwards in the worst case.  --sct
 601         */
 602        if (!err)
 603                err = ext4_splice_branch(handle, inode, map->m_lblk,
 604                                         partial, indirect_blks, count);
 605        if (err)
 606                goto cleanup;
 607
 608        map->m_flags |= EXT4_MAP_NEW;
 609
 610        ext4_update_inode_fsync_trans(handle, inode, 1);
 611got_it:
 612        map->m_flags |= EXT4_MAP_MAPPED;
 613        map->m_pblk = le32_to_cpu(chain[depth-1].key);
 614        map->m_len = count;
 615        if (count > blocks_to_boundary)
 616                map->m_flags |= EXT4_MAP_BOUNDARY;
 617        err = count;
 618        /* Clean up and exit */
 619        partial = chain + depth - 1;    /* the whole chain */
 620cleanup:
 621        while (partial > chain) {
 622                BUFFER_TRACE(partial->bh, "call brelse");
 623                brelse(partial->bh);
 624                partial--;
 625        }
 626out:
 627        trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
 628        return err;
 629}
 630
 631/*
 632 * O_DIRECT for ext3 (or indirect map) based files
 633 *
 634 * If the O_DIRECT write will extend the file then add this inode to the
 635 * orphan list.  So recovery will truncate it back to the original size
 636 * if the machine crashes during the write.
 637 *
 638 * If the O_DIRECT write is intantiating holes inside i_size and the machine
 639 * crashes then stale disk data _may_ be exposed inside the file. But current
 640 * VFS code falls back into buffered path in that case so we are safe.
 641 */
 642ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
 643                           const struct iovec *iov, loff_t offset,
 644                           unsigned long nr_segs)
 645{
 646        struct file *file = iocb->ki_filp;
 647        struct inode *inode = file->f_mapping->host;
 648        struct ext4_inode_info *ei = EXT4_I(inode);
 649        handle_t *handle;
 650        ssize_t ret;
 651        int orphan = 0;
 652        size_t count = iov_length(iov, nr_segs);
 653        int retries = 0;
 654
 655        if (rw == WRITE) {
 656                loff_t final_size = offset + count;
 657
 658                if (final_size > inode->i_size) {
 659                        /* Credits for sb + inode write */
 660                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 661                        if (IS_ERR(handle)) {
 662                                ret = PTR_ERR(handle);
 663                                goto out;
 664                        }
 665                        ret = ext4_orphan_add(handle, inode);
 666                        if (ret) {
 667                                ext4_journal_stop(handle);
 668                                goto out;
 669                        }
 670                        orphan = 1;
 671                        ei->i_disksize = inode->i_size;
 672                        ext4_journal_stop(handle);
 673                }
 674        }
 675
 676retry:
 677        if (rw == READ && ext4_should_dioread_nolock(inode)) {
 678                /*
 679                 * Nolock dioread optimization may be dynamically disabled
 680                 * via ext4_inode_block_unlocked_dio(). Check inode's state
 681                 * while holding extra i_dio_count ref.
 682                 */
 683                atomic_inc(&inode->i_dio_count);
 684                smp_mb();
 685                if (unlikely(ext4_test_inode_state(inode,
 686                                                    EXT4_STATE_DIOREAD_LOCK))) {
 687                        inode_dio_done(inode);
 688                        goto locked;
 689                }
 690                ret = __blockdev_direct_IO(rw, iocb, inode,
 691                                 inode->i_sb->s_bdev, iov,
 692                                 offset, nr_segs,
 693                                 ext4_get_block, NULL, NULL, 0);
 694                inode_dio_done(inode);
 695        } else {
 696locked:
 697                ret = blockdev_direct_IO(rw, iocb, inode, iov,
 698                                 offset, nr_segs, ext4_get_block);
 699
 700                if (unlikely((rw & WRITE) && ret < 0)) {
 701                        loff_t isize = i_size_read(inode);
 702                        loff_t end = offset + iov_length(iov, nr_segs);
 703
 704                        if (end > isize)
 705                                ext4_truncate_failed_write(inode);
 706                }
 707        }
 708        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 709                goto retry;
 710
 711        if (orphan) {
 712                int err;
 713
 714                /* Credits for sb + inode write */
 715                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 716                if (IS_ERR(handle)) {
 717                        /* This is really bad luck. We've written the data
 718                         * but cannot extend i_size. Bail out and pretend
 719                         * the write failed... */
 720                        ret = PTR_ERR(handle);
 721                        if (inode->i_nlink)
 722                                ext4_orphan_del(NULL, inode);
 723
 724                        goto out;
 725                }
 726                if (inode->i_nlink)
 727                        ext4_orphan_del(handle, inode);
 728                if (ret > 0) {
 729                        loff_t end = offset + ret;
 730                        if (end > inode->i_size) {
 731                                ei->i_disksize = end;
 732                                i_size_write(inode, end);
 733                                /*
 734                                 * We're going to return a positive `ret'
 735                                 * here due to non-zero-length I/O, so there's
 736                                 * no way of reporting error returns from
 737                                 * ext4_mark_inode_dirty() to userspace.  So
 738                                 * ignore it.
