linux/fs/xfs/xfs_log_recover.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_error.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_btree.h"
  33#include "xfs_dinode.h"
  34#include "xfs_inode.h"
  35#include "xfs_inode_item.h"
  36#include "xfs_alloc.h"
  37#include "xfs_ialloc.h"
  38#include "xfs_log_priv.h"
  39#include "xfs_buf_item.h"
  40#include "xfs_log_recover.h"
  41#include "xfs_extfree_item.h"
  42#include "xfs_trans_priv.h"
  43#include "xfs_quota.h"
  44#include "xfs_utils.h"
  45#include "xfs_cksum.h"
  46#include "xfs_trace.h"
  47#include "xfs_icache.h"
  48#include "xfs_icreate_item.h"
  49
  50/* Need all the magic numbers and buffer ops structures from these headers */
  51#include "xfs_symlink.h"
  52#include "xfs_da_btree.h"
  53#include "xfs_dir2_format.h"
  54#include "xfs_dir2_priv.h"
  55#include "xfs_attr_leaf.h"
  56#include "xfs_attr_remote.h"
  57
  58STATIC int
  59xlog_find_zeroed(
  60        struct xlog     *,
  61        xfs_daddr_t     *);
  62STATIC int
  63xlog_clear_stale_blocks(
  64        struct xlog     *,
  65        xfs_lsn_t);
  66#if defined(DEBUG)
  67STATIC void
  68xlog_recover_check_summary(
  69        struct xlog *);
  70#else
  71#define xlog_recover_check_summary(log)
  72#endif
  73
  74/*
  75 * This structure is used during recovery to record the buf log items which
  76 * have been canceled and should not be replayed.
  77 */
  78struct xfs_buf_cancel {
  79        xfs_daddr_t             bc_blkno;
  80        uint                    bc_len;
  81        int                     bc_refcount;
  82        struct list_head        bc_list;
  83};
  84
  85/*
  86 * Sector aligned buffer routines for buffer create/read/write/access
  87 */
  88
  89/*
  90 * Verify the given count of basic blocks is valid number of blocks
  91 * to specify for an operation involving the given XFS log buffer.
  92 * Returns nonzero if the count is valid, 0 otherwise.
  93 */
  94
  95static inline int
  96xlog_buf_bbcount_valid(
  97        struct xlog     *log,
  98        int             bbcount)
  99{
 100        return bbcount > 0 && bbcount <= log->l_logBBsize;
 101}
 102
 103/*
 104 * Allocate a buffer to hold log data.  The buffer needs to be able
 105 * to map to a range of nbblks basic blocks at any valid (basic
 106 * block) offset within the log.
 107 */
 108STATIC xfs_buf_t *
 109xlog_get_bp(
 110        struct xlog     *log,
 111        int             nbblks)
 112{
 113        struct xfs_buf  *bp;
 114
 115        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 116                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 117                        nbblks);
 118                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 119                return NULL;
 120        }
 121
 122        /*
 123         * We do log I/O in units of log sectors (a power-of-2
 124         * multiple of the basic block size), so we round up the
 125         * requested size to accommodate the basic blocks required
 126         * for complete log sectors.
 127         *
 128         * In addition, the buffer may be used for a non-sector-
 129         * aligned block offset, in which case an I/O of the
 130         * requested size could extend beyond the end of the
 131         * buffer.  If the requested size is only 1 basic block it
 132         * will never straddle a sector boundary, so this won't be
 133         * an issue.  Nor will this be a problem if the log I/O is
 134         * done in basic blocks (sector size 1).  But otherwise we
 135         * extend the buffer by one extra log sector to ensure
 136         * there's space to accommodate this possibility.
 137         */
 138        if (nbblks > 1 && log->l_sectBBsize > 1)
 139                nbblks += log->l_sectBBsize;
 140        nbblks = round_up(nbblks, log->l_sectBBsize);
 141
 142        bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
 143        if (bp)
 144                xfs_buf_unlock(bp);
 145        return bp;
 146}
 147
 148STATIC void
 149xlog_put_bp(
 150        xfs_buf_t       *bp)
 151{
 152        xfs_buf_free(bp);
 153}
 154
 155/*
 156 * Return the address of the start of the given block number's data
 157 * in a log buffer.  The buffer covers a log sector-aligned region.
 158 */
 159STATIC xfs_caddr_t
 160xlog_align(
 161        struct xlog     *log,
 162        xfs_daddr_t     blk_no,
 163        int             nbblks,
 164        struct xfs_buf  *bp)
 165{
 166        xfs_daddr_t     offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 167
 168        ASSERT(offset + nbblks <= bp->b_length);
 169        return bp->b_addr + BBTOB(offset);
 170}
 171
 172
 173/*
 174 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 175 */
 176STATIC int
 177xlog_bread_noalign(
 178        struct xlog     *log,
 179        xfs_daddr_t     blk_no,
 180        int             nbblks,
 181        struct xfs_buf  *bp)
 182{
 183        int             error;
 184
 185        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 186                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 187                        nbblks);
 188                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 189                return EFSCORRUPTED;
 190        }
 191
 192        blk_no = round_down(blk_no, log->l_sectBBsize);
 193        nbblks = round_up(nbblks, log->l_sectBBsize);
 194
 195        ASSERT(nbblks > 0);
 196        ASSERT(nbblks <= bp->b_length);
 197
 198        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 199        XFS_BUF_READ(bp);
 200        bp->b_io_length = nbblks;
 201        bp->b_error = 0;
 202
 203        xfsbdstrat(log->l_mp, bp);
 204        error = xfs_buf_iowait(bp);
 205        if (error)
 206                xfs_buf_ioerror_alert(bp, __func__);
 207        return error;
 208}
 209
 210STATIC int
 211xlog_bread(
 212        struct xlog     *log,
 213        xfs_daddr_t     blk_no,
 214        int             nbblks,
 215        struct xfs_buf  *bp,
 216        xfs_caddr_t     *offset)
 217{
 218        int             error;
 219
 220        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 221        if (error)
 222                return error;
 223
 224        *offset = xlog_align(log, blk_no, nbblks, bp);
 225        return 0;
 226}
 227
 228/*
 229 * Read at an offset into the buffer. Returns with the buffer in it's original
 230 * state regardless of the result of the read.
 231 */
 232STATIC int
 233xlog_bread_offset(
 234        struct xlog     *log,
 235        xfs_daddr_t     blk_no,         /* block to read from */
 236        int             nbblks,         /* blocks to read */
 237        struct xfs_buf  *bp,
 238        xfs_caddr_t     offset)
 239{
 240        xfs_caddr_t     orig_offset = bp->b_addr;
 241        int             orig_len = BBTOB(bp->b_length);
 242        int             error, error2;
 243
 244        error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 245        if (error)
 246                return error;
 247
 248        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 249
 250        /* must reset buffer pointer even on error */
 251        error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 252        if (error)
 253                return error;
 254        return error2;
 255}
 256
 257/*
 258 * Write out the buffer at the given block for the given number of blocks.
 259 * The buffer is kept locked across the write and is returned locked.
 260 * This can only be used for synchronous log writes.
 261 */
 262STATIC int
 263xlog_bwrite(
 264        struct xlog     *log,
 265        xfs_daddr_t     blk_no,
 266        int             nbblks,
 267        struct xfs_buf  *bp)
 268{
 269        int             error;
 270
 271        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 272                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 273                        nbblks);
 274                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 275                return EFSCORRUPTED;
 276        }
 277
 278        blk_no = round_down(blk_no, log->l_sectBBsize);
 279        nbblks = round_up(nbblks, log->l_sectBBsize);
 280
 281        ASSERT(nbblks > 0);
 282        ASSERT(nbblks <= bp->b_length);
 283
 284        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 285        XFS_BUF_ZEROFLAGS(bp);
 286        xfs_buf_hold(bp);
 287        xfs_buf_lock(bp);
 288        bp->b_io_length = nbblks;
 289        bp->b_error = 0;
 290
 291        error = xfs_bwrite(bp);
 292        if (error)
 293                xfs_buf_ioerror_alert(bp, __func__);
 294        xfs_buf_relse(bp);
 295        return error;
 296}
 297
 298#ifdef DEBUG
 299/*
 300 * dump debug superblock and log record information
 301 */
 302STATIC void
 303xlog_header_check_dump(
 304        xfs_mount_t             *mp,
 305        xlog_rec_header_t       *head)
 306{
 307        xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
 308                __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 309        xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
 310                &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 311}
 312#else
 313#define xlog_header_check_dump(mp, head)
 314#endif
 315
 316/*
 317 * check log record header for recovery
 318 */
 319STATIC int
 320xlog_header_check_recover(
 321        xfs_mount_t             *mp,
 322        xlog_rec_header_t       *head)
 323{
 324        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 325
 326        /*
 327         * IRIX doesn't write the h_fmt field and leaves it zeroed
 328         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 329         * a dirty log created in IRIX.
 330         */
 331        if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 332                xfs_warn(mp,
 333        "dirty log written in incompatible format - can't recover");
 334                xlog_header_check_dump(mp, head);
 335                XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 336                                 XFS_ERRLEVEL_HIGH, mp);
 337                return XFS_ERROR(EFSCORRUPTED);
 338        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 339                xfs_warn(mp,
 340        "dirty log entry has mismatched uuid - can't recover");
 341                xlog_header_check_dump(mp, head);
 342                XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 343                                 XFS_ERRLEVEL_HIGH, mp);
 344                return XFS_ERROR(EFSCORRUPTED);
 345        }
 346        return 0;
 347}
 348
 349/*
 350 * read the head block of the log and check the header
 351 */
 352STATIC int
 353xlog_header_check_mount(
 354        xfs_mount_t             *mp,
 355        xlog_rec_header_t       *head)
 356{
 357        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 358
 359        if (uuid_is_nil(&head->h_fs_uuid)) {
 360                /*
 361                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 362                 * h_fs_uuid is nil, we assume this log was last mounted
 363                 * by IRIX and continue.
 364                 */
 365                xfs_warn(mp, "nil uuid in log - IRIX style log");
 366        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 367                xfs_warn(mp, "log has mismatched uuid - can't recover");
 368                xlog_header_check_dump(mp, head);
 369                XFS_ERROR_REPORT("xlog_header_check_mount",
 370                                 XFS_ERRLEVEL_HIGH, mp);
 371                return XFS_ERROR(EFSCORRUPTED);
 372        }
 373        return 0;
 374}
 375
 376STATIC void
 377xlog_recover_iodone(
 378        struct xfs_buf  *bp)
 379{
 380        if (bp->b_error) {
 381                /*
 382                 * We're not going to bother about retrying
 383                 * this during recovery. One strike!
 384                 */
 385                xfs_buf_ioerror_alert(bp, __func__);
 386                xfs_force_shutdown(bp->b_target->bt_mount,
 387                                        SHUTDOWN_META_IO_ERROR);
 388        }
 389        bp->b_iodone = NULL;
 390        xfs_buf_ioend(bp, 0);
 391}
 392
 393/*
 394 * This routine finds (to an approximation) the first block in the physical
 395 * log which contains the given cycle.  It uses a binary search algorithm.
 396 * Note that the algorithm can not be perfect because the disk will not
 397 * necessarily be perfect.
 398 */
 399STATIC int
 400xlog_find_cycle_start(
 401        struct xlog     *log,
 402        struct xfs_buf  *bp,
 403        xfs_daddr_t     first_blk,
 404        xfs_daddr_t     *last_blk,
 405        uint            cycle)
 406{
 407        xfs_caddr_t     offset;
 408        xfs_daddr_t     mid_blk;
 409        xfs_daddr_t     end_blk;
 410        uint            mid_cycle;
 411        int             error;
 412
 413        end_blk = *last_blk;
 414        mid_blk = BLK_AVG(first_blk, end_blk);
 415        while (mid_blk != first_blk && mid_blk != end_blk) {
 416                error = xlog_bread(log, mid_blk, 1, bp, &offset);
 417                if (error)
 418                        return error;
 419                mid_cycle = xlog_get_cycle(offset);
 420                if (mid_cycle == cycle)
 421                        end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 422                else
 423                        first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 424                mid_blk = BLK_AVG(first_blk, end_blk);
 425        }
 426        ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 427               (mid_blk == end_blk && mid_blk-1 == first_blk));
 428
 429        *last_blk = end_blk;
 430
 431        return 0;
 432}
 433
 434/*
 435 * Check that a range of blocks does not contain stop_on_cycle_no.
 436 * Fill in *new_blk with the block offset where such a block is
 437 * found, or with -1 (an invalid block number) if there is no such
 438 * block in the range.  The scan needs to occur from front to back
 439 * and the pointer into the region must be updated since a later
 440 * routine will need to perform another test.
 441 */
 442STATIC int
 443xlog_find_verify_cycle(
 444        struct xlog     *log,
 445        xfs_daddr_t     start_blk,
 446        int             nbblks,
 447        uint            stop_on_cycle_no,
 448        xfs_daddr_t     *new_blk)
 449{
 450        xfs_daddr_t     i, j;
 451        uint            cycle;
 452        xfs_buf_t       *bp;
 453        xfs_daddr_t     bufblks;
 454        xfs_caddr_t     buf = NULL;
 455        int             error = 0;
 456
 457        /*
 458         * Greedily allocate a buffer big enough to handle the full
 459         * range of basic blocks we'll be examining.  If that fails,
 460         * try a smaller size.  We need to be able to read at least
 461         * a log sector, or we're out of luck.
 462         */
 463        bufblks = 1 << ffs(nbblks);
 464        while (bufblks > log->l_logBBsize)
 465                bufblks >>= 1;
 466        while (!(bp = xlog_get_bp(log, bufblks))) {
 467                bufblks >>= 1;
 468                if (bufblks < log->l_sectBBsize)
 469                        return ENOMEM;
 470        }
 471
 472        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 473                int     bcount;
 474
 475                bcount = min(bufblks, (start_blk + nbblks - i));
 476
 477                error = xlog_bread(log, i, bcount, bp, &buf);
 478                if (error)
 479                        goto out;
 480
 481                for (j = 0; j < bcount; j++) {
 482                        cycle = xlog_get_cycle(buf);
 483                        if (cycle == stop_on_cycle_no) {
 484                                *new_blk = i+j;
 485                                goto out;
 486                        }
 487
 488                        buf += BBSIZE;
 489                }
 490        }
 491
 492        *new_blk = -1;
 493
 494out:
 495        xlog_put_bp(bp);
 496        return error;
 497}
 498
 499/*
 500 * Potentially backup over partial log record write.
 501 *
 502 * In the typical case, last_blk is the number of the block directly after
 503 * a good log record.  Therefore, we subtract one to get the block number
 504 * of the last block in the given buffer.  extra_bblks contains the number
 505 * of blocks we would have read on a previous read.  This happens when the
 506 * last log record is split over the end of the physical log.
 507 *
 508 * extra_bblks is the number of blocks potentially verified on a previous
 509 * call to this routine.
 510 */
 511STATIC int
 512xlog_find_verify_log_record(
 513        struct xlog             *log,
 514        xfs_daddr_t             start_blk,
 515        xfs_daddr_t             *last_blk,
 516        int                     extra_bblks)
 517{
 518        xfs_daddr_t             i;
 519        xfs_buf_t               *bp;
 520        xfs_caddr_t             offset = NULL;
 521        xlog_rec_header_t       *head = NULL;
 522        int                     error = 0;
 523        int                     smallmem = 0;
 524        int                     num_blks = *last_blk - start_blk;
 525        int                     xhdrs;
 526
 527        ASSERT(start_blk != 0 || *last_blk != start_blk);
 528
 529        if (!(bp = xlog_get_bp(log, num_blks))) {
 530                if (!(bp = xlog_get_bp(log, 1)))
 531                        return ENOMEM;
 532                smallmem = 1;
 533        } else {
 534                error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 535                if (error)
 536                        goto out;
 537                offset += ((num_blks - 1) << BBSHIFT);
 538        }
 539
 540        for (i = (*last_blk) - 1; i >= 0; i--) {
 541                if (i < start_blk) {
 542                        /* valid log record not found */
 543                        xfs_warn(log->l_mp,
 544                "Log inconsistent (didn't find previous header)");
 545                        ASSERT(0);
 546                        error = XFS_ERROR(EIO);
 547                        goto out;
 548                }
 549
 550                if (smallmem) {
 551                        error = xlog_bread(log, i, 1, bp, &offset);
 552                        if (error)
 553                                goto out;
 554                }
 555
 556                head = (xlog_rec_header_t *)offset;
 557
 558                if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 559                        break;
 560
 561                if (!smallmem)
 562                        offset -= BBSIZE;
 563        }
 564
 565        /*
 566         * We hit the beginning of the physical log & still no header.  Return
 567         * to caller.  If caller can handle a return of -1, then this routine
 568         * will be called again for the end of the physical log.
 569         */
 570        if (i == -1) {
 571                error = -1;
 572                goto out;
 573        }
 574
 575        /*
 576         * We have the final block of the good log (the first block
 577         * of the log record _before_ the head. So we check the uuid.
 578         */
 579        if ((error = xlog_header_check_mount(log->l_mp, head)))
 580                goto out;
 581
 582        /*
 583         * We may have found a log record header before we expected one.
 584         * last_blk will be the 1st block # with a given cycle #.  We may end
 585         * up reading an entire log record.  In this case, we don't want to
 586         * reset last_blk.  Only when last_blk points in the middle of a log
 587         * record do we update last_blk.
 588         */
 589        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 590                uint    h_size = be32_to_cpu(head->h_size);
 591
 592                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 593                if (h_size % XLOG_HEADER_CYCLE_SIZE)
 594                        xhdrs++;
 595        } else {
 596                xhdrs = 1;
 597        }
 598
 599        if (*last_blk - i + extra_bblks !=
 600            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 601                *last_blk = i;
 602
 603out:
 604        xlog_put_bp(bp);
 605        return error;
 606}
 607
 608/*
 609 * Head is defined to be the point of the log where the next log write
 610 * write could go.  This means that incomplete LR writes at the end are
 611 * eliminated when calculating the head.  We aren't guaranteed that previous
 612 * LR have complete transactions.  We only know that a cycle number of
 613 * current cycle number -1 won't be present in the log if we start writing
 614 * from our current block number.
