linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifndef __ASSEMBLY__
   5#ifndef __GENERATING_BOUNDS_H
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <linux/page-flags-layout.h>
  19#include <linux/atomic.h>
  20#include <asm/page.h>
  21
  22/* Free memory management - zoned buddy allocator.  */
  23#ifndef CONFIG_FORCE_MAX_ZONEORDER
  24#define MAX_ORDER 11
  25#else
  26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  27#endif
  28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  29
  30/*
  31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  32 * costly to service.  That is between allocation orders which should
  33 * coalesce naturally under reasonable reclaim pressure and those which
  34 * will not.
  35 */
  36#define PAGE_ALLOC_COSTLY_ORDER 3
  37
  38enum {
  39        MIGRATE_UNMOVABLE,
  40        MIGRATE_RECLAIMABLE,
  41        MIGRATE_MOVABLE,
  42        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  43        MIGRATE_RESERVE = MIGRATE_PCPTYPES,
  44#ifdef CONFIG_CMA
  45        /*
  46         * MIGRATE_CMA migration type is designed to mimic the way
  47         * ZONE_MOVABLE works.  Only movable pages can be allocated
  48         * from MIGRATE_CMA pageblocks and page allocator never
  49         * implicitly change migration type of MIGRATE_CMA pageblock.
  50         *
  51         * The way to use it is to change migratetype of a range of
  52         * pageblocks to MIGRATE_CMA which can be done by
  53         * __free_pageblock_cma() function.  What is important though
  54         * is that a range of pageblocks must be aligned to
  55         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  56         * a single pageblock.
  57         */
  58        MIGRATE_CMA,
  59#endif
  60#ifdef CONFIG_MEMORY_ISOLATION
  61        MIGRATE_ISOLATE,        /* can't allocate from here */
  62#endif
  63        MIGRATE_TYPES
  64};
  65
  66#ifdef CONFIG_CMA
  67#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  68#else
  69#  define is_migrate_cma(migratetype) false
  70#endif
  71
  72#define for_each_migratetype_order(order, type) \
  73        for (order = 0; order < MAX_ORDER; order++) \
  74                for (type = 0; type < MIGRATE_TYPES; type++)
  75
  76extern int page_group_by_mobility_disabled;
  77
  78static inline int get_pageblock_migratetype(struct page *page)
  79{
  80        return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  81}
  82
  83struct free_area {
  84        struct list_head        free_list[MIGRATE_TYPES];
  85        unsigned long           nr_free;
  86};
  87
  88struct pglist_data;
  89
  90/*
  91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  92 * So add a wild amount of padding here to ensure that they fall into separate
  93 * cachelines.  There are very few zone structures in the machine, so space
  94 * consumption is not a concern here.
  95 */
  96#if defined(CONFIG_SMP)
  97struct zone_padding {
  98        char x[0];
  99} ____cacheline_internodealigned_in_smp;
 100#define ZONE_PADDING(name)      struct zone_padding name;
 101#else
 102#define ZONE_PADDING(name)
 103#endif
 104
 105enum zone_stat_item {
 106        /* First 128 byte cacheline (assuming 64 bit words) */
 107        NR_FREE_PAGES,
 108        NR_LRU_BASE,
 109        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 110        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 111        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 112        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 113        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 114        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 115        NR_ANON_PAGES,  /* Mapped anonymous pages */
 116        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 117                           only modified from process context */
 118        NR_FILE_PAGES,
 119        NR_FILE_DIRTY,
 120        NR_WRITEBACK,
 121        NR_SLAB_RECLAIMABLE,
 122        NR_SLAB_UNRECLAIMABLE,
 123        NR_PAGETABLE,           /* used for pagetables */
 124        NR_KERNEL_STACK,
 125        /* Second 128 byte cacheline */
 126        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 127        NR_BOUNCE,
 128        NR_VMSCAN_WRITE,
 129        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 130        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 131        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 132        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 133        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 134        NR_DIRTIED,             /* page dirtyings since bootup */
 135        NR_WRITTEN,             /* page writings since bootup */
 136#ifdef CONFIG_NUMA
 137        NUMA_HIT,               /* allocated in intended node */
 138        NUMA_MISS,              /* allocated in non intended node */
 139        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 140        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 141        NUMA_LOCAL,             /* allocation from local node */
 142        NUMA_OTHER,             /* allocation from other node */
 143#endif
 144        NR_ANON_TRANSPARENT_HUGEPAGES,
 145        NR_FREE_CMA_PAGES,
 146        NR_VM_ZONE_STAT_ITEMS };
 147
 148/*
 149 * We do arithmetic on the LRU lists in various places in the code,
 150 * so it is important to keep the active lists LRU_ACTIVE higher in
 151 * the array than the corresponding inactive lists, and to keep
 152 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 153 *
 154 * This has to be kept in sync with the statistics in zone_stat_item
 155 * above and the descriptions in vmstat_text in mm/vmstat.c
 156 */
 157#define LRU_BASE 0
 158#define LRU_ACTIVE 1
 159#define LRU_FILE 2
 160
 161enum lru_list {
 162        LRU_INACTIVE_ANON = LRU_BASE,
 163        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 164        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 165        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 166        LRU_UNEVICTABLE,
 167        NR_LRU_LISTS
 168};
 169
 170#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 171
 172#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 173
 174static inline int is_file_lru(enum lru_list lru)
 175{
 176        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 177}
 178
 179static inline int is_active_lru(enum lru_list lru)
 180{
 181        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 182}
 183
 184static inline int is_unevictable_lru(enum lru_list lru)
 185{
 186        return (lru == LRU_UNEVICTABLE);
 187}
 188
 189struct zone_reclaim_stat {
 190        /*
 191         * The pageout code in vmscan.c keeps track of how many of the
 192         * mem/swap backed and file backed pages are referenced.
