linux/fs/gfs2/rgrp.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/fs.h>
  15#include <linux/gfs2_ondisk.h>
  16#include <linux/prefetch.h>
  17#include <linux/blkdev.h>
  18#include <linux/rbtree.h>
  19#include <linux/random.h>
  20
  21#include "gfs2.h"
  22#include "incore.h"
  23#include "glock.h"
  24#include "glops.h"
  25#include "lops.h"
  26#include "meta_io.h"
  27#include "quota.h"
  28#include "rgrp.h"
  29#include "super.h"
  30#include "trans.h"
  31#include "util.h"
  32#include "log.h"
  33#include "inode.h"
  34#include "trace_gfs2.h"
  35
  36#define BFITNOENT ((u32)~0)
  37#define NO_BLOCK ((u64)~0)
  38
  39#if BITS_PER_LONG == 32
  40#define LBITMASK   (0x55555555UL)
  41#define LBITSKIP55 (0x55555555UL)
  42#define LBITSKIP00 (0x00000000UL)
  43#else
  44#define LBITMASK   (0x5555555555555555UL)
  45#define LBITSKIP55 (0x5555555555555555UL)
  46#define LBITSKIP00 (0x0000000000000000UL)
  47#endif
  48
  49/*
  50 * These routines are used by the resource group routines (rgrp.c)
  51 * to keep track of block allocation.  Each block is represented by two
  52 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  53 *
  54 * 0 = Free
  55 * 1 = Used (not metadata)
  56 * 2 = Unlinked (still in use) inode
  57 * 3 = Used (metadata)
  58 */
  59
  60static const char valid_change[16] = {
  61                /* current */
  62        /* n */ 0, 1, 1, 1,
  63        /* e */ 1, 0, 0, 0,
  64        /* w */ 0, 0, 0, 1,
  65                1, 0, 0, 0
  66};
  67
  68static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
  69                         const struct gfs2_inode *ip, bool nowrap);
  70
  71
  72/**
  73 * gfs2_setbit - Set a bit in the bitmaps
  74 * @rbm: The position of the bit to set
  75 * @do_clone: Also set the clone bitmap, if it exists
  76 * @new_state: the new state of the block
  77 *
  78 */
  79
  80static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
  81                               unsigned char new_state)
  82{
  83        unsigned char *byte1, *byte2, *end, cur_state;
  84        unsigned int buflen = rbm->bi->bi_len;
  85        const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  86
  87        byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
  88        end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
  89
  90        BUG_ON(byte1 >= end);
  91
  92        cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  93
  94        if (unlikely(!valid_change[new_state * 4 + cur_state])) {
  95                printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
  96                       "new_state=%d\n", rbm->offset, cur_state, new_state);
  97                printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
  98                       (unsigned long long)rbm->rgd->rd_addr,
  99                       rbm->bi->bi_start);
 100                printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
 101                       rbm->bi->bi_offset, rbm->bi->bi_len);
 102                dump_stack();
 103                gfs2_consist_rgrpd(rbm->rgd);
 104                return;
 105        }
 106        *byte1 ^= (cur_state ^ new_state) << bit;
 107
 108        if (do_clone && rbm->bi->bi_clone) {
 109                byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
 110                cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 111                *byte2 ^= (cur_state ^ new_state) << bit;
 112        }
 113}
 114
 115/**
 116 * gfs2_testbit - test a bit in the bitmaps
 117 * @rbm: The bit to test
 118 *
 119 * Returns: The two bit block state of the requested bit
 120 */
 121
 122static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
 123{
 124        const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
 125        const u8 *byte;
 126        unsigned int bit;
 127
 128        byte = buffer + (rbm->offset / GFS2_NBBY);
 129        bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 130
 131        return (*byte >> bit) & GFS2_BIT_MASK;
 132}
 133
 134/**
 135 * gfs2_bit_search
 136 * @ptr: Pointer to bitmap data
 137 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 138 * @state: The state we are searching for
 139 *
 140 * We xor the bitmap data with a patter which is the bitwise opposite
 141 * of what we are looking for, this gives rise to a pattern of ones
 142 * wherever there is a match. Since we have two bits per entry, we
 143 * take this pattern, shift it down by one place and then and it with
 144 * the original. All the even bit positions (0,2,4, etc) then represent
 145 * successful matches, so we mask with 0x55555..... to remove the unwanted
 146 * odd bit positions.
 147 *
 148 * This allows searching of a whole u64 at once (32 blocks) with a
 149 * single test (on 64 bit arches).
 150 */
 151
 152static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 153{
 154        u64 tmp;
 155        static const u64 search[] = {
 156                [0] = 0xffffffffffffffffULL,
 157                [1] = 0xaaaaaaaaaaaaaaaaULL,
 158                [2] = 0x5555555555555555ULL,
 159                [3] = 0x0000000000000000ULL,
 160        };
 161        tmp = le64_to_cpu(*ptr) ^ search[state];
 162        tmp &= (tmp >> 1);
 163        tmp &= mask;
 164        return tmp;
 165}
 166
 167/**
 168 * rs_cmp - multi-block reservation range compare
 169 * @blk: absolute file system block number of the new reservation
 170 * @len: number of blocks in the new reservation
 171 * @rs: existing reservation to compare against
 172 *
 173 * returns: 1 if the block range is beyond the reach of the reservation
 174 *         -1 if the block range is before the start of the reservation
 175 *          0 if the block range overlaps with the reservation
 176 */
 177static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 178{
 179        u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 180
 181        if (blk >= startblk + rs->rs_free)
 182                return 1;
 183        if (blk + len - 1 < startblk)
 184                return -1;
 185        return 0;
 186}
 187
 188/**
 189 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 190 *       a block in a given allocation state.
 191 * @buf: the buffer that holds the bitmaps
 192 * @len: the length (in bytes) of the buffer
 193 * @goal: start search at this block's bit-pair (within @buffer)
 194 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 195 *
 196 * Scope of @goal and returned block number is only within this bitmap buffer,
 197 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 198 * beginning of a bitmap block buffer, skipping any header structures, but
 199 * headers are always a multiple of 64 bits long so that the buffer is
 200 * always aligned to a 64 bit boundary.
 201 *
 202 * The size of the buffer is in bytes, but is it assumed that it is
 203 * always ok to read a complete multiple of 64 bits at the end
 204 * of the block in case the end is no aligned to a natural boundary.
 205 *
 206 * Return: the block number (bitmap buffer scope) that was found
 207 */
 208
 209static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 210                       u32 goal, u8 state)
 211{
 212        u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 213        const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 214        const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 215        u64 tmp;
 216        u64 mask = 0x5555555555555555ULL;
 217        u32 bit;
 218
 219        /* Mask off bits we don't care about at the start of the search */
 220        mask <<= spoint;
 221        tmp = gfs2_bit_search(ptr, mask, state);
 222        ptr++;
 223        while(tmp == 0 && ptr < end) {
 224                tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 225                ptr++;
 226        }
 227        /* Mask off any bits which are more than len bytes from the start */
 228        if (ptr == end && (len & (sizeof(u64) - 1)))
 229                tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 230        /* Didn't find anything, so return */
 231        if (tmp == 0)
 232                return BFITNOENT;
 233        ptr--;
 234        bit = __ffs64(tmp);
 235        bit /= 2;       /* two bits per entry in the bitmap */
 236        return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 237}
 238
 239/**
 240 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 241 * @rbm: The rbm with rgd already set correctly
 242 * @block: The block number (filesystem relative)
 243 *
 244 * This sets the bi and offset members of an rbm based on a
 245 * resource group and a filesystem relative block number. The
 246 * resource group must be set in the rbm on entry, the bi and
 247 * offset members will be set by this function.