 615 *
 616 * last_blk contains the block number of the first block with a given
 617 * cycle number.
 618 *
 619 * Return: zero if normal, non-zero if error.
 620 */
 621STATIC int
 622xlog_find_head(
 623        struct xlog     *log,
 624        xfs_daddr_t     *return_head_blk)
 625{
 626        xfs_buf_t       *bp;
 627        xfs_caddr_t     offset;
 628        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
 629        int             num_scan_bblks;
 630        uint            first_half_cycle, last_half_cycle;
 631        uint            stop_on_cycle;
 632        int             error, log_bbnum = log->l_logBBsize;
 633
 634        /* Is the end of the log device zeroed? */
 635        if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 636                *return_head_blk = first_blk;
 637
 638                /* Is the whole lot zeroed? */
 639                if (!first_blk) {
 640                        /* Linux XFS shouldn't generate totally zeroed logs -
 641                         * mkfs etc write a dummy unmount record to a fresh
 642                         * log so we can store the uuid in there
 643                         */
 644                        xfs_warn(log->l_mp, "totally zeroed log");
 645                }
 646
 647                return 0;
 648        } else if (error) {
 649                xfs_warn(log->l_mp, "empty log check failed");
 650                return error;
 651        }
 652
 653        first_blk = 0;                  /* get cycle # of 1st block */
 654        bp = xlog_get_bp(log, 1);
 655        if (!bp)
 656                return ENOMEM;
 657
 658        error = xlog_bread(log, 0, 1, bp, &offset);
 659        if (error)
 660                goto bp_err;
 661
 662        first_half_cycle = xlog_get_cycle(offset);
 663
 664        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
 665        error = xlog_bread(log, last_blk, 1, bp, &offset);
 666        if (error)
 667                goto bp_err;
 668
 669        last_half_cycle = xlog_get_cycle(offset);
 670        ASSERT(last_half_cycle != 0);
 671
 672        /*
 673         * If the 1st half cycle number is equal to the last half cycle number,
 674         * then the entire log is stamped with the same cycle number.  In this
 675         * case, head_blk can't be set to zero (which makes sense).  The below
 676         * math doesn't work out properly with head_blk equal to zero.  Instead,
 677         * we set it to log_bbnum which is an invalid block number, but this
 678         * value makes the math correct.  If head_blk doesn't changed through
 679         * all the tests below, *head_blk is set to zero at the very end rather
 680         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 681         * in a circular file.
 682         */
 683        if (first_half_cycle == last_half_cycle) {
 684                /*
 685                 * In this case we believe that the entire log should have
 686                 * cycle number last_half_cycle.  We need to scan backwards
 687                 * from the end verifying that there are no holes still
 688                 * containing last_half_cycle - 1.  If we find such a hole,
 689                 * then the start of that hole will be the new head.  The
 690                 * simple case looks like
 691                 *        x | x ... | x - 1 | x
 692                 * Another case that fits this picture would be
 693                 *        x | x + 1 | x ... | x
 694                 * In this case the head really is somewhere at the end of the
 695                 * log, as one of the latest writes at the beginning was
 696                 * incomplete.
 697                 * One more case is
 698                 *        x | x + 1 | x ... | x - 1 | x
 699                 * This is really the combination of the above two cases, and
 700                 * the head has to end up at the start of the x-1 hole at the
 701                 * end of the log.
 702                 *
 703                 * In the 256k log case, we will read from the beginning to the
 704                 * end of the log and search for cycle numbers equal to x-1.
 705                 * We don't worry about the x+1 blocks that we encounter,
 706                 * because we know that they cannot be the head since the log
 707                 * started with x.
 708                 */
 709                head_blk = log_bbnum;
 710                stop_on_cycle = last_half_cycle - 1;
 711        } else {
 712                /*
 713                 * In this case we want to find the first block with cycle
 714                 * number matching last_half_cycle.  We expect the log to be
 715                 * some variation on
 716                 *        x + 1 ... | x ... | x
 717                 * The first block with cycle number x (last_half_cycle) will
 718                 * be where the new head belongs.  First we do a binary search
 719                 * for the first occurrence of last_half_cycle.  The binary
 720                 * search may not be totally accurate, so then we scan back
 721                 * from there looking for occurrences of last_half_cycle before
 722                 * us.  If that backwards scan wraps around the beginning of
 723                 * the log, then we look for occurrences of last_half_cycle - 1
 724                 * at the end of the log.  The cases we're looking for look
 725                 * like
 726                 *                               v binary search stopped here
 727                 *        x + 1 ... | x | x + 1 | x ... | x
 728                 *                   ^ but we want to locate this spot
 729                 * or
 730                 *        <---------> less than scan distance
 731                 *        x + 1 ... | x ... | x - 1 | x
 732                 *                           ^ we want to locate this spot
 733                 */
 734                stop_on_cycle = last_half_cycle;
 735                if ((error = xlog_find_cycle_start(log, bp, first_blk,
 736                                                &head_blk, last_half_cycle)))
 737                        goto bp_err;
 738        }
 739
 740        /*
 741         * Now validate the answer.  Scan back some number of maximum possible
 742         * blocks and make sure each one has the expected cycle number.  The
 743         * maximum is determined by the total possible amount of buffering
 744         * in the in-core log.  The following number can be made tighter if
 745         * we actually look at the block size of the filesystem.
 746         */
 747        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 748        if (head_blk >= num_scan_bblks) {
 749                /*
 750                 * We are guaranteed that the entire check can be performed
 751                 * in one buffer.
 752                 */
 753                start_blk = head_blk - num_scan_bblks;
 754                if ((error = xlog_find_verify_cycle(log,
 755                                                start_blk, num_scan_bblks,
 756                                                stop_on_cycle, &new_blk)))
 757                        goto bp_err;
 758                if (new_blk != -1)
 759                        head_blk = new_blk;
 760        } else {                /* need to read 2 parts of log */
 761                /*
 762                 * We are going to scan backwards in the log in two parts.
 763                 * First we scan the physical end of the log.  In this part
 764                 * of the log, we are looking for blocks with cycle number
 765                 * last_half_cycle - 1.
 766                 * If we find one, then we know that the log starts there, as
 767                 * we've found a hole that didn't get written in going around
 768                 * the end of the physical log.  The simple case for this is
 769                 *        x + 1 ... | x ... | x - 1 | x
 770                 *        <---------> less than scan distance
 771                 * If all of the blocks at the end of the log have cycle number
 772                 * last_half_cycle, then we check the blocks at the start of
 773                 * the log looking for occurrences of last_half_cycle.  If we
 774                 * find one, then our current estimate for the location of the
 775                 * first occurrence of last_half_cycle is wrong and we move
 776                 * back to the hole we've found.  This case looks like
 777                 *        x + 1 ... | x | x + 1 | x ...
 778                 *                               ^ binary search stopped here
 779                 * Another case we need to handle that only occurs in 256k
 780                 * logs is
 781                 *        x + 1 ... | x ... | x+1 | x ...
 782                 *                   ^ binary search stops here
 783                 * In a 256k log, the scan at the end of the log will see the
 784                 * x + 1 blocks.  We need to skip past those since that is
 785                 * certainly not the head of the log.  By searching for
 786                 * last_half_cycle-1 we accomplish that.
 787                 */
 788                ASSERT(head_blk <= INT_MAX &&
 789                        (xfs_daddr_t) num_scan_bblks >= head_blk);
 790                start_blk = log_bbnum - (num_scan_bblks - head_blk);
 791                if ((error = xlog_find_verify_cycle(log, start_blk,
 792                                        num_scan_bblks - (int)head_blk,
 793                                        (stop_on_cycle - 1), &new_blk)))
 794                        goto bp_err;
 795                if (new_blk != -1) {
 796                        head_blk = new_blk;
 797                        goto validate_head;
 798                }
 799
 800                /*
 801                 * Scan beginning of log now.  The last part of the physical
 802                 * log is good.  This scan needs to verify that it doesn't find
 803                 * the last_half_cycle.
 804                 */
 805                start_blk = 0;
 806                ASSERT(head_blk <= INT_MAX);
 807                if ((error = xlog_find_verify_cycle(log,
 808                                        start_blk, (int)head_blk,
 809                                        stop_on_cycle, &new_blk)))
 810                        goto bp_err;
 811                if (new_blk != -1)
 812                        head_blk = new_blk;
 813        }
 814
 815validate_head:
 816        /*
 817         * Now we need to make sure head_blk is not pointing to a block in
 818         * the middle of a log record.
 819         */
 820        num_scan_bblks = XLOG_REC_SHIFT(log);
 821        if (head_blk >= num_scan_bblks) {
 822                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 823
 824                /* start ptr at last block ptr before head_blk */
 825                if ((error = xlog_find_verify_log_record(log, start_blk,
 826                                                        &head_blk, 0)) == -1) {
 827                        error = XFS_ERROR(EIO);
 828                        goto bp_err;
 829                } else if (error)
 830                        goto bp_err;
 831        } else {
 832                start_blk = 0;
 833                ASSERT(head_blk <= INT_MAX);
 834                if ((error = xlog_find_verify_log_record(log, start_blk,
 835                                                        &head_blk, 0)) == -1) {
 836                        /* We hit the beginning of the log during our search */
 837                        start_blk = log_bbnum - (num_scan_bblks - head_blk);
 838                        new_blk = log_bbnum;
 839                        ASSERT(start_blk <= INT_MAX &&
 840                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
 841                        ASSERT(head_blk <= INT_MAX);
 842                        if ((error = xlog_find_verify_log_record(log,
 843                                                        start_blk, &new_blk,
 844                                                        (int)head_blk)) == -1) {
 845                                error = XFS_ERROR(EIO);
 846                                goto bp_err;
 847                        } else if (error)
 848                                goto bp_err;
 849                        if (new_blk != log_bbnum)
 850                                head_blk = new_blk;
 851                } else if (error)
 852                        goto bp_err;
 853        }
 854
 855        xlog_put_bp(bp);
 856        if (head_blk == log_bbnum)
 857                *return_head_blk = 0;
 858        else
 859                *return_head_blk = head_blk;
 860        /*
 861         * When returning here, we have a good block number.  Bad block
 862         * means that during a previous crash, we didn't have a clean break
 863         * from cycle number N to cycle number N-1.  In this case, we need
 864         * to find the first block with cycle number N-1.
 865         */
 866        return 0;
 867
 868 bp_err:
 869        xlog_put_bp(bp);
 870
 871        if (error)
 872                xfs_warn(log->l_mp, "failed to find log head");
 873        return error;
 874}
 875
 876/*
 877 * Find the sync block number or the tail of the log.
 878 *
 879 * This will be the block number of the last record to have its
 880 * associated buffers synced to disk.  Every log record header has
 881 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 882 * to get a sync block number.  The only concern is to figure out which
 883 * log record header to believe.
 884 *
 885 * The following algorithm uses the log record header with the largest
 886 * lsn.  The entire log record does not need to be valid.  We only care
 887 * that the header is valid.
 888 *
 889 * We could speed up search by using current head_blk buffer, but it is not
 890 * available.
 891 */
 892STATIC int
 893xlog_find_tail(
 894        struct xlog             *log,
 895        xfs_daddr_t             *head_blk,
 896        xfs_daddr_t             *tail_blk)
 897{
 898        xlog_rec_header_t       *rhead;
 899        xlog_op_header_t        *op_head;
 900        xfs_caddr_t             offset = NULL;
 901        xfs_buf_t               *bp;
 902        int                     error, i, found;
 903        xfs_daddr_t             umount_data_blk;
 904        xfs_daddr_t             after_umount_blk;
 905        xfs_lsn_t               tail_lsn;
 906        int                     hblks;
 907
 908        found = 0;
 909
 910        /*
 911         * Find previous log record
 912         */
 913        if ((error = xlog_find_head(log, head_blk)))
 914                return error;
 915
 916        bp = xlog_get_bp(log, 1);
 917        if (!bp)
 918                return ENOMEM;
 919        if (*head_blk == 0) {                           /* special case */
 920                error = xlog_bread(log, 0, 1, bp, &offset);
 921                if (error)
 922                        goto done;
 923
 924                if (xlog_get_cycle(offset) == 0) {
 925                        *tail_blk = 0;
 926                        /* leave all other log inited values alone */
 927                        goto done;
 928                }
 929        }
 930
 931        /*
 932         * Search backwards looking for log record header block
 933         */
 934        ASSERT(*head_blk < INT_MAX);
 935        for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 936                error = xlog_bread(log, i, 1, bp, &offset);
 937                if (error)
 938                        goto done;
 939
 940                if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 941                        found = 1;
 942                        break;
 943                }
 944        }
 945        /*
 946         * If we haven't found the log record header block, start looking
 947         * again from the end of the physical log.  XXXmiken: There should be
 948         * a check here to make sure we didn't search more than N blocks in
 949         * the previous code.
 950         */
 951        if (!found) {
 952                for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 953                        error = xlog_bread(log, i, 1, bp, &offset);
 954                        if (error)
 955                                goto done;
 956
 957                        if (*(__be32 *)offset ==
 958                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 959                                found = 2;
 960                                break;
 961                        }
 962                }
 963        }
 964        if (!found) {
 965                xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
 966                ASSERT(0);
 967                return XFS_ERROR(EIO);
 968        }
 969
 970        /* find blk_no of tail of log */
 971        rhead = (xlog_rec_header_t *)offset;
 972        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 973
 974        /*
 975         * Reset log values according to the state of the log when we
 976         * crashed.  In the case where head_blk == 0, we bump curr_cycle
 977         * one because the next write starts a new cycle rather than
 978         * continuing the cycle of the last good log record.  At this
 979         * point we have guaranteed that all partial log records have been
 980         * accounted for.  Therefore, we know that the last good log record
 981         * written was complete and ended exactly on the end boundary
 982         * of the physical log.
 983         */
 984        log->l_prev_block = i;
 985        log->l_curr_block = (int)*head_blk;
 986        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 987        if (found == 2)
 988                log->l_curr_cycle++;
 989        atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 990        atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 991        xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
 992                                        BBTOB(log->l_curr_block));
 993        xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
 994                                        BBTOB(log->l_curr_block));
 995
 996        /*
 997         * Look for unmount record.  If we find it, then we know there
 998         * was a clean unmount.  Since 'i' could be the last block in
 999         * the physical log, we convert to a log block before comparing
1000         * to the head_blk.
1001         *
1002         * Save the current tail lsn to use to pass to
1003         * xlog_clear_stale_blocks() below.  We won't want to clear the
1004         * unmount record if there is one, so we pass the lsn of the
1005         * unmount record rather than the block after it.
1006         */
1007        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1008                int     h_size = be32_to_cpu(rhead->h_size);
1009                int     h_version = be32_to_cpu(rhead->h_version);
1010
1011                if ((h_version & XLOG_VERSION_2) &&
1012                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1013                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1014                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
1015                                hblks++;
1016                } else {
1017                        hblks = 1;
1018                }
1019        } else {
1020                hblks = 1;
1021        }
1022        after_umount_blk = (i + hblks + (int)
1023                BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1024        tail_lsn = atomic64_read(&log->l_tail_lsn);
1025        if (*head_blk == after_umount_blk &&
1026            be32_to_cpu(rhead->h_num_logops) == 1) {
1027                umount_data_blk = (i + hblks) % log->l_logBBsize;
1028                error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1029                if (error)
1030                        goto done;
1031
1032                op_head = (xlog_op_header_t *)offset;
1033                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1034                        /*
1035                         * Set tail and last sync so that newly written
1036                         * log records will point recovery to after the
1037                         * current unmount record.
1038                         */
1039                        xlog_assign_atomic_lsn(&log->l_tail_lsn,
1040                                        log->l_curr_cycle, after_umount_blk);
1041                        xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1042                                        log->l_curr_cycle, after_umount_blk);
1043                        *tail_blk = after_umount_blk;
1044
1045                        /*
1046                         * Note that the unmount was clean. If the unmount
1047                         * was not clean, we need to know this to rebuild the
1048                         * superblock counters from the perag headers if we
1049                         * have a filesystem using non-persistent counters.
1050                         */
1051                        log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1052                }
1053        }
1054
1055        /*
1056         * Make sure that there are no blocks in front of the head
1057         * with the same cycle number as the head.  This can happen
1058         * because we allow multiple outstanding log writes concurrently,
1059         * and the later writes might make it out before earlier ones.
1060         *
1061         * We use the lsn from before modifying it so that we'll never
1062         * overwrite the unmount record after a clean unmount.
1063         *
1064         * Do this only if we are going to recover the filesystem
1065         *
1066         * NOTE: This used to say "if (!readonly)"
1067         * However on Linux, we can & do recover a read-only filesystem.
1068         * We only skip recovery if NORECOVERY is specified on mount,
1069         * in which case we would not be here.
1070         *
1071         * But... if the -device- itself is readonly, just skip this.
1072         * We can't recover this device anyway, so it won't matter.
1073         */
1074        if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1075                error = xlog_clear_stale_blocks(log, tail_lsn);
1076
1077done:
1078        xlog_put_bp(bp);
1079
1080        if (error)
1081                xfs_warn(log->l_mp, "failed to locate log tail");
1082        return error;
1083}
1084
1085/*
1086 * Is the log zeroed at all?
1087 *
1088 * The last binary search should be changed to perform an X block read
1089 * once X becomes small enough.  You can then search linearly through
1090 * the X blocks.  This will cut down on the number of reads we need to do.
1091 *
1092 * If the log is partially zeroed, this routine will pass back the blkno
1093 * of the first block with cycle number 0.  It won't have a complete LR
1094 * preceding it.