 739                                 */
 740                                ext4_mark_inode_dirty(handle, inode);
 741                        }
 742                }
 743                err = ext4_journal_stop(handle);
 744                if (ret == 0)
 745                        ret = err;
 746        }
 747out:
 748        return ret;
 749}
 750
 751/*
 752 * Calculate the number of metadata blocks need to reserve
 753 * to allocate a new block at @lblocks for non extent file based file
 754 */
 755int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
 756{
 757        struct ext4_inode_info *ei = EXT4_I(inode);
 758        sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
 759        int blk_bits;
 760
 761        if (lblock < EXT4_NDIR_BLOCKS)
 762                return 0;
 763
 764        lblock -= EXT4_NDIR_BLOCKS;
 765
 766        if (ei->i_da_metadata_calc_len &&
 767            (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
 768                ei->i_da_metadata_calc_len++;
 769                return 0;
 770        }
 771        ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
 772        ei->i_da_metadata_calc_len = 1;
 773        blk_bits = order_base_2(lblock);
 774        return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
 775}
 776
 777/*
 778 * Calculate number of indirect blocks touched by mapping @nrblocks logically
 779 * contiguous blocks
 780 */
 781int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
 782{
 783        /*
 784         * With N contiguous data blocks, we need at most
 785         * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
 786         * 2 dindirect blocks, and 1 tindirect block
 787         */
 788        return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
 789}
 790
 791/*
 792 * Truncate transactions can be complex and absolutely huge.  So we need to
 793 * be able to restart the transaction at a conventient checkpoint to make
 794 * sure we don't overflow the journal.
 795 *
 796 * Try to extend this transaction for the purposes of truncation.  If
 797 * extend fails, we need to propagate the failure up and restart the
 798 * transaction in the top-level truncate loop. --sct
 799 *
 800 * Returns 0 if we managed to create more room.  If we can't create more
 801 * room, and the transaction must be restarted we return 1.
 802 */
 803static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 804{
 805        if (!ext4_handle_valid(handle))
 806                return 0;
 807        if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
 808                return 0;
 809        if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
 810                return 0;
 811        return 1;
 812}
 813
 814/*
 815 * Probably it should be a library function... search for first non-zero word
 816 * or memcmp with zero_page, whatever is better for particular architecture.
 817 * Linus?
 818 */
 819static inline int all_zeroes(__le32 *p, __le32 *q)
 820{
 821        while (p < q)
 822                if (*p++)
 823                        return 0;
 824        return 1;
 825}
 826
 827/**
 828 *      ext4_find_shared - find the indirect blocks for partial truncation.
 829 *      @inode:   inode in question
 830 *      @depth:   depth of the affected branch
 831 *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
 832 *      @chain:   place to store the pointers to partial indirect blocks
 833 *      @top:     place to the (detached) top of branch
 834 *
 835 *      This is a helper function used by ext4_truncate().
 836 *
 837 *      When we do truncate() we may have to clean the ends of several
 838 *      indirect blocks but leave the blocks themselves alive. Block is
 839 *      partially truncated if some data below the new i_size is referred
 840 *      from it (and it is on the path to the first completely truncated
 841 *      data block, indeed).  We have to free the top of that path along
 842 *      with everything to the right of the path. Since no allocation
 843 *      past the truncation point is possible until ext4_truncate()
 844 *      finishes, we may safely do the latter, but top of branch may
 845 *      require special attention - pageout below the truncation point
 846 *      might try to populate it.
 847 *
 848 *      We atomically detach the top of branch from the tree, store the
 849 *      block number of its root in *@top, pointers to buffer_heads of
 850 *      partially truncated blocks - in @chain[].bh and pointers to
 851 *      their last elements that should not be removed - in
 852 *      @chain[].p. Return value is the pointer to last filled element
 853 *      of @chain.
