linux/ipc/sem.c
<<
>>
Prefs
   1/*
   2 * linux/ipc/sem.c
   3 * Copyright (C) 1992 Krishna Balasubramanian
   4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
   5 *
   6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
   7 *
   8 * SMP-threaded, sysctl's added
   9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  10 * Enforced range limit on SEM_UNDO
  11 * (c) 2001 Red Hat Inc
  12 * Lockless wakeup
  13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
  14 * Further wakeup optimizations, documentation
  15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
  16 *
  17 * support for audit of ipc object properties and permission changes
  18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  19 *
  20 * namespaces support
  21 * OpenVZ, SWsoft Inc.
  22 * Pavel Emelianov <xemul@openvz.org>
  23 *
  24 * Implementation notes: (May 2010)
  25 * This file implements System V semaphores.
  26 *
  27 * User space visible behavior:
  28 * - FIFO ordering for semop() operations (just FIFO, not starvation
  29 *   protection)
  30 * - multiple semaphore operations that alter the same semaphore in
  31 *   one semop() are handled.
  32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
  33 *   SETALL calls.
  34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
  35 * - undo adjustments at process exit are limited to 0..SEMVMX.
  36 * - namespace are supported.
  37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
  38 *   to /proc/sys/kernel/sem.
  39 * - statistics about the usage are reported in /proc/sysvipc/sem.
  40 *
  41 * Internals:
  42 * - scalability:
  43 *   - all global variables are read-mostly.
  44 *   - semop() calls and semctl(RMID) are synchronized by RCU.
  45 *   - most operations do write operations (actually: spin_lock calls) to
  46 *     the per-semaphore array structure.
  47 *   Thus: Perfect SMP scaling between independent semaphore arrays.
  48 *         If multiple semaphores in one array are used, then cache line
  49 *         trashing on the semaphore array spinlock will limit the scaling.
  50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
  51 *   count_semzcnt()
  52 * - the task that performs a successful semop() scans the list of all
  53 *   sleeping tasks and completes any pending operations that can be fulfilled.
  54 *   Semaphores are actively given to waiting tasks (necessary for FIFO).
  55 *   (see update_queue())
  56 * - To improve the scalability, the actual wake-up calls are performed after
  57 *   dropping all locks. (see wake_up_sem_queue_prepare(),
  58 *   wake_up_sem_queue_do())
  59 * - All work is done by the waker, the woken up task does not have to do
  60 *   anything - not even acquiring a lock or dropping a refcount.
  61 * - A woken up task may not even touch the semaphore array anymore, it may
  62 *   have been destroyed already by a semctl(RMID).
  63 * - The synchronizations between wake-ups due to a timeout/signal and a
  64 *   wake-up due to a completed semaphore operation is achieved by using an
  65 *   intermediate state (IN_WAKEUP).
  66 * - UNDO values are stored in an array (one per process and per
  67 *   semaphore array, lazily allocated). For backwards compatibility, multiple
  68 *   modes for the UNDO variables are supported (per process, per thread)
  69 *   (see copy_semundo, CLONE_SYSVSEM)
  70 * - There are two lists of the pending operations: a per-array list
  71 *   and per-semaphore list (stored in the array). This allows to achieve FIFO
  72 *   ordering without always scanning all pending operations.
  73 *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
  74 */
  75
  76#include <linux/slab.h>
  77#include <linux/spinlock.h>
  78#include <linux/init.h>
  79#include <linux/proc_fs.h>
  80#include <linux/time.h>
  81#include <linux/security.h>
  82#include <linux/syscalls.h>
  83#include <linux/audit.h>
  84#include <linux/capability.h>
  85#include <linux/seq_file.h>
  86#include <linux/rwsem.h>
  87#include <linux/nsproxy.h>
  88#include <linux/ipc_namespace.h>
  89
  90#include <asm/uaccess.h>
  91#include "util.h"
  92
  93/* One semaphore structure for each semaphore in the system. */
  94struct sem {
  95        int     semval;         /* current value */
  96        int     sempid;         /* pid of last operation */
  97        spinlock_t      lock;   /* spinlock for fine-grained semtimedop */
  98        struct list_head pending_alter; /* pending single-sop operations */
  99                                        /* that alter the semaphore */
 100        struct list_head pending_const; /* pending single-sop operations */
 101                                        /* that do not alter the semaphore*/
 102        time_t  sem_otime;      /* candidate for sem_otime */
 103} ____cacheline_aligned_in_smp;
 104
 105/* One queue for each sleeping process in the system. */
 106struct sem_queue {
 107        struct list_head        list;    /* queue of pending operations */
 108        struct task_struct      *sleeper; /* this process */
 109        struct sem_undo         *undo;   /* undo structure */
 110        int                     pid;     /* process id of requesting process */
 111        int                     status;  /* completion status of operation */
 112        struct sembuf           *sops;   /* array of pending operations */
 113        int                     nsops;   /* number of operations */
 114        int                     alter;   /* does *sops alter the array? */
 115};
 116
 117/* Each task has a list of undo requests. They are executed automatically
 118 * when the process exits.
 119 */
 120struct sem_undo {
 121        struct list_head        list_proc;      /* per-process list: *
 122                                                 * all undos from one process
 123                                                 * rcu protected */
 124        struct rcu_head         rcu;            /* rcu struct for sem_undo */
 125        struct sem_undo_list    *ulp;           /* back ptr to sem_undo_list */
 126        struct list_head        list_id;        /* per semaphore array list:
 127                                                 * all undos for one array */
 128        int                     semid;          /* semaphore set identifier */
 129        short                   *semadj;        /* array of adjustments */
 130                                                /* one per semaphore */
 131};
 132
 133/* sem_undo_list controls shared access to the list of sem_undo structures
 134 * that may be shared among all a CLONE_SYSVSEM task group.
 135 */
 136struct sem_undo_list {
 137        atomic_t                refcnt;
 138        spinlock_t              lock;
 139        struct list_head        list_proc;
 140};
 141
 142
 143#define sem_ids(ns)     ((ns)->ids[IPC_SEM_IDS])
 144
 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
 146
 147static int newary(struct ipc_namespace *, struct ipc_params *);
 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
 149#ifdef CONFIG_PROC_FS
 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
 151#endif
 152
 153#define SEMMSL_FAST     256 /* 512 bytes on stack */
 154#define SEMOPM_FAST     64  /* ~ 372 bytes on stack */
 155
 156/*
 157 * Locking:
 158 *      sem_undo.id_next,
 159 *      sem_array.complex_count,
 160 *      sem_array.pending{_alter,_cont},
 161 *      sem_array.sem_undo: global sem_lock() for read/write
 162 *      sem_undo.proc_next: only "current" is allowed to read/write that field.