 193         * The higher the rotated/scanned ratio, the more valuable
 194         * that cache is.
 195         *
 196         * The anon LRU stats live in [0], file LRU stats in [1]
 197         */
 198        unsigned long           recent_rotated[2];
 199        unsigned long           recent_scanned[2];
 200};
 201
 202struct lruvec {
 203        struct list_head lists[NR_LRU_LISTS];
 204        struct zone_reclaim_stat reclaim_stat;
 205#ifdef CONFIG_MEMCG
 206        struct zone *zone;
 207#endif
 208};
 209
 210/* Mask used at gathering information at once (see memcontrol.c) */
 211#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 212#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 213#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 214
 215/* Isolate clean file */
 216#define ISOLATE_CLEAN           ((__force isolate_mode_t)0x1)
 217/* Isolate unmapped file */
 218#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 219/* Isolate for asynchronous migration */
 220#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 221/* Isolate unevictable pages */
 222#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 223
 224/* LRU Isolation modes. */
 225typedef unsigned __bitwise__ isolate_mode_t;
 226
 227enum zone_watermarks {
 228        WMARK_MIN,
 229        WMARK_LOW,
 230        WMARK_HIGH,
 231        NR_WMARK
 232};
 233
 234#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 235#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 236#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 237
 238struct per_cpu_pages {
 239        int count;              /* number of pages in the list */
 240        int high;               /* high watermark, emptying needed */
 241        int batch;              /* chunk size for buddy add/remove */
 242
 243        /* Lists of pages, one per migrate type stored on the pcp-lists */
 244        struct list_head lists[MIGRATE_PCPTYPES];
 245};
 246
 247struct per_cpu_pageset {
 248        struct per_cpu_pages pcp;
 249#ifdef CONFIG_NUMA
 250        s8 expire;
 251#endif
 252#ifdef CONFIG_SMP
 253        s8 stat_threshold;
 254        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 255#endif
 256};
 257
 258#endif /* !__GENERATING_BOUNDS.H */
 259
 260enum zone_type {
 261#ifdef CONFIG_ZONE_DMA
 262        /*
 263         * ZONE_DMA is used when there are devices that are not able
 264         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 265         * carve out the portion of memory that is needed for these devices.
 266         * The range is arch specific.
 267         *
 268         * Some examples
 269         *
 270         * Architecture         Limit
 271         * ---------------------------
 272         * parisc, ia64, sparc  <4G
 273         * s390                 <2G
 274         * arm                  Various
 275         * alpha                Unlimited or 0-16MB.
 276         *
 277         * i386, x86_64 and multiple other arches
 278         *                      <16M.
 279         */
 280        ZONE_DMA,
 281#endif
 282#ifdef CONFIG_ZONE_DMA32
 283        /*
 284         * x86_64 needs two ZONE_DMAs because it supports devices that are
 285         * only able to do DMA to the lower 16M but also 32 bit devices that
 286         * can only do DMA areas below 4G.
 287         */
 288        ZONE_DMA32,
 289#endif
 290        /*
 291         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 292         * performed on pages in ZONE_NORMAL if the DMA devices support
 293         * transfers to all addressable memory.
 294         */
 295        ZONE_NORMAL,
 296#ifdef CONFIG_HIGHMEM
 297        /*
 298         * A memory area that is only addressable by the kernel through
 299         * mapping portions into its own address space. This is for example
 300         * used by i386 to allow the kernel to address the memory beyond
 301         * 900MB. The kernel will set up special mappings (page
 302         * table entries on i386) for each page that the kernel needs to
 303         * access.
 304         */
 305        ZONE_HIGHMEM,
 306#endif
 307        ZONE_MOVABLE,
 308        __MAX_NR_ZONES
 309};
 310
 311#ifndef __GENERATING_BOUNDS_H
 312
 313struct zone {
 314        /* Fields commonly accessed by the page allocator */
 315
 316        /* zone watermarks, access with *_wmark_pages(zone) macros */
 317        unsigned long watermark[NR_WMARK];
 318
 319        /*
 320         * When free pages are below this point, additional steps are taken
 321         * when reading the number of free pages to avoid per-cpu counter
 322         * drift allowing watermarks to be breached
 323         */
 324        unsigned long percpu_drift_mark;
 325
 326        /*
 327         * We don't know if the memory that we're going to allocate will be freeable
 328         * or/and it will be released eventually, so to avoid totally wasting several
 329         * GB of ram we must reserve some of the lower zone memory (otherwise we risk
 330         * to run OOM on the lower zones despite there's tons of freeable ram
 331         * on the higher zones). This array is recalculated at runtime if the
 332         * sysctl_lowmem_reserve_ratio sysctl changes.
