linux/include/linux/sched.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_H
   2#define _LINUX_SCHED_H
   3
   4#include <uapi/linux/sched.h>
   5
   6
   7struct sched_param {
   8        int sched_priority;
   9};
  10
  11#include <asm/param.h>  /* for HZ */
  12
  13#include <linux/capability.h>
  14#include <linux/threads.h>
  15#include <linux/kernel.h>
  16#include <linux/types.h>
  17#include <linux/timex.h>
  18#include <linux/jiffies.h>
  19#include <linux/rbtree.h>
  20#include <linux/thread_info.h>
  21#include <linux/cpumask.h>
  22#include <linux/errno.h>
  23#include <linux/nodemask.h>
  24#include <linux/mm_types.h>
  25
  26#include <asm/page.h>
  27#include <asm/ptrace.h>
  28#include <asm/cputime.h>
  29
  30#include <linux/smp.h>
  31#include <linux/sem.h>
  32#include <linux/signal.h>
  33#include <linux/compiler.h>
  34#include <linux/completion.h>
  35#include <linux/pid.h>
  36#include <linux/percpu.h>
  37#include <linux/topology.h>
  38#include <linux/proportions.h>
  39#include <linux/seccomp.h>
  40#include <linux/rcupdate.h>
  41#include <linux/rculist.h>
  42#include <linux/rtmutex.h>
  43
  44#include <linux/time.h>
  45#include <linux/param.h>
  46#include <linux/resource.h>
  47#include <linux/timer.h>
  48#include <linux/hrtimer.h>
  49#include <linux/task_io_accounting.h>
  50#include <linux/latencytop.h>
  51#include <linux/cred.h>
  52#include <linux/llist.h>
  53#include <linux/uidgid.h>
  54#include <linux/gfp.h>
  55
  56#include <asm/processor.h>
  57
  58struct exec_domain;
  59struct futex_pi_state;
  60struct robust_list_head;
  61struct bio_list;
  62struct fs_struct;
  63struct perf_event_context;
  64struct blk_plug;
  65
  66/*
  67 * List of flags we want to share for kernel threads,
  68 * if only because they are not used by them anyway.
  69 */
  70#define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
  71
  72/*
  73 * These are the constant used to fake the fixed-point load-average
  74 * counting. Some notes:
  75 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
  76 *    a load-average precision of 10 bits integer + 11 bits fractional
  77 *  - if you want to count load-averages more often, you need more
  78 *    precision, or rounding will get you. With 2-second counting freq,
  79 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
  80 *    11 bit fractions.
  81 */
  82extern unsigned long avenrun[];         /* Load averages */
  83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
  84
  85#define FSHIFT          11              /* nr of bits of precision */
  86#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
  87#define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
  88#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
  89#define EXP_5           2014            /* 1/exp(5sec/5min) */
  90#define EXP_15          2037            /* 1/exp(5sec/15min) */
  91
  92#define CALC_LOAD(load,exp,n) \
  93        load *= exp; \
  94        load += n*(FIXED_1-exp); \
  95        load >>= FSHIFT;
  96
  97extern unsigned long total_forks;
  98extern int nr_threads;
  99DECLARE_PER_CPU(unsigned long, process_counts);
 100extern int nr_processes(void);
 101extern unsigned long nr_running(void);
 102extern unsigned long nr_iowait(void);
 103extern unsigned long nr_iowait_cpu(int cpu);
 104extern unsigned long this_cpu_load(void);
 105
 106
 107extern void calc_global_load(unsigned long ticks);
 108extern void update_cpu_load_nohz(void);
 109
 110/* Notifier for when a task gets migrated to a new CPU */
 111struct task_migration_notifier {
 112        struct task_struct *task;
 113        int from_cpu;
 114        int to_cpu;
 115};
 116extern void register_task_migration_notifier(struct notifier_block *n);
 117
 118extern unsigned long get_parent_ip(unsigned long addr);
 119
 120extern void dump_cpu_task(int cpu);
 121
 122struct seq_file;
 123struct cfs_rq;
 124struct task_group;
 125#ifdef CONFIG_SCHED_DEBUG
 126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 127extern void proc_sched_set_task(struct task_struct *p);
 128extern void
 129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 130#endif
 131
 132/*
 133 * Task state bitmask. NOTE! These bits are also
 134 * encoded in fs/proc/array.c: get_task_state().
 135 *
 136 * We have two separate sets of flags: task->state
 137 * is about runnability, while task->exit_state are
 138 * about the task exiting. Confusing, but this way
 139 * modifying one set can't modify the other one by
 140 * mistake.
 141 */
 142#define TASK_RUNNING            0
 143#define TASK_INTERRUPTIBLE      1
 144#define TASK_UNINTERRUPTIBLE    2
 145#define __TASK_STOPPED          4
 146#define __TASK_TRACED           8
 147/* in tsk->exit_state */
 148#define EXIT_ZOMBIE             16
 149#define EXIT_DEAD               32
 150/* in tsk->state again */
 151#define TASK_DEAD               64
 152#define TASK_WAKEKILL           128
 153#define TASK_WAKING             256
 154#define TASK_PARKED             512
 155#define TASK_STATE_MAX          1024
 156
 157#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
 158
 159extern char ___assert_task_state[1 - 2*!!(
 160                sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 161
 162/* Convenience macros for the sake of set_task_state */
 163#define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 164#define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
 165#define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
 166
 167/* Convenience macros for the sake of wake_up */
 168#define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 169#define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 170
 171/* get_task_state() */
 172#define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 173                                 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 174                                 __TASK_TRACED)
 175
 176#define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
 177#define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
 178#define task_is_dead(task)      ((task)->exit_state != 0)
 179#define task_is_stopped_or_traced(task) \
 180                        ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 181#define task_contributes_to_load(task)  \
 182                                ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 183                                 (task->flags & PF_FROZEN) == 0)
 184
 185#define __set_task_state(tsk, state_value)              \
 186        do { (tsk)->state = (state_value); } while (0)
 187#define set_task_state(tsk, state_value)                \
 188        set_mb((tsk)->state, (state_value))
 189
 190/*
 191 * set_current_state() includes a barrier so that the write of current->state
 192 * is correctly serialised wrt the caller's subsequent test of whether to
 193 * actually sleep:
 194 *
 195 *      set_current_state(TASK_UNINTERRUPTIBLE);
 196 *      if (do_i_need_to_sleep())
 197 *              schedule();
 198 *
 199 * If the caller does not need such serialisation then use __set_current_state()
 200 */
 201#define __set_current_state(state_value)                        \
 202        do { current->state = (state_value); } while (0)
 203#define set_current_state(state_value)          \
 204        set_mb(current->state, (state_value))
 205
 206/* Task command name length */
 207#define TASK_COMM_LEN 16
 208
 209#include <linux/spinlock.h>
 210
 211/*
 212 * This serializes "schedule()" and also protects
 213 * the run-queue from deletions/modifications (but
 214 * _adding_ to the beginning of the run-queue has
 215 * a separate lock).
 216 */
 217extern rwlock_t tasklist_lock;
 218extern spinlock_t mmlist_lock;
 219
 220struct task_struct;
 221
 222#ifdef CONFIG_PROVE_RCU
 223extern int lockdep_tasklist_lock_is_held(void);
 224#endif /* #ifdef CONFIG_PROVE_RCU */
 225
 226extern void sched_init(void);
 227extern void sched_init_smp(void);
 228extern asmlinkage void schedule_tail(struct task_struct *prev);
 229extern void init_idle(struct task_struct *idle, int cpu);
 230extern void init_idle_bootup_task(struct task_struct *idle);
 231
 232extern int runqueue_is_locked(int cpu);
 233
 234#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 235extern void nohz_balance_enter_idle(int cpu);
 236extern void set_cpu_sd_state_idle(void);
 237extern int get_nohz_timer_target(void);
 238#else
 239static inline void nohz_balance_enter_idle(int cpu) { }
 240static inline void set_cpu_sd_state_idle(void) { }
 241#endif
 242
 243/*
 244 * Only dump TASK_* tasks. (0 for all tasks)
 245 */
 246extern void show_state_filter(unsigned long state_filter);
 247
 248static inline void show_state(void)
 249{
 250        show_state_filter(0);
 251}
 252
 253extern void show_regs(struct pt_regs *);
 254
 255/*
 256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 257 * task), SP is the stack pointer of the first frame that should be shown in the back
 258 * trace (or NULL if the entire call-chain of the task should be shown).