 163 *      
 164 *      sem_array.sem_base[i].pending_{const,alter}:
 165 *              global or semaphore sem_lock() for read/write
 166 */
 167
 168#define sc_semmsl       sem_ctls[0]
 169#define sc_semmns       sem_ctls[1]
 170#define sc_semopm       sem_ctls[2]
 171#define sc_semmni       sem_ctls[3]
 172
 173void sem_init_ns(struct ipc_namespace *ns)
 174{
 175        ns->sc_semmsl = SEMMSL;
 176        ns->sc_semmns = SEMMNS;
 177        ns->sc_semopm = SEMOPM;
 178        ns->sc_semmni = SEMMNI;
 179        ns->used_sems = 0;
 180        ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
 181}
 182
 183#ifdef CONFIG_IPC_NS
 184void sem_exit_ns(struct ipc_namespace *ns)
 185{
 186        free_ipcs(ns, &sem_ids(ns), freeary);
 187        idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
 188}
 189#endif
 190
 191void __init sem_init (void)
 192{
 193        sem_init_ns(&init_ipc_ns);
 194        ipc_init_proc_interface("sysvipc/sem",
 195                                "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
 196                                IPC_SEM_IDS, sysvipc_sem_proc_show);
 197}
 198
 199/**
 200 * unmerge_queues - unmerge queues, if possible.
 201 * @sma: semaphore array
 202 *
 203 * The function unmerges the wait queues if complex_count is 0.
 204 * It must be called prior to dropping the global semaphore array lock.
 205 */
 206static void unmerge_queues(struct sem_array *sma)
 207{
 208        struct sem_queue *q, *tq;
 209
 210        /* complex operations still around? */
 211        if (sma->complex_count)
 212                return;
 213        /*
 214         * We will switch back to simple mode.
 215         * Move all pending operation back into the per-semaphore
 216         * queues.
 217         */
 218        list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
 219                struct sem *curr;
 220                curr = &sma->sem_base[q->sops[0].sem_num];
 221
 222                list_add_tail(&q->list, &curr->pending_alter);
 223        }
 224        INIT_LIST_HEAD(&sma->pending_alter);
 225}
 226
 227/**
 228 * merge_queues - Merge single semop queues into global queue
 229 * @sma: semaphore array
 230 *
 231 * This function merges all per-semaphore queues into the global queue.
 232 * It is necessary to achieve FIFO ordering for the pending single-sop
 233 * operations when a multi-semop operation must sleep.
 234 * Only the alter operations must be moved, the const operations can stay.
 235 */
 236static void merge_queues(struct sem_array *sma)
 237{
 238        int i;
 239        for (i = 0; i < sma->sem_nsems; i++) {
 240                struct sem *sem = sma->sem_base + i;
 241
 242                list_splice_init(&sem->pending_alter, &sma->pending_alter);
 243        }
 244}
 245
 246/*
 247 * If the request contains only one semaphore operation, and there are
 248 * no complex transactions pending, lock only the semaphore involved.
 249 * Otherwise, lock the entire semaphore array, since we either have
 250 * multiple semaphores in our own semops, or we need to look at
 251 * semaphores from other pending complex operations.
 252 *
 253 * Carefully guard against sma->complex_count changing between zero
 254 * and non-zero while we are spinning for the lock. The value of
 255 * sma->complex_count cannot change while we are holding the lock,
 256 * so sem_unlock should be fine.
 257 *
 258 * The global lock path checks that all the local locks have been released,
 259 * checking each local lock once. This means that the local lock paths
 260 * cannot start their critical sections while the global lock is held.
 261 */
 262static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
 263                              int nsops)
 264{
 265        int locknum;
 266 again:
 267        if (nsops == 1 && !sma->complex_count) {
 268                struct sem *sem = sma->sem_base + sops->sem_num;
 269
 270                /* Lock just the semaphore we are interested in. */
 271                spin_lock(&sem->lock);
 272
 273                /*
 274                 * If sma->complex_count was set while we were spinning,
 275                 * we may need to look at things we did not lock here.
 276                 */
 277                if (unlikely(sma->complex_count)) {
 278                        spin_unlock(&sem->lock);
 279                        goto lock_array;
 280                }
 281
 282                /*
 283                 * Another process is holding the global lock on the
 284                 * sem_array; we cannot enter our critical section,
 285                 * but have to wait for the global lock to be released.
 286                 */
 287                if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
 288                        spin_unlock(&sem->lock);
 289                        spin_unlock_wait(&sma->sem_perm.lock);
 290                        goto again;
 291                }
 292
 293                locknum = sops->sem_num;
 294        } else {
 295                int i;
 296                /*
 297                 * Lock the semaphore array, and wait for all of the
 298                 * individual semaphore locks to go away.  The code
 299                 * above ensures no new single-lock holders will enter
 300                 * their critical section while the array lock is held.
 301                 */
 302 lock_array:
 303                ipc_lock_object(&sma->sem_perm);
 304                for (i = 0; i < sma->sem_nsems; i++) {
 305                        struct sem *sem = sma->sem_base + i;
 306                        spin_unlock_wait(&sem->lock);
 307                }
 308                locknum = -1;
 309        }
 310        return locknum;
 311}
 312
 313static inline void sem_unlock(struct sem_array *sma, int locknum)
 314{
 315        if (locknum == -1) {
 316                unmerge_queues(sma);
 317                ipc_unlock_object(&sma->sem_perm);
 318        } else {
 319                struct sem *sem = sma->sem_base + locknum;
 320                spin_unlock(&sem->lock);
 321        }
 322}
 323
 324/*
 325 * sem_lock_(check_) routines are called in the paths where the rw_mutex
 326 * is not held.
 327 *
 328 * The caller holds the RCU read lock.
 329 */
 330static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
 331                        int id, struct sembuf *sops, int nsops, int *locknum)
 332{
 333        struct kern_ipc_perm *ipcp;
 334        struct sem_array *sma;
 335
 336        ipcp = ipc_obtain_object(&sem_ids(ns), id);
 337        if (IS_ERR(ipcp))
 338                return ERR_CAST(ipcp);
 339
 340        sma = container_of(ipcp, struct sem_array, sem_perm);
 341        *locknum = sem_lock(sma, sops, nsops);
 342
 343        /* ipc_rmid() may have already freed the ID while sem_lock
 344         * was spinning: verify that the structure is still valid
 345         */
 346        if (!ipcp->deleted)
 347                return container_of(ipcp, struct sem_array, sem_perm);
 348
 349        sem_unlock(sma, *locknum);
 350        return ERR_PTR(-EINVAL);
 351}
 352
 353static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
 354{
 355        struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
 356
 357        if (IS_ERR(ipcp))
 358                return ERR_CAST(ipcp);
 359
 360        return container_of(ipcp, struct sem_array, sem_perm);
 361}
 362
 363static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
 364                                                        int id)
 365{
 366        struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
 367
 368        if (IS_ERR(ipcp))
 369                return ERR_CAST(ipcp);
 370
 371        return container_of(ipcp, struct sem_array, sem_perm);
 372}
 373
 374static inline void sem_lock_and_putref(struct sem_array *sma)
 375{
 376        sem_lock(sma, NULL, -1);
 377        ipc_rcu_putref(sma);
 378}
 379
 380static inline void sem_putref(struct sem_array *sma)
 381{
 382        ipc_rcu_putref(sma);
 383}
 384
 385static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
 386{
 387        ipc_rmid(&sem_ids(ns), &s->sem_perm);
 388}
 389
 390/*
 391 * Lockless wakeup algorithm:
 392 * Without the check/retry algorithm a lockless wakeup is possible:
 393 * - queue.status is initialized to -EINTR before blocking.