1095 *
1096 * Return:
1097 *      0  => the log is completely written to
1098 *      -1 => use *blk_no as the first block of the log
1099 *      >0 => error has occurred
1100 */
1101STATIC int
1102xlog_find_zeroed(
1103        struct xlog     *log,
1104        xfs_daddr_t     *blk_no)
1105{
1106        xfs_buf_t       *bp;
1107        xfs_caddr_t     offset;
1108        uint            first_cycle, last_cycle;
1109        xfs_daddr_t     new_blk, last_blk, start_blk;
1110        xfs_daddr_t     num_scan_bblks;
1111        int             error, log_bbnum = log->l_logBBsize;
1112
1113        *blk_no = 0;
1114
1115        /* check totally zeroed log */
1116        bp = xlog_get_bp(log, 1);
1117        if (!bp)
1118                return ENOMEM;
1119        error = xlog_bread(log, 0, 1, bp, &offset);
1120        if (error)
1121                goto bp_err;
1122
1123        first_cycle = xlog_get_cycle(offset);
1124        if (first_cycle == 0) {         /* completely zeroed log */
1125                *blk_no = 0;
1126                xlog_put_bp(bp);
1127                return -1;
1128        }
1129
1130        /* check partially zeroed log */
1131        error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1132        if (error)
1133                goto bp_err;
1134
1135        last_cycle = xlog_get_cycle(offset);
1136        if (last_cycle != 0) {          /* log completely written to */
1137                xlog_put_bp(bp);
1138                return 0;
1139        } else if (first_cycle != 1) {
1140                /*
1141                 * If the cycle of the last block is zero, the cycle of
1142                 * the first block must be 1. If it's not, maybe we're
1143                 * not looking at a log... Bail out.
1144                 */
1145                xfs_warn(log->l_mp,
1146                        "Log inconsistent or not a log (last==0, first!=1)");
1147                return XFS_ERROR(EINVAL);
1148        }
1149
1150        /* we have a partially zeroed log */
1151        last_blk = log_bbnum-1;
1152        if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1153                goto bp_err;
1154
1155        /*
1156         * Validate the answer.  Because there is no way to guarantee that
1157         * the entire log is made up of log records which are the same size,
1158         * we scan over the defined maximum blocks.  At this point, the maximum
1159         * is not chosen to mean anything special.   XXXmiken
1160         */
1161        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1162        ASSERT(num_scan_bblks <= INT_MAX);
1163
1164        if (last_blk < num_scan_bblks)
1165                num_scan_bblks = last_blk;
1166        start_blk = last_blk - num_scan_bblks;
1167
1168        /*
1169         * We search for any instances of cycle number 0 that occur before
1170         * our current estimate of the head.  What we're trying to detect is
1171         *        1 ... | 0 | 1 | 0...
1172         *                       ^ binary search ends here
1173         */
1174        if ((error = xlog_find_verify_cycle(log, start_blk,
1175                                         (int)num_scan_bblks, 0, &new_blk)))
1176                goto bp_err;
1177        if (new_blk != -1)
1178                last_blk = new_blk;
1179
1180        /*
1181         * Potentially backup over partial log record write.  We don't need
1182         * to search the end of the log because we know it is zero.
1183         */
1184        if ((error = xlog_find_verify_log_record(log, start_blk,
1185                                &last_blk, 0)) == -1) {
1186            error = XFS_ERROR(EIO);
1187            goto bp_err;
1188        } else if (error)
1189            goto bp_err;
1190
1191        *blk_no = last_blk;
1192bp_err:
1193        xlog_put_bp(bp);
1194        if (error)
1195                return error;
1196        return -1;
1197}
1198
1199/*
1200 * These are simple subroutines used by xlog_clear_stale_blocks() below
1201 * to initialize a buffer full of empty log record headers and write
1202 * them into the log.
1203 */
1204STATIC void
1205xlog_add_record(
1206        struct xlog             *log,
1207        xfs_caddr_t             buf,
1208        int                     cycle,
1209        int                     block,
1210        int                     tail_cycle,
1211        int                     tail_block)
1212{
1213        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1214
1215        memset(buf, 0, BBSIZE);
1216        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1217        recp->h_cycle = cpu_to_be32(cycle);
1218        recp->h_version = cpu_to_be32(
1219                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1220        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1221        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1222        recp->h_fmt = cpu_to_be32(XLOG_FMT);
1223        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1224}
1225
1226STATIC int
1227xlog_write_log_records(
1228        struct xlog     *log,
1229        int             cycle,
1230        int             start_block,
1231        int             blocks,
1232        int             tail_cycle,
1233        int             tail_block)
1234{
1235        xfs_caddr_t     offset;
1236        xfs_buf_t       *bp;
1237        int             balign, ealign;
1238        int             sectbb = log->l_sectBBsize;
1239        int             end_block = start_block + blocks;
1240        int             bufblks;
1241        int             error = 0;
1242        int             i, j = 0;
1243
1244        /*
1245         * Greedily allocate a buffer big enough to handle the full
1246         * range of basic blocks to be written.  If that fails, try
1247         * a smaller size.  We need to be able to write at least a
1248         * log sector, or we're out of luck.
1249         */
1250        bufblks = 1 << ffs(blocks);
1251        while (bufblks > log->l_logBBsize)
1252                bufblks >>= 1;
1253        while (!(bp = xlog_get_bp(log, bufblks))) {
1254                bufblks >>= 1;
1255                if (bufblks < sectbb)
1256                        return ENOMEM;
1257        }
1258
1259        /* We may need to do a read at the start to fill in part of
1260         * the buffer in the starting sector not covered by the first
1261         * write below.
1262         */
1263        balign = round_down(start_block, sectbb);
1264        if (balign != start_block) {
1265                error = xlog_bread_noalign(log, start_block, 1, bp);
1266                if (error)
1267                        goto out_put_bp;
1268
1269                j = start_block - balign;
1270        }
1271
1272        for (i = start_block; i < end_block; i += bufblks) {
1273                int             bcount, endcount;
1274
1275                bcount = min(bufblks, end_block - start_block);
1276                endcount = bcount - j;
1277
1278                /* We may need to do a read at the end to fill in part of
1279                 * the buffer in the final sector not covered by the write.
1280                 * If this is the same sector as the above read, skip it.
1281                 */
1282                ealign = round_down(end_block, sectbb);
1283                if (j == 0 && (start_block + endcount > ealign)) {
1284                        offset = bp->b_addr + BBTOB(ealign - start_block);
1285                        error = xlog_bread_offset(log, ealign, sectbb,
1286                                                        bp, offset);
1287                        if (error)
1288                                break;
1289
1290                }
1291
1292                offset = xlog_align(log, start_block, endcount, bp);
1293                for (; j < endcount; j++) {
1294                        xlog_add_record(log, offset, cycle, i+j,
1295                                        tail_cycle, tail_block);
1296                        offset += BBSIZE;
1297                }
1298                error = xlog_bwrite(log, start_block, endcount, bp);
1299                if (error)
1300                        break;
1301                start_block += endcount;
1302                j = 0;
1303        }
1304
1305 out_put_bp:
1306        xlog_put_bp(bp);
1307        return error;
1308}
1309
1310/*
1311 * This routine is called to blow away any incomplete log writes out
1312 * in front of the log head.  We do this so that we won't become confused
1313 * if we come up, write only a little bit more, and then crash again.
1314 * If we leave the partial log records out there, this situation could
1315 * cause us to think those partial writes are valid blocks since they
1316 * have the current cycle number.  We get rid of them by overwriting them
1317 * with empty log records with the old cycle number rather than the
1318 * current one.
1319 *
1320 * The tail lsn is passed in rather than taken from
1321 * the log so that we will not write over the unmount record after a
1322 * clean unmount in a 512 block log.  Doing so would leave the log without
1323 * any valid log records in it until a new one was written.  If we crashed
1324 * during that time we would not be able to recover.
1325 */
1326STATIC int
1327xlog_clear_stale_blocks(
1328        struct xlog     *log,
1329        xfs_lsn_t       tail_lsn)
1330{
1331        int             tail_cycle, head_cycle;
1332        int             tail_block, head_block;
1333        int             tail_distance, max_distance;
1334        int             distance;
1335        int             error;
1336
1337        tail_cycle = CYCLE_LSN(tail_lsn);
1338        tail_block = BLOCK_LSN(tail_lsn);
1339        head_cycle = log->l_curr_cycle;
1340        head_block = log->l_curr_block;
1341
1342        /*
1343         * Figure out the distance between the new head of the log
1344         * and the tail.  We want to write over any blocks beyond the
1345         * head that we may have written just before the crash, but
1346         * we don't want to overwrite the tail of the log.
1347         */
1348        if (head_cycle == tail_cycle) {
1349                /*
1350                 * The tail is behind the head in the physical log,
1351                 * so the distance from the head to the tail is the
1352                 * distance from the head to the end of the log plus
1353                 * the distance from the beginning of the log to the
1354                 * tail.
1355                 */
1356                if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1357                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1358                                         XFS_ERRLEVEL_LOW, log->l_mp);
1359                        return XFS_ERROR(EFSCORRUPTED);
1360                }
1361                tail_distance = tail_block + (log->l_logBBsize - head_block);
1362        } else {
1363                /*
1364                 * The head is behind the tail in the physical log,
1365                 * so the distance from the head to the tail is just
1366                 * the tail block minus the head block.
1367                 */
1368                if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1369                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1370                                         XFS_ERRLEVEL_LOW, log->l_mp);
1371                        return XFS_ERROR(EFSCORRUPTED);
1372                }
1373                tail_distance = tail_block - head_block;
1374        }
1375
1376        /*
1377         * If the head is right up against the tail, we can't clear
1378         * anything.
1379         */
1380        if (tail_distance <= 0) {
1381                ASSERT(tail_distance == 0);
1382                return 0;
1383        }
1384
1385        max_distance = XLOG_TOTAL_REC_SHIFT(log);
1386        /*
1387         * Take the smaller of the maximum amount of outstanding I/O
1388         * we could have and the distance to the tail to clear out.
1389         * We take the smaller so that we don't overwrite the tail and
1390         * we don't waste all day writing from the head to the tail
1391         * for no reason.
1392         */
1393        max_distance = MIN(max_distance, tail_distance);
1394
1395        if ((head_block + max_distance) <= log->l_logBBsize) {
1396                /*
1397                 * We can stomp all the blocks we need to without
1398                 * wrapping around the end of the log.  Just do it
1399                 * in a single write.  Use the cycle number of the
1400                 * current cycle minus one so that the log will look like:
1401                 *     n ... | n - 1 ...
1402                 */
1403                error = xlog_write_log_records(log, (head_cycle - 1),
1404                                head_block, max_distance, tail_cycle,
1405                                tail_block);
1406                if (error)
1407                        return error;
1408        } else {
1409                /*
1410                 * We need to wrap around the end of the physical log in
1411                 * order to clear all the blocks.  Do it in two separate
1412                 * I/Os.  The first write should be from the head to the
1413                 * end of the physical log, and it should use the current
1414                 * cycle number minus one just like above.
1415                 */
1416                distance = log->l_logBBsize - head_block;
1417                error = xlog_write_log_records(log, (head_cycle - 1),
1418                                head_block, distance, tail_cycle,
1419                                tail_block);
1420
1421                if (error)
1422                        return error;
1423
1424                /*
1425                 * Now write the blocks at the start of the physical log.
1426                 * This writes the remainder of the blocks we want to clear.
1427                 * It uses the current cycle number since we're now on the
1428                 * same cycle as the head so that we get:
1429                 *    n ... n ... | n - 1 ...
1430                 *    ^^^^^ blocks we're writing
1431                 */
1432                distance = max_distance - (log->l_logBBsize - head_block);
1433                error = xlog_write_log_records(log, head_cycle, 0, distance,
1434                                tail_cycle, tail_block);
1435                if (error)
1436                        return error;
1437        }
1438
1439        return 0;
1440}
1441
1442/******************************************************************************
1443 *
1444 *              Log recover routines
1445 *
1446 ******************************************************************************
1447 */
1448
1449STATIC xlog_recover_t *
1450xlog_recover_find_tid(
1451        struct hlist_head       *head,
1452        xlog_tid_t              tid)
1453{
1454        xlog_recover_t          *trans;
1455
1456        hlist_for_each_entry(trans, head, r_list) {
1457                if (trans->r_log_tid == tid)
1458                        return trans;
1459        }
1460        return NULL;
1461}
1462
1463STATIC void
1464xlog_recover_new_tid(
1465        struct hlist_head       *head,
1466        xlog_tid_t              tid,
1467        xfs_lsn_t               lsn)
1468{
1469        xlog_recover_t          *trans;
1470
1471        trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1472        trans->r_log_tid   = tid;
1473        trans->r_lsn       = lsn;
1474        INIT_LIST_HEAD(&trans->r_itemq);
1475
1476        INIT_HLIST_NODE(&trans->r_list);
1477        hlist_add_head(&trans->r_list, head);
1478}
1479
1480STATIC void
1481xlog_recover_add_item(
1482        struct list_head        *head)
1483{
1484        xlog_recover_item_t     *item;
1485
1486        item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1487        INIT_LIST_HEAD(&item->ri_list);
1488        list_add_tail(&item->ri_list, head);
1489}
1490
1491STATIC int
1492xlog_recover_add_to_cont_trans(
1493        struct xlog             *log,
1494        struct xlog_recover     *trans,
1495        xfs_caddr_t             dp,
1496        int                     len)
1497{
1498        xlog_recover_item_t     *item;
1499        xfs_caddr_t             ptr, old_ptr;
1500        int                     old_len;
1501
1502        if (list_empty(&trans->r_itemq)) {
1503                /* finish copying rest of trans header */
1504                xlog_recover_add_item(&trans->r_itemq);
1505                ptr = (xfs_caddr_t) &trans->r_theader +
1506                                sizeof(xfs_trans_header_t) - len;
1507                memcpy(ptr, dp, len); /* d, s, l */
1508                return 0;
1509        }
1510        /* take the tail entry */
1511        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1512
1513        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1514        old_len = item->ri_buf[item->ri_cnt-1].i_len;
1515
1516        ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1517        memcpy(&ptr[old_len], dp, len); /* d, s, l */
1518        item->ri_buf[item->ri_cnt-1].i_len += len;
1519        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1520        trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1521        return 0;
1522}
1523
1524/*
1525 * The next region to add is the start of a new region.  It could be
1526 * a whole region or it could be the first part of a new region.  Because
1527 * of this, the assumption here is that the type and size fields of all
1528 * format structures fit into the first 32 bits of the structure.
1529 *
1530 * This works because all regions must be 32 bit aligned.  Therefore, we
1531 * either have both fields or we have neither field.  In the case we have
1532 * neither field, the data part of the region is zero length.  We only have
1533 * a log_op_header and can throw away the header since a new one will appear
1534 * later.  If we have at least 4 bytes, then we can determine how many regions
1535 * will appear in the current log item.
1536 */
1537STATIC int
1538xlog_recover_add_to_trans(
1539        struct xlog             *log,
1540        struct xlog_recover     *trans,
1541        xfs_caddr_t             dp,
1542        int                     len)
1543{
1544        xfs_inode_log_format_t  *in_f;                  /* any will do */
1545        xlog_recover_item_t     *item;
1546        xfs_caddr_t             ptr;
1547
1548        if (!len)
1549                return 0;
1550        if (list_empty(&trans->r_itemq)) {
1551                /* we need to catch log corruptions here */
1552                if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1553                        xfs_warn(log->l_mp, "%s: bad header magic number",
1554                                __func__);
1555                        ASSERT(0);
1556                        return XFS_ERROR(EIO);
1557                }
1558                if (len == sizeof(xfs_trans_header_t))
1559                        xlog_recover_add_item(&trans->r_itemq);
1560                memcpy(&trans->r_theader, dp, len); /* d, s, l */
1561                return 0;
1562        }
1563
1564        ptr = kmem_alloc(len, KM_SLEEP);
1565        memcpy(ptr, dp, len);
1566        in_f = (xfs_inode_log_format_t *)ptr;
1567
1568        /* take the tail entry */
1569        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1570        if (item->ri_total != 0 &&
1571             item->ri_total == item->ri_cnt) {
1572                /* tail item is in use, get a new one */
1573                xlog_recover_add_item(&trans->r_itemq);
1574                item = list_entry(trans->r_itemq.prev,
1575                                        xlog_recover_item_t, ri_list);
1576        }
1577
1578        if (item->ri_total == 0) {              /* first region to be added */
1579                if (in_f->ilf_size == 0 ||
1580                    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1581                        xfs_warn(log->l_mp,
1582                "bad number of regions (%d) in inode log format",
1583                                  in_f->ilf_size);
1584                        ASSERT(0);
1585                        return XFS_ERROR(EIO);
1586                }
1587
1588                item->ri_total = in_f->ilf_size;
1589                item->ri_buf =
1590                        kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1591                                    KM_SLEEP);
1592        }
1593        ASSERT(item->ri_total > item->ri_cnt);
1594        /* Description region is ri_buf[0] */
1595        item->ri_buf[item->ri_cnt].i_addr = ptr;
1596        item->ri_buf[item->ri_cnt].i_len  = len;
1597        item->ri_cnt++;
1598        trace_xfs_log_recover_item_add(log, trans, item, 0);
1599        return 0;
1600}
1601
1602/*
1603 * Sort the log items in the transaction.
1604 *
1605 * The ordering constraints are defined by the inode allocation and unlink
1606 * behaviour. The rules are:
1607 *
1608 *      1. Every item is only logged once in a given transaction. Hence it
1609 *         represents the last logged state of the item. Hence ordering is
1610 *         dependent on the order in which operations need to be performed so
1611 *         required initial conditions are always met.
1612 *
1613 *      2. Cancelled buffers are recorded in pass 1 in a separate table and
1614 *         there's nothing to replay from them so we can simply cull them
1615 *         from the transaction. However, we can't do that until after we've
1616 *         replayed all the other items because they may be dependent on the
1617 *         cancelled buffer and replaying the cancelled buffer can remove it
1618 *         form the cancelled buffer table. Hence they have tobe done last.