 333         */
 334        unsigned long           lowmem_reserve[MAX_NR_ZONES];
 335
 336        /*
 337         * This is a per-zone reserve of pages that should not be
 338         * considered dirtyable memory.
 339         */
 340        unsigned long           dirty_balance_reserve;
 341
 342#ifdef CONFIG_NUMA
 343        int node;
 344        /*
 345         * zone reclaim becomes active if more unmapped pages exist.
 346         */
 347        unsigned long           min_unmapped_pages;
 348        unsigned long           min_slab_pages;
 349#endif
 350        struct per_cpu_pageset __percpu *pageset;
 351        /*
 352         * free areas of different sizes
 353         */
 354        spinlock_t              lock;
 355        int                     all_unreclaimable; /* All pages pinned */
 356#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 357        /* Set to true when the PG_migrate_skip bits should be cleared */
 358        bool                    compact_blockskip_flush;
 359
 360        /* pfns where compaction scanners should start */
 361        unsigned long           compact_cached_free_pfn;
 362        unsigned long           compact_cached_migrate_pfn;
 363#endif
 364#ifdef CONFIG_MEMORY_HOTPLUG
 365        /* see spanned/present_pages for more description */
 366        seqlock_t               span_seqlock;
 367#endif
 368        struct free_area        free_area[MAX_ORDER];
 369
 370#ifndef CONFIG_SPARSEMEM
 371        /*
 372         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 373         * In SPARSEMEM, this map is stored in struct mem_section
 374         */
 375        unsigned long           *pageblock_flags;
 376#endif /* CONFIG_SPARSEMEM */
 377
 378#ifdef CONFIG_COMPACTION
 379        /*
 380         * On compaction failure, 1<<compact_defer_shift compactions
 381         * are skipped before trying again. The number attempted since
 382         * last failure is tracked with compact_considered.
 383         */
 384        unsigned int            compact_considered;
 385        unsigned int            compact_defer_shift;
 386        int                     compact_order_failed;
 387#endif
 388
 389        ZONE_PADDING(_pad1_)
 390
 391        /* Fields commonly accessed by the page reclaim scanner */
 392        spinlock_t              lru_lock;
 393        struct lruvec           lruvec;
 394
 395        unsigned long           pages_scanned;     /* since last reclaim */
 396        unsigned long           flags;             /* zone flags, see below */
 397
 398        /* Zone statistics */
 399        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 400
 401        /*
 402         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 403         * this zone's LRU.  Maintained by the pageout code.
 404         */
 405        unsigned int inactive_ratio;
 406
 407
 408        ZONE_PADDING(_pad2_)
 409        /* Rarely used or read-mostly fields */
 410
 411        /*
 412         * wait_table           -- the array holding the hash table
 413         * wait_table_hash_nr_entries   -- the size of the hash table array
 414         * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
 415         *
 416         * The purpose of all these is to keep track of the people
 417         * waiting for a page to become available and make them
 418         * runnable again when possible. The trouble is that this
 419         * consumes a lot of space, especially when so few things
 420         * wait on pages at a given time. So instead of using
 421         * per-page waitqueues, we use a waitqueue hash table.
 422         *
 423         * The bucket discipline is to sleep on the same queue when
 424         * colliding and wake all in that wait queue when removing.
 425         * When something wakes, it must check to be sure its page is
 426         * truly available, a la thundering herd. The cost of a
 427         * collision is great, but given the expected load of the
 428         * table, they should be so rare as to be outweighed by the
 429         * benefits from the saved space.
 430         *
 431         * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
 432         * primary users of these fields, and in mm/page_alloc.c
 433         * free_area_init_core() performs the initialization of them.
 434         */
 435        wait_queue_head_t       * wait_table;
 436        unsigned long           wait_table_hash_nr_entries;
 437        unsigned long           wait_table_bits;
 438
 439        /*
 440         * Discontig memory support fields.
 441         */
 442        struct pglist_data      *zone_pgdat;
 443        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 444        unsigned long           zone_start_pfn;
 445
 446        /*
 447         * spanned_pages is the total pages spanned by the zone, including
 448         * holes, which is calculated as:
 449         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 450         *
 451         * present_pages is physical pages existing within the zone, which
 452         * is calculated as:
 453         *      present_pages = spanned_pages - absent_pages(pages in holes);
 454         *
 455         * managed_pages is present pages managed by the buddy system, which
 456         * is calculated as (reserved_pages includes pages allocated by the
 457         * bootmem allocator):
 458         *      managed_pages = present_pages - reserved_pages;
 459         *
 460         * So present_pages may be used by memory hotplug or memory power
 461         * management logic to figure out unmanaged pages by checking
 462         * (present_pages - managed_pages). And managed_pages should be used
 463         * by page allocator and vm scanner to calculate all kinds of watermarks
 464         * and thresholds.