 394 * - wakeup is performed by
 395 *      * unlinking the queue entry from the pending list
 396 *      * setting queue.status to IN_WAKEUP
 397 *        This is the notification for the blocked thread that a
 398 *        result value is imminent.
 399 *      * call wake_up_process
 400 *      * set queue.status to the final value.
 401 * - the previously blocked thread checks queue.status:
 402 *      * if it's IN_WAKEUP, then it must wait until the value changes
 403 *      * if it's not -EINTR, then the operation was completed by
 404 *        update_queue. semtimedop can return queue.status without
 405 *        performing any operation on the sem array.
 406 *      * otherwise it must acquire the spinlock and check what's up.
 407 *
 408 * The two-stage algorithm is necessary to protect against the following
 409 * races:
 410 * - if queue.status is set after wake_up_process, then the woken up idle
 411 *   thread could race forward and try (and fail) to acquire sma->lock
 412 *   before update_queue had a chance to set queue.status
 413 * - if queue.status is written before wake_up_process and if the
 414 *   blocked process is woken up by a signal between writing
 415 *   queue.status and the wake_up_process, then the woken up
 416 *   process could return from semtimedop and die by calling
 417 *   sys_exit before wake_up_process is called. Then wake_up_process
 418 *   will oops, because the task structure is already invalid.
 419 *   (yes, this happened on s390 with sysv msg).
 420 *
 421 */
 422#define IN_WAKEUP       1
 423
 424/**
 425 * newary - Create a new semaphore set
 426 * @ns: namespace
 427 * @params: ptr to the structure that contains key, semflg and nsems
 428 *
 429 * Called with sem_ids.rw_mutex held (as a writer)
 430 */
 431
 432static int newary(struct ipc_namespace *ns, struct ipc_params *params)
 433{
 434        int id;
 435        int retval;
 436        struct sem_array *sma;
 437        int size;
 438        key_t key = params->key;
 439        int nsems = params->u.nsems;
 440        int semflg = params->flg;
 441        int i;
 442
 443        if (!nsems)
 444                return -EINVAL;
 445        if (ns->used_sems + nsems > ns->sc_semmns)
 446                return -ENOSPC;
 447
 448        size = sizeof (*sma) + nsems * sizeof (struct sem);
 449        sma = ipc_rcu_alloc(size);
 450        if (!sma) {
 451                return -ENOMEM;
 452        }
 453        memset (sma, 0, size);
 454
 455        sma->sem_perm.mode = (semflg & S_IRWXUGO);
 456        sma->sem_perm.key = key;
 457
 458        sma->sem_perm.security = NULL;
 459        retval = security_sem_alloc(sma);
 460        if (retval) {
 461                ipc_rcu_putref(sma);
 462                return retval;
 463        }
 464
 465        id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
 466        if (id < 0) {
 467                security_sem_free(sma);
 468                ipc_rcu_putref(sma);
 469                return id;
 470        }
 471        ns->used_sems += nsems;
 472
 473        sma->sem_base = (struct sem *) &sma[1];
 474
 475        for (i = 0; i < nsems; i++) {
 476                INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
 477                INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
 478                spin_lock_init(&sma->sem_base[i].lock);
 479        }
 480
 481        sma->complex_count = 0;
 482        INIT_LIST_HEAD(&sma->pending_alter);
 483        INIT_LIST_HEAD(&sma->pending_const);
 484        INIT_LIST_HEAD(&sma->list_id);
 485        sma->sem_nsems = nsems;
 486        sma->sem_ctime = get_seconds();
 487        sem_unlock(sma, -1);
 488        rcu_read_unlock();
 489
 490        return sma->sem_perm.id;
 491}
 492
 493
 494/*
 495 * Called with sem_ids.rw_mutex and ipcp locked.
 496 */
 497static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
 498{
 499        struct sem_array *sma;
 500
 501        sma = container_of(ipcp, struct sem_array, sem_perm);
 502        return security_sem_associate(sma, semflg);
 503}
 504
 505/*
 506 * Called with sem_ids.rw_mutex and ipcp locked.
 507 */
 508static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
 509                                struct ipc_params *params)
 510{
 511        struct sem_array *sma;
 512
 513        sma = container_of(ipcp, struct sem_array, sem_perm);
 514        if (params->u.nsems > sma->sem_nsems)
 515                return -EINVAL;
 516
 517        return 0;
 518}
 519
 520SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
 521{
 522        struct ipc_namespace *ns;
 523        struct ipc_ops sem_ops;
 524        struct ipc_params sem_params;
 525
 526        ns = current->nsproxy->ipc_ns;
 527
 528        if (nsems < 0 || nsems > ns->sc_semmsl)
 529                return -EINVAL;
 530
 531        sem_ops.getnew = newary;
 532        sem_ops.associate = sem_security;
 533        sem_ops.more_checks = sem_more_checks;
 534
 535        sem_params.key = key;
 536        sem_params.flg = semflg;
 537        sem_params.u.nsems = nsems;
 538
 539        return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
 540}
 541
 542/** perform_atomic_semop - Perform (if possible) a semaphore operation
 543 * @sma: semaphore array
 544 * @sops: array with operations that should be checked
 545 * @nsems: number of sops
 546 * @un: undo array
 547 * @pid: pid that did the change
 548 *
 549 * Returns 0 if the operation was possible.
 550 * Returns 1 if the operation is impossible, the caller must sleep.
 551 * Negative values are error codes.
