linux/fs/nfs/dir.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996  Added silly rename for unlink   --okir
   9 * 28 Sep 1996  Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/time.h>
  22#include <linux/errno.h>
  23#include <linux/stat.h>
  24#include <linux/fcntl.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/mm.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/nfs_fs.h>
  31#include <linux/nfs_mount.h>
  32#include <linux/pagemap.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/swap.h>
  37#include <linux/sched.h>
  38#include <linux/kmemleak.h>
  39#include <linux/xattr.h>
  40
  41#include "delegation.h"
  42#include "iostat.h"
  43#include "internal.h"
  44#include "fscache.h"
  45
  46/* #define NFS_DEBUG_VERBOSE 1 */
  47
  48static int nfs_opendir(struct inode *, struct file *);
  49static int nfs_closedir(struct inode *, struct file *);
  50static int nfs_readdir(struct file *, struct dir_context *);
  51static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  52static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  53static void nfs_readdir_clear_array(struct page*);
  54
  55const struct file_operations nfs_dir_operations = {
  56        .llseek         = nfs_llseek_dir,
  57        .read           = generic_read_dir,
  58        .iterate        = nfs_readdir,
  59        .open           = nfs_opendir,
  60        .release        = nfs_closedir,
  61        .fsync          = nfs_fsync_dir,
  62};
  63
  64const struct address_space_operations nfs_dir_aops = {
  65        .freepage = nfs_readdir_clear_array,
  66};
  67
  68static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
  69{
  70        struct nfs_open_dir_context *ctx;
  71        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  72        if (ctx != NULL) {
  73                ctx->duped = 0;
  74                ctx->attr_gencount = NFS_I(dir)->attr_gencount;
  75                ctx->dir_cookie = 0;
  76                ctx->dup_cookie = 0;
  77                ctx->cred = get_rpccred(cred);
  78                return ctx;
  79        }
  80        return  ERR_PTR(-ENOMEM);
  81}
  82
  83static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
  84{
  85        put_rpccred(ctx->cred);
  86        kfree(ctx);
  87}
  88
  89/*
  90 * Open file
  91 */
  92static int
  93nfs_opendir(struct inode *inode, struct file *filp)
  94{
  95        int res = 0;
  96        struct nfs_open_dir_context *ctx;
  97        struct rpc_cred *cred;
  98
  99        dfprintk(FILE, "NFS: open dir(%s/%s)\n",
 100                        filp->f_path.dentry->d_parent->d_name.name,
 101                        filp->f_path.dentry->d_name.name);
 102
 103        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 104
 105        cred = rpc_lookup_cred();
 106        if (IS_ERR(cred))
 107                return PTR_ERR(cred);
 108        ctx = alloc_nfs_open_dir_context(inode, cred);
 109        if (IS_ERR(ctx)) {
 110                res = PTR_ERR(ctx);
 111                goto out;
 112        }
 113        filp->private_data = ctx;
 114        if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
 115                /* This is a mountpoint, so d_revalidate will never
 116                 * have been called, so we need to refresh the
 117                 * inode (for close-open consistency) ourselves.
 118                 */
 119                __nfs_revalidate_inode(NFS_SERVER(inode), inode);
 120        }
 121out:
 122        put_rpccred(cred);
 123        return res;
 124}
 125
 126static int
 127nfs_closedir(struct inode *inode, struct file *filp)
 128{
 129        put_nfs_open_dir_context(filp->private_data);
 130        return 0;
 131}
 132
 133struct nfs_cache_array_entry {
 134        u64 cookie;
 135        u64 ino;
 136        struct qstr string;
 137        unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 141        int size;
 142        int eof_index;
 143        u64 last_cookie;
 144        struct nfs_cache_array_entry array[0];
 145};
 146
 147typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
 148typedef struct {
 149        struct file     *file;
 150        struct page     *page;
 151        struct dir_context *ctx;
 152        unsigned long   page_index;
 153        u64             *dir_cookie;
 154        u64             last_cookie;
 155        loff_t          current_index;
 156        decode_dirent_t decode;
 157
 158        unsigned long   timestamp;
 159        unsigned long   gencount;
 160        unsigned int    cache_entry_index;
 161        unsigned int    plus:1;
 162        unsigned int    eof:1;
 163} nfs_readdir_descriptor_t;
 164
 165/*
 166 * The caller is responsible for calling nfs_readdir_release_array(page)
 167 */
 168static
 169struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
 170{
 171        void *ptr;
 172        if (page == NULL)
 173                return ERR_PTR(-EIO);
 174        ptr = kmap(page);
 175        if (ptr == NULL)
 176                return ERR_PTR(-ENOMEM);
 177        return ptr;
 178}
 179
 180static
 181void nfs_readdir_release_array(struct page *page)
 182{
 183        kunmap(page);
 184}
 185
 186/*
 187 * we are freeing strings created by nfs_add_to_readdir_array()
 188 */
 189static
 190void nfs_readdir_clear_array(struct page *page)
 191{
 192        struct nfs_cache_array *array;
 193        int i;
 194
 195        array = kmap_atomic(page);
 196        for (i = 0; i < array->size; i++)
 197                kfree(array->array[i].string.name);
 198        kunmap_atomic(array);
 199}
 200
 201/*
 202 * the caller is responsible for freeing qstr.name
 203 * when called by nfs_readdir_add_to_array, the strings will be freed in
 204 * nfs_clear_readdir_array()
 205 */
 206static
 207int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 208{
 209        string->len = len;
 210        string->name = kmemdup(name, len, GFP_KERNEL);
 211        if (string->name == NULL)
 212                return -ENOMEM;
 213        /*
 214         * Avoid a kmemleak false positive. The pointer to the name is stored
 215         * in a page cache page which kmemleak does not scan.
 216         */
 217        kmemleak_not_leak(string->name);
 218        string->hash = full_name_hash(name, len);
 219        return 0;
 220}
 221
 222static
 223int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 224{
 225        struct nfs_cache_array *array = nfs_readdir_get_array(page);
 226        struct nfs_cache_array_entry *cache_entry;
 227        int ret;
 228
 229        if (IS_ERR(array))
 230                return PTR_ERR(array);
 231
 232        cache_entry = &array->array[array->size];
 233
 234        /* Check that this entry lies within the page bounds */
 235        ret = -ENOSPC;
 236        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 237                goto out;
 238
 239        cache_entry->cookie = entry->prev_cookie;
 240        cache_entry->ino = entry->ino;
 241        cache_entry->d_type = entry->d_type;
 242        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 243        if (ret)
 244                goto out;
 245        array->last_cookie = entry->cookie;
 246        array->size++;
 247        if (entry->eof != 0)
 248                array->eof_index = array->size;
 249out:
 250        nfs_readdir_release_array(page);
 251        return ret;
 252}
 253
 254static
 255int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 256{
 257        loff_t diff = desc->ctx->pos - desc->current_index;
 258        unsigned int index;
 259
 260        if (diff < 0)
 261                goto out_eof;
 262        if (diff >= array->size) {
 263                if (array->eof_index >= 0)
 264                        goto out_eof;
 265                return -EAGAIN;
 266        }
 267
 268        index = (unsigned int)diff;
 269        *desc->dir_cookie = array->array[index].cookie;
 270        desc->cache_entry_index = index;
 271        return 0;
 272out_eof:
 273        desc->eof = 1;
 274        return -EBADCOOKIE;
 275}
 276
 277static
 278int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 279{
 280        int i;
 281        loff_t new_pos;
 282        int status = -EAGAIN;
 283
 284        for (i = 0; i < array->size; i++) {
 285                if (array->array[i].cookie == *desc->dir_cookie) {
 286                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 287                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 288
 289                        new_pos = desc->current_index + i;
 290                        if (ctx->attr_gencount != nfsi->attr_gencount
 291                            || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
 292                                ctx->duped = 0;
 293                                ctx->attr_gencount = nfsi->attr_gencount;
 294                        } else if (new_pos < desc->ctx->pos) {
 295                                if (ctx->duped > 0
 296                                    && ctx->dup_cookie == *desc->dir_cookie) {
 297                                        if (printk_ratelimit()) {
 298                                                pr_notice("NFS: directory %s/%s contains a readdir loop."