 465         *
 466         * Locking rules:
 467         *
 468         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 469         * It is a seqlock because it has to be read outside of zone->lock,
 470         * and it is done in the main allocator path.  But, it is written
 471         * quite infrequently.
 472         *
 473         * The span_seq lock is declared along with zone->lock because it is
 474         * frequently read in proximity to zone->lock.  It's good to
 475         * give them a chance of being in the same cacheline.
 476         *
 477         * Write access to present_pages at runtime should be protected by
 478         * lock_memory_hotplug()/unlock_memory_hotplug().  Any reader who can't
 479         * tolerant drift of present_pages should hold memory hotplug lock to
 480         * get a stable value.
 481         *
 482         * Read access to managed_pages should be safe because it's unsigned
 483         * long. Write access to zone->managed_pages and totalram_pages are
 484         * protected by managed_page_count_lock at runtime. Idealy only
 485         * adjust_managed_page_count() should be used instead of directly
 486         * touching zone->managed_pages and totalram_pages.
 487         */
 488        unsigned long           spanned_pages;
 489        unsigned long           present_pages;
 490        unsigned long           managed_pages;
 491
 492        /*
 493         * rarely used fields:
 494         */
 495        const char              *name;
 496} ____cacheline_internodealigned_in_smp;
 497
 498typedef enum {
 499        ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
 500        ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
 501        ZONE_CONGESTED,                 /* zone has many dirty pages backed by
 502                                         * a congested BDI
 503                                         */
 504        ZONE_TAIL_LRU_DIRTY,            /* reclaim scanning has recently found
 505                                         * many dirty file pages at the tail
 506                                         * of the LRU.
 507                                         */
 508        ZONE_WRITEBACK,                 /* reclaim scanning has recently found
 509                                         * many pages under writeback
 510                                         */
 511} zone_flags_t;
 512
 513static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
 514{
 515        set_bit(flag, &zone->flags);
 516}
 517
 518static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
 519{
 520        return test_and_set_bit(flag, &zone->flags);
 521}
 522
 523static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
 524{
 525        clear_bit(flag, &zone->flags);
 526}
 527
 528static inline int zone_is_reclaim_congested(const struct zone *zone)
 529{
 530        return test_bit(ZONE_CONGESTED, &zone->flags);
 531}
 532
 533static inline int zone_is_reclaim_dirty(const struct zone *zone)
 534{
 535        return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
 536}
 537
 538static inline int zone_is_reclaim_writeback(const struct zone *zone)
 539{
 540        return test_bit(ZONE_WRITEBACK, &zone->flags);
 541}
 542
 543static inline int zone_is_reclaim_locked(const struct zone *zone)
 544{
 545        return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
 546}
 547
 548static inline int zone_is_oom_locked(const struct zone *zone)
 549{
 550        return test_bit(ZONE_OOM_LOCKED, &zone->flags);
 551}
 552
 553static inline unsigned long zone_end_pfn(const struct zone *zone)
 554{
 555        return zone->zone_start_pfn + zone->spanned_pages;
 556}
 557
 558static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 559{
 560        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 561}
 562
 563static inline bool zone_is_initialized(struct zone *zone)
 564{
 565        return !!zone->wait_table;
 566}
 567
 568static inline bool zone_is_empty(struct zone *zone)
 569{
 570        return zone->spanned_pages == 0;
 571}
 572
 573/*
 574 * The "priority" of VM scanning is how much of the queues we will scan in one
 575 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 576 * queues ("queue_length >> 12") during an aging round.
 577 */
 578#define DEF_PRIORITY 12
 579
 580/* Maximum number of zones on a zonelist */
 581#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 582
 583#ifdef CONFIG_NUMA
 584
 585/*
 586 * The NUMA zonelists are doubled because we need zonelists that restrict the
 587 * allocations to a single node for GFP_THISNODE.
 588 *
 589 * [0]  : Zonelist with fallback
 590 * [1]  : No fallback (GFP_THISNODE)
 591 */
 592#define MAX_ZONELISTS 2
 593
 594
 595/*
 596 * We cache key information from each zonelist for smaller cache
 597 * footprint when scanning for free pages in get_page_from_freelist().
 598 *
 599 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 600 *    up short of free memory since the last time (last_fullzone_zap)
 601 *    we zero'd fullzones.
 602 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 603 *    id, so that we can efficiently evaluate whether that node is
 604 *    set in the current tasks mems_allowed.
 605 *
 606 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 607 * indexed by a zones offset in the zonelist zones[] array.
 608 *
 609 * The get_page_from_freelist() routine does two scans.  During the
 610 * first scan, we skip zones whose corresponding bit in 'fullzones'
 611 * is set or whose corresponding node in current->mems_allowed (which
 612 * comes from cpusets) is not set.  During the second scan, we bypass
 613 * this zonelist_cache, to ensure we look methodically at each zone.