1619 *
1620 *      3. Inode allocation buffers must be replayed before inode items that
1621 *         read the buffer and replay changes into it. For filesystems using the
1622 *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1623 *         treated the same as inode allocation buffers as they create and
1624 *         initialise the buffers directly.
1625 *
1626 *      4. Inode unlink buffers must be replayed after inode items are replayed.
1627 *         This ensures that inodes are completely flushed to the inode buffer
1628 *         in a "free" state before we remove the unlinked inode list pointer.
1629 *
1630 * Hence the ordering needs to be inode allocation buffers first, inode items
1631 * second, inode unlink buffers third and cancelled buffers last.
1632 *
1633 * But there's a problem with that - we can't tell an inode allocation buffer
1634 * apart from a regular buffer, so we can't separate them. We can, however,
1635 * tell an inode unlink buffer from the others, and so we can separate them out
1636 * from all the other buffers and move them to last.
1637 *
1638 * Hence, 4 lists, in order from head to tail:
1639 *      - buffer_list for all buffers except cancelled/inode unlink buffers
1640 *      - item_list for all non-buffer items
1641 *      - inode_buffer_list for inode unlink buffers
1642 *      - cancel_list for the cancelled buffers
1643 *
1644 * Note that we add objects to the tail of the lists so that first-to-last
1645 * ordering is preserved within the lists. Adding objects to the head of the
1646 * list means when we traverse from the head we walk them in last-to-first
1647 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1648 * but for all other items there may be specific ordering that we need to
1649 * preserve.
1650 */
1651STATIC int
1652xlog_recover_reorder_trans(
1653        struct xlog             *log,
1654        struct xlog_recover     *trans,
1655        int                     pass)
1656{
1657        xlog_recover_item_t     *item, *n;
1658        LIST_HEAD(sort_list);
1659        LIST_HEAD(cancel_list);
1660        LIST_HEAD(buffer_list);
1661        LIST_HEAD(inode_buffer_list);
1662        LIST_HEAD(inode_list);
1663
1664        list_splice_init(&trans->r_itemq, &sort_list);
1665        list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1666                xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1667
1668                switch (ITEM_TYPE(item)) {
1669                case XFS_LI_ICREATE:
1670                        list_move_tail(&item->ri_list, &buffer_list);
1671                        break;
1672                case XFS_LI_BUF:
1673                        if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1674                                trace_xfs_log_recover_item_reorder_head(log,
1675                                                        trans, item, pass);
1676                                list_move(&item->ri_list, &cancel_list);
1677                                break;
1678                        }
1679                        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1680                                list_move(&item->ri_list, &inode_buffer_list);
1681                                break;
1682                        }
1683                        list_move_tail(&item->ri_list, &buffer_list);
1684                        break;
1685                case XFS_LI_INODE:
1686                case XFS_LI_DQUOT:
1687                case XFS_LI_QUOTAOFF:
1688                case XFS_LI_EFD:
1689                case XFS_LI_EFI:
1690                        trace_xfs_log_recover_item_reorder_tail(log,
1691                                                        trans, item, pass);
1692                        list_move_tail(&item->ri_list, &inode_list);
1693                        break;
1694                default:
1695                        xfs_warn(log->l_mp,
1696                                "%s: unrecognized type of log operation",
1697                                __func__);
1698                        ASSERT(0);
1699                        return XFS_ERROR(EIO);
1700                }
1701        }
1702        ASSERT(list_empty(&sort_list));
1703        if (!list_empty(&buffer_list))
1704                list_splice(&buffer_list, &trans->r_itemq);
1705        if (!list_empty(&inode_list))
1706                list_splice_tail(&inode_list, &trans->r_itemq);
1707        if (!list_empty(&inode_buffer_list))
1708                list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1709        if (!list_empty(&cancel_list))
1710                list_splice_tail(&cancel_list, &trans->r_itemq);
1711        return 0;
1712}
1713
1714/*
1715 * Build up the table of buf cancel records so that we don't replay
1716 * cancelled data in the second pass.  For buffer records that are
1717 * not cancel records, there is nothing to do here so we just return.
1718 *
1719 * If we get a cancel record which is already in the table, this indicates
1720 * that the buffer was cancelled multiple times.  In order to ensure
1721 * that during pass 2 we keep the record in the table until we reach its
1722 * last occurrence in the log, we keep a reference count in the cancel
1723 * record in the table to tell us how many times we expect to see this
1724 * record during the second pass.
1725 */
1726STATIC int
1727xlog_recover_buffer_pass1(
1728        struct xlog                     *log,
1729        struct xlog_recover_item        *item)
1730{
1731        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1732        struct list_head        *bucket;
1733        struct xfs_buf_cancel   *bcp;
1734
1735        /*
1736         * If this isn't a cancel buffer item, then just return.
1737         */
1738        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1739                trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1740                return 0;
1741        }
1742
1743        /*
1744         * Insert an xfs_buf_cancel record into the hash table of them.
1745         * If there is already an identical record, bump its reference count.
1746         */
1747        bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1748        list_for_each_entry(bcp, bucket, bc_list) {
1749                if (bcp->bc_blkno == buf_f->blf_blkno &&
1750                    bcp->bc_len == buf_f->blf_len) {
1751                        bcp->bc_refcount++;
1752                        trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1753                        return 0;
1754                }
1755        }
1756
1757        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1758        bcp->bc_blkno = buf_f->blf_blkno;
1759        bcp->bc_len = buf_f->blf_len;
1760        bcp->bc_refcount = 1;
1761        list_add_tail(&bcp->bc_list, bucket);
1762
1763        trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1764        return 0;
1765}
1766
1767/*
1768 * Check to see whether the buffer being recovered has a corresponding
1769 * entry in the buffer cancel record table.  If it does then return 1
1770 * so that it will be cancelled, otherwise return 0.  If the buffer is
1771 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1772 * the refcount on the entry in the table and remove it from the table
1773 * if this is the last reference.
1774 *
1775 * We remove the cancel record from the table when we encounter its
1776 * last occurrence in the log so that if the same buffer is re-used
1777 * again after its last cancellation we actually replay the changes
1778 * made at that point.
1779 */
1780STATIC int
1781xlog_check_buffer_cancelled(
1782        struct xlog             *log,
1783        xfs_daddr_t             blkno,
1784        uint                    len,
1785        ushort                  flags)
1786{
1787        struct list_head        *bucket;
1788        struct xfs_buf_cancel   *bcp;
1789
1790        if (log->l_buf_cancel_table == NULL) {
1791                /*
1792                 * There is nothing in the table built in pass one,
1793                 * so this buffer must not be cancelled.
1794                 */
1795                ASSERT(!(flags & XFS_BLF_CANCEL));
1796                return 0;
1797        }
1798
1799        /*
1800         * Search for an entry in the  cancel table that matches our buffer.
1801         */
1802        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1803        list_for_each_entry(bcp, bucket, bc_list) {
1804                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1805                        goto found;
1806        }
1807
1808        /*
1809         * We didn't find a corresponding entry in the table, so return 0 so
1810         * that the buffer is NOT cancelled.
1811         */
1812        ASSERT(!(flags & XFS_BLF_CANCEL));
1813        return 0;
1814
1815found:
1816        /*
1817         * We've go a match, so return 1 so that the recovery of this buffer
1818         * is cancelled.  If this buffer is actually a buffer cancel log
1819         * item, then decrement the refcount on the one in the table and
1820         * remove it if this is the last reference.
1821         */
1822        if (flags & XFS_BLF_CANCEL) {
1823                if (--bcp->bc_refcount == 0) {
1824                        list_del(&bcp->bc_list);
1825                        kmem_free(bcp);
1826                }
1827        }
1828        return 1;
1829}
1830
1831/*
1832 * Perform recovery for a buffer full of inodes.  In these buffers, the only
1833 * data which should be recovered is that which corresponds to the
1834 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1835 * data for the inodes is always logged through the inodes themselves rather
1836 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1837 *
1838 * The only time when buffers full of inodes are fully recovered is when the
1839 * buffer is full of newly allocated inodes.  In this case the buffer will
1840 * not be marked as an inode buffer and so will be sent to
1841 * xlog_recover_do_reg_buffer() below during recovery.
1842 */
1843STATIC int
1844xlog_recover_do_inode_buffer(
1845        struct xfs_mount        *mp,
1846        xlog_recover_item_t     *item,
1847        struct xfs_buf          *bp,
1848        xfs_buf_log_format_t    *buf_f)
1849{
1850        int                     i;
1851        int                     item_index = 0;
1852        int                     bit = 0;
1853        int                     nbits = 0;
1854        int                     reg_buf_offset = 0;
1855        int                     reg_buf_bytes = 0;
1856        int                     next_unlinked_offset;
1857        int                     inodes_per_buf;
1858        xfs_agino_t             *logged_nextp;
1859        xfs_agino_t             *buffer_nextp;
1860
1861        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1862
1863        /*
1864         * Post recovery validation only works properly on CRC enabled
1865         * filesystems.
1866         */
1867        if (xfs_sb_version_hascrc(&mp->m_sb))
1868                bp->b_ops = &xfs_inode_buf_ops;
1869
1870        inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1871        for (i = 0; i < inodes_per_buf; i++) {
1872                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1873                        offsetof(xfs_dinode_t, di_next_unlinked);
1874
1875                while (next_unlinked_offset >=
1876                       (reg_buf_offset + reg_buf_bytes)) {
1877                        /*
1878                         * The next di_next_unlinked field is beyond
1879                         * the current logged region.  Find the next
1880                         * logged region that contains or is beyond
1881                         * the current di_next_unlinked field.
1882                         */
1883                        bit += nbits;
1884                        bit = xfs_next_bit(buf_f->blf_data_map,
1885                                           buf_f->blf_map_size, bit);
1886
1887                        /*
1888                         * If there are no more logged regions in the
1889                         * buffer, then we're done.
1890                         */
1891                        if (bit == -1)
1892                                return 0;
1893
1894                        nbits = xfs_contig_bits(buf_f->blf_data_map,
1895                                                buf_f->blf_map_size, bit);
1896                        ASSERT(nbits > 0);
1897                        reg_buf_offset = bit << XFS_BLF_SHIFT;
1898                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1899                        item_index++;
1900                }
1901
1902                /*
1903                 * If the current logged region starts after the current
1904                 * di_next_unlinked field, then move on to the next
1905                 * di_next_unlinked field.
1906                 */
1907                if (next_unlinked_offset < reg_buf_offset)
1908                        continue;
1909
1910                ASSERT(item->ri_buf[item_index].i_addr != NULL);
1911                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1912                ASSERT((reg_buf_offset + reg_buf_bytes) <=
1913                                                        BBTOB(bp->b_io_length));
1914
1915                /*
1916                 * The current logged region contains a copy of the
1917                 * current di_next_unlinked field.  Extract its value
1918                 * and copy it to the buffer copy.
1919                 */
1920                logged_nextp = item->ri_buf[item_index].i_addr +
1921                                next_unlinked_offset - reg_buf_offset;
1922                if (unlikely(*logged_nextp == 0)) {
1923                        xfs_alert(mp,
1924                "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1925                "Trying to replay bad (0) inode di_next_unlinked field.",
1926                                item, bp);
1927                        XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1928                                         XFS_ERRLEVEL_LOW, mp);
1929                        return XFS_ERROR(EFSCORRUPTED);
1930                }
1931
1932                buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1933                                              next_unlinked_offset);
1934                *buffer_nextp = *logged_nextp;
1935
1936                /*
1937                 * If necessary, recalculate the CRC in the on-disk inode. We
1938                 * have to leave the inode in a consistent state for whoever
1939                 * reads it next....
1940                 */
1941                xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1942                                xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1943
1944        }
1945
1946        return 0;
1947}
1948
1949/*
1950 * Validate the recovered buffer is of the correct type and attach the
1951 * appropriate buffer operations to them for writeback. Magic numbers are in a
1952 * few places:
1953 *      the first 16 bits of the buffer (inode buffer, dquot buffer),
1954 *      the first 32 bits of the buffer (most blocks),
1955 *      inside a struct xfs_da_blkinfo at the start of the buffer.
1956 */
1957static void
1958xlog_recovery_validate_buf_type(
1959        struct xfs_mount        *mp,
1960        struct xfs_buf          *bp,
1961        xfs_buf_log_format_t    *buf_f)
1962{
1963        struct xfs_da_blkinfo   *info = bp->b_addr;
1964        __uint32_t              magic32;
1965        __uint16_t              magic16;
1966        __uint16_t              magicda;
1967
1968        magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1969        magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1970        magicda = be16_to_cpu(info->magic);
1971        switch (xfs_blft_from_flags(buf_f)) {
1972        case XFS_BLFT_BTREE_BUF:
1973                switch (magic32) {
1974                case XFS_ABTB_CRC_MAGIC:
1975                case XFS_ABTC_CRC_MAGIC:
1976                case XFS_ABTB_MAGIC:
1977                case XFS_ABTC_MAGIC:
1978                        bp->b_ops = &xfs_allocbt_buf_ops;
1979                        break;
1980                case XFS_IBT_CRC_MAGIC:
1981                case XFS_IBT_MAGIC:
1982                        bp->b_ops = &xfs_inobt_buf_ops;
1983                        break;
1984                case XFS_BMAP_CRC_MAGIC:
1985                case XFS_BMAP_MAGIC:
1986                        bp->b_ops = &xfs_bmbt_buf_ops;
1987                        break;
1988                default:
1989                        xfs_warn(mp, "Bad btree block magic!");
1990                        ASSERT(0);
1991                        break;
1992                }
1993                break;
1994        case XFS_BLFT_AGF_BUF:
1995                if (magic32 != XFS_AGF_MAGIC) {
1996                        xfs_warn(mp, "Bad AGF block magic!");
1997                        ASSERT(0);
1998                        break;
1999                }
2000                bp->b_ops = &xfs_agf_buf_ops;
2001                break;
2002        case XFS_BLFT_AGFL_BUF:
2003                if (!xfs_sb_version_hascrc(&mp->m_sb))
2004                        break;
2005                if (magic32 != XFS_AGFL_MAGIC) {
2006                        xfs_warn(mp, "Bad AGFL block magic!");
2007                        ASSERT(0);
2008                        break;
2009                }
2010                bp->b_ops = &xfs_agfl_buf_ops;
2011                break;
2012        case XFS_BLFT_AGI_BUF:
2013                if (magic32 != XFS_AGI_MAGIC) {
2014                        xfs_warn(mp, "Bad AGI block magic!");
2015                        ASSERT(0);
2016                        break;
2017                }
2018                bp->b_ops = &xfs_agi_buf_ops;
2019                break;
2020        case XFS_BLFT_UDQUOT_BUF:
2021        case XFS_BLFT_PDQUOT_BUF:
2022        case XFS_BLFT_GDQUOT_BUF:
2023#ifdef CONFIG_XFS_QUOTA
2024                if (magic16 != XFS_DQUOT_MAGIC) {
2025                        xfs_warn(mp, "Bad DQUOT block magic!");
2026                        ASSERT(0);
2027                        break;
2028                }
2029                bp->b_ops = &xfs_dquot_buf_ops;
2030#else
2031                xfs_alert(mp,
2032        "Trying to recover dquots without QUOTA support built in!");
2033                ASSERT(0);
2034#endif
2035                break;
2036        case XFS_BLFT_DINO_BUF:
2037                /*
2038                 * we get here with inode allocation buffers, not buffers that
2039                 * track unlinked list changes.
2040                 */
2041                if (magic16 != XFS_DINODE_MAGIC) {
2042                        xfs_warn(mp, "Bad INODE block magic!");
2043                        ASSERT(0);
2044                        break;
2045                }
2046                bp->b_ops = &xfs_inode_buf_ops;
2047                break;
2048        case XFS_BLFT_SYMLINK_BUF:
2049                if (magic32 != XFS_SYMLINK_MAGIC) {
2050                        xfs_warn(mp, "Bad symlink block magic!");
2051                        ASSERT(0);
2052                        break;
2053                }
2054                bp->b_ops = &xfs_symlink_buf_ops;
2055                break;
2056        case XFS_BLFT_DIR_BLOCK_BUF:
2057                if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2058                    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2059                        xfs_warn(mp, "Bad dir block magic!");
2060                        ASSERT(0);
2061                        break;
2062                }
2063                bp->b_ops = &xfs_dir3_block_buf_ops;
2064                break;
2065        case XFS_BLFT_DIR_DATA_BUF:
2066                if (magic32 != XFS_DIR2_DATA_MAGIC &&
2067                    magic32 != XFS_DIR3_DATA_MAGIC) {
2068                        xfs_warn(mp, "Bad dir data magic!");
2069                        ASSERT(0);
2070                        break;
2071                }
2072                bp->b_ops = &xfs_dir3_data_buf_ops;
2073                break;
2074        case XFS_BLFT_DIR_FREE_BUF:
2075                if (magic32 != XFS_DIR2_FREE_MAGIC &&
2076                    magic32 != XFS_DIR3_FREE_MAGIC) {
2077                        xfs_warn(mp, "Bad dir3 free magic!");
2078                        ASSERT(0);
2079                        break;
2080                }
2081                bp->b_ops = &xfs_dir3_free_buf_ops;
2082                break;
2083        case XFS_BLFT_DIR_LEAF1_BUF:
2084                if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2085                    magicda != XFS_DIR3_LEAF1_MAGIC) {
2086                        xfs_warn(mp, "Bad dir leaf1 magic!");
2087                        ASSERT(0);
2088                        break;
2089                }
2090                bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2091                break;
2092        case XFS_BLFT_DIR_LEAFN_BUF:
2093                if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2094                    magicda != XFS_DIR3_LEAFN_MAGIC) {
2095                        xfs_warn(mp, "Bad dir leafn magic!");
2096                        ASSERT(0);
2097                        break;
2098                }
2099                bp->b_ops = &xfs_dir3_leafn_buf_ops;
2100                break;
2101        case XFS_BLFT_DA_NODE_BUF:
2102                if (magicda != XFS_DA_NODE_MAGIC &&
2103                    magicda != XFS_DA3_NODE_MAGIC) {
2104                        xfs_warn(mp, "Bad da node magic!");
2105                        ASSERT(0);
2106                        break;
2107                }
2108                bp->b_ops = &xfs_da3_node_buf_ops;
2109                break;
2110        case XFS_BLFT_ATTR_LEAF_BUF:
2111                if (magicda != XFS_ATTR_LEAF_MAGIC &&
2112                    magicda != XFS_ATTR3_LEAF_MAGIC) {
2113                        xfs_warn(mp, "Bad attr leaf magic!");
2114                        ASSERT(0);
2115                        break;
2116                }
2117                bp->b_ops = &xfs_attr3_leaf_buf_ops;
2118                break;
2119        case XFS_BLFT_ATTR_RMT_BUF:
2120                if (!xfs_sb_version_hascrc(&mp->m_sb))
2121                        break;
2122                if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2123                        xfs_warn(mp, "Bad attr remote magic!");
2124                        ASSERT(0);
2125                        break;
2126                }
2127                bp->b_ops = &xfs_attr3_rmt_buf_ops;
2128                break;
2129        case XFS_BLFT_SB_BUF:
2130                if (magic32 != XFS_SB_MAGIC) {
2131                        xfs_warn(mp, "Bad SB block magic!");
2132                        ASSERT(0);
2133                        break;
2134                }
2135                bp->b_ops = &xfs_sb_buf_ops;
2136                break;
2137        default:
2138                xfs_warn(mp, "Unknown buffer type %d!",
2139                         xfs_blft_from_flags(buf_f));
2140                break;
2141        }
2142}
2143
2144/*
2145 * Perform a 'normal' buffer recovery.  Each logged region of the
2146 * buffer should be copied over the corresponding region in the
2147 * given buffer.  The bitmap in the buf log format structure indicates
2148 * where to place the logged data.