 299                                                                "Please contact your server vendor.  "
 300                                                                "The file: %s has duplicate cookie %llu\n",
 301                                                                desc->file->f_dentry->d_parent->d_name.name,
 302                                                                desc->file->f_dentry->d_name.name,
 303                                                                array->array[i].string.name,
 304                                                                *desc->dir_cookie);
 305                                        }
 306                                        status = -ELOOP;
 307                                        goto out;
 308                                }
 309                                ctx->dup_cookie = *desc->dir_cookie;
 310                                ctx->duped = -1;
 311                        }
 312                        desc->ctx->pos = new_pos;
 313                        desc->cache_entry_index = i;
 314                        return 0;
 315                }
 316        }
 317        if (array->eof_index >= 0) {
 318                status = -EBADCOOKIE;
 319                if (*desc->dir_cookie == array->last_cookie)
 320                        desc->eof = 1;
 321        }
 322out:
 323        return status;
 324}
 325
 326static
 327int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 328{
 329        struct nfs_cache_array *array;
 330        int status;
 331
 332        array = nfs_readdir_get_array(desc->page);
 333        if (IS_ERR(array)) {
 334                status = PTR_ERR(array);
 335                goto out;
 336        }
 337
 338        if (*desc->dir_cookie == 0)
 339                status = nfs_readdir_search_for_pos(array, desc);
 340        else
 341                status = nfs_readdir_search_for_cookie(array, desc);
 342
 343        if (status == -EAGAIN) {
 344                desc->last_cookie = array->last_cookie;
 345                desc->current_index += array->size;
 346                desc->page_index++;
 347        }
 348        nfs_readdir_release_array(desc->page);
 349out:
 350        return status;
 351}
 352
 353/* Fill a page with xdr information before transferring to the cache page */
 354static
 355int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 356                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 357{
 358        struct nfs_open_dir_context *ctx = file->private_data;
 359        struct rpc_cred *cred = ctx->cred;
 360        unsigned long   timestamp, gencount;
 361        int             error;
 362
 363 again:
 364        timestamp = jiffies;
 365        gencount = nfs_inc_attr_generation_counter();
 366        error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
 367                                          NFS_SERVER(inode)->dtsize, desc->plus);
 368        if (error < 0) {
 369                /* We requested READDIRPLUS, but the server doesn't grok it */
 370                if (error == -ENOTSUPP && desc->plus) {
 371                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 372                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 373                        desc->plus = 0;
 374                        goto again;
 375                }
 376                goto error;
 377        }
 378        desc->timestamp = timestamp;
 379        desc->gencount = gencount;
 380error:
 381        return error;
 382}
 383
 384static int xdr_decode(nfs_readdir_descriptor_t *desc,
 385                      struct nfs_entry *entry, struct xdr_stream *xdr)
 386{
 387        int error;
 388
 389        error = desc->decode(xdr, entry, desc->plus);
 390        if (error)
 391                return error;
 392        entry->fattr->time_start = desc->timestamp;
 393        entry->fattr->gencount = desc->gencount;
 394        return 0;
 395}
 396
 397static
 398int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 399{
 400        if (dentry->d_inode == NULL)
 401                goto different;
 402        if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
 403                goto different;
 404        return 1;
 405different:
 406        return 0;
 407}
 408
 409static
 410bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 411{
 412        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 413                return false;
 414        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 415                return true;
 416        if (ctx->pos == 0)
 417                return true;
 418        return false;
 419}
 420
 421/*
 422 * This function is called by the lookup code to request the use of
 423 * readdirplus to accelerate any future lookups in the same
 424 * directory.
 425 */
 426static
 427void nfs_advise_use_readdirplus(struct inode *dir)
 428{
 429        set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
 430}
 431
 432static
 433void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 434{
 435        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 436        struct dentry *dentry;
 437        struct dentry *alias;
 438        struct inode *dir = parent->d_inode;
 439        struct inode *inode;
 440        int status;
 441
 442        if (filename.name[0] == '.') {
 443                if (filename.len == 1)
 444                        return;
 445                if (filename.len == 2 && filename.name[1] == '.')
 446                        return;
 447        }
 448        filename.hash = full_name_hash(filename.name, filename.len);
 449
 450        dentry = d_lookup(parent, &filename);
 451        if (dentry != NULL) {
 452                if (nfs_same_file(dentry, entry)) {
 453                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 454                        status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
 455                        if (!status)
 456                                nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
 457                        goto out;
 458                } else {
 459                        if (d_invalidate(dentry) != 0)
 460                                goto out;
 461                        dput(dentry);
 462                }
 463        }
 464
 465        dentry = d_alloc(parent, &filename);
 466        if (dentry == NULL)
 467                return;
 468
 469        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 470        if (IS_ERR(inode))
 471                goto out;
 472
 473        alias = d_materialise_unique(dentry, inode);
 474        if (IS_ERR(alias))
 475                goto out;
 476        else if (alias) {
 477                nfs_set_verifier(alias, nfs_save_change_attribute(dir));
 478                dput(alias);
 479        } else
 480                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 481
 482out:
 483        dput(dentry);
 484}
 485
 486/* Perform conversion from xdr to cache array */
 487static
 488int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 489                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 490{
 491        struct xdr_stream stream;
 492        struct xdr_buf buf;
 493        struct page *scratch;
 494        struct nfs_cache_array *array;
 495        unsigned int count = 0;
 496        int status;
 497
 498        scratch = alloc_page(GFP_KERNEL);
 499        if (scratch == NULL)
 500                return -ENOMEM;
 501
 502        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 503        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 504
 505        do {
 506                status = xdr_decode(desc, entry, &stream);
 507                if (status != 0) {
 508                        if (status == -EAGAIN)
 509                                status = 0;
 510                        break;
 511                }
 512
 513                count++;
 514
 515                if (desc->plus != 0)
 516                        nfs_prime_dcache(desc->file->f_path.dentry, entry);
 517
 518                status = nfs_readdir_add_to_array(entry, page);
 519                if (status != 0)
 520                        break;
 521        } while (!entry->eof);
 522
 523        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 524                array = nfs_readdir_get_array(page);
 525                if (!IS_ERR(array)) {
 526                        array->eof_index = array->size;
 527                        status = 0;
 528                        nfs_readdir_release_array(page);
 529                } else
 530                        status = PTR_ERR(array);
 531        }
 532
 533        put_page(scratch);
 534        return status;
 535}
 536
 537static
 538void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
 539{
 540        unsigned int i;
 541        for (i = 0; i < npages; i++)
 542                put_page(pages[i]);
 543}
 544
 545static
 546void nfs_readdir_free_large_page(void *ptr, struct page **pages,
 547                unsigned int npages)
 548{
 549        nfs_readdir_free_pagearray(pages, npages);
 550}
 551
 552/*
 553 * nfs_readdir_large_page will allocate pages that must be freed with a call
 554 * to nfs_readdir_free_large_page
 555 */
 556static
 557int nfs_readdir_large_page(struct page **pages, unsigned int npages)
 558{
 559        unsigned int i;
 560
 561        for (i = 0; i < npages; i++) {
 562                struct page *page = alloc_page(GFP_KERNEL);
 563                if (page == NULL)
 564                        goto out_freepages;
 565                pages[i] = page;
 566        }
 567        return 0;
 568
 569out_freepages:
 570        nfs_readdir_free_pagearray(pages, i);
 571        return -ENOMEM;
 572}
 573
 574static
 575int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 576{
 577        struct page *pages[NFS_MAX_READDIR_PAGES];
 578        void *pages_ptr = NULL;
 579        struct nfs_entry entry;
 580        struct file     *file = desc->file;
 581        struct nfs_cache_array *array;
 582        int status = -ENOMEM;
 583        unsigned int array_size = ARRAY_SIZE(pages);
 584
 585        entry.prev_cookie = 0;
 586        entry.cookie = desc->last_cookie;
 587        entry.eof = 0;
 588        entry.fh = nfs_alloc_fhandle();
 589        entry.fattr = nfs_alloc_fattr();
 590        entry.server = NFS_SERVER(inode);
 591        if (entry.fh == NULL || entry.fattr == NULL)
 592                goto out;
 593
 594        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 595        if (IS_ERR(entry.label)) {
 596                status = PTR_ERR(entry.label);
 597                goto out;
 598        }
 599
 600        array = nfs_readdir_get_array(page);
 601        if (IS_ERR(array)) {
 602                status = PTR_ERR(array);
 603                goto out_label_free;
 604        }
 605        memset(array, 0, sizeof(struct nfs_cache_array));
 606        array->eof_index = -1;
 607
 608        status = nfs_readdir_large_page(pages, array_size);
 609        if (status < 0)
 610                goto out_release_array;
 611        do {
 612                unsigned int pglen;
 613                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 614
 615                if (status < 0)
 616                        break;
 617                pglen = status;
 618                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 619                if (status < 0) {
 620                        if (status == -ENOSPC)
 621                                status = 0;
 622                        break;
 623                }
 624        } while (array->eof_index < 0);
 625
 626        nfs_readdir_free_large_page(pages_ptr, pages, array_size);
 627out_release_array:
 628        nfs_readdir_release_array(page);
 629out_label_free:
 630        nfs4_label_free(entry.label);
 631out:
 632        nfs_free_fattr(entry.fattr);
 633        nfs_free_fhandle(entry.fh);
 634        return status;
 635}
 636
 637/*
 638 * Now we cache directories properly, by converting xdr information
 639 * to an array that can be used for lookups later.  This results in
 640 * fewer cache pages, since we can store more information on each page.
