linux/fs/xfs/xfs_buf.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/gfp.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36
  37#include "xfs_sb.h"
  38#include "xfs_log.h"
  39#include "xfs_ag.h"
  40#include "xfs_mount.h"
  41#include "xfs_trace.h"
  42
  43static kmem_zone_t *xfs_buf_zone;
  44
  45static struct workqueue_struct *xfslogd_workqueue;
  46
  47#ifdef XFS_BUF_LOCK_TRACKING
  48# define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
  49# define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
  50# define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
  51#else
  52# define XB_SET_OWNER(bp)       do { } while (0)
  53# define XB_CLEAR_OWNER(bp)     do { } while (0)
  54# define XB_GET_OWNER(bp)       do { } while (0)
  55#endif
  56
  57#define xb_to_gfp(flags) \
  58        ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  59
  60
  61static inline int
  62xfs_buf_is_vmapped(
  63        struct xfs_buf  *bp)
  64{
  65        /*
  66         * Return true if the buffer is vmapped.
  67         *
  68         * b_addr is null if the buffer is not mapped, but the code is clever
  69         * enough to know it doesn't have to map a single page, so the check has
  70         * to be both for b_addr and bp->b_page_count > 1.
  71         */
  72        return bp->b_addr && bp->b_page_count > 1;
  73}
  74
  75static inline int
  76xfs_buf_vmap_len(
  77        struct xfs_buf  *bp)
  78{
  79        return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  80}
  81
  82/*
  83 * xfs_buf_lru_add - add a buffer to the LRU.
  84 *
  85 * The LRU takes a new reference to the buffer so that it will only be freed
  86 * once the shrinker takes the buffer off the LRU.
  87 */
  88STATIC void
  89xfs_buf_lru_add(
  90        struct xfs_buf  *bp)
  91{
  92        struct xfs_buftarg *btp = bp->b_target;
  93
  94        spin_lock(&btp->bt_lru_lock);
  95        if (list_empty(&bp->b_lru)) {
  96                atomic_inc(&bp->b_hold);
  97                list_add_tail(&bp->b_lru, &btp->bt_lru);
  98                btp->bt_lru_nr++;
  99                bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
 100        }
 101        spin_unlock(&btp->bt_lru_lock);
 102}
 103
 104/*
 105 * xfs_buf_lru_del - remove a buffer from the LRU
 106 *
 107 * The unlocked check is safe here because it only occurs when there are not
 108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
 109 * to optimise the shrinker removing the buffer from the LRU and calling
 110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
 111 * bt_lru_lock.
 112 */
 113STATIC void
 114xfs_buf_lru_del(
 115        struct xfs_buf  *bp)
 116{
 117        struct xfs_buftarg *btp = bp->b_target;
 118
 119        if (list_empty(&bp->b_lru))
 120                return;
 121
 122        spin_lock(&btp->bt_lru_lock);
 123        if (!list_empty(&bp->b_lru)) {
 124                list_del_init(&bp->b_lru);
 125                btp->bt_lru_nr--;
 126        }
 127        spin_unlock(&btp->bt_lru_lock);
 128}
 129
 130/*
 131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 132 * b_lru_ref count so that the buffer is freed immediately when the buffer
 133 * reference count falls to zero. If the buffer is already on the LRU, we need
 134 * to remove the reference that LRU holds on the buffer.
 135 *
 136 * This prevents build-up of stale buffers on the LRU.
 137 */
 138void
 139xfs_buf_stale(
 140        struct xfs_buf  *bp)
 141{
 142        ASSERT(xfs_buf_islocked(bp));
 143
 144        bp->b_flags |= XBF_STALE;
 145
 146        /*
 147         * Clear the delwri status so that a delwri queue walker will not
 148         * flush this buffer to disk now that it is stale. The delwri queue has
 149         * a reference to the buffer, so this is safe to do.
 150         */
 151        bp->b_flags &= ~_XBF_DELWRI_Q;
 152
 153        atomic_set(&(bp)->b_lru_ref, 0);
 154        if (!list_empty(&bp->b_lru)) {
 155                struct xfs_buftarg *btp = bp->b_target;
 156
 157                spin_lock(&btp->bt_lru_lock);
 158                if (!list_empty(&bp->b_lru) &&
 159                    !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
 160                        list_del_init(&bp->b_lru);
 161                        btp->bt_lru_nr--;
 162                        atomic_dec(&bp->b_hold);
 163                }
 164                spin_unlock(&btp->bt_lru_lock);
 165        }
 166        ASSERT(atomic_read(&bp->b_hold) >= 1);
 167}
 168
 169static int
 170xfs_buf_get_maps(
 171        struct xfs_buf          *bp,
 172        int                     map_count)
 173{
 174        ASSERT(bp->b_maps == NULL);
 175        bp->b_map_count = map_count;
 176
 177        if (map_count == 1) {
 178                bp->b_maps = &bp->__b_map;
 179                return 0;
 180        }
 181
 182        bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 183                                KM_NOFS);
 184        if (!bp->b_maps)
 185                return ENOMEM;
 186        return 0;
 187}
 188
 189/*
 190 *      Frees b_pages if it was allocated.
 191 */
 192static void
 193xfs_buf_free_maps(
 194        struct xfs_buf  *bp)
 195{
 196        if (bp->b_maps != &bp->__b_map) {
 197                kmem_free(bp->b_maps);
 198                bp->b_maps = NULL;
 199        }
 200}
 201
 202struct xfs_buf *
 203_xfs_buf_alloc(
 204        struct xfs_buftarg      *target,
 205        struct xfs_buf_map      *map,
 206        int                     nmaps,
 207        xfs_buf_flags_t         flags)
 208{
 209        struct xfs_buf          *bp;
 210        int                     error;
 211        int                     i;
 212
 213        bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 214        if (unlikely(!bp))
 215                return NULL;
 216
 217        /*
 218         * We don't want certain flags to appear in b_flags unless they are
 219         * specifically set by later operations on the buffer.
 220         */
 221        flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 222
 223        atomic_set(&bp->b_hold, 1);
 224        atomic_set(&bp->b_lru_ref, 1);
 225        init_completion(&bp->b_iowait);
 226        INIT_LIST_HEAD(&bp->b_lru);
 227        INIT_LIST_HEAD(&bp->b_list);
 228        RB_CLEAR_NODE(&bp->b_rbnode);
 229        sema_init(&bp->b_sema, 0); /* held, no waiters */
 230        XB_SET_OWNER(bp);
 231        bp->b_target = target;
 232        bp->b_flags = flags;
 233
 234        /*
 235         * Set length and io_length to the same value initially.
 236         * I/O routines should use io_length, which will be the same in
 237         * most cases but may be reset (e.g. XFS recovery).
 238         */
 239        error = xfs_buf_get_maps(bp, nmaps);
 240        if (error)  {
 241                kmem_zone_free(xfs_buf_zone, bp);
 242                return NULL;
 243        }
 244
 245        bp->b_bn = map[0].bm_bn;
 246        bp->b_length = 0;
 247        for (i = 0; i < nmaps; i++) {
 248                bp->b_maps[i].bm_bn = map[i].bm_bn;
 249                bp->b_maps[i].bm_len = map[i].bm_len;
 250                bp->b_length += map[i].bm_len;
 251        }
 252        bp->b_io_length = bp->b_length;
 253
 254        atomic_set(&bp->b_pin_count, 0);
 255        init_waitqueue_head(&bp->b_waiters);
 256
 257        XFS_STATS_INC(xb_create);
 258        trace_xfs_buf_init(bp, _RET_IP_);
 259
 260        return bp;
 261}
 262
 263/*
 264 *      Allocate a page array capable of holding a specified number
 265 *      of pages, and point the page buf at it.