 248 *
 249 * Returns: 0 on success, or an error code
 250 */
 251
 252static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 253{
 254        u64 rblock = block - rbm->rgd->rd_data0;
 255        u32 x;
 256
 257        if (WARN_ON_ONCE(rblock > UINT_MAX))
 258                return -EINVAL;
 259        if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
 260                return -E2BIG;
 261
 262        rbm->bi = rbm->rgd->rd_bits;
 263        rbm->offset = (u32)(rblock);
 264        /* Check if the block is within the first block */
 265        if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY)
 266                return 0;
 267
 268        /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 269        rbm->offset += (sizeof(struct gfs2_rgrp) -
 270                        sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 271        x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 272        rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 273        rbm->bi += x;
 274        return 0;
 275}
 276
 277/**
 278 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 279 * @rbm: Position to search (value/result)
 280 * @n_unaligned: Number of unaligned blocks to check
 281 * @len: Decremented for each block found (terminate on zero)
 282 *
 283 * Returns: true if a non-free block is encountered
 284 */
 285
 286static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 287{
 288        u64 block;
 289        u32 n;
 290        u8 res;
 291
 292        for (n = 0; n < n_unaligned; n++) {
 293                res = gfs2_testbit(rbm);
 294                if (res != GFS2_BLKST_FREE)
 295                        return true;
 296                (*len)--;
 297                if (*len == 0)
 298                        return true;
 299                block = gfs2_rbm_to_block(rbm);
 300                if (gfs2_rbm_from_block(rbm, block + 1))
 301                        return true;
 302        }
 303
 304        return false;
 305}
 306
 307/**
 308 * gfs2_free_extlen - Return extent length of free blocks
 309 * @rbm: Starting position
 310 * @len: Max length to check
 311 *
 312 * Starting at the block specified by the rbm, see how many free blocks
 313 * there are, not reading more than len blocks ahead. This can be done
 314 * using memchr_inv when the blocks are byte aligned, but has to be done
 315 * on a block by block basis in case of unaligned blocks. Also this
 316 * function can cope with bitmap boundaries (although it must stop on
 317 * a resource group boundary)
 318 *
 319 * Returns: Number of free blocks in the extent
 320 */
 321
 322static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 323{
 324        struct gfs2_rbm rbm = *rrbm;
 325        u32 n_unaligned = rbm.offset & 3;
 326        u32 size = len;
 327        u32 bytes;
 328        u32 chunk_size;
 329        u8 *ptr, *start, *end;
 330        u64 block;
 331
 332        if (n_unaligned &&
 333            gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 334                goto out;
 335
 336        n_unaligned = len & 3;
 337        /* Start is now byte aligned */
 338        while (len > 3) {
 339                start = rbm.bi->bi_bh->b_data;
 340                if (rbm.bi->bi_clone)
 341                        start = rbm.bi->bi_clone;
 342                end = start + rbm.bi->bi_bh->b_size;
 343                start += rbm.bi->bi_offset;
 344                BUG_ON(rbm.offset & 3);
 345                start += (rbm.offset / GFS2_NBBY);
 346                bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 347                ptr = memchr_inv(start, 0, bytes);
 348                chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 349                chunk_size *= GFS2_NBBY;
 350                BUG_ON(len < chunk_size);
 351                len -= chunk_size;
 352                block = gfs2_rbm_to_block(&rbm);
 353                if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 354                        n_unaligned = 0;
 355                        break;
 356                }
 357                if (ptr) {
 358                        n_unaligned = 3;
 359                        break;
 360                }
 361                n_unaligned = len & 3;
 362        }
 363
 364        /* Deal with any bits left over at the end */
 365        if (n_unaligned)
 366                gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 367out:
 368        return size - len;
 369}
 370
 371/**
 372 * gfs2_bitcount - count the number of bits in a certain state
 373 * @rgd: the resource group descriptor
 374 * @buffer: the buffer that holds the bitmaps
 375 * @buflen: the length (in bytes) of the buffer
 376 * @state: the state of the block we're looking for
 377 *
 378 * Returns: The number of bits
 379 */
 380
 381static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 382                         unsigned int buflen, u8 state)
 383{
 384        const u8 *byte = buffer;
 385        const u8 *end = buffer + buflen;
 386        const u8 state1 = state << 2;
 387        const u8 state2 = state << 4;
 388        const u8 state3 = state << 6;
 389        u32 count = 0;
 390
 391        for (; byte < end; byte++) {
 392                if (((*byte) & 0x03) == state)
 393                        count++;
 394                if (((*byte) & 0x0C) == state1)
 395                        count++;
 396                if (((*byte) & 0x30) == state2)
 397                        count++;
 398                if (((*byte) & 0xC0) == state3)
 399                        count++;
 400        }
 401
 402        return count;
 403}
 404
 405/**
 406 * gfs2_rgrp_verify - Verify that a resource group is consistent
 407 * @rgd: the rgrp
 408 *
 409 */
 410
 411void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 412{
 413        struct gfs2_sbd *sdp = rgd->rd_sbd;
 414        struct gfs2_bitmap *bi = NULL;
 415        u32 length = rgd->rd_length;
 416        u32 count[4], tmp;
 417        int buf, x;
 418
 419        memset(count, 0, 4 * sizeof(u32));
 420
 421        /* Count # blocks in each of 4 possible allocation states */
 422        for (buf = 0; buf < length; buf++) {
 423                bi = rgd->rd_bits + buf;
 424                for (x = 0; x < 4; x++)
 425                        count[x] += gfs2_bitcount(rgd,
 426                                                  bi->bi_bh->b_data +
 427                                                  bi->bi_offset,
 428                                                  bi->bi_len, x);
 429        }
 430
 431        if (count[0] != rgd->rd_free) {
 432                if (gfs2_consist_rgrpd(rgd))
 433                        fs_err(sdp, "free data mismatch:  %u != %u\n",
 434                               count[0], rgd->rd_free);
 435                return;
 436        }
 437
 438        tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 439        if (count[1] != tmp) {
 440                if (gfs2_consist_rgrpd(rgd))
 441                        fs_err(sdp, "used data mismatch:  %u != %u\n",
 442                               count[1], tmp);
 443                return;
 444        }
 445
 446        if (count[2] + count[3] != rgd->rd_dinodes) {
 447                if (gfs2_consist_rgrpd(rgd))
 448                        fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 449                               count[2] + count[3], rgd->rd_dinodes);
 450                return;
 451        }
 452}
 453
 454static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 455{
 456        u64 first = rgd->rd_data0;
 457        u64 last = first + rgd->rd_data;
 458        return first <= block && block < last;
 459}
 460
 461/**
 462 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 463 * @sdp: The GFS2 superblock
 464 * @blk: The data block number
 465 * @exact: True if this needs to be an exact match
 466 *
 467 * Returns: The resource group, or NULL if not found
 468 */
 469
 470struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 471{
 472        struct rb_node *n, *next;
 473        struct gfs2_rgrpd *cur;
 474
 475        spin_lock(&sdp->sd_rindex_spin);
 476        n = sdp->sd_rindex_tree.rb_node;
 477        while (n) {
 478                cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 479                next = NULL;
 480                if (blk < cur->rd_addr)
 481                        next = n->rb_left;
 482                else if (blk >= cur->rd_data0 + cur->rd_data)
 483                        next = n->rb_right;
 484                if (next == NULL) {
 485                        spin_unlock(&sdp->sd_rindex_spin);
 486                        if (exact) {
 487                                if (blk < cur->rd_addr)
 488                                        return NULL;
 489                                if (blk >= cur->rd_data0 + cur->rd_data)
 490                                        return NULL;
 491                        }
 492                        return cur;
 493                }
 494                n = next;
 495        }
 496        spin_unlock(&sdp->sd_rindex_spin);
 497
 498        return NULL;
 499}
 500
 501/**
 502 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 503 * @sdp: The GFS2 superblock
 504 *
 505 * Returns: The first rgrp in the filesystem
 506 */
 507
 508struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 509{
 510        const struct rb_node *n;
 511        struct gfs2_rgrpd *rgd;
 512
 513        spin_lock(&sdp->sd_rindex_spin);
 514        n = rb_first(&sdp->sd_rindex_tree);
 515        rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 516        spin_unlock(&sdp->sd_rindex_spin);
 517
 518        return rgd;
 519}
 520
 521/**
 522 * gfs2_rgrpd_get_next - get the next RG
 523 * @rgd: the resource group descriptor
 524 *
 525 * Returns: The next rgrp
 526 */
 527
 528struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 529{
 530        struct gfs2_sbd *sdp = rgd->rd_sbd;
 531        const struct rb_node *n;
 532
 533        spin_lock(&sdp->sd_rindex_spin);
 534        n = rb_next(&rgd->rd_node);
 535        if (n == NULL)
 536                n = rb_first(&sdp->sd_rindex_tree);
 537
 538        if (unlikely(&rgd->rd_node == n)) {
 539                spin_unlock(&sdp->sd_rindex_spin);
 540                return NULL;
 541        }
 542        rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 543        spin_unlock(&sdp->sd_rindex_spin);
 544        return rgd;
 545}
 546
 547void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 548{
 549        int x;
 550
 551        for (x = 0; x < rgd->rd_length; x++) {
 552                struct gfs2_bitmap *bi = rgd->rd_bits + x;
 553                kfree(bi->bi_clone);
 554                bi->bi_clone = NULL;
 555        }
 556}
 557
 558/**
 559 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
 560 * @ip: the inode for this reservation
 561 */
 562int gfs2_rs_alloc(struct gfs2_inode *ip)
 563{
 564        int error = 0;
 565
 566        down_write(&ip->i_rw_mutex);
 567        if (ip->i_res)
 568                goto out;
 569
 570        ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
 571        if (!ip->i_res) {
 572                error = -ENOMEM;
 573                goto out;
 574        }
 575
 576        RB_CLEAR_NODE(&ip->i_res->rs_node);
 577out:
 578        up_write(&ip->i_rw_mutex);
 579        return error;
 580}
 581
 582static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
 583{
 584        gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
 585                       (unsigned long long)rs->rs_inum,
 586                       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 587                       rs->rs_rbm.offset, rs->rs_free);
 588}
 589
 590/**
 591 * __rs_deltree - remove a multi-block reservation from the rgd tree
 592 * @rs: The reservation to remove
 593 *
 594 */
 595static void __rs_deltree(struct gfs2_blkreserv *rs)
 596{
 597        struct gfs2_rgrpd *rgd;
 598
 599        if (!gfs2_rs_active(rs))
 600                return;
 601
 602        rgd = rs->rs_rbm.rgd;
 603        trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 604        rb_erase(&rs->rs_node, &rgd->rd_rstree);
 605        RB_CLEAR_NODE(&rs->rs_node);
 606
 607        if (rs->rs_free) {
 608                /* return reserved blocks to the rgrp */
 609                BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 610                rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 611                rs->rs_free = 0;
 612                clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
 613                smp_mb__after_clear_bit();
 614        }
 615}
 616
 617/**
 618 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 619 * @rs: The reservation to remove
 620 *
 621 */
 622void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 623{
 624        struct gfs2_rgrpd *rgd;
 625
 626        rgd = rs->rs_rbm.rgd;
 627        if (rgd) {
 628                spin_lock(&rgd->rd_rsspin);
 629                __rs_deltree(rs);
 630                spin_unlock(&rgd->rd_rsspin);
 631        }
 632}
 633
 634/**
 635 * gfs2_rs_delete - delete a multi-block reservation
 636 * @ip: The inode for this reservation
 637 *
 638 */
 639void gfs2_rs_delete(struct gfs2_inode *ip)
 640{
 641        struct inode *inode = &ip->i_inode;
 642
 643        down_write(&ip->i_rw_mutex);
 644        if (ip->i_res && atomic_read(&inode->i_writecount) <= 1) {
 645                gfs2_rs_deltree(ip->i_res);
 646                BUG_ON(ip->i_res->rs_free);
 647                kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
 648                ip->i_res = NULL;
 649        }
 650        up_write(&ip->i_rw_mutex);
 651}
 652
 653/**
 654 * return_all_reservations - return all reserved blocks back to the rgrp.