 641 * We only need to convert from xdr once so future lookups are much simpler
 642 */
 643static
 644int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 645{
 646        struct inode    *inode = file_inode(desc->file);
 647        int ret;
 648
 649        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 650        if (ret < 0)
 651                goto error;
 652        SetPageUptodate(page);
 653
 654        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 655                /* Should never happen */
 656                nfs_zap_mapping(inode, inode->i_mapping);
 657        }
 658        unlock_page(page);
 659        return 0;
 660 error:
 661        unlock_page(page);
 662        return ret;
 663}
 664
 665static
 666void cache_page_release(nfs_readdir_descriptor_t *desc)
 667{
 668        if (!desc->page->mapping)
 669                nfs_readdir_clear_array(desc->page);
 670        page_cache_release(desc->page);
 671        desc->page = NULL;
 672}
 673
 674static
 675struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 676{
 677        return read_cache_page(file_inode(desc->file)->i_mapping,
 678                        desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 679}
 680
 681/*
 682 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 683 */
 684static
 685int find_cache_page(nfs_readdir_descriptor_t *desc)
 686{
 687        int res;
 688
 689        desc->page = get_cache_page(desc);
 690        if (IS_ERR(desc->page))
 691                return PTR_ERR(desc->page);
 692
 693        res = nfs_readdir_search_array(desc);
 694        if (res != 0)
 695                cache_page_release(desc);
 696        return res;
 697}
 698
 699/* Search for desc->dir_cookie from the beginning of the page cache */
 700static inline
 701int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 702{
 703        int res;
 704
 705        if (desc->page_index == 0) {
 706                desc->current_index = 0;
 707                desc->last_cookie = 0;
 708        }
 709        do {
 710                res = find_cache_page(desc);
 711        } while (res == -EAGAIN);
 712        return res;
 713}
 714
 715/*
 716 * Once we've found the start of the dirent within a page: fill 'er up...
 717 */
 718static 
 719int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 720{
 721        struct file     *file = desc->file;
 722        int i = 0;
 723        int res = 0;
 724        struct nfs_cache_array *array = NULL;
 725        struct nfs_open_dir_context *ctx = file->private_data;
 726
 727        array = nfs_readdir_get_array(desc->page);
 728        if (IS_ERR(array)) {
 729                res = PTR_ERR(array);
 730                goto out;
 731        }
 732
 733        for (i = desc->cache_entry_index; i < array->size; i++) {
 734                struct nfs_cache_array_entry *ent;
 735
 736                ent = &array->array[i];
 737                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 738                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 739                        desc->eof = 1;
 740                        break;
 741                }
 742                desc->ctx->pos++;
 743                if (i < (array->size-1))
 744                        *desc->dir_cookie = array->array[i+1].cookie;
 745                else
 746                        *desc->dir_cookie = array->last_cookie;
 747                if (ctx->duped != 0)
 748                        ctx->duped = 1;
 749        }
 750        if (array->eof_index >= 0)
 751                desc->eof = 1;
 752
 753        nfs_readdir_release_array(desc->page);
 754out:
 755        cache_page_release(desc);
 756        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 757                        (unsigned long long)*desc->dir_cookie, res);
 758        return res;
 759}
 760
 761/*
 762 * If we cannot find a cookie in our cache, we suspect that this is
 763 * because it points to a deleted file, so we ask the server to return
 764 * whatever it thinks is the next entry. We then feed this to filldir.
 765 * If all goes well, we should then be able to find our way round the
 766 * cache on the next call to readdir_search_pagecache();
 767 *
 768 * NOTE: we cannot add the anonymous page to the pagecache because
 769 *       the data it contains might not be page aligned. Besides,
 770 *       we should already have a complete representation of the
 771 *       directory in the page cache by the time we get here.
 772 */
 773static inline
 774int uncached_readdir(nfs_readdir_descriptor_t *desc)
 775{
 776        struct page     *page = NULL;
 777        int             status;
 778        struct inode *inode = file_inode(desc->file);
 779        struct nfs_open_dir_context *ctx = desc->file->private_data;
 780
 781        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 782                        (unsigned long long)*desc->dir_cookie);
 783
 784        page = alloc_page(GFP_HIGHUSER);
 785        if (!page) {
 786                status = -ENOMEM;
 787                goto out;
 788        }
 789
 790        desc->page_index = 0;
 791        desc->last_cookie = *desc->dir_cookie;
 792        desc->page = page;
 793        ctx->duped = 0;
 794
 795        status = nfs_readdir_xdr_to_array(desc, page, inode);
 796        if (status < 0)
 797                goto out_release;
 798
 799        status = nfs_do_filldir(desc);
 800
 801 out:
 802        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 803                        __func__, status);
 804        return status;
 805 out_release:
 806        cache_page_release(desc);
 807        goto out;
 808}
 809
 810/* The file offset position represents the dirent entry number.  A
 811   last cookie cache takes care of the common case of reading the
 812   whole directory.
 813 */
 814static int nfs_readdir(struct file *file, struct dir_context *ctx)
 815{
 816        struct dentry   *dentry = file->f_path.dentry;
 817        struct inode    *inode = dentry->d_inode;
 818        nfs_readdir_descriptor_t my_desc,
 819                        *desc = &my_desc;
 820        struct nfs_open_dir_context *dir_ctx = file->private_data;
 821        int res = 0;
 822
 823        dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
 824                        dentry->d_parent->d_name.name, dentry->d_name.name,
 825                        (long long)ctx->pos);
 826        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 827
 828        /*
 829         * ctx->pos points to the dirent entry number.
 830         * *desc->dir_cookie has the cookie for the next entry. We have
 831         * to either find the entry with the appropriate number or
 832         * revalidate the cookie.
 833         */
 834        memset(desc, 0, sizeof(*desc));
 835
 836        desc->file = file;
 837        desc->ctx = ctx;
 838        desc->dir_cookie = &dir_ctx->dir_cookie;
 839        desc->decode = NFS_PROTO(inode)->decode_dirent;
 840        desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
 841
 842        nfs_block_sillyrename(dentry);
 843        if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
 844                res = nfs_revalidate_mapping(inode, file->f_mapping);
 845        if (res < 0)
 846                goto out;
 847
 848        do {
 849                res = readdir_search_pagecache(desc);
 850
 851                if (res == -EBADCOOKIE) {
 852                        res = 0;
 853                        /* This means either end of directory */
 854                        if (*desc->dir_cookie && desc->eof == 0) {
 855                                /* Or that the server has 'lost' a cookie */
 856                                res = uncached_readdir(desc);
 857                                if (res == 0)
 858                                        continue;
 859                        }
 860                        break;
 861                }
 862                if (res == -ETOOSMALL && desc->plus) {
 863                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 864                        nfs_zap_caches(inode);
 865                        desc->page_index = 0;
 866                        desc->plus = 0;
 867                        desc->eof = 0;
 868                        continue;
 869                }
 870                if (res < 0)
 871                        break;
 872
 873                res = nfs_do_filldir(desc);
 874                if (res < 0)
 875                        break;
 876        } while (!desc->eof);
 877out:
 878        nfs_unblock_sillyrename(dentry);
 879        if (res > 0)
 880                res = 0;
 881        dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
 882                        dentry->d_parent->d_name.name, dentry->d_name.name,
 883                        res);
 884        return res;
 885}
 886
 887static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 888{
 889        struct dentry *dentry = filp->f_path.dentry;
 890        struct inode *inode = dentry->d_inode;
 891        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 892
 893        dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
 894                        dentry->d_parent->d_name.name,
 895                        dentry->d_name.name,
 896                        offset, whence);
 897
 898        mutex_lock(&inode->i_mutex);
 899        switch (whence) {
 900                case 1:
 901                        offset += filp->f_pos;
 902                case 0:
 903                        if (offset >= 0)
 904                                break;
 905                default:
 906                        offset = -EINVAL;
 907                        goto out;
 908        }
 909        if (offset != filp->f_pos) {
 910                filp->f_pos = offset;
 911                dir_ctx->dir_cookie = 0;
 912                dir_ctx->duped = 0;
 913        }
 914out:
 915        mutex_unlock(&inode->i_mutex);
 916        return offset;
 917}
 918
 919/*
 920 * All directory operations under NFS are synchronous, so fsync()
 921 * is a dummy operation.