 614 *
 615 * Once per second, we zero out (zap) fullzones, forcing us to
 616 * reconsider nodes that might have regained more free memory.
 617 * The field last_full_zap is the time we last zapped fullzones.
 618 *
 619 * This mechanism reduces the amount of time we waste repeatedly
 620 * reexaming zones for free memory when they just came up low on
 621 * memory momentarilly ago.
 622 *
 623 * The zonelist_cache struct members logically belong in struct
 624 * zonelist.  However, the mempolicy zonelists constructed for
 625 * MPOL_BIND are intentionally variable length (and usually much
 626 * shorter).  A general purpose mechanism for handling structs with
 627 * multiple variable length members is more mechanism than we want
 628 * here.  We resort to some special case hackery instead.
 629 *
 630 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 631 * part because they are shorter), so we put the fixed length stuff
 632 * at the front of the zonelist struct, ending in a variable length
 633 * zones[], as is needed by MPOL_BIND.
 634 *
 635 * Then we put the optional zonelist cache on the end of the zonelist
 636 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 637 * the fixed length portion at the front of the struct.  This pointer
 638 * both enables us to find the zonelist cache, and in the case of
 639 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 640 * to know that the zonelist cache is not there.
 641 *
 642 * The end result is that struct zonelists come in two flavors:
 643 *  1) The full, fixed length version, shown below, and
 644 *  2) The custom zonelists for MPOL_BIND.
 645 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 646 *
 647 * Even though there may be multiple CPU cores on a node modifying
 648 * fullzones or last_full_zap in the same zonelist_cache at the same
 649 * time, we don't lock it.  This is just hint data - if it is wrong now
 650 * and then, the allocator will still function, perhaps a bit slower.
 651 */
 652
 653
 654struct zonelist_cache {
 655        unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
 656        DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
 657        unsigned long last_full_zap;            /* when last zap'd (jiffies) */
 658};
 659#else
 660#define MAX_ZONELISTS 1
 661struct zonelist_cache;
 662#endif
 663
 664/*
 665 * This struct contains information about a zone in a zonelist. It is stored
 666 * here to avoid dereferences into large structures and lookups of tables
 667 */
 668struct zoneref {
 669        struct zone *zone;      /* Pointer to actual zone */
 670        int zone_idx;           /* zone_idx(zoneref->zone) */
 671};
 672
 673/*
 674 * One allocation request operates on a zonelist. A zonelist
 675 * is a list of zones, the first one is the 'goal' of the
 676 * allocation, the other zones are fallback zones, in decreasing
 677 * priority.
 678 *
 679 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 680 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
 681 * *
 682 * To speed the reading of the zonelist, the zonerefs contain the zone index
 683 * of the entry being read. Helper functions to access information given
 684 * a struct zoneref are
 685 *
 686 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 687 * zonelist_zone_idx()  - Return the index of the zone for an entry
 688 * zonelist_node_idx()  - Return the index of the node for an entry
 689 */
 690struct zonelist {
 691        struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
 692        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 693#ifdef CONFIG_NUMA
 694        struct zonelist_cache zlcache;                       // optional ...
 695#endif
 696};
 697
 698#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 699struct node_active_region {
 700        unsigned long start_pfn;
 701        unsigned long end_pfn;
 702        int nid;
 703};
 704#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 705
 706#ifndef CONFIG_DISCONTIGMEM
 707/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 708extern struct page *mem_map;
 709#endif
 710
 711/*
 712 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 713 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 714 * zone denotes.
 715 *
 716 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 717 * it's memory layout.
 718 *
 719 * Memory statistics and page replacement data structures are maintained on a
 720 * per-zone basis.
 721 */
 722struct bootmem_data;
 723typedef struct pglist_data {
 724        struct zone node_zones[MAX_NR_ZONES];
 725        struct zonelist node_zonelists[MAX_ZONELISTS];
 726        int nr_zones;
 727#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 728        struct page *node_mem_map;
 729#ifdef CONFIG_MEMCG
 730        struct page_cgroup *node_page_cgroup;
 731#endif
 732#endif
 733#ifndef CONFIG_NO_BOOTMEM
 734        struct bootmem_data *bdata;
 735#endif
 736#ifdef CONFIG_MEMORY_HOTPLUG
 737        /*
 738         * Must be held any time you expect node_start_pfn, node_present_pages
 739         * or node_spanned_pages stay constant.  Holding this will also
 740         * guarantee that any pfn_valid() stays that way.
 741         *
 742         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 743         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
 744         *
 745         * Nests above zone->lock and zone->span_seqlock
 746         */
 747        spinlock_t node_size_lock;
 748#endif
 749        unsigned long node_start_pfn;
 750        unsigned long node_present_pages; /* total number of physical pages */
 751        unsigned long node_spanned_pages; /* total size of physical page
 752                                             range, including holes */
 753        int node_id;
 754        nodemask_t reclaim_nodes;       /* Nodes allowed to reclaim from */
 755        wait_queue_head_t kswapd_wait;
 756        wait_queue_head_t pfmemalloc_wait;
 757        struct task_struct *kswapd;     /* Protected by lock_memory_hotplug() */
 758        int kswapd_max_order;
 759        enum zone_type classzone_idx;
 760#ifdef CONFIG_NUMA_BALANCING
 761        /*
 762         * Lock serializing the per destination node AutoNUMA memory
 763         * migration rate limiting data.
