linux/include/linux/slab.h
<<
>>
Prefs
   1/*
   2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
   3 *
   4 * (C) SGI 2006, Christoph Lameter
   5 *      Cleaned up and restructured to ease the addition of alternative
   6 *      implementations of SLAB allocators.
   7 */
   8
   9#ifndef _LINUX_SLAB_H
  10#define _LINUX_SLAB_H
  11
  12#include <linux/gfp.h>
  13#include <linux/types.h>
  14#include <linux/workqueue.h>
  15
  16
  17/*
  18 * Flags to pass to kmem_cache_create().
  19 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  20 */
  21#define SLAB_DEBUG_FREE         0x00000100UL    /* DEBUG: Perform (expensive) checks on free */
  22#define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
  23#define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
  24#define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
  25#define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
  26#define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
  27#define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
  28/*
  29 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  30 *
  31 * This delays freeing the SLAB page by a grace period, it does _NOT_
  32 * delay object freeing. This means that if you do kmem_cache_free()
  33 * that memory location is free to be reused at any time. Thus it may
  34 * be possible to see another object there in the same RCU grace period.
  35 *
  36 * This feature only ensures the memory location backing the object
  37 * stays valid, the trick to using this is relying on an independent
  38 * object validation pass. Something like:
  39 *
  40 *  rcu_read_lock()
  41 * again:
  42 *  obj = lockless_lookup(key);
  43 *  if (obj) {
  44 *    if (!try_get_ref(obj)) // might fail for free objects
  45 *      goto again;
  46 *
  47 *    if (obj->key != key) { // not the object we expected
  48 *      put_ref(obj);
  49 *      goto again;
  50 *    }
  51 *  }
  52 *  rcu_read_unlock();
  53 *
  54 * See also the comment on struct slab_rcu in mm/slab.c.
  55 */
  56#define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
  57#define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
  58#define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
  59
  60/* Flag to prevent checks on free */
  61#ifdef CONFIG_DEBUG_OBJECTS
  62# define SLAB_DEBUG_OBJECTS     0x00400000UL
  63#else
  64# define SLAB_DEBUG_OBJECTS     0x00000000UL
  65#endif
  66
  67#define SLAB_NOLEAKTRACE        0x00800000UL    /* Avoid kmemleak tracing */
  68
  69/* Don't track use of uninitialized memory */
  70#ifdef CONFIG_KMEMCHECK
  71# define SLAB_NOTRACK           0x01000000UL
  72#else
  73# define SLAB_NOTRACK           0x00000000UL
  74#endif
  75#ifdef CONFIG_FAILSLAB
  76# define SLAB_FAILSLAB          0x02000000UL    /* Fault injection mark */
  77#else
  78# define SLAB_FAILSLAB          0x00000000UL
  79#endif
  80
  81/* The following flags affect the page allocator grouping pages by mobility */
  82#define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
  83#define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
  84/*
  85 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  86 *
  87 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  88 *
  89 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  90 * Both make kfree a no-op.
  91 */
  92#define ZERO_SIZE_PTR ((void *)16)
  93
  94#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  95                                (unsigned long)ZERO_SIZE_PTR)
  96
  97
  98struct mem_cgroup;
  99/*
 100 * struct kmem_cache related prototypes
 101 */
 102void __init kmem_cache_init(void);
 103int slab_is_available(void);
 104
 105struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
 106                        unsigned long,
 107                        void (*)(void *));
 108struct kmem_cache *
 109kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t,
 110                        unsigned long, void (*)(void *), struct kmem_cache *);
 111void kmem_cache_destroy(struct kmem_cache *);
 112int kmem_cache_shrink(struct kmem_cache *);
 113void kmem_cache_free(struct kmem_cache *, void *);
 114
 115/*
 116 * Please use this macro to create slab caches. Simply specify the
 117 * name of the structure and maybe some flags that are listed above.
 118 *
 119 * The alignment of the struct determines object alignment. If you
 120 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 121 * then the objects will be properly aligned in SMP configurations.
 122 */
 123#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
 124                sizeof(struct __struct), __alignof__(struct __struct),\
 125                (__flags), NULL)
 126
 127/*
 128 * Common kmalloc functions provided by all allocators
 129 */
 130void * __must_check __krealloc(const void *, size_t, gfp_t);
 131void * __must_check krealloc(const void *, size_t, gfp_t);
 132void kfree(const void *);
 133void kzfree(const void *);
 134size_t ksize(const void *);
 135
 136/*
 137 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 138 * alignment larger than the alignment of a 64-bit integer.