 259 */
 260extern void show_stack(struct task_struct *task, unsigned long *sp);
 261
 262void io_schedule(void);
 263long io_schedule_timeout(long timeout);
 264
 265extern void cpu_init (void);
 266extern void trap_init(void);
 267extern void update_process_times(int user);
 268extern void scheduler_tick(void);
 269
 270extern void sched_show_task(struct task_struct *p);
 271
 272#ifdef CONFIG_LOCKUP_DETECTOR
 273extern void touch_softlockup_watchdog(void);
 274extern void touch_softlockup_watchdog_sync(void);
 275extern void touch_all_softlockup_watchdogs(void);
 276extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 277                                  void __user *buffer,
 278                                  size_t *lenp, loff_t *ppos);
 279extern unsigned int  softlockup_panic;
 280void lockup_detector_init(void);
 281#else
 282static inline void touch_softlockup_watchdog(void)
 283{
 284}
 285static inline void touch_softlockup_watchdog_sync(void)
 286{
 287}
 288static inline void touch_all_softlockup_watchdogs(void)
 289{
 290}
 291static inline void lockup_detector_init(void)
 292{
 293}
 294#endif
 295
 296/* Attach to any functions which should be ignored in wchan output. */
 297#define __sched         __attribute__((__section__(".sched.text")))
 298
 299/* Linker adds these: start and end of __sched functions */
 300extern char __sched_text_start[], __sched_text_end[];
 301
 302/* Is this address in the __sched functions? */
 303extern int in_sched_functions(unsigned long addr);
 304
 305#define MAX_SCHEDULE_TIMEOUT    LONG_MAX
 306extern signed long schedule_timeout(signed long timeout);
 307extern signed long schedule_timeout_interruptible(signed long timeout);
 308extern signed long schedule_timeout_killable(signed long timeout);
 309extern signed long schedule_timeout_uninterruptible(signed long timeout);
 310asmlinkage void schedule(void);
 311extern void schedule_preempt_disabled(void);
 312
 313struct nsproxy;
 314struct user_namespace;
 315
 316#ifdef CONFIG_MMU
 317extern void arch_pick_mmap_layout(struct mm_struct *mm);
 318extern unsigned long
 319arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 320                       unsigned long, unsigned long);
 321extern unsigned long
 322arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 323                          unsigned long len, unsigned long pgoff,
 324                          unsigned long flags);
 325#else
 326static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 327#endif
 328
 329
 330extern void set_dumpable(struct mm_struct *mm, int value);
 331extern int get_dumpable(struct mm_struct *mm);
 332
 333/* mm flags */
 334/* dumpable bits */
 335#define MMF_DUMPABLE      0  /* core dump is permitted */
 336#define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 337
 338#define MMF_DUMPABLE_BITS 2
 339#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 340
 341/* coredump filter bits */
 342#define MMF_DUMP_ANON_PRIVATE   2
 343#define MMF_DUMP_ANON_SHARED    3
 344#define MMF_DUMP_MAPPED_PRIVATE 4
 345#define MMF_DUMP_MAPPED_SHARED  5
 346#define MMF_DUMP_ELF_HEADERS    6
 347#define MMF_DUMP_HUGETLB_PRIVATE 7
 348#define MMF_DUMP_HUGETLB_SHARED  8
 349
 350#define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
 351#define MMF_DUMP_FILTER_BITS    7
 352#define MMF_DUMP_FILTER_MASK \
 353        (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 354#define MMF_DUMP_FILTER_DEFAULT \
 355        ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
 356         (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 357
 358#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 359# define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
 360#else
 361# define MMF_DUMP_MASK_DEFAULT_ELF      0
 362#endif
 363                                        /* leave room for more dump flags */
 364#define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
 365#define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
 366#define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
 367
 368#define MMF_HAS_UPROBES         19      /* has uprobes */
 369#define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
 370
 371#define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 372
 373struct sighand_struct {
 374        atomic_t                count;
 375        struct k_sigaction      action[_NSIG];
 376        spinlock_t              siglock;
 377        wait_queue_head_t       signalfd_wqh;
 378};
 379
 380struct pacct_struct {
 381        int                     ac_flag;
 382        long                    ac_exitcode;
 383        unsigned long           ac_mem;
 384        cputime_t               ac_utime, ac_stime;
 385        unsigned long           ac_minflt, ac_majflt;
 386};
 387
 388struct cpu_itimer {
 389        cputime_t expires;
 390        cputime_t incr;
 391        u32 error;
 392        u32 incr_error;
 393};
 394
 395/**
 396 * struct cputime - snaphsot of system and user cputime
 397 * @utime: time spent in user mode
 398 * @stime: time spent in system mode
 399 *
 400 * Gathers a generic snapshot of user and system time.
 401 */
 402struct cputime {
 403        cputime_t utime;
 404        cputime_t stime;
 405};
 406
 407/**
 408 * struct task_cputime - collected CPU time counts
 409 * @utime:              time spent in user mode, in &cputime_t units
 410 * @stime:              time spent in kernel mode, in &cputime_t units
 411 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 412 *
 413 * This is an extension of struct cputime that includes the total runtime
 414 * spent by the task from the scheduler point of view.
 415 *
 416 * As a result, this structure groups together three kinds of CPU time
 417 * that are tracked for threads and thread groups.  Most things considering
 418 * CPU time want to group these counts together and treat all three
 419 * of them in parallel.
 420 */
 421struct task_cputime {
 422        cputime_t utime;
 423        cputime_t stime;
 424        unsigned long long sum_exec_runtime;
 425};
 426/* Alternate field names when used to cache expirations. */
 427#define prof_exp        stime
 428#define virt_exp        utime
 429#define sched_exp       sum_exec_runtime
 430
 431#define INIT_CPUTIME    \
 432        (struct task_cputime) {                                 \
 433                .utime = 0,                                     \
 434                .stime = 0,                                     \
 435                .sum_exec_runtime = 0,                          \
 436        }
 437
 438/*
 439 * Disable preemption until the scheduler is running.
 440 * Reset by start_kernel()->sched_init()->init_idle().
 441 *
 442 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 443 * before the scheduler is active -- see should_resched().
 444 */
 445#define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
 446
 447/**
 448 * struct thread_group_cputimer - thread group interval timer counts
 449 * @cputime:            thread group interval timers.
 450 * @running:            non-zero when there are timers running and
 451 *                      @cputime receives updates.
 452 * @lock:               lock for fields in this struct.
 453 *
 454 * This structure contains the version of task_cputime, above, that is
 455 * used for thread group CPU timer calculations.
 456 */
 457struct thread_group_cputimer {
 458        struct task_cputime cputime;
 459        int running;
 460        raw_spinlock_t lock;
 461};
 462
 463#include <linux/rwsem.h>
 464struct autogroup;
 465
 466/*
 467 * NOTE! "signal_struct" does not have its own
 468 * locking, because a shared signal_struct always
 469 * implies a shared sighand_struct, so locking
 470 * sighand_struct is always a proper superset of
 471 * the locking of signal_struct.
 472 */
 473struct signal_struct {
 474        atomic_t                sigcnt;
 475        atomic_t                live;
 476        int                     nr_threads;
 477
 478        wait_queue_head_t       wait_chldexit;  /* for wait4() */
 479
 480        /* current thread group signal load-balancing target: */
 481        struct task_struct      *curr_target;
 482
 483        /* shared signal handling: */
 484        struct sigpending       shared_pending;
 485
 486        /* thread group exit support */
 487        int                     group_exit_code;
 488        /* overloaded:
 489         * - notify group_exit_task when ->count is equal to notify_count
 490         * - everyone except group_exit_task is stopped during signal delivery
 491         *   of fatal signals, group_exit_task processes the signal.
 492         */
 493        int                     notify_count;
 494        struct task_struct      *group_exit_task;
 495
 496        /* thread group stop support, overloads group_exit_code too */
 497        int                     group_stop_count;
 498        unsigned int            flags; /* see SIGNAL_* flags below */
 499
 500        /*
 501         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 502         * manager, to re-parent orphan (double-forking) child processes
 503         * to this process instead of 'init'. The service manager is
 504         * able to receive SIGCHLD signals and is able to investigate
 505         * the process until it calls wait(). All children of this
 506         * process will inherit a flag if they should look for a
 507         * child_subreaper process at exit.
 508         */
 509        unsigned int            is_child_subreaper:1;
 510        unsigned int            has_child_subreaper:1;
 511
 512        /* POSIX.1b Interval Timers */
 513        int                     posix_timer_id;
 514        struct list_head        posix_timers;
 515
 516        /* ITIMER_REAL timer for the process */
 517        struct hrtimer real_timer;
 518        struct pid *leader_pid;
 519        ktime_t it_real_incr;
 520
 521        /*
 522         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 523         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 524         * values are defined to 0 and 1 respectively
 525         */
 526        struct cpu_itimer it[2];
 527
 528        /*
 529         * Thread group totals for process CPU timers.
 530         * See thread_group_cputimer(), et al, for details.
 531         */
 532        struct thread_group_cputimer cputimer;
 533
 534        /* Earliest-expiration cache. */
 535        struct task_cputime cputime_expires;
 536
 537        struct list_head cpu_timers[3];
 538
 539        struct pid *tty_old_pgrp;
 540
 541        /* boolean value for session group leader */
 542        int leader;
 543
 544        struct tty_struct *tty; /* NULL if no tty */
 545
 546#ifdef CONFIG_SCHED_AUTOGROUP
 547        struct autogroup *autogroup;
 548#endif
 549        /*
 550         * Cumulative resource counters for dead threads in the group,
 551         * and for reaped dead child processes forked by this group.
 552         * Live threads maintain their own counters and add to these
 553         * in __exit_signal, except for the group leader.
 554         */
 555        cputime_t utime, stime, cutime, cstime;
 556        cputime_t gtime;
 557        cputime_t cgtime;
 558#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 559        struct cputime prev_cputime;
 560#endif
 561        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 562        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 563        unsigned long inblock, oublock, cinblock, coublock;
 564        unsigned long maxrss, cmaxrss;
 565        struct task_io_accounting ioac;
 566
 567        /*
 568         * Cumulative ns of schedule CPU time fo dead threads in the
 569         * group, not including a zombie group leader, (This only differs
 570         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 571         * other than jiffies.)
 572         */
 573        unsigned long long sum_sched_runtime;
 574
 575        /*
 576         * We don't bother to synchronize most readers of this at all,
 577         * because there is no reader checking a limit that actually needs
 578         * to get both rlim_cur and rlim_max atomically, and either one
 579         * alone is a single word that can safely be read normally.
 580         * getrlimit/setrlimit use task_lock(current->group_leader) to
 581         * protect this instead of the siglock, because they really
 582         * have no need to disable irqs.
 583         */
 584        struct rlimit rlim[RLIM_NLIMITS];
 585
 586#ifdef CONFIG_BSD_PROCESS_ACCT
 587        struct pacct_struct pacct;      /* per-process accounting information */
 588#endif
 589#ifdef CONFIG_TASKSTATS
 590        struct taskstats *stats;
 591#endif
 592#ifdef CONFIG_AUDIT
 593        unsigned audit_tty;
 594        unsigned audit_tty_log_passwd;
 595        struct tty_audit_buf *tty_audit_buf;
 596#endif
 597#ifdef CONFIG_CGROUPS
 598        /*
 599         * group_rwsem prevents new tasks from entering the threadgroup and
 600         * member tasks from exiting,a more specifically, setting of
 601         * PF_EXITING.  fork and exit paths are protected with this rwsem
 602         * using threadgroup_change_begin/end().  Users which require
 603         * threadgroup to remain stable should use threadgroup_[un]lock()
 604         * which also takes care of exec path.  Currently, cgroup is the
 605         * only user.
 606         */
 607        struct rw_semaphore group_rwsem;
 608#endif
 609
 610        oom_flags_t oom_flags;
 611        short oom_score_adj;            /* OOM kill score adjustment */
 612        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 613                                         * Only settable by CAP_SYS_RESOURCE. */
 614
 615        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 616                                         * credential calculations
 617                                         * (notably. ptrace) */
 618};
 619
 620/*
 621 * Bits in flags field of signal_struct.