 655 * @rgd: the rgrp that needs its space back
 656 *
 657 * We previously reserved a bunch of blocks for allocation. Now we need to
 658 * give them back. This leave the reservation structures in tact, but removes
 659 * all of their corresponding "no-fly zones".
 660 */
 661static void return_all_reservations(struct gfs2_rgrpd *rgd)
 662{
 663        struct rb_node *n;
 664        struct gfs2_blkreserv *rs;
 665
 666        spin_lock(&rgd->rd_rsspin);
 667        while ((n = rb_first(&rgd->rd_rstree))) {
 668                rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 669                __rs_deltree(rs);
 670        }
 671        spin_unlock(&rgd->rd_rsspin);
 672}
 673
 674void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 675{
 676        struct rb_node *n;
 677        struct gfs2_rgrpd *rgd;
 678        struct gfs2_glock *gl;
 679
 680        while ((n = rb_first(&sdp->sd_rindex_tree))) {
 681                rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 682                gl = rgd->rd_gl;
 683
 684                rb_erase(n, &sdp->sd_rindex_tree);
 685
 686                if (gl) {
 687                        spin_lock(&gl->gl_spin);
 688                        gl->gl_object = NULL;
 689                        spin_unlock(&gl->gl_spin);
 690                        gfs2_glock_add_to_lru(gl);
 691                        gfs2_glock_put(gl);
 692                }
 693
 694                gfs2_free_clones(rgd);
 695                kfree(rgd->rd_bits);
 696                return_all_reservations(rgd);
 697                kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 698        }
 699}
 700
 701static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 702{
 703        printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 704        printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
 705        printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 706        printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
 707        printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
 708}
 709
 710/**
 711 * gfs2_compute_bitstructs - Compute the bitmap sizes
 712 * @rgd: The resource group descriptor
 713 *
 714 * Calculates bitmap descriptors, one for each block that contains bitmap data
 715 *
 716 * Returns: errno
 717 */
 718
 719static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 720{
 721        struct gfs2_sbd *sdp = rgd->rd_sbd;
 722        struct gfs2_bitmap *bi;
 723        u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 724        u32 bytes_left, bytes;
 725        int x;
 726
 727        if (!length)
 728                return -EINVAL;
 729
 730        rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 731        if (!rgd->rd_bits)
 732                return -ENOMEM;
 733
 734        bytes_left = rgd->rd_bitbytes;
 735
 736        for (x = 0; x < length; x++) {
 737                bi = rgd->rd_bits + x;
 738
 739                bi->bi_flags = 0;
 740                /* small rgrp; bitmap stored completely in header block */
 741                if (length == 1) {
 742                        bytes = bytes_left;
 743                        bi->bi_offset = sizeof(struct gfs2_rgrp);
 744                        bi->bi_start = 0;
 745                        bi->bi_len = bytes;
 746                /* header block */
 747                } else if (x == 0) {
 748                        bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 749                        bi->bi_offset = sizeof(struct gfs2_rgrp);
 750                        bi->bi_start = 0;
 751                        bi->bi_len = bytes;
 752                /* last block */
 753                } else if (x + 1 == length) {
 754                        bytes = bytes_left;
 755                        bi->bi_offset = sizeof(struct gfs2_meta_header);
 756                        bi->bi_start = rgd->rd_bitbytes - bytes_left;
 757                        bi->bi_len = bytes;
 758                /* other blocks */
 759                } else {
 760                        bytes = sdp->sd_sb.sb_bsize -
 761                                sizeof(struct gfs2_meta_header);
 762                        bi->bi_offset = sizeof(struct gfs2_meta_header);
 763                        bi->bi_start = rgd->rd_bitbytes - bytes_left;
 764                        bi->bi_len = bytes;
 765                }
 766
 767                bytes_left -= bytes;
 768        }
 769
 770        if (bytes_left) {
 771                gfs2_consist_rgrpd(rgd);
 772                return -EIO;
 773        }
 774        bi = rgd->rd_bits + (length - 1);
 775        if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 776                if (gfs2_consist_rgrpd(rgd)) {
 777                        gfs2_rindex_print(rgd);
 778                        fs_err(sdp, "start=%u len=%u offset=%u\n",
 779                               bi->bi_start, bi->bi_len, bi->bi_offset);
 780                }
 781                return -EIO;
 782        }
 783
 784        return 0;
 785}
 786
 787/**
 788 * gfs2_ri_total - Total up the file system space, according to the rindex.
 789 * @sdp: the filesystem
 790 *
 791 */
 792u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 793{
 794        u64 total_data = 0;     
 795        struct inode *inode = sdp->sd_rindex;
 796        struct gfs2_inode *ip = GFS2_I(inode);
 797        char buf[sizeof(struct gfs2_rindex)];
 798        int error, rgrps;
 799
 800        for (rgrps = 0;; rgrps++) {
 801                loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 802
 803                if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 804                        break;
 805                error = gfs2_internal_read(ip, buf, &pos,
 806                                           sizeof(struct gfs2_rindex));
 807                if (error != sizeof(struct gfs2_rindex))
 808                        break;
 809                total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 810        }
 811        return total_data;
 812}
 813
 814static int rgd_insert(struct gfs2_rgrpd *rgd)
 815{
 816        struct gfs2_sbd *sdp = rgd->rd_sbd;
 817        struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 818
 819        /* Figure out where to put new node */
 820        while (*newn) {
 821                struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 822                                                  rd_node);
 823
 824                parent = *newn;
 825                if (rgd->rd_addr < cur->rd_addr)
 826                        newn = &((*newn)->rb_left);
 827                else if (rgd->rd_addr > cur->rd_addr)
 828                        newn = &((*newn)->rb_right);
 829                else
 830                        return -EEXIST;
 831        }
 832
 833        rb_link_node(&rgd->rd_node, parent, newn);
 834        rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 835        sdp->sd_rgrps++;
 836        return 0;
 837}
 838
 839/**
 840 * read_rindex_entry - Pull in a new resource index entry from the disk
 841 * @ip: Pointer to the rindex inode
 842 *
 843 * Returns: 0 on success, > 0 on EOF, error code otherwise
 844 */
 845
 846static int read_rindex_entry(struct gfs2_inode *ip)
 847{
 848        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 849        loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 850        struct gfs2_rindex buf;
 851        int error;
 852        struct gfs2_rgrpd *rgd;
 853
 854        if (pos >= i_size_read(&ip->i_inode))
 855                return 1;
 856
 857        error = gfs2_internal_read(ip, (char *)&buf, &pos,
 858                                   sizeof(struct gfs2_rindex));
 859
 860        if (error != sizeof(struct gfs2_rindex))
 861                return (error == 0) ? 1 : error;
 862
 863        rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 864        error = -ENOMEM;
 865        if (!rgd)
 866                return error;
 867
 868        rgd->rd_sbd = sdp;
 869        rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 870        rgd->rd_length = be32_to_cpu(buf.ri_length);
 871        rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 872        rgd->rd_data = be32_to_cpu(buf.ri_data);
 873        rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 874        spin_lock_init(&rgd->rd_rsspin);
 875
 876        error = compute_bitstructs(rgd);
 877        if (error)
 878                goto fail;
 879
 880        error = gfs2_glock_get(sdp, rgd->rd_addr,
 881                               &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 882        if (error)
 883                goto fail;
 884
 885        rgd->rd_gl->gl_object = rgd;
 886        rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 887        rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
 888        if (rgd->rd_data > sdp->sd_max_rg_data)
 889                sdp->sd_max_rg_data = rgd->rd_data;
 890        spin_lock(&sdp->sd_rindex_spin);
 891        error = rgd_insert(rgd);
 892        spin_unlock(&sdp->sd_rindex_spin);
 893        if (!error)
 894                return 0;
 895
 896        error = 0; /* someone else read in the rgrp; free it and ignore it */
 897        gfs2_glock_put(rgd->rd_gl);
 898
 899fail:
 900        kfree(rgd->rd_bits);
 901        kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 902        return error;
 903}
 904
 905/**
 906 * gfs2_ri_update - Pull in a new resource index from the disk
 907 * @ip: pointer to the rindex inode
 908 *
 909 * Returns: 0 on successful update, error code otherwise
 910 */
 911
 912static int gfs2_ri_update(struct gfs2_inode *ip)
 913{
 914        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 915        int error;
 916
 917        do {
 918                error = read_rindex_entry(ip);
 919        } while (error == 0);
 920
 921        if (error < 0)
 922                return error;
 923
 924        sdp->sd_rindex_uptodate = 1;
 925        return 0;
 926}
 927
 928/**
 929 * gfs2_rindex_update - Update the rindex if required
 930 * @sdp: The GFS2 superblock
 931 *
 932 * We grab a lock on the rindex inode to make sure that it doesn't
 933 * change whilst we are performing an operation. We keep this lock
 934 * for quite long periods of time compared to other locks. This
 935 * doesn't matter, since it is shared and it is very, very rarely
 936 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
 937 *
 938 * This makes sure that we're using the latest copy of the resource index
 939 * special file, which might have been updated if someone expanded the
 940 * filesystem (via gfs2_grow utility), which adds new resource groups.