 139 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 140 */
 141#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
 142#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
 143#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
 144#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
 145#else
 146#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 147#endif
 148
 149#ifdef CONFIG_SLOB
 150/*
 151 * Common fields provided in kmem_cache by all slab allocators
 152 * This struct is either used directly by the allocator (SLOB)
 153 * or the allocator must include definitions for all fields
 154 * provided in kmem_cache_common in their definition of kmem_cache.
 155 *
 156 * Once we can do anonymous structs (C11 standard) we could put a
 157 * anonymous struct definition in these allocators so that the
 158 * separate allocations in the kmem_cache structure of SLAB and
 159 * SLUB is no longer needed.
 160 */
 161struct kmem_cache {
 162        unsigned int object_size;/* The original size of the object */
 163        unsigned int size;      /* The aligned/padded/added on size  */
 164        unsigned int align;     /* Alignment as calculated */
 165        unsigned long flags;    /* Active flags on the slab */
 166        const char *name;       /* Slab name for sysfs */
 167        int refcount;           /* Use counter */
 168        void (*ctor)(void *);   /* Called on object slot creation */
 169        struct list_head list;  /* List of all slab caches on the system */
 170};
 171
 172#endif /* CONFIG_SLOB */
 173
 174/*
 175 * Kmalloc array related definitions
 176 */
 177
 178#ifdef CONFIG_SLAB
 179/*
 180 * The largest kmalloc size supported by the SLAB allocators is
 181 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 182 * less than 32 MB.
 183 *
 184 * WARNING: Its not easy to increase this value since the allocators have
 185 * to do various tricks to work around compiler limitations in order to
 186 * ensure proper constant folding.
 187 */
 188#define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
 189                                (MAX_ORDER + PAGE_SHIFT - 1) : 25)
 190#define KMALLOC_SHIFT_MAX       KMALLOC_SHIFT_HIGH
 191#ifndef KMALLOC_SHIFT_LOW
 192#define KMALLOC_SHIFT_LOW       5
 193#endif
 194#endif
 195
 196#ifdef CONFIG_SLUB
 197/*
 198 * SLUB allocates up to order 2 pages directly and otherwise
 199 * passes the request to the page allocator.
 200 */
 201#define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
 202#define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT)
 203#ifndef KMALLOC_SHIFT_LOW
 204#define KMALLOC_SHIFT_LOW       3
 205#endif
 206#endif
 207
 208#ifdef CONFIG_SLOB
 209/*
 210 * SLOB passes all page size and larger requests to the page allocator.
 211 * No kmalloc array is necessary since objects of different sizes can
 212 * be allocated from the same page.
 213 */
 214#define KMALLOC_SHIFT_MAX       30
 215#define KMALLOC_SHIFT_HIGH      PAGE_SHIFT
 216#ifndef KMALLOC_SHIFT_LOW
 217#define KMALLOC_SHIFT_LOW       3
 218#endif
 219#endif
 220
 221/* Maximum allocatable size */
 222#define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
 223/* Maximum size for which we actually use a slab cache */
 224#define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
 225/* Maximum order allocatable via the slab allocagtor */
 226#define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
 227
 228/*
 229 * Kmalloc subsystem.
 230 */
 231#ifndef KMALLOC_MIN_SIZE
 232#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
 233#endif
 234
 235#ifndef CONFIG_SLOB
 236extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 237#ifdef CONFIG_ZONE_DMA
 238extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
 239#endif
 240
 241/*
 242 * Figure out which kmalloc slab an allocation of a certain size
 243 * belongs to.
 244 * 0 = zero alloc
 245 * 1 =  65 .. 96 bytes
 246 * 2 = 120 .. 192 bytes
 247 * n = 2^(n-1) .. 2^n -1
 248 */
 249static __always_inline int kmalloc_index(size_t size)
 250{
 251        if (!size)
 252                return 0;
 253
 254        if (size <= KMALLOC_MIN_SIZE)
 255                return KMALLOC_SHIFT_LOW;
 256
 257        if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 258                return 1;
 259        if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 260                return 2;
 261        if (size <=          8) return 3;
 262        if (size <=         16) return 4;
 263        if (size <=         32) return 5;
 264        if (size <=         64) return 6;
 265        if (size <=        128) return 7;
 266        if (size <=        256) return 8;
 267        if (size <=        512) return 9;
 268        if (size <=       1024) return 10;
 269        if (size <=   2 * 1024) return 11;
 270        if (size <=   4 * 1024) return 12;
 271        if (size <=   8 * 1024) return 13;
 272        if (size <=  16 * 1024) return 14;
 273        if (size <=  32 * 1024) return 15;
 274        if (size <=  64 * 1024) return 16;
 275        if (size <= 128 * 1024) return 17;
 276        if (size <= 256 * 1024) return 18;
 277        if (size <= 512 * 1024) return 19;
 278        if (size <= 1024 * 1024) return 20;
 279        if (size <=  2 * 1024 * 1024) return 21;
 280        if (size <=  4 * 1024 * 1024) return 22;
 281        if (size <=  8 * 1024 * 1024) return 23;
 282        if (size <=  16 * 1024 * 1024) return 24;
 283        if (size <=  32 * 1024 * 1024) return 25;
 284        if (size <=  64 * 1024 * 1024) return 26;
 285        BUG();
 286
 287        /* Will never be reached. Needed because the compiler may complain */
 288        return -1;
 289}
 290#endif /* !CONFIG_SLOB */
 291
 292#ifdef CONFIG_SLAB
 293#include <linux/slab_def.h>
 294#endif
 295
 296#ifdef CONFIG_SLUB
 297#include <linux/slub_def.h>
 298#endif
 299
 300#ifdef CONFIG_SLOB
 301#include <linux/slob_def.h>
 302#endif
 303
 304/*
 305 * Determine size used for the nth kmalloc cache.