 622 */
 623#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 624#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 625#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 626#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 627/*
 628 * Pending notifications to parent.
 629 */
 630#define SIGNAL_CLD_STOPPED      0x00000010
 631#define SIGNAL_CLD_CONTINUED    0x00000020
 632#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 633
 634#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 635
 636/* If true, all threads except ->group_exit_task have pending SIGKILL */
 637static inline int signal_group_exit(const struct signal_struct *sig)
 638{
 639        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 640                (sig->group_exit_task != NULL);
 641}
 642
 643/*
 644 * Some day this will be a full-fledged user tracking system..
 645 */
 646struct user_struct {
 647        atomic_t __count;       /* reference count */
 648        atomic_t processes;     /* How many processes does this user have? */
 649        atomic_t files;         /* How many open files does this user have? */
 650        atomic_t sigpending;    /* How many pending signals does this user have? */
 651#ifdef CONFIG_INOTIFY_USER
 652        atomic_t inotify_watches; /* How many inotify watches does this user have? */
 653        atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
 654#endif
 655#ifdef CONFIG_FANOTIFY
 656        atomic_t fanotify_listeners;
 657#endif
 658#ifdef CONFIG_EPOLL
 659        atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 660#endif
 661#ifdef CONFIG_POSIX_MQUEUE
 662        /* protected by mq_lock */
 663        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
 664#endif
 665        unsigned long locked_shm; /* How many pages of mlocked shm ? */
 666
 667#ifdef CONFIG_KEYS
 668        struct key *uid_keyring;        /* UID specific keyring */
 669        struct key *session_keyring;    /* UID's default session keyring */
 670#endif
 671
 672        /* Hash table maintenance information */
 673        struct hlist_node uidhash_node;
 674        kuid_t uid;
 675
 676#ifdef CONFIG_PERF_EVENTS
 677        atomic_long_t locked_vm;
 678#endif
 679};
 680
 681extern int uids_sysfs_init(void);
 682
 683extern struct user_struct *find_user(kuid_t);
 684
 685extern struct user_struct root_user;
 686#define INIT_USER (&root_user)
 687
 688
 689struct backing_dev_info;
 690struct reclaim_state;
 691
 692#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 693struct sched_info {
 694        /* cumulative counters */
 695        unsigned long pcount;         /* # of times run on this cpu */
 696        unsigned long long run_delay; /* time spent waiting on a runqueue */
 697
 698        /* timestamps */
 699        unsigned long long last_arrival,/* when we last ran on a cpu */
 700                           last_queued; /* when we were last queued to run */
 701};
 702#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 703
 704#ifdef CONFIG_TASK_DELAY_ACCT
 705struct task_delay_info {
 706        spinlock_t      lock;
 707        unsigned int    flags;  /* Private per-task flags */
 708
 709        /* For each stat XXX, add following, aligned appropriately
 710         *
 711         * struct timespec XXX_start, XXX_end;
 712         * u64 XXX_delay;
 713         * u32 XXX_count;
 714         *
 715         * Atomicity of updates to XXX_delay, XXX_count protected by
 716         * single lock above (split into XXX_lock if contention is an issue).
 717         */
 718
 719        /*
 720         * XXX_count is incremented on every XXX operation, the delay
 721         * associated with the operation is added to XXX_delay.
 722         * XXX_delay contains the accumulated delay time in nanoseconds.
 723         */
 724        struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
 725        u64 blkio_delay;        /* wait for sync block io completion */
 726        u64 swapin_delay;       /* wait for swapin block io completion */
 727        u32 blkio_count;        /* total count of the number of sync block */
 728                                /* io operations performed */
 729        u32 swapin_count;       /* total count of the number of swapin block */
 730                                /* io operations performed */
 731
 732        struct timespec freepages_start, freepages_end;
 733        u64 freepages_delay;    /* wait for memory reclaim */
 734        u32 freepages_count;    /* total count of memory reclaim */
 735};
 736#endif  /* CONFIG_TASK_DELAY_ACCT */
 737
 738static inline int sched_info_on(void)
 739{
 740#ifdef CONFIG_SCHEDSTATS
 741        return 1;
 742#elif defined(CONFIG_TASK_DELAY_ACCT)
 743        extern int delayacct_on;
 744        return delayacct_on;
 745#else
 746        return 0;
 747#endif
 748}
 749
 750enum cpu_idle_type {
 751        CPU_IDLE,
 752        CPU_NOT_IDLE,
 753        CPU_NEWLY_IDLE,
 754        CPU_MAX_IDLE_TYPES
 755};
 756
 757/*
 758 * Increase resolution of cpu_power calculations
 759 */
 760#define SCHED_POWER_SHIFT       10
 761#define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
 762
 763/*
 764 * sched-domains (multiprocessor balancing) declarations:
 765 */
 766#ifdef CONFIG_SMP
 767#define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
 768#define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
 769#define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
 770#define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
 771#define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
 772#define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
 773#define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
 774#define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
 775#define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
 776#define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
 777#define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
 778#define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
 779
 780extern int __weak arch_sd_sibiling_asym_packing(void);
 781
 782struct sched_domain_attr {
 783        int relax_domain_level;
 784};
 785
 786#define SD_ATTR_INIT    (struct sched_domain_attr) {    \
 787        .relax_domain_level = -1,                       \
 788}
 789
 790extern int sched_domain_level_max;
 791
 792struct sched_group;
 793
 794struct sched_domain {
 795        /* These fields must be setup */
 796        struct sched_domain *parent;    /* top domain must be null terminated */
 797        struct sched_domain *child;     /* bottom domain must be null terminated */
 798        struct sched_group *groups;     /* the balancing groups of the domain */
 799        unsigned long min_interval;     /* Minimum balance interval ms */
 800        unsigned long max_interval;     /* Maximum balance interval ms */
 801        unsigned int busy_factor;       /* less balancing by factor if busy */
 802        unsigned int imbalance_pct;     /* No balance until over watermark */
 803        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
 804        unsigned int busy_idx;
 805        unsigned int idle_idx;
 806        unsigned int newidle_idx;
 807        unsigned int wake_idx;
 808        unsigned int forkexec_idx;
 809        unsigned int smt_gain;
 810
 811        int nohz_idle;                  /* NOHZ IDLE status */
 812        int flags;                      /* See SD_* */
 813        int level;
 814
 815        /* Runtime fields. */
 816        unsigned long last_balance;     /* init to jiffies. units in jiffies */
 817        unsigned int balance_interval;  /* initialise to 1. units in ms. */
 818        unsigned int nr_balance_failed; /* initialise to 0 */
 819
 820        u64 last_update;
 821
 822#ifdef CONFIG_SCHEDSTATS
 823        /* load_balance() stats */
 824        unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 825        unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 826        unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 827        unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 828        unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 829        unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 830        unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 831        unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 832
 833        /* Active load balancing */
 834        unsigned int alb_count;
 835        unsigned int alb_failed;
 836        unsigned int alb_pushed;
 837
 838        /* SD_BALANCE_EXEC stats */
 839        unsigned int sbe_count;
 840        unsigned int sbe_balanced;
 841        unsigned int sbe_pushed;
 842
 843        /* SD_BALANCE_FORK stats */
 844        unsigned int sbf_count;
 845        unsigned int sbf_balanced;
 846        unsigned int sbf_pushed;
 847
 848        /* try_to_wake_up() stats */
 849        unsigned int ttwu_wake_remote;
 850        unsigned int ttwu_move_affine;
 851        unsigned int ttwu_move_balance;
 852#endif
 853#ifdef CONFIG_SCHED_DEBUG
 854        char *name;
 855#endif
 856        union {
 857                void *private;          /* used during construction */
 858                struct rcu_head rcu;    /* used during destruction */
 859        };
 860
 861        unsigned int span_weight;
 862        /*
 863         * Span of all CPUs in this domain.
 864         *
 865         * NOTE: this field is variable length. (Allocated dynamically
 866         * by attaching extra space to the end of the structure,
 867         * depending on how many CPUs the kernel has booted up with)
 868         */
 869        unsigned long span[0];
 870};
 871
 872static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 873{
 874        return to_cpumask(sd->span);
 875}
 876
 877extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 878                                    struct sched_domain_attr *dattr_new);
 879
 880/* Allocate an array of sched domains, for partition_sched_domains(). */
 881cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 882void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 883
 884bool cpus_share_cache(int this_cpu, int that_cpu);
 885
 886#else /* CONFIG_SMP */
 887
 888struct sched_domain_attr;
 889
 890static inline void
 891partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 892                        struct sched_domain_attr *dattr_new)
 893{
 894}
 895
 896static inline bool cpus_share_cache(int this_cpu, int that_cpu)
 897{
 898        return true;
 899}
 900
 901#endif  /* !CONFIG_SMP */
 902
 903
 904struct io_context;                      /* See blkdev.h */
 905
 906
 907#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
 908extern void prefetch_stack(struct task_struct *t);
 909#else
 910static inline void prefetch_stack(struct task_struct *t) { }
 911#endif
 912
 913struct audit_context;           /* See audit.c */
 914struct mempolicy;
 915struct pipe_inode_info;
 916struct uts_namespace;
 917
 918struct load_weight {
 919        unsigned long weight, inv_weight;
 920};
 921
 922struct sched_avg {
 923        /*
 924         * These sums represent an infinite geometric series and so are bound
 925         * above by 1024/(1-y).  Thus we only need a u32 to store them for all
 926         * choices of y < 1-2^(-32)*1024.