 941 *
 942 * Returns: 0 on succeess, error code otherwise
 943 */
 944
 945int gfs2_rindex_update(struct gfs2_sbd *sdp)
 946{
 947        struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
 948        struct gfs2_glock *gl = ip->i_gl;
 949        struct gfs2_holder ri_gh;
 950        int error = 0;
 951        int unlock_required = 0;
 952
 953        /* Read new copy from disk if we don't have the latest */
 954        if (!sdp->sd_rindex_uptodate) {
 955                if (!gfs2_glock_is_locked_by_me(gl)) {
 956                        error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
 957                        if (error)
 958                                return error;
 959                        unlock_required = 1;
 960                }
 961                if (!sdp->sd_rindex_uptodate)
 962                        error = gfs2_ri_update(ip);
 963                if (unlock_required)
 964                        gfs2_glock_dq_uninit(&ri_gh);
 965        }
 966
 967        return error;
 968}
 969
 970static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
 971{
 972        const struct gfs2_rgrp *str = buf;
 973        u32 rg_flags;
 974
 975        rg_flags = be32_to_cpu(str->rg_flags);
 976        rg_flags &= ~GFS2_RDF_MASK;
 977        rgd->rd_flags &= GFS2_RDF_MASK;
 978        rgd->rd_flags |= rg_flags;
 979        rgd->rd_free = be32_to_cpu(str->rg_free);
 980        rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
 981        rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
 982}
 983
 984static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
 985{
 986        struct gfs2_rgrp *str = buf;
 987
 988        str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
 989        str->rg_free = cpu_to_be32(rgd->rd_free);
 990        str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
 991        str->__pad = cpu_to_be32(0);
 992        str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
 993        memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
 994}
 995
 996static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
 997{
 998        struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
 999        struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1000
1001        if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1002            rgl->rl_dinodes != str->rg_dinodes ||
1003            rgl->rl_igeneration != str->rg_igeneration)
1004                return 0;
1005        return 1;
1006}
1007
1008static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1009{
1010        const struct gfs2_rgrp *str = buf;
1011
1012        rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1013        rgl->rl_flags = str->rg_flags;
1014        rgl->rl_free = str->rg_free;
1015        rgl->rl_dinodes = str->rg_dinodes;
1016        rgl->rl_igeneration = str->rg_igeneration;
1017        rgl->__pad = 0UL;
1018}
1019
1020static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1021{
1022        struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1023        u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1024        rgl->rl_unlinked = cpu_to_be32(unlinked);
1025}
1026
1027static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1028{
1029        struct gfs2_bitmap *bi;
1030        const u32 length = rgd->rd_length;
1031        const u8 *buffer = NULL;
1032        u32 i, goal, count = 0;
1033
1034        for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1035                goal = 0;
1036                buffer = bi->bi_bh->b_data + bi->bi_offset;
1037                WARN_ON(!buffer_uptodate(bi->bi_bh));
1038                while (goal < bi->bi_len * GFS2_NBBY) {
1039                        goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1040                                           GFS2_BLKST_UNLINKED);
1041                        if (goal == BFITNOENT)
1042                                break;
1043                        count++;
1044                        goal++;
1045                }
1046        }
1047
1048        return count;
1049}
1050
1051
1052/**
1053 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1054 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1055 *
1056 * Read in all of a Resource Group's header and bitmap blocks.
1057 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1058 *
1059 * Returns: errno
1060 */
1061
1062int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1063{
1064        struct gfs2_sbd *sdp = rgd->rd_sbd;
1065        struct gfs2_glock *gl = rgd->rd_gl;
1066        unsigned int length = rgd->rd_length;
1067        struct gfs2_bitmap *bi;
1068        unsigned int x, y;
1069        int error;
1070
1071        if (rgd->rd_bits[0].bi_bh != NULL)
1072                return 0;
1073
1074        for (x = 0; x < length; x++) {
1075                bi = rgd->rd_bits + x;
1076                error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1077                if (error)
1078                        goto fail;
1079        }
1080
1081        for (y = length; y--;) {
1082                bi = rgd->rd_bits + y;
1083                error = gfs2_meta_wait(sdp, bi->bi_bh);
1084                if (error)
1085                        goto fail;
1086                if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1087                                              GFS2_METATYPE_RG)) {
1088                        error = -EIO;
1089                        goto fail;
1090                }
1091        }
1092
1093        if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1094                for (x = 0; x < length; x++)
1095                        clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1096                gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1097                rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1098                rgd->rd_free_clone = rgd->rd_free;
1099        }
1100        if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1101                rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1102                gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1103                                     rgd->rd_bits[0].bi_bh->b_data);
1104        }
1105        else if (sdp->sd_args.ar_rgrplvb) {
1106                if (!gfs2_rgrp_lvb_valid(rgd)){
1107                        gfs2_consist_rgrpd(rgd);
1108                        error = -EIO;
1109                        goto fail;
1110                }
1111                if (rgd->rd_rgl->rl_unlinked == 0)
1112                        rgd->rd_flags &= ~GFS2_RDF_CHECK;
1113        }
1114        return 0;
1115
1116fail:
1117        while (x--) {
1118                bi = rgd->rd_bits + x;
1119                brelse(bi->bi_bh);
1120                bi->bi_bh = NULL;
1121                gfs2_assert_warn(sdp, !bi->bi_clone);
1122        }
1123
1124        return error;
1125}
1126
1127int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1128{
1129        u32 rl_flags;
1130
1131        if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1132                return 0;
1133
1134        if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1135                return gfs2_rgrp_bh_get(rgd);
1136
1137        rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1138        rl_flags &= ~GFS2_RDF_MASK;
1139        rgd->rd_flags &= GFS2_RDF_MASK;
1140        rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1141        if (rgd->rd_rgl->rl_unlinked == 0)
1142                rgd->rd_flags &= ~GFS2_RDF_CHECK;
1143        rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1144        rgd->rd_free_clone = rgd->rd_free;
1145        rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1146        rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1147        return 0;
1148}
1149
1150int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1151{
1152        struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1153        struct gfs2_sbd *sdp = rgd->rd_sbd;
1154
1155        if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1156                return 0;
1157        return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1158}
1159
1160/**
1161 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1162 * @gh: The glock holder for the resource group
1163 *
1164 */
1165
1166void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1167{
1168        struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1169        int x, length = rgd->rd_length;
1170
1171        for (x = 0; x < length; x++) {
1172                struct gfs2_bitmap *bi = rgd->rd_bits + x;
1173                if (bi->bi_bh) {
1174                        brelse(bi->bi_bh);
1175                        bi->bi_bh = NULL;
1176                }
1177        }
1178
1179}
1180
1181int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1182                             struct buffer_head *bh,
1183                             const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1184{
1185        struct super_block *sb = sdp->sd_vfs;
1186        u64 blk;
1187        sector_t start = 0;
1188        sector_t nr_blks = 0;
1189        int rv;
1190        unsigned int x;
1191        u32 trimmed = 0;
1192        u8 diff;
1193
1194        for (x = 0; x < bi->bi_len; x++) {
1195                const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1196                clone += bi->bi_offset;
1197                clone += x;
1198                if (bh) {
1199                        const u8 *orig = bh->b_data + bi->bi_offset + x;
1200                        diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1201                } else {
1202                        diff = ~(*clone | (*clone >> 1));
1203                }
1204                diff &= 0x55;
1205                if (diff == 0)
1206                        continue;
1207                blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1208                while(diff) {
1209                        if (diff & 1) {
1210                                if (nr_blks == 0)
1211                                        goto start_new_extent;
1212                                if ((start + nr_blks) != blk) {
1213                                        if (nr_blks >= minlen) {
1214                                                rv = sb_issue_discard(sb,
1215                                                        start, nr_blks,
1216                                                        GFP_NOFS, 0);
1217                                                if (rv)
1218                                                        goto fail;
1219                                                trimmed += nr_blks;
1220                                        }
1221                                        nr_blks = 0;
1222start_new_extent:
1223                                        start = blk;