 854 *
 855 *      The work left to caller to do the actual freeing of subtrees:
 856 *              a) free the subtree starting from *@top
 857 *              b) free the subtrees whose roots are stored in
 858 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 859 *              c) free the subtrees growing from the inode past the @chain[0].
 860 *                      (no partially truncated stuff there).  */
 861
 862static Indirect *ext4_find_shared(struct inode *inode, int depth,
 863                                  ext4_lblk_t offsets[4], Indirect chain[4],
 864                                  __le32 *top)
 865{
 866        Indirect *partial, *p;
 867        int k, err;
 868
 869        *top = 0;
 870        /* Make k index the deepest non-null offset + 1 */
 871        for (k = depth; k > 1 && !offsets[k-1]; k--)
 872                ;
 873        partial = ext4_get_branch(inode, k, offsets, chain, &err);
 874        /* Writer: pointers */
 875        if (!partial)
 876                partial = chain + k-1;
 877        /*
 878         * If the branch acquired continuation since we've looked at it -
 879         * fine, it should all survive and (new) top doesn't belong to us.
 880         */
 881        if (!partial->key && *partial->p)
 882                /* Writer: end */
 883                goto no_top;
 884        for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
 885                ;
 886        /*
 887         * OK, we've found the last block that must survive. The rest of our
 888         * branch should be detached before unlocking. However, if that rest
 889         * of branch is all ours and does not grow immediately from the inode
 890         * it's easier to cheat and just decrement partial->p.
 891         */
 892        if (p == chain + k - 1 && p > chain) {
 893                p->p--;
 894        } else {
 895                *top = *p->p;
 896                /* Nope, don't do this in ext4.  Must leave the tree intact */
 897#if 0
 898                *p->p = 0;
 899#endif
 900        }
 901        /* Writer: end */
 902
 903        while (partial > p) {
 904                brelse(partial->bh);
 905                partial--;
 906        }
 907no_top:
 908        return partial;
 909}
 910
 911/*
 912 * Zero a number of block pointers in either an inode or an indirect block.
 913 * If we restart the transaction we must again get write access to the
 914 * indirect block for further modification.
 915 *
 916 * We release `count' blocks on disk, but (last - first) may be greater
 917 * than `count' because there can be holes in there.
 918 *
 919 * Return 0 on success, 1 on invalid block range
 920 * and < 0 on fatal error.
 921 */
 922static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
 923                             struct buffer_head *bh,
 924                             ext4_fsblk_t block_to_free,
 925                             unsigned long count, __le32 *first,
 926                             __le32 *last)
 927{
 928        __le32 *p;
 929        int     flags = EXT4_FREE_BLOCKS_VALIDATED;
 930        int     err;
 931
 932        if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
 933                flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
 934        else if (ext4_should_journal_data(inode))
 935                flags |= EXT4_FREE_BLOCKS_FORGET;
 936
 937        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
 938                                   count)) {
 939                EXT4_ERROR_INODE(inode, "attempt to clear invalid "
 940                                 "blocks %llu len %lu",
 941                                 (unsigned long long) block_to_free, count);
 942                return 1;
 943        }
 944
 945        if (try_to_extend_transaction(handle, inode)) {
 946                if (bh) {
 947                        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 948                        err = ext4_handle_dirty_metadata(handle, inode, bh);
 949                        if (unlikely(err))
 950                                goto out_err;
 951                }
 952                err = ext4_mark_inode_dirty(handle, inode);
 953                if (unlikely(err))
 954                        goto out_err;
 955                err = ext4_truncate_restart_trans(handle, inode,
 956                                        ext4_blocks_for_truncate(inode));
 957                if (unlikely(err))
 958                        goto out_err;
 959                if (bh) {
 960                        BUFFER_TRACE(bh, "retaking write access");
 961                        err = ext4_journal_get_write_access(handle, bh);
 962                        if (unlikely(err))
 963                                goto out_err;
 964                }
 965        }
 966
 967        for (p = first; p < last; p++)
 968                *p = 0;
 969
 970        ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
 971        return 0;
 972out_err:
 973        ext4_std_error(inode->i_sb, err);
 974        return err;
 975}
 976
 977/**
 978 * ext4_free_data - free a list of data blocks
 979 * @handle:     handle for this transaction
 980 * @inode:      inode we are dealing with
 981 * @this_bh:    indirect buffer_head which contains *@first and *@last
 982 * @first:      array of block numbers
 983 * @last:       points immediately past the end of array
 984 *
 985 * We are freeing all blocks referred from that array (numbers are stored as
 986 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 987 *
 988 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 989 * blocks are contiguous then releasing them at one time will only affect one
 990 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 991 * actually use a lot of journal space.