 552 */
 553
 554static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
 555                             int nsops, struct sem_undo *un, int pid)
 556{
 557        int result, sem_op;
 558        struct sembuf *sop;
 559        struct sem * curr;
 560
 561        for (sop = sops; sop < sops + nsops; sop++) {
 562                curr = sma->sem_base + sop->sem_num;
 563                sem_op = sop->sem_op;
 564                result = curr->semval;
 565  
 566                if (!sem_op && result)
 567                        goto would_block;
 568
 569                result += sem_op;
 570                if (result < 0)
 571                        goto would_block;
 572                if (result > SEMVMX)
 573                        goto out_of_range;
 574                if (sop->sem_flg & SEM_UNDO) {
 575                        int undo = un->semadj[sop->sem_num] - sem_op;
 576                        /*
 577                         *      Exceeding the undo range is an error.
 578                         */
 579                        if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 580                                goto out_of_range;
 581                }
 582                curr->semval = result;
 583        }
 584
 585        sop--;
 586        while (sop >= sops) {
 587                sma->sem_base[sop->sem_num].sempid = pid;
 588                if (sop->sem_flg & SEM_UNDO)
 589                        un->semadj[sop->sem_num] -= sop->sem_op;
 590                sop--;
 591        }
 592        
 593        return 0;
 594
 595out_of_range:
 596        result = -ERANGE;
 597        goto undo;
 598
 599would_block:
 600        if (sop->sem_flg & IPC_NOWAIT)
 601                result = -EAGAIN;
 602        else
 603                result = 1;
 604
 605undo:
 606        sop--;
 607        while (sop >= sops) {
 608                sma->sem_base[sop->sem_num].semval -= sop->sem_op;
 609                sop--;
 610        }
 611
 612        return result;
 613}
 614
 615/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
 616 * @q: queue entry that must be signaled
 617 * @error: Error value for the signal
 618 *
 619 * Prepare the wake-up of the queue entry q.
 620 */
 621static void wake_up_sem_queue_prepare(struct list_head *pt,
 622                                struct sem_queue *q, int error)
 623{
 624        if (list_empty(pt)) {
 625                /*
 626                 * Hold preempt off so that we don't get preempted and have the
 627                 * wakee busy-wait until we're scheduled back on.
 628                 */
 629                preempt_disable();
 630        }
 631        q->status = IN_WAKEUP;
 632        q->pid = error;
 633
 634        list_add_tail(&q->list, pt);
 635}
 636
 637/**
 638 * wake_up_sem_queue_do(pt) - do the actual wake-up
 639 * @pt: list of tasks to be woken up
 640 *
 641 * Do the actual wake-up.
 642 * The function is called without any locks held, thus the semaphore array
 643 * could be destroyed already and the tasks can disappear as soon as the
 644 * status is set to the actual return code.
 645 */
 646static void wake_up_sem_queue_do(struct list_head *pt)
 647{
 648        struct sem_queue *q, *t;
 649        int did_something;
 650
 651        did_something = !list_empty(pt);
 652        list_for_each_entry_safe(q, t, pt, list) {
 653                wake_up_process(q->sleeper);
 654                /* q can disappear immediately after writing q->status. */
 655                smp_wmb();
 656                q->status = q->pid;
 657        }
 658        if (did_something)
 659                preempt_enable();
 660}
 661
 662static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
 663{
 664        list_del(&q->list);
 665        if (q->nsops > 1)
 666                sma->complex_count--;
 667}
 668
 669/** check_restart(sma, q)
 670 * @sma: semaphore array
 671 * @q: the operation that just completed
 672 *
 673 * update_queue is O(N^2) when it restarts scanning the whole queue of
 674 * waiting operations. Therefore this function checks if the restart is
 675 * really necessary. It is called after a previously waiting operation
 676 * modified the array.
 677 * Note that wait-for-zero operations are handled without restart.
 678 */
 679static int check_restart(struct sem_array *sma, struct sem_queue *q)
 680{
 681        /* pending complex alter operations are too difficult to analyse */
 682        if (!list_empty(&sma->pending_alter))
 683                return 1;
 684
 685        /* we were a sleeping complex operation. Too difficult */
 686        if (q->nsops > 1)
 687                return 1;
 688
 689        /* It is impossible that someone waits for the new value:
 690         * - complex operations always restart.
 691         * - wait-for-zero are handled seperately.
 692         * - q is a previously sleeping simple operation that
 693         *   altered the array. It must be a decrement, because
 694         *   simple increments never sleep.
 695         * - If there are older (higher priority) decrements
 696         *   in the queue, then they have observed the original
 697         *   semval value and couldn't proceed. The operation
 698         *   decremented to value - thus they won't proceed either.
 699         */
 700        return 0;
 701}
 702
 703/**
 704 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
 705 * @sma: semaphore array.
 706 * @semnum: semaphore that was modified.
 707 * @pt: list head for the tasks that must be woken up.
 708 *
 709 * wake_const_ops must be called after a semaphore in a semaphore array
 710 * was set to 0. If complex const operations are pending, wake_const_ops must
 711 * be called with semnum = -1, as well as with the number of each modified
 712 * semaphore.
 713 * The tasks that must be woken up are added to @pt. The return code
 714 * is stored in q->pid.
 715 * The function returns 1 if at least one operation was completed successfully.
 716 */
 717static int wake_const_ops(struct sem_array *sma, int semnum,
 718                                struct list_head *pt)
 719{
 720        struct sem_queue *q;
 721        struct list_head *walk;
 722        struct list_head *pending_list;
 723        int semop_completed = 0;
 724
 725        if (semnum == -1)
 726                pending_list = &sma->pending_const;
 727        else
 728                pending_list = &sma->sem_base[semnum].pending_const;
 729
 730        walk = pending_list->next;
 731        while (walk != pending_list) {
 732                int error;
 733
 734                q = container_of(walk, struct sem_queue, list);
 735                walk = walk->next;
 736
 737                error = perform_atomic_semop(sma, q->sops, q->nsops,
 738                                                 q->undo, q->pid);
 739
 740                if (error <= 0) {
 741                        /* operation completed, remove from queue & wakeup */
 742
 743                        unlink_queue(sma, q);
 744
 745                        wake_up_sem_queue_prepare(pt, q, error);
 746                        if (error == 0)
 747                                semop_completed = 1;
 748                }
 749        }
 750        return semop_completed;
 751}
 752
 753/**
 754 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
 755 * @sma: semaphore array
 756 * @sops: operations that were performed
 757 * @nsops: number of operations
 758 * @pt: list head of the tasks that must be woken up.
 759 *
 760 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
 761 * operations, based on the actual changes that were performed on the
 762 * semaphore array.
 763 * The function returns 1 if at least one operation was completed successfully.
 764 */
 765static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
 766                                        int nsops, struct list_head *pt)
 767{
 768        int i;
 769        int semop_completed = 0;
 770        int got_zero = 0;
 771
 772        /* first: the per-semaphore queues, if known */
 773        if (sops) {
 774                for (i = 0; i < nsops; i++) {
 775                        int num = sops[i].sem_num;
 776
 777                        if (sma->sem_base[num].semval == 0) {
 778                                got_zero = 1;
 779                                semop_completed |= wake_const_ops(sma, num, pt);
 780                        }
 781                }
 782        } else {
 783                /*
 784                 * No sops means modified semaphores not known.