2149 */
2150STATIC void
2151xlog_recover_do_reg_buffer(
2152        struct xfs_mount        *mp,
2153        xlog_recover_item_t     *item,
2154        struct xfs_buf          *bp,
2155        xfs_buf_log_format_t    *buf_f)
2156{
2157        int                     i;
2158        int                     bit;
2159        int                     nbits;
2160        int                     error;
2161
2162        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2163
2164        bit = 0;
2165        i = 1;  /* 0 is the buf format structure */
2166        while (1) {
2167                bit = xfs_next_bit(buf_f->blf_data_map,
2168                                   buf_f->blf_map_size, bit);
2169                if (bit == -1)
2170                        break;
2171                nbits = xfs_contig_bits(buf_f->blf_data_map,
2172                                        buf_f->blf_map_size, bit);
2173                ASSERT(nbits > 0);
2174                ASSERT(item->ri_buf[i].i_addr != NULL);
2175                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2176                ASSERT(BBTOB(bp->b_io_length) >=
2177                       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2178
2179                /*
2180                 * The dirty regions logged in the buffer, even though
2181                 * contiguous, may span multiple chunks. This is because the
2182                 * dirty region may span a physical page boundary in a buffer
2183                 * and hence be split into two separate vectors for writing into
2184                 * the log. Hence we need to trim nbits back to the length of
2185                 * the current region being copied out of the log.
2186                 */
2187                if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2188                        nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2189
2190                /*
2191                 * Do a sanity check if this is a dquot buffer. Just checking
2192                 * the first dquot in the buffer should do. XXXThis is
2193                 * probably a good thing to do for other buf types also.
2194                 */
2195                error = 0;
2196                if (buf_f->blf_flags &
2197                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2198                        if (item->ri_buf[i].i_addr == NULL) {
2199                                xfs_alert(mp,
2200                                        "XFS: NULL dquot in %s.", __func__);
2201                                goto next;
2202                        }
2203                        if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2204                                xfs_alert(mp,
2205                                        "XFS: dquot too small (%d) in %s.",
2206                                        item->ri_buf[i].i_len, __func__);
2207                                goto next;
2208                        }
2209                        error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2210                                               -1, 0, XFS_QMOPT_DOWARN,
2211                                               "dquot_buf_recover");
2212                        if (error)
2213                                goto next;
2214                }
2215
2216                memcpy(xfs_buf_offset(bp,
2217                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
2218                        item->ri_buf[i].i_addr,         /* source */
2219                        nbits<<XFS_BLF_SHIFT);          /* length */
2220 next:
2221                i++;
2222                bit += nbits;
2223        }
2224
2225        /* Shouldn't be any more regions */
2226        ASSERT(i == item->ri_total);
2227
2228        /*
2229         * We can only do post recovery validation on items on CRC enabled
2230         * fielsystems as we need to know when the buffer was written to be able
2231         * to determine if we should have replayed the item. If we replay old
2232         * metadata over a newer buffer, then it will enter a temporarily
2233         * inconsistent state resulting in verification failures. Hence for now
2234         * just avoid the verification stage for non-crc filesystems
2235         */
2236        if (xfs_sb_version_hascrc(&mp->m_sb))
2237                xlog_recovery_validate_buf_type(mp, bp, buf_f);
2238}
2239
2240/*
2241 * Do some primitive error checking on ondisk dquot data structures.
2242 */
2243int
2244xfs_qm_dqcheck(
2245        struct xfs_mount *mp,
2246        xfs_disk_dquot_t *ddq,
2247        xfs_dqid_t       id,
2248        uint             type,    /* used only when IO_dorepair is true */
2249        uint             flags,
2250        char             *str)
2251{
2252        xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
2253        int             errs = 0;
2254
2255        /*
2256         * We can encounter an uninitialized dquot buffer for 2 reasons:
2257         * 1. If we crash while deleting the quotainode(s), and those blks got
2258         *    used for user data. This is because we take the path of regular
2259         *    file deletion; however, the size field of quotainodes is never
2260         *    updated, so all the tricks that we play in itruncate_finish
2261         *    don't quite matter.
2262         *
2263         * 2. We don't play the quota buffers when there's a quotaoff logitem.
2264         *    But the allocation will be replayed so we'll end up with an
2265         *    uninitialized quota block.
2266         *
2267         * This is all fine; things are still consistent, and we haven't lost
2268         * any quota information. Just don't complain about bad dquot blks.
2269         */
2270        if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2271                if (flags & XFS_QMOPT_DOWARN)
2272                        xfs_alert(mp,
2273                        "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2274                        str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2275                errs++;
2276        }
2277        if (ddq->d_version != XFS_DQUOT_VERSION) {
2278                if (flags & XFS_QMOPT_DOWARN)
2279                        xfs_alert(mp,
2280                        "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2281                        str, id, ddq->d_version, XFS_DQUOT_VERSION);
2282                errs++;
2283        }
2284
2285        if (ddq->d_flags != XFS_DQ_USER &&
2286            ddq->d_flags != XFS_DQ_PROJ &&
2287            ddq->d_flags != XFS_DQ_GROUP) {
2288                if (flags & XFS_QMOPT_DOWARN)
2289                        xfs_alert(mp,
2290                        "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2291                        str, id, ddq->d_flags);
2292                errs++;
2293        }
2294
2295        if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2296                if (flags & XFS_QMOPT_DOWARN)
2297                        xfs_alert(mp,
2298                        "%s : ondisk-dquot 0x%p, ID mismatch: "
2299                        "0x%x expected, found id 0x%x",
2300                        str, ddq, id, be32_to_cpu(ddq->d_id));
2301                errs++;
2302        }
2303
2304        if (!errs && ddq->d_id) {
2305                if (ddq->d_blk_softlimit &&
2306                    be64_to_cpu(ddq->d_bcount) >
2307                                be64_to_cpu(ddq->d_blk_softlimit)) {
2308                        if (!ddq->d_btimer) {
2309                                if (flags & XFS_QMOPT_DOWARN)
2310                                        xfs_alert(mp,
2311                        "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2312                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
2313                                errs++;
2314                        }
2315                }
2316                if (ddq->d_ino_softlimit &&
2317                    be64_to_cpu(ddq->d_icount) >
2318                                be64_to_cpu(ddq->d_ino_softlimit)) {
2319                        if (!ddq->d_itimer) {
2320                                if (flags & XFS_QMOPT_DOWARN)
2321                                        xfs_alert(mp,
2322                        "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2323                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
2324                                errs++;
2325                        }
2326                }
2327                if (ddq->d_rtb_softlimit &&
2328                    be64_to_cpu(ddq->d_rtbcount) >
2329                                be64_to_cpu(ddq->d_rtb_softlimit)) {
2330                        if (!ddq->d_rtbtimer) {
2331                                if (flags & XFS_QMOPT_DOWARN)
2332                                        xfs_alert(mp,
2333                        "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2334                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
2335                                errs++;
2336                        }
2337                }
2338        }
2339
2340        if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2341                return errs;
2342
2343        if (flags & XFS_QMOPT_DOWARN)
2344                xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2345
2346        /*
2347         * Typically, a repair is only requested by quotacheck.
2348         */
2349        ASSERT(id != -1);
2350        ASSERT(flags & XFS_QMOPT_DQREPAIR);
2351        memset(d, 0, sizeof(xfs_dqblk_t));
2352
2353        d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2354        d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2355        d->dd_diskdq.d_flags = type;
2356        d->dd_diskdq.d_id = cpu_to_be32(id);
2357
2358        if (xfs_sb_version_hascrc(&mp->m_sb)) {
2359                uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2360                xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2361                                 XFS_DQUOT_CRC_OFF);
2362        }
2363
2364        return errs;
2365}
2366
2367/*
2368 * Perform a dquot buffer recovery.
2369 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2370 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2371 * Else, treat it as a regular buffer and do recovery.
2372 */
2373STATIC void
2374xlog_recover_do_dquot_buffer(
2375        struct xfs_mount                *mp,
2376        struct xlog                     *log,
2377        struct xlog_recover_item        *item,
2378        struct xfs_buf                  *bp,
2379        struct xfs_buf_log_format       *buf_f)
2380{
2381        uint                    type;
2382
2383        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2384
2385        /*
2386         * Filesystems are required to send in quota flags at mount time.
2387         */
2388        if (mp->m_qflags == 0) {
2389                return;
2390        }
2391
2392        type = 0;
2393        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2394                type |= XFS_DQ_USER;
2395        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2396                type |= XFS_DQ_PROJ;
2397        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2398                type |= XFS_DQ_GROUP;
2399        /*
2400         * This type of quotas was turned off, so ignore this buffer
2401         */
2402        if (log->l_quotaoffs_flag & type)
2403                return;
2404
2405        xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2406}
2407
2408/*
2409 * This routine replays a modification made to a buffer at runtime.
2410 * There are actually two types of buffer, regular and inode, which
2411 * are handled differently.  Inode buffers are handled differently
2412 * in that we only recover a specific set of data from them, namely
2413 * the inode di_next_unlinked fields.  This is because all other inode
2414 * data is actually logged via inode records and any data we replay
2415 * here which overlaps that may be stale.
2416 *
2417 * When meta-data buffers are freed at run time we log a buffer item
2418 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2419 * of the buffer in the log should not be replayed at recovery time.
2420 * This is so that if the blocks covered by the buffer are reused for
2421 * file data before we crash we don't end up replaying old, freed
2422 * meta-data into a user's file.
2423 *
2424 * To handle the cancellation of buffer log items, we make two passes
2425 * over the log during recovery.  During the first we build a table of
2426 * those buffers which have been cancelled, and during the second we
2427 * only replay those buffers which do not have corresponding cancel
2428 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2429 * for more details on the implementation of the table of cancel records.
2430 */
2431STATIC int
2432xlog_recover_buffer_pass2(
2433        struct xlog                     *log,
2434        struct list_head                *buffer_list,
2435        struct xlog_recover_item        *item)
2436{
2437        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2438        xfs_mount_t             *mp = log->l_mp;
2439        xfs_buf_t               *bp;
2440        int                     error;
2441        uint                    buf_flags;
2442
2443        /*
2444         * In this pass we only want to recover all the buffers which have
2445         * not been cancelled and are not cancellation buffers themselves.
2446         */
2447        if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2448                        buf_f->blf_len, buf_f->blf_flags)) {
2449                trace_xfs_log_recover_buf_cancel(log, buf_f);
2450                return 0;
2451        }
2452
2453        trace_xfs_log_recover_buf_recover(log, buf_f);
2454
2455        buf_flags = 0;
2456        if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2457                buf_flags |= XBF_UNMAPPED;
2458
2459        bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2460                          buf_flags, NULL);
2461        if (!bp)
2462                return XFS_ERROR(ENOMEM);
2463        error = bp->b_error;
2464        if (error) {
2465                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2466                xfs_buf_relse(bp);
2467                return error;
2468        }
2469
2470        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2471                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2472        } else if (buf_f->blf_flags &
2473                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2474                xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2475        } else {
2476                xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2477        }
2478        if (error)
2479                return XFS_ERROR(error);
2480
2481        /*
2482         * Perform delayed write on the buffer.  Asynchronous writes will be
2483         * slower when taking into account all the buffers to be flushed.
2484         *
2485         * Also make sure that only inode buffers with good sizes stay in
2486         * the buffer cache.  The kernel moves inodes in buffers of 1 block
2487         * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2488         * buffers in the log can be a different size if the log was generated
2489         * by an older kernel using unclustered inode buffers or a newer kernel
2490         * running with a different inode cluster size.  Regardless, if the
2491         * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2492         * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2493         * the buffer out of the buffer cache so that the buffer won't
2494         * overlap with future reads of those inodes.
2495         */
2496        if (XFS_DINODE_MAGIC ==
2497            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2498            (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2499                        (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2500                xfs_buf_stale(bp);
2501                error = xfs_bwrite(bp);
2502        } else {
2503                ASSERT(bp->b_target->bt_mount == mp);
2504                bp->b_iodone = xlog_recover_iodone;
2505                xfs_buf_delwri_queue(bp, buffer_list);
2506        }
2507
2508        xfs_buf_relse(bp);
2509        return error;
2510}
2511
2512STATIC int
2513xlog_recover_inode_pass2(
2514        struct xlog                     *log,
2515        struct list_head                *buffer_list,
2516        struct xlog_recover_item        *item)
2517{
2518        xfs_inode_log_format_t  *in_f;
2519        xfs_mount_t             *mp = log->l_mp;
2520        xfs_buf_t               *bp;
2521        xfs_dinode_t            *dip;
2522        int                     len;
2523        xfs_caddr_t             src;
2524        xfs_caddr_t             dest;
2525        int                     error;
2526        int                     attr_index;
2527        uint                    fields;
2528        xfs_icdinode_t          *dicp;
2529        uint                    isize;
2530        int                     need_free = 0;
2531
2532        if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2533                in_f = item->ri_buf[0].i_addr;
2534        } else {
2535                in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2536                need_free = 1;
2537                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2538                if (error)
2539                        goto error;
2540        }
2541
2542        /*
2543         * Inode buffers can be freed, look out for it,
2544         * and do not replay the inode.
2545         */
2546        if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2547                                        in_f->ilf_len, 0)) {
2548                error = 0;
2549                trace_xfs_log_recover_inode_cancel(log, in_f);
2550                goto error;
2551        }
2552        trace_xfs_log_recover_inode_recover(log, in_f);
2553
2554        bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2555                          &xfs_inode_buf_ops);
2556        if (!bp) {
2557                error = ENOMEM;
2558                goto error;
2559        }
2560        error = bp->b_error;
2561        if (error) {
2562                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2563                xfs_buf_relse(bp);
2564                goto error;
2565        }
2566        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2567        dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2568
2569        /*
2570         * Make sure the place we're flushing out to really looks
2571         * like an inode!