 764         */
 765        spinlock_t numabalancing_migrate_lock;
 766
 767        /* Rate limiting time interval */
 768        unsigned long numabalancing_migrate_next_window;
 769
 770        /* Number of pages migrated during the rate limiting time interval */
 771        unsigned long numabalancing_migrate_nr_pages;
 772#endif
 773} pg_data_t;
 774
 775#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 776#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 777#ifdef CONFIG_FLAT_NODE_MEM_MAP
 778#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 779#else
 780#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 781#endif
 782#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 783
 784#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 785#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 786
 787static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 788{
 789        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 790}
 791
 792static inline bool pgdat_is_empty(pg_data_t *pgdat)
 793{
 794        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 795}
 796
 797#include <linux/memory_hotplug.h>
 798
 799extern struct mutex zonelists_mutex;
 800void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
 801void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 802bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
 803                int classzone_idx, int alloc_flags);
 804bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
 805                int classzone_idx, int alloc_flags);
 806enum memmap_context {
 807        MEMMAP_EARLY,
 808        MEMMAP_HOTPLUG,
 809};
 810extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 811                                     unsigned long size,
 812                                     enum memmap_context context);
 813
 814extern void lruvec_init(struct lruvec *lruvec);
 815
 816static inline struct zone *lruvec_zone(struct lruvec *lruvec)
 817{
 818#ifdef CONFIG_MEMCG
 819        return lruvec->zone;
 820#else
 821        return container_of(lruvec, struct zone, lruvec);
 822#endif
 823}
 824
 825#ifdef CONFIG_HAVE_MEMORY_PRESENT
 826void memory_present(int nid, unsigned long start, unsigned long end);
 827#else
 828static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 829#endif
 830
 831#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 832int local_memory_node(int node_id);
 833#else
 834static inline int local_memory_node(int node_id) { return node_id; };
 835#endif
 836
 837#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 838unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 839#endif
 840
 841/*
 842 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 843 */
 844#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 845
 846static inline int populated_zone(struct zone *zone)
 847{
 848        return (!!zone->present_pages);
 849}
 850
 851extern int movable_zone;
 852
 853static inline int zone_movable_is_highmem(void)
 854{
 855#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
 856        return movable_zone == ZONE_HIGHMEM;
 857#else
 858        return 0;
 859#endif
 860}
 861
 862static inline int is_highmem_idx(enum zone_type idx)
 863{
 864#ifdef CONFIG_HIGHMEM
 865        return (idx == ZONE_HIGHMEM ||
 866                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 867#else
 868        return 0;
 869#endif
 870}
 871
 872/**
 873 * is_highmem - helper function to quickly check if a struct zone is a 
 874 *              highmem zone or not.  This is an attempt to keep references
 875 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 876 * @zone - pointer to struct zone variable
 877 */
 878static inline int is_highmem(struct zone *zone)
 879{
 880#ifdef CONFIG_HIGHMEM
 881        int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
 882        return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
 883               (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
 884                zone_movable_is_highmem());
 885#else
 886        return 0;
 887#endif
 888}
 889
 890/* These two functions are used to setup the per zone pages min values */
 891struct ctl_table;
 892int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 893                                        void __user *, size_t *, loff_t *);
 894extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 895int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 896                                        void __user *, size_t *, loff_t *);
 897int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 898                                        void __user *, size_t *, loff_t *);
 899int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 900                        void __user *, size_t *, loff_t *);
 901int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 902                        void __user *, size_t *, loff_t *);
 903
 904extern int numa_zonelist_order_handler(struct ctl_table *, int,
 905                        void __user *, size_t *, loff_t *);
 906extern char numa_zonelist_order[];
 907#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 908
 909#ifndef CONFIG_NEED_MULTIPLE_NODES
 910
 911extern struct pglist_data contig_page_data;
 912#define NODE_DATA(nid)          (&contig_page_data)
 913#define NODE_MEM_MAP(nid)       mem_map
 914
 915#else /* CONFIG_NEED_MULTIPLE_NODES */
 916
 917#include <asm/mmzone.h>
 918
 919#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 920
 921extern struct pglist_data *first_online_pgdat(void);
 922extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 923extern struct zone *next_zone(struct zone *zone);
 924
 925/**
 926 * for_each_online_pgdat - helper macro to iterate over all online nodes
 927 * @pgdat - pointer to a pg_data_t variable
 928 */
 929#define for_each_online_pgdat(pgdat)                    \
 930        for (pgdat = first_online_pgdat();              \
 931             pgdat;                                     \
 932             pgdat = next_online_pgdat(pgdat))
 933/**
 934 * for_each_zone - helper macro to iterate over all memory zones
 935 * @zone - pointer to struct zone variable
 936 *
 937 * The user only needs to declare the zone variable, for_each_zone
 938 * fills it in.