 922 */
 923static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 924                         int datasync)
 925{
 926        struct dentry *dentry = filp->f_path.dentry;
 927        struct inode *inode = dentry->d_inode;
 928
 929        dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
 930                        dentry->d_parent->d_name.name, dentry->d_name.name,
 931                        datasync);
 932
 933        mutex_lock(&inode->i_mutex);
 934        nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
 935        mutex_unlock(&inode->i_mutex);
 936        return 0;
 937}
 938
 939/**
 940 * nfs_force_lookup_revalidate - Mark the directory as having changed
 941 * @dir - pointer to directory inode
 942 *
 943 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 944 * full lookup on all child dentries of 'dir' whenever a change occurs
 945 * on the server that might have invalidated our dcache.
 946 *
 947 * The caller should be holding dir->i_lock
 948 */
 949void nfs_force_lookup_revalidate(struct inode *dir)
 950{
 951        NFS_I(dir)->cache_change_attribute++;
 952}
 953EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
 954
 955/*
 956 * A check for whether or not the parent directory has changed.
 957 * In the case it has, we assume that the dentries are untrustworthy
 958 * and may need to be looked up again.
 959 */
 960static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
 961{
 962        if (IS_ROOT(dentry))
 963                return 1;
 964        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
 965                return 0;
 966        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 967                return 0;
 968        /* Revalidate nfsi->cache_change_attribute before we declare a match */
 969        if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
 970                return 0;
 971        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 972                return 0;
 973        return 1;
 974}
 975
 976/*
 977 * Use intent information to check whether or not we're going to do
 978 * an O_EXCL create using this path component.
 979 */
 980static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
 981{
 982        if (NFS_PROTO(dir)->version == 2)
 983                return 0;
 984        return flags & LOOKUP_EXCL;
 985}
 986
 987/*
 988 * Inode and filehandle revalidation for lookups.
 989 *
 990 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
 991 * or if the intent information indicates that we're about to open this
 992 * particular file and the "nocto" mount flag is not set.
 993 *
 994 */
 995static
 996int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
 997{
 998        struct nfs_server *server = NFS_SERVER(inode);
 999        int ret;
1000
1001        if (IS_AUTOMOUNT(inode))
1002                return 0;
1003        /* VFS wants an on-the-wire revalidation */
1004        if (flags & LOOKUP_REVAL)
1005                goto out_force;
1006        /* This is an open(2) */
1007        if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1008            (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1009                goto out_force;
1010out:
1011        return (inode->i_nlink == 0) ? -ENOENT : 0;
1012out_force:
1013        ret = __nfs_revalidate_inode(server, inode);
1014        if (ret != 0)
1015                return ret;
1016        goto out;
1017}
1018
1019/*
1020 * We judge how long we want to trust negative
1021 * dentries by looking at the parent inode mtime.
1022 *
1023 * If parent mtime has changed, we revalidate, else we wait for a
1024 * period corresponding to the parent's attribute cache timeout value.
1025 */
1026static inline
1027int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1028                       unsigned int flags)
1029{
1030        /* Don't revalidate a negative dentry if we're creating a new file */
1031        if (flags & LOOKUP_CREATE)
1032                return 0;
1033        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1034                return 1;
1035        return !nfs_check_verifier(dir, dentry);
1036}
1037
1038/*
1039 * This is called every time the dcache has a lookup hit,
1040 * and we should check whether we can really trust that
1041 * lookup.
1042 *
1043 * NOTE! The hit can be a negative hit too, don't assume
1044 * we have an inode!
1045 *
1046 * If the parent directory is seen to have changed, we throw out the
1047 * cached dentry and do a new lookup.
1048 */
1049static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1050{
1051        struct inode *dir;
1052        struct inode *inode;
1053        struct dentry *parent;
1054        struct nfs_fh *fhandle = NULL;
1055        struct nfs_fattr *fattr = NULL;
1056        struct nfs4_label *label = NULL;
1057        int error;
1058
1059        if (flags & LOOKUP_RCU)
1060                return -ECHILD;
1061
1062        parent = dget_parent(dentry);
1063        dir = parent->d_inode;
1064        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1065        inode = dentry->d_inode;
1066
1067        if (!inode) {
1068                if (nfs_neg_need_reval(dir, dentry, flags))
1069                        goto out_bad;
1070                goto out_valid_noent;
1071        }
1072
1073        if (is_bad_inode(inode)) {
1074                dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1075                                __func__, dentry->d_parent->d_name.name,
1076                                dentry->d_name.name);
1077                goto out_bad;
1078        }
1079
1080        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1081                goto out_set_verifier;
1082
1083        /* Force a full look up iff the parent directory has changed */
1084        if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1085                if (nfs_lookup_verify_inode(inode, flags))
1086                        goto out_zap_parent;
1087                goto out_valid;
1088        }
1089
1090        if (NFS_STALE(inode))
1091                goto out_bad;
1092
1093        error = -ENOMEM;
1094        fhandle = nfs_alloc_fhandle();
1095        fattr = nfs_alloc_fattr();
1096        if (fhandle == NULL || fattr == NULL)
1097                goto out_error;
1098
1099        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1100        if (IS_ERR(label))
1101                goto out_error;
1102
1103        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1104        if (error)
1105                goto out_bad;
1106        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1107                goto out_bad;
1108        if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1109                goto out_bad;
1110
1111        nfs_setsecurity(inode, fattr, label);
1112
1113        nfs_free_fattr(fattr);
1114        nfs_free_fhandle(fhandle);
1115        nfs4_label_free(label);
1116
1117out_set_verifier:
1118        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1119 out_valid:
1120        /* Success: notify readdir to use READDIRPLUS */
1121        nfs_advise_use_readdirplus(dir);
1122 out_valid_noent:
1123        dput(parent);
1124        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1125                        __func__, dentry->d_parent->d_name.name,
1126                        dentry->d_name.name);
1127        return 1;
1128out_zap_parent:
1129        nfs_zap_caches(dir);
1130 out_bad:
1131        nfs_free_fattr(fattr);
1132        nfs_free_fhandle(fhandle);
1133        nfs4_label_free(label);
1134        nfs_mark_for_revalidate(dir);
1135        if (inode && S_ISDIR(inode->i_mode)) {
1136                /* Purge readdir caches. */
1137                nfs_zap_caches(inode);
1138                /* If we have submounts, don't unhash ! */
1139                if (have_submounts(dentry))
1140                        goto out_valid;
1141                if (dentry->d_flags & DCACHE_DISCONNECTED)
1142                        goto out_valid;
1143                shrink_dcache_parent(dentry);
1144        }
1145        d_drop(dentry);
1146        dput(parent);
1147        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1148                        __func__, dentry->d_parent->d_name.name,
1149                        dentry->d_name.name);
1150        return 0;
1151out_error:
1152        nfs_free_fattr(fattr);
1153        nfs_free_fhandle(fhandle);
1154        nfs4_label_free(label);
1155        dput(parent);
1156        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1157                        __func__, dentry->d_parent->d_name.name,
1158                        dentry->d_name.name, error);
1159        return error;
1160}
1161
1162/*
1163 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1164 * when we don't really care about the dentry name. This is called when a
1165 * pathwalk ends on a dentry that was not found via a normal lookup in the
1166 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1167 *
1168 * In this situation, we just want to verify that the inode itself is OK
1169 * since the dentry might have changed on the server.