 927         */
 928        u32 runnable_avg_sum, runnable_avg_period;
 929        u64 last_runnable_update;
 930        s64 decay_count;
 931        unsigned long load_avg_contrib;
 932};
 933
 934#ifdef CONFIG_SCHEDSTATS
 935struct sched_statistics {
 936        u64                     wait_start;
 937        u64                     wait_max;
 938        u64                     wait_count;
 939        u64                     wait_sum;
 940        u64                     iowait_count;
 941        u64                     iowait_sum;
 942
 943        u64                     sleep_start;
 944        u64                     sleep_max;
 945        s64                     sum_sleep_runtime;
 946
 947        u64                     block_start;
 948        u64                     block_max;
 949        u64                     exec_max;
 950        u64                     slice_max;
 951
 952        u64                     nr_migrations_cold;
 953        u64                     nr_failed_migrations_affine;
 954        u64                     nr_failed_migrations_running;
 955        u64                     nr_failed_migrations_hot;
 956        u64                     nr_forced_migrations;
 957
 958        u64                     nr_wakeups;
 959        u64                     nr_wakeups_sync;
 960        u64                     nr_wakeups_migrate;
 961        u64                     nr_wakeups_local;
 962        u64                     nr_wakeups_remote;
 963        u64                     nr_wakeups_affine;
 964        u64                     nr_wakeups_affine_attempts;
 965        u64                     nr_wakeups_passive;
 966        u64                     nr_wakeups_idle;
 967};
 968#endif
 969
 970struct sched_entity {
 971        struct load_weight      load;           /* for load-balancing */
 972        struct rb_node          run_node;
 973        struct list_head        group_node;
 974        unsigned int            on_rq;
 975
 976        u64                     exec_start;
 977        u64                     sum_exec_runtime;
 978        u64                     vruntime;
 979        u64                     prev_sum_exec_runtime;
 980
 981        u64                     nr_migrations;
 982
 983#ifdef CONFIG_SCHEDSTATS
 984        struct sched_statistics statistics;
 985#endif
 986
 987#ifdef CONFIG_FAIR_GROUP_SCHED
 988        struct sched_entity     *parent;
 989        /* rq on which this entity is (to be) queued: */
 990        struct cfs_rq           *cfs_rq;
 991        /* rq "owned" by this entity/group: */
 992        struct cfs_rq           *my_q;
 993#endif
 994
 995#ifdef CONFIG_SMP
 996        /* Per-entity load-tracking */
 997        struct sched_avg        avg;
 998#endif
 999};
1000
1001struct sched_rt_entity {
1002        struct list_head run_list;
1003        unsigned long timeout;
1004        unsigned long watchdog_stamp;
1005        unsigned int time_slice;
1006
1007        struct sched_rt_entity *back;
1008#ifdef CONFIG_RT_GROUP_SCHED
1009        struct sched_rt_entity  *parent;
1010        /* rq on which this entity is (to be) queued: */
1011        struct rt_rq            *rt_rq;
1012        /* rq "owned" by this entity/group: */
1013        struct rt_rq            *my_q;
1014#endif
1015};
1016
1017
1018struct rcu_node;
1019
1020enum perf_event_task_context {
1021        perf_invalid_context = -1,
1022        perf_hw_context = 0,
1023        perf_sw_context,
1024        perf_nr_task_contexts,
1025};
1026
1027struct task_struct {
1028        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1029        void *stack;
1030        atomic_t usage;
1031        unsigned int flags;     /* per process flags, defined below */
1032        unsigned int ptrace;
1033
1034#ifdef CONFIG_SMP
1035        struct llist_node wake_entry;
1036        int on_cpu;
1037#endif
1038        int on_rq;
1039
1040        int prio, static_prio, normal_prio;
1041        unsigned int rt_priority;
1042        const struct sched_class *sched_class;
1043        struct sched_entity se;
1044        struct sched_rt_entity rt;
1045#ifdef CONFIG_CGROUP_SCHED
1046        struct task_group *sched_task_group;
1047#endif
1048
1049#ifdef CONFIG_PREEMPT_NOTIFIERS
1050        /* list of struct preempt_notifier: */
1051        struct hlist_head preempt_notifiers;
1052#endif
1053
1054        /*
1055         * fpu_counter contains the number of consecutive context switches
1056         * that the FPU is used. If this is over a threshold, the lazy fpu
1057         * saving becomes unlazy to save the trap. This is an unsigned char
1058         * so that after 256 times the counter wraps and the behavior turns
1059         * lazy again; this to deal with bursty apps that only use FPU for
1060         * a short time
1061         */
1062        unsigned char fpu_counter;
1063#ifdef CONFIG_BLK_DEV_IO_TRACE
1064        unsigned int btrace_seq;
1065#endif
1066
1067        unsigned int policy;
1068        int nr_cpus_allowed;
1069        cpumask_t cpus_allowed;
1070
1071#ifdef CONFIG_PREEMPT_RCU
1072        int rcu_read_lock_nesting;
1073        char rcu_read_unlock_special;
1074        struct list_head rcu_node_entry;
1075#endif /* #ifdef CONFIG_PREEMPT_RCU */
1076#ifdef CONFIG_TREE_PREEMPT_RCU
1077        struct rcu_node *rcu_blocked_node;
1078#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1079#ifdef CONFIG_RCU_BOOST
1080        struct rt_mutex *rcu_boost_mutex;
1081#endif /* #ifdef CONFIG_RCU_BOOST */
1082
1083#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1084        struct sched_info sched_info;
1085#endif
1086
1087        struct list_head tasks;
1088#ifdef CONFIG_SMP
1089        struct plist_node pushable_tasks;
1090#endif
1091
1092        struct mm_struct *mm, *active_mm;
1093#ifdef CONFIG_COMPAT_BRK
1094        unsigned brk_randomized:1;
1095#endif
1096#if defined(SPLIT_RSS_COUNTING)
1097        struct task_rss_stat    rss_stat;
1098#endif
1099/* task state */
1100        int exit_state;
1101        int exit_code, exit_signal;
1102        int pdeath_signal;  /*  The signal sent when the parent dies  */
1103        unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1104
1105        /* Used for emulating ABI behavior of previous Linux versions */
1106        unsigned int personality;
1107
1108        unsigned did_exec:1;
1109        unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1110                                 * execve */
1111        unsigned in_iowait:1;
1112
1113        /* task may not gain privileges */
1114        unsigned no_new_privs:1;
1115
1116        /* Revert to default priority/policy when forking */
1117        unsigned sched_reset_on_fork:1;
1118        unsigned sched_contributes_to_load:1;
1119
1120        pid_t pid;
1121        pid_t tgid;
1122
1123#ifdef CONFIG_CC_STACKPROTECTOR
1124        /* Canary value for the -fstack-protector gcc feature */
1125        unsigned long stack_canary;
1126#endif
1127        /*
1128         * pointers to (original) parent process, youngest child, younger sibling,
1129         * older sibling, respectively.  (p->father can be replaced with
1130         * p->real_parent->pid)
1131         */
1132        struct task_struct __rcu *real_parent; /* real parent process */
1133        struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1134        /*
1135         * children/sibling forms the list of my natural children
1136         */
1137        struct list_head children;      /* list of my children */
1138        struct list_head sibling;       /* linkage in my parent's children list */
1139        struct task_struct *group_leader;       /* threadgroup leader */
1140
1141        /*
1142         * ptraced is the list of tasks this task is using ptrace on.
1143         * This includes both natural children and PTRACE_ATTACH targets.
1144         * p->ptrace_entry is p's link on the p->parent->ptraced list.
1145         */
1146        struct list_head ptraced;
1147        struct list_head ptrace_entry;
1148
1149        /* PID/PID hash table linkage. */
1150        struct pid_link pids[PIDTYPE_MAX];
1151        struct list_head thread_group;
1152
1153        struct completion *vfork_done;          /* for vfork() */
1154        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1155        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1156
1157        cputime_t utime, stime, utimescaled, stimescaled;
1158        cputime_t gtime;
1159#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1160        struct cputime prev_cputime;
1161#endif
1162#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1163        seqlock_t vtime_seqlock;
1164        unsigned long long vtime_snap;
1165        enum {
1166                VTIME_SLEEPING = 0,
1167                VTIME_USER,
1168                VTIME_SYS,
1169        } vtime_snap_whence;
1170#endif
1171        unsigned long nvcsw, nivcsw; /* context switch counts */
1172        struct timespec start_time;             /* monotonic time */
1173        struct timespec real_start_time;        /* boot based time */
1174/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1175        unsigned long min_flt, maj_flt;
1176
1177        struct task_cputime cputime_expires;
1178        struct list_head cpu_timers[3];
1179
1180/* process credentials */
1181        const struct cred __rcu *real_cred; /* objective and real subjective task
1182                                         * credentials (COW) */
1183        const struct cred __rcu *cred;  /* effective (overridable) subjective task
1184                                         * credentials (COW) */
1185        char comm[TASK_COMM_LEN]; /* executable name excluding path
1186                                     - access with [gs]et_task_comm (which lock
1187                                       it with task_lock())
1188                                     - initialized normally by setup_new_exec */
1189/* file system info */
1190        int link_count, total_link_count;
1191#ifdef CONFIG_SYSVIPC
1192/* ipc stuff */
1193        struct sysv_sem sysvsem;
1194#endif
1195#ifdef CONFIG_DETECT_HUNG_TASK
1196/* hung task detection */
1197        unsigned long last_switch_count;
1198#endif
1199/* CPU-specific state of this task */
1200        struct thread_struct thread;
1201/* filesystem information */
1202        struct fs_struct *fs;
1203/* open file information */
1204        struct files_struct *files;
1205/* namespaces */
1206        struct nsproxy *nsproxy;
1207/* signal handlers */
1208        struct signal_struct *signal;
1209        struct sighand_struct *sighand;
1210
1211        sigset_t blocked, real_blocked;
1212        sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1213        struct sigpending pending;
1214
1215        unsigned long sas_ss_sp;
1216        size_t sas_ss_size;
1217        int (*notifier)(void *priv);
1218        void *notifier_data;
1219        sigset_t *notifier_mask;
1220        struct callback_head *task_works;
1221
1222        struct audit_context *audit_context;