 992 *
 993 * @this_bh will be %NULL if @first and @last point into the inode's direct
 994 * block pointers.
 995 */
 996static void ext4_free_data(handle_t *handle, struct inode *inode,
 997                           struct buffer_head *this_bh,
 998                           __le32 *first, __le32 *last)
 999{
1000        ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1001        unsigned long count = 0;            /* Number of blocks in the run */
1002        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1003                                               corresponding to
1004                                               block_to_free */
1005        ext4_fsblk_t nr;                    /* Current block # */
1006        __le32 *p;                          /* Pointer into inode/ind
1007                                               for current block */
1008        int err = 0;
1009
1010        if (this_bh) {                          /* For indirect block */
1011                BUFFER_TRACE(this_bh, "get_write_access");
1012                err = ext4_journal_get_write_access(handle, this_bh);
1013                /* Important: if we can't update the indirect pointers
1014                 * to the blocks, we can't free them. */
1015                if (err)
1016                        return;
1017        }
1018
1019        for (p = first; p < last; p++) {
1020                nr = le32_to_cpu(*p);
1021                if (nr) {
1022                        /* accumulate blocks to free if they're contiguous */
1023                        if (count == 0) {
1024                                block_to_free = nr;
1025                                block_to_free_p = p;
1026                                count = 1;
1027                        } else if (nr == block_to_free + count) {
1028                                count++;
1029                        } else {
1030                                err = ext4_clear_blocks(handle, inode, this_bh,
1031                                                        block_to_free, count,
1032                                                        block_to_free_p, p);
1033                                if (err)
1034                                        break;
1035                                block_to_free = nr;
1036                                block_to_free_p = p;
1037                                count = 1;
1038                        }
1039                }
1040        }
1041
1042        if (!err && count > 0)
1043                err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1044                                        count, block_to_free_p, p);
1045        if (err < 0)
1046                /* fatal error */
1047                return;
1048
1049        if (this_bh) {
1050                BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1051
1052                /*
1053                 * The buffer head should have an attached journal head at this
1054                 * point. However, if the data is corrupted and an indirect
1055                 * block pointed to itself, it would have been detached when
1056                 * the block was cleared. Check for this instead of OOPSing.
1057                 */
1058                if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1059                        ext4_handle_dirty_metadata(handle, inode, this_bh);
1060                else
1061                        EXT4_ERROR_INODE(inode,
1062                                         "circular indirect block detected at "
1063                                         "block %llu",
1064                                (unsigned long long) this_bh->b_blocknr);
1065        }
1066}
1067
1068/**
1069 *      ext4_free_branches - free an array of branches
1070 *      @handle: JBD handle for this transaction
1071 *      @inode: inode we are dealing with
1072 *      @parent_bh: the buffer_head which contains *@first and *@last
1073 *      @first: array of block numbers
1074 *      @last:  pointer immediately past the end of array
1075 *      @depth: depth of the branches to free
1076 *
1077 *      We are freeing all blocks referred from these branches (numbers are
1078 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1079 *      appropriately.
1080 */
1081static void ext4_free_branches(handle_t *handle, struct inode *inode,
1082                               struct buffer_head *parent_bh,
1083                               __le32 *first, __le32 *last, int depth)
1084{
1085        ext4_fsblk_t nr;
1086        __le32 *p;
1087
1088        if (ext4_handle_is_aborted(handle))
1089                return;
1090
1091        if (depth--) {
1092                struct buffer_head *bh;
1093                int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1094                p = last;
1095                while (--p >= first) {
1096                        nr = le32_to_cpu(*p);
1097                        if (!nr)
1098                                continue;               /* A hole */
1099
1100                        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1101                                                   nr, 1)) {
1102                                EXT4_ERROR_INODE(inode,
1103                                                 "invalid indirect mapped "
1104                                                 "block %lu (level %d)",
1105                                                 (unsigned long) nr, depth);
1106                                break;
1107                        }
1108
1109                        /* Go read the buffer for the next level down */
1110                        bh = sb_bread(inode->i_sb, nr);
1111
1112                        /*
1113                         * A read failure? Report error and clear slot
1114                         * (should be rare).