2572         */
2573        if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2574                xfs_buf_relse(bp);
2575                xfs_alert(mp,
2576        "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2577                        __func__, dip, bp, in_f->ilf_ino);
2578                XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2579                                 XFS_ERRLEVEL_LOW, mp);
2580                error = EFSCORRUPTED;
2581                goto error;
2582        }
2583        dicp = item->ri_buf[1].i_addr;
2584        if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2585                xfs_buf_relse(bp);
2586                xfs_alert(mp,
2587                        "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2588                        __func__, item, in_f->ilf_ino);
2589                XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2590                                 XFS_ERRLEVEL_LOW, mp);
2591                error = EFSCORRUPTED;
2592                goto error;
2593        }
2594
2595        /*
2596         * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2597         * are transactional and if ordering is necessary we can determine that
2598         * more accurately by the LSN field in the V3 inode core. Don't trust
2599         * the inode versions we might be changing them here - use the
2600         * superblock flag to determine whether we need to look at di_flushiter
2601         * to skip replay when the on disk inode is newer than the log one
2602         */
2603        if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2604            dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2605                /*
2606                 * Deal with the wrap case, DI_MAX_FLUSH is less
2607                 * than smaller numbers
2608                 */
2609                if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2610                    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2611                        /* do nothing */
2612                } else {
2613                        xfs_buf_relse(bp);
2614                        trace_xfs_log_recover_inode_skip(log, in_f);
2615                        error = 0;
2616                        goto error;
2617                }
2618        }
2619
2620        /* Take the opportunity to reset the flush iteration count */
2621        dicp->di_flushiter = 0;
2622
2623        if (unlikely(S_ISREG(dicp->di_mode))) {
2624                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2625                    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2626                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2627                                         XFS_ERRLEVEL_LOW, mp, dicp);
2628                        xfs_buf_relse(bp);
2629                        xfs_alert(mp,
2630                "%s: Bad regular inode log record, rec ptr 0x%p, "
2631                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2632                                __func__, item, dip, bp, in_f->ilf_ino);
2633                        error = EFSCORRUPTED;
2634                        goto error;
2635                }
2636        } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2637                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2638                    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2639                    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2640                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2641                                             XFS_ERRLEVEL_LOW, mp, dicp);
2642                        xfs_buf_relse(bp);
2643                        xfs_alert(mp,
2644                "%s: Bad dir inode log record, rec ptr 0x%p, "
2645                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2646                                __func__, item, dip, bp, in_f->ilf_ino);
2647                        error = EFSCORRUPTED;
2648                        goto error;
2649                }
2650        }
2651        if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2652                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2653                                     XFS_ERRLEVEL_LOW, mp, dicp);
2654                xfs_buf_relse(bp);
2655                xfs_alert(mp,
2656        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2657        "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2658                        __func__, item, dip, bp, in_f->ilf_ino,
2659                        dicp->di_nextents + dicp->di_anextents,
2660                        dicp->di_nblocks);
2661                error = EFSCORRUPTED;
2662                goto error;
2663        }
2664        if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2665                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2666                                     XFS_ERRLEVEL_LOW, mp, dicp);
2667                xfs_buf_relse(bp);
2668                xfs_alert(mp,
2669        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2670        "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2671                        item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2672                error = EFSCORRUPTED;
2673                goto error;
2674        }
2675        isize = xfs_icdinode_size(dicp->di_version);
2676        if (unlikely(item->ri_buf[1].i_len > isize)) {
2677                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2678                                     XFS_ERRLEVEL_LOW, mp, dicp);
2679                xfs_buf_relse(bp);
2680                xfs_alert(mp,
2681                        "%s: Bad inode log record length %d, rec ptr 0x%p",
2682                        __func__, item->ri_buf[1].i_len, item);
2683                error = EFSCORRUPTED;
2684                goto error;
2685        }
2686
2687        /* The core is in in-core format */
2688        xfs_dinode_to_disk(dip, dicp);
2689
2690        /* the rest is in on-disk format */
2691        if (item->ri_buf[1].i_len > isize) {
2692                memcpy((char *)dip + isize,
2693                        item->ri_buf[1].i_addr + isize,
2694                        item->ri_buf[1].i_len - isize);
2695        }
2696
2697        fields = in_f->ilf_fields;
2698        switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2699        case XFS_ILOG_DEV:
2700                xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2701                break;
2702        case XFS_ILOG_UUID:
2703                memcpy(XFS_DFORK_DPTR(dip),
2704                       &in_f->ilf_u.ilfu_uuid,
2705                       sizeof(uuid_t));
2706                break;
2707        }
2708
2709        if (in_f->ilf_size == 2)
2710                goto write_inode_buffer;
2711        len = item->ri_buf[2].i_len;
2712        src = item->ri_buf[2].i_addr;
2713        ASSERT(in_f->ilf_size <= 4);
2714        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2715        ASSERT(!(fields & XFS_ILOG_DFORK) ||
2716               (len == in_f->ilf_dsize));
2717
2718        switch (fields & XFS_ILOG_DFORK) {
2719        case XFS_ILOG_DDATA:
2720        case XFS_ILOG_DEXT:
2721                memcpy(XFS_DFORK_DPTR(dip), src, len);
2722                break;
2723
2724        case XFS_ILOG_DBROOT:
2725                xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2726                                 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2727                                 XFS_DFORK_DSIZE(dip, mp));
2728                break;
2729
2730        default:
2731                /*
2732                 * There are no data fork flags set.
2733                 */
2734                ASSERT((fields & XFS_ILOG_DFORK) == 0);
2735                break;
2736        }
2737
2738        /*
2739         * If we logged any attribute data, recover it.  There may or
2740         * may not have been any other non-core data logged in this
2741         * transaction.
2742         */
2743        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2744                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2745                        attr_index = 3;
2746                } else {
2747                        attr_index = 2;
2748                }
2749                len = item->ri_buf[attr_index].i_len;
2750                src = item->ri_buf[attr_index].i_addr;
2751                ASSERT(len == in_f->ilf_asize);
2752
2753                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2754                case XFS_ILOG_ADATA:
2755                case XFS_ILOG_AEXT:
2756                        dest = XFS_DFORK_APTR(dip);
2757                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2758                        memcpy(dest, src, len);
2759                        break;
2760
2761                case XFS_ILOG_ABROOT:
2762                        dest = XFS_DFORK_APTR(dip);
2763                        xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2764                                         len, (xfs_bmdr_block_t*)dest,
2765                                         XFS_DFORK_ASIZE(dip, mp));
2766                        break;
2767
2768                default:
2769                        xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2770                        ASSERT(0);
2771                        xfs_buf_relse(bp);
2772                        error = EIO;
2773                        goto error;
2774                }
2775        }
2776
2777write_inode_buffer:
2778        /* re-generate the checksum. */
2779        xfs_dinode_calc_crc(log->l_mp, dip);
2780
2781        ASSERT(bp->b_target->bt_mount == mp);
2782        bp->b_iodone = xlog_recover_iodone;
2783        xfs_buf_delwri_queue(bp, buffer_list);
2784        xfs_buf_relse(bp);
2785error:
2786        if (need_free)
2787                kmem_free(in_f);
2788        return XFS_ERROR(error);
2789}
2790
2791/*
2792 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2793 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2794 * of that type.
2795 */
2796STATIC int
2797xlog_recover_quotaoff_pass1(
2798        struct xlog                     *log,
2799        struct xlog_recover_item        *item)
2800{
2801        xfs_qoff_logformat_t    *qoff_f = item->ri_buf[0].i_addr;
2802        ASSERT(qoff_f);
2803
2804        /*
2805         * The logitem format's flag tells us if this was user quotaoff,
2806         * group/project quotaoff or both.
2807         */
2808        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2809                log->l_quotaoffs_flag |= XFS_DQ_USER;
2810        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2811                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2812        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2813                log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2814
2815        return (0);
2816}
2817
2818/*
2819 * Recover a dquot record
2820 */
2821STATIC int
2822xlog_recover_dquot_pass2(
2823        struct xlog                     *log,
2824        struct list_head                *buffer_list,
2825        struct xlog_recover_item        *item)
2826{
2827        xfs_mount_t             *mp = log->l_mp;
2828        xfs_buf_t               *bp;
2829        struct xfs_disk_dquot   *ddq, *recddq;
2830        int                     error;
2831        xfs_dq_logformat_t      *dq_f;
2832        uint                    type;
2833
2834
2835        /*
2836         * Filesystems are required to send in quota flags at mount time.
2837         */
2838        if (mp->m_qflags == 0)
2839                return (0);
2840
2841        recddq = item->ri_buf[1].i_addr;
2842        if (recddq == NULL) {
2843                xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2844                return XFS_ERROR(EIO);
2845        }
2846        if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2847                xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2848                        item->ri_buf[1].i_len, __func__);
2849                return XFS_ERROR(EIO);
2850        }
2851
2852        /*
2853         * This type of quotas was turned off, so ignore this record.
2854         */
2855        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2856        ASSERT(type);
2857        if (log->l_quotaoffs_flag & type)
2858                return (0);
2859
2860        /*
2861         * At this point we know that quota was _not_ turned off.
2862         * Since the mount flags are not indicating to us otherwise, this
2863         * must mean that quota is on, and the dquot needs to be replayed.
2864         * Remember that we may not have fully recovered the superblock yet,
2865         * so we can't do the usual trick of looking at the SB quota bits.
2866         *
2867         * The other possibility, of course, is that the quota subsystem was
2868         * removed since the last mount - ENOSYS.
2869         */
2870        dq_f = item->ri_buf[0].i_addr;
2871        ASSERT(dq_f);
2872        error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2873                           "xlog_recover_dquot_pass2 (log copy)");
2874        if (error)
2875                return XFS_ERROR(EIO);
2876        ASSERT(dq_f->qlf_len == 1);
2877
2878        error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2879                                   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2880                                   NULL);
2881        if (error)
2882                return error;
2883
2884        ASSERT(bp);
2885        ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2886
2887        /*
2888         * At least the magic num portion should be on disk because this
2889         * was among a chunk of dquots created earlier, and we did some
2890         * minimal initialization then.
2891         */
2892        error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2893                           "xlog_recover_dquot_pass2");
2894        if (error) {
2895                xfs_buf_relse(bp);
2896                return XFS_ERROR(EIO);
2897        }
2898
2899        memcpy(ddq, recddq, item->ri_buf[1].i_len);
2900        if (xfs_sb_version_hascrc(&mp->m_sb)) {
2901                xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2902                                 XFS_DQUOT_CRC_OFF);
2903        }
2904
2905        ASSERT(dq_f->qlf_size == 2);
2906        ASSERT(bp->b_target->bt_mount == mp);
2907        bp->b_iodone = xlog_recover_iodone;
2908        xfs_buf_delwri_queue(bp, buffer_list);
2909        xfs_buf_relse(bp);
2910
2911        return (0);
2912}
2913
2914/*
2915 * This routine is called to create an in-core extent free intent
2916 * item from the efi format structure which was logged on disk.
2917 * It allocates an in-core efi, copies the extents from the format
2918 * structure into it, and adds the efi to the AIL with the given
2919 * LSN.
2920 */
2921STATIC int
2922xlog_recover_efi_pass2(
2923        struct xlog                     *log,
2924        struct xlog_recover_item        *item,
2925        xfs_lsn_t                       lsn)
2926{
2927        int                     error;
2928        xfs_mount_t             *mp = log->l_mp;
2929        xfs_efi_log_item_t      *efip;
2930        xfs_efi_log_format_t    *efi_formatp;
2931
2932        efi_formatp = item->ri_buf[0].i_addr;
2933
2934        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2935        if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2936                                         &(efip->efi_format)))) {
2937                xfs_efi_item_free(efip);
2938                return error;
2939        }
2940        atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2941
2942        spin_lock(&log->l_ailp->xa_lock);
2943        /*
2944         * xfs_trans_ail_update() drops the AIL lock.
2945         */
2946        xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2947        return 0;
2948}
2949
2950
2951/*
2952 * This routine is called when an efd format structure is found in
2953 * a committed transaction in the log.  It's purpose is to cancel
2954 * the corresponding efi if it was still in the log.  To do this
2955 * it searches the AIL for the efi with an id equal to that in the
2956 * efd format structure.  If we find it, we remove the efi from the
2957 * AIL and free it.
2958 */
2959STATIC int
2960xlog_recover_efd_pass2(
2961        struct xlog                     *log,
2962        struct xlog_recover_item        *item)
2963{
2964        xfs_efd_log_format_t    *efd_formatp;
2965        xfs_efi_log_item_t      *efip = NULL;
2966        xfs_log_item_t          *lip;
2967        __uint64_t              efi_id;
2968        struct xfs_ail_cursor   cur;
2969        struct xfs_ail          *ailp = log->l_ailp;
2970
2971        efd_formatp = item->ri_buf[0].i_addr;
2972        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2973                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2974               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2975                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2976        efi_id = efd_formatp->efd_efi_id;
2977
2978        /*
2979         * Search for the efi with the id in the efd format structure
2980         * in the AIL.
2981         */
2982        spin_lock(&ailp->xa_lock);
2983        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2984        while (lip != NULL) {
2985                if (lip->li_type == XFS_LI_EFI) {
2986                        efip = (xfs_efi_log_item_t *)lip;
2987                        if (efip->efi_format.efi_id == efi_id) {
2988                                /*
2989                                 * xfs_trans_ail_delete() drops the
2990                                 * AIL lock.
2991                                 */
2992                                xfs_trans_ail_delete(ailp, lip,
2993                                                     SHUTDOWN_CORRUPT_INCORE);
2994                                xfs_efi_item_free(efip);
2995                                spin_lock(&ailp->xa_lock);
2996                                break;
2997                        }
2998                }
2999                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3000        }
3001        xfs_trans_ail_cursor_done(ailp, &cur);
3002        spin_unlock(&ailp->xa_lock);
3003
3004        return 0;
3005}
3006
3007/*
3008 * This routine is called when an inode create format structure is found in a
3009 * committed transaction in the log.  It's purpose is to initialise the inodes
3010 * being allocated on disk. This requires us to get inode cluster buffers that
3011 * match the range to be intialised, stamped with inode templates and written
3012 * by delayed write so that subsequent modifications will hit the cached buffer
3013 * and only need writing out at the end of recovery.
3014 */
3015STATIC int
3016xlog_recover_do_icreate_pass2(
3017        struct xlog             *log,
3018        struct list_head        *buffer_list,
3019        xlog_recover_item_t     *item)
3020{
3021        struct xfs_mount        *mp = log->l_mp;
3022        struct xfs_icreate_log  *icl;
3023        xfs_agnumber_t          agno;
3024        xfs_agblock_t           agbno;
3025        unsigned int            count;
3026        unsigned int            isize;
3027        xfs_agblock_t           length;
3028
3029        icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3030        if (icl->icl_type != XFS_LI_ICREATE) {
3031                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3032                return EINVAL;
3033        }
3034
3035        if (icl->icl_size != 1) {
3036                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3037                return EINVAL;
3038        }
3039
3040        agno = be32_to_cpu(icl->icl_ag);
3041        if (agno >= mp->m_sb.sb_agcount) {
3042                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3043                return EINVAL;
3044        }
3045        agbno = be32_to_cpu(icl->icl_agbno);
3046        if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3047                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3048                return EINVAL;
3049        }
3050        isize = be32_to_cpu(icl->icl_isize);
3051        if (isize != mp->m_sb.sb_inodesize) {
3052                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3053                return EINVAL;
3054        }
3055        count = be32_to_cpu(icl->icl_count);
3056        if (!count) {
3057                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3058                return EINVAL;
3059        }
3060        length = be32_to_cpu(icl->icl_length);
3061        if (!length || length >= mp->m_sb.sb_agblocks) {
3062                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3063                return EINVAL;
3064        }
3065
3066        /* existing allocation is fixed value */
3067        ASSERT(count == XFS_IALLOC_INODES(mp));
3068        ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3069        if (count != XFS_IALLOC_INODES(mp) ||
3070             length != XFS_IALLOC_BLOCKS(mp)) {
3071                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3072                return EINVAL;
3073        }
3074
3075        /*
3076         * Inode buffers can be freed. Do not replay the inode initialisation as
3077         * we could be overwriting something written after this inode buffer was
3078         * cancelled.
3079         *
3080         * XXX: we need to iterate all buffers and only init those that are not
3081         * cancelled. I think that a more fine grained factoring of
3082         * xfs_ialloc_inode_init may be appropriate here to enable this to be
3083         * done easily.
3084         */
3085        if (xlog_check_buffer_cancelled(log,
3086                        XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3087                return 0;
3088
3089        xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3090                                        be32_to_cpu(icl->icl_gen));
3091        return 0;
3092}
3093
3094/*
3095 * Free up any resources allocated by the transaction
3096 *
3097 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3098 */
3099STATIC void
3100xlog_recover_free_trans(
3101        struct xlog_recover     *trans)
3102{
3103        xlog_recover_item_t     *item, *n;
3104        int                     i;
3105
3106        list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3107                /* Free the regions in the item. */
3108                list_del(&item->ri_list);
3109                for (i = 0; i < item->ri_cnt; i++)
3110                        kmem_free(item->ri_buf[i].i_addr);
3111                /* Free the item itself */
3112                kmem_free(item->ri_buf);
3113                kmem_free(item);
3114        }
3115        /* Free the transaction recover structure */
3116        kmem_free(trans);
3117}
3118
3119STATIC int
3120xlog_recover_commit_pass1(
3121        struct xlog                     *log,
3122        struct xlog_recover             *trans,
3123        struct xlog_recover_item        *item)
3124{
3125        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3126
3127        switch (ITEM_TYPE(item)) {
3128        case XFS_LI_BUF:
3129                return xlog_recover_buffer_pass1(log, item);
3130        case XFS_LI_QUOTAOFF:
3131                return xlog_recover_quotaoff_pass1(log, item);
3132        case XFS_LI_INODE:
3133        case XFS_LI_EFI:
3134        case XFS_LI_EFD:
3135        case XFS_LI_DQUOT:
3136        case XFS_LI_ICREATE:
3137                /* nothing to do in pass 1 */
3138                return 0;
3139        default:
3140                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3141                        __func__, ITEM_TYPE(item));
3142                ASSERT(0);
3143                return XFS_ERROR(EIO);
3144        }
3145}
3146
3147STATIC int
3148xlog_recover_commit_pass2(
3149        struct xlog                     *log,
3150        struct xlog_recover             *trans,
3151        struct list_head                *buffer_list,
3152        struct xlog_recover_item        *item)
3153{
3154        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3155
3156        switch (ITEM_TYPE(item)) {
3157        case XFS_LI_BUF:
3158                return xlog_recover_buffer_pass2(log, buffer_list, item);
3159        case XFS_LI_INODE:
3160                return xlog_recover_inode_pass2(log, buffer_list, item);
3161        case XFS_LI_EFI:
3162                return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3163        case XFS_LI_EFD:
3164                return xlog_recover_efd_pass2(log, item);
3165        case XFS_LI_DQUOT:
3166                return xlog_recover_dquot_pass2(log, buffer_list, item);
3167        case XFS_LI_ICREATE:
3168                return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3169        case XFS_LI_QUOTAOFF:
3170                /* nothing to do in pass2 */
3171                return 0;
3172        default:
3173                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3174                        __func__, ITEM_TYPE(item));
3175                ASSERT(0);
3176                return XFS_ERROR(EIO);
3177        }
3178}
3179
3180/*
3181 * Perform the transaction.