 266 */
 267STATIC int
 268_xfs_buf_get_pages(
 269        xfs_buf_t               *bp,
 270        int                     page_count,
 271        xfs_buf_flags_t         flags)
 272{
 273        /* Make sure that we have a page list */
 274        if (bp->b_pages == NULL) {
 275                bp->b_page_count = page_count;
 276                if (page_count <= XB_PAGES) {
 277                        bp->b_pages = bp->b_page_array;
 278                } else {
 279                        bp->b_pages = kmem_alloc(sizeof(struct page *) *
 280                                                 page_count, KM_NOFS);
 281                        if (bp->b_pages == NULL)
 282                                return -ENOMEM;
 283                }
 284                memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 285        }
 286        return 0;
 287}
 288
 289/*
 290 *      Frees b_pages if it was allocated.
 291 */
 292STATIC void
 293_xfs_buf_free_pages(
 294        xfs_buf_t       *bp)
 295{
 296        if (bp->b_pages != bp->b_page_array) {
 297                kmem_free(bp->b_pages);
 298                bp->b_pages = NULL;
 299        }
 300}
 301
 302/*
 303 *      Releases the specified buffer.
 304 *
 305 *      The modification state of any associated pages is left unchanged.
 306 *      The buffer most not be on any hash - use xfs_buf_rele instead for
 307 *      hashed and refcounted buffers
 308 */
 309void
 310xfs_buf_free(
 311        xfs_buf_t               *bp)
 312{
 313        trace_xfs_buf_free(bp, _RET_IP_);
 314
 315        ASSERT(list_empty(&bp->b_lru));
 316
 317        if (bp->b_flags & _XBF_PAGES) {
 318                uint            i;
 319
 320                if (xfs_buf_is_vmapped(bp))
 321                        vm_unmap_ram(bp->b_addr - bp->b_offset,
 322                                        bp->b_page_count);
 323
 324                for (i = 0; i < bp->b_page_count; i++) {
 325                        struct page     *page = bp->b_pages[i];
 326
 327                        __free_page(page);
 328                }
 329        } else if (bp->b_flags & _XBF_KMEM)
 330                kmem_free(bp->b_addr);
 331        _xfs_buf_free_pages(bp);
 332        xfs_buf_free_maps(bp);
 333        kmem_zone_free(xfs_buf_zone, bp);
 334}
 335
 336/*
 337 * Allocates all the pages for buffer in question and builds it's page list.
 338 */
 339STATIC int
 340xfs_buf_allocate_memory(
 341        xfs_buf_t               *bp,
 342        uint                    flags)
 343{
 344        size_t                  size;
 345        size_t                  nbytes, offset;
 346        gfp_t                   gfp_mask = xb_to_gfp(flags);
 347        unsigned short          page_count, i;
 348        xfs_off_t               start, end;
 349        int                     error;
 350
 351        /*
 352         * for buffers that are contained within a single page, just allocate
 353         * the memory from the heap - there's no need for the complexity of
 354         * page arrays to keep allocation down to order 0.
 355         */
 356        size = BBTOB(bp->b_length);
 357        if (size < PAGE_SIZE) {
 358                bp->b_addr = kmem_alloc(size, KM_NOFS);
 359                if (!bp->b_addr) {
 360                        /* low memory - use alloc_page loop instead */
 361                        goto use_alloc_page;
 362                }
 363
 364                if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 365                    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 366                        /* b_addr spans two pages - use alloc_page instead */
 367                        kmem_free(bp->b_addr);
 368                        bp->b_addr = NULL;
 369                        goto use_alloc_page;
 370                }
 371                bp->b_offset = offset_in_page(bp->b_addr);
 372                bp->b_pages = bp->b_page_array;
 373                bp->b_pages[0] = virt_to_page(bp->b_addr);
 374                bp->b_page_count = 1;
 375                bp->b_flags |= _XBF_KMEM;
 376                return 0;
 377        }
 378
 379use_alloc_page:
 380        start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 381        end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 382                                                                >> PAGE_SHIFT;
 383        page_count = end - start;
 384        error = _xfs_buf_get_pages(bp, page_count, flags);
 385        if (unlikely(error))
 386                return error;
 387
 388        offset = bp->b_offset;
 389        bp->b_flags |= _XBF_PAGES;
 390
 391        for (i = 0; i < bp->b_page_count; i++) {
 392                struct page     *page;
 393                uint            retries = 0;
 394retry:
 395                page = alloc_page(gfp_mask);
 396                if (unlikely(page == NULL)) {
 397                        if (flags & XBF_READ_AHEAD) {
 398                                bp->b_page_count = i;
 399                                error = ENOMEM;
 400                                goto out_free_pages;
 401                        }
 402
 403                        /*
 404                         * This could deadlock.
 405                         *
 406                         * But until all the XFS lowlevel code is revamped to
 407                         * handle buffer allocation failures we can't do much.
 408                         */
 409                        if (!(++retries % 100))
 410                                xfs_err(NULL,
 411                "possible memory allocation deadlock in %s (mode:0x%x)",
 412                                        __func__, gfp_mask);
 413
 414                        XFS_STATS_INC(xb_page_retries);
 415                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 416                        goto retry;
 417                }
 418
 419                XFS_STATS_INC(xb_page_found);
 420
 421                nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 422                size -= nbytes;
 423                bp->b_pages[i] = page;
 424                offset = 0;
 425        }
 426        return 0;
 427
 428out_free_pages:
 429        for (i = 0; i < bp->b_page_count; i++)
 430                __free_page(bp->b_pages[i]);
 431        return error;
 432}
 433
 434/*
 435 *      Map buffer into kernel address-space if necessary.
 436 */
 437STATIC int
 438_xfs_buf_map_pages(
 439        xfs_buf_t               *bp,
 440        uint                    flags)
 441{
 442        ASSERT(bp->b_flags & _XBF_PAGES);
 443        if (bp->b_page_count == 1) {
 444                /* A single page buffer is always mappable */
 445                bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 446        } else if (flags & XBF_UNMAPPED) {
 447                bp->b_addr = NULL;
 448        } else {
 449                int retried = 0;
 450
 451                do {
 452                        bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 453                                                -1, PAGE_KERNEL);
 454                        if (bp->b_addr)
 455                                break;
 456                        vm_unmap_aliases();
 457                } while (retried++ <= 1);
 458
 459                if (!bp->b_addr)
 460                        return -ENOMEM;
 461                bp->b_addr += bp->b_offset;
 462        }
 463
 464        return 0;
 465}
 466
 467/*
 468 *      Finding and Reading Buffers
 469 */
 470
 471/*
 472 *      Look up, and creates if absent, a lockable buffer for
 473 *      a given range of an inode.  The buffer is returned
 474 *      locked. No I/O is implied by this call.