1224                                }
1225                                nr_blks++;
1226                        }
1227                        diff >>= 2;
1228                        blk++;
1229                }
1230        }
1231        if (nr_blks >= minlen) {
1232                rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1233                if (rv)
1234                        goto fail;
1235                trimmed += nr_blks;
1236        }
1237        if (ptrimmed)
1238                *ptrimmed = trimmed;
1239        return 0;
1240
1241fail:
1242        if (sdp->sd_args.ar_discard)
1243                fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1244        sdp->sd_args.ar_discard = 0;
1245        return -EIO;
1246}
1247
1248/**
1249 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1250 * @filp: Any file on the filesystem
1251 * @argp: Pointer to the arguments (also used to pass result)
1252 *
1253 * Returns: 0 on success, otherwise error code
1254 */
1255
1256int gfs2_fitrim(struct file *filp, void __user *argp)
1257{
1258        struct inode *inode = file_inode(filp);
1259        struct gfs2_sbd *sdp = GFS2_SB(inode);
1260        struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1261        struct buffer_head *bh;
1262        struct gfs2_rgrpd *rgd;
1263        struct gfs2_rgrpd *rgd_end;
1264        struct gfs2_holder gh;
1265        struct fstrim_range r;
1266        int ret = 0;
1267        u64 amt;
1268        u64 trimmed = 0;
1269        u64 start, end, minlen;
1270        unsigned int x;
1271        unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1272
1273        if (!capable(CAP_SYS_ADMIN))
1274                return -EPERM;
1275
1276        if (!blk_queue_discard(q))
1277                return -EOPNOTSUPP;
1278
1279        if (copy_from_user(&r, argp, sizeof(r)))
1280                return -EFAULT;
1281
1282        ret = gfs2_rindex_update(sdp);
1283        if (ret)
1284                return ret;
1285
1286        start = r.start >> bs_shift;
1287        end = start + (r.len >> bs_shift);
1288        minlen = max_t(u64, r.minlen,
1289                       q->limits.discard_granularity) >> bs_shift;
1290
1291        if (end <= start || minlen > sdp->sd_max_rg_data)
1292                return -EINVAL;
1293
1294        rgd = gfs2_blk2rgrpd(sdp, start, 0);
1295        rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1296
1297        if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1298            && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1299                return -EINVAL; /* start is beyond the end of the fs */
1300
1301        while (1) {
1302
1303                ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1304                if (ret)
1305                        goto out;
1306
1307                if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1308                        /* Trim each bitmap in the rgrp */
1309                        for (x = 0; x < rgd->rd_length; x++) {
1310                                struct gfs2_bitmap *bi = rgd->rd_bits + x;
1311                                ret = gfs2_rgrp_send_discards(sdp,
1312                                                rgd->rd_data0, NULL, bi, minlen,
1313                                                &amt);
1314                                if (ret) {
1315                                        gfs2_glock_dq_uninit(&gh);
1316                                        goto out;
1317                                }
1318                                trimmed += amt;
1319                        }
1320
1321                        /* Mark rgrp as having been trimmed */
1322                        ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1323                        if (ret == 0) {
1324                                bh = rgd->rd_bits[0].bi_bh;
1325                                rgd->rd_flags |= GFS2_RGF_TRIMMED;
1326                                gfs2_trans_add_meta(rgd->rd_gl, bh);
1327                                gfs2_rgrp_out(rgd, bh->b_data);
1328                                gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1329                                gfs2_trans_end(sdp);
1330                        }
1331                }
1332                gfs2_glock_dq_uninit(&gh);
1333
1334                if (rgd == rgd_end)
1335                        break;
1336
1337                rgd = gfs2_rgrpd_get_next(rgd);
1338        }
1339
1340out:
1341        r.len = trimmed << bs_shift;
1342        if (copy_to_user(argp, &r, sizeof(r)))
1343                return -EFAULT;
1344
1345        return ret;
1346}
1347
1348/**
1349 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1350 * @ip: the inode structure
1351 *
1352 */
1353static void rs_insert(struct gfs2_inode *ip)
1354{
1355        struct rb_node **newn, *parent = NULL;
1356        int rc;
1357        struct gfs2_blkreserv *rs = ip->i_res;
1358        struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1359        u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1360
1361        BUG_ON(gfs2_rs_active(rs));
1362
1363        spin_lock(&rgd->rd_rsspin);
1364        newn = &rgd->rd_rstree.rb_node;
1365        while (*newn) {
1366                struct gfs2_blkreserv *cur =
1367                        rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1368
1369                parent = *newn;
1370                rc = rs_cmp(fsblock, rs->rs_free, cur);
1371                if (rc > 0)
1372                        newn = &((*newn)->rb_right);
1373                else if (rc < 0)
1374                        newn = &((*newn)->rb_left);
1375                else {
1376                        spin_unlock(&rgd->rd_rsspin);
1377                        WARN_ON(1);
1378                        return;
1379                }
1380        }
1381
1382        rb_link_node(&rs->rs_node, parent, newn);
1383        rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1384
1385        /* Do our rgrp accounting for the reservation */
1386        rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1387        spin_unlock(&rgd->rd_rsspin);
1388        trace_gfs2_rs(rs, TRACE_RS_INSERT);
1389}
1390
1391/**
1392 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1393 * @rgd: the resource group descriptor
1394 * @ip: pointer to the inode for which we're reserving blocks
1395 * @requested: number of blocks required for this allocation
1396 *
1397 */
1398
1399static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1400                           unsigned requested)
1401{
1402        struct gfs2_rbm rbm = { .rgd = rgd, };
1403        u64 goal;
1404        struct gfs2_blkreserv *rs = ip->i_res;
1405        u32 extlen;
1406        u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1407        int ret;
1408        struct inode *inode = &ip->i_inode;
1409
1410        if (S_ISDIR(inode->i_mode))
1411                extlen = 1;
1412        else {
1413                extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1414                extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1415        }
1416        if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1417                return;
1418
1419        /* Find bitmap block that contains bits for goal block */
1420        if (rgrp_contains_block(rgd, ip->i_goal))
1421                goal = ip->i_goal;
1422        else
1423                goal = rgd->rd_last_alloc + rgd->rd_data0;
1424
1425        if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1426                return;
1427
1428        ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1429        if (ret == 0) {
1430                rs->rs_rbm = rbm;
1431                rs->rs_free = extlen;
1432                rs->rs_inum = ip->i_no_addr;
1433                rs_insert(ip);
1434        } else {
1435                if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1436                        rgd->rd_last_alloc = 0;
1437        }
1438}
1439
1440/**
1441 * gfs2_next_unreserved_block - Return next block that is not reserved
1442 * @rgd: The resource group
1443 * @block: The starting block
1444 * @length: The required length
1445 * @ip: Ignore any reservations for this inode
1446 *
1447 * If the block does not appear in any reservation, then return the
1448 * block number unchanged. If it does appear in the reservation, then
1449 * keep looking through the tree of reservations in order to find the
1450 * first block number which is not reserved.
1451 */
1452
1453static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1454                                      u32 length,
1455                                      const struct gfs2_inode *ip)
1456{
1457        struct gfs2_blkreserv *rs;
1458        struct rb_node *n;
1459        int rc;
1460
1461        spin_lock(&rgd->rd_rsspin);
1462        n = rgd->rd_rstree.rb_node;
1463        while (n) {
1464                rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1465                rc = rs_cmp(block, length, rs);
1466                if (rc < 0)
1467                        n = n->rb_left;
1468                else if (rc > 0)
1469                        n = n->rb_right;
1470                else
1471                        break;
1472        }
1473
1474        if (n) {
1475                while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1476                        block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1477                        n = n->rb_right;
1478                        if (n == NULL)
1479                                break;
1480                        rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1481                }
1482        }
1483
1484        spin_unlock(&rgd->rd_rsspin);
1485        return block;
1486}
1487
1488/**
1489 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1490 * @rbm: The current position in the resource group
1491 * @ip: The inode for which we are searching for blocks
1492 * @minext: The minimum extent length
1493 *
1494 * This checks the current position in the rgrp to see whether there is
1495 * a reservation covering this block. If not then this function is a
1496 * no-op. If there is, then the position is moved to the end of the
1497 * contiguous reservation(s) so that we are pointing at the first
1498 * non-reserved block.
1499 *
1500 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1501 */
1502
1503static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1504                                             const struct gfs2_inode *ip,
1505                                             u32 minext)
1506{
1507        u64 block = gfs2_rbm_to_block(rbm);
1508        u32 extlen = 1;
1509        u64 nblock;
1510        int ret;
1511
1512        /*
1513         * If we have a minimum extent length, then skip over any extent
1514         * which is less than the min extent length in size.