3182 *
3183 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3184 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3185 */
3186STATIC int
3187xlog_recover_commit_trans(
3188        struct xlog             *log,
3189        struct xlog_recover     *trans,
3190        int                     pass)
3191{
3192        int                     error = 0, error2;
3193        xlog_recover_item_t     *item;
3194        LIST_HEAD               (buffer_list);
3195
3196        hlist_del(&trans->r_list);
3197
3198        error = xlog_recover_reorder_trans(log, trans, pass);
3199        if (error)
3200                return error;
3201
3202        list_for_each_entry(item, &trans->r_itemq, ri_list) {
3203                switch (pass) {
3204                case XLOG_RECOVER_PASS1:
3205                        error = xlog_recover_commit_pass1(log, trans, item);
3206                        break;
3207                case XLOG_RECOVER_PASS2:
3208                        error = xlog_recover_commit_pass2(log, trans,
3209                                                          &buffer_list, item);
3210                        break;
3211                default:
3212                        ASSERT(0);
3213                }
3214
3215                if (error)
3216                        goto out;
3217        }
3218
3219        xlog_recover_free_trans(trans);
3220
3221out:
3222        error2 = xfs_buf_delwri_submit(&buffer_list);
3223        return error ? error : error2;
3224}
3225
3226STATIC int
3227xlog_recover_unmount_trans(
3228        struct xlog             *log,
3229        struct xlog_recover     *trans)
3230{
3231        /* Do nothing now */
3232        xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3233        return 0;
3234}
3235
3236/*
3237 * There are two valid states of the r_state field.  0 indicates that the
3238 * transaction structure is in a normal state.  We have either seen the
3239 * start of the transaction or the last operation we added was not a partial
3240 * operation.  If the last operation we added to the transaction was a
3241 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3242 *
3243 * NOTE: skip LRs with 0 data length.
3244 */
3245STATIC int
3246xlog_recover_process_data(
3247        struct xlog             *log,
3248        struct hlist_head       rhash[],
3249        struct xlog_rec_header  *rhead,
3250        xfs_caddr_t             dp,
3251        int                     pass)
3252{
3253        xfs_caddr_t             lp;
3254        int                     num_logops;
3255        xlog_op_header_t        *ohead;
3256        xlog_recover_t          *trans;
3257        xlog_tid_t              tid;
3258        int                     error;
3259        unsigned long           hash;
3260        uint                    flags;
3261
3262        lp = dp + be32_to_cpu(rhead->h_len);
3263        num_logops = be32_to_cpu(rhead->h_num_logops);
3264
3265        /* check the log format matches our own - else we can't recover */
3266        if (xlog_header_check_recover(log->l_mp, rhead))
3267                return (XFS_ERROR(EIO));
3268
3269        while ((dp < lp) && num_logops) {
3270                ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3271                ohead = (xlog_op_header_t *)dp;
3272                dp += sizeof(xlog_op_header_t);
3273                if (ohead->oh_clientid != XFS_TRANSACTION &&
3274                    ohead->oh_clientid != XFS_LOG) {
3275                        xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3276                                        __func__, ohead->oh_clientid);
3277                        ASSERT(0);
3278                        return (XFS_ERROR(EIO));
3279                }
3280                tid = be32_to_cpu(ohead->oh_tid);
3281                hash = XLOG_RHASH(tid);
3282                trans = xlog_recover_find_tid(&rhash[hash], tid);
3283                if (trans == NULL) {               /* not found; add new tid */
3284                        if (ohead->oh_flags & XLOG_START_TRANS)
3285                                xlog_recover_new_tid(&rhash[hash], tid,
3286                                        be64_to_cpu(rhead->h_lsn));
3287                } else {
3288                        if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3289                                xfs_warn(log->l_mp, "%s: bad length 0x%x",
3290                                        __func__, be32_to_cpu(ohead->oh_len));
3291                                WARN_ON(1);
3292                                return (XFS_ERROR(EIO));
3293                        }
3294                        flags = ohead->oh_flags & ~XLOG_END_TRANS;
3295                        if (flags & XLOG_WAS_CONT_TRANS)
3296                                flags &= ~XLOG_CONTINUE_TRANS;
3297                        switch (flags) {
3298                        case XLOG_COMMIT_TRANS:
3299                                error = xlog_recover_commit_trans(log,
3300                                                                trans, pass);
3301                                break;
3302                        case XLOG_UNMOUNT_TRANS:
3303                                error = xlog_recover_unmount_trans(log, trans);
3304                                break;
3305                        case XLOG_WAS_CONT_TRANS:
3306                                error = xlog_recover_add_to_cont_trans(log,
3307                                                trans, dp,
3308                                                be32_to_cpu(ohead->oh_len));
3309                                break;
3310                        case XLOG_START_TRANS:
3311                                xfs_warn(log->l_mp, "%s: bad transaction",
3312                                        __func__);
3313                                ASSERT(0);
3314                                error = XFS_ERROR(EIO);
3315                                break;
3316                        case 0:
3317                        case XLOG_CONTINUE_TRANS:
3318                                error = xlog_recover_add_to_trans(log, trans,
3319                                                dp, be32_to_cpu(ohead->oh_len));
3320                                break;
3321                        default:
3322                                xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3323                                        __func__, flags);
3324                                ASSERT(0);
3325                                error = XFS_ERROR(EIO);
3326                                break;
3327                        }
3328                        if (error)
3329                                return error;
3330                }
3331                dp += be32_to_cpu(ohead->oh_len);
3332                num_logops--;
3333        }
3334        return 0;
3335}
3336
3337/*
3338 * Process an extent free intent item that was recovered from
3339 * the log.  We need to free the extents that it describes.
3340 */
3341STATIC int
3342xlog_recover_process_efi(
3343        xfs_mount_t             *mp,
3344        xfs_efi_log_item_t      *efip)
3345{
3346        xfs_efd_log_item_t      *efdp;
3347        xfs_trans_t             *tp;
3348        int                     i;
3349        int                     error = 0;
3350        xfs_extent_t            *extp;
3351        xfs_fsblock_t           startblock_fsb;
3352
3353        ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3354
3355        /*
3356         * First check the validity of the extents described by the
3357         * EFI.  If any are bad, then assume that all are bad and
3358         * just toss the EFI.
3359         */
3360        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3361                extp = &(efip->efi_format.efi_extents[i]);
3362                startblock_fsb = XFS_BB_TO_FSB(mp,
3363                                   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3364                if ((startblock_fsb == 0) ||
3365                    (extp->ext_len == 0) ||
3366                    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3367                    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3368                        /*
3369                         * This will pull the EFI from the AIL and
3370                         * free the memory associated with it.
3371                         */
3372                        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3373                        xfs_efi_release(efip, efip->efi_format.efi_nextents);
3374                        return XFS_ERROR(EIO);
3375                }
3376        }
3377
3378        tp = xfs_trans_alloc(mp, 0);
3379        error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3380        if (error)
3381                goto abort_error;
3382        efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3383
3384        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3385                extp = &(efip->efi_format.efi_extents[i]);
3386                error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3387                if (error)
3388                        goto abort_error;
3389                xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3390                                         extp->ext_len);
3391        }
3392
3393        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3394        error = xfs_trans_commit(tp, 0);
3395        return error;
3396
3397abort_error:
3398        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3399        return error;
3400}
3401
3402/*
3403 * When this is called, all of the EFIs which did not have
3404 * corresponding EFDs should be in the AIL.  What we do now
3405 * is free the extents associated with each one.
3406 *
3407 * Since we process the EFIs in normal transactions, they
3408 * will be removed at some point after the commit.  This prevents
3409 * us from just walking down the list processing each one.
3410 * We'll use a flag in the EFI to skip those that we've already
3411 * processed and use the AIL iteration mechanism's generation
3412 * count to try to speed this up at least a bit.
3413 *
3414 * When we start, we know that the EFIs are the only things in
3415 * the AIL.  As we process them, however, other items are added
3416 * to the AIL.  Since everything added to the AIL must come after
3417 * everything already in the AIL, we stop processing as soon as
3418 * we see something other than an EFI in the AIL.
3419 */
3420STATIC int
3421xlog_recover_process_efis(
3422        struct xlog     *log)
3423{
3424        xfs_log_item_t          *lip;
3425        xfs_efi_log_item_t      *efip;
3426        int                     error = 0;
3427        struct xfs_ail_cursor   cur;
3428        struct xfs_ail          *ailp;
3429
3430        ailp = log->l_ailp;
3431        spin_lock(&ailp->xa_lock);
3432        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3433        while (lip != NULL) {
3434                /*
3435                 * We're done when we see something other than an EFI.
3436                 * There should be no EFIs left in the AIL now.
3437                 */
3438                if (lip->li_type != XFS_LI_EFI) {
3439#ifdef DEBUG
3440                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3441                                ASSERT(lip->li_type != XFS_LI_EFI);
3442#endif
3443                        break;
3444                }
3445
3446                /*
3447                 * Skip EFIs that we've already processed.
3448                 */
3449                efip = (xfs_efi_log_item_t *)lip;
3450                if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3451                        lip = xfs_trans_ail_cursor_next(ailp, &cur);
3452                        continue;
3453                }
3454
3455                spin_unlock(&ailp->xa_lock);
3456                error = xlog_recover_process_efi(log->l_mp, efip);
3457                spin_lock(&ailp->xa_lock);
3458                if (error)
3459                        goto out;
3460                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3461        }
3462out:
3463        xfs_trans_ail_cursor_done(ailp, &cur);
3464        spin_unlock(&ailp->xa_lock);
3465        return error;
3466}
3467
3468/*
3469 * This routine performs a transaction to null out a bad inode pointer
3470 * in an agi unlinked inode hash bucket.
3471 */
3472STATIC void
3473xlog_recover_clear_agi_bucket(
3474        xfs_mount_t     *mp,
3475        xfs_agnumber_t  agno,
3476        int             bucket)
3477{
3478        xfs_trans_t     *tp;
3479        xfs_agi_t       *agi;
3480        xfs_buf_t       *agibp;
3481        int             offset;
3482        int             error;
3483
3484        tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3485        error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3486                                  0, 0, 0);
3487        if (error)
3488                goto out_abort;
3489
3490        error = xfs_read_agi(mp, tp, agno, &agibp);
3491        if (error)
3492                goto out_abort;
3493
3494        agi = XFS_BUF_TO_AGI(agibp);
3495        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3496        offset = offsetof(xfs_agi_t, agi_unlinked) +
3497                 (sizeof(xfs_agino_t) * bucket);
3498        xfs_trans_log_buf(tp, agibp, offset,
3499                          (offset + sizeof(xfs_agino_t) - 1));
3500
3501        error = xfs_trans_commit(tp, 0);
3502        if (error)
3503                goto out_error;
3504        return;
3505
3506out_abort:
3507        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3508out_error:
3509        xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3510        return;
3511}
3512
3513STATIC xfs_agino_t
3514xlog_recover_process_one_iunlink(
3515        struct xfs_mount                *mp,
3516        xfs_agnumber_t                  agno,
3517        xfs_agino_t                     agino,
3518        int                             bucket)
3519{
3520        struct xfs_buf                  *ibp;
3521        struct xfs_dinode               *dip;
3522        struct xfs_inode                *ip;
3523        xfs_ino_t                       ino;
3524        int                             error;
3525
3526        ino = XFS_AGINO_TO_INO(mp, agno, agino);
3527        error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3528        if (error)
3529                goto fail;
3530
3531        /*
3532         * Get the on disk inode to find the next inode in the bucket.
3533         */
3534        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3535        if (error)
3536                goto fail_iput;
3537
3538        ASSERT(ip->i_d.di_nlink == 0);
3539        ASSERT(ip->i_d.di_mode != 0);
3540
3541        /* setup for the next pass */
3542        agino = be32_to_cpu(dip->di_next_unlinked);
3543        xfs_buf_relse(ibp);
3544
3545        /*
3546         * Prevent any DMAPI event from being sent when the reference on
3547         * the inode is dropped.
3548         */
3549        ip->i_d.di_dmevmask = 0;
3550
3551        IRELE(ip);
3552        return agino;
3553
3554 fail_iput:
3555        IRELE(ip);
3556 fail:
3557        /*
3558         * We can't read in the inode this bucket points to, or this inode
3559         * is messed up.  Just ditch this bucket of inodes.  We will lose
3560         * some inodes and space, but at least we won't hang.
3561         *
3562         * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3563         * clear the inode pointer in the bucket.
3564         */
3565        xlog_recover_clear_agi_bucket(mp, agno, bucket);
3566        return NULLAGINO;
3567}
3568
3569/*
3570 * xlog_iunlink_recover
3571 *
3572 * This is called during recovery to process any inodes which
3573 * we unlinked but not freed when the system crashed.  These
3574 * inodes will be on the lists in the AGI blocks.  What we do
3575 * here is scan all the AGIs and fully truncate and free any
3576 * inodes found on the lists.  Each inode is removed from the
3577 * lists when it has been fully truncated and is freed.  The
3578 * freeing of the inode and its removal from the list must be
3579 * atomic.
3580 */
3581STATIC void
3582xlog_recover_process_iunlinks(
3583        struct xlog     *log)
3584{
3585        xfs_mount_t     *mp;
3586        xfs_agnumber_t  agno;
3587        xfs_agi_t       *agi;
3588        xfs_buf_t       *agibp;
3589        xfs_agino_t     agino;
3590        int             bucket;
3591        int             error;
3592        uint            mp_dmevmask;
3593
3594        mp = log->l_mp;
3595
3596        /*
3597         * Prevent any DMAPI event from being sent while in this function.
3598         */
3599        mp_dmevmask = mp->m_dmevmask;
3600        mp->m_dmevmask = 0;
3601
3602        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3603                /*
3604                 * Find the agi for this ag.
3605                 */
3606                error = xfs_read_agi(mp, NULL, agno, &agibp);
3607                if (error) {
3608                        /*
3609                         * AGI is b0rked. Don't process it.
3610                         *
3611                         * We should probably mark the filesystem as corrupt
3612                         * after we've recovered all the ag's we can....
3613                         */
3614                        continue;
3615                }
3616                /*
3617                 * Unlock the buffer so that it can be acquired in the normal
3618                 * course of the transaction to truncate and free each inode.
3619                 * Because we are not racing with anyone else here for the AGI
3620                 * buffer, we don't even need to hold it locked to read the
3621                 * initial unlinked bucket entries out of the buffer. We keep
3622                 * buffer reference though, so that it stays pinned in memory
3623                 * while we need the buffer.
3624                 */
3625                agi = XFS_BUF_TO_AGI(agibp);
3626                xfs_buf_unlock(agibp);
3627
3628                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3629                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3630                        while (agino != NULLAGINO) {
3631                                agino = xlog_recover_process_one_iunlink(mp,
3632                                                        agno, agino, bucket);
3633                        }
3634                }
3635                xfs_buf_rele(agibp);
3636        }
3637
3638        mp->m_dmevmask = mp_dmevmask;
3639}
3640
3641/*
3642 * Upack the log buffer data and crc check it. If the check fails, issue a
3643 * warning if and only if the CRC in the header is non-zero. This makes the
3644 * check an advisory warning, and the zero CRC check will prevent failure
3645 * warnings from being emitted when upgrading the kernel from one that does not
3646 * add CRCs by default.
3647 *
3648 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3649 * corruption failure
3650 */
3651STATIC int
3652xlog_unpack_data_crc(
3653        struct xlog_rec_header  *rhead,
3654        xfs_caddr_t             dp,
3655        struct xlog             *log)
3656{
3657        __le32                  crc;
3658
3659        crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3660        if (crc != rhead->h_crc) {
3661                if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3662                        xfs_alert(log->l_mp,
3663                "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3664                                        le32_to_cpu(rhead->h_crc),
3665                                        le32_to_cpu(crc));
3666                        xfs_hex_dump(dp, 32);
3667                }
3668
3669                /*
3670                 * If we've detected a log record corruption, then we can't
3671                 * recover past this point. Abort recovery if we are enforcing
3672                 * CRC protection by punting an error back up the stack.
3673                 */
3674                if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3675                        return EFSCORRUPTED;
3676        }
3677
3678        return 0;
3679}
3680
3681STATIC int
3682xlog_unpack_data(
3683        struct xlog_rec_header  *rhead,
3684        xfs_caddr_t             dp,
3685        struct xlog             *log)
3686{
3687        int                     i, j, k;
3688        int                     error;
3689
3690        error = xlog_unpack_data_crc(rhead, dp, log);
3691        if (error)
3692                return error;
3693
3694        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3695                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3696                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3697                dp += BBSIZE;
3698        }
3699
3700        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3701                xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3702                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3703                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3704                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3705                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3706                        dp += BBSIZE;
3707                }
3708        }
3709
3710        return 0;
3711}
3712
3713STATIC int
3714xlog_valid_rec_header(
3715        struct xlog             *log,
3716        struct xlog_rec_header  *rhead,
3717        xfs_daddr_t             blkno)
3718{
3719        int                     hlen;
3720
3721        if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3722                XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3723                                XFS_ERRLEVEL_LOW, log->l_mp);
3724                return XFS_ERROR(EFSCORRUPTED);
3725        }
3726        if (unlikely(
3727            (!rhead->h_version ||
3728            (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3729                xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3730                        __func__, be32_to_cpu(rhead->h_version));
3731                return XFS_ERROR(EIO);
3732        }
3733
3734        /* LR body must have data or it wouldn't have been written */
3735        hlen = be32_to_cpu(rhead->h_len);
3736        if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3737                XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3738                                XFS_ERRLEVEL_LOW, log->l_mp);
3739                return XFS_ERROR(EFSCORRUPTED);
3740        }
3741        if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3742                XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3743                                XFS_ERRLEVEL_LOW, log->l_mp);
3744                return XFS_ERROR(EFSCORRUPTED);
3745        }
3746        return 0;
3747}
3748
3749/*
3750 * Read the log from tail to head and process the log records found.
3751 * Handle the two cases where the tail and head are in the same cycle
3752 * and where the active portion of the log wraps around the end of
3753 * the physical log separately.  The pass parameter is passed through
3754 * to the routines called to process the data and is not looked at
3755 * here.