1170 */
1171static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1172{
1173        int error;
1174        struct inode *inode = dentry->d_inode;
1175
1176        /*
1177         * I believe we can only get a negative dentry here in the case of a
1178         * procfs-style symlink. Just assume it's correct for now, but we may
1179         * eventually need to do something more here.
1180         */
1181        if (!inode) {
1182                dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1183                                __func__, dentry->d_parent->d_name.name,
1184                                dentry->d_name.name);
1185                return 1;
1186        }
1187
1188        if (is_bad_inode(inode)) {
1189                dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1190                                __func__, dentry->d_parent->d_name.name,
1191                                dentry->d_name.name);
1192                return 0;
1193        }
1194
1195        error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1196        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1197                        __func__, inode->i_ino, error ? "invalid" : "valid");
1198        return !error;
1199}
1200
1201/*
1202 * This is called from dput() when d_count is going to 0.
1203 */
1204static int nfs_dentry_delete(const struct dentry *dentry)
1205{
1206        dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1207                dentry->d_parent->d_name.name, dentry->d_name.name,
1208                dentry->d_flags);
1209
1210        /* Unhash any dentry with a stale inode */
1211        if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1212                return 1;
1213
1214        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1215                /* Unhash it, so that ->d_iput() would be called */
1216                return 1;
1217        }
1218        if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1219                /* Unhash it, so that ancestors of killed async unlink
1220                 * files will be cleaned up during umount */
1221                return 1;
1222        }
1223        return 0;
1224
1225}
1226
1227/* Ensure that we revalidate inode->i_nlink */
1228static void nfs_drop_nlink(struct inode *inode)
1229{
1230        spin_lock(&inode->i_lock);
1231        /* drop the inode if we're reasonably sure this is the last link */
1232        if (inode->i_nlink == 1)
1233                clear_nlink(inode);
1234        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1235        spin_unlock(&inode->i_lock);
1236}
1237
1238/*
1239 * Called when the dentry loses inode.
1240 * We use it to clean up silly-renamed files.
1241 */
1242static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1243{
1244        if (S_ISDIR(inode->i_mode))
1245                /* drop any readdir cache as it could easily be old */
1246                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1247
1248        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1249                nfs_complete_unlink(dentry, inode);
1250                nfs_drop_nlink(inode);
1251        }
1252        iput(inode);
1253}
1254
1255static void nfs_d_release(struct dentry *dentry)
1256{
1257        /* free cached devname value, if it survived that far */
1258        if (unlikely(dentry->d_fsdata)) {
1259                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1260                        WARN_ON(1);
1261                else
1262                        kfree(dentry->d_fsdata);
1263        }
1264}
1265
1266const struct dentry_operations nfs_dentry_operations = {
1267        .d_revalidate   = nfs_lookup_revalidate,
1268        .d_weak_revalidate      = nfs_weak_revalidate,
1269        .d_delete       = nfs_dentry_delete,
1270        .d_iput         = nfs_dentry_iput,
1271        .d_automount    = nfs_d_automount,
1272        .d_release      = nfs_d_release,
1273};
1274EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1275
1276struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1277{
1278        struct dentry *res;
1279        struct dentry *parent;
1280        struct inode *inode = NULL;
1281        struct nfs_fh *fhandle = NULL;
1282        struct nfs_fattr *fattr = NULL;
1283        struct nfs4_label *label = NULL;
1284        int error;
1285
1286        dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1287                dentry->d_parent->d_name.name, dentry->d_name.name);
1288        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1289
1290        res = ERR_PTR(-ENAMETOOLONG);
1291        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1292                goto out;
1293
1294        /*
1295         * If we're doing an exclusive create, optimize away the lookup
1296         * but don't hash the dentry.
1297         */
1298        if (nfs_is_exclusive_create(dir, flags)) {
1299                d_instantiate(dentry, NULL);
1300                res = NULL;
1301                goto out;
1302        }
1303
1304        res = ERR_PTR(-ENOMEM);
1305        fhandle = nfs_alloc_fhandle();
1306        fattr = nfs_alloc_fattr();
1307        if (fhandle == NULL || fattr == NULL)
1308                goto out;
1309
1310        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1311        if (IS_ERR(label))
1312                goto out;
1313
1314        parent = dentry->d_parent;
1315        /* Protect against concurrent sillydeletes */
1316        nfs_block_sillyrename(parent);
1317        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1318        if (error == -ENOENT)
1319                goto no_entry;
1320        if (error < 0) {
1321                res = ERR_PTR(error);
1322                goto out_unblock_sillyrename;
1323        }
1324        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1325        res = ERR_CAST(inode);
1326        if (IS_ERR(res))
1327                goto out_unblock_sillyrename;
1328
1329        /* Success: notify readdir to use READDIRPLUS */
1330        nfs_advise_use_readdirplus(dir);
1331
1332no_entry:
1333        res = d_materialise_unique(dentry, inode);
1334        if (res != NULL) {
1335                if (IS_ERR(res))
1336                        goto out_unblock_sillyrename;
1337                dentry = res;
1338        }
1339        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1340out_unblock_sillyrename:
1341        nfs_unblock_sillyrename(parent);
1342        nfs4_label_free(label);
1343out:
1344        nfs_free_fattr(fattr);
1345        nfs_free_fhandle(fhandle);
1346        return res;
1347}
1348EXPORT_SYMBOL_GPL(nfs_lookup);
1349
1350#if IS_ENABLED(CONFIG_NFS_V4)
1351static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1352
1353const struct dentry_operations nfs4_dentry_operations = {
1354        .d_revalidate   = nfs4_lookup_revalidate,
1355        .d_delete       = nfs_dentry_delete,
1356        .d_iput         = nfs_dentry_iput,
1357        .d_automount    = nfs_d_automount,
1358        .d_release      = nfs_d_release,
1359};
1360EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1361
1362static fmode_t flags_to_mode(int flags)
1363{
1364        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1365        if ((flags & O_ACCMODE) != O_WRONLY)
1366                res |= FMODE_READ;
1367        if ((flags & O_ACCMODE) != O_RDONLY)
1368                res |= FMODE_WRITE;
1369        return res;
1370}
1371
1372static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1373{
1374        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1375}
1376
1377static int do_open(struct inode *inode, struct file *filp)
1378{
1379        nfs_fscache_set_inode_cookie(inode, filp);
1380        return 0;
1381}
1382
1383static int nfs_finish_open(struct nfs_open_context *ctx,
1384                           struct dentry *dentry,
1385                           struct file *file, unsigned open_flags,
1386                           int *opened)
1387{
1388        int err;
1389
1390        err = finish_open(file, dentry, do_open, opened);
1391        if (err)
1392                goto out;
1393        nfs_file_set_open_context(file, ctx);
1394
1395out:
1396        put_nfs_open_context(ctx);
1397        return err;
1398}
1399
1400int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1401                    struct file *file, unsigned open_flags,
1402                    umode_t mode, int *opened)
1403{
1404        struct nfs_open_context *ctx;
1405        struct dentry *res;
1406        struct iattr attr = { .ia_valid = ATTR_OPEN };
1407        struct inode *inode;
1408        int err;
1409
1410        /* Expect a negative dentry */
1411        BUG_ON(dentry->d_inode);
1412
1413        dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1414                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1415
1416        /* NFS only supports OPEN on regular files */
1417        if ((open_flags & O_DIRECTORY)) {
1418                if (!d_unhashed(dentry)) {
1419                        /*
1420                         * Hashed negative dentry with O_DIRECTORY: dentry was
1421                         * revalidated and is fine, no need to perform lookup
1422                         * again
1423                         */
1424                        return -ENOENT;
1425                }
1426                goto no_open;
1427        }
1428
1429        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1430                return -ENAMETOOLONG;
1431
1432        if (open_flags & O_CREAT) {
1433                attr.ia_valid |= ATTR_MODE;
1434                attr.ia_mode = mode & ~current_umask();
1435        }
1436        if (open_flags & O_TRUNC) {
1437                attr.ia_valid |= ATTR_SIZE;
1438                attr.ia_size = 0;
1439        }
1440
1441        ctx = create_nfs_open_context(dentry, open_flags);
1442        err = PTR_ERR(ctx);
1443        if (IS_ERR(ctx))
1444                goto out;
1445
1446        nfs_block_sillyrename(dentry->d_parent);
1447        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1448        nfs_unblock_sillyrename(dentry->d_parent);
1449        if (IS_ERR(inode)) {
1450                put_nfs_open_context(ctx);
1451                err = PTR_ERR(inode);
1452                switch (err) {
1453                case -ENOENT:
1454                        d_drop(dentry);
1455                        d_add(dentry, NULL);
1456                        break;
1457                case -EISDIR:
1458                case -ENOTDIR:
1459                        goto no_open;
1460                case -ELOOP:
1461                        if (!(open_flags & O_NOFOLLOW))
1462                                goto no_open;
1463                        break;
1464                        /* case -EINVAL: */
1465                default:
1466                        break;
1467                }
1468                goto out;
1469        }
1470
1471        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1472out:
1473        return err;
1474
1475no_open:
1476        res = nfs_lookup(dir, dentry, 0);
1477        err = PTR_ERR(res);
1478        if (IS_ERR(res))
1479                goto out;
1480
1481        return finish_no_open(file, res);
1482}
1483EXPORT_SYMBOL_GPL(nfs_atomic_open);
1484
1485static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1486{
1487        struct dentry *parent = NULL;
1488        struct inode *inode;
1489        struct inode *dir;
1490        int ret = 0;
1491
1492        if (flags & LOOKUP_RCU)
1493                return -ECHILD;
1494
1495        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1496                goto no_open;
1497        if (d_mountpoint(dentry))
1498                goto no_open;
1499        if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1500                goto no_open;
1501
1502        inode = dentry->d_inode;
1503        parent = dget_parent(dentry);
1504        dir = parent->d_inode;
1505
1506        /* We can't create new files in nfs_open_revalidate(), so we
1507         * optimize away revalidation of negative dentries.