1515         */
1516        if (minext) {
1517                extlen = gfs2_free_extlen(rbm, minext);
1518                nblock = block + extlen;
1519                if (extlen < minext)
1520                        goto fail;
1521        }
1522
1523        /*
1524         * Check the extent which has been found against the reservations
1525         * and skip if parts of it are already reserved
1526         */
1527        nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1528        if (nblock == block)
1529                return 0;
1530fail:
1531        ret = gfs2_rbm_from_block(rbm, nblock);
1532        if (ret < 0)
1533                return ret;
1534        return 1;
1535}
1536
1537/**
1538 * gfs2_rbm_find - Look for blocks of a particular state
1539 * @rbm: Value/result starting position and final position
1540 * @state: The state which we want to find
1541 * @minext: The requested extent length (0 for a single block)
1542 * @ip: If set, check for reservations
1543 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1544 *          around until we've reached the starting point.
1545 *
1546 * Side effects:
1547 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1548 *   has no free blocks in it.
1549 *
1550 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1551 */
1552
1553static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1554                         const struct gfs2_inode *ip, bool nowrap)
1555{
1556        struct buffer_head *bh;
1557        struct gfs2_bitmap *initial_bi;
1558        u32 initial_offset;
1559        u32 offset;
1560        u8 *buffer;
1561        int index;
1562        int n = 0;
1563        int iters = rbm->rgd->rd_length;
1564        int ret;
1565
1566        /* If we are not starting at the beginning of a bitmap, then we
1567         * need to add one to the bitmap count to ensure that we search
1568         * the starting bitmap twice.
1569         */
1570        if (rbm->offset != 0)
1571                iters++;
1572
1573        while(1) {
1574                if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
1575                    (state == GFS2_BLKST_FREE))
1576                        goto next_bitmap;
1577
1578                bh = rbm->bi->bi_bh;
1579                buffer = bh->b_data + rbm->bi->bi_offset;
1580                WARN_ON(!buffer_uptodate(bh));
1581                if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
1582                        buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
1583                initial_offset = rbm->offset;
1584                offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
1585                if (offset == BFITNOENT)
1586                        goto bitmap_full;
1587                rbm->offset = offset;
1588                if (ip == NULL)
1589                        return 0;
1590
1591                initial_bi = rbm->bi;
1592                ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1593                if (ret == 0)
1594                        return 0;
1595                if (ret > 0) {
1596                        n += (rbm->bi - initial_bi);
1597                        goto next_iter;
1598                }
1599                if (ret == -E2BIG) {
1600                        index = 0;
1601                        rbm->offset = 0;
1602                        n += (rbm->bi - initial_bi);
1603                        goto res_covered_end_of_rgrp;
1604                }
1605                return ret;
1606
1607bitmap_full:    /* Mark bitmap as full and fall through */
1608                if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1609                        set_bit(GBF_FULL, &rbm->bi->bi_flags);
1610
1611next_bitmap:    /* Find next bitmap in the rgrp */
1612                rbm->offset = 0;
1613                index = rbm->bi - rbm->rgd->rd_bits;
1614                index++;
1615                if (index == rbm->rgd->rd_length)
1616                        index = 0;
1617res_covered_end_of_rgrp:
1618                rbm->bi = &rbm->rgd->rd_bits[index];
1619                if ((index == 0) && nowrap)
1620                        break;
1621                n++;
1622next_iter:
1623                if (n >= iters)
1624                        break;
1625        }
1626
1627        return -ENOSPC;
1628}
1629
1630/**
1631 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1632 * @rgd: The rgrp
1633 * @last_unlinked: block address of the last dinode we unlinked
1634 * @skip: block address we should explicitly not unlink
1635 *
1636 * Returns: 0 if no error
1637 *          The inode, if one has been found, in inode.
1638 */
1639
1640static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1641{
1642        u64 block;
1643        struct gfs2_sbd *sdp = rgd->rd_sbd;
1644        struct gfs2_glock *gl;
1645        struct gfs2_inode *ip;
1646        int error;
1647        int found = 0;
1648        struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
1649
1650        while (1) {
1651                down_write(&sdp->sd_log_flush_lock);
1652                error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1653                up_write(&sdp->sd_log_flush_lock);
1654                if (error == -ENOSPC)
1655                        break;
1656                if (WARN_ON_ONCE(error))
1657                        break;
1658
1659                block = gfs2_rbm_to_block(&rbm);
1660                if (gfs2_rbm_from_block(&rbm, block + 1))
1661                        break;
1662                if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1663                        continue;
1664                if (block == skip)
1665                        continue;
1666                *last_unlinked = block;
1667
1668                error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1669                if (error)
1670                        continue;
1671
1672                /* If the inode is already in cache, we can ignore it here
1673                 * because the existing inode disposal code will deal with
1674                 * it when all refs have gone away. Accessing gl_object like
1675                 * this is not safe in general. Here it is ok because we do
1676                 * not dereference the pointer, and we only need an approx
1677                 * answer to whether it is NULL or not.
1678                 */
1679                ip = gl->gl_object;
1680
1681                if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1682                        gfs2_glock_put(gl);
1683                else
1684                        found++;
1685
1686                /* Limit reclaim to sensible number of tasks */
1687                if (found > NR_CPUS)
1688                        return;
1689        }
1690
1691        rgd->rd_flags &= ~GFS2_RDF_CHECK;
1692        return;
1693}
1694
1695/**
1696 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1697 * @rgd: The rgrp in question
1698 * @loops: An indication of how picky we can be (0=very, 1=less so)
1699 *
1700 * This function uses the recently added glock statistics in order to
1701 * figure out whether a parciular resource group is suffering from
1702 * contention from multiple nodes. This is done purely on the basis
1703 * of timings, since this is the only data we have to work with and
1704 * our aim here is to reject a resource group which is highly contended
1705 * but (very important) not to do this too often in order to ensure that
1706 * we do not land up introducing fragmentation by changing resource
1707 * groups when not actually required.
1708 *
1709 * The calculation is fairly simple, we want to know whether the SRTTB
1710 * (i.e. smoothed round trip time for blocking operations) to acquire
1711 * the lock for this rgrp's glock is significantly greater than the
1712 * time taken for resource groups on average. We introduce a margin in
1713 * the form of the variable @var which is computed as the sum of the two
1714 * respective variences, and multiplied by a factor depending on @loops
1715 * and whether we have a lot of data to base the decision on. This is
1716 * then tested against the square difference of the means in order to
1717 * decide whether the result is statistically significant or not.