3756 */
3757STATIC int
3758xlog_do_recovery_pass(
3759        struct xlog             *log,
3760        xfs_daddr_t             head_blk,
3761        xfs_daddr_t             tail_blk,
3762        int                     pass)
3763{
3764        xlog_rec_header_t       *rhead;
3765        xfs_daddr_t             blk_no;
3766        xfs_caddr_t             offset;
3767        xfs_buf_t               *hbp, *dbp;
3768        int                     error = 0, h_size;
3769        int                     bblks, split_bblks;
3770        int                     hblks, split_hblks, wrapped_hblks;
3771        struct hlist_head       rhash[XLOG_RHASH_SIZE];
3772
3773        ASSERT(head_blk != tail_blk);
3774
3775        /*
3776         * Read the header of the tail block and get the iclog buffer size from
3777         * h_size.  Use this to tell how many sectors make up the log header.
3778         */
3779        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3780                /*
3781                 * When using variable length iclogs, read first sector of
3782                 * iclog header and extract the header size from it.  Get a
3783                 * new hbp that is the correct size.
3784                 */
3785                hbp = xlog_get_bp(log, 1);
3786                if (!hbp)
3787                        return ENOMEM;
3788
3789                error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3790                if (error)
3791                        goto bread_err1;
3792
3793                rhead = (xlog_rec_header_t *)offset;
3794                error = xlog_valid_rec_header(log, rhead, tail_blk);
3795                if (error)
3796                        goto bread_err1;
3797                h_size = be32_to_cpu(rhead->h_size);
3798                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3799                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3800                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3801                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
3802                                hblks++;
3803                        xlog_put_bp(hbp);
3804                        hbp = xlog_get_bp(log, hblks);
3805                } else {
3806                        hblks = 1;
3807                }
3808        } else {
3809                ASSERT(log->l_sectBBsize == 1);
3810                hblks = 1;
3811                hbp = xlog_get_bp(log, 1);
3812                h_size = XLOG_BIG_RECORD_BSIZE;
3813        }
3814
3815        if (!hbp)
3816                return ENOMEM;
3817        dbp = xlog_get_bp(log, BTOBB(h_size));
3818        if (!dbp) {
3819                xlog_put_bp(hbp);
3820                return ENOMEM;
3821        }
3822
3823        memset(rhash, 0, sizeof(rhash));
3824        if (tail_blk <= head_blk) {
3825                for (blk_no = tail_blk; blk_no < head_blk; ) {
3826                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3827                        if (error)
3828                                goto bread_err2;
3829
3830                        rhead = (xlog_rec_header_t *)offset;
3831                        error = xlog_valid_rec_header(log, rhead, blk_no);
3832                        if (error)
3833                                goto bread_err2;
3834
3835                        /* blocks in data section */
3836                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3837                        error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3838                                           &offset);
3839                        if (error)
3840                                goto bread_err2;
3841
3842                        error = xlog_unpack_data(rhead, offset, log);
3843                        if (error)
3844                                goto bread_err2;
3845
3846                        error = xlog_recover_process_data(log,
3847                                                rhash, rhead, offset, pass);
3848                        if (error)
3849                                goto bread_err2;
3850                        blk_no += bblks + hblks;
3851                }
3852        } else {
3853                /*
3854                 * Perform recovery around the end of the physical log.
3855                 * When the head is not on the same cycle number as the tail,
3856                 * we can't do a sequential recovery as above.
3857                 */
3858                blk_no = tail_blk;
3859                while (blk_no < log->l_logBBsize) {
3860                        /*
3861                         * Check for header wrapping around physical end-of-log
3862                         */
3863                        offset = hbp->b_addr;
3864                        split_hblks = 0;
3865                        wrapped_hblks = 0;
3866                        if (blk_no + hblks <= log->l_logBBsize) {
3867                                /* Read header in one read */
3868                                error = xlog_bread(log, blk_no, hblks, hbp,
3869                                                   &offset);
3870                                if (error)
3871                                        goto bread_err2;
3872                        } else {
3873                                /* This LR is split across physical log end */
3874                                if (blk_no != log->l_logBBsize) {
3875                                        /* some data before physical log end */
3876                                        ASSERT(blk_no <= INT_MAX);
3877                                        split_hblks = log->l_logBBsize - (int)blk_no;
3878                                        ASSERT(split_hblks > 0);
3879                                        error = xlog_bread(log, blk_no,
3880                                                           split_hblks, hbp,
3881                                                           &offset);
3882                                        if (error)
3883                                                goto bread_err2;
3884                                }
3885
3886                                /*
3887                                 * Note: this black magic still works with
3888                                 * large sector sizes (non-512) only because:
3889                                 * - we increased the buffer size originally
3890                                 *   by 1 sector giving us enough extra space
3891                                 *   for the second read;
3892                                 * - the log start is guaranteed to be sector
3893                                 *   aligned;
3894                                 * - we read the log end (LR header start)
3895                                 *   _first_, then the log start (LR header end)
3896                                 *   - order is important.
3897                                 */
3898                                wrapped_hblks = hblks - split_hblks;
3899                                error = xlog_bread_offset(log, 0,
3900                                                wrapped_hblks, hbp,
3901                                                offset + BBTOB(split_hblks));
3902                                if (error)
3903                                        goto bread_err2;
3904                        }
3905                        rhead = (xlog_rec_header_t *)offset;
3906                        error = xlog_valid_rec_header(log, rhead,
3907                                                split_hblks ? blk_no : 0);
3908                        if (error)
3909                                goto bread_err2;
3910
3911                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3912                        blk_no += hblks;
3913
3914                        /* Read in data for log record */
3915                        if (blk_no + bblks <= log->l_logBBsize) {
3916                                error = xlog_bread(log, blk_no, bblks, dbp,
3917                                                   &offset);
3918                                if (error)
3919                                        goto bread_err2;
3920                        } else {
3921                                /* This log record is split across the
3922                                 * physical end of log */
3923                                offset = dbp->b_addr;
3924                                split_bblks = 0;
3925                                if (blk_no != log->l_logBBsize) {
3926                                        /* some data is before the physical
3927                                         * end of log */
3928                                        ASSERT(!wrapped_hblks);
3929                                        ASSERT(blk_no <= INT_MAX);
3930                                        split_bblks =
3931                                                log->l_logBBsize - (int)blk_no;
3932                                        ASSERT(split_bblks > 0);
3933                                        error = xlog_bread(log, blk_no,
3934                                                        split_bblks, dbp,
3935                                                        &offset);
3936                                        if (error)
3937                                                goto bread_err2;
3938                                }
3939
3940                                /*
3941                                 * Note: this black magic still works with
3942                                 * large sector sizes (non-512) only because:
3943                                 * - we increased the buffer size originally
3944                                 *   by 1 sector giving us enough extra space
3945                                 *   for the second read;
3946                                 * - the log start is guaranteed to be sector
3947                                 *   aligned;
3948                                 * - we read the log end (LR header start)
3949                                 *   _first_, then the log start (LR header end)
3950                                 *   - order is important.
3951                                 */
3952                                error = xlog_bread_offset(log, 0,
3953                                                bblks - split_bblks, dbp,
3954                                                offset + BBTOB(split_bblks));
3955                                if (error)
3956                                        goto bread_err2;
3957                        }
3958
3959                        error = xlog_unpack_data(rhead, offset, log);
3960                        if (error)
3961                                goto bread_err2;
3962
3963                        error = xlog_recover_process_data(log, rhash,
3964                                                        rhead, offset, pass);
3965                        if (error)
3966                                goto bread_err2;
3967                        blk_no += bblks;
3968                }
3969
3970                ASSERT(blk_no >= log->l_logBBsize);
3971                blk_no -= log->l_logBBsize;
3972
3973                /* read first part of physical log */
3974                while (blk_no < head_blk) {
3975                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3976                        if (error)
3977                                goto bread_err2;
3978
3979                        rhead = (xlog_rec_header_t *)offset;
3980                        error = xlog_valid_rec_header(log, rhead, blk_no);
3981                        if (error)
3982                                goto bread_err2;
3983
3984                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3985                        error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3986                                           &offset);
3987                        if (error)
3988                                goto bread_err2;
3989
3990                        error = xlog_unpack_data(rhead, offset, log);
3991                        if (error)
3992                                goto bread_err2;
3993
3994                        error = xlog_recover_process_data(log, rhash,
3995                                                        rhead, offset, pass);
3996                        if (error)
3997                                goto bread_err2;
3998                        blk_no += bblks + hblks;
3999                }
4000        }
4001
4002 bread_err2:
4003        xlog_put_bp(dbp);
4004 bread_err1:
4005        xlog_put_bp(hbp);
4006        return error;
4007}
4008
4009/*
4010 * Do the recovery of the log.  We actually do this in two phases.
4011 * The two passes are necessary in order to implement the function
4012 * of cancelling a record written into the log.  The first pass
4013 * determines those things which have been cancelled, and the
4014 * second pass replays log items normally except for those which
4015 * have been cancelled.  The handling of the replay and cancellations
4016 * takes place in the log item type specific routines.
4017 *
4018 * The table of items which have cancel records in the log is allocated
4019 * and freed at this level, since only here do we know when all of
4020 * the log recovery has been completed.
4021 */
4022STATIC int
4023xlog_do_log_recovery(
4024        struct xlog     *log,
4025        xfs_daddr_t     head_blk,
4026        xfs_daddr_t     tail_blk)
4027{
4028        int             error, i;
4029
4030        ASSERT(head_blk != tail_blk);
4031
4032        /*
4033         * First do a pass to find all of the cancelled buf log items.
4034         * Store them in the buf_cancel_table for use in the second pass.
4035         */
4036        log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4037                                                 sizeof(struct list_head),
4038                                                 KM_SLEEP);
4039        for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4040                INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4041
4042        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4043                                      XLOG_RECOVER_PASS1);
4044        if (error != 0) {
4045                kmem_free(log->l_buf_cancel_table);
4046                log->l_buf_cancel_table = NULL;
4047                return error;
4048        }
4049        /*
4050         * Then do a second pass to actually recover the items in the log.
4051         * When it is complete free the table of buf cancel items.
4052         */
4053        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4054                                      XLOG_RECOVER_PASS2);
4055#ifdef DEBUG
4056        if (!error) {
4057                int     i;
4058
4059                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4060                        ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4061        }
4062#endif  /* DEBUG */
4063
4064        kmem_free(log->l_buf_cancel_table);
4065        log->l_buf_cancel_table = NULL;
4066
4067        return error;
4068}
4069
4070/*
4071 * Do the actual recovery
4072 */
4073STATIC int
4074xlog_do_recover(
4075        struct xlog     *log,
4076        xfs_daddr_t     head_blk,
4077        xfs_daddr_t     tail_blk)
4078{
4079        int             error;
4080        xfs_buf_t       *bp;
4081        xfs_sb_t        *sbp;
4082
4083        /*
4084         * First replay the images in the log.
4085         */
4086        error = xlog_do_log_recovery(log, head_blk, tail_blk);
4087        if (error)
4088                return error;
4089
4090        /*
4091         * If IO errors happened during recovery, bail out.
4092         */
4093        if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4094                return (EIO);
4095        }
4096
4097        /*
4098         * We now update the tail_lsn since much of the recovery has completed
4099         * and there may be space available to use.  If there were no extent
4100         * or iunlinks, we can free up the entire log and set the tail_lsn to
4101         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4102         * lsn of the last known good LR on disk.  If there are extent frees
4103         * or iunlinks they will have some entries in the AIL; so we look at
4104         * the AIL to determine how to set the tail_lsn.
4105         */
4106        xlog_assign_tail_lsn(log->l_mp);
4107
4108        /*
4109         * Now that we've finished replaying all buffer and inode
4110         * updates, re-read in the superblock and reverify it.
4111         */
4112        bp = xfs_getsb(log->l_mp, 0);
4113        XFS_BUF_UNDONE(bp);
4114        ASSERT(!(XFS_BUF_ISWRITE(bp)));
4115        XFS_BUF_READ(bp);
4116        XFS_BUF_UNASYNC(bp);
4117        bp->b_ops = &xfs_sb_buf_ops;
4118        xfsbdstrat(log->l_mp, bp);
4119        error = xfs_buf_iowait(bp);
4120        if (error) {
4121                xfs_buf_ioerror_alert(bp, __func__);
4122                ASSERT(0);
4123                xfs_buf_relse(bp);
4124                return error;
4125        }
4126
4127        /* Convert superblock from on-disk format */
4128        sbp = &log->l_mp->m_sb;
4129        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4130        ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4131        ASSERT(xfs_sb_good_version(sbp));
4132        xfs_buf_relse(bp);
4133
4134        /* We've re-read the superblock so re-initialize per-cpu counters */
4135        xfs_icsb_reinit_counters(log->l_mp);
4136
4137        xlog_recover_check_summary(log);
4138
4139        /* Normal transactions can now occur */
4140        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4141        return 0;
4142}
4143
4144/*
4145 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4146 *
4147 * Return error or zero.
4148 */
4149int
4150xlog_recover(
4151        struct xlog     *log)
4152{
4153        xfs_daddr_t     head_blk, tail_blk;
4154        int             error;
4155
4156        /* find the tail of the log */
4157        if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4158                return error;
4159
4160        if (tail_blk != head_blk) {
4161                /* There used to be a comment here:
4162                 *
4163                 * disallow recovery on read-only mounts.  note -- mount
4164                 * checks for ENOSPC and turns it into an intelligent
4165                 * error message.
4166                 * ...but this is no longer true.  Now, unless you specify
4167                 * NORECOVERY (in which case this function would never be
4168                 * called), we just go ahead and recover.  We do this all
4169                 * under the vfs layer, so we can get away with it unless
4170                 * the device itself is read-only, in which case we fail.
4171                 */
4172                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4173                        return error;
4174                }
4175
4176                /*
4177                 * Version 5 superblock log feature mask validation. We know the
4178                 * log is dirty so check if there are any unknown log features
4179                 * in what we need to recover. If there are unknown features
4180                 * (e.g. unsupported transactions, then simply reject the
4181                 * attempt at recovery before touching anything.
4182                 */
4183                if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4184                    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4185                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4186                        xfs_warn(log->l_mp,
4187"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4188"The log can not be fully and/or safely recovered by this kernel.\n"
4189"Please recover the log on a kernel that supports the unknown features.",
4190                                (log->l_mp->m_sb.sb_features_log_incompat &
4191                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4192                        return EINVAL;
4193                }
4194
4195                xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4196                                log->l_mp->m_logname ? log->l_mp->m_logname
4197                                                     : "internal");
4198
4199                error = xlog_do_recover(log, head_blk, tail_blk);
4200                log->l_flags |= XLOG_RECOVERY_NEEDED;
4201        }
4202        return error;
4203}
4204
4205/*
4206 * In the first part of recovery we replay inodes and buffers and build
4207 * up the list of extent free items which need to be processed.  Here
4208 * we process the extent free items and clean up the on disk unlinked
4209 * inode lists.  This is separated from the first part of recovery so
4210 * that the root and real-time bitmap inodes can be read in from disk in
4211 * between the two stages.  This is necessary so that we can free space
4212 * in the real-time portion of the file system.
4213 */
4214int
4215xlog_recover_finish(
4216        struct xlog     *log)
4217{
4218        /*
4219         * Now we're ready to do the transactions needed for the
4220         * rest of recovery.  Start with completing all the extent
4221         * free intent records and then process the unlinked inode
4222         * lists.  At this point, we essentially run in normal mode
4223         * except that we're still performing recovery actions
4224         * rather than accepting new requests.
4225         */
4226        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4227                int     error;
4228                error = xlog_recover_process_efis(log);
4229                if (error) {
4230                        xfs_alert(log->l_mp, "Failed to recover EFIs");
4231                        return error;
4232                }
4233                /*
4234                 * Sync the log to get all the EFIs out of the AIL.
4235                 * This isn't absolutely necessary, but it helps in
4236                 * case the unlink transactions would have problems
4237                 * pushing the EFIs out of the way.
4238                 */
4239                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4240
4241                xlog_recover_process_iunlinks(log);
4242
4243                xlog_recover_check_summary(log);
4244
4245                xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4246                                log->l_mp->m_logname ? log->l_mp->m_logname
4247                                                     : "internal");
4248                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4249        } else {
4250                xfs_info(log->l_mp, "Ending clean mount");
4251        }
4252        return 0;
4253}
4254
4255
4256#if defined(DEBUG)
4257/*
4258 * Read all of the agf and agi counters and check that they
4259 * are consistent with the superblock counters.
4260 */
4261void
4262xlog_recover_check_summary(
4263        struct xlog     *log)
4264{
4265        xfs_mount_t     *mp;
4266        xfs_agf_t       *agfp;
4267        xfs_buf_t       *agfbp;
4268        xfs_buf_t       *agibp;
4269        xfs_agnumber_t  agno;
4270        __uint64_t      freeblks;
4271        __uint64_t      itotal;
4272        __uint64_t      ifree;
4273        int             error;
4274
4275        mp = log->l_mp;
4276
4277        freeblks = 0LL;
4278        itotal = 0LL;
4279        ifree = 0LL;
4280        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4281                error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4282                if (error) {
4283                        xfs_alert(mp, "%s agf read failed agno %d error %d",
4284                                                __func__, agno, error);
4285                } else {
4286                        agfp = XFS_BUF_TO_AGF(agfbp);
4287                        freeblks += be32_to_cpu(agfp->agf_freeblks) +
4288                                    be32_to_cpu(agfp->agf_flcount);
4289                        xfs_buf_relse(agfbp);
4290                }
4291
4292                error = xfs_read_agi(mp, NULL, agno, &agibp);
4293                if (error) {
4294                        xfs_alert(mp, "%s agi read failed agno %d error %d",
4295                                                __func__, agno, error);
4296                } else {
4297                        struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
4298
4299                        itotal += be32_to_cpu(agi->agi_count);
4300                        ifree += be32_to_cpu(agi->agi_freecount);
4301                        xfs_buf_relse(agibp);
4302                }
4303        }
4304}
4305#endif /* DEBUG */
4306