linux/fs/ntfs/file.c
<<
>>
Prefs
   1/*
   2 * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
   3 *
   4 * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.
   5 *
   6 * This program/include file is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as published
   8 * by the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program/include file is distributed in the hope that it will be
  12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program (in the main directory of the Linux-NTFS
  18 * distribution in the file COPYING); if not, write to the Free Software
  19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  20 */
  21
  22#include <linux/buffer_head.h>
  23#include <linux/gfp.h>
  24#include <linux/pagemap.h>
  25#include <linux/pagevec.h>
  26#include <linux/sched.h>
  27#include <linux/swap.h>
  28#include <linux/uio.h>
  29#include <linux/writeback.h>
  30#include <linux/aio.h>
  31
  32#include <asm/page.h>
  33#include <asm/uaccess.h>
  34
  35#include "attrib.h"
  36#include "bitmap.h"
  37#include "inode.h"
  38#include "debug.h"
  39#include "lcnalloc.h"
  40#include "malloc.h"
  41#include "mft.h"
  42#include "ntfs.h"
  43
  44/**
  45 * ntfs_file_open - called when an inode is about to be opened
  46 * @vi:         inode to be opened
  47 * @filp:       file structure describing the inode
  48 *
  49 * Limit file size to the page cache limit on architectures where unsigned long
  50 * is 32-bits. This is the most we can do for now without overflowing the page
  51 * cache page index. Doing it this way means we don't run into problems because
  52 * of existing too large files. It would be better to allow the user to read
  53 * the beginning of the file but I doubt very much anyone is going to hit this
  54 * check on a 32-bit architecture, so there is no point in adding the extra
  55 * complexity required to support this.
  56 *
  57 * On 64-bit architectures, the check is hopefully optimized away by the
  58 * compiler.
  59 *
  60 * After the check passes, just call generic_file_open() to do its work.
  61 */
  62static int ntfs_file_open(struct inode *vi, struct file *filp)
  63{
  64        if (sizeof(unsigned long) < 8) {
  65                if (i_size_read(vi) > MAX_LFS_FILESIZE)
  66                        return -EOVERFLOW;
  67        }
  68        return generic_file_open(vi, filp);
  69}
  70
  71#ifdef NTFS_RW
  72
  73/**
  74 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
  75 * @ni:                 ntfs inode of the attribute to extend
  76 * @new_init_size:      requested new initialized size in bytes
  77 * @cached_page:        store any allocated but unused page here
  78 * @lru_pvec:           lru-buffering pagevec of the caller
  79 *
  80 * Extend the initialized size of an attribute described by the ntfs inode @ni
  81 * to @new_init_size bytes.  This involves zeroing any non-sparse space between
  82 * the old initialized size and @new_init_size both in the page cache and on
  83 * disk (if relevant complete pages are already uptodate in the page cache then
  84 * these are simply marked dirty).
  85 *
  86 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
  87 * in the resident attribute case, it is tied to the initialized size and, in
  88 * the non-resident attribute case, it may not fall below the initialized size.
  89 *
  90 * Note that if the attribute is resident, we do not need to touch the page
  91 * cache at all.  This is because if the page cache page is not uptodate we
  92 * bring it uptodate later, when doing the write to the mft record since we
  93 * then already have the page mapped.  And if the page is uptodate, the
  94 * non-initialized region will already have been zeroed when the page was
  95 * brought uptodate and the region may in fact already have been overwritten
  96 * with new data via mmap() based writes, so we cannot just zero it.  And since
  97 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
  98 * is unspecified, we choose not to do zeroing and thus we do not need to touch
  99 * the page at all.  For a more detailed explanation see ntfs_truncate() in
 100 * fs/ntfs/inode.c.
 101 *
 102 * Return 0 on success and -errno on error.  In the case that an error is
 103 * encountered it is possible that the initialized size will already have been
 104 * incremented some way towards @new_init_size but it is guaranteed that if
 105 * this is the case, the necessary zeroing will also have happened and that all
 106 * metadata is self-consistent.
 107 *
 108 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
 109 *          held by the caller.
 110 */
 111static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
 112{
 113        s64 old_init_size;
 114        loff_t old_i_size;
 115        pgoff_t index, end_index;
 116        unsigned long flags;
 117        struct inode *vi = VFS_I(ni);
 118        ntfs_inode *base_ni;
 119        MFT_RECORD *m = NULL;
 120        ATTR_RECORD *a;
 121        ntfs_attr_search_ctx *ctx = NULL;
 122        struct address_space *mapping;
 123        struct page *page = NULL;
 124        u8 *kattr;
 125        int err;
 126        u32 attr_len;
 127
 128        read_lock_irqsave(&ni->size_lock, flags);
 129        old_init_size = ni->initialized_size;
 130        old_i_size = i_size_read(vi);
 131        BUG_ON(new_init_size > ni->allocated_size);
 132        read_unlock_irqrestore(&ni->size_lock, flags);
 133        ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
 134                        "old_initialized_size 0x%llx, "
 135                        "new_initialized_size 0x%llx, i_size 0x%llx.",
 136                        vi->i_ino, (unsigned)le32_to_cpu(ni->type),
 137                        (unsigned long long)old_init_size,
 138                        (unsigned long long)new_init_size, old_i_size);
 139        if (!NInoAttr(ni))
 140                base_ni = ni;
 141        else
 142                base_ni = ni->ext.base_ntfs_ino;
 143        /* Use goto to reduce indentation and we need the label below anyway. */
 144        if (NInoNonResident(ni))
 145                goto do_non_resident_extend;
 146        BUG_ON(old_init_size != old_i_size);
 147        m = map_mft_record(base_ni);
 148        if (IS_ERR(m)) {
 149                err = PTR_ERR(m);
 150                m = NULL;
 151                goto err_out;
 152        }
 153        ctx = ntfs_attr_get_search_ctx(base_ni, m);
 154        if (unlikely(!ctx)) {
 155                err = -ENOMEM;
 156                goto err_out;
 157        }
 158        err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 159                        CASE_SENSITIVE, 0, NULL, 0, ctx);
 160        if (unlikely(err)) {
 161                if (err == -ENOENT)
 162                        err = -EIO;
 163                goto err_out;
 164        }
 165        m = ctx->mrec;
 166        a = ctx->attr;
 167        BUG_ON(a->non_resident);
 168        /* The total length of the attribute value. */
 169        attr_len = le32_to_cpu(a->data.resident.value_length);
 170        BUG_ON(old_i_size != (loff_t)attr_len);
 171        /*
 172         * Do the zeroing in the mft record and update the attribute size in
 173         * the mft record.
 174         */
 175        kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
 176        memset(kattr + attr_len, 0, new_init_size - attr_len);
 177        a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
 178        /* Finally, update the sizes in the vfs and ntfs inodes. */
 179        write_lock_irqsave(&ni->size_lock, flags);
 180        i_size_write(vi, new_init_size);
 181        ni->initialized_size = new_init_size;
 182        write_unlock_irqrestore(&ni->size_lock, flags);
 183        goto done;
 184do_non_resident_extend:
 185        /*
 186         * If the new initialized size @new_init_size exceeds the current file
 187         * size (vfs inode->i_size), we need to extend the file size to the
 188         * new initialized size.
 189         */
 190        if (new_init_size > old_i_size) {
 191                m = map_mft_record(base_ni);
 192                if (IS_ERR(m)) {
 193                        err = PTR_ERR(m);
 194                        m = NULL;
 195                        goto err_out;
 196                }
 197                ctx = ntfs_attr_get_search_ctx(base_ni, m);
 198                if (unlikely(!ctx)) {
 199                        err = -ENOMEM;
 200                        goto err_out;
 201                }
 202                err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 203                                CASE_SENSITIVE, 0, NULL, 0, ctx);
 204                if (unlikely(err)) {
 205                        if (err == -ENOENT)
 206                                err = -EIO;
 207                        goto err_out;
 208                }
 209                m = ctx->mrec;
 210                a = ctx->attr;
 211                BUG_ON(!a->non_resident);
 212                BUG_ON(old_i_size != (loff_t)
 213                                sle64_to_cpu(a->data.non_resident.data_size));
 214                a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
 215                flush_dcache_mft_record_page(ctx->ntfs_ino);
 216                mark_mft_record_dirty(ctx->ntfs_ino);
 217                /* Update the file size in the vfs inode. */
 218                i_size_write(vi, new_init_size);
 219                ntfs_attr_put_search_ctx(ctx);
 220                ctx = NULL;
 221                unmap_mft_record(base_ni);
 222                m = NULL;
 223        }
 224        mapping = vi->i_mapping;
 225        index = old_init_size >> PAGE_CACHE_SHIFT;
 226        end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 227        do {
 228                /*
 229                 * Read the page.  If the page is not present, this will zero
 230                 * the uninitialized regions for us.
 231                 */
 232                page = read_mapping_page(mapping, index, NULL);
 233                if (IS_ERR(page)) {
 234                        err = PTR_ERR(page);
 235                        goto init_err_out;
 236                }
 237                if (unlikely(PageError(page))) {
 238                        page_cache_release(page);
 239                        err = -EIO;
 240                        goto init_err_out;
 241                }
 242                /*
 243                 * Update the initialized size in the ntfs inode.  This is
 244                 * enough to make ntfs_writepage() work.
 245                 */
 246                write_lock_irqsave(&ni->size_lock, flags);
 247                ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
 248                if (ni->initialized_size > new_init_size)
 249                        ni->initialized_size = new_init_size;
 250                write_unlock_irqrestore(&ni->size_lock, flags);
 251                /* Set the page dirty so it gets written out. */
 252                set_page_dirty(page);
 253                page_cache_release(page);
 254                /*
 255                 * Play nice with the vm and the rest of the system.  This is
 256                 * very much needed as we can potentially be modifying the
 257                 * initialised size from a very small value to a really huge
 258                 * value, e.g.
 259                 *      f = open(somefile, O_TRUNC);
 260                 *      truncate(f, 10GiB);
 261                 *      seek(f, 10GiB);
 262                 *      write(f, 1);
 263                 * And this would mean we would be marking dirty hundreds of
 264                 * thousands of pages or as in the above example more than
 265                 * two and a half million pages!
 266                 *
 267                 * TODO: For sparse pages could optimize this workload by using
 268                 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
 269                 * would be set in readpage for sparse pages and here we would
 270                 * not need to mark dirty any pages which have this bit set.
 271                 * The only caveat is that we have to clear the bit everywhere
 272                 * where we allocate any clusters that lie in the page or that
 273                 * contain the page.
 274                 *
 275                 * TODO: An even greater optimization would be for us to only
 276                 * call readpage() on pages which are not in sparse regions as
 277                 * determined from the runlist.  This would greatly reduce the
 278                 * number of pages we read and make dirty in the case of sparse
 279                 * files.
 280                 */
 281                balance_dirty_pages_ratelimited(mapping);
 282                cond_resched();
 283        } while (++index < end_index);
 284        read_lock_irqsave(&ni->size_lock, flags);
 285        BUG_ON(ni->initialized_size != new_init_size);
 286        read_unlock_irqrestore(&ni->size_lock, flags);
 287        /* Now bring in sync the initialized_size in the mft record. */
 288        m = map_mft_record(base_ni);
 289        if (IS_ERR(m)) {
 290                err = PTR_ERR(m);
 291                m = NULL;
 292                goto init_err_out;
 293        }
 294        ctx = ntfs_attr_get_search_ctx(base_ni, m);
 295        if (unlikely(!ctx)) {
 296                err = -ENOMEM;
 297                goto init_err_out;
 298        }
 299        err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 300                        CASE_SENSITIVE, 0, NULL, 0, ctx);
 301        if (unlikely(err)) {
 302                if (err == -ENOENT)
 303                        err = -EIO;
 304                goto init_err_out;
 305        }
 306        m = ctx->mrec;
 307        a = ctx->attr;
 308        BUG_ON(!a->non_resident);
 309        a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
 310done:
 311        flush_dcache_mft_record_page(ctx->ntfs_ino);
 312        mark_mft_record_dirty(ctx->ntfs_ino);
 313        if (ctx)
 314                ntfs_attr_put_search_ctx(ctx);
 315        if (m)
 316                unmap_mft_record(base_ni);
 317        ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
 318                        (unsigned long long)new_init_size, i_size_read(vi));
 319        return 0;
 320init_err_out:
 321        write_lock_irqsave(&ni->size_lock, flags);
 322        ni->initialized_size = old_init_size;
 323        write_unlock_irqrestore(&ni->size_lock, flags);
 324err_out:
 325        if (ctx)
 326                ntfs_attr_put_search_ctx(ctx);
 327        if (m)
 328                unmap_mft_record(base_ni);
 329        ntfs_debug("Failed.  Returning error code %i.", err);
 330        return err;
 331}
 332
 333/**
 334 * ntfs_fault_in_pages_readable -
 335 *
 336 * Fault a number of userspace pages into pagetables.
 337 *
 338 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
 339 * with more than two userspace pages as well as handling the single page case
 340 * elegantly.
 341 *
 342 * If you find this difficult to understand, then think of the while loop being
 343 * the following code, except that we do without the integer variable ret:
 344 *
 345 *      do {
 346 *              ret = __get_user(c, uaddr);
 347 *              uaddr += PAGE_SIZE;
 348 *      } while (!ret && uaddr < end);
 349 *
 350 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
 351 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
 352 * this is only a read and not a write, and since it is still in the same page,
 353 * it should not matter and this makes the code much simpler.
 354 */
 355static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
 356                int bytes)
 357{
 358        const char __user *end;
 359        volatile char c;
 360
 361        /* Set @end to the first byte outside the last page we care about. */
 362        end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
 363
 364        while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
 365                ;
 366}
 367
 368/**
 369 * ntfs_fault_in_pages_readable_iovec -
 370 *
 371 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
 372 */
 373static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
 374                size_t iov_ofs, int bytes)
 375{
 376        do {
 377                const char __user *buf;
 378                unsigned len;
 379
 380                buf = iov->iov_base + iov_ofs;
 381                len = iov->iov_len - iov_ofs;
 382                if (len > bytes)
 383                        len = bytes;
 384                ntfs_fault_in_pages_readable(buf, len);
 385                bytes -= len;
 386                iov++;
 387                iov_ofs = 0;
 388        } while (bytes);
 389}
 390
 391/**
 392 * __ntfs_grab_cache_pages - obtain a number of locked pages
 393 * @mapping:    address space mapping from which to obtain page cache pages
 394 * @index:      starting index in @mapping at which to begin obtaining pages
 395 * @nr_pages:   number of page cache pages to obtain
 396 * @pages:      array of pages in which to return the obtained page cache pages
 397 * @cached_page: allocated but as yet unused page
 398 * @lru_pvec:   lru-buffering pagevec of caller
 399 *
 400 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
 401 * starting at index @index.
 402 *
 403 * If a page is newly created, add it to lru list
 404 *
 405 * Note, the page locks are obtained in ascending page index order.
 406 */
 407static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
 408                pgoff_t index, const unsigned nr_pages, struct page **pages,
 409                struct page **cached_page)
 410{
 411        int err, nr;
 412
 413        BUG_ON(!nr_pages);
 414        err = nr = 0;
 415        do {
 416                pages[nr] = find_lock_page(mapping, index);
 417                if (!pages[nr]) {
 418                        if (!*cached_page) {
 419                                *cached_page = page_cache_alloc(mapping);
 420                                if (unlikely(!*cached_page)) {
 421                                        err = -ENOMEM;
 422                                        goto err_out;
 423                                }
 424                        }
 425                        err = add_to_page_cache_lru(*cached_page, mapping, index,
 426                                        GFP_KERNEL);
 427                        if (unlikely(err)) {
 428                                if (err == -EEXIST)
 429                                        continue;
 430                                goto err_out;
 431                        }
 432                        pages[nr] = *cached_page;
 433                        *cached_page = NULL;
 434                }
 435                index++;
 436                nr++;
 437        } while (nr < nr_pages);
 438out:
 439        return err;
 440err_out:
 441        while (nr > 0) {
 442                unlock_page(pages[--nr]);
 443                page_cache_release(pages[nr]);
 444        }
 445        goto out;
 446}
 447
 448static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
 449{
 450        lock_buffer(bh);
 451        get_bh(bh);
 452        bh->b_end_io = end_buffer_read_sync;
 453        return submit_bh(READ, bh);
 454}
 455
 456/**
 457 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
 458 * @pages:      array of destination pages
 459 * @nr_pages:   number of pages in @pages
 460 * @pos:        byte position in file at which the write begins
 461 * @bytes:      number of bytes to be written
 462 *
 463 * This is called for non-resident attributes from ntfs_file_buffered_write()
 464 * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
 465 * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
 466 * data has not yet been copied into the @pages.
 467 * 
 468 * Need to fill any holes with actual clusters, allocate buffers if necessary,
 469 * ensure all the buffers are mapped, and bring uptodate any buffers that are
 470 * only partially being written to.
 471 *
 472 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
 473 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
 474 * the same cluster and that they are the entirety of that cluster, and that
 475 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
 476 *
 477 * i_size is not to be modified yet.
 478 *
 479 * Return 0 on success or -errno on error.
 480 */
 481static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
 482                unsigned nr_pages, s64 pos, size_t bytes)
 483{
 484        VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
 485        LCN lcn;
 486        s64 bh_pos, vcn_len, end, initialized_size;
 487        sector_t lcn_block;
 488        struct page *page;
 489        struct inode *vi;
 490        ntfs_inode *ni, *base_ni = NULL;
 491        ntfs_volume *vol;
 492        runlist_element *rl, *rl2;
 493        struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
 494        ntfs_attr_search_ctx *ctx = NULL;
 495        MFT_RECORD *m = NULL;
 496        ATTR_RECORD *a = NULL;
 497        unsigned long flags;
 498        u32 attr_rec_len = 0;
 499        unsigned blocksize, u;
 500        int err, mp_size;
 501        bool rl_write_locked, was_hole, is_retry;
 502        unsigned char blocksize_bits;
 503        struct {
 504                u8 runlist_merged:1;
 505                u8 mft_attr_mapped:1;
 506                u8 mp_rebuilt:1;
 507                u8 attr_switched:1;
 508        } status = { 0, 0, 0, 0 };
 509
 510        BUG_ON(!nr_pages);
 511        BUG_ON(!pages);
 512        BUG_ON(!*pages);
 513        vi = pages[0]->mapping->host;
 514        ni = NTFS_I(vi);
 515        vol = ni->vol;
 516        ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
 517                        "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
 518                        vi->i_ino, ni->type, pages[0]->index, nr_pages,
 519                        (long long)pos, bytes);
 520        blocksize = vol->sb->s_blocksize;
 521        blocksize_bits = vol->sb->s_blocksize_bits;
 522        u = 0;
 523        do {
 524                page = pages[u];
 525                BUG_ON(!page);
 526                /*
 527                 * create_empty_buffers() will create uptodate/dirty buffers if
 528                 * the page is uptodate/dirty.
 529                 */
 530                if (!page_has_buffers(page)) {
 531                        create_empty_buffers(page, blocksize, 0);
 532                        if (unlikely(!page_has_buffers(page)))
 533                                return -ENOMEM;
 534                }
 535        } while (++u < nr_pages);
 536        rl_write_locked = false;
 537        rl = NULL;
 538        err = 0;
 539        vcn = lcn = -1;
 540        vcn_len = 0;
 541        lcn_block = -1;
 542        was_hole = false;
 543        cpos = pos >> vol->cluster_size_bits;
 544        end = pos + bytes;
 545        cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
 546        /*
 547         * Loop over each page and for each page over each buffer.  Use goto to
 548         * reduce indentation.
 549         */
 550        u = 0;
 551do_next_page:
 552        page = pages[u];
 553        bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
 554        bh = head = page_buffers(page);
 555        do {
 556                VCN cdelta;
 557                s64 bh_end;
 558                unsigned bh_cofs;
 559
 560                /* Clear buffer_new on all buffers to reinitialise state. */
 561                if (buffer_new(bh))
 562                        clear_buffer_new(bh);
 563                bh_end = bh_pos + blocksize;
 564                bh_cpos = bh_pos >> vol->cluster_size_bits;
 565                bh_cofs = bh_pos & vol->cluster_size_mask;
 566                if (buffer_mapped(bh)) {
 567                        /*
 568                         * The buffer is already mapped.  If it is uptodate,
 569                         * ignore it.
 570                         */
 571                        if (buffer_uptodate(bh))
 572                                continue;
 573                        /*
 574                         * The buffer is not uptodate.  If the page is uptodate
 575                         * set the buffer uptodate and otherwise ignore it.
 576                         */
 577                        if (PageUptodate(page)) {
 578                                set_buffer_uptodate(bh);
 579                                continue;
 580                        }
 581                        /*
 582                         * Neither the page nor the buffer are uptodate.  If
 583                         * the buffer is only partially being written to, we
 584                         * need to read it in before the write, i.e. now.
 585                         */
 586                        if ((bh_pos < pos && bh_end > pos) ||
 587                                        (bh_pos < end && bh_end > end)) {
 588                                /*
 589                                 * If the buffer is fully or partially within
 590                                 * the initialized size, do an actual read.
 591                                 * Otherwise, simply zero the buffer.
 592                                 */
 593                                read_lock_irqsave(&ni->size_lock, flags);
 594                                initialized_size = ni->initialized_size;
 595                                read_unlock_irqrestore(&ni->size_lock, flags);
 596                                if (bh_pos < initialized_size) {
 597                                        ntfs_submit_bh_for_read(bh);
 598                                        *wait_bh++ = bh;
 599                                } else {
 600                                        zero_user(page, bh_offset(bh),
 601                                                        blocksize);
 602                                        set_buffer_uptodate(bh);
 603                                }
 604                        }
 605                        continue;
 606                }
 607                /* Unmapped buffer.  Need to map it. */
 608                bh->b_bdev = vol->sb->s_bdev;
 609                /*
 610                 * If the current buffer is in the same clusters as the map
 611                 * cache, there is no need to check the runlist again.  The
 612                 * map cache is made up of @vcn, which is the first cached file
 613                 * cluster, @vcn_len which is the number of cached file
 614                 * clusters, @lcn is the device cluster corresponding to @vcn,
 615                 * and @lcn_block is the block number corresponding to @lcn.
 616                 */
 617                cdelta = bh_cpos - vcn;
 618                if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
 619map_buffer_cached:
 620                        BUG_ON(lcn < 0);
 621                        bh->b_blocknr = lcn_block +
 622                                        (cdelta << (vol->cluster_size_bits -
 623                                        blocksize_bits)) +
 624                                        (bh_cofs >> blocksize_bits);
 625                        set_buffer_mapped(bh);
 626                        /*
 627                         * If the page is uptodate so is the buffer.  If the
 628                         * buffer is fully outside the write, we ignore it if
 629                         * it was already allocated and we mark it dirty so it
 630                         * gets written out if we allocated it.  On the other
 631                         * hand, if we allocated the buffer but we are not
 632                         * marking it dirty we set buffer_new so we can do
 633                         * error recovery.
 634                         */
 635                        if (PageUptodate(page)) {
 636                                if (!buffer_uptodate(bh))
 637                                        set_buffer_uptodate(bh);
 638                                if (unlikely(was_hole)) {
 639                                        /* We allocated the buffer. */
 640                                        unmap_underlying_metadata(bh->b_bdev,
 641                                                        bh->b_blocknr);
 642                                        if (bh_end <= pos || bh_pos >= end)
 643                                                mark_buffer_dirty(bh);
 644                                        else
 645                                                set_buffer_new(bh);
 646                                }
 647                                continue;
 648                        }
 649                        /* Page is _not_ uptodate. */
 650                        if (likely(!was_hole)) {
 651                                /*
 652                                 * Buffer was already allocated.  If it is not
 653                                 * uptodate and is only partially being written
 654                                 * to, we need to read it in before the write,
 655                                 * i.e. now.
 656                                 */
 657                                if (!buffer_uptodate(bh) && bh_pos < end &&
 658                                                bh_end > pos &&
 659                                                (bh_pos < pos ||
 660                                                bh_end > end)) {
 661                                        /*
 662                                         * If the buffer is fully or partially
 663                                         * within the initialized size, do an
 664                                         * actual read.  Otherwise, simply zero
 665                                         * the buffer.
 666                                         */
 667                                        read_lock_irqsave(&ni->size_lock,
 668                                                        flags);
 669                                        initialized_size = ni->initialized_size;
 670                                        read_unlock_irqrestore(&ni->size_lock,
 671                                                        flags);
 672                                        if (bh_pos < initialized_size) {
 673                                                ntfs_submit_bh_for_read(bh);
 674                                                *wait_bh++ = bh;
 675                                        } else {
 676                                                zero_user(page, bh_offset(bh),
 677                                                                blocksize);
 678                                                set_buffer_uptodate(bh);
 679                                        }
 680                                }
 681                                continue;
 682                        }
 683                        /* We allocated the buffer. */
 684                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 685                        /*
 686                         * If the buffer is fully outside the write, zero it,
 687                         * set it uptodate, and mark it dirty so it gets
 688                         * written out.  If it is partially being written to,
 689                         * zero region surrounding the write but leave it to
 690                         * commit write to do anything else.  Finally, if the
 691                         * buffer is fully being overwritten, do nothing.
 692                         */
 693                        if (bh_end <= pos || bh_pos >= end) {
 694                                if (!buffer_uptodate(bh)) {
 695                                        zero_user(page, bh_offset(bh),
 696                                                        blocksize);
 697                                        set_buffer_uptodate(bh);
 698                                }
 699                                mark_buffer_dirty(bh);
 700                                continue;
 701                        }
 702                        set_buffer_new(bh);
 703                        if (!buffer_uptodate(bh) &&
 704                                        (bh_pos < pos || bh_end > end)) {
 705                                u8 *kaddr;
 706                                unsigned pofs;
 707                                        
 708                                kaddr = kmap_atomic(page);
 709                                if (bh_pos < pos) {
 710                                        pofs = bh_pos & ~PAGE_CACHE_MASK;
 711                                        memset(kaddr + pofs, 0, pos - bh_pos);
 712                                }
 713                                if (bh_end > end) {
 714                                        pofs = end & ~PAGE_CACHE_MASK;
 715                                        memset(kaddr + pofs, 0, bh_end - end);
 716                                }
 717                                kunmap_atomic(kaddr);
 718                                flush_dcache_page(page);
 719                        }
 720                        continue;
 721                }
 722                /*
 723                 * Slow path: this is the first buffer in the cluster.  If it
 724                 * is outside allocated size and is not uptodate, zero it and
 725                 * set it uptodate.
 726                 */
 727                read_lock_irqsave(&ni->size_lock, flags);
 728                initialized_size = ni->allocated_size;
 729                read_unlock_irqrestore(&ni->size_lock, flags);
 730                if (bh_pos > initialized_size) {
 731                        if (PageUptodate(page)) {
 732                                if (!buffer_uptodate(bh))
 733                                        set_buffer_uptodate(bh);
 734                        } else if (!buffer_uptodate(bh)) {
 735                                zero_user(page, bh_offset(bh), blocksize);
 736                                set_buffer_uptodate(bh);
 737                        }
 738                        continue;
 739                }
 740                is_retry = false;
 741                if (!rl) {
 742                        down_read(&ni->runlist.lock);
 743retry_remap:
 744                        rl = ni->runlist.rl;
 745                }
 746                if (likely(rl != NULL)) {
 747                        /* Seek to element containing target cluster. */
 748                        while (rl->length && rl[1].vcn <= bh_cpos)
 749                                rl++;
 750                        lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
 751                        if (likely(lcn >= 0)) {
 752                                /*
 753                                 * Successful remap, setup the map cache and
 754                                 * use that to deal with the buffer.
 755                                 */
 756                                was_hole = false;
 757                                vcn = bh_cpos;
 758                                vcn_len = rl[1].vcn - vcn;
 759                                lcn_block = lcn << (vol->cluster_size_bits -
 760                                                blocksize_bits);
 761                                cdelta = 0;
 762                                /*
 763                                 * If the number of remaining clusters touched
 764                                 * by the write is smaller or equal to the
 765                                 * number of cached clusters, unlock the
 766                                 * runlist as the map cache will be used from
 767                                 * now on.
 768                                 */
 769                                if (likely(vcn + vcn_len >= cend)) {
 770                                        if (rl_write_locked) {
 771                                                up_write(&ni->runlist.lock);
 772                                                rl_write_locked = false;
 773                                        } else
 774                                                up_read(&ni->runlist.lock);
 775                                        rl = NULL;
 776                                }
 777                                goto map_buffer_cached;
 778                        }
 779                } else
 780                        lcn = LCN_RL_NOT_MAPPED;
 781                /*
 782                 * If it is not a hole and not out of bounds, the runlist is
 783                 * probably unmapped so try to map it now.
 784                 */
 785                if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
 786                        if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
 787                                /* Attempt to map runlist. */
 788                                if (!rl_write_locked) {
 789                                        /*
 790                                         * We need the runlist locked for
 791                                         * writing, so if it is locked for
 792                                         * reading relock it now and retry in
 793                                         * case it changed whilst we dropped
 794                                         * the lock.
 795                                         */
 796                                        up_read(&ni->runlist.lock);
 797                                        down_write(&ni->runlist.lock);
 798                                        rl_write_locked = true;
 799                                        goto retry_remap;
 800                                }
 801                                err = ntfs_map_runlist_nolock(ni, bh_cpos,
 802                                                NULL);
 803                                if (likely(!err)) {
 804                                        is_retry = true;
 805                                        goto retry_remap;
 806                                }
 807                                /*
 808                                 * If @vcn is out of bounds, pretend @lcn is
 809                                 * LCN_ENOENT.  As long as the buffer is out
 810                                 * of bounds this will work fine.
 811                                 */
 812                                if (err == -ENOENT) {
 813                                        lcn = LCN_ENOENT;
 814                                        err = 0;
 815                                        goto rl_not_mapped_enoent;
 816                                }
 817                        } else
 818                                err = -EIO;
 819                        /* Failed to map the buffer, even after retrying. */
 820                        bh->b_blocknr = -1;
 821                        ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
 822                                        "attribute type 0x%x, vcn 0x%llx, "
 823                                        "vcn offset 0x%x, because its "
 824                                        "location on disk could not be "
 825                                        "determined%s (error code %i).",
 826                                        ni->mft_no, ni->type,
 827                                        (unsigned long long)bh_cpos,
 828                                        (unsigned)bh_pos &
 829                                        vol->cluster_size_mask,
 830                                        is_retry ? " even after retrying" : "",
 831                                        err);
 832                        break;
 833                }
 834rl_not_mapped_enoent:
 835                /*
 836                 * The buffer is in a hole or out of bounds.  We need to fill
 837                 * the hole, unless the buffer is in a cluster which is not
 838                 * touched by the write, in which case we just leave the buffer
 839                 * unmapped.  This can only happen when the cluster size is
 840                 * less than the page cache size.
 841                 */
 842                if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
 843                        bh_cend = (bh_end + vol->cluster_size - 1) >>
 844                                        vol->cluster_size_bits;
 845                        if ((bh_cend <= cpos || bh_cpos >= cend)) {
 846                                bh->b_blocknr = -1;
 847                                /*
 848                                 * If the buffer is uptodate we skip it.  If it
 849                                 * is not but the page is uptodate, we can set
 850                                 * the buffer uptodate.  If the page is not
 851                                 * uptodate, we can clear the buffer and set it
 852                                 * uptodate.  Whether this is worthwhile is
 853                                 * debatable and this could be removed.
 854                                 */
 855                                if (PageUptodate(page)) {
 856                                        if (!buffer_uptodate(bh))
 857                                                set_buffer_uptodate(bh);
 858                                } else if (!buffer_uptodate(bh)) {
 859                                        zero_user(page, bh_offset(bh),
 860                                                blocksize);
 861                                        set_buffer_uptodate(bh);
 862                                }
 863                                continue;
 864                        }
 865                }
 866                /*
 867                 * Out of bounds buffer is invalid if it was not really out of
 868                 * bounds.
 869                 */
 870                BUG_ON(lcn != LCN_HOLE);
 871                /*
 872                 * We need the runlist locked for writing, so if it is locked
 873                 * for reading relock it now and retry in case it changed
 874                 * whilst we dropped the lock.
 875                 */
 876                BUG_ON(!rl);
 877                if (!rl_write_locked) {
 878                        up_read(&ni->runlist.lock);
 879                        down_write(&ni->runlist.lock);
 880                        rl_write_locked = true;
 881                        goto retry_remap;
 882                }
 883                /* Find the previous last allocated cluster. */
 884                BUG_ON(rl->lcn != LCN_HOLE);
 885                lcn = -1;
 886                rl2 = rl;
 887                while (--rl2 >= ni->runlist.rl) {
 888                        if (rl2->lcn >= 0) {
 889                                lcn = rl2->lcn + rl2->length;
 890                                break;
 891                        }
 892                }
 893                rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
 894                                false);
 895                if (IS_ERR(rl2)) {
 896                        err = PTR_ERR(rl2);
 897                        ntfs_debug("Failed to allocate cluster, error code %i.",
 898                                        err);
 899                        break;
 900                }
 901                lcn = rl2->lcn;
 902                rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
 903                if (IS_ERR(rl)) {
 904                        err = PTR_ERR(rl);
 905                        if (err != -ENOMEM)
 906                                err = -EIO;
 907                        if (ntfs_cluster_free_from_rl(vol, rl2)) {
 908                                ntfs_error(vol->sb, "Failed to release "
 909                                                "allocated cluster in error "
 910                                                "code path.  Run chkdsk to "
 911                                                "recover the lost cluster.");
 912                                NVolSetErrors(vol);
 913                        }
 914                        ntfs_free(rl2);
 915                        break;
 916                }
 917                ni->runlist.rl = rl;
 918                status.runlist_merged = 1;
 919                ntfs_debug("Allocated cluster, lcn 0x%llx.",
 920                                (unsigned long long)lcn);
 921                /* Map and lock the mft record and get the attribute record. */
 922                if (!NInoAttr(ni))
 923                        base_ni = ni;
 924                else
 925                        base_ni = ni->ext.base_ntfs_ino;
 926                m = map_mft_record(base_ni);
 927                if (IS_ERR(m)) {
 928                        err = PTR_ERR(m);
 929                        break;
 930                }
 931                ctx = ntfs_attr_get_search_ctx(base_ni, m);
 932                if (unlikely(!ctx)) {
 933                        err = -ENOMEM;
 934                        unmap_mft_record(base_ni);
 935                        break;
 936                }
 937                status.mft_attr_mapped = 1;
 938                err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 939                                CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
 940                if (unlikely(err)) {
 941                        if (err == -ENOENT)
 942                                err = -EIO;
 943                        break;
 944                }
 945                m = ctx->mrec;
 946                a = ctx->attr;
 947                /*
 948                 * Find the runlist element with which the attribute extent
 949                 * starts.  Note, we cannot use the _attr_ version because we
 950                 * have mapped the mft record.  That is ok because we know the
 951                 * runlist fragment must be mapped already to have ever gotten
 952                 * here, so we can just use the _rl_ version.
 953                 */
 954                vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
 955                rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
 956                BUG_ON(!rl2);
 957                BUG_ON(!rl2->length);
 958                BUG_ON(rl2->lcn < LCN_HOLE);
 959                highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
 960                /*
 961                 * If @highest_vcn is zero, calculate the real highest_vcn
 962                 * (which can really be zero).
 963                 */
 964                if (!highest_vcn)
 965                        highest_vcn = (sle64_to_cpu(
 966                                        a->data.non_resident.allocated_size) >>
 967                                        vol->cluster_size_bits) - 1;
 968                /*
 969                 * Determine the size of the mapping pairs array for the new
 970                 * extent, i.e. the old extent with the hole filled.
 971                 */
 972                mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
 973                                highest_vcn);
 974                if (unlikely(mp_size <= 0)) {
 975                        if (!(err = mp_size))
 976                                err = -EIO;
 977                        ntfs_debug("Failed to get size for mapping pairs "
 978                                        "array, error code %i.", err);
 979                        break;
 980                }
 981                /*
 982                 * Resize the attribute record to fit the new mapping pairs
 983                 * array.
 984                 */
 985                attr_rec_len = le32_to_cpu(a->length);
 986                err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
 987                                a->data.non_resident.mapping_pairs_offset));
 988                if (unlikely(err)) {
 989                        BUG_ON(err != -ENOSPC);
 990                        // TODO: Deal with this by using the current attribute
 991                        // and fill it with as much of the mapping pairs
 992                        // array as possible.  Then loop over each attribute
 993                        // extent rewriting the mapping pairs arrays as we go
 994                        // along and if when we reach the end we have not
 995                        // enough space, try to resize the last attribute
 996                        // extent and if even that fails, add a new attribute
 997                        // extent.
 998                        // We could also try to resize at each step in the hope
 999                        // that we will not need to rewrite every single extent.
1000                        // Note, we may need to decompress some extents to fill
1001                        // the runlist as we are walking the extents...
1002                        ntfs_error(vol->sb, "Not enough space in the mft "
1003                                        "record for the extended attribute "
1004                                        "record.  This case is not "
1005                                        "implemented yet.");
1006                        err = -EOPNOTSUPP;
1007                        break ;
1008                }
1009                status.mp_rebuilt = 1;
1010                /*
1011                 * Generate the mapping pairs array directly into the attribute
1012                 * record.
1013                 */
1014                err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1015                                a->data.non_resident.mapping_pairs_offset),
1016                                mp_size, rl2, vcn, highest_vcn, NULL);
1017                if (unlikely(err)) {
1018                        ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1019                                        "attribute type 0x%x, because building "
1020                                        "the mapping pairs failed with error "
1021                                        "code %i.", vi->i_ino,
1022                                        (unsigned)le32_to_cpu(ni->type), err);
1023                        err = -EIO;
1024                        break;
1025                }
1026                /* Update the highest_vcn but only if it was not set. */
1027                if (unlikely(!a->data.non_resident.highest_vcn))
1028                        a->data.non_resident.highest_vcn =
1029                                        cpu_to_sle64(highest_vcn);
1030                /*
1031                 * If the attribute is sparse/compressed, update the compressed
1032                 * size in the ntfs_inode structure and the attribute record.
1033                 */
1034                if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1035                        /*
1036                         * If we are not in the first attribute extent, switch
1037                         * to it, but first ensure the changes will make it to
1038                         * disk later.
1039                         */
1040                        if (a->data.non_resident.lowest_vcn) {
1041                                flush_dcache_mft_record_page(ctx->ntfs_ino);
1042                                mark_mft_record_dirty(ctx->ntfs_ino);
1043                                ntfs_attr_reinit_search_ctx(ctx);
1044                                err = ntfs_attr_lookup(ni->type, ni->name,
1045                                                ni->name_len, CASE_SENSITIVE,
1046                                                0, NULL, 0, ctx);
1047                                if (unlikely(err)) {
1048                                        status.attr_switched = 1;
1049                                        break;
1050                                }
1051                                /* @m is not used any more so do not set it. */
1052                                a = ctx->attr;
1053                        }
1054                        write_lock_irqsave(&ni->size_lock, flags);
1055                        ni->itype.compressed.size += vol->cluster_size;
1056                        a->data.non_resident.compressed_size =
1057                                        cpu_to_sle64(ni->itype.compressed.size);
1058                        write_unlock_irqrestore(&ni->size_lock, flags);
1059                }
1060                /* Ensure the changes make it to disk. */
1061                flush_dcache_mft_record_page(ctx->ntfs_ino);
1062                mark_mft_record_dirty(ctx->ntfs_ino);
1063                ntfs_attr_put_search_ctx(ctx);
1064                unmap_mft_record(base_ni);
1065                /* Successfully filled the hole. */
1066                status.runlist_merged = 0;
1067                status.mft_attr_mapped = 0;
1068                status.mp_rebuilt = 0;
1069                /* Setup the map cache and use that to deal with the buffer. */
1070                was_hole = true;
1071                vcn = bh_cpos;
1072                vcn_len = 1;
1073                lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1074                cdelta = 0;
1075                /*
1076                 * If the number of remaining clusters in the @pages is smaller
1077                 * or equal to the number of cached clusters, unlock the
1078                 * runlist as the map cache will be used from now on.
1079                 */
1080                if (likely(vcn + vcn_len >= cend)) {
1081                        up_write(&ni->runlist.lock);
1082                        rl_write_locked = false;
1083                        rl = NULL;
1084                }
1085                goto map_buffer_cached;
1086        } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1087        /* If there are no errors, do the next page. */
1088        if (likely(!err && ++u < nr_pages))
1089                goto do_next_page;
1090        /* If there are no errors, release the runlist lock if we took it. */
1091        if (likely(!err)) {
1092                if (unlikely(rl_write_locked)) {
1093                        up_write(&ni->runlist.lock);
1094                        rl_write_locked = false;
1095                } else if (unlikely(rl))
1096                        up_read(&ni->runlist.lock);
1097                rl = NULL;
1098        }
1099        /* If we issued read requests, let them complete. */
1100        read_lock_irqsave(&ni->size_lock, flags);
1101        initialized_size = ni->initialized_size;
1102        read_unlock_irqrestore(&ni->size_lock, flags);
1103        while (wait_bh > wait) {
1104                bh = *--wait_bh;
1105                wait_on_buffer(bh);
1106                if (likely(buffer_uptodate(bh))) {
1107                        page = bh->b_page;
1108                        bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1109                                        bh_offset(bh);
1110                        /*
1111                         * If the buffer overflows the initialized size, need
1112                         * to zero the overflowing region.
1113                         */
1114                        if (unlikely(bh_pos + blocksize > initialized_size)) {
1115                                int ofs = 0;
1116
1117                                if (likely(bh_pos < initialized_size))
1118                                        ofs = initialized_size - bh_pos;
1119                                zero_user_segment(page, bh_offset(bh) + ofs,
1120                                                blocksize);
1121                        }
1122                } else /* if (unlikely(!buffer_uptodate(bh))) */
1123                        err = -EIO;
1124        }
1125        if (likely(!err)) {
1126                /* Clear buffer_new on all buffers. */
1127                u = 0;
1128                do {
1129                        bh = head = page_buffers(pages[u]);
1130                        do {
1131                                if (buffer_new(bh))
1132                                        clear_buffer_new(bh);
1133                        } while ((bh = bh->b_this_page) != head);
1134                } while (++u < nr_pages);
1135                ntfs_debug("Done.");
1136                return err;
1137        }
1138        if (status.attr_switched) {
1139                /* Get back to the attribute extent we modified. */
1140                ntfs_attr_reinit_search_ctx(ctx);
1141                if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1142                                CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1143                        ntfs_error(vol->sb, "Failed to find required "
1144                                        "attribute extent of attribute in "
1145                                        "error code path.  Run chkdsk to "
1146                                        "recover.");
1147                        write_lock_irqsave(&ni->size_lock, flags);
1148                        ni->itype.compressed.size += vol->cluster_size;
1149                        write_unlock_irqrestore(&ni->size_lock, flags);
1150                        flush_dcache_mft_record_page(ctx->ntfs_ino);
1151                        mark_mft_record_dirty(ctx->ntfs_ino);
1152                        /*
1153                         * The only thing that is now wrong is the compressed
1154                         * size of the base attribute extent which chkdsk
1155                         * should be able to fix.
1156                         */
1157                        NVolSetErrors(vol);
1158                } else {
1159                        m = ctx->mrec;
1160                        a = ctx->attr;
1161                        status.attr_switched = 0;
1162                }
1163        }
1164        /*
1165         * If the runlist has been modified, need to restore it by punching a
1166         * hole into it and we then need to deallocate the on-disk cluster as
1167         * well.  Note, we only modify the runlist if we are able to generate a
1168         * new mapping pairs array, i.e. only when the mapped attribute extent
1169         * is not switched.
1170         */
1171        if (status.runlist_merged && !status.attr_switched) {
1172                BUG_ON(!rl_write_locked);
1173                /* Make the file cluster we allocated sparse in the runlist. */
1174                if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1175                        ntfs_error(vol->sb, "Failed to punch hole into "
1176                                        "attribute runlist in error code "
1177                                        "path.  Run chkdsk to recover the "
1178                                        "lost cluster.");
1179                        NVolSetErrors(vol);
1180                } else /* if (success) */ {
1181                        status.runlist_merged = 0;
1182                        /*
1183                         * Deallocate the on-disk cluster we allocated but only
1184                         * if we succeeded in punching its vcn out of the
1185                         * runlist.
1186                         */
1187                        down_write(&vol->lcnbmp_lock);
1188                        if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1189                                ntfs_error(vol->sb, "Failed to release "
1190                                                "allocated cluster in error "
1191                                                "code path.  Run chkdsk to "
1192                                                "recover the lost cluster.");
1193                                NVolSetErrors(vol);
1194                        }
1195                        up_write(&vol->lcnbmp_lock);
1196                }
1197        }
1198        /*
1199         * Resize the attribute record to its old size and rebuild the mapping
1200         * pairs array.  Note, we only can do this if the runlist has been
1201         * restored to its old state which also implies that the mapped
1202         * attribute extent is not switched.
1203         */
1204        if (status.mp_rebuilt && !status.runlist_merged) {
1205                if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1206                        ntfs_error(vol->sb, "Failed to restore attribute "
1207                                        "record in error code path.  Run "
1208                                        "chkdsk to recover.");
1209                        NVolSetErrors(vol);
1210                } else /* if (success) */ {
1211                        if (ntfs_mapping_pairs_build(vol, (u8*)a +
1212                                        le16_to_cpu(a->data.non_resident.
1213                                        mapping_pairs_offset), attr_rec_len -
1214                                        le16_to_cpu(a->data.non_resident.
1215                                        mapping_pairs_offset), ni->runlist.rl,
1216                                        vcn, highest_vcn, NULL)) {
1217                                ntfs_error(vol->sb, "Failed to restore "
1218                                                "mapping pairs array in error "
1219                                                "code path.  Run chkdsk to "
1220                                                "recover.");
1221                                NVolSetErrors(vol);
1222                        }
1223                        flush_dcache_mft_record_page(ctx->ntfs_ino);
1224                        mark_mft_record_dirty(ctx->ntfs_ino);
1225                }
1226        }
1227        /* Release the mft record and the attribute. */
1228        if (status.mft_attr_mapped) {
1229                ntfs_attr_put_search_ctx(ctx);
1230                unmap_mft_record(base_ni);
1231        }
1232        /* Release the runlist lock. */
1233        if (rl_write_locked)
1234                up_write(&ni->runlist.lock);
1235        else if (rl)
1236                up_read(&ni->runlist.lock);
1237        /*
1238         * Zero out any newly allocated blocks to avoid exposing stale data.
1239         * If BH_New is set, we know that the block was newly allocated above
1240         * and that it has not been fully zeroed and marked dirty yet.
1241         */
1242        nr_pages = u;
1243        u = 0;
1244        end = bh_cpos << vol->cluster_size_bits;
1245        do {
1246                page = pages[u];
1247                bh = head = page_buffers(page);
1248                do {
1249                        if (u == nr_pages &&
1250                                        ((s64)page->index << PAGE_CACHE_SHIFT) +
1251                                        bh_offset(bh) >= end)
1252                                break;
1253                        if (!buffer_new(bh))
1254                                continue;
1255                        clear_buffer_new(bh);
1256                        if (!buffer_uptodate(bh)) {
1257                                if (PageUptodate(page))
1258                                        set_buffer_uptodate(bh);
1259                                else {
1260                                        zero_user(page, bh_offset(bh),
1261                                                        blocksize);
1262                                        set_buffer_uptodate(bh);
1263                                }
1264                        }
1265                        mark_buffer_dirty(bh);
1266                } while ((bh = bh->b_this_page) != head);
1267        } while (++u <= nr_pages);
1268        ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1269        return err;
1270}
1271
1272/*
1273 * Copy as much as we can into the pages and return the number of bytes which
1274 * were successfully copied.  If a fault is encountered then clear the pages
1275 * out to (ofs + bytes) and return the number of bytes which were copied.
1276 */
1277static inline size_t ntfs_copy_from_user(struct page **pages,
1278                unsigned nr_pages, unsigned ofs, const char __user *buf,
1279                size_t bytes)
1280{
1281        struct page **last_page = pages + nr_pages;
1282        char *addr;
1283        size_t total = 0;
1284        unsigned len;
1285        int left;
1286
1287        do {
1288                len = PAGE_CACHE_SIZE - ofs;
1289                if (len > bytes)
1290                        len = bytes;
1291                addr = kmap_atomic(*pages);
1292                left = __copy_from_user_inatomic(addr + ofs, buf, len);
1293                kunmap_atomic(addr);
1294                if (unlikely(left)) {
1295                        /* Do it the slow way. */
1296                        addr = kmap(*pages);
1297                        left = __copy_from_user(addr + ofs, buf, len);
1298                        kunmap(*pages);
1299                        if (unlikely(left))
1300                                goto err_out;
1301                }
1302                total += len;
1303                bytes -= len;
1304                if (!bytes)
1305                        break;
1306                buf += len;
1307                ofs = 0;
1308        } while (++pages < last_page);
1309out:
1310        return total;
1311err_out:
1312        total += len - left;
1313        /* Zero the rest of the target like __copy_from_user(). */
1314        while (++pages < last_page) {
1315                bytes -= len;
1316                if (!bytes)
1317                        break;
1318                len = PAGE_CACHE_SIZE;
1319                if (len > bytes)
1320                        len = bytes;
1321                zero_user(*pages, 0, len);
1322        }
1323        goto out;
1324}
1325
1326static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1327                const struct iovec *iov, size_t iov_ofs, size_t bytes)
1328{
1329        size_t total = 0;
1330
1331        while (1) {
1332                const char __user *buf = iov->iov_base + iov_ofs;
1333                unsigned len;
1334                size_t left;
1335
1336                len = iov->iov_len - iov_ofs;
1337                if (len > bytes)
1338                        len = bytes;
1339                left = __copy_from_user_inatomic(vaddr, buf, len);
1340                total += len;
1341                bytes -= len;
1342                vaddr += len;
1343                if (unlikely(left)) {
1344                        total -= left;
1345                        break;
1346                }
1347                if (!bytes)
1348                        break;
1349                iov++;
1350                iov_ofs = 0;
1351        }
1352        return total;
1353}
1354
1355static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1356                size_t *iov_ofsp, size_t bytes)
1357{
1358        const struct iovec *iov = *iovp;
1359        size_t iov_ofs = *iov_ofsp;
1360
1361        while (bytes) {
1362                unsigned len;
1363
1364                len = iov->iov_len - iov_ofs;
1365                if (len > bytes)
1366                        len = bytes;
1367                bytes -= len;
1368                iov_ofs += len;
1369                if (iov->iov_len == iov_ofs) {
1370                        iov++;
1371                        iov_ofs = 0;
1372                }
1373        }
1374        *iovp = iov;
1375        *iov_ofsp = iov_ofs;
1376}
1377
1378/*
1379 * This has the same side-effects and return value as ntfs_copy_from_user().
1380 * The difference is that on a fault we need to memset the remainder of the
1381 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1382 * single-segment behaviour.
1383 *
1384 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1385 * atomic and when not atomic.  This is ok because it calls
1386 * __copy_from_user_inatomic() and it is ok to call this when non-atomic.  In
1387 * fact, the only difference between __copy_from_user_inatomic() and
1388 * __copy_from_user() is that the latter calls might_sleep() and the former
1389 * should not zero the tail of the buffer on error.  And on many architectures
1390 * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1391 * makes no difference at all on those architectures.
1392 */
1393static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1394                unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1395                size_t *iov_ofs, size_t bytes)
1396{
1397        struct page **last_page = pages + nr_pages;
1398        char *addr;
1399        size_t copied, len, total = 0;
1400
1401        do {
1402                len = PAGE_CACHE_SIZE - ofs;
1403                if (len > bytes)
1404                        len = bytes;
1405                addr = kmap_atomic(*pages);
1406                copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1407                                *iov, *iov_ofs, len);
1408                kunmap_atomic(addr);
1409                if (unlikely(copied != len)) {
1410                        /* Do it the slow way. */
1411                        addr = kmap(*pages);
1412                        copied = __ntfs_copy_from_user_iovec_inatomic(addr +
1413                                        ofs, *iov, *iov_ofs, len);
1414                        if (unlikely(copied != len))
1415                                goto err_out;
1416                        kunmap(*pages);
1417                }
1418                total += len;
1419                ntfs_set_next_iovec(iov, iov_ofs, len);
1420                bytes -= len;
1421                if (!bytes)
1422                        break;
1423                ofs = 0;
1424        } while (++pages < last_page);
1425out:
1426        return total;
1427err_out:
1428        BUG_ON(copied > len);
1429        /* Zero the rest of the target like __copy_from_user(). */
1430        memset(addr + ofs + copied, 0, len - copied);
1431        kunmap(*pages);
1432        total += copied;
1433        ntfs_set_next_iovec(iov, iov_ofs, copied);
1434        while (++pages < last_page) {
1435                bytes -= len;
1436                if (!bytes)
1437                        break;
1438                len = PAGE_CACHE_SIZE;
1439                if (len > bytes)
1440                        len = bytes;
1441                zero_user(*pages, 0, len);
1442        }
1443        goto out;
1444}
1445
1446static inline void ntfs_flush_dcache_pages(struct page **pages,
1447                unsigned nr_pages)
1448{
1449        BUG_ON(!nr_pages);
1450        /*
1451         * Warning: Do not do the decrement at the same time as the call to
1452         * flush_dcache_page() because it is a NULL macro on i386 and hence the
1453         * decrement never happens so the loop never terminates.
1454         */
1455        do {
1456                --nr_pages;
1457                flush_dcache_page(pages[nr_pages]);
1458        } while (nr_pages > 0);
1459}
1460
1461/**
1462 * ntfs_commit_pages_after_non_resident_write - commit the received data
1463 * @pages:      array of destination pages
1464 * @nr_pages:   number of pages in @pages
1465 * @pos:        byte position in file at which the write begins
1466 * @bytes:      number of bytes to be written
1467 *
1468 * See description of ntfs_commit_pages_after_write(), below.
1469 */
1470static inline int ntfs_commit_pages_after_non_resident_write(
1471                struct page **pages, const unsigned nr_pages,
1472                s64 pos, size_t bytes)
1473{
1474        s64 end, initialized_size;
1475        struct inode *vi;
1476        ntfs_inode *ni, *base_ni;
1477        struct buffer_head *bh, *head;
1478        ntfs_attr_search_ctx *ctx;
1479        MFT_RECORD *m;
1480        ATTR_RECORD *a;
1481        unsigned long flags;
1482        unsigned blocksize, u;
1483        int err;
1484
1485        vi = pages[0]->mapping->host;
1486        ni = NTFS_I(vi);
1487        blocksize = vi->i_sb->s_blocksize;
1488        end = pos + bytes;
1489        u = 0;
1490        do {
1491                s64 bh_pos;
1492                struct page *page;
1493                bool partial;
1494
1495                page = pages[u];
1496                bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1497                bh = head = page_buffers(page);
1498                partial = false;
1499                do {
1500                        s64 bh_end;
1501
1502                        bh_end = bh_pos + blocksize;
1503                        if (bh_end <= pos || bh_pos >= end) {
1504                                if (!buffer_uptodate(bh))
1505                                        partial = true;
1506                        } else {
1507                                set_buffer_uptodate(bh);
1508                                mark_buffer_dirty(bh);
1509                        }
1510                } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1511                /*
1512                 * If all buffers are now uptodate but the page is not, set the
1513                 * page uptodate.
1514                 */
1515                if (!partial && !PageUptodate(page))
1516                        SetPageUptodate(page);
1517        } while (++u < nr_pages);
1518        /*
1519         * Finally, if we do not need to update initialized_size or i_size we
1520         * are finished.
1521         */
1522        read_lock_irqsave(&ni->size_lock, flags);
1523        initialized_size = ni->initialized_size;
1524        read_unlock_irqrestore(&ni->size_lock, flags);
1525        if (end <= initialized_size) {
1526                ntfs_debug("Done.");
1527                return 0;
1528        }
1529        /*
1530         * Update initialized_size/i_size as appropriate, both in the inode and
1531         * the mft record.
1532         */
1533        if (!NInoAttr(ni))
1534                base_ni = ni;
1535        else
1536                base_ni = ni->ext.base_ntfs_ino;
1537        /* Map, pin, and lock the mft record. */
1538        m = map_mft_record(base_ni);
1539        if (IS_ERR(m)) {
1540                err = PTR_ERR(m);
1541                m = NULL;
1542                ctx = NULL;
1543                goto err_out;
1544        }
1545        BUG_ON(!NInoNonResident(ni));
1546        ctx = ntfs_attr_get_search_ctx(base_ni, m);
1547        if (unlikely(!ctx)) {
1548                err = -ENOMEM;
1549                goto err_out;
1550        }
1551        err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1552                        CASE_SENSITIVE, 0, NULL, 0, ctx);
1553        if (unlikely(err)) {
1554                if (err == -ENOENT)
1555                        err = -EIO;
1556                goto err_out;
1557        }
1558        a = ctx->attr;
1559        BUG_ON(!a->non_resident);
1560        write_lock_irqsave(&ni->size_lock, flags);
1561        BUG_ON(end > ni->allocated_size);
1562        ni->initialized_size = end;
1563        a->data.non_resident.initialized_size = cpu_to_sle64(end);
1564        if (end > i_size_read(vi)) {
1565                i_size_write(vi, end);
1566                a->data.non_resident.data_size =
1567                                a->data.non_resident.initialized_size;
1568        }
1569        write_unlock_irqrestore(&ni->size_lock, flags);
1570        /* Mark the mft record dirty, so it gets written back. */
1571        flush_dcache_mft_record_page(ctx->ntfs_ino);
1572        mark_mft_record_dirty(ctx->ntfs_ino);
1573        ntfs_attr_put_search_ctx(ctx);
1574        unmap_mft_record(base_ni);
1575        ntfs_debug("Done.");
1576        return 0;
1577err_out:
1578        if (ctx)
1579                ntfs_attr_put_search_ctx(ctx);
1580        if (m)
1581                unmap_mft_record(base_ni);
1582        ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1583                        "code %i).", err);
1584        if (err != -ENOMEM)
1585                NVolSetErrors(ni->vol);
1586        return err;
1587}
1588
1589/**
1590 * ntfs_commit_pages_after_write - commit the received data
1591 * @pages:      array of destination pages
1592 * @nr_pages:   number of pages in @pages
1593 * @pos:        byte position in file at which the write begins
1594 * @bytes:      number of bytes to be written
1595 *
1596 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1597 * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1598 * locked but not kmap()ped.  The source data has already been copied into the
1599 * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1600 * the data was copied (for non-resident attributes only) and it returned
1601 * success.
1602 *
1603 * Need to set uptodate and mark dirty all buffers within the boundary of the
1604 * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1605 *
1606 * Setting the buffers dirty ensures that they get written out later when
1607 * ntfs_writepage() is invoked by the VM.
1608 *
1609 * Finally, we need to update i_size and initialized_size as appropriate both
1610 * in the inode and the mft record.
1611 *
1612 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1613 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1614 * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1615 * that case, it also marks the inode dirty.
1616 *
1617 * If things have gone as outlined in
1618 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1619 * content modifications here for non-resident attributes.  For resident
1620 * attributes we need to do the uptodate bringing here which we combine with
1621 * the copying into the mft record which means we save one atomic kmap.
1622 *
1623 * Return 0 on success or -errno on error.
1624 */
1625static int ntfs_commit_pages_after_write(struct page **pages,
1626                const unsigned nr_pages, s64 pos, size_t bytes)
1627{
1628        s64 end, initialized_size;
1629        loff_t i_size;
1630        struct inode *vi;
1631        ntfs_inode *ni, *base_ni;
1632        struct page *page;
1633        ntfs_attr_search_ctx *ctx;
1634        MFT_RECORD *m;
1635        ATTR_RECORD *a;
1636        char *kattr, *kaddr;
1637        unsigned long flags;
1638        u32 attr_len;
1639        int err;
1640
1641        BUG_ON(!nr_pages);
1642        BUG_ON(!pages);
1643        page = pages[0];
1644        BUG_ON(!page);
1645        vi = page->mapping->host;
1646        ni = NTFS_I(vi);
1647        ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1648                        "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1649                        vi->i_ino, ni->type, page->index, nr_pages,
1650                        (long long)pos, bytes);
1651        if (NInoNonResident(ni))
1652                return ntfs_commit_pages_after_non_resident_write(pages,
1653                                nr_pages, pos, bytes);
1654        BUG_ON(nr_pages > 1);
1655        /*
1656         * Attribute is resident, implying it is not compressed, encrypted, or
1657         * sparse.
1658         */
1659        if (!NInoAttr(ni))
1660                base_ni = ni;
1661        else
1662                base_ni = ni->ext.base_ntfs_ino;
1663        BUG_ON(NInoNonResident(ni));
1664        /* Map, pin, and lock the mft record. */
1665        m = map_mft_record(base_ni);
1666        if (IS_ERR(m)) {
1667                err = PTR_ERR(m);
1668                m = NULL;
1669                ctx = NULL;
1670                goto err_out;
1671        }
1672        ctx = ntfs_attr_get_search_ctx(base_ni, m);
1673        if (unlikely(!ctx)) {
1674                err = -ENOMEM;
1675                goto err_out;
1676        }
1677        err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1678                        CASE_SENSITIVE, 0, NULL, 0, ctx);
1679        if (unlikely(err)) {
1680                if (err == -ENOENT)
1681                        err = -EIO;
1682                goto err_out;
1683        }
1684        a = ctx->attr;
1685        BUG_ON(a->non_resident);
1686        /* The total length of the attribute value. */
1687        attr_len = le32_to_cpu(a->data.resident.value_length);
1688        i_size = i_size_read(vi);
1689        BUG_ON(attr_len != i_size);
1690        BUG_ON(pos > attr_len);
1691        end = pos + bytes;
1692        BUG_ON(end > le32_to_cpu(a->length) -
1693                        le16_to_cpu(a->data.resident.value_offset));
1694        kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1695        kaddr = kmap_atomic(page);
1696        /* Copy the received data from the page to the mft record. */
1697        memcpy(kattr + pos, kaddr + pos, bytes);
1698        /* Update the attribute length if necessary. */
1699        if (end > attr_len) {
1700                attr_len = end;
1701                a->data.resident.value_length = cpu_to_le32(attr_len);
1702        }
1703        /*
1704         * If the page is not uptodate, bring the out of bounds area(s)
1705         * uptodate by copying data from the mft record to the page.
1706         */
1707        if (!PageUptodate(page)) {
1708                if (pos > 0)
1709                        memcpy(kaddr, kattr, pos);
1710                if (end < attr_len)
1711                        memcpy(kaddr + end, kattr + end, attr_len - end);
1712                /* Zero the region outside the end of the attribute value. */
1713                memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1714                flush_dcache_page(page);
1715                SetPageUptodate(page);
1716        }
1717        kunmap_atomic(kaddr);
1718        /* Update initialized_size/i_size if necessary. */
1719        read_lock_irqsave(&ni->size_lock, flags);
1720        initialized_size = ni->initialized_size;
1721        BUG_ON(end > ni->allocated_size);
1722        read_unlock_irqrestore(&ni->size_lock, flags);
1723        BUG_ON(initialized_size != i_size);
1724        if (end > initialized_size) {
1725                write_lock_irqsave(&ni->size_lock, flags);
1726                ni->initialized_size = end;
1727                i_size_write(vi, end);
1728                write_unlock_irqrestore(&ni->size_lock, flags);
1729        }
1730        /* Mark the mft record dirty, so it gets written back. */
1731        flush_dcache_mft_record_page(ctx->ntfs_ino);
1732        mark_mft_record_dirty(ctx->ntfs_ino);
1733        ntfs_attr_put_search_ctx(ctx);
1734        unmap_mft_record(base_ni);
1735        ntfs_debug("Done.");
1736        return 0;
1737err_out:
1738        if (err == -ENOMEM) {
1739                ntfs_warning(vi->i_sb, "Error allocating memory required to "
1740                                "commit the write.");
1741                if (PageUptodate(page)) {
1742                        ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1743                                        "dirty so the write will be retried "
1744                                        "later on by the VM.");
1745                        /*
1746                         * Put the page on mapping->dirty_pages, but leave its
1747                         * buffers' dirty state as-is.
1748                         */
1749                        __set_page_dirty_nobuffers(page);
1750                        err = 0;
1751                } else
1752                        ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1753                                        "data has been lost.");
1754        } else {
1755                ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1756                                "with error %i.", err);
1757                NVolSetErrors(ni->vol);
1758        }
1759        if (ctx)
1760                ntfs_attr_put_search_ctx(ctx);
1761        if (m)
1762                unmap_mft_record(base_ni);
1763        return err;
1764}
1765
1766static void ntfs_write_failed(struct address_space *mapping, loff_t to)
1767{
1768        struct inode *inode = mapping->host;
1769
1770        if (to > inode->i_size) {
1771                truncate_pagecache(inode, to, inode->i_size);
1772                ntfs_truncate_vfs(inode);
1773        }
1774}
1775
1776/**
1777 * ntfs_file_buffered_write -
1778 *
1779 * Locking: The vfs is holding ->i_mutex on the inode.
1780 */
1781static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1782                const struct iovec *iov, unsigned long nr_segs,
1783                loff_t pos, loff_t *ppos, size_t count)
1784{
1785        struct file *file = iocb->ki_filp;
1786        struct address_space *mapping = file->f_mapping;
1787        struct inode *vi = mapping->host;
1788        ntfs_inode *ni = NTFS_I(vi);
1789        ntfs_volume *vol = ni->vol;
1790        struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1791        struct page *cached_page = NULL;
1792        char __user *buf = NULL;
1793        s64 end, ll;
1794        VCN last_vcn;
1795        LCN lcn;
1796        unsigned long flags;
1797        size_t bytes, iov_ofs = 0;      /* Offset in the current iovec. */
1798        ssize_t status, written;
1799        unsigned nr_pages;
1800        int err;
1801
1802        ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1803                        "pos 0x%llx, count 0x%lx.",
1804                        vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1805                        (unsigned long long)pos, (unsigned long)count);
1806        if (unlikely(!count))
1807                return 0;
1808        BUG_ON(NInoMstProtected(ni));
1809        /*
1810         * If the attribute is not an index root and it is encrypted or
1811         * compressed, we cannot write to it yet.  Note we need to check for
1812         * AT_INDEX_ALLOCATION since this is the type of both directory and
1813         * index inodes.
1814         */
1815        if (ni->type != AT_INDEX_ALLOCATION) {
1816                /* If file is encrypted, deny access, just like NT4. */
1817                if (NInoEncrypted(ni)) {
1818                        /*
1819                         * Reminder for later: Encrypted files are _always_
1820                         * non-resident so that the content can always be
1821                         * encrypted.
1822                         */
1823                        ntfs_debug("Denying write access to encrypted file.");
1824                        return -EACCES;
1825                }
1826                if (NInoCompressed(ni)) {
1827                        /* Only unnamed $DATA attribute can be compressed. */
1828                        BUG_ON(ni->type != AT_DATA);
1829                        BUG_ON(ni->name_len);
1830                        /*
1831                         * Reminder for later: If resident, the data is not
1832                         * actually compressed.  Only on the switch to non-
1833                         * resident does compression kick in.  This is in
1834                         * contrast to encrypted files (see above).
1835                         */
1836                        ntfs_error(vi->i_sb, "Writing to compressed files is "
1837                                        "not implemented yet.  Sorry.");
1838                        return -EOPNOTSUPP;
1839                }
1840        }
1841        /*
1842         * If a previous ntfs_truncate() failed, repeat it and abort if it
1843         * fails again.
1844         */
1845        if (unlikely(NInoTruncateFailed(ni))) {
1846                inode_dio_wait(vi);
1847                err = ntfs_truncate(vi);
1848                if (err || NInoTruncateFailed(ni)) {
1849                        if (!err)
1850                                err = -EIO;
1851                        ntfs_error(vol->sb, "Cannot perform write to inode "
1852                                        "0x%lx, attribute type 0x%x, because "
1853                                        "ntfs_truncate() failed (error code "
1854                                        "%i).", vi->i_ino,
1855                                        (unsigned)le32_to_cpu(ni->type), err);
1856                        return err;
1857                }
1858        }
1859        /* The first byte after the write. */
1860        end = pos + count;
1861        /*
1862         * If the write goes beyond the allocated size, extend the allocation
1863         * to cover the whole of the write, rounded up to the nearest cluster.
1864         */
1865        read_lock_irqsave(&ni->size_lock, flags);
1866        ll = ni->allocated_size;
1867        read_unlock_irqrestore(&ni->size_lock, flags);
1868        if (end > ll) {
1869                /* Extend the allocation without changing the data size. */
1870                ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1871                if (likely(ll >= 0)) {
1872                        BUG_ON(pos >= ll);
1873                        /* If the extension was partial truncate the write. */
1874                        if (end > ll) {
1875                                ntfs_debug("Truncating write to inode 0x%lx, "
1876                                                "attribute type 0x%x, because "
1877                                                "the allocation was only "
1878                                                "partially extended.",
1879                                                vi->i_ino, (unsigned)
1880                                                le32_to_cpu(ni->type));
1881                                end = ll;
1882                                count = ll - pos;
1883                        }
1884                } else {
1885                        err = ll;
1886                        read_lock_irqsave(&ni->size_lock, flags);
1887                        ll = ni->allocated_size;
1888                        read_unlock_irqrestore(&ni->size_lock, flags);
1889                        /* Perform a partial write if possible or fail. */
1890                        if (pos < ll) {
1891                                ntfs_debug("Truncating write to inode 0x%lx, "
1892                                                "attribute type 0x%x, because "
1893                                                "extending the allocation "
1894                                                "failed (error code %i).",
1895                                                vi->i_ino, (unsigned)
1896                                                le32_to_cpu(ni->type), err);
1897                                end = ll;
1898                                count = ll - pos;
1899                        } else {
1900                                ntfs_error(vol->sb, "Cannot perform write to "
1901                                                "inode 0x%lx, attribute type "
1902                                                "0x%x, because extending the "
1903                                                "allocation failed (error "
1904                                                "code %i).", vi->i_ino,
1905                                                (unsigned)
1906                                                le32_to_cpu(ni->type), err);
1907                                return err;
1908                        }
1909                }
1910        }
1911        written = 0;
1912        /*
1913         * If the write starts beyond the initialized size, extend it up to the
1914         * beginning of the write and initialize all non-sparse space between
1915         * the old initialized size and the new one.  This automatically also
1916         * increments the vfs inode->i_size to keep it above or equal to the
1917         * initialized_size.
1918         */
1919        read_lock_irqsave(&ni->size_lock, flags);
1920        ll = ni->initialized_size;
1921        read_unlock_irqrestore(&ni->size_lock, flags);
1922        if (pos > ll) {
1923                err = ntfs_attr_extend_initialized(ni, pos);
1924                if (err < 0) {
1925                        ntfs_error(vol->sb, "Cannot perform write to inode "
1926                                        "0x%lx, attribute type 0x%x, because "
1927                                        "extending the initialized size "
1928                                        "failed (error code %i).", vi->i_ino,
1929                                        (unsigned)le32_to_cpu(ni->type), err);
1930                        status = err;
1931                        goto err_out;
1932                }
1933        }
1934        /*
1935         * Determine the number of pages per cluster for non-resident
1936         * attributes.
1937         */
1938        nr_pages = 1;
1939        if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1940                nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1941        /* Finally, perform the actual write. */
1942        last_vcn = -1;
1943        if (likely(nr_segs == 1))
1944                buf = iov->iov_base;
1945        do {
1946                VCN vcn;
1947                pgoff_t idx, start_idx;
1948                unsigned ofs, do_pages, u;
1949                size_t copied;
1950
1951                start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1952                ofs = pos & ~PAGE_CACHE_MASK;
1953                bytes = PAGE_CACHE_SIZE - ofs;
1954                do_pages = 1;
1955                if (nr_pages > 1) {
1956                        vcn = pos >> vol->cluster_size_bits;
1957                        if (vcn != last_vcn) {
1958                                last_vcn = vcn;
1959                                /*
1960                                 * Get the lcn of the vcn the write is in.  If
1961                                 * it is a hole, need to lock down all pages in
1962                                 * the cluster.
1963                                 */
1964                                down_read(&ni->runlist.lock);
1965                                lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1966                                                vol->cluster_size_bits, false);
1967                                up_read(&ni->runlist.lock);
1968                                if (unlikely(lcn < LCN_HOLE)) {
1969                                        status = -EIO;
1970                                        if (lcn == LCN_ENOMEM)
1971                                                status = -ENOMEM;
1972                                        else
1973                                                ntfs_error(vol->sb, "Cannot "
1974                                                        "perform write to "
1975                                                        "inode 0x%lx, "
1976                                                        "attribute type 0x%x, "
1977                                                        "because the attribute "
1978                                                        "is corrupt.",
1979                                                        vi->i_ino, (unsigned)
1980                                                        le32_to_cpu(ni->type));
1981                                        break;
1982                                }
1983                                if (lcn == LCN_HOLE) {
1984                                        start_idx = (pos & ~(s64)
1985                                                        vol->cluster_size_mask)
1986                                                        >> PAGE_CACHE_SHIFT;
1987                                        bytes = vol->cluster_size - (pos &
1988                                                        vol->cluster_size_mask);
1989                                        do_pages = nr_pages;
1990                                }
1991                        }
1992                }
1993                if (bytes > count)
1994                        bytes = count;
1995                /*
1996                 * Bring in the user page(s) that we will copy from _first_.
1997                 * Otherwise there is a nasty deadlock on copying from the same
1998                 * page(s) as we are writing to, without it/them being marked
1999                 * up-to-date.  Note, at present there is nothing to stop the
2000                 * pages being swapped out between us bringing them into memory
2001                 * and doing the actual copying.
2002                 */
2003                if (likely(nr_segs == 1))
2004                        ntfs_fault_in_pages_readable(buf, bytes);
2005                else
2006                        ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2007                /* Get and lock @do_pages starting at index @start_idx. */
2008                status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2009                                pages, &cached_page);
2010                if (unlikely(status))
2011                        break;
2012                /*
2013                 * For non-resident attributes, we need to fill any holes with
2014                 * actual clusters and ensure all bufferes are mapped.  We also
2015                 * need to bring uptodate any buffers that are only partially
2016                 * being written to.
2017                 */
2018                if (NInoNonResident(ni)) {
2019                        status = ntfs_prepare_pages_for_non_resident_write(
2020                                        pages, do_pages, pos, bytes);
2021                        if (unlikely(status)) {
2022                                loff_t i_size;
2023
2024                                do {
2025                                        unlock_page(pages[--do_pages]);
2026                                        page_cache_release(pages[do_pages]);
2027                                } while (do_pages);
2028                                /*
2029                                 * The write preparation may have instantiated
2030                                 * allocated space outside i_size.  Trim this
2031                                 * off again.  We can ignore any errors in this
2032                                 * case as we will just be waisting a bit of
2033                                 * allocated space, which is not a disaster.
2034                                 */
2035                                i_size = i_size_read(vi);
2036                                if (pos + bytes > i_size) {
2037                                        ntfs_write_failed(mapping, pos + bytes);
2038                                }
2039                                break;
2040                        }
2041                }
2042                u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2043                if (likely(nr_segs == 1)) {
2044                        copied = ntfs_copy_from_user(pages + u, do_pages - u,
2045                                        ofs, buf, bytes);
2046                        buf += copied;
2047                } else
2048                        copied = ntfs_copy_from_user_iovec(pages + u,
2049                                        do_pages - u, ofs, &iov, &iov_ofs,
2050                                        bytes);
2051                ntfs_flush_dcache_pages(pages + u, do_pages - u);
2052                status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2053                                bytes);
2054                if (likely(!status)) {
2055                        written += copied;
2056                        count -= copied;
2057                        pos += copied;
2058                        if (unlikely(copied != bytes))
2059                                status = -EFAULT;
2060                }
2061                do {
2062                        unlock_page(pages[--do_pages]);
2063                        mark_page_accessed(pages[do_pages]);
2064                        page_cache_release(pages[do_pages]);
2065                } while (do_pages);
2066                if (unlikely(status))
2067                        break;
2068                balance_dirty_pages_ratelimited(mapping);
2069                cond_resched();
2070        } while (count);
2071err_out:
2072        *ppos = pos;
2073        if (cached_page)
2074                page_cache_release(cached_page);
2075        ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2076                        written ? "written" : "status", (unsigned long)written,
2077                        (long)status);
2078        return written ? written : status;
2079}
2080
2081/**
2082 * ntfs_file_aio_write_nolock -
2083 */
2084static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2085                const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2086{
2087        struct file *file = iocb->ki_filp;
2088        struct address_space *mapping = file->f_mapping;
2089        struct inode *inode = mapping->host;
2090        loff_t pos;
2091        size_t count;           /* after file limit checks */
2092        ssize_t written, err;
2093
2094        count = 0;
2095        err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2096        if (err)
2097                return err;
2098        pos = *ppos;
2099        /* We can write back this queue in page reclaim. */
2100        current->backing_dev_info = mapping->backing_dev_info;
2101        written = 0;
2102        err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2103        if (err)
2104                goto out;
2105        if (!count)
2106                goto out;
2107        err = file_remove_suid(file);
2108        if (err)
2109                goto out;
2110        err = file_update_time(file);
2111        if (err)
2112                goto out;
2113        written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2114                        count);
2115out:
2116        current->backing_dev_info = NULL;
2117        return written ? written : err;
2118}
2119
2120/**
2121 * ntfs_file_aio_write -
2122 */
2123static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2124                unsigned long nr_segs, loff_t pos)
2125{
2126        struct file *file = iocb->ki_filp;
2127        struct address_space *mapping = file->f_mapping;
2128        struct inode *inode = mapping->host;
2129        ssize_t ret;
2130
2131        BUG_ON(iocb->ki_pos != pos);
2132
2133        mutex_lock(&inode->i_mutex);
2134        ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2135        mutex_unlock(&inode->i_mutex);
2136        if (ret > 0) {
2137                int err = generic_write_sync(file, pos, ret);
2138                if (err < 0)
2139                        ret = err;
2140        }
2141        return ret;
2142}
2143
2144/**
2145 * ntfs_file_fsync - sync a file to disk
2146 * @filp:       file to be synced
2147 * @datasync:   if non-zero only flush user data and not metadata
2148 *
2149 * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2150 * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2151 *
2152 * If @datasync is false, write the mft record and all associated extent mft
2153 * records as well as the $DATA attribute and then sync the block device.
2154 *
2155 * If @datasync is true and the attribute is non-resident, we skip the writing
2156 * of the mft record and all associated extent mft records (this might still
2157 * happen due to the write_inode_now() call).
2158 *
2159 * Also, if @datasync is true, we do not wait on the inode to be written out
2160 * but we always wait on the page cache pages to be written out.
2161 *
2162 * Locking: Caller must hold i_mutex on the inode.
2163 *
2164 * TODO: We should probably also write all attribute/index inodes associated
2165 * with this inode but since we have no simple way of getting to them we ignore
2166 * this problem for now.
2167 */
2168static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
2169                           int datasync)
2170{
2171        struct inode *vi = filp->f_mapping->host;
2172        int err, ret = 0;
2173
2174        ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2175
2176        err = filemap_write_and_wait_range(vi->i_mapping, start, end);
2177        if (err)
2178                return err;
2179        mutex_lock(&vi->i_mutex);
2180
2181        BUG_ON(S_ISDIR(vi->i_mode));
2182        if (!datasync || !NInoNonResident(NTFS_I(vi)))
2183                ret = __ntfs_write_inode(vi, 1);
2184        write_inode_now(vi, !datasync);
2185        /*
2186         * NOTE: If we were to use mapping->private_list (see ext2 and
2187         * fs/buffer.c) for dirty blocks then we could optimize the below to be
2188         * sync_mapping_buffers(vi->i_mapping).
2189         */
2190        err = sync_blockdev(vi->i_sb->s_bdev);
2191        if (unlikely(err && !ret))
2192                ret = err;
2193        if (likely(!ret))
2194                ntfs_debug("Done.");
2195        else
2196                ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2197                                "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2198        mutex_unlock(&vi->i_mutex);
2199        return ret;
2200}
2201
2202#endif /* NTFS_RW */
2203
2204const struct file_operations ntfs_file_ops = {
2205        .llseek         = generic_file_llseek,   /* Seek inside file. */
2206        .read           = do_sync_read,          /* Read from file. */
2207        .aio_read       = generic_file_aio_read, /* Async read from file. */
2208#ifdef NTFS_RW
2209        .write          = do_sync_write,         /* Write to file. */
2210        .aio_write      = ntfs_file_aio_write,   /* Async write to file. */
2211        /*.release      = ,*/                    /* Last file is closed.  See
2212                                                    fs/ext2/file.c::
2213                                                    ext2_release_file() for
2214                                                    how to use this to discard
2215                                                    preallocated space for
2216                                                    write opened files. */
2217        .fsync          = ntfs_file_fsync,       /* Sync a file to disk. */
2218        /*.aio_fsync    = ,*/                    /* Sync all outstanding async
2219                                                    i/o operations on a
2220                                                    kiocb. */
2221#endif /* NTFS_RW */
2222        /*.ioctl        = ,*/                    /* Perform function on the
2223                                                    mounted filesystem. */
2224        .mmap           = generic_file_mmap,     /* Mmap file. */
2225        .open           = ntfs_file_open,        /* Open file. */
2226        .splice_read    = generic_file_splice_read /* Zero-copy data send with
2227                                                    the data source being on
2228                                                    the ntfs partition.  We do
2229                                                    not need to care about the
2230                                                    data destination. */
2231        /*.sendpage     = ,*/                    /* Zero-copy data send with
2232                                                    the data destination being
2233                                                    on the ntfs partition.  We
2234                                                    do not need to care about
2235                                                    the data source. */
2236};
2237
2238const struct inode_operations ntfs_file_inode_ops = {
2239#ifdef NTFS_RW
2240        .setattr        = ntfs_setattr,
2241#endif /* NTFS_RW */
2242};
2243
2244const struct file_operations ntfs_empty_file_ops = {};
2245
2246const struct inode_operations ntfs_empty_inode_ops = {};
2247