1115                         */
1116                        if (!bh) {
1117                                EXT4_ERROR_INODE_BLOCK(inode, nr,
1118                                                       "Read failure");
1119                                continue;
1120                        }
1121
1122                        /* This zaps the entire block.  Bottom up. */
1123                        BUFFER_TRACE(bh, "free child branches");
1124                        ext4_free_branches(handle, inode, bh,
1125                                        (__le32 *) bh->b_data,
1126                                        (__le32 *) bh->b_data + addr_per_block,
1127                                        depth);
1128                        brelse(bh);
1129
1130                        /*
1131                         * Everything below this this pointer has been
1132                         * released.  Now let this top-of-subtree go.
1133                         *
1134                         * We want the freeing of this indirect block to be
1135                         * atomic in the journal with the updating of the
1136                         * bitmap block which owns it.  So make some room in
1137                         * the journal.
1138                         *
1139                         * We zero the parent pointer *after* freeing its
1140                         * pointee in the bitmaps, so if extend_transaction()
1141                         * for some reason fails to put the bitmap changes and
1142                         * the release into the same transaction, recovery
1143                         * will merely complain about releasing a free block,
1144                         * rather than leaking blocks.
1145                         */
1146                        if (ext4_handle_is_aborted(handle))
1147                                return;
1148                        if (try_to_extend_transaction(handle, inode)) {
1149                                ext4_mark_inode_dirty(handle, inode);
1150                                ext4_truncate_restart_trans(handle, inode,
1151                                            ext4_blocks_for_truncate(inode));
1152                        }
1153
1154                        /*
1155                         * The forget flag here is critical because if
1156                         * we are journaling (and not doing data
1157                         * journaling), we have to make sure a revoke
1158                         * record is written to prevent the journal
1159                         * replay from overwriting the (former)
1160                         * indirect block if it gets reallocated as a
1161                         * data block.  This must happen in the same
1162                         * transaction where the data blocks are
1163                         * actually freed.
1164                         */
1165                        ext4_free_blocks(handle, inode, NULL, nr, 1,
1166                                         EXT4_FREE_BLOCKS_METADATA|
1167                                         EXT4_FREE_BLOCKS_FORGET);
1168
1169                        if (parent_bh) {
1170                                /*
1171                                 * The block which we have just freed is
1172                                 * pointed to by an indirect block: journal it
1173                                 */
1174                                BUFFER_TRACE(parent_bh, "get_write_access");
1175                                if (!ext4_journal_get_write_access(handle,
1176                                                                   parent_bh)){
1177                                        *p = 0;
1178                                        BUFFER_TRACE(parent_bh,
1179                                        "call ext4_handle_dirty_metadata");
1180                                        ext4_handle_dirty_metadata(handle,
1181                                                                   inode,
1182                                                                   parent_bh);
1183                                }
1184                        }
1185                }
1186        } else {
1187                /* We have reached the bottom of the tree. */
1188                BUFFER_TRACE(parent_bh, "free data blocks");
1189                ext4_free_data(handle, inode, parent_bh, first, last);
1190        }
1191}
1192
1193void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1194{
1195        struct ext4_inode_info *ei = EXT4_I(inode);
1196        __le32 *i_data = ei->i_data;
1197        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1198        ext4_lblk_t offsets[4];
1199        Indirect chain[4];
1200        Indirect *partial;
1201        __le32 nr = 0;
1202        int n = 0;
1203        ext4_lblk_t last_block, max_block;
1204        unsigned blocksize = inode->i_sb->s_blocksize;
1205
1206        last_block = (inode->i_size + blocksize-1)
1207                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1208        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1209                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1210
1211        if (last_block != max_block) {
1212                n = ext4_block_to_path(inode, last_block, offsets, NULL);
1213                if (n == 0)
1214                        return;
1215        }
1216
1217        ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1218
1219        /*
1220         * The orphan list entry will now protect us from any crash which
1221         * occurs before the truncate completes, so it is now safe to propagate
1222         * the new, shorter inode size (held for now in i_size) into the
1223         * on-disk inode. We do this via i_disksize, which is the value which
1224         * ext4 *really* writes onto the disk inode.
1225         */
1226        ei->i_disksize = inode->i_size;
1227
1228        if (last_block == max_block) {
1229                /*
1230                 * It is unnecessary to free any data blocks if last_block is
1231                 * equal to the indirect block limit.