1508         */
1509        if (inode == NULL) {
1510                if (!nfs_neg_need_reval(dir, dentry, flags))
1511                        ret = 1;
1512                goto out;
1513        }
1514
1515        /* NFS only supports OPEN on regular files */
1516        if (!S_ISREG(inode->i_mode))
1517                goto no_open_dput;
1518        /* We cannot do exclusive creation on a positive dentry */
1519        if (flags & LOOKUP_EXCL)
1520                goto no_open_dput;
1521
1522        /* Let f_op->open() actually open (and revalidate) the file */
1523        ret = 1;
1524
1525out:
1526        dput(parent);
1527        return ret;
1528
1529no_open_dput:
1530        dput(parent);
1531no_open:
1532        return nfs_lookup_revalidate(dentry, flags);
1533}
1534
1535#endif /* CONFIG_NFSV4 */
1536
1537/*
1538 * Code common to create, mkdir, and mknod.
1539 */
1540int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1541                                struct nfs_fattr *fattr,
1542                                struct nfs4_label *label)
1543{
1544        struct dentry *parent = dget_parent(dentry);
1545        struct inode *dir = parent->d_inode;
1546        struct inode *inode;
1547        int error = -EACCES;
1548
1549        d_drop(dentry);
1550
1551        /* We may have been initialized further down */
1552        if (dentry->d_inode)
1553                goto out;
1554        if (fhandle->size == 0) {
1555                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1556                if (error)
1557                        goto out_error;
1558        }
1559        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1560        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1561                struct nfs_server *server = NFS_SB(dentry->d_sb);
1562                error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1563                if (error < 0)
1564                        goto out_error;
1565        }
1566        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1567        error = PTR_ERR(inode);
1568        if (IS_ERR(inode))
1569                goto out_error;
1570        d_add(dentry, inode);
1571out:
1572        dput(parent);
1573        return 0;
1574out_error:
1575        nfs_mark_for_revalidate(dir);
1576        dput(parent);
1577        return error;
1578}
1579EXPORT_SYMBOL_GPL(nfs_instantiate);
1580
1581/*
1582 * Following a failed create operation, we drop the dentry rather
1583 * than retain a negative dentry. This avoids a problem in the event
1584 * that the operation succeeded on the server, but an error in the
1585 * reply path made it appear to have failed.
1586 */
1587int nfs_create(struct inode *dir, struct dentry *dentry,
1588                umode_t mode, bool excl)
1589{
1590        struct iattr attr;
1591        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1592        int error;
1593
1594        dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1595                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1596
1597        attr.ia_mode = mode;
1598        attr.ia_valid = ATTR_MODE;
1599
1600        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1601        if (error != 0)
1602                goto out_err;
1603        return 0;
1604out_err:
1605        d_drop(dentry);
1606        return error;
1607}
1608EXPORT_SYMBOL_GPL(nfs_create);
1609
1610/*
1611 * See comments for nfs_proc_create regarding failed operations.
1612 */
1613int
1614nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1615{
1616        struct iattr attr;
1617        int status;
1618
1619        dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1620                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1621
1622        if (!new_valid_dev(rdev))
1623                return -EINVAL;
1624
1625        attr.ia_mode = mode;
1626        attr.ia_valid = ATTR_MODE;
1627
1628        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1629        if (status != 0)
1630                goto out_err;
1631        return 0;
1632out_err:
1633        d_drop(dentry);
1634        return status;
1635}
1636EXPORT_SYMBOL_GPL(nfs_mknod);
1637
1638/*
1639 * See comments for nfs_proc_create regarding failed operations.
1640 */
1641int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1642{
1643        struct iattr attr;
1644        int error;
1645
1646        dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1647                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1648
1649        attr.ia_valid = ATTR_MODE;
1650        attr.ia_mode = mode | S_IFDIR;
1651
1652        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1653        if (error != 0)
1654                goto out_err;
1655        return 0;
1656out_err:
1657        d_drop(dentry);
1658        return error;
1659}
1660EXPORT_SYMBOL_GPL(nfs_mkdir);
1661
1662static void nfs_dentry_handle_enoent(struct dentry *dentry)
1663{
1664        if (dentry->d_inode != NULL && !d_unhashed(dentry))
1665                d_delete(dentry);
1666}
1667
1668int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1669{
1670        int error;
1671
1672        dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1673                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1674
1675        error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1676        /* Ensure the VFS deletes this inode */
1677        if (error == 0 && dentry->d_inode != NULL)
1678                clear_nlink(dentry->d_inode);
1679        else if (error == -ENOENT)
1680                nfs_dentry_handle_enoent(dentry);
1681
1682        return error;
1683}
1684EXPORT_SYMBOL_GPL(nfs_rmdir);
1685
1686/*
1687 * Remove a file after making sure there are no pending writes,
1688 * and after checking that the file has only one user. 
1689 *
1690 * We invalidate the attribute cache and free the inode prior to the operation
1691 * to avoid possible races if the server reuses the inode.
1692 */
1693static int nfs_safe_remove(struct dentry *dentry)
1694{
1695        struct inode *dir = dentry->d_parent->d_inode;
1696        struct inode *inode = dentry->d_inode;
1697        int error = -EBUSY;
1698                
1699        dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1700                dentry->d_parent->d_name.name, dentry->d_name.name);
1701
1702        /* If the dentry was sillyrenamed, we simply call d_delete() */
1703        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1704                error = 0;
1705                goto out;
1706        }
1707
1708        if (inode != NULL) {
1709                NFS_PROTO(inode)->return_delegation(inode);
1710                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1711                if (error == 0)
1712                        nfs_drop_nlink(inode);
1713        } else
1714                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1715        if (error == -ENOENT)
1716                nfs_dentry_handle_enoent(dentry);
1717out:
1718        return error;
1719}
1720
1721/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1722 *  belongs to an active ".nfs..." file and we return -EBUSY.
1723 *
1724 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1725 */
1726int nfs_unlink(struct inode *dir, struct dentry *dentry)
1727{
1728        int error;
1729        int need_rehash = 0;
1730
1731        dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1732                dir->i_ino, dentry->d_name.name);
1733
1734        spin_lock(&dentry->d_lock);
1735        if (d_count(dentry) > 1) {
1736                spin_unlock(&dentry->d_lock);
1737                /* Start asynchronous writeout of the inode */
1738                write_inode_now(dentry->d_inode, 0);
1739                error = nfs_sillyrename(dir, dentry);
1740                return error;
1741        }
1742        if (!d_unhashed(dentry)) {
1743                __d_drop(dentry);
1744                need_rehash = 1;
1745        }
1746        spin_unlock(&dentry->d_lock);
1747        error = nfs_safe_remove(dentry);
1748        if (!error || error == -ENOENT) {
1749                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1750        } else if (need_rehash)
1751                d_rehash(dentry);
1752        return error;
1753}
1754EXPORT_SYMBOL_GPL(nfs_unlink);
1755
1756/*
1757 * To create a symbolic link, most file systems instantiate a new inode,
1758 * add a page to it containing the path, then write it out to the disk
1759 * using prepare_write/commit_write.