 475 */
 476xfs_buf_t *
 477_xfs_buf_find(
 478        struct xfs_buftarg      *btp,
 479        struct xfs_buf_map      *map,
 480        int                     nmaps,
 481        xfs_buf_flags_t         flags,
 482        xfs_buf_t               *new_bp)
 483{
 484        size_t                  numbytes;
 485        struct xfs_perag        *pag;
 486        struct rb_node          **rbp;
 487        struct rb_node          *parent;
 488        xfs_buf_t               *bp;
 489        xfs_daddr_t             blkno = map[0].bm_bn;
 490        xfs_daddr_t             eofs;
 491        int                     numblks = 0;
 492        int                     i;
 493
 494        for (i = 0; i < nmaps; i++)
 495                numblks += map[i].bm_len;
 496        numbytes = BBTOB(numblks);
 497
 498        /* Check for IOs smaller than the sector size / not sector aligned */
 499        ASSERT(!(numbytes < (1 << btp->bt_sshift)));
 500        ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
 501
 502        /*
 503         * Corrupted block numbers can get through to here, unfortunately, so we
 504         * have to check that the buffer falls within the filesystem bounds.
 505         */
 506        eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 507        if (blkno >= eofs) {
 508                /*
 509                 * XXX (dgc): we should really be returning EFSCORRUPTED here,
 510                 * but none of the higher level infrastructure supports
 511                 * returning a specific error on buffer lookup failures.
 512                 */
 513                xfs_alert(btp->bt_mount,
 514                          "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
 515                          __func__, blkno, eofs);
 516                WARN_ON(1);
 517                return NULL;
 518        }
 519
 520        /* get tree root */
 521        pag = xfs_perag_get(btp->bt_mount,
 522                                xfs_daddr_to_agno(btp->bt_mount, blkno));
 523
 524        /* walk tree */
 525        spin_lock(&pag->pag_buf_lock);
 526        rbp = &pag->pag_buf_tree.rb_node;
 527        parent = NULL;
 528        bp = NULL;
 529        while (*rbp) {
 530                parent = *rbp;
 531                bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 532
 533                if (blkno < bp->b_bn)
 534                        rbp = &(*rbp)->rb_left;
 535                else if (blkno > bp->b_bn)
 536                        rbp = &(*rbp)->rb_right;
 537                else {
 538                        /*
 539                         * found a block number match. If the range doesn't
 540                         * match, the only way this is allowed is if the buffer
 541                         * in the cache is stale and the transaction that made
 542                         * it stale has not yet committed. i.e. we are
 543                         * reallocating a busy extent. Skip this buffer and
 544                         * continue searching to the right for an exact match.
 545                         */
 546                        if (bp->b_length != numblks) {
 547                                ASSERT(bp->b_flags & XBF_STALE);
 548                                rbp = &(*rbp)->rb_right;
 549                                continue;
 550                        }
 551                        atomic_inc(&bp->b_hold);
 552                        goto found;
 553                }
 554        }
 555
 556        /* No match found */
 557        if (new_bp) {
 558                rb_link_node(&new_bp->b_rbnode, parent, rbp);
 559                rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 560                /* the buffer keeps the perag reference until it is freed */
 561                new_bp->b_pag = pag;
 562                spin_unlock(&pag->pag_buf_lock);
 563        } else {
 564                XFS_STATS_INC(xb_miss_locked);
 565                spin_unlock(&pag->pag_buf_lock);
 566                xfs_perag_put(pag);
 567        }
 568        return new_bp;
 569
 570found:
 571        spin_unlock(&pag->pag_buf_lock);
 572        xfs_perag_put(pag);
 573
 574        if (!xfs_buf_trylock(bp)) {
 575                if (flags & XBF_TRYLOCK) {
 576                        xfs_buf_rele(bp);
 577                        XFS_STATS_INC(xb_busy_locked);
 578                        return NULL;
 579                }
 580                xfs_buf_lock(bp);
 581                XFS_STATS_INC(xb_get_locked_waited);
 582        }
 583
 584        /*
 585         * if the buffer is stale, clear all the external state associated with
 586         * it. We need to keep flags such as how we allocated the buffer memory
 587         * intact here.
 588         */
 589        if (bp->b_flags & XBF_STALE) {
 590                ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 591                ASSERT(bp->b_iodone == NULL);
 592                bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 593                bp->b_ops = NULL;
 594        }
 595
 596        trace_xfs_buf_find(bp, flags, _RET_IP_);
 597        XFS_STATS_INC(xb_get_locked);
 598        return bp;
 599}
 600
 601/*
 602 * Assembles a buffer covering the specified range. The code is optimised for
 603 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 604 * more hits than misses.
 605 */
 606struct xfs_buf *
 607xfs_buf_get_map(
 608        struct xfs_buftarg      *target,
 609        struct xfs_buf_map      *map,
 610        int                     nmaps,
 611        xfs_buf_flags_t         flags)
 612{
 613        struct xfs_buf          *bp;
 614        struct xfs_buf          *new_bp;
 615        int                     error = 0;
 616
 617        bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
 618        if (likely(bp))
 619                goto found;
 620
 621        new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
 622        if (unlikely(!new_bp))
 623                return NULL;
 624
 625        error = xfs_buf_allocate_memory(new_bp, flags);
 626        if (error) {
 627                xfs_buf_free(new_bp);
 628                return NULL;
 629        }
 630
 631        bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
 632        if (!bp) {
 633                xfs_buf_free(new_bp);
 634                return NULL;
 635        }
 636
 637        if (bp != new_bp)
 638                xfs_buf_free(new_bp);
 639
 640found:
 641        if (!bp->b_addr) {
 642                error = _xfs_buf_map_pages(bp, flags);
 643                if (unlikely(error)) {
 644                        xfs_warn(target->bt_mount,
 645                                "%s: failed to map pages\n", __func__);
 646                        xfs_buf_relse(bp);
 647                        return NULL;
 648                }
 649        }
 650
 651        XFS_STATS_INC(xb_get);
 652        trace_xfs_buf_get(bp, flags, _RET_IP_);
 653        return bp;
 654}
 655
 656STATIC int
 657_xfs_buf_read(
 658        xfs_buf_t               *bp,
 659        xfs_buf_flags_t         flags)
 660{
 661        ASSERT(!(flags & XBF_WRITE));
 662        ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 663
 664        bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 665        bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 666
 667        xfs_buf_iorequest(bp);
 668        if (flags & XBF_ASYNC)
 669                return 0;
 670        return xfs_buf_iowait(bp);
 671}
 672
 673xfs_buf_t *
 674xfs_buf_read_map(
 675        struct xfs_buftarg      *target,
 676        struct xfs_buf_map      *map,
 677        int                     nmaps,
 678        xfs_buf_flags_t         flags,
 679        const struct xfs_buf_ops *ops)
 680{
 681        struct xfs_buf          *bp;
 682
 683        flags |= XBF_READ;
 684
 685        bp = xfs_buf_get_map(target, map, nmaps, flags);
 686        if (bp) {
 687                trace_xfs_buf_read(bp, flags, _RET_IP_);
 688
 689                if (!XFS_BUF_ISDONE(bp)) {
 690                        XFS_STATS_INC(xb_get_read);
 691                        bp->b_ops = ops;
 692                        _xfs_buf_read(bp, flags);
 693                } else if (flags & XBF_ASYNC) {
 694                        /*
 695                         * Read ahead call which is already satisfied,
 696                         * drop the buffer
 697                         */
 698                        xfs_buf_relse(bp);
 699                        return NULL;
 700                } else {
 701                        /* We do not want read in the flags */
 702                        bp->b_flags &= ~XBF_READ;
 703                }
 704        }
 705
 706        return bp;
 707}
 708
 709/*
 710 *      If we are not low on memory then do the readahead in a deadlock
 711 *      safe manner.