1718 *
1719 * Returns: A boolean verdict on the congestion status
1720 */
1721
1722static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1723{
1724        const struct gfs2_glock *gl = rgd->rd_gl;
1725        const struct gfs2_sbd *sdp = gl->gl_sbd;
1726        struct gfs2_lkstats *st;
1727        s64 r_dcount, l_dcount;
1728        s64 r_srttb, l_srttb;
1729        s64 srttb_diff;
1730        s64 sqr_diff;
1731        s64 var;
1732
1733        preempt_disable();
1734        st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1735        r_srttb = st->stats[GFS2_LKS_SRTTB];
1736        r_dcount = st->stats[GFS2_LKS_DCOUNT];
1737        var = st->stats[GFS2_LKS_SRTTVARB] +
1738              gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1739        preempt_enable();
1740
1741        l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1742        l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1743
1744        if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1745                return false;
1746
1747        srttb_diff = r_srttb - l_srttb;
1748        sqr_diff = srttb_diff * srttb_diff;
1749
1750        var *= 2;
1751        if (l_dcount < 8 || r_dcount < 8)
1752                var *= 2;
1753        if (loops == 1)
1754                var *= 2;
1755
1756        return ((srttb_diff < 0) && (sqr_diff > var));
1757}
1758
1759/**
1760 * gfs2_rgrp_used_recently
1761 * @rs: The block reservation with the rgrp to test
1762 * @msecs: The time limit in milliseconds
1763 *
1764 * Returns: True if the rgrp glock has been used within the time limit
1765 */
1766static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1767                                    u64 msecs)
1768{
1769        u64 tdiff;
1770
1771        tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1772                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1773
1774        return tdiff > (msecs * 1000 * 1000);
1775}
1776
1777static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1778{
1779        const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1780        u32 skip;
1781
1782        get_random_bytes(&skip, sizeof(skip));
1783        return skip % sdp->sd_rgrps;
1784}
1785
1786static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1787{
1788        struct gfs2_rgrpd *rgd = *pos;
1789        struct gfs2_sbd *sdp = rgd->rd_sbd;
1790
1791        rgd = gfs2_rgrpd_get_next(rgd);
1792        if (rgd == NULL)
1793                rgd = gfs2_rgrpd_get_first(sdp);
1794        *pos = rgd;
1795        if (rgd != begin) /* If we didn't wrap */
1796                return true;
1797        return false;
1798}
1799
1800/**
1801 * gfs2_inplace_reserve - Reserve space in the filesystem
1802 * @ip: the inode to reserve space for
1803 * @requested: the number of blocks to be reserved
1804 *
1805 * Returns: errno
1806 */
1807
1808int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1809{
1810        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1811        struct gfs2_rgrpd *begin = NULL;
1812        struct gfs2_blkreserv *rs = ip->i_res;
1813        int error = 0, rg_locked, flags = 0;
1814        u64 last_unlinked = NO_BLOCK;
1815        int loops = 0;
1816        u32 skip = 0;
1817
1818        if (sdp->sd_args.ar_rgrplvb)
1819                flags |= GL_SKIP;
1820        if (gfs2_assert_warn(sdp, requested))
1821                return -EINVAL;
1822        if (gfs2_rs_active(rs)) {
1823                begin = rs->rs_rbm.rgd;
1824                flags = 0; /* Yoda: Do or do not. There is no try */
1825        } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1826                rs->rs_rbm.rgd = begin = ip->i_rgd;
1827        } else {
1828                rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1829        }
1830        if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1831                skip = gfs2_orlov_skip(ip);
1832        if (rs->rs_rbm.rgd == NULL)
1833                return -EBADSLT;
1834
1835        while (loops < 3) {
1836                rg_locked = 1;
1837
1838                if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1839                        rg_locked = 0;
1840                        if (skip && skip--)
1841                                goto next_rgrp;
1842                        if (!gfs2_rs_active(rs) && (loops < 2) &&
1843                             gfs2_rgrp_used_recently(rs, 1000) &&
1844                             gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1845                                goto next_rgrp;
1846                        error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1847                                                   LM_ST_EXCLUSIVE, flags,
1848                                                   &rs->rs_rgd_gh);
1849                        if (unlikely(error))
1850                                return error;
1851                        if (!gfs2_rs_active(rs) && (loops < 2) &&
1852                            gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1853                                goto skip_rgrp;
1854                        if (sdp->sd_args.ar_rgrplvb) {
1855                                error = update_rgrp_lvb(rs->rs_rbm.rgd);
1856                                if (unlikely(error)) {
1857                                        gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1858                                        return error;
1859                                }
1860                        }
1861                }
1862
1863                /* Skip unuseable resource groups */
1864                if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1865                        goto skip_rgrp;
1866
1867                if (sdp->sd_args.ar_rgrplvb)
1868                        gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1869
1870                /* Get a reservation if we don't already have one */
1871                if (!gfs2_rs_active(rs))
1872                        rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1873
1874                /* Skip rgrps when we can't get a reservation on first pass */
1875                if (!gfs2_rs_active(rs) && (loops < 1))
1876                        goto check_rgrp;
1877
1878                /* If rgrp has enough free space, use it */
1879                if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1880                        ip->i_rgd = rs->rs_rbm.rgd;
1881                        return 0;
1882                }
1883
1884                /* Drop reservation, if we couldn't use reserved rgrp */
1885                if (gfs2_rs_active(rs))
1886                        gfs2_rs_deltree(rs);
1887check_rgrp:
1888                /* Check for unlinked inodes which can be reclaimed */
1889                if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1890                        try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1891                                        ip->i_no_addr);
1892skip_rgrp:
1893                /* Unlock rgrp if required */
1894                if (!rg_locked)
1895                        gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1896next_rgrp:
1897                /* Find the next rgrp, and continue looking */
1898                if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1899                        continue;
1900                if (skip)
1901                        continue;
1902
1903                /* If we've scanned all the rgrps, but found no free blocks
1904                 * then this checks for some less likely conditions before
1905                 * trying again.
1906                 */
1907                loops++;
1908                /* Check that fs hasn't grown if writing to rindex */
1909                if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1910                        error = gfs2_ri_update(ip);
1911                        if (error)
1912                                return error;
1913                }
1914                /* Flushing the log may release space */
1915                if (loops == 2)
1916                        gfs2_log_flush(sdp, NULL);
1917        }
1918
1919        return -ENOSPC;
1920}
1921
1922/**
1923 * gfs2_inplace_release - release an inplace reservation
1924 * @ip: the inode the reservation was taken out on
1925 *
1926 * Release a reservation made by gfs2_inplace_reserve().
1927 */
1928
1929void gfs2_inplace_release(struct gfs2_inode *ip)
1930{
1931        struct gfs2_blkreserv *rs = ip->i_res;
1932
1933        if (rs->rs_rgd_gh.gh_gl)
1934                gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1935}
1936
1937/**
1938 * gfs2_get_block_type - Check a block in a RG is of given type
1939 * @rgd: the resource group holding the block
1940 * @block: the block number
1941 *
1942 * Returns: The block type (GFS2_BLKST_*)
1943 */
1944
1945static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1946{
1947        struct gfs2_rbm rbm = { .rgd = rgd, };
1948        int ret;
1949
1950        ret = gfs2_rbm_from_block(&rbm, block);
1951        WARN_ON_ONCE(ret != 0);
1952
1953        return gfs2_testbit(&rbm);
1954}
1955
1956
1957/**
1958 * gfs2_alloc_extent - allocate an extent from a given bitmap
1959 * @rbm: the resource group information
1960 * @dinode: TRUE if the first block we allocate is for a dinode
1961 * @n: The extent length (value/result)
1962 *
1963 * Add the bitmap buffer to the transaction.
1964 * Set the found bits to @new_state to change block's allocation state.
1965 */
1966static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1967                             unsigned int *n)
1968{
1969        struct gfs2_rbm pos = { .rgd = rbm->rgd, };
1970        const unsigned int elen = *n;
1971        u64 block;
1972        int ret;
1973
1974        *n = 1;
1975        block = gfs2_rbm_to_block(rbm);
1976        gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh);
1977        gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1978        block++;
1979        while (*n < elen) {
1980                ret = gfs2_rbm_from_block(&pos, block);
1981                if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
1982                        break;
1983                gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh);
1984                gfs2_setbit(&pos, true, GFS2_BLKST_USED);
1985                (*n)++;
1986                block++;
1987        }
1988}
1989
1990/**
1991 * rgblk_free - Change alloc state of given block(s)
1992 * @sdp: the filesystem
1993 * @bstart: the start of a run of blocks to free
1994 * @blen: the length of the block run (all must lie within ONE RG!)
1995 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1996 *
1997 * Returns:  Resource group containing the block(s)
1998 */
1999
2000static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2001                                     u32 blen, unsigned char new_state)
2002{
2003        struct gfs2_rbm rbm;
2004
2005        rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2006        if (!rbm.rgd) {
2007                if (gfs2_consist(sdp))
2008                        fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2009                return NULL;
2010        }
2011
2012        while (blen--) {
2013                gfs2_rbm_from_block(&rbm, bstart);
2014                bstart++;
2015                if (!rbm.bi->bi_clone) {
2016                        rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
2017                                                   GFP_NOFS | __GFP_NOFAIL);
2018                        memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
2019                               rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
2020                               rbm.bi->bi_len);
2021                }
2022                gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh);
2023                gfs2_setbit(&rbm, false, new_state);
2024        }
2025
2026        return rbm.rgd;
2027}
2028
2029/**
2030 * gfs2_rgrp_dump - print out an rgrp
2031 * @seq: The iterator
2032 * @gl: The glock in question
2033 *
2034 */
2035
2036int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2037{
2038        struct gfs2_rgrpd *rgd = gl->gl_object;
2039        struct gfs2_blkreserv *trs;
2040        const struct rb_node *n;
2041
2042        if (rgd == NULL)
2043                return 0;
2044        gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2045                       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2046                       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2047                       rgd->rd_reserved);
2048        spin_lock(&rgd->rd_rsspin);
2049        for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2050                trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2051                dump_rs(seq, trs);
2052        }
2053        spin_unlock(&rgd->rd_rsspin);
2054        return 0;
2055}
2056
2057static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2058{
2059        struct gfs2_sbd *sdp = rgd->rd_sbd;
2060        fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2061                (unsigned long long)rgd->rd_addr);
2062        fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2063        gfs2_rgrp_dump(NULL, rgd->rd_gl);
2064        rgd->rd_flags |= GFS2_RDF_ERROR;
2065}
2066
2067/**
2068 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2069 * @ip: The inode we have just allocated blocks for
2070 * @rbm: The start of the allocated blocks
2071 * @len: The extent length
2072 *
2073 * Adjusts a reservation after an allocation has taken place. If the
2074 * reservation does not match the allocation, or if it is now empty
2075 * then it is removed.