1223#ifdef CONFIG_AUDITSYSCALL
1224        kuid_t loginuid;
1225        unsigned int sessionid;
1226#endif
1227        struct seccomp seccomp;
1228
1229/* Thread group tracking */
1230        u32 parent_exec_id;
1231        u32 self_exec_id;
1232/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1233 * mempolicy */
1234        spinlock_t alloc_lock;
1235
1236        /* Protection of the PI data structures: */
1237        raw_spinlock_t pi_lock;
1238
1239#ifdef CONFIG_RT_MUTEXES
1240        /* PI waiters blocked on a rt_mutex held by this task */
1241        struct plist_head pi_waiters;
1242        /* Deadlock detection and priority inheritance handling */
1243        struct rt_mutex_waiter *pi_blocked_on;
1244#endif
1245
1246#ifdef CONFIG_DEBUG_MUTEXES
1247        /* mutex deadlock detection */
1248        struct mutex_waiter *blocked_on;
1249#endif
1250#ifdef CONFIG_TRACE_IRQFLAGS
1251        unsigned int irq_events;
1252        unsigned long hardirq_enable_ip;
1253        unsigned long hardirq_disable_ip;
1254        unsigned int hardirq_enable_event;
1255        unsigned int hardirq_disable_event;
1256        int hardirqs_enabled;
1257        int hardirq_context;
1258        unsigned long softirq_disable_ip;
1259        unsigned long softirq_enable_ip;
1260        unsigned int softirq_disable_event;
1261        unsigned int softirq_enable_event;
1262        int softirqs_enabled;
1263        int softirq_context;
1264#endif
1265#ifdef CONFIG_LOCKDEP
1266# define MAX_LOCK_DEPTH 48UL
1267        u64 curr_chain_key;
1268        int lockdep_depth;
1269        unsigned int lockdep_recursion;
1270        struct held_lock held_locks[MAX_LOCK_DEPTH];
1271        gfp_t lockdep_reclaim_gfp;
1272#endif
1273
1274/* journalling filesystem info */
1275        void *journal_info;
1276
1277/* stacked block device info */
1278        struct bio_list *bio_list;
1279
1280#ifdef CONFIG_BLOCK
1281/* stack plugging */
1282        struct blk_plug *plug;
1283#endif
1284
1285/* VM state */
1286        struct reclaim_state *reclaim_state;
1287
1288        struct backing_dev_info *backing_dev_info;
1289
1290        struct io_context *io_context;
1291
1292        unsigned long ptrace_message;
1293        siginfo_t *last_siginfo; /* For ptrace use.  */
1294        struct task_io_accounting ioac;
1295#if defined(CONFIG_TASK_XACCT)
1296        u64 acct_rss_mem1;      /* accumulated rss usage */
1297        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1298        cputime_t acct_timexpd; /* stime + utime since last update */
1299#endif
1300#ifdef CONFIG_CPUSETS
1301        nodemask_t mems_allowed;        /* Protected by alloc_lock */
1302        seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1303        int cpuset_mem_spread_rotor;
1304        int cpuset_slab_spread_rotor;
1305#endif
1306#ifdef CONFIG_CGROUPS
1307        /* Control Group info protected by css_set_lock */
1308        struct css_set __rcu *cgroups;
1309        /* cg_list protected by css_set_lock and tsk->alloc_lock */
1310        struct list_head cg_list;
1311#endif
1312#ifdef CONFIG_FUTEX
1313        struct robust_list_head __user *robust_list;
1314#ifdef CONFIG_COMPAT
1315        struct compat_robust_list_head __user *compat_robust_list;
1316#endif
1317        struct list_head pi_state_list;
1318        struct futex_pi_state *pi_state_cache;
1319#endif
1320#ifdef CONFIG_PERF_EVENTS
1321        struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1322        struct mutex perf_event_mutex;
1323        struct list_head perf_event_list;
1324#endif
1325#ifdef CONFIG_NUMA
1326        struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1327        short il_next;
1328        short pref_node_fork;
1329#endif
1330#ifdef CONFIG_NUMA_BALANCING
1331        int numa_scan_seq;
1332        int numa_migrate_seq;
1333        unsigned int numa_scan_period;
1334        u64 node_stamp;                 /* migration stamp  */
1335        struct callback_head numa_work;
1336#endif /* CONFIG_NUMA_BALANCING */
1337
1338        struct rcu_head rcu;
1339
1340        /*
1341         * cache last used pipe for splice
1342         */
1343        struct pipe_inode_info *splice_pipe;
1344
1345        struct page_frag task_frag;
1346
1347#ifdef  CONFIG_TASK_DELAY_ACCT
1348        struct task_delay_info *delays;
1349#endif
1350#ifdef CONFIG_FAULT_INJECTION
1351        int make_it_fail;
1352#endif
1353        /*
1354         * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1355         * balance_dirty_pages() for some dirty throttling pause
1356         */
1357        int nr_dirtied;
1358        int nr_dirtied_pause;
1359        unsigned long dirty_paused_when; /* start of a write-and-pause period */
1360
1361#ifdef CONFIG_LATENCYTOP
1362        int latency_record_count;
1363        struct latency_record latency_record[LT_SAVECOUNT];
1364#endif
1365        /*
1366         * time slack values; these are used to round up poll() and
1367         * select() etc timeout values. These are in nanoseconds.
1368         */
1369        unsigned long timer_slack_ns;
1370        unsigned long default_timer_slack_ns;
1371
1372#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1373        /* Index of current stored address in ret_stack */
1374        int curr_ret_stack;
1375        /* Stack of return addresses for return function tracing */
1376        struct ftrace_ret_stack *ret_stack;
1377        /* time stamp for last schedule */
1378        unsigned long long ftrace_timestamp;
1379        /*
1380         * Number of functions that haven't been traced
1381         * because of depth overrun.
1382         */
1383        atomic_t trace_overrun;
1384        /* Pause for the tracing */
1385        atomic_t tracing_graph_pause;
1386#endif
1387#ifdef CONFIG_TRACING
1388        /* state flags for use by tracers */
1389        unsigned long trace;
1390        /* bitmask and counter of trace recursion */
1391        unsigned long trace_recursion;
1392#endif /* CONFIG_TRACING */
1393#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1394        struct memcg_batch_info {
1395                int do_batch;   /* incremented when batch uncharge started */
1396                struct mem_cgroup *memcg; /* target memcg of uncharge */
1397                unsigned long nr_pages; /* uncharged usage */
1398                unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1399        } memcg_batch;
1400        unsigned int memcg_kmem_skip_account;
1401#endif
1402#ifdef CONFIG_UPROBES
1403        struct uprobe_task *utask;
1404#endif
1405#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1406        unsigned int    sequential_io;
1407        unsigned int    sequential_io_avg;
1408#endif
1409};
1410
1411/* Future-safe accessor for struct task_struct's cpus_allowed. */
1412#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1413
1414#ifdef CONFIG_NUMA_BALANCING
1415extern void task_numa_fault(int node, int pages, bool migrated);
1416extern void set_numabalancing_state(bool enabled);
1417#else
1418static inline void task_numa_fault(int node, int pages, bool migrated)
1419{
1420}
1421static inline void set_numabalancing_state(bool enabled)
1422{
1423}
1424#endif
1425
1426static inline struct pid *task_pid(struct task_struct *task)
1427{
1428        return task->pids[PIDTYPE_PID].pid;
1429}
1430
1431static inline struct pid *task_tgid(struct task_struct *task)
1432{
1433        return task->group_leader->pids[PIDTYPE_PID].pid;
1434}
1435
1436/*
1437 * Without tasklist or rcu lock it is not safe to dereference
1438 * the result of task_pgrp/task_session even if task == current,
1439 * we can race with another thread doing sys_setsid/sys_setpgid.
1440 */
1441static inline struct pid *task_pgrp(struct task_struct *task)
1442{
1443        return task->group_leader->pids[PIDTYPE_PGID].pid;
1444}
1445
1446static inline struct pid *task_session(struct task_struct *task)
1447{
1448        return task->group_leader->pids[PIDTYPE_SID].pid;
1449}
1450
1451struct pid_namespace;
1452
1453/*
1454 * the helpers to get the task's different pids as they are seen
1455 * from various namespaces
1456 *
1457 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1458 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1459 *                     current.
1460 * task_xid_nr_ns()  : id seen from the ns specified;
1461 *
1462 * set_task_vxid()   : assigns a virtual id to a task;
1463 *
1464 * see also pid_nr() etc in include/linux/pid.h
1465 */
1466pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1467                        struct pid_namespace *ns);
1468
1469static inline pid_t task_pid_nr(struct task_struct *tsk)
1470{
1471        return tsk->pid;
1472}
1473
1474static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1475                                        struct pid_namespace *ns)
1476{
1477        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1478}
1479
1480static inline pid_t task_pid_vnr(struct task_struct *tsk)
1481{
1482        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1483}
1484
1485
1486static inline pid_t task_tgid_nr(struct task_struct *tsk)
1487{
1488        return tsk->tgid;
1489}
1490
1491pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1492
1493static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1494{
1495        return pid_vnr(task_tgid(tsk));
1496}
1497
1498
1499static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1500                                        struct pid_namespace *ns)
1501{
1502        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1503}
1504
1505static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1506{
1507        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1508}
1509
1510
1511static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1512                                        struct pid_namespace *ns)
1513{
1514        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1515}
1516
1517static inline pid_t task_session_vnr(struct task_struct *tsk)
1518{
1519        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1520}
1521
1522/* obsolete, do not use */
1523static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1524{
1525        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1526}
1527
1528/**
1529 * pid_alive - check that a task structure is not stale
1530 * @p: Task structure to be checked.
1531 *
1532 * Test if a process is not yet dead (at most zombie state)
1533 * If pid_alive fails, then pointers within the task structure
1534 * can be stale and must not be dereferenced.
1535 *
1536 * Return: 1 if the process is alive. 0 otherwise.
1537 */
1538static inline int pid_alive(struct task_struct *p)
1539{
1540        return p->pids[PIDTYPE_PID].pid != NULL;
1541}
1542
1543/**
1544 * is_global_init - check if a task structure is init
1545 * @tsk: Task structure to be checked.
1546 *
1547 * Check if a task structure is the first user space task the kernel created.
1548 *
1549 * Return: 1 if the task structure is init. 0 otherwise.