 712 */
 713void
 714xfs_buf_readahead_map(
 715        struct xfs_buftarg      *target,
 716        struct xfs_buf_map      *map,
 717        int                     nmaps,
 718        const struct xfs_buf_ops *ops)
 719{
 720        if (bdi_read_congested(target->bt_bdi))
 721                return;
 722
 723        xfs_buf_read_map(target, map, nmaps,
 724                     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
 725}
 726
 727/*
 728 * Read an uncached buffer from disk. Allocates and returns a locked
 729 * buffer containing the disk contents or nothing.
 730 */
 731struct xfs_buf *
 732xfs_buf_read_uncached(
 733        struct xfs_buftarg      *target,
 734        xfs_daddr_t             daddr,
 735        size_t                  numblks,
 736        int                     flags,
 737        const struct xfs_buf_ops *ops)
 738{
 739        struct xfs_buf          *bp;
 740
 741        bp = xfs_buf_get_uncached(target, numblks, flags);
 742        if (!bp)
 743                return NULL;
 744
 745        /* set up the buffer for a read IO */
 746        ASSERT(bp->b_map_count == 1);
 747        bp->b_bn = daddr;
 748        bp->b_maps[0].bm_bn = daddr;
 749        bp->b_flags |= XBF_READ;
 750        bp->b_ops = ops;
 751
 752        xfsbdstrat(target->bt_mount, bp);
 753        xfs_buf_iowait(bp);
 754        return bp;
 755}
 756
 757/*
 758 * Return a buffer allocated as an empty buffer and associated to external
 759 * memory via xfs_buf_associate_memory() back to it's empty state.
 760 */
 761void
 762xfs_buf_set_empty(
 763        struct xfs_buf          *bp,
 764        size_t                  numblks)
 765{
 766        if (bp->b_pages)
 767                _xfs_buf_free_pages(bp);
 768
 769        bp->b_pages = NULL;
 770        bp->b_page_count = 0;
 771        bp->b_addr = NULL;
 772        bp->b_length = numblks;
 773        bp->b_io_length = numblks;
 774
 775        ASSERT(bp->b_map_count == 1);
 776        bp->b_bn = XFS_BUF_DADDR_NULL;
 777        bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
 778        bp->b_maps[0].bm_len = bp->b_length;
 779}
 780
 781static inline struct page *
 782mem_to_page(
 783        void                    *addr)
 784{
 785        if ((!is_vmalloc_addr(addr))) {
 786                return virt_to_page(addr);
 787        } else {
 788                return vmalloc_to_page(addr);
 789        }
 790}
 791
 792int
 793xfs_buf_associate_memory(
 794        xfs_buf_t               *bp,
 795        void                    *mem,
 796        size_t                  len)
 797{
 798        int                     rval;
 799        int                     i = 0;
 800        unsigned long           pageaddr;
 801        unsigned long           offset;
 802        size_t                  buflen;
 803        int                     page_count;
 804
 805        pageaddr = (unsigned long)mem & PAGE_MASK;
 806        offset = (unsigned long)mem - pageaddr;
 807        buflen = PAGE_ALIGN(len + offset);
 808        page_count = buflen >> PAGE_SHIFT;
 809
 810        /* Free any previous set of page pointers */
 811        if (bp->b_pages)
 812                _xfs_buf_free_pages(bp);
 813
 814        bp->b_pages = NULL;
 815        bp->b_addr = mem;
 816
 817        rval = _xfs_buf_get_pages(bp, page_count, 0);
 818        if (rval)
 819                return rval;
 820
 821        bp->b_offset = offset;
 822
 823        for (i = 0; i < bp->b_page_count; i++) {
 824                bp->b_pages[i] = mem_to_page((void *)pageaddr);
 825                pageaddr += PAGE_SIZE;
 826        }
 827
 828        bp->b_io_length = BTOBB(len);
 829        bp->b_length = BTOBB(buflen);
 830
 831        return 0;
 832}
 833
 834xfs_buf_t *
 835xfs_buf_get_uncached(
 836        struct xfs_buftarg      *target,
 837        size_t                  numblks,
 838        int                     flags)
 839{
 840        unsigned long           page_count;
 841        int                     error, i;
 842        struct xfs_buf          *bp;
 843        DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 844
 845        bp = _xfs_buf_alloc(target, &map, 1, 0);
 846        if (unlikely(bp == NULL))
 847                goto fail;
 848
 849        page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 850        error = _xfs_buf_get_pages(bp, page_count, 0);
 851        if (error)
 852                goto fail_free_buf;
 853
 854        for (i = 0; i < page_count; i++) {
 855                bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 856                if (!bp->b_pages[i])
 857                        goto fail_free_mem;
 858        }
 859        bp->b_flags |= _XBF_PAGES;
 860
 861        error = _xfs_buf_map_pages(bp, 0);
 862        if (unlikely(error)) {
 863                xfs_warn(target->bt_mount,
 864                        "%s: failed to map pages\n", __func__);
 865                goto fail_free_mem;
 866        }
 867
 868        trace_xfs_buf_get_uncached(bp, _RET_IP_);
 869        return bp;
 870
 871 fail_free_mem:
 872        while (--i >= 0)
 873                __free_page(bp->b_pages[i]);
 874        _xfs_buf_free_pages(bp);
 875 fail_free_buf:
 876        xfs_buf_free_maps(bp);
 877        kmem_zone_free(xfs_buf_zone, bp);
 878 fail:
 879        return NULL;
 880}
 881
 882/*
 883 *      Increment reference count on buffer, to hold the buffer concurrently
 884 *      with another thread which may release (free) the buffer asynchronously.
 885 *      Must hold the buffer already to call this function.
 886 */
 887void
 888xfs_buf_hold(
 889        xfs_buf_t               *bp)
 890{
 891        trace_xfs_buf_hold(bp, _RET_IP_);
 892        atomic_inc(&bp->b_hold);
 893}
 894
 895/*
 896 *      Releases a hold on the specified buffer.  If the
 897 *      the hold count is 1, calls xfs_buf_free.
 898 */
 899void
 900xfs_buf_rele(
 901        xfs_buf_t               *bp)
 902{
 903        struct xfs_perag        *pag = bp->b_pag;
 904
 905        trace_xfs_buf_rele(bp, _RET_IP_);
 906
 907        if (!pag) {
 908                ASSERT(list_empty(&bp->b_lru));
 909                ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 910                if (atomic_dec_and_test(&bp->b_hold))
 911                        xfs_buf_free(bp);
 912                return;
 913        }
 914
 915        ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 916
 917        ASSERT(atomic_read(&bp->b_hold) > 0);
 918        if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 919                if (!(bp->b_flags & XBF_STALE) &&
 920                           atomic_read(&bp->b_lru_ref)) {
 921                        xfs_buf_lru_add(bp);
 922                        spin_unlock(&pag->pag_buf_lock);
 923                } else {
 924                        xfs_buf_lru_del(bp);
 925                        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 926                        rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 927                        spin_unlock(&pag->pag_buf_lock);
 928                        xfs_perag_put(pag);
 929                        xfs_buf_free(bp);
 930                }
 931        }
 932}
 933
 934
 935/*
 936 *      Lock a buffer object, if it is not already locked.