 939 */
 940#define for_each_zone(zone)                             \
 941        for (zone = (first_online_pgdat())->node_zones; \
 942             zone;                                      \
 943             zone = next_zone(zone))
 944
 945#define for_each_populated_zone(zone)                   \
 946        for (zone = (first_online_pgdat())->node_zones; \
 947             zone;                                      \
 948             zone = next_zone(zone))                    \
 949                if (!populated_zone(zone))              \
 950                        ; /* do nothing */              \
 951                else
 952
 953static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 954{
 955        return zoneref->zone;
 956}
 957
 958static inline int zonelist_zone_idx(struct zoneref *zoneref)
 959{
 960        return zoneref->zone_idx;
 961}
 962
 963static inline int zonelist_node_idx(struct zoneref *zoneref)
 964{
 965#ifdef CONFIG_NUMA
 966        /* zone_to_nid not available in this context */
 967        return zoneref->zone->node;
 968#else
 969        return 0;
 970#endif /* CONFIG_NUMA */
 971}
 972
 973/**
 974 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 975 * @z - The cursor used as a starting point for the search
 976 * @highest_zoneidx - The zone index of the highest zone to return
 977 * @nodes - An optional nodemask to filter the zonelist with
 978 * @zone - The first suitable zone found is returned via this parameter
 979 *
 980 * This function returns the next zone at or below a given zone index that is
 981 * within the allowed nodemask using a cursor as the starting point for the
 982 * search. The zoneref returned is a cursor that represents the current zone
 983 * being examined. It should be advanced by one before calling
 984 * next_zones_zonelist again.
 985 */
 986struct zoneref *next_zones_zonelist(struct zoneref *z,
 987                                        enum zone_type highest_zoneidx,
 988                                        nodemask_t *nodes,
 989                                        struct zone **zone);
 990
 991/**
 992 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 993 * @zonelist - The zonelist to search for a suitable zone
 994 * @highest_zoneidx - The zone index of the highest zone to return
 995 * @nodes - An optional nodemask to filter the zonelist with
 996 * @zone - The first suitable zone found is returned via this parameter
 997 *
 998 * This function returns the first zone at or below a given zone index that is
 999 * within the allowed nodemask. The zoneref returned is a cursor that can be
1000 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1001 * one before calling.
1002 */
1003static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1004                                        enum zone_type highest_zoneidx,
1005                                        nodemask_t *nodes,
1006                                        struct zone **zone)
1007{
1008        return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1009                                                                zone);
1010}
1011
1012/**
1013 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1014 * @zone - The current zone in the iterator
1015 * @z - The current pointer within zonelist->zones being iterated
1016 * @zlist - The zonelist being iterated
1017 * @highidx - The zone index of the highest zone to return
1018 * @nodemask - Nodemask allowed by the allocator
1019 *
1020 * This iterator iterates though all zones at or below a given zone index and
1021 * within a given nodemask
1022 */
1023#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1024        for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1025                zone;                                                   \
1026                z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
1027
1028/**
1029 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1030 * @zone - The current zone in the iterator
1031 * @z - The current pointer within zonelist->zones being iterated
1032 * @zlist - The zonelist being iterated
1033 * @highidx - The zone index of the highest zone to return
1034 *
1035 * This iterator iterates though all zones at or below a given zone index.
1036 */
1037#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1038        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1039
1040#ifdef CONFIG_SPARSEMEM
1041#include <asm/sparsemem.h>
1042#endif
1043
1044#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1045        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1046static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1047{
1048        return 0;
1049}
1050#endif
1051
1052#ifdef CONFIG_FLATMEM
1053#define pfn_to_nid(pfn)         (0)
1054#endif
1055
1056#ifdef CONFIG_SPARSEMEM
1057
1058/*
1059 * SECTION_SHIFT                #bits space required to store a section #
1060 *
1061 * PA_SECTION_SHIFT             physical address to/from section number
1062 * PFN_SECTION_SHIFT            pfn to/from section number
1063 */
1064#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1065#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1066
1067#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1068
1069#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1070#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1071
1072#define SECTION_BLOCKFLAGS_BITS \
1073        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1074
1075#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1076#error Allocator MAX_ORDER exceeds SECTION_SIZE
1077#endif
1078
1079#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1080#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1081
1082#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1083#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1084
1085struct page;
1086struct page_cgroup;
1087struct mem_section {
1088        /*
1089         * This is, logically, a pointer to an array of struct
1090         * pages.  However, it is stored with some other magic.
1091         * (see sparse.c::sparse_init_one_section())
1092         *
1093         * Additionally during early boot we encode node id of
1094         * the location of the section here to guide allocation.
1095         * (see sparse.c::memory_present())
1096         *
1097         * Making it a UL at least makes someone do a cast
1098         * before using it wrong.
1099         */
1100        unsigned long section_mem_map;
1101
1102        /* See declaration of similar field in struct zone */
1103        unsigned long *pageblock_flags;
1104#ifdef CONFIG_MEMCG
1105        /*
1106         * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1107         * section. (see memcontrol.h/page_cgroup.h about this.)