1550 */
1551static inline int is_global_init(struct task_struct *tsk)
1552{
1553        return tsk->pid == 1;
1554}
1555
1556extern struct pid *cad_pid;
1557
1558extern void free_task(struct task_struct *tsk);
1559#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1560
1561extern void __put_task_struct(struct task_struct *t);
1562
1563static inline void put_task_struct(struct task_struct *t)
1564{
1565        if (atomic_dec_and_test(&t->usage))
1566                __put_task_struct(t);
1567}
1568
1569#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1570extern void task_cputime(struct task_struct *t,
1571                         cputime_t *utime, cputime_t *stime);
1572extern void task_cputime_scaled(struct task_struct *t,
1573                                cputime_t *utimescaled, cputime_t *stimescaled);
1574extern cputime_t task_gtime(struct task_struct *t);
1575#else
1576static inline void task_cputime(struct task_struct *t,
1577                                cputime_t *utime, cputime_t *stime)
1578{
1579        if (utime)
1580                *utime = t->utime;
1581        if (stime)
1582                *stime = t->stime;
1583}
1584
1585static inline void task_cputime_scaled(struct task_struct *t,
1586                                       cputime_t *utimescaled,
1587                                       cputime_t *stimescaled)
1588{
1589        if (utimescaled)
1590                *utimescaled = t->utimescaled;
1591        if (stimescaled)
1592                *stimescaled = t->stimescaled;
1593}
1594
1595static inline cputime_t task_gtime(struct task_struct *t)
1596{
1597        return t->gtime;
1598}
1599#endif
1600extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1601extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1602
1603/*
1604 * Per process flags
1605 */
1606#define PF_EXITING      0x00000004      /* getting shut down */
1607#define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1608#define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1609#define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1610#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1611#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1612#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1613#define PF_DUMPCORE     0x00000200      /* dumped core */
1614#define PF_SIGNALED     0x00000400      /* killed by a signal */
1615#define PF_MEMALLOC     0x00000800      /* Allocating memory */
1616#define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1617#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1618#define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
1619#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1620#define PF_FROZEN       0x00010000      /* frozen for system suspend */
1621#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1622#define PF_KSWAPD       0x00040000      /* I am kswapd */
1623#define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
1624#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1625#define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1626#define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1627#define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1628#define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1629#define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1630#define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
1631#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1632#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1633#define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1634#define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1635#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1636
1637/*
1638 * Only the _current_ task can read/write to tsk->flags, but other
1639 * tasks can access tsk->flags in readonly mode for example
1640 * with tsk_used_math (like during threaded core dumping).
1641 * There is however an exception to this rule during ptrace
1642 * or during fork: the ptracer task is allowed to write to the
1643 * child->flags of its traced child (same goes for fork, the parent
1644 * can write to the child->flags), because we're guaranteed the
1645 * child is not running and in turn not changing child->flags
1646 * at the same time the parent does it.
1647 */
1648#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1649#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1650#define clear_used_math() clear_stopped_child_used_math(current)
1651#define set_used_math() set_stopped_child_used_math(current)
1652#define conditional_stopped_child_used_math(condition, child) \
1653        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1654#define conditional_used_math(condition) \
1655        conditional_stopped_child_used_math(condition, current)
1656#define copy_to_stopped_child_used_math(child) \
1657        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1658/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1659#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1660#define used_math() tsk_used_math(current)
1661
1662/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1663static inline gfp_t memalloc_noio_flags(gfp_t flags)
1664{
1665        if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1666                flags &= ~__GFP_IO;
1667        return flags;
1668}
1669
1670static inline unsigned int memalloc_noio_save(void)
1671{
1672        unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1673        current->flags |= PF_MEMALLOC_NOIO;
1674        return flags;
1675}
1676
1677static inline void memalloc_noio_restore(unsigned int flags)
1678{
1679        current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1680}
1681
1682/*
1683 * task->jobctl flags
1684 */
1685#define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1686
1687#define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1688#define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1689#define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1690#define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1691#define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1692#define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1693#define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1694
1695#define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1696#define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1697#define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1698#define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1699#define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1700#define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1701#define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1702
1703#define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1704#define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1705
1706extern bool task_set_jobctl_pending(struct task_struct *task,
1707                                    unsigned int mask);
1708extern void task_clear_jobctl_trapping(struct task_struct *task);
1709extern void task_clear_jobctl_pending(struct task_struct *task,
1710                                      unsigned int mask);
1711
1712#ifdef CONFIG_PREEMPT_RCU
1713
1714#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1715#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1716
1717static inline void rcu_copy_process(struct task_struct *p)
1718{
1719        p->rcu_read_lock_nesting = 0;
1720        p->rcu_read_unlock_special = 0;
1721#ifdef CONFIG_TREE_PREEMPT_RCU
1722        p->rcu_blocked_node = NULL;
1723#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1724#ifdef CONFIG_RCU_BOOST
1725        p->rcu_boost_mutex = NULL;
1726#endif /* #ifdef CONFIG_RCU_BOOST */
1727        INIT_LIST_HEAD(&p->rcu_node_entry);
1728}
1729
1730#else
1731
1732static inline void rcu_copy_process(struct task_struct *p)
1733{
1734}
1735
1736#endif
1737
1738static inline void tsk_restore_flags(struct task_struct *task,
1739                                unsigned long orig_flags, unsigned long flags)
1740{
1741        task->flags &= ~flags;
1742        task->flags |= orig_flags & flags;
1743}
1744
1745#ifdef CONFIG_SMP
1746extern void do_set_cpus_allowed(struct task_struct *p,
1747                               const struct cpumask *new_mask);
1748
1749extern int set_cpus_allowed_ptr(struct task_struct *p,
1750                                const struct cpumask *new_mask);
1751#else
1752static inline void do_set_cpus_allowed(struct task_struct *p,
1753                                      const struct cpumask *new_mask)
1754{
1755}
1756static inline int set_cpus_allowed_ptr(struct task_struct *p,
1757                                       const struct cpumask *new_mask)
1758{
1759        if (!cpumask_test_cpu(0, new_mask))
1760                return -EINVAL;
1761        return 0;
1762}
1763#endif
1764
1765#ifdef CONFIG_NO_HZ_COMMON
1766void calc_load_enter_idle(void);
1767void calc_load_exit_idle(void);
1768#else
1769static inline void calc_load_enter_idle(void) { }
1770static inline void calc_load_exit_idle(void) { }
1771#endif /* CONFIG_NO_HZ_COMMON */
1772
1773#ifndef CONFIG_CPUMASK_OFFSTACK
1774static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1775{
1776        return set_cpus_allowed_ptr(p, &new_mask);
1777}
1778#endif
1779
1780/*
1781 * Do not use outside of architecture code which knows its limitations.
1782 *
1783 * sched_clock() has no promise of monotonicity or bounded drift between
1784 * CPUs, use (which you should not) requires disabling IRQs.
1785 *
1786 * Please use one of the three interfaces below.
1787 */
1788extern unsigned long long notrace sched_clock(void);
1789/*
1790 * See the comment in kernel/sched/clock.c
1791 */
1792extern u64 cpu_clock(int cpu);
1793extern u64 local_clock(void);
1794extern u64 sched_clock_cpu(int cpu);
1795
1796
1797extern void sched_clock_init(void);
1798
1799#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1800static inline void sched_clock_tick(void)
1801{
1802}
1803
1804static inline void sched_clock_idle_sleep_event(void)
1805{
1806}
1807
1808static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1809{
1810}
1811#else
1812/*
1813 * Architectures can set this to 1 if they have specified
1814 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1815 * but then during bootup it turns out that sched_clock()
1816 * is reliable after all:
1817 */
1818extern int sched_clock_stable;
1819
1820extern void sched_clock_tick(void);
1821extern void sched_clock_idle_sleep_event(void);
1822extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1823#endif
1824
1825#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1826/*
1827 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1828 * The reason for this explicit opt-in is not to have perf penalty with
1829 * slow sched_clocks.
1830 */
1831extern void enable_sched_clock_irqtime(void);
1832extern void disable_sched_clock_irqtime(void);
1833#else
1834static inline void enable_sched_clock_irqtime(void) {}
1835static inline void disable_sched_clock_irqtime(void) {}
1836#endif
1837
1838extern unsigned long long
1839task_sched_runtime(struct task_struct *task);
1840
1841/* sched_exec is called by processes performing an exec */
1842#ifdef CONFIG_SMP
1843extern void sched_exec(void);
1844#else
1845#define sched_exec()   {}
1846#endif
1847
1848extern void sched_clock_idle_sleep_event(void);
1849extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1850
1851#ifdef CONFIG_HOTPLUG_CPU
1852extern void idle_task_exit(void);
1853#else
1854static inline void idle_task_exit(void) {}
1855#endif
1856
1857#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1858extern void wake_up_nohz_cpu(int cpu);
1859#else
1860static inline void wake_up_nohz_cpu(int cpu) { }
1861#endif
1862
1863#ifdef CONFIG_NO_HZ_FULL
1864extern bool sched_can_stop_tick(void);
1865extern u64 scheduler_tick_max_deferment(void);
1866#else
1867static inline bool sched_can_stop_tick(void) { return false; }
1868#endif
1869
1870#ifdef CONFIG_SCHED_AUTOGROUP
1871extern void sched_autogroup_create_attach(struct task_struct *p);
1872extern void sched_autogroup_detach(struct task_struct *p);
1873extern void sched_autogroup_fork(struct signal_struct *sig);
1874extern void sched_autogroup_exit(struct signal_struct *sig);
1875#ifdef CONFIG_PROC_FS
1876extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1877extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1878#endif
1879#else
1880static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1881static inline void sched_autogroup_detach(struct task_struct *p) { }
1882static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1883static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1884#endif
1885
1886extern bool yield_to(struct task_struct *p, bool preempt);
1887extern void set_user_nice(struct task_struct *p, long nice);
1888extern int task_prio(const struct task_struct *p);
1889extern int task_nice(const struct task_struct *p);
1890extern int can_nice(const struct task_struct *p, const int nice);
1891extern int task_curr(const struct task_struct *p);
1892extern int idle_cpu(int cpu);
1893extern int sched_setscheduler(struct task_struct *, int,
1894                              const struct sched_param *);
1895extern int sched_setscheduler_nocheck(struct task_struct *, int,
1896                                      const struct sched_param *);
1897extern struct task_struct *idle_task(int cpu);
1898/**
1899 * is_idle_task - is the specified task an idle task?
1900 * @p: the task in question.
1901 *
1902 * Return: 1 if @p is an idle task. 0 otherwise.
1903 */
1904static inline bool is_idle_task(const struct task_struct *p)
1905{
1906        return p->pid == 0;
1907}
1908extern struct task_struct *curr_task(int cpu);
1909extern void set_curr_task(int cpu, struct task_struct *p);
1910
1911void yield(void);
1912
1913/*
1914 * The default (Linux) execution domain.