 937 *
 938 *      If we come across a stale, pinned, locked buffer, we know that we are
 939 *      being asked to lock a buffer that has been reallocated. Because it is
 940 *      pinned, we know that the log has not been pushed to disk and hence it
 941 *      will still be locked.  Rather than continuing to have trylock attempts
 942 *      fail until someone else pushes the log, push it ourselves before
 943 *      returning.  This means that the xfsaild will not get stuck trying
 944 *      to push on stale inode buffers.
 945 */
 946int
 947xfs_buf_trylock(
 948        struct xfs_buf          *bp)
 949{
 950        int                     locked;
 951
 952        locked = down_trylock(&bp->b_sema) == 0;
 953        if (locked)
 954                XB_SET_OWNER(bp);
 955
 956        trace_xfs_buf_trylock(bp, _RET_IP_);
 957        return locked;
 958}
 959
 960/*
 961 *      Lock a buffer object.
 962 *
 963 *      If we come across a stale, pinned, locked buffer, we know that we
 964 *      are being asked to lock a buffer that has been reallocated. Because
 965 *      it is pinned, we know that the log has not been pushed to disk and
 966 *      hence it will still be locked. Rather than sleeping until someone
 967 *      else pushes the log, push it ourselves before trying to get the lock.
 968 */
 969void
 970xfs_buf_lock(
 971        struct xfs_buf          *bp)
 972{
 973        trace_xfs_buf_lock(bp, _RET_IP_);
 974
 975        if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 976                xfs_log_force(bp->b_target->bt_mount, 0);
 977        down(&bp->b_sema);
 978        XB_SET_OWNER(bp);
 979
 980        trace_xfs_buf_lock_done(bp, _RET_IP_);
 981}
 982
 983void
 984xfs_buf_unlock(
 985        struct xfs_buf          *bp)
 986{
 987        XB_CLEAR_OWNER(bp);
 988        up(&bp->b_sema);
 989
 990        trace_xfs_buf_unlock(bp, _RET_IP_);
 991}
 992
 993STATIC void
 994xfs_buf_wait_unpin(
 995        xfs_buf_t               *bp)
 996{
 997        DECLARE_WAITQUEUE       (wait, current);
 998
 999        if (atomic_read(&bp->b_pin_count) == 0)
1000                return;
1001
1002        add_wait_queue(&bp->b_waiters, &wait);
1003        for (;;) {
1004                set_current_state(TASK_UNINTERRUPTIBLE);
1005                if (atomic_read(&bp->b_pin_count) == 0)
1006                        break;
1007                io_schedule();
1008        }
1009        remove_wait_queue(&bp->b_waiters, &wait);
1010        set_current_state(TASK_RUNNING);
1011}
1012
1013/*
1014 *      Buffer Utility Routines
1015 */
1016
1017STATIC void
1018xfs_buf_iodone_work(
1019        struct work_struct      *work)
1020{
1021        struct xfs_buf          *bp =
1022                container_of(work, xfs_buf_t, b_iodone_work);
1023        bool                    read = !!(bp->b_flags & XBF_READ);
1024
1025        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1026
1027        /* only validate buffers that were read without errors */
1028        if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1029                bp->b_ops->verify_read(bp);
1030
1031        if (bp->b_iodone)
1032                (*(bp->b_iodone))(bp);
1033        else if (bp->b_flags & XBF_ASYNC)
1034                xfs_buf_relse(bp);
1035        else {
1036                ASSERT(read && bp->b_ops);
1037                complete(&bp->b_iowait);
1038        }
1039}
1040
1041void
1042xfs_buf_ioend(
1043        struct xfs_buf  *bp,
1044        int             schedule)
1045{
1046        bool            read = !!(bp->b_flags & XBF_READ);
1047
1048        trace_xfs_buf_iodone(bp, _RET_IP_);
1049
1050        if (bp->b_error == 0)
1051                bp->b_flags |= XBF_DONE;
1052
1053        if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1054                if (schedule) {
1055                        INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1056                        queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1057                } else {
1058                        xfs_buf_iodone_work(&bp->b_iodone_work);
1059                }
1060        } else {
1061                bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1062                complete(&bp->b_iowait);
1063        }
1064}
1065
1066void
1067xfs_buf_ioerror(
1068        xfs_buf_t               *bp,
1069        int                     error)
1070{
1071        ASSERT(error >= 0 && error <= 0xffff);
1072        bp->b_error = (unsigned short)error;
1073        trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1074}
1075
1076void
1077xfs_buf_ioerror_alert(
1078        struct xfs_buf          *bp,
1079        const char              *func)
1080{
1081        xfs_alert(bp->b_target->bt_mount,
1082"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1083                (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1084}
1085
1086/*
1087 * Called when we want to stop a buffer from getting written or read.
1088 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1089 * so that the proper iodone callbacks get called.
1090 */
1091STATIC int
1092xfs_bioerror(
1093        xfs_buf_t *bp)
1094{
1095#ifdef XFSERRORDEBUG
1096        ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1097#endif
1098
1099        /*
1100         * No need to wait until the buffer is unpinned, we aren't flushing it.
1101         */
1102        xfs_buf_ioerror(bp, EIO);
1103
1104        /*
1105         * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1106         */
1107        XFS_BUF_UNREAD(bp);
1108        XFS_BUF_UNDONE(bp);
1109        xfs_buf_stale(bp);
1110
1111        xfs_buf_ioend(bp, 0);
1112
1113        return EIO;
1114}
1115
1116/*
1117 * Same as xfs_bioerror, except that we are releasing the buffer
1118 * here ourselves, and avoiding the xfs_buf_ioend call.
1119 * This is meant for userdata errors; metadata bufs come with
1120 * iodone functions attached, so that we can track down errors.
1121 */
1122STATIC int
1123xfs_bioerror_relse(
1124        struct xfs_buf  *bp)
1125{
1126        int64_t         fl = bp->b_flags;
1127        /*
1128         * No need to wait until the buffer is unpinned.
1129         * We aren't flushing it.
1130         *
1131         * chunkhold expects B_DONE to be set, whether
1132         * we actually finish the I/O or not. We don't want to
1133         * change that interface.
1134         */
1135        XFS_BUF_UNREAD(bp);
1136        XFS_BUF_DONE(bp);
1137        xfs_buf_stale(bp);
1138        bp->b_iodone = NULL;
1139        if (!(fl & XBF_ASYNC)) {
1140                /*
1141                 * Mark b_error and B_ERROR _both_.
1142                 * Lot's of chunkcache code assumes that.
1143                 * There's no reason to mark error for
1144                 * ASYNC buffers.
1145                 */
1146                xfs_buf_ioerror(bp, EIO);
1147                complete(&bp->b_iowait);
1148        } else {
1149                xfs_buf_relse(bp);
1150        }
1151
1152        return EIO;
1153}
1154
1155STATIC int
1156xfs_bdstrat_cb(
1157        struct xfs_buf  *bp)
1158{
1159        if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1160                trace_xfs_bdstrat_shut(bp, _RET_IP_);
1161                /*
1162                 * Metadata write that didn't get logged but
1163                 * written delayed anyway. These aren't associated
1164                 * with a transaction, and can be ignored.