1232                 */
1233                return;
1234        } else if (n == 1) {            /* direct blocks */
1235                ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1236                               i_data + EXT4_NDIR_BLOCKS);
1237                goto do_indirects;
1238        }
1239
1240        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1241        /* Kill the top of shared branch (not detached) */
1242        if (nr) {
1243                if (partial == chain) {
1244                        /* Shared branch grows from the inode */
1245                        ext4_free_branches(handle, inode, NULL,
1246                                           &nr, &nr+1, (chain+n-1) - partial);
1247                        *partial->p = 0;
1248                        /*
1249                         * We mark the inode dirty prior to restart,
1250                         * and prior to stop.  No need for it here.
1251                         */
1252                } else {
1253                        /* Shared branch grows from an indirect block */
1254                        BUFFER_TRACE(partial->bh, "get_write_access");
1255                        ext4_free_branches(handle, inode, partial->bh,
1256                                        partial->p,
1257                                        partial->p+1, (chain+n-1) - partial);
1258                }
1259        }
1260        /* Clear the ends of indirect blocks on the shared branch */
1261        while (partial > chain) {
1262                ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1263                                   (__le32*)partial->bh->b_data+addr_per_block,
1264                                   (chain+n-1) - partial);
1265                BUFFER_TRACE(partial->bh, "call brelse");
1266                brelse(partial->bh);
1267                partial--;
1268        }
1269do_indirects:
1270        /* Kill the remaining (whole) subtrees */
1271        switch (offsets[0]) {
1272        default:
1273                nr = i_data[EXT4_IND_BLOCK];
1274                if (nr) {
1275                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1276                        i_data[EXT4_IND_BLOCK] = 0;
1277                }
1278        case EXT4_IND_BLOCK:
1279                nr = i_data[EXT4_DIND_BLOCK];
1280                if (nr) {
1281                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1282                        i_data[EXT4_DIND_BLOCK] = 0;
1283                }
1284        case EXT4_DIND_BLOCK:
1285                nr = i_data[EXT4_TIND_BLOCK];
1286                if (nr) {
1287                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1288                        i_data[EXT4_TIND_BLOCK] = 0;
1289                }
1290        case EXT4_TIND_BLOCK:
1291                ;
1292        }
1293}
1294
1295static int free_hole_blocks(handle_t *handle, struct inode *inode,
1296                            struct buffer_head *parent_bh, __le32 *i_data,
1297                            int level, ext4_lblk_t first,
1298                            ext4_lblk_t count, int max)
1299{
1300        struct buffer_head *bh = NULL;
1301        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1302        int ret = 0;
1303        int i, inc;
1304        ext4_lblk_t offset;
1305        __le32 blk;
1306
1307        inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1308        for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1309                if (offset >= count + first)
1310                        break;
1311                if (*i_data == 0 || (offset + inc) <= first)
1312                        continue;
1313                blk = *i_data;
1314                if (level > 0) {
1315                        ext4_lblk_t first2;
1316                        bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
1317                        if (!bh) {
1318                                EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
1319                                                       "Read failure");
1320                                return -EIO;
1321                        }
1322                        first2 = (first > offset) ? first - offset : 0;
1323                        ret = free_hole_blocks(handle, inode, bh,
1324                                               (__le32 *)bh->b_data, level - 1,
1325                                               first2, count - offset,
1326                                               inode->i_sb->s_blocksize >> 2);
1327                        if (ret) {
1328                                brelse(bh);
1329                                goto err;
1330                        }
1331                }
1332                if (level == 0 ||
1333                    (bh && all_zeroes((__le32 *)bh->b_data,
1334                                      (__le32 *)bh->b_data + addr_per_block))) {
1335                        ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1336                        *i_data = 0;
1337                }
1338                brelse(bh);
1339                bh = NULL;
1340        }
1341
1342err:
1343        return ret;
1344}
1345
1346int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1347                          ext4_lblk_t first, ext4_lblk_t stop)
1348{
1349        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1350        int level, ret = 0;
1351        int num = EXT4_NDIR_BLOCKS;
1352        ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1353        __le32 *i_data = EXT4_I(inode)->i_data;
1354
1355        count = stop - first;
1356        for (level = 0; level < 4; level++, max *= addr_per_block) {
1357                if (first < max) {
1358                        ret = free_hole_blocks(handle, inode, NULL, i_data,
1359                                               level, first, count, num);
1360                        if (ret)
1361                                goto err;
1362                        if (count > max - first)
1363                                count -= max - first;
1364                        else
1365                                break;
1366                        first = 0;
1367                } else {
1368                        first -= max;
1369                }
1370                i_data += num;
1371                if (level == 0) {
1372                        num = 1;
1373                        max = 1;
1374                }
1375        }
1376
1377err:
1378        return ret;
1379}
1380
1381