1915 */
1916extern struct exec_domain       default_exec_domain;
1917
1918union thread_union {
1919        struct thread_info thread_info;
1920        unsigned long stack[THREAD_SIZE/sizeof(long)];
1921};
1922
1923#ifndef __HAVE_ARCH_KSTACK_END
1924static inline int kstack_end(void *addr)
1925{
1926        /* Reliable end of stack detection:
1927         * Some APM bios versions misalign the stack
1928         */
1929        return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1930}
1931#endif
1932
1933extern union thread_union init_thread_union;
1934extern struct task_struct init_task;
1935
1936extern struct   mm_struct init_mm;
1937
1938extern struct pid_namespace init_pid_ns;
1939
1940/*
1941 * find a task by one of its numerical ids
1942 *
1943 * find_task_by_pid_ns():
1944 *      finds a task by its pid in the specified namespace
1945 * find_task_by_vpid():
1946 *      finds a task by its virtual pid
1947 *
1948 * see also find_vpid() etc in include/linux/pid.h
1949 */
1950
1951extern struct task_struct *find_task_by_vpid(pid_t nr);
1952extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1953                struct pid_namespace *ns);
1954
1955/* per-UID process charging. */
1956extern struct user_struct * alloc_uid(kuid_t);
1957static inline struct user_struct *get_uid(struct user_struct *u)
1958{
1959        atomic_inc(&u->__count);
1960        return u;
1961}
1962extern void free_uid(struct user_struct *);
1963
1964#include <asm/current.h>
1965
1966extern void xtime_update(unsigned long ticks);
1967
1968extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1969extern int wake_up_process(struct task_struct *tsk);
1970extern void wake_up_new_task(struct task_struct *tsk);
1971#ifdef CONFIG_SMP
1972 extern void kick_process(struct task_struct *tsk);
1973#else
1974 static inline void kick_process(struct task_struct *tsk) { }
1975#endif
1976extern void sched_fork(struct task_struct *p);
1977extern void sched_dead(struct task_struct *p);
1978
1979extern void proc_caches_init(void);
1980extern void flush_signals(struct task_struct *);
1981extern void __flush_signals(struct task_struct *);
1982extern void ignore_signals(struct task_struct *);
1983extern void flush_signal_handlers(struct task_struct *, int force_default);
1984extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1985
1986static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1987{
1988        unsigned long flags;
1989        int ret;
1990
1991        spin_lock_irqsave(&tsk->sighand->siglock, flags);
1992        ret = dequeue_signal(tsk, mask, info);
1993        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1994
1995        return ret;
1996}
1997
1998extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1999                              sigset_t *mask);
2000extern void unblock_all_signals(void);
2001extern void release_task(struct task_struct * p);
2002extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2003extern int force_sigsegv(int, struct task_struct *);
2004extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2005extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2006extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2007extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2008                                const struct cred *, u32);
2009extern int kill_pgrp(struct pid *pid, int sig, int priv);
2010extern int kill_pid(struct pid *pid, int sig, int priv);
2011extern int kill_proc_info(int, struct siginfo *, pid_t);
2012extern __must_check bool do_notify_parent(struct task_struct *, int);
2013extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2014extern void force_sig(int, struct task_struct *);
2015extern int send_sig(int, struct task_struct *, int);
2016extern int zap_other_threads(struct task_struct *p);
2017extern struct sigqueue *sigqueue_alloc(void);
2018extern void sigqueue_free(struct sigqueue *);
2019extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2020extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2021
2022static inline void restore_saved_sigmask(void)
2023{
2024        if (test_and_clear_restore_sigmask())
2025                __set_current_blocked(&current->saved_sigmask);
2026}
2027
2028static inline sigset_t *sigmask_to_save(void)
2029{
2030        sigset_t *res = &current->blocked;
2031        if (unlikely(test_restore_sigmask()))
2032                res = &current->saved_sigmask;
2033        return res;
2034}
2035
2036static inline int kill_cad_pid(int sig, int priv)
2037{
2038        return kill_pid(cad_pid, sig, priv);
2039}
2040
2041/* These can be the second arg to send_sig_info/send_group_sig_info.  */
2042#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2043#define SEND_SIG_PRIV   ((struct siginfo *) 1)
2044#define SEND_SIG_FORCED ((struct siginfo *) 2)
2045
2046/*
2047 * True if we are on the alternate signal stack.
2048 */
2049static inline int on_sig_stack(unsigned long sp)
2050{
2051#ifdef CONFIG_STACK_GROWSUP
2052        return sp >= current->sas_ss_sp &&
2053                sp - current->sas_ss_sp < current->sas_ss_size;
2054#else
2055        return sp > current->sas_ss_sp &&
2056                sp - current->sas_ss_sp <= current->sas_ss_size;
2057#endif
2058}
2059
2060static inline int sas_ss_flags(unsigned long sp)
2061{
2062        return (current->sas_ss_size == 0 ? SS_DISABLE
2063                : on_sig_stack(sp) ? SS_ONSTACK : 0);
2064}
2065
2066static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2067{
2068        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2069#ifdef CONFIG_STACK_GROWSUP
2070                return current->sas_ss_sp;
2071#else
2072                return current->sas_ss_sp + current->sas_ss_size;
2073#endif
2074        return sp;
2075}
2076
2077/*
2078 * Routines for handling mm_structs
2079 */
2080extern struct mm_struct * mm_alloc(void);
2081
2082/* mmdrop drops the mm and the page tables */
2083extern void __mmdrop(struct mm_struct *);
2084static inline void mmdrop(struct mm_struct * mm)
2085{
2086        if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2087                __mmdrop(mm);
2088}
2089
2090/* mmput gets rid of the mappings and all user-space */
2091extern void mmput(struct mm_struct *);
2092/* Grab a reference to a task's mm, if it is not already going away */
2093extern struct mm_struct *get_task_mm(struct task_struct *task);
2094/*
2095 * Grab a reference to a task's mm, if it is not already going away
2096 * and ptrace_may_access with the mode parameter passed to it
2097 * succeeds.
2098 */
2099extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2100/* Remove the current tasks stale references to the old mm_struct */
2101extern void mm_release(struct task_struct *, struct mm_struct *);
2102/* Allocate a new mm structure and copy contents from tsk->mm */
2103extern struct mm_struct *dup_mm(struct task_struct *tsk);
2104
2105extern int copy_thread(unsigned long, unsigned long, unsigned long,
2106                        struct task_struct *);
2107extern void flush_thread(void);
2108extern void exit_thread(void);
2109
2110extern void exit_files(struct task_struct *);
2111extern void __cleanup_sighand(struct sighand_struct *);
2112
2113extern void exit_itimers(struct signal_struct *);
2114extern void flush_itimer_signals(void);
2115
2116extern void do_group_exit(int);
2117
2118extern int allow_signal(int);
2119extern int disallow_signal(int);
2120
2121extern int do_execve(const char *,
2122                     const char __user * const __user *,
2123                     const char __user * const __user *);
2124extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2125struct task_struct *fork_idle(int);
2126extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2127
2128extern void set_task_comm(struct task_struct *tsk, char *from);
2129extern char *get_task_comm(char *to, struct task_struct *tsk);
2130
2131#ifdef CONFIG_SMP
2132void scheduler_ipi(void);
2133extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2134#else
2135static inline void scheduler_ipi(void) { }
2136static inline unsigned long wait_task_inactive(struct task_struct *p,
2137                                               long match_state)
2138{
2139        return 1;
2140}
2141#endif
2142
2143#define next_task(p) \
2144        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2145
2146#define for_each_process(p) \
2147        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2148
2149extern bool current_is_single_threaded(void);
2150
2151/*
2152 * Careful: do_each_thread/while_each_thread is a double loop so
2153 *          'break' will not work as expected - use goto instead.
2154 */
2155#define do_each_thread(g, t) \
2156        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2157
2158#define while_each_thread(g, t) \
2159        while ((t = next_thread(t)) != g)
2160
2161static inline int get_nr_threads(struct task_struct *tsk)
2162{
2163        return tsk->signal->nr_threads;
2164}
2165
2166static inline bool thread_group_leader(struct task_struct *p)
2167{
2168        return p->exit_signal >= 0;
2169}
2170
2171/* Do to the insanities of de_thread it is possible for a process
2172 * to have the pid of the thread group leader without actually being
2173 * the thread group leader.  For iteration through the pids in proc
2174 * all we care about is that we have a task with the appropriate
2175 * pid, we don't actually care if we have the right task.
2176 */
2177static inline int has_group_leader_pid(struct task_struct *p)
2178{
2179        return p->pid == p->tgid;
2180}
2181
2182static inline
2183int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2184{
2185        return p1->tgid == p2->tgid;
2186}
2187
2188static inline struct task_struct *next_thread(const struct task_struct *p)
2189{
2190        return list_entry_rcu(p->thread_group.next,
2191                              struct task_struct, thread_group);
2192}
2193
2194static inline int thread_group_empty(struct task_struct *p)
2195{
2196        return list_empty(&p->thread_group);
2197}
2198
2199#define delay_group_leader(p) \
2200                (thread_group_leader(p) && !thread_group_empty(p))
2201
2202/*
2203 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2204 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2205 * pins the final release of task.io_context.  Also protects ->cpuset and
2206 * ->cgroup.subsys[]. And ->vfork_done.
2207 *
2208 * Nests both inside and outside of read_lock(&tasklist_lock).
2209 * It must not be nested with write_lock_irq(&tasklist_lock),
2210 * neither inside nor outside.
2211 */
2212static inline void task_lock(struct task_struct *p)
2213{
2214        spin_lock(&p->alloc_lock);
2215}
2216
2217static inline void task_unlock(struct task_struct *p)
2218{
2219        spin_unlock(&p->alloc_lock);
2220}
2221
2222extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2223                                                        unsigned long *flags);
2224
2225static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2226                                                       unsigned long *flags)
2227{
2228        struct sighand_struct *ret;
2229
2230        ret = __lock_task_sighand(tsk, flags);
2231        (void)__cond_lock(&tsk->sighand->siglock, ret);
2232        return ret;
2233}
2234
2235static inline void unlock_task_sighand(struct task_struct *tsk,
2236                                                unsigned long *flags)
2237{
2238        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2239}
2240
2241#ifdef CONFIG_CGROUPS
2242static inline void threadgroup_change_begin(struct task_struct *tsk)
2243{
2244        down_read(&tsk->signal->group_rwsem);
2245}
2246static inline void threadgroup_change_end(struct task_struct *tsk)
2247{
2248        up_read(&tsk->signal->group_rwsem);
2249}
2250
2251/**
2252 * threadgroup_lock - lock threadgroup
2253 * @tsk: member task of the threadgroup to lock
2254 *
2255 * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2256 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2257 * change ->group_leader/pid.  This is useful for cases where the threadgroup
2258 * needs to stay stable across blockable operations.