1165                 */
1166                if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1167                        return xfs_bioerror_relse(bp);
1168                else
1169                        return xfs_bioerror(bp);
1170        }
1171
1172        xfs_buf_iorequest(bp);
1173        return 0;
1174}
1175
1176int
1177xfs_bwrite(
1178        struct xfs_buf          *bp)
1179{
1180        int                     error;
1181
1182        ASSERT(xfs_buf_islocked(bp));
1183
1184        bp->b_flags |= XBF_WRITE;
1185        bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1186
1187        xfs_bdstrat_cb(bp);
1188
1189        error = xfs_buf_iowait(bp);
1190        if (error) {
1191                xfs_force_shutdown(bp->b_target->bt_mount,
1192                                   SHUTDOWN_META_IO_ERROR);
1193        }
1194        return error;
1195}
1196
1197/*
1198 * Wrapper around bdstrat so that we can stop data from going to disk in case
1199 * we are shutting down the filesystem.  Typically user data goes thru this
1200 * path; one of the exceptions is the superblock.
1201 */
1202void
1203xfsbdstrat(
1204        struct xfs_mount        *mp,
1205        struct xfs_buf          *bp)
1206{
1207        if (XFS_FORCED_SHUTDOWN(mp)) {
1208                trace_xfs_bdstrat_shut(bp, _RET_IP_);
1209                xfs_bioerror_relse(bp);
1210                return;
1211        }
1212
1213        xfs_buf_iorequest(bp);
1214}
1215
1216STATIC void
1217_xfs_buf_ioend(
1218        xfs_buf_t               *bp,
1219        int                     schedule)
1220{
1221        if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1222                xfs_buf_ioend(bp, schedule);
1223}
1224
1225STATIC void
1226xfs_buf_bio_end_io(
1227        struct bio              *bio,
1228        int                     error)
1229{
1230        xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1231
1232        /*
1233         * don't overwrite existing errors - otherwise we can lose errors on
1234         * buffers that require multiple bios to complete.
1235         */
1236        if (!bp->b_error)
1237                xfs_buf_ioerror(bp, -error);
1238
1239        if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1240                invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1241
1242        _xfs_buf_ioend(bp, 1);
1243        bio_put(bio);
1244}
1245
1246static void
1247xfs_buf_ioapply_map(
1248        struct xfs_buf  *bp,
1249        int             map,
1250        int             *buf_offset,
1251        int             *count,
1252        int             rw)
1253{
1254        int             page_index;
1255        int             total_nr_pages = bp->b_page_count;
1256        int             nr_pages;
1257        struct bio      *bio;
1258        sector_t        sector =  bp->b_maps[map].bm_bn;
1259        int             size;
1260        int             offset;
1261
1262        total_nr_pages = bp->b_page_count;
1263
1264        /* skip the pages in the buffer before the start offset */
1265        page_index = 0;
1266        offset = *buf_offset;
1267        while (offset >= PAGE_SIZE) {
1268                page_index++;
1269                offset -= PAGE_SIZE;
1270        }
1271
1272        /*
1273         * Limit the IO size to the length of the current vector, and update the
1274         * remaining IO count for the next time around.
1275         */
1276        size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1277        *count -= size;
1278        *buf_offset += size;
1279
1280next_chunk:
1281        atomic_inc(&bp->b_io_remaining);
1282        nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1283        if (nr_pages > total_nr_pages)
1284                nr_pages = total_nr_pages;
1285
1286        bio = bio_alloc(GFP_NOIO, nr_pages);
1287        bio->bi_bdev = bp->b_target->bt_bdev;
1288        bio->bi_sector = sector;
1289        bio->bi_end_io = xfs_buf_bio_end_io;
1290        bio->bi_private = bp;
1291
1292
1293        for (; size && nr_pages; nr_pages--, page_index++) {
1294                int     rbytes, nbytes = PAGE_SIZE - offset;
1295
1296                if (nbytes > size)
1297                        nbytes = size;
1298
1299                rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300                                      offset);
1301                if (rbytes < nbytes)
1302                        break;
1303
1304                offset = 0;
1305                sector += BTOBB(nbytes);
1306                size -= nbytes;
1307                total_nr_pages--;
1308        }
1309
1310        if (likely(bio->bi_size)) {
1311                if (xfs_buf_is_vmapped(bp)) {
1312                        flush_kernel_vmap_range(bp->b_addr,
1313                                                xfs_buf_vmap_len(bp));
1314                }
1315                submit_bio(rw, bio);
1316                if (size)
1317                        goto next_chunk;
1318        } else {
1319                /*
1320                 * This is guaranteed not to be the last io reference count
1321                 * because the caller (xfs_buf_iorequest) holds a count itself.
1322                 */
1323                atomic_dec(&bp->b_io_remaining);
1324                xfs_buf_ioerror(bp, EIO);
1325                bio_put(bio);
1326        }
1327
1328}
1329
1330STATIC void
1331_xfs_buf_ioapply(
1332        struct xfs_buf  *bp)
1333{
1334        struct blk_plug plug;
1335        int             rw;
1336        int             offset;
1337        int             size;
1338        int             i;
1339
1340        /*
1341         * Make sure we capture only current IO errors rather than stale errors
1342         * left over from previous use of the buffer (e.g. failed readahead).
1343         */
1344        bp->b_error = 0;
1345
1346        if (bp->b_flags & XBF_WRITE) {
1347                if (bp->b_flags & XBF_SYNCIO)
1348                        rw = WRITE_SYNC;
1349                else
1350                        rw = WRITE;
1351                if (bp->b_flags & XBF_FUA)
1352                        rw |= REQ_FUA;
1353                if (bp->b_flags & XBF_FLUSH)
1354                        rw |= REQ_FLUSH;
1355
1356                /*
1357                 * Run the write verifier callback function if it exists. If
1358                 * this function fails it will mark the buffer with an error and
1359                 * the IO should not be dispatched.
1360                 */
1361                if (bp->b_ops) {
1362                        bp->b_ops->verify_write(bp);
1363                        if (bp->b_error) {
1364                                xfs_force_shutdown(bp->b_target->bt_mount,
1365                                                   SHUTDOWN_CORRUPT_INCORE);
1366                                return;
1367                        }
1368                }
1369        } else if (bp->b_flags & XBF_READ_AHEAD) {
1370                rw = READA;
1371        } else {
1372                rw = READ;
1373        }
1374
1375        /* we only use the buffer cache for meta-data */
1376        rw |= REQ_META;
1377
1378        /*
1379         * Walk all the vectors issuing IO on them. Set up the initial offset
1380         * into the buffer and the desired IO size before we start -
1381         * _xfs_buf_ioapply_vec() will modify them appropriately for each
1382         * subsequent call.
1383         */
1384        offset = bp->b_offset;
1385        size = BBTOB(bp->b_io_length);
1386        blk_start_plug(&plug);
1387        for (i = 0; i < bp->b_map_count; i++) {
1388                xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1389                if (bp->b_error)
1390                        break;
1391                if (size <= 0)
1392                        break;  /* all done */
1393        }
1394        blk_finish_plug(&plug);
1395}
1396
1397void
1398xfs_buf_iorequest(
1399        xfs_buf_t               *bp)
1400{
1401        trace_xfs_buf_iorequest(bp, _RET_IP_);
1402
1403        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1404
1405        if (bp->b_flags & XBF_WRITE)
1406                xfs_buf_wait_unpin(bp);
1407        xfs_buf_hold(bp);
1408
1409        /* Set the count to 1 initially, this will stop an I/O
1410         * completion callout which happens before we have started
1411         * all the I/O from calling xfs_buf_ioend too early.