 306 * return size or 0 if a kmalloc cache for that
 307 * size does not exist
 308 */
 309static __always_inline int kmalloc_size(int n)
 310{
 311#ifndef CONFIG_SLOB
 312        if (n > 2)
 313                return 1 << n;
 314
 315        if (n == 1 && KMALLOC_MIN_SIZE <= 32)
 316                return 96;
 317
 318        if (n == 2 && KMALLOC_MIN_SIZE <= 64)
 319                return 192;
 320#endif
 321        return 0;
 322}
 323
 324/*
 325 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 326 * Intended for arches that get misalignment faults even for 64 bit integer
 327 * aligned buffers.
 328 */
 329#ifndef ARCH_SLAB_MINALIGN
 330#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 331#endif
 332/*
 333 * This is the main placeholder for memcg-related information in kmem caches.
 334 * struct kmem_cache will hold a pointer to it, so the memory cost while
 335 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
 336 * would otherwise be if that would be bundled in kmem_cache: we'll need an
 337 * extra pointer chase. But the trade off clearly lays in favor of not
 338 * penalizing non-users.
 339 *
 340 * Both the root cache and the child caches will have it. For the root cache,
 341 * this will hold a dynamically allocated array large enough to hold
 342 * information about the currently limited memcgs in the system.
 343 *
 344 * Child caches will hold extra metadata needed for its operation. Fields are:
 345 *
 346 * @memcg: pointer to the memcg this cache belongs to
 347 * @list: list_head for the list of all caches in this memcg
 348 * @root_cache: pointer to the global, root cache, this cache was derived from
 349 * @dead: set to true after the memcg dies; the cache may still be around.
 350 * @nr_pages: number of pages that belongs to this cache.
 351 * @destroy: worker to be called whenever we are ready, or believe we may be
 352 *           ready, to destroy this cache.
 353 */
 354struct memcg_cache_params {
 355        bool is_root_cache;
 356        union {
 357                struct kmem_cache *memcg_caches[0];
 358                struct {
 359                        struct mem_cgroup *memcg;
 360                        struct list_head list;
 361                        struct kmem_cache *root_cache;
 362                        bool dead;
 363                        atomic_t nr_pages;
 364                        struct work_struct destroy;
 365                };
 366        };
 367};
 368
 369int memcg_update_all_caches(int num_memcgs);
 370
 371struct seq_file;
 372int cache_show(struct kmem_cache *s, struct seq_file *m);
 373void print_slabinfo_header(struct seq_file *m);
 374
 375/**
 376 * kmalloc - allocate memory
 377 * @size: how many bytes of memory are required.
 378 * @flags: the type of memory to allocate.
 379 *
 380 * The @flags argument may be one of:
 381 *
 382 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 383 *
 384 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 385 *
 386 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 387 *   For example, use this inside interrupt handlers.
 388 *
 389 * %GFP_HIGHUSER - Allocate pages from high memory.
 390 *
 391 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 392 *
 393 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 394 *
 395 * %GFP_NOWAIT - Allocation will not sleep.
 396 *
 397 * %GFP_THISNODE - Allocate node-local memory only.
 398 *
 399 * %GFP_DMA - Allocation suitable for DMA.
 400 *   Should only be used for kmalloc() caches. Otherwise, use a
 401 *   slab created with SLAB_DMA.
 402 *
 403 * Also it is possible to set different flags by OR'ing
 404 * in one or more of the following additional @flags:
 405 *
 406 * %__GFP_COLD - Request cache-cold pages instead of
 407 *   trying to return cache-warm pages.
 408 *
 409 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 410 *
 411 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 412 *   (think twice before using).
 413 *
 414 * %__GFP_NORETRY - If memory is not immediately available,
 415 *   then give up at once.