1760 *
1761 * Unfortunately the NFS client can't create the in-core inode first
1762 * because it needs a file handle to create an in-core inode (see
1763 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1764 * symlink request has completed on the server.
1765 *
1766 * So instead we allocate a raw page, copy the symname into it, then do
1767 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1768 * now have a new file handle and can instantiate an in-core NFS inode
1769 * and move the raw page into its mapping.
1770 */
1771int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1772{
1773        struct page *page;
1774        char *kaddr;
1775        struct iattr attr;
1776        unsigned int pathlen = strlen(symname);
1777        int error;
1778
1779        dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1780                dir->i_ino, dentry->d_name.name, symname);
1781
1782        if (pathlen > PAGE_SIZE)
1783                return -ENAMETOOLONG;
1784
1785        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1786        attr.ia_valid = ATTR_MODE;
1787
1788        page = alloc_page(GFP_HIGHUSER);
1789        if (!page)
1790                return -ENOMEM;
1791
1792        kaddr = kmap_atomic(page);
1793        memcpy(kaddr, symname, pathlen);
1794        if (pathlen < PAGE_SIZE)
1795                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1796        kunmap_atomic(kaddr);
1797
1798        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1799        if (error != 0) {
1800                dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1801                        dir->i_sb->s_id, dir->i_ino,
1802                        dentry->d_name.name, symname, error);
1803                d_drop(dentry);
1804                __free_page(page);
1805                return error;
1806        }
1807
1808        /*
1809         * No big deal if we can't add this page to the page cache here.
1810         * READLINK will get the missing page from the server if needed.
1811         */
1812        if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1813                                                        GFP_KERNEL)) {
1814                SetPageUptodate(page);
1815                unlock_page(page);
1816        } else
1817                __free_page(page);
1818
1819        return 0;
1820}
1821EXPORT_SYMBOL_GPL(nfs_symlink);
1822
1823int
1824nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1825{
1826        struct inode *inode = old_dentry->d_inode;
1827        int error;
1828
1829        dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1830                old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1831                dentry->d_parent->d_name.name, dentry->d_name.name);
1832
1833        NFS_PROTO(inode)->return_delegation(inode);
1834
1835        d_drop(dentry);
1836        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1837        if (error == 0) {
1838                ihold(inode);
1839                d_add(dentry, inode);
1840        }
1841        return error;
1842}
1843EXPORT_SYMBOL_GPL(nfs_link);
1844
1845/*
1846 * RENAME
1847 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1848 * different file handle for the same inode after a rename (e.g. when
1849 * moving to a different directory). A fail-safe method to do so would
1850 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1851 * rename the old file using the sillyrename stuff. This way, the original
1852 * file in old_dir will go away when the last process iput()s the inode.
1853 *
1854 * FIXED.
1855 * 
1856 * It actually works quite well. One needs to have the possibility for
1857 * at least one ".nfs..." file in each directory the file ever gets
1858 * moved or linked to which happens automagically with the new
1859 * implementation that only depends on the dcache stuff instead of
1860 * using the inode layer
1861 *
1862 * Unfortunately, things are a little more complicated than indicated
1863 * above. For a cross-directory move, we want to make sure we can get
1864 * rid of the old inode after the operation.  This means there must be
1865 * no pending writes (if it's a file), and the use count must be 1.
1866 * If these conditions are met, we can drop the dentries before doing
1867 * the rename.
1868 */
1869int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1870                      struct inode *new_dir, struct dentry *new_dentry)
1871{
1872        struct inode *old_inode = old_dentry->d_inode;
1873        struct inode *new_inode = new_dentry->d_inode;
1874        struct dentry *dentry = NULL, *rehash = NULL;
1875        int error = -EBUSY;
1876
1877        dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1878                 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1879                 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1880                 d_count(new_dentry));
1881
1882        /*
1883         * For non-directories, check whether the target is busy and if so,
1884         * make a copy of the dentry and then do a silly-rename. If the
1885         * silly-rename succeeds, the copied dentry is hashed and becomes
1886         * the new target.
1887         */
1888        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1889                /*
1890                 * To prevent any new references to the target during the
1891                 * rename, we unhash the dentry in advance.
1892                 */
1893                if (!d_unhashed(new_dentry)) {
1894                        d_drop(new_dentry);
1895                        rehash = new_dentry;
1896                }
1897
1898                if (d_count(new_dentry) > 2) {
1899                        int err;
1900
1901                        /* copy the target dentry's name */
1902                        dentry = d_alloc(new_dentry->d_parent,
1903                                         &new_dentry->d_name);
1904                        if (!dentry)
1905                                goto out;
1906
1907                        /* silly-rename the existing target ... */
1908                        err = nfs_sillyrename(new_dir, new_dentry);
1909                        if (err)
1910                                goto out;
1911
1912                        new_dentry = dentry;
1913                        rehash = NULL;
1914                        new_inode = NULL;
1915                }
1916        }
1917
1918        NFS_PROTO(old_inode)->return_delegation(old_inode);
1919        if (new_inode != NULL)
1920                NFS_PROTO(new_inode)->return_delegation(new_inode);
1921
1922        error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1923                                           new_dir, &new_dentry->d_name);
1924        nfs_mark_for_revalidate(old_inode);
1925out:
1926        if (rehash)
1927                d_rehash(rehash);
1928        if (!error) {
1929                if (new_inode != NULL)
1930                        nfs_drop_nlink(new_inode);
1931                d_move(old_dentry, new_dentry);
1932                nfs_set_verifier(new_dentry,
1933                                        nfs_save_change_attribute(new_dir));
1934        } else if (error == -ENOENT)
1935                nfs_dentry_handle_enoent(old_dentry);
1936
1937        /* new dentry created? */
1938        if (dentry)
1939                dput(dentry);
1940        return error;
1941}
1942EXPORT_SYMBOL_GPL(nfs_rename);
1943
1944static DEFINE_SPINLOCK(nfs_access_lru_lock);
1945static LIST_HEAD(nfs_access_lru_list);
1946static atomic_long_t nfs_access_nr_entries;
1947
1948static void nfs_access_free_entry(struct nfs_access_entry *entry)
1949{
1950        put_rpccred(entry->cred);
1951        kfree(entry);
1952        smp_mb__before_atomic_dec();
1953        atomic_long_dec(&nfs_access_nr_entries);
1954        smp_mb__after_atomic_dec();
1955}
1956
1957static void nfs_access_free_list(struct list_head *head)
1958{
1959        struct nfs_access_entry *cache;
1960
1961        while (!list_empty(head)) {
1962                cache = list_entry(head->next, struct nfs_access_entry, lru);
1963                list_del(&cache->lru);
1964                nfs_access_free_entry(cache);
1965        }
1966}
1967
1968int nfs_access_cache_shrinker(struct shrinker *shrink,
1969                              struct shrink_control *sc)
1970{
1971        LIST_HEAD(head);
1972        struct nfs_inode *nfsi, *next;
1973        struct nfs_access_entry *cache;
1974        int nr_to_scan = sc->nr_to_scan;
1975        gfp_t gfp_mask = sc->gfp_mask;
1976
1977        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1978                return (nr_to_scan == 0) ? 0 : -1;
1979
1980        spin_lock(&nfs_access_lru_lock);
1981        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1982                struct inode *inode;
1983
1984                if (nr_to_scan-- == 0)
1985                        break;
1986                inode = &nfsi->vfs_inode;
1987                spin_lock(&inode->i_lock);
1988                if (list_empty(&nfsi->access_cache_entry_lru))
1989                        goto remove_lru_entry;
1990                cache = list_entry(nfsi->access_cache_entry_lru.next,
1991                                struct nfs_access_entry, lru);
1992                list_move(&cache->lru, &head);
1993                rb_erase(&cache->rb_node, &nfsi->access_cache);
1994                if (!list_empty(&nfsi->access_cache_entry_lru))
1995                        list_move_tail(&nfsi->access_cache_inode_lru,
1996                                        &nfs_access_lru_list);
1997                else {
1998remove_lru_entry:
1999                        list_del_init(&nfsi->access_cache_inode_lru);
2000                        smp_mb__before_clear_bit();
2001                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2002                        smp_mb__after_clear_bit();
2003                }
2004                spin_unlock(&inode->i_lock);
2005        }
2006        spin_unlock(&nfs_access_lru_lock);
2007        nfs_access_free_list(&head);
2008        return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2009}
2010