1412         */
1413        atomic_set(&bp->b_io_remaining, 1);
1414        _xfs_buf_ioapply(bp);
1415        _xfs_buf_ioend(bp, 1);
1416
1417        xfs_buf_rele(bp);
1418}
1419
1420/*
1421 * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1422 * no I/O is pending or there is already a pending error on the buffer.  It
1423 * returns the I/O error code, if any, or 0 if there was no error.
1424 */
1425int
1426xfs_buf_iowait(
1427        xfs_buf_t               *bp)
1428{
1429        trace_xfs_buf_iowait(bp, _RET_IP_);
1430
1431        if (!bp->b_error)
1432                wait_for_completion(&bp->b_iowait);
1433
1434        trace_xfs_buf_iowait_done(bp, _RET_IP_);
1435        return bp->b_error;
1436}
1437
1438xfs_caddr_t
1439xfs_buf_offset(
1440        xfs_buf_t               *bp,
1441        size_t                  offset)
1442{
1443        struct page             *page;
1444
1445        if (bp->b_addr)
1446                return bp->b_addr + offset;
1447
1448        offset += bp->b_offset;
1449        page = bp->b_pages[offset >> PAGE_SHIFT];
1450        return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1451}
1452
1453/*
1454 *      Move data into or out of a buffer.
1455 */
1456void
1457xfs_buf_iomove(
1458        xfs_buf_t               *bp,    /* buffer to process            */
1459        size_t                  boff,   /* starting buffer offset       */
1460        size_t                  bsize,  /* length to copy               */
1461        void                    *data,  /* data address                 */
1462        xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1463{
1464        size_t                  bend;
1465
1466        bend = boff + bsize;
1467        while (boff < bend) {
1468                struct page     *page;
1469                int             page_index, page_offset, csize;
1470
1471                page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1472                page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1473                page = bp->b_pages[page_index];
1474                csize = min_t(size_t, PAGE_SIZE - page_offset,
1475                                      BBTOB(bp->b_io_length) - boff);
1476
1477                ASSERT((csize + page_offset) <= PAGE_SIZE);
1478
1479                switch (mode) {
1480                case XBRW_ZERO:
1481                        memset(page_address(page) + page_offset, 0, csize);
1482                        break;
1483                case XBRW_READ:
1484                        memcpy(data, page_address(page) + page_offset, csize);
1485                        break;
1486                case XBRW_WRITE:
1487                        memcpy(page_address(page) + page_offset, data, csize);
1488                }
1489
1490                boff += csize;
1491                data += csize;
1492        }
1493}
1494
1495/*
1496 *      Handling of buffer targets (buftargs).
1497 */
1498
1499/*
1500 * Wait for any bufs with callbacks that have been submitted but have not yet
1501 * returned. These buffers will have an elevated hold count, so wait on those
1502 * while freeing all the buffers only held by the LRU.
1503 */
1504void
1505xfs_wait_buftarg(
1506        struct xfs_buftarg      *btp)
1507{
1508        struct xfs_buf          *bp;
1509
1510restart:
1511        spin_lock(&btp->bt_lru_lock);
1512        while (!list_empty(&btp->bt_lru)) {
1513                bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1514                if (atomic_read(&bp->b_hold) > 1) {
1515                        trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1516                        list_move_tail(&bp->b_lru, &btp->bt_lru);
1517                        spin_unlock(&btp->bt_lru_lock);
1518                        delay(100);
1519                        goto restart;
1520                }
1521                /*
1522                 * clear the LRU reference count so the buffer doesn't get
1523                 * ignored in xfs_buf_rele().
1524                 */
1525                atomic_set(&bp->b_lru_ref, 0);
1526                spin_unlock(&btp->bt_lru_lock);
1527                xfs_buf_rele(bp);
1528                spin_lock(&btp->bt_lru_lock);
1529        }
1530        spin_unlock(&btp->bt_lru_lock);
1531}
1532
1533int
1534xfs_buftarg_shrink(
1535        struct shrinker         *shrink,
1536        struct shrink_control   *sc)
1537{
1538        struct xfs_buftarg      *btp = container_of(shrink,
1539                                        struct xfs_buftarg, bt_shrinker);
1540        struct xfs_buf          *bp;
1541        int nr_to_scan = sc->nr_to_scan;
1542        LIST_HEAD(dispose);
1543
1544        if (!nr_to_scan)
1545                return btp->bt_lru_nr;
1546
1547        spin_lock(&btp->bt_lru_lock);
1548        while (!list_empty(&btp->bt_lru)) {
1549                if (nr_to_scan-- <= 0)
1550                        break;
1551
1552                bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1553
1554                /*
1555                 * Decrement the b_lru_ref count unless the value is already
1556                 * zero. If the value is already zero, we need to reclaim the
1557                 * buffer, otherwise it gets another trip through the LRU.
1558                 */
1559                if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1560                        list_move_tail(&bp->b_lru, &btp->bt_lru);
1561                        continue;
1562                }
1563
1564                /*
1565                 * remove the buffer from the LRU now to avoid needing another
1566                 * lock round trip inside xfs_buf_rele().
1567                 */
1568                list_move(&bp->b_lru, &dispose);
1569                btp->bt_lru_nr--;
1570                bp->b_lru_flags |= _XBF_LRU_DISPOSE;
1571        }
1572        spin_unlock(&btp->bt_lru_lock);
1573
1574        while (!list_empty(&dispose)) {
1575                bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1576                list_del_init(&bp->b_lru);
1577                xfs_buf_rele(bp);
1578        }
1579
1580        return btp->bt_lru_nr;
1581}
1582
1583void
1584xfs_free_buftarg(
1585        struct xfs_mount        *mp,
1586        struct xfs_buftarg      *btp)
1587{
1588        unregister_shrinker(&btp->bt_shrinker);
1589
1590        if (mp->m_flags & XFS_MOUNT_BARRIER)
1591                xfs_blkdev_issue_flush(btp);
1592
1593        kmem_free(btp);
1594}
1595
1596STATIC int
1597xfs_setsize_buftarg_flags(
1598        xfs_buftarg_t           *btp,
1599        unsigned int            blocksize,
1600        unsigned int            sectorsize,
1601        int                     verbose)
1602{
1603        btp->bt_bsize = blocksize;
1604        btp->bt_sshift = ffs(sectorsize) - 1;
1605        btp->bt_smask = sectorsize - 1;
1606
1607        if (set_blocksize(btp->bt_bdev, sectorsize)) {
1608                char name[BDEVNAME_SIZE];
1609
1610                bdevname(btp->bt_bdev, name);
1611
1612                xfs_warn(btp->bt_mount,
1613                        "Cannot set_blocksize to %u on device %s\n",
1614                        sectorsize, name);
1615                return EINVAL;
1616        }
1617
1618        return 0;
1619}
1620
1621/*
1622 *      When allocating the initial buffer target we have not yet
1623 *      read in the superblock, so don't know what sized sectors
1624 *      are being used is at this early stage.  Play safe.
1625 */
1626STATIC int
1627xfs_setsize_buftarg_early(
1628        xfs_buftarg_t           *btp,
1629        struct block_device     *bdev)
1630{
1631        return xfs_setsize_buftarg_flags(btp,
1632                        PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1633}
1634
1635int
1636xfs_setsize_buftarg(
1637        xfs_buftarg_t           *btp,
1638        unsigned int            blocksize,
1639        unsigned int            sectorsize)
1640{
1641        return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1642}
1643
1644xfs_buftarg_t *
1645xfs_alloc_buftarg(
1646        struct xfs_mount        *mp,
1647        struct block_device     *bdev,
1648        int                     external,
1649        const char              *fsname)
1650{
1651        xfs_buftarg_t           *btp;
1652
1653        btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1654
1655        btp->bt_mount = mp;
1656        btp->bt_dev =  bdev->bd_dev;
1657        btp->bt_bdev = bdev;
1658        btp->bt_bdi = blk_get_backing_dev_info(bdev);
1659        if (!btp->bt_bdi)
1660                goto error;
1661
1662        INIT_LIST_HEAD(&btp->bt_lru);
1663        spin_lock_init(&btp->bt_lru_lock);
1664        if (xfs_setsize_buftarg_early(btp, bdev))
1665                goto error;
1666        btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1667        btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1668        register_shrinker(&btp->bt_shrinker);
1669        return btp;
1670
1671error:
1672        kmem_free(btp);
1673        return NULL;
1674}
1675
1676/*
1677 * Add a buffer to the delayed write list.
1678 *
1679 * This queues a buffer for writeout if it hasn't already been.  Note that
1680 * neither this routine nor the buffer list submission functions perform
1681 * any internal synchronization.  It is expected that the lists are thread-local
1682 * to the callers.
1683 *
1684 * Returns true if we queued up the buffer, or false if it already had
1685 * been on the buffer list.
1686 */
1687bool
1688xfs_buf_delwri_queue(
1689        struct xfs_buf          *bp,
1690        struct list_head        *list)
1691{
1692        ASSERT(xfs_buf_islocked(bp));
1693        ASSERT(!(bp->b_flags & XBF_READ));
1694
1695        /*
1696         * If the buffer is already marked delwri it already is queued up
1697         * by someone else for imediate writeout.  Just ignore it in that
1698         * case.
1699         */
1700        if (bp->b_flags & _XBF_DELWRI_Q) {
1701                trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1702                return false;
1703        }
1704
1705        trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1706
1707        /*
1708         * If a buffer gets written out synchronously or marked stale while it
1709         * is on a delwri list we lazily remove it. To do this, the other party
1710         * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1711         * It remains referenced and on the list.  In a rare corner case it
1712         * might get readded to a delwri list after the synchronous writeout, in
1713         * which case we need just need to re-add the flag here.
1714         */
1715        bp->b_flags |= _XBF_DELWRI_Q;
1716        if (list_empty(&bp->b_list)) {
1717                atomic_inc(&bp->b_hold);
1718                list_add_tail(&bp->b_list, list);
1719        }
1720
1721        return true;
1722}
1723
1724/*
1725 * Compare function is more complex than it needs to be because
1726 * the return value is only 32 bits and we are doing comparisons
1727 * on 64 bit values
1728 */
1729static int
1730xfs_buf_cmp(
1731        void            *priv,
1732        struct list_head *a,
1733        struct list_head *b)
1734{
1735        struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1736        struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1737        xfs_daddr_t             diff;
1738
1739        diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1740        if (diff < 0)
1741                return -1;
1742        if (diff > 0)
1743                return 1;
1744        return 0;
1745}
1746
1747static int
1748__xfs_buf_delwri_submit(
1749        struct list_head        *buffer_list,
1750        struct list_head        *io_list,
1751        bool                    wait)
1752{
1753        struct blk_plug         plug;
1754        struct xfs_buf          *bp, *n;
1755        int                     pinned = 0;
1756
1757        list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1758                if (!wait) {
1759                        if (xfs_buf_ispinned(bp)) {
1760                                pinned++;
1761                                continue;
1762                        }
1763                        if (!xfs_buf_trylock(bp))
1764                                continue;
1765                } else {
1766                        xfs_buf_lock(bp);
1767                }
1768
1769                /*
1770                 * Someone else might have written the buffer synchronously or
1771                 * marked it stale in the meantime.  In that case only the
1772                 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1773                 * reference and remove it from the list here.
1774                 */
1775                if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1776                        list_del_init(&bp->b_list);
1777                        xfs_buf_relse(bp);
1778                        continue;
1779                }
1780
1781                list_move_tail(&bp->b_list, io_list);
1782                trace_xfs_buf_delwri_split(bp, _RET_IP_);
1783        }
1784
1785        list_sort(NULL, io_list, xfs_buf_cmp);
1786
1787        blk_start_plug(&plug);
1788        list_for_each_entry_safe(bp, n, io_list, b_list) {
1789                bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1790                bp->b_flags |= XBF_WRITE;
1791
1792                if (!wait) {
1793                        bp->b_flags |= XBF_ASYNC;
1794                        list_del_init(&bp->b_list);
1795                }
1796                xfs_bdstrat_cb(bp);
1797        }
1798        blk_finish_plug(&plug);
1799
1800        return pinned;
1801}
1802
1803/*
1804 * Write out a buffer list asynchronously.
1805 *
1806 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1807 * out and not wait for I/O completion on any of the buffers.  This interface
1808 * is only safely useable for callers that can track I/O completion by higher
1809 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1810 * function.
1811 */
1812int
1813xfs_buf_delwri_submit_nowait(
1814        struct list_head        *buffer_list)
1815{
1816        LIST_HEAD               (io_list);
1817        return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1818}
1819
1820/*
1821 * Write out a buffer list synchronously.
1822 *
1823 * This will take the @buffer_list, write all buffers out and wait for I/O
1824 * completion on all of the buffers. @buffer_list is consumed by the function,
1825 * so callers must have some other way of tracking buffers if they require such
1826 * functionality.
1827 */
1828int
1829xfs_buf_delwri_submit(
1830        struct list_head        *buffer_list)
1831{
1832        LIST_HEAD               (io_list);
1833        int                     error = 0, error2;
1834        struct xfs_buf          *bp;
1835
1836        __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1837
1838        /* Wait for IO to complete. */
1839        while (!list_empty(&io_list)) {
1840                bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1841
1842                list_del_init(&bp->b_list);
1843                error2 = xfs_buf_iowait(bp);
1844                xfs_buf_relse(bp);
1845                if (!error)
1846                        error = error2;
1847        }
1848
1849        return error;
1850}
1851
1852int __init
1853xfs_buf_init(void)
1854{
1855        xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1856                                                KM_ZONE_HWALIGN, NULL);
1857        if (!xfs_buf_zone)
1858                goto out;
1859
1860        xfslogd_workqueue = alloc_workqueue("xfslogd",
1861                                        WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1862        if (!xfslogd_workqueue)
1863                goto out_free_buf_zone;
1864
1865        return 0;
1866
1867 out_free_buf_zone:
1868        kmem_zone_destroy(xfs_buf_zone);
1869 out:
1870        return -ENOMEM;
1871}
1872
1873void
1874xfs_buf_terminate(void)
1875{
1876        destroy_workqueue(xfslogd_workqueue);
1877        kmem_zone_destroy(xfs_buf_zone);
1878}
1879