 416 *
 417 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 418 *
 419 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
 420 *
 421 * There are other flags available as well, but these are not intended
 422 * for general use, and so are not documented here. For a full list of
 423 * potential flags, always refer to linux/gfp.h.
 424 *
 425 * kmalloc is the normal method of allocating memory
 426 * in the kernel.
 427 */
 428static __always_inline void *kmalloc(size_t size, gfp_t flags);
 429
 430/**
 431 * kmalloc_array - allocate memory for an array.
 432 * @n: number of elements.
 433 * @size: element size.
 434 * @flags: the type of memory to allocate (see kmalloc).
 435 */
 436static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
 437{
 438        if (size != 0 && n > SIZE_MAX / size)
 439                return NULL;
 440        return __kmalloc(n * size, flags);
 441}
 442
 443/**
 444 * kcalloc - allocate memory for an array. The memory is set to zero.
 445 * @n: number of elements.
 446 * @size: element size.
 447 * @flags: the type of memory to allocate (see kmalloc).
 448 */
 449static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
 450{
 451        return kmalloc_array(n, size, flags | __GFP_ZERO);
 452}
 453
 454#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
 455/**
 456 * kmalloc_node - allocate memory from a specific node
 457 * @size: how many bytes of memory are required.
 458 * @flags: the type of memory to allocate (see kmalloc).
 459 * @node: node to allocate from.
 460 *
 461 * kmalloc() for non-local nodes, used to allocate from a specific node
 462 * if available. Equivalent to kmalloc() in the non-NUMA single-node
 463 * case.
 464 */
 465static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 466{
 467        return kmalloc(size, flags);
 468}
 469
 470static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
 471{
 472        return __kmalloc(size, flags);
 473}
 474
 475void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 476
 477static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
 478                                        gfp_t flags, int node)
 479{
 480        return kmem_cache_alloc(cachep, flags);
 481}
 482#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
 483
 484/*
 485 * kmalloc_track_caller is a special version of kmalloc that records the
 486 * calling function of the routine calling it for slab leak tracking instead
 487 * of just the calling function (confusing, eh?).
 488 * It's useful when the call to kmalloc comes from a widely-used standard
 489 * allocator where we care about the real place the memory allocation
 490 * request comes from.
 491 */
 492#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
 493        (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
 494        (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
 495extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
 496#define kmalloc_track_caller(size, flags) \
 497        __kmalloc_track_caller(size, flags, _RET_IP_)
 498#else
 499#define kmalloc_track_caller(size, flags) \
 500        __kmalloc(size, flags)
 501#endif /* DEBUG_SLAB */
 502
 503#ifdef CONFIG_NUMA
 504/*
 505 * kmalloc_node_track_caller is a special version of kmalloc_node that
 506 * records the calling function of the routine calling it for slab leak
 507 * tracking instead of just the calling function (confusing, eh?).
 508 * It's useful when the call to kmalloc_node comes from a widely-used
 509 * standard allocator where we care about the real place the memory
 510 * allocation request comes from.
 511 */
 512#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
 513        (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
 514        (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
 515extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
 516#define kmalloc_node_track_caller(size, flags, node) \
 517        __kmalloc_node_track_caller(size, flags, node, \
 518                        _RET_IP_)
 519#else
 520#define kmalloc_node_track_caller(size, flags, node) \
 521        __kmalloc_node(size, flags, node)
 522#endif
 523
 524#else /* CONFIG_NUMA */
 525
 526#define kmalloc_node_track_caller(size, flags, node) \
 527        kmalloc_track_caller(size, flags)
 528
 529#endif /* CONFIG_NUMA */
 530
 531/*
 532 * Shortcuts
 533 */
 534static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
 535{
 536        return kmem_cache_alloc(k, flags | __GFP_ZERO);
 537}
 538
 539/**
 540 * kzalloc - allocate memory. The memory is set to zero.
 541 * @size: how many bytes of memory are required.
 542 * @flags: the type of memory to allocate (see kmalloc).
 543 */
 544static inline void *kzalloc(size_t size, gfp_t flags)
 545{
 546        return kmalloc(size, flags | __GFP_ZERO);
 547}
 548
 549/**
 550 * kzalloc_node - allocate zeroed memory from a particular memory node.
 551 * @size: how many bytes of memory are required.
 552 * @flags: the type of memory to allocate (see kmalloc).
 553 * @node: memory node from which to allocate
 554 */
 555static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
 556{
 557        return kmalloc_node(size, flags | __GFP_ZERO, node);
 558}
 559
 560/*
 561 * Determine the size of a slab object
 562 */
 563static inline unsigned int kmem_cache_size(struct kmem_cache *s)
 564{
 565        return s->object_size;
 566}
 567
 568void __init kmem_cache_init_late(void);
 569
 570#endif  /* _LINUX_SLAB_H */
 571