 785                 * Assume all were changed.
 786                 */
 787                for (i = 0; i < sma->sem_nsems; i++) {
 788                        if (sma->sem_base[i].semval == 0) {
 789                                got_zero = 1;
 790                                semop_completed |= wake_const_ops(sma, i, pt);
 791                        }
 792                }
 793        }
 794        /*
 795         * If one of the modified semaphores got 0,
 796         * then check the global queue, too.
 797         */
 798        if (got_zero)
 799                semop_completed |= wake_const_ops(sma, -1, pt);
 800
 801        return semop_completed;
 802}
 803
 804
 805/**
 806 * update_queue(sma, semnum): Look for tasks that can be completed.
 807 * @sma: semaphore array.
 808 * @semnum: semaphore that was modified.
 809 * @pt: list head for the tasks that must be woken up.
 810 *
 811 * update_queue must be called after a semaphore in a semaphore array
 812 * was modified. If multiple semaphores were modified, update_queue must
 813 * be called with semnum = -1, as well as with the number of each modified
 814 * semaphore.
 815 * The tasks that must be woken up are added to @pt. The return code
 816 * is stored in q->pid.
 817 * The function internally checks if const operations can now succeed.
 818 *
 819 * The function return 1 if at least one semop was completed successfully.
 820 */
 821static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
 822{
 823        struct sem_queue *q;
 824        struct list_head *walk;
 825        struct list_head *pending_list;
 826        int semop_completed = 0;
 827
 828        if (semnum == -1)
 829                pending_list = &sma->pending_alter;
 830        else
 831                pending_list = &sma->sem_base[semnum].pending_alter;
 832
 833again:
 834        walk = pending_list->next;
 835        while (walk != pending_list) {
 836                int error, restart;
 837
 838                q = container_of(walk, struct sem_queue, list);
 839                walk = walk->next;
 840
 841                /* If we are scanning the single sop, per-semaphore list of
 842                 * one semaphore and that semaphore is 0, then it is not
 843                 * necessary to scan further: simple increments
 844                 * that affect only one entry succeed immediately and cannot
 845                 * be in the  per semaphore pending queue, and decrements
 846                 * cannot be successful if the value is already 0.
 847                 */
 848                if (semnum != -1 && sma->sem_base[semnum].semval == 0)
 849                        break;
 850
 851                error = perform_atomic_semop(sma, q->sops, q->nsops,
 852                                         q->undo, q->pid);
 853
 854                /* Does q->sleeper still need to sleep? */
 855                if (error > 0)
 856                        continue;
 857
 858                unlink_queue(sma, q);
 859
 860                if (error) {
 861                        restart = 0;
 862                } else {
 863                        semop_completed = 1;
 864                        do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
 865                        restart = check_restart(sma, q);
 866                }
 867
 868                wake_up_sem_queue_prepare(pt, q, error);
 869                if (restart)
 870                        goto again;
 871        }
 872        return semop_completed;
 873}
 874
 875/**
 876 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
 877 * @sma: semaphore array
 878 * @sops: operations that were performed
 879 * @nsops: number of operations
 880 * @otime: force setting otime
 881 * @pt: list head of the tasks that must be woken up.
 882 *
 883 * do_smart_update() does the required calls to update_queue and wakeup_zero,
 884 * based on the actual changes that were performed on the semaphore array.
 885 * Note that the function does not do the actual wake-up: the caller is
 886 * responsible for calling wake_up_sem_queue_do(@pt).
 887 * It is safe to perform this call after dropping all locks.
 888 */
 889static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
 890                        int otime, struct list_head *pt)
 891{
 892        int i;
 893
 894        otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
 895
 896        if (!list_empty(&sma->pending_alter)) {
 897                /* semaphore array uses the global queue - just process it. */
 898                otime |= update_queue(sma, -1, pt);
 899        } else {
 900                if (!sops) {
 901                        /*
 902                         * No sops, thus the modified semaphores are not
 903                         * known. Check all.
 904                         */
 905                        for (i = 0; i < sma->sem_nsems; i++)
 906                                otime |= update_queue(sma, i, pt);
 907                } else {
 908                        /*
 909                         * Check the semaphores that were increased:
 910                         * - No complex ops, thus all sleeping ops are
 911                         *   decrease.
 912                         * - if we decreased the value, then any sleeping
 913                         *   semaphore ops wont be able to run: If the
 914                         *   previous value was too small, then the new
 915                         *   value will be too small, too.
 916                         */
 917                        for (i = 0; i < nsops; i++) {
 918                                if (sops[i].sem_op > 0) {
 919                                        otime |= update_queue(sma,
 920                                                        sops[i].sem_num, pt);
 921                                }
 922                        }
 923                }
 924        }
 925        if (otime) {
 926                if (sops == NULL) {
 927                        sma->sem_base[0].sem_otime = get_seconds();
 928                } else {
 929                        sma->sem_base[sops[0].sem_num].sem_otime =
 930                                                                get_seconds();
 931                }
 932        }
 933}
 934
 935
 936/* The following counts are associated to each semaphore:
 937 *   semncnt        number of tasks waiting on semval being nonzero
 938 *   semzcnt        number of tasks waiting on semval being zero
 939 * This model assumes that a task waits on exactly one semaphore.
 940 * Since semaphore operations are to be performed atomically, tasks actually
 941 * wait on a whole sequence of semaphores simultaneously.
 942 * The counts we return here are a rough approximation, but still
 943 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
 944 */
 945static int count_semncnt (struct sem_array * sma, ushort semnum)
 946{
 947        int semncnt;
 948        struct sem_queue * q;
 949
 950        semncnt = 0;
 951        list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
 952                struct sembuf * sops = q->sops;
 953                BUG_ON(sops->sem_num != semnum);
 954                if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
 955                        semncnt++;
 956        }
 957
 958        list_for_each_entry(q, &sma->pending_alter, list) {
 959                struct sembuf * sops = q->sops;
 960                int nsops = q->nsops;
 961                int i;
 962                for (i = 0; i < nsops; i++)
 963                        if (sops[i].sem_num == semnum
 964                            && (sops[i].sem_op < 0)
 965                            && !(sops[i].sem_flg & IPC_NOWAIT))
 966                                semncnt++;
 967        }
 968        return semncnt;
 969}
 970
 971static int count_semzcnt (struct sem_array * sma, ushort semnum)
 972{
 973        int semzcnt;
 974        struct sem_queue * q;
 975
 976        semzcnt = 0;
 977        list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
 978                struct sembuf * sops = q->sops;
 979                BUG_ON(sops->sem_num != semnum);
 980                if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
 981                        semzcnt++;
 982        }
 983
 984        list_for_each_entry(q, &sma->pending_const, list) {
 985                struct sembuf * sops = q->sops;
 986                int nsops = q->nsops;
 987                int i;
 988                for (i = 0; i < nsops; i++)
 989                        if (sops[i].sem_num == semnum
 990                            && (sops[i].sem_op == 0)
 991                            && !(sops[i].sem_flg & IPC_NOWAIT))
 992                                semzcnt++;
 993        }
 994        return semzcnt;
 995}
 996
 997/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
 998 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
 999 * remains locked on exit.