2076 */
2077
2078static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2079                                    const struct gfs2_rbm *rbm, unsigned len)
2080{
2081        struct gfs2_blkreserv *rs = ip->i_res;
2082        struct gfs2_rgrpd *rgd = rbm->rgd;
2083        unsigned rlen;
2084        u64 block;
2085        int ret;
2086
2087        spin_lock(&rgd->rd_rsspin);
2088        if (gfs2_rs_active(rs)) {
2089                if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2090                        block = gfs2_rbm_to_block(rbm);
2091                        ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2092                        rlen = min(rs->rs_free, len);
2093                        rs->rs_free -= rlen;
2094                        rgd->rd_reserved -= rlen;
2095                        trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2096                        if (rs->rs_free && !ret)
2097                                goto out;
2098                }
2099                __rs_deltree(rs);
2100        }
2101out:
2102        spin_unlock(&rgd->rd_rsspin);
2103}
2104
2105/**
2106 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2107 * @ip: the inode to allocate the block for
2108 * @bn: Used to return the starting block number
2109 * @nblocks: requested number of blocks/extent length (value/result)
2110 * @dinode: 1 if we're allocating a dinode block, else 0
2111 * @generation: the generation number of the inode
2112 *
2113 * Returns: 0 or error
2114 */
2115
2116int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2117                      bool dinode, u64 *generation)
2118{
2119        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2120        struct buffer_head *dibh;
2121        struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2122        unsigned int ndata;
2123        u64 goal;
2124        u64 block; /* block, within the file system scope */
2125        int error;
2126
2127        if (gfs2_rs_active(ip->i_res))
2128                goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2129        else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2130                goal = ip->i_goal;
2131        else
2132                goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2133
2134        gfs2_rbm_from_block(&rbm, goal);
2135        error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2136
2137        if (error == -ENOSPC) {
2138                gfs2_rbm_from_block(&rbm, goal);
2139                error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2140        }
2141
2142        /* Since all blocks are reserved in advance, this shouldn't happen */
2143        if (error) {
2144                fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2145                        (unsigned long long)ip->i_no_addr, error, *nblocks,
2146                        test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2147                goto rgrp_error;
2148        }
2149
2150        gfs2_alloc_extent(&rbm, dinode, nblocks);
2151        block = gfs2_rbm_to_block(&rbm);
2152        rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2153        if (gfs2_rs_active(ip->i_res))
2154                gfs2_adjust_reservation(ip, &rbm, *nblocks);
2155        ndata = *nblocks;
2156        if (dinode)
2157                ndata--;
2158
2159        if (!dinode) {
2160                ip->i_goal = block + ndata - 1;
2161                error = gfs2_meta_inode_buffer(ip, &dibh);
2162                if (error == 0) {
2163                        struct gfs2_dinode *di =
2164                                (struct gfs2_dinode *)dibh->b_data;
2165                        gfs2_trans_add_meta(ip->i_gl, dibh);
2166                        di->di_goal_meta = di->di_goal_data =
2167                                cpu_to_be64(ip->i_goal);
2168                        brelse(dibh);
2169                }
2170        }
2171        if (rbm.rgd->rd_free < *nblocks) {
2172                printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2173                goto rgrp_error;
2174        }
2175
2176        rbm.rgd->rd_free -= *nblocks;
2177        if (dinode) {
2178                rbm.rgd->rd_dinodes++;
2179                *generation = rbm.rgd->rd_igeneration++;
2180                if (*generation == 0)
2181                        *generation = rbm.rgd->rd_igeneration++;
2182        }
2183
2184        gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2185        gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2186        gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2187
2188        gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2189        if (dinode)
2190                gfs2_trans_add_unrevoke(sdp, block, 1);
2191
2192        gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2193
2194        rbm.rgd->rd_free_clone -= *nblocks;
2195        trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2196                               dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2197        *bn = block;
2198        return 0;
2199
2200rgrp_error:
2201        gfs2_rgrp_error(rbm.rgd);
2202        return -EIO;
2203}
2204
2205/**
2206 * __gfs2_free_blocks - free a contiguous run of block(s)
2207 * @ip: the inode these blocks are being freed from
2208 * @bstart: first block of a run of contiguous blocks
2209 * @blen: the length of the block run
2210 * @meta: 1 if the blocks represent metadata
2211 *
2212 */
2213
2214void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2215{
2216        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2217        struct gfs2_rgrpd *rgd;
2218
2219        rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2220        if (!rgd)
2221                return;
2222        trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2223        rgd->rd_free += blen;
2224        rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2225        gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2226        gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2227        gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2228
2229        /* Directories keep their data in the metadata address space */
2230        if (meta || ip->i_depth)
2231                gfs2_meta_wipe(ip, bstart, blen);
2232}
2233
2234/**
2235 * gfs2_free_meta - free a contiguous run of data block(s)
2236 * @ip: the inode these blocks are being freed from
2237 * @bstart: first block of a run of contiguous blocks
2238 * @blen: the length of the block run
2239 *
2240 */
2241
2242void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2243{
2244        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2245
2246        __gfs2_free_blocks(ip, bstart, blen, 1);
2247        gfs2_statfs_change(sdp, 0, +blen, 0);
2248        gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2249}
2250
2251void gfs2_unlink_di(struct inode *inode)
2252{
2253        struct gfs2_inode *ip = GFS2_I(inode);
2254        struct gfs2_sbd *sdp = GFS2_SB(inode);
2255        struct gfs2_rgrpd *rgd;
2256        u64 blkno = ip->i_no_addr;
2257
2258        rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2259        if (!rgd)
2260                return;
2261        trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2262        gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2263        gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2264        gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2265        update_rgrp_lvb_unlinked(rgd, 1);
2266}
2267
2268static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2269{
2270        struct gfs2_sbd *sdp = rgd->rd_sbd;
2271        struct gfs2_rgrpd *tmp_rgd;
2272
2273        tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2274        if (!tmp_rgd)
2275                return;
2276        gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2277
2278        if (!rgd->rd_dinodes)
2279                gfs2_consist_rgrpd(rgd);
2280        rgd->rd_dinodes--;
2281        rgd->rd_free++;
2282
2283        gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2284        gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2285        gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2286        update_rgrp_lvb_unlinked(rgd, -1);
2287
2288        gfs2_statfs_change(sdp, 0, +1, -1);
2289}
2290
2291
2292void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2293{
2294        gfs2_free_uninit_di(rgd, ip->i_no_addr);
2295        trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2296        gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2297        gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2298}
2299
2300/**
2301 * gfs2_check_blk_type - Check the type of a block
2302 * @sdp: The superblock
2303 * @no_addr: The block number to check
2304 * @type: The block type we are looking for
2305 *
2306 * Returns: 0 if the block type matches the expected type
2307 *          -ESTALE if it doesn't match
2308 *          or -ve errno if something went wrong while checking
2309 */
2310
2311int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2312{
2313        struct gfs2_rgrpd *rgd;
2314        struct gfs2_holder rgd_gh;
2315        int error = -EINVAL;
2316
2317        rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2318        if (!rgd)
2319                goto fail;
2320
2321        error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2322        if (error)
2323                goto fail;
2324
2325        if (gfs2_get_block_type(rgd, no_addr) != type)
2326                error = -ESTALE;
2327
2328        gfs2_glock_dq_uninit(&rgd_gh);
2329fail:
2330        return error;
2331}
2332
2333/**
2334 * gfs2_rlist_add - add a RG to a list of RGs
2335 * @ip: the inode
2336 * @rlist: the list of resource groups
2337 * @block: the block
2338 *
2339 * Figure out what RG a block belongs to and add that RG to the list
2340 *
2341 * FIXME: Don't use NOFAIL
2342 *
2343 */
2344
2345void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2346                    u64 block)
2347{
2348        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2349        struct gfs2_rgrpd *rgd;
2350        struct gfs2_rgrpd **tmp;
2351        unsigned int new_space;
2352        unsigned int x;
2353
2354        if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2355                return;
2356
2357        if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2358                rgd = ip->i_rgd;
2359        else
2360                rgd = gfs2_blk2rgrpd(sdp, block, 1);
2361        if (!rgd) {
2362                fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2363                return;
2364        }
2365        ip->i_rgd = rgd;
2366
2367        for (x = 0; x < rlist->rl_rgrps; x++)
2368                if (rlist->rl_rgd[x] == rgd)
2369                        return;
2370
2371        if (rlist->rl_rgrps == rlist->rl_space) {
2372                new_space = rlist->rl_space + 10;
2373
2374                tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2375                              GFP_NOFS | __GFP_NOFAIL);
2376
2377                if (rlist->rl_rgd) {
2378                        memcpy(tmp, rlist->rl_rgd,
2379                               rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2380                        kfree(rlist->rl_rgd);
2381                }
2382
2383                rlist->rl_space = new_space;
2384                rlist->rl_rgd = tmp;
2385        }
2386
2387        rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2388}
2389
2390/**
2391 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2392 *      and initialize an array of glock holders for them
2393 * @rlist: the list of resource groups
2394 * @state: the lock state to acquire the RG lock in
2395 *
2396 * FIXME: Don't use NOFAIL
2397 *
2398 */
2399
2400void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2401{
2402        unsigned int x;
2403
2404        rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2405                                GFP_NOFS | __GFP_NOFAIL);
2406        for (x = 0; x < rlist->rl_rgrps; x++)
2407                gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2408                                state, 0,
2409                                &rlist->rl_ghs[x]);
2410}
2411
2412/**
2413 * gfs2_rlist_free - free a resource group list
2414 * @list: the list of resource groups
2415 *
2416 */
2417
2418void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2419{
2420        unsigned int x;
2421
2422        kfree(rlist->rl_rgd);
2423
2424        if (rlist->rl_ghs) {
2425                for (x = 0; x < rlist->rl_rgrps; x++)
2426                        gfs2_holder_uninit(&rlist->rl_ghs[x]);
2427                kfree(rlist->rl_ghs);
2428                rlist->rl_ghs = NULL;
2429        }
2430}
2431
2432