2011static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2012{
2013        struct rb_root *root_node = &nfsi->access_cache;
2014        struct rb_node *n;
2015        struct nfs_access_entry *entry;
2016
2017        /* Unhook entries from the cache */
2018        while ((n = rb_first(root_node)) != NULL) {
2019                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2020                rb_erase(n, root_node);
2021                list_move(&entry->lru, head);
2022        }
2023        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2024}
2025
2026void nfs_access_zap_cache(struct inode *inode)
2027{
2028        LIST_HEAD(head);
2029
2030        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2031                return;
2032        /* Remove from global LRU init */
2033        spin_lock(&nfs_access_lru_lock);
2034        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2035                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2036
2037        spin_lock(&inode->i_lock);
2038        __nfs_access_zap_cache(NFS_I(inode), &head);
2039        spin_unlock(&inode->i_lock);
2040        spin_unlock(&nfs_access_lru_lock);
2041        nfs_access_free_list(&head);
2042}
2043EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2044
2045static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2046{
2047        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2048        struct nfs_access_entry *entry;
2049
2050        while (n != NULL) {
2051                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2052
2053                if (cred < entry->cred)
2054                        n = n->rb_left;
2055                else if (cred > entry->cred)
2056                        n = n->rb_right;
2057                else
2058                        return entry;
2059        }
2060        return NULL;
2061}
2062
2063static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2064{
2065        struct nfs_inode *nfsi = NFS_I(inode);
2066        struct nfs_access_entry *cache;
2067        int err = -ENOENT;
2068
2069        spin_lock(&inode->i_lock);
2070        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2071                goto out_zap;
2072        cache = nfs_access_search_rbtree(inode, cred);
2073        if (cache == NULL)
2074                goto out;
2075        if (!nfs_have_delegated_attributes(inode) &&
2076            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2077                goto out_stale;
2078        res->jiffies = cache->jiffies;
2079        res->cred = cache->cred;
2080        res->mask = cache->mask;
2081        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2082        err = 0;
2083out:
2084        spin_unlock(&inode->i_lock);
2085        return err;
2086out_stale:
2087        rb_erase(&cache->rb_node, &nfsi->access_cache);
2088        list_del(&cache->lru);
2089        spin_unlock(&inode->i_lock);
2090        nfs_access_free_entry(cache);
2091        return -ENOENT;
2092out_zap:
2093        spin_unlock(&inode->i_lock);
2094        nfs_access_zap_cache(inode);
2095        return -ENOENT;
2096}
2097
2098static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2099{
2100        struct nfs_inode *nfsi = NFS_I(inode);
2101        struct rb_root *root_node = &nfsi->access_cache;
2102        struct rb_node **p = &root_node->rb_node;
2103        struct rb_node *parent = NULL;
2104        struct nfs_access_entry *entry;
2105
2106        spin_lock(&inode->i_lock);
2107        while (*p != NULL) {
2108                parent = *p;
2109                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2110
2111                if (set->cred < entry->cred)
2112                        p = &parent->rb_left;
2113                else if (set->cred > entry->cred)
2114                        p = &parent->rb_right;
2115                else
2116                        goto found;
2117        }
2118        rb_link_node(&set->rb_node, parent, p);
2119        rb_insert_color(&set->rb_node, root_node);
2120        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2121        spin_unlock(&inode->i_lock);
2122        return;
2123found:
2124        rb_replace_node(parent, &set->rb_node, root_node);
2125        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2126        list_del(&entry->lru);
2127        spin_unlock(&inode->i_lock);
2128        nfs_access_free_entry(entry);
2129}
2130
2131void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2132{
2133        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2134        if (cache == NULL)
2135                return;
2136        RB_CLEAR_NODE(&cache->rb_node);
2137        cache->jiffies = set->jiffies;
2138        cache->cred = get_rpccred(set->cred);
2139        cache->mask = set->mask;
2140
2141        nfs_access_add_rbtree(inode, cache);
2142
2143        /* Update accounting */
2144        smp_mb__before_atomic_inc();
2145        atomic_long_inc(&nfs_access_nr_entries);
2146        smp_mb__after_atomic_inc();
2147
2148        /* Add inode to global LRU list */
2149        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2150                spin_lock(&nfs_access_lru_lock);
2151                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2152                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2153                                        &nfs_access_lru_list);
2154                spin_unlock(&nfs_access_lru_lock);
2155        }
2156}
2157EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2158
2159void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2160{
2161        entry->mask = 0;
2162        if (access_result & NFS4_ACCESS_READ)
2163                entry->mask |= MAY_READ;
2164        if (access_result &
2165            (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2166                entry->mask |= MAY_WRITE;
2167        if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2168                entry->mask |= MAY_EXEC;
2169}
2170EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2171
2172static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2173{
2174        struct nfs_access_entry cache;
2175        int status;
2176
2177        status = nfs_access_get_cached(inode, cred, &cache);
2178        if (status == 0)
2179                goto out;
2180
2181        /* Be clever: ask server to check for all possible rights */
2182        cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2183        cache.cred = cred;
2184        cache.jiffies = jiffies;
2185        status = NFS_PROTO(inode)->access(inode, &cache);
2186        if (status != 0) {
2187                if (status == -ESTALE) {
2188                        nfs_zap_caches(inode);
2189                        if (!S_ISDIR(inode->i_mode))
2190                                set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2191                }
2192                return status;
2193        }
2194        nfs_access_add_cache(inode, &cache);
2195out:
2196        if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2197                return 0;
2198        return -EACCES;
2199}
2200
2201static int nfs_open_permission_mask(int openflags)
2202{
2203        int mask = 0;
2204
2205        if (openflags & __FMODE_EXEC) {
2206                /* ONLY check exec rights */
2207                mask = MAY_EXEC;
2208        } else {
2209                if ((openflags & O_ACCMODE) != O_WRONLY)
2210                        mask |= MAY_READ;
2211                if ((openflags & O_ACCMODE) != O_RDONLY)
2212                        mask |= MAY_WRITE;
2213        }
2214
2215        return mask;
2216}
2217
2218int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2219{
2220        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2221}
2222EXPORT_SYMBOL_GPL(nfs_may_open);
2223
2224int nfs_permission(struct inode *inode, int mask)
2225{
2226        struct rpc_cred *cred;
2227        int res = 0;
2228
2229        if (mask & MAY_NOT_BLOCK)
2230                return -ECHILD;
2231
2232        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2233
2234        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2235                goto out;
2236        /* Is this sys_access() ? */
2237        if (mask & (MAY_ACCESS | MAY_CHDIR))
2238                goto force_lookup;
2239
2240        switch (inode->i_mode & S_IFMT) {
2241                case S_IFLNK:
2242                        goto out;
2243                case S_IFREG:
2244                        /* NFSv4 has atomic_open... */
2245                        if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2246                                        && (mask & MAY_OPEN)
2247                                        && !(mask & MAY_EXEC))
2248                                goto out;
2249                        break;
2250                case S_IFDIR:
2251                        /*
2252                         * Optimize away all write operations, since the server
2253                         * will check permissions when we perform the op.
2254                         */
2255                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2256                                goto out;
2257        }
2258
2259force_lookup:
2260        if (!NFS_PROTO(inode)->access)
2261                goto out_notsup;
2262
2263        cred = rpc_lookup_cred();
2264        if (!IS_ERR(cred)) {
2265                res = nfs_do_access(inode, cred, mask);
2266                put_rpccred(cred);
2267        } else
2268                res = PTR_ERR(cred);
2269out:
2270        if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2271                res = -EACCES;
2272
2273        dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2274                inode->i_sb->s_id, inode->i_ino, mask, res);
2275        return res;
2276out_notsup:
2277        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2278        if (res == 0)
2279                res = generic_permission(inode, mask);
2280        goto out;
2281}
2282EXPORT_SYMBOL_GPL(nfs_permission);
2283
2284/*
2285 * Local variables:
2286 *  version-control: t
2287 *  kept-new-versions: 5
2288 * End:
2289 */
2290