1108         */
1109        struct page_cgroup *page_cgroup;
1110        unsigned long pad;
1111#endif
1112        /*
1113         * WARNING: mem_section must be a power-of-2 in size for the
1114         * calculation and use of SECTION_ROOT_MASK to make sense.
1115         */
1116};
1117
1118#ifdef CONFIG_SPARSEMEM_EXTREME
1119#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1120#else
1121#define SECTIONS_PER_ROOT       1
1122#endif
1123
1124#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1125#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1126#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1127
1128#ifdef CONFIG_SPARSEMEM_EXTREME
1129extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1130#else
1131extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1132#endif
1133
1134static inline struct mem_section *__nr_to_section(unsigned long nr)
1135{
1136        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1137                return NULL;
1138        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1139}
1140extern int __section_nr(struct mem_section* ms);
1141extern unsigned long usemap_size(void);
1142
1143/*
1144 * We use the lower bits of the mem_map pointer to store
1145 * a little bit of information.  There should be at least
1146 * 3 bits here due to 32-bit alignment.
1147 */
1148#define SECTION_MARKED_PRESENT  (1UL<<0)
1149#define SECTION_HAS_MEM_MAP     (1UL<<1)
1150#define SECTION_MAP_LAST_BIT    (1UL<<2)
1151#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1152#define SECTION_NID_SHIFT       2
1153
1154static inline struct page *__section_mem_map_addr(struct mem_section *section)
1155{
1156        unsigned long map = section->section_mem_map;
1157        map &= SECTION_MAP_MASK;
1158        return (struct page *)map;
1159}
1160
1161static inline int present_section(struct mem_section *section)
1162{
1163        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1164}
1165
1166static inline int present_section_nr(unsigned long nr)
1167{
1168        return present_section(__nr_to_section(nr));
1169}
1170
1171static inline int valid_section(struct mem_section *section)
1172{
1173        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1174}
1175
1176static inline int valid_section_nr(unsigned long nr)
1177{
1178        return valid_section(__nr_to_section(nr));
1179}
1180
1181static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1182{
1183        return __nr_to_section(pfn_to_section_nr(pfn));
1184}
1185
1186#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1187static inline int pfn_valid(unsigned long pfn)
1188{
1189        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1190                return 0;
1191        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1192}
1193#endif
1194
1195static inline int pfn_present(unsigned long pfn)
1196{
1197        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1198                return 0;
1199        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1200}
1201
1202/*
1203 * These are _only_ used during initialisation, therefore they
1204 * can use __initdata ...  They could have names to indicate
1205 * this restriction.
1206 */
1207#ifdef CONFIG_NUMA
1208#define pfn_to_nid(pfn)                                                 \
1209({                                                                      \
1210        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1211        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1212})
1213#else
1214#define pfn_to_nid(pfn)         (0)
1215#endif
1216
1217#define early_pfn_valid(pfn)    pfn_valid(pfn)
1218void sparse_init(void);
1219#else
1220#define sparse_init()   do {} while (0)
1221#define sparse_index_init(_sec, _nid)  do {} while (0)
1222#endif /* CONFIG_SPARSEMEM */
1223
1224#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1225bool early_pfn_in_nid(unsigned long pfn, int nid);
1226#else
1227#define early_pfn_in_nid(pfn, nid)      (1)
1228#endif
1229
1230#ifndef early_pfn_valid
1231#define early_pfn_valid(pfn)    (1)
1232#endif
1233
1234void memory_present(int nid, unsigned long start, unsigned long end);
1235unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1236
1237/*
1238 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1239 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1240 * pfn_valid_within() should be used in this case; we optimise this away
1241 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1242 */
1243#ifdef CONFIG_HOLES_IN_ZONE
1244#define pfn_valid_within(pfn) pfn_valid(pfn)
1245#else
1246#define pfn_valid_within(pfn) (1)
1247#endif
1248
1249#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1250/*
1251 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1252 * associated with it or not. In FLATMEM, it is expected that holes always
1253 * have valid memmap as long as there is valid PFNs either side of the hole.
1254 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1255 * entire section.
1256 *
1257 * However, an ARM, and maybe other embedded architectures in the future
1258 * free memmap backing holes to save memory on the assumption the memmap is
1259 * never used. The page_zone linkages are then broken even though pfn_valid()
1260 * returns true. A walker of the full memmap must then do this additional
1261 * check to ensure the memmap they are looking at is sane by making sure
1262 * the zone and PFN linkages are still valid. This is expensive, but walkers
1263 * of the full memmap are extremely rare.
1264 */
1265int memmap_valid_within(unsigned long pfn,
1266                                        struct page *page, struct zone *zone);
1267#else
1268static inline int memmap_valid_within(unsigned long pfn,
1269                                        struct page *page, struct zone *zone)
1270{
1271        return 1;
1272}
1273#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1274
1275#endif /* !__GENERATING_BOUNDS.H */
1276#endif /* !__ASSEMBLY__ */
1277#endif /* _LINUX_MMZONE_H */
1278