2259 *
2260 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2261 * synchronization.  While held, no new task will be added to threadgroup
2262 * and no existing live task will have its PF_EXITING set.
2263 *
2264 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2265 * sub-thread becomes a new leader.
2266 */
2267static inline void threadgroup_lock(struct task_struct *tsk)
2268{
2269        down_write(&tsk->signal->group_rwsem);
2270}
2271
2272/**
2273 * threadgroup_unlock - unlock threadgroup
2274 * @tsk: member task of the threadgroup to unlock
2275 *
2276 * Reverse threadgroup_lock().
2277 */
2278static inline void threadgroup_unlock(struct task_struct *tsk)
2279{
2280        up_write(&tsk->signal->group_rwsem);
2281}
2282#else
2283static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2284static inline void threadgroup_change_end(struct task_struct *tsk) {}
2285static inline void threadgroup_lock(struct task_struct *tsk) {}
2286static inline void threadgroup_unlock(struct task_struct *tsk) {}
2287#endif
2288
2289#ifndef __HAVE_THREAD_FUNCTIONS
2290
2291#define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2292#define task_stack_page(task)   ((task)->stack)
2293
2294static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2295{
2296        *task_thread_info(p) = *task_thread_info(org);
2297        task_thread_info(p)->task = p;
2298}
2299
2300static inline unsigned long *end_of_stack(struct task_struct *p)
2301{
2302        return (unsigned long *)(task_thread_info(p) + 1);
2303}
2304
2305#endif
2306
2307static inline int object_is_on_stack(void *obj)
2308{
2309        void *stack = task_stack_page(current);
2310
2311        return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2312}
2313
2314extern void thread_info_cache_init(void);
2315
2316#ifdef CONFIG_DEBUG_STACK_USAGE
2317static inline unsigned long stack_not_used(struct task_struct *p)
2318{
2319        unsigned long *n = end_of_stack(p);
2320
2321        do {    /* Skip over canary */
2322                n++;
2323        } while (!*n);
2324
2325        return (unsigned long)n - (unsigned long)end_of_stack(p);
2326}
2327#endif
2328
2329/* set thread flags in other task's structures
2330 * - see asm/thread_info.h for TIF_xxxx flags available
2331 */
2332static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2333{
2334        set_ti_thread_flag(task_thread_info(tsk), flag);
2335}
2336
2337static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2338{
2339        clear_ti_thread_flag(task_thread_info(tsk), flag);
2340}
2341
2342static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2343{
2344        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2345}
2346
2347static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2348{
2349        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2350}
2351
2352static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2353{
2354        return test_ti_thread_flag(task_thread_info(tsk), flag);
2355}
2356
2357static inline void set_tsk_need_resched(struct task_struct *tsk)
2358{
2359        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2360}
2361
2362static inline void clear_tsk_need_resched(struct task_struct *tsk)
2363{
2364        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2365}
2366
2367static inline int test_tsk_need_resched(struct task_struct *tsk)
2368{
2369        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2370}
2371
2372static inline int restart_syscall(void)
2373{
2374        set_tsk_thread_flag(current, TIF_SIGPENDING);
2375        return -ERESTARTNOINTR;
2376}
2377
2378static inline int signal_pending(struct task_struct *p)
2379{
2380        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2381}
2382
2383static inline int __fatal_signal_pending(struct task_struct *p)
2384{
2385        return unlikely(sigismember(&p->pending.signal, SIGKILL));
2386}
2387
2388static inline int fatal_signal_pending(struct task_struct *p)
2389{
2390        return signal_pending(p) && __fatal_signal_pending(p);
2391}
2392
2393static inline int signal_pending_state(long state, struct task_struct *p)
2394{
2395        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2396                return 0;
2397        if (!signal_pending(p))
2398                return 0;
2399
2400        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2401}
2402
2403static inline int need_resched(void)
2404{
2405        return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2406}
2407
2408/*
2409 * cond_resched() and cond_resched_lock(): latency reduction via
2410 * explicit rescheduling in places that are safe. The return
2411 * value indicates whether a reschedule was done in fact.
2412 * cond_resched_lock() will drop the spinlock before scheduling,
2413 * cond_resched_softirq() will enable bhs before scheduling.
2414 */
2415extern int _cond_resched(void);
2416
2417#define cond_resched() ({                       \
2418        __might_sleep(__FILE__, __LINE__, 0);   \
2419        _cond_resched();                        \
2420})
2421
2422extern int __cond_resched_lock(spinlock_t *lock);
2423
2424#ifdef CONFIG_PREEMPT_COUNT
2425#define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2426#else
2427#define PREEMPT_LOCK_OFFSET     0
2428#endif
2429
2430#define cond_resched_lock(lock) ({                              \
2431        __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2432        __cond_resched_lock(lock);                              \
2433})
2434
2435extern int __cond_resched_softirq(void);
2436
2437#define cond_resched_softirq() ({                                       \
2438        __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2439        __cond_resched_softirq();                                       \
2440})
2441
2442static inline void cond_resched_rcu(void)
2443{
2444#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2445        rcu_read_unlock();
2446        cond_resched();
2447        rcu_read_lock();
2448#endif
2449}
2450
2451/*
2452 * Does a critical section need to be broken due to another
2453 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2454 * but a general need for low latency)
2455 */
2456static inline int spin_needbreak(spinlock_t *lock)
2457{
2458#ifdef CONFIG_PREEMPT
2459        return spin_is_contended(lock);
2460#else
2461        return 0;
2462#endif
2463}
2464
2465/*
2466 * Idle thread specific functions to determine the need_resched
2467 * polling state. We have two versions, one based on TS_POLLING in
2468 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2469 * thread_info.flags
2470 */
2471#ifdef TS_POLLING
2472static inline int tsk_is_polling(struct task_struct *p)
2473{
2474        return task_thread_info(p)->status & TS_POLLING;
2475}
2476static inline void current_set_polling(void)
2477{
2478        current_thread_info()->status |= TS_POLLING;
2479}
2480
2481static inline void current_clr_polling(void)
2482{
2483        current_thread_info()->status &= ~TS_POLLING;
2484        smp_mb__after_clear_bit();
2485}
2486#elif defined(TIF_POLLING_NRFLAG)
2487static inline int tsk_is_polling(struct task_struct *p)
2488{
2489        return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2490}
2491static inline void current_set_polling(void)
2492{
2493        set_thread_flag(TIF_POLLING_NRFLAG);
2494}
2495
2496static inline void current_clr_polling(void)
2497{
2498        clear_thread_flag(TIF_POLLING_NRFLAG);
2499}
2500#else
2501static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2502static inline void current_set_polling(void) { }
2503static inline void current_clr_polling(void) { }
2504#endif
2505
2506/*
2507 * Thread group CPU time accounting.
2508 */
2509void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2510void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2511
2512static inline void thread_group_cputime_init(struct signal_struct *sig)
2513{
2514        raw_spin_lock_init(&sig->cputimer.lock);
2515}
2516
2517/*
2518 * Reevaluate whether the task has signals pending delivery.
2519 * Wake the task if so.
2520 * This is required every time the blocked sigset_t changes.
2521 * callers must hold sighand->siglock.
2522 */
2523extern void recalc_sigpending_and_wake(struct task_struct *t);
2524extern void recalc_sigpending(void);
2525
2526extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2527
2528static inline void signal_wake_up(struct task_struct *t, bool resume)
2529{
2530        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2531}
2532static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2533{
2534        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2535}
2536
2537/*
2538 * Wrappers for p->thread_info->cpu access. No-op on UP.
2539 */
2540#ifdef CONFIG_SMP
2541
2542static inline unsigned int task_cpu(const struct task_struct *p)
2543{
2544        return task_thread_info(p)->cpu;
2545}
2546
2547extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2548
2549#else
2550
2551static inline unsigned int task_cpu(const struct task_struct *p)
2552{
2553        return 0;
2554}
2555
2556static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2557{
2558}
2559
2560#endif /* CONFIG_SMP */
2561
2562extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2563extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2564
2565#ifdef CONFIG_CGROUP_SCHED
2566extern struct task_group root_task_group;
2567#endif /* CONFIG_CGROUP_SCHED */
2568
2569extern int task_can_switch_user(struct user_struct *up,
2570                                        struct task_struct *tsk);
2571
2572#ifdef CONFIG_TASK_XACCT
2573static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2574{
2575        tsk->ioac.rchar += amt;
2576}
2577
2578static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2579{
2580        tsk->ioac.wchar += amt;
2581}
2582
2583static inline void inc_syscr(struct task_struct *tsk)
2584{
2585        tsk->ioac.syscr++;
2586}
2587
2588static inline void inc_syscw(struct task_struct *tsk)
2589{
2590        tsk->ioac.syscw++;
2591}
2592#else
2593static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2594{
2595}
2596
2597static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2598{
2599}
2600
2601static inline void inc_syscr(struct task_struct *tsk)
2602{
2603}
2604
2605static inline void inc_syscw(struct task_struct *tsk)
2606{
2607}
2608#endif
2609
2610#ifndef TASK_SIZE_OF
2611#define TASK_SIZE_OF(tsk)       TASK_SIZE
2612#endif
2613
2614#ifdef CONFIG_MM_OWNER
2615extern void mm_update_next_owner(struct mm_struct *mm);
2616extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2617#else
2618static inline void mm_update_next_owner(struct mm_struct *mm)
2619{
2620}
2621
2622static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2623{
2624}
2625#endif /* CONFIG_MM_OWNER */
2626
2627static inline unsigned long task_rlimit(const struct task_struct *tsk,
2628                unsigned int limit)
2629{
2630        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2631}
2632
2633static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2634                unsigned int limit)
2635{
2636        return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2637}
2638
2639static inline unsigned long rlimit(unsigned int limit)
2640{
2641        return task_rlimit(current, limit);
2642}
2643
2644static inline unsigned long rlimit_max(unsigned int limit)
2645{
2646        return task_rlimit_max(current, limit);
2647}
2648
2649#endif
2650