1000 */
1001static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1002{
1003        struct sem_undo *un, *tu;
1004        struct sem_queue *q, *tq;
1005        struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1006        struct list_head tasks;
1007        int i;
1008
1009        /* Free the existing undo structures for this semaphore set.  */
1010        ipc_assert_locked_object(&sma->sem_perm);
1011        list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1012                list_del(&un->list_id);
1013                spin_lock(&un->ulp->lock);
1014                un->semid = -1;
1015                list_del_rcu(&un->list_proc);
1016                spin_unlock(&un->ulp->lock);
1017                kfree_rcu(un, rcu);
1018        }
1019
1020        /* Wake up all pending processes and let them fail with EIDRM. */
1021        INIT_LIST_HEAD(&tasks);
1022        list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1023                unlink_queue(sma, q);
1024                wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1025        }
1026
1027        list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1028                unlink_queue(sma, q);
1029                wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1030        }
1031        for (i = 0; i < sma->sem_nsems; i++) {
1032                struct sem *sem = sma->sem_base + i;
1033                list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1034                        unlink_queue(sma, q);
1035                        wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1036                }
1037                list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1038                        unlink_queue(sma, q);
1039                        wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1040                }
1041        }
1042
1043        /* Remove the semaphore set from the IDR */
1044        sem_rmid(ns, sma);
1045        sem_unlock(sma, -1);
1046        rcu_read_unlock();
1047
1048        wake_up_sem_queue_do(&tasks);
1049        ns->used_sems -= sma->sem_nsems;
1050        security_sem_free(sma);
1051        ipc_rcu_putref(sma);
1052}
1053
1054static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1055{
1056        switch(version) {
1057        case IPC_64:
1058                return copy_to_user(buf, in, sizeof(*in));
1059        case IPC_OLD:
1060            {
1061                struct semid_ds out;
1062
1063                memset(&out, 0, sizeof(out));
1064
1065                ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1066
1067                out.sem_otime   = in->sem_otime;
1068                out.sem_ctime   = in->sem_ctime;
1069                out.sem_nsems   = in->sem_nsems;
1070
1071                return copy_to_user(buf, &out, sizeof(out));
1072            }
1073        default:
1074                return -EINVAL;
1075        }
1076}
1077
1078static time_t get_semotime(struct sem_array *sma)
1079{
1080        int i;
1081        time_t res;
1082
1083        res = sma->sem_base[0].sem_otime;
1084        for (i = 1; i < sma->sem_nsems; i++) {
1085                time_t to = sma->sem_base[i].sem_otime;
1086
1087                if (to > res)
1088                        res = to;
1089        }
1090        return res;
1091}
1092
1093static int semctl_nolock(struct ipc_namespace *ns, int semid,
1094                         int cmd, int version, void __user *p)
1095{
1096        int err;
1097        struct sem_array *sma;
1098
1099        switch(cmd) {
1100        case IPC_INFO:
1101        case SEM_INFO:
1102        {
1103                struct seminfo seminfo;
1104                int max_id;
1105
1106                err = security_sem_semctl(NULL, cmd);
1107                if (err)
1108                        return err;
1109                
1110                memset(&seminfo,0,sizeof(seminfo));
1111                seminfo.semmni = ns->sc_semmni;
1112                seminfo.semmns = ns->sc_semmns;
1113                seminfo.semmsl = ns->sc_semmsl;
1114                seminfo.semopm = ns->sc_semopm;
1115                seminfo.semvmx = SEMVMX;
1116                seminfo.semmnu = SEMMNU;
1117                seminfo.semmap = SEMMAP;
1118                seminfo.semume = SEMUME;
1119                down_read(&sem_ids(ns).rw_mutex);
1120                if (cmd == SEM_INFO) {
1121                        seminfo.semusz = sem_ids(ns).in_use;
1122                        seminfo.semaem = ns->used_sems;
1123                } else {
1124                        seminfo.semusz = SEMUSZ;
1125                        seminfo.semaem = SEMAEM;
1126                }
1127                max_id = ipc_get_maxid(&sem_ids(ns));
1128                up_read(&sem_ids(ns).rw_mutex);
1129                if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 
1130                        return -EFAULT;
1131                return (max_id < 0) ? 0: max_id;
1132        }
1133        case IPC_STAT:
1134        case SEM_STAT:
1135        {
1136                struct semid64_ds tbuf;
1137                int id = 0;
1138
1139                memset(&tbuf, 0, sizeof(tbuf));
1140
1141                rcu_read_lock();
1142                if (cmd == SEM_STAT) {
1143                        sma = sem_obtain_object(ns, semid);
1144                        if (IS_ERR(sma)) {
1145                                err = PTR_ERR(sma);
1146                                goto out_unlock;
1147                        }
1148                        id = sma->sem_perm.id;
1149                } else {
1150                        sma = sem_obtain_object_check(ns, semid);
1151                        if (IS_ERR(sma)) {
1152                                err = PTR_ERR(sma);
1153                                goto out_unlock;
1154                        }
1155                }
1156
1157                err = -EACCES;
1158                if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1159                        goto out_unlock;
1160
1161                err = security_sem_semctl(sma, cmd);
1162                if (err)
1163                        goto out_unlock;
1164
1165                kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1166                tbuf.sem_otime = get_semotime(sma);
1167                tbuf.sem_ctime = sma->sem_ctime;
1168                tbuf.sem_nsems = sma->sem_nsems;
1169                rcu_read_unlock();
1170                if (copy_semid_to_user(p, &tbuf, version))
1171                        return -EFAULT;
1172                return id;
1173        }
1174        default:
1175                return -EINVAL;
1176        }
1177out_unlock:
1178        rcu_read_unlock();
1179        return err;
1180}
1181
1182static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1183                unsigned long arg)
1184{
1185        struct sem_undo *un;
1186        struct sem_array *sma;
1187        struct sem* curr;
1188        int err;
1189        struct list_head tasks;
1190        int val;
1191#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1192        /* big-endian 64bit */
1193        val = arg >> 32;
1194#else
1195        /* 32bit or little-endian 64bit */
1196        val = arg;
1197#endif
1198
1199        if (val > SEMVMX || val < 0)
1200                return -ERANGE;
1201
1202        INIT_LIST_HEAD(&tasks);
1203
1204        rcu_read_lock();
1205        sma = sem_obtain_object_check(ns, semid);
1206        if (IS_ERR(sma)) {
1207                rcu_read_unlock();
1208                return PTR_ERR(sma);
1209        }
1210
1211        if (semnum < 0 || semnum >= sma->sem_nsems) {
1212                rcu_read_unlock();
1213                return -EINVAL;
1214        }
1215
1216
1217        if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1218                rcu_read_unlock();
1219                return -EACCES;
1220        }
1221
1222        err = security_sem_semctl(sma, SETVAL);
1223        if (err) {
1224                rcu_read_unlock();
1225                return -EACCES;
1226        }
1227
1228        sem_lock(sma, NULL, -1);
1229
1230        curr = &sma->sem_base[semnum];
1231
1232        ipc_assert_locked_object(&sma->sem_perm);
1233        list_for_each_entry(un, &sma->list_id, list_id)
1234                un->semadj[semnum] = 0;
1235
1236        curr->semval = val;
1237        curr->sempid = task_tgid_vnr(current);
1238        sma->sem_ctime = get_seconds();
1239        /* maybe some queued-up processes were waiting for this */
1240        do_smart_update(sma, NULL, 0, 0, &tasks);
1241        sem_unlock(sma, -1);
1242        rcu_read_unlock();
1243        wake_up_sem_queue_do(&tasks);
1244        return 0;
1245}
1246
1247static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1248                int cmd, void __user *p)
1249{
1250        struct sem_array *sma;
1251        struct sem* curr;
1252        int err, nsems;
1253        ushort fast_sem_io[SEMMSL_FAST];
1254        ushort* sem_io = fast_sem_io;
1255        struct list_head tasks;
1256
1257        INIT_LIST_HEAD(&tasks);
1258
1259        rcu_read_lock();
1260        sma = sem_obtain_object_check(ns, semid);
1261        if (IS_ERR(sma)) {
1262                rcu_read_unlock();
1263                return PTR_ERR(sma);
1264        }
1265
1266        nsems = sma->sem_nsems;
1267
1268        err = -EACCES;
1269        if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1270                goto out_rcu_wakeup;
1271
1272        err = security_sem_semctl(sma, cmd);
1273        if (err)
1274                goto out_rcu_wakeup;
1275
1276        err = -EACCES;
1277        switch (cmd) {
1278        case GETALL:
1279        {
1280                ushort __user *array = p;
1281                int i;
1282
1283                sem_lock(sma, NULL, -1);
1284                if(nsems > SEMMSL_FAST) {
1285                        if (!ipc_rcu_getref(sma)) {
1286                                sem_unlock(sma, -1);
1287                                rcu_read_unlock();
1288                                err = -EIDRM;
1289                                goto out_free;
1290                        }
1291                        sem_unlock(sma, -1);
1292                        rcu_read_unlock();
1293                        sem_io = ipc_alloc(sizeof(ushort)*nsems);
1294                        if(sem_io == NULL) {
1295                                sem_putref(sma);
1296                                return -ENOMEM;
1297                        }
1298
1299                        rcu_read_lock();
1300                        sem_lock_and_putref(sma);
1301                        if (sma->sem_perm.deleted) {
1302                                sem_unlock(sma, -1);
1303                                rcu_read_unlock();
1304                                err = -EIDRM;
1305                                goto out_free;
1306                        }
1307                }
1308                for (i = 0; i < sma->sem_nsems; i++)
1309                        sem_io[i] = sma->sem_base[i].semval;
1310                sem_unlock(sma, -1);
1311                rcu_read_unlock();
1312                err = 0;
1313                if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1314                        err = -EFAULT;
1315                goto out_free;
1316        }
1317        case SETALL:
1318        {
1319                int i;
1320                struct sem_undo *un;
1321
1322                if (!ipc_rcu_getref(sma)) {
1323                        rcu_read_unlock();
1324                        return -EIDRM;
1325                }
1326                rcu_read_unlock();
1327
1328                if(nsems > SEMMSL_FAST) {
1329                        sem_io = ipc_alloc(sizeof(ushort)*nsems);
1330                        if(sem_io == NULL) {
1331                                sem_putref(sma);
1332                                return -ENOMEM;
1333                        }
1334                }
1335
1336                if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1337                        sem_putref(sma);
1338                        err = -EFAULT;
1339                        goto out_free;
1340                }
1341
1342                for (i = 0; i < nsems; i++) {
1343                        if (sem_io[i] > SEMVMX) {
1344                                sem_putref(sma);
1345                                err = -ERANGE;
1346                                goto out_free;
1347                        }
1348                }
1349                rcu_read_lock();
1350                sem_lock_and_putref(sma);
1351                if (sma->sem_perm.deleted) {
1352                        sem_unlock(sma, -1);
1353                        rcu_read_unlock();
1354                        err = -EIDRM;
1355                        goto out_free;
1356                }
1357
1358                for (i = 0; i < nsems; i++)
1359                        sma->sem_base[i].semval = sem_io[i];
1360
1361                ipc_assert_locked_object(&sma->sem_perm);
1362                list_for_each_entry(un, &sma->list_id, list_id) {
1363                        for (i = 0; i < nsems; i++)
1364                                un->semadj[i] = 0;
1365                }
1366                sma->sem_ctime = get_seconds();
1367                /* maybe some queued-up processes were waiting for this */
1368                do_smart_update(sma, NULL, 0, 0, &tasks);
1369                err = 0;
1370                goto out_unlock;
1371        }
1372        /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1373        }
1374        err = -EINVAL;
1375        if (semnum < 0 || semnum >= nsems)
1376                goto out_rcu_wakeup;
1377
1378        sem_lock(sma, NULL, -1);
1379        curr = &sma->sem_base[semnum];
1380
1381        switch (cmd) {
1382        case GETVAL:
1383                err = curr->semval;
1384                goto out_unlock;
1385        case GETPID:
1386                err = curr->sempid;
1387                goto out_unlock;
1388        case GETNCNT:
1389                err = count_semncnt(sma,semnum);
1390                goto out_unlock;
1391        case GETZCNT:
1392                err = count_semzcnt(sma,semnum);
1393                goto out_unlock;
1394        }
1395
1396out_unlock:
1397        sem_unlock(sma, -1);
1398out_rcu_wakeup:
1399        rcu_read_unlock();
1400        wake_up_sem_queue_do(&tasks);
1401out_free:
1402        if(sem_io != fast_sem_io)
1403                ipc_free(sem_io, sizeof(ushort)*nsems);
1404        return err;
1405}
1406
1407static inline unsigned long
1408copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1409{
1410        switch(version) {
1411        case IPC_64:
1412                if (copy_from_user(out, buf, sizeof(*out)))
1413                        return -EFAULT;
1414                return 0;
1415        case IPC_OLD:
1416            {
1417                struct semid_ds tbuf_old;
1418
1419                if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1420                        return -EFAULT;
1421
1422                out->sem_perm.uid       = tbuf_old.sem_perm.uid;
1423                out->sem_perm.gid       = tbuf_old.sem_perm.gid;
1424                out->sem_perm.mode      = tbuf_old.sem_perm.mode;
1425
1426                return 0;
1427            }
1428        default:
1429                return -EINVAL;
1430        }
1431}
1432
1433/*
1434 * This function handles some semctl commands which require the rw_mutex
1435 * to be held in write mode.
1436 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1437 */
1438static int semctl_down(struct ipc_namespace *ns, int semid,
1439                       int cmd, int version, void __user *p)
1440{
1441        struct sem_array *sma;
1442        int err;
1443        struct semid64_ds semid64;
1444        struct kern_ipc_perm *ipcp;
1445
1446        if(cmd == IPC_SET) {
1447                if (copy_semid_from_user(&semid64, p, version))
1448                        return -EFAULT;
1449        }
1450
1451        down_write(&sem_ids(ns).rw_mutex);
1452        rcu_read_lock();
1453
1454        ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1455                                      &semid64.sem_perm, 0);
1456        if (IS_ERR(ipcp)) {
1457                err = PTR_ERR(ipcp);
1458                goto out_unlock1;
1459        }
1460
1461        sma = container_of(ipcp, struct sem_array, sem_perm);
1462
1463        err = security_sem_semctl(sma, cmd);
1464        if (err)
1465                goto out_unlock1;
1466
1467        switch (cmd) {
1468        case IPC_RMID:
1469                sem_lock(sma, NULL, -1);
1470                /* freeary unlocks the ipc object and rcu */
1471                freeary(ns, ipcp);
1472                goto out_up;
1473        case IPC_SET:
1474                sem_lock(sma, NULL, -1);
1475                err = ipc_update_perm(&semid64.sem_perm, ipcp);
1476                if (err)
1477                        goto out_unlock0;
1478                sma->sem_ctime = get_seconds();
1479                break;
1480        default:
1481                err = -EINVAL;
1482                goto out_unlock1;
1483        }
1484
1485out_unlock0:
1486        sem_unlock(sma, -1);
1487out_unlock1:
1488        rcu_read_unlock();
1489out_up:
1490        up_write(&sem_ids(ns).rw_mutex);
1491        return err;
1492}
1493
1494SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1495{
1496        int version;
1497        struct ipc_namespace *ns;
1498        void __user *p = (void __user *)arg;
1499
1500        if (semid < 0)
1501                return -EINVAL;
1502
1503        version = ipc_parse_version(&cmd);
1504        ns = current->nsproxy->ipc_ns;
1505
1506        switch(cmd) {
1507        case IPC_INFO:
1508        case SEM_INFO:
1509        case IPC_STAT:
1510        case SEM_STAT:
1511                return semctl_nolock(ns, semid, cmd, version, p);
1512        case GETALL:
1513        case GETVAL:
1514        case GETPID:
1515        case GETNCNT:
1516        case GETZCNT:
1517        case SETALL:
1518                return semctl_main(ns, semid, semnum, cmd, p);
1519        case SETVAL:
1520                return semctl_setval(ns, semid, semnum, arg);
1521        case IPC_RMID:
1522        case IPC_SET:
1523                return semctl_down(ns, semid, cmd, version, p);
1524        default:
1525                return -EINVAL;
1526        }
1527}
1528
1529/* If the task doesn't already have a undo_list, then allocate one
1530 * here.  We guarantee there is only one thread using this undo list,
1531 * and current is THE ONE
1532 *
1533 * If this allocation and assignment succeeds, but later
1534 * portions of this code fail, there is no need to free the sem_undo_list.
1535 * Just let it stay associated with the task, and it'll be freed later
1536 * at exit time.
1537 *
1538 * This can block, so callers must hold no locks.
1539 */
1540static inline int get_undo_list(struct sem_undo_list **undo_listp)
1541{
1542        struct sem_undo_list *undo_list;
1543
1544        undo_list = current->sysvsem.undo_list;
1545        if (!undo_list) {
1546                undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1547                if (undo_list == NULL)
1548                        return -ENOMEM;
1549                spin_lock_init(&undo_list->lock);
1550                atomic_set(&undo_list->refcnt, 1);
1551                INIT_LIST_HEAD(&undo_list->list_proc);
1552
1553                current->sysvsem.undo_list = undo_list;
1554        }
1555        *undo_listp = undo_list;
1556        return 0;
1557}
1558
1559static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1560{
1561        struct sem_undo *un;
1562
1563        list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1564                if (un->semid == semid)
1565                        return un;
1566        }
1567        return NULL;
1568}
1569
1570static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1571{
1572        struct sem_undo *un;
1573
1574        assert_spin_locked(&ulp->lock);
1575
1576        un = __lookup_undo(ulp, semid);
1577        if (un) {
1578                list_del_rcu(&un->list_proc);
1579                list_add_rcu(&un->list_proc, &ulp->list_proc);
1580        }
1581        return un;
1582}
1583
1584/**
1585 * find_alloc_undo - Lookup (and if not present create) undo array
1586 * @ns: namespace
1587 * @semid: semaphore array id
1588 *
1589 * The function looks up (and if not present creates) the undo structure.
1590 * The size of the undo structure depends on the size of the semaphore
1591 * array, thus the alloc path is not that straightforward.
1592 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1593 * performs a rcu_read_lock().
1594 */
1595static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1596{
1597        struct sem_array *sma;
1598        struct sem_undo_list *ulp;
1599        struct sem_undo *un, *new;
1600        int nsems, error;
1601
1602        error = get_undo_list(&ulp);
1603        if (error)
1604                return ERR_PTR(error);
1605
1606        rcu_read_lock();
1607        spin_lock(&ulp->lock);
1608        un = lookup_undo(ulp, semid);
1609        spin_unlock(&ulp->lock);
1610        if (likely(un!=NULL))
1611                goto out;
1612
1613        /* no undo structure around - allocate one. */
1614        /* step 1: figure out the size of the semaphore array */
1615        sma = sem_obtain_object_check(ns, semid);
1616        if (IS_ERR(sma)) {
1617                rcu_read_unlock();
1618                return ERR_CAST(sma);
1619        }
1620
1621        nsems = sma->sem_nsems;
1622        if (!ipc_rcu_getref(sma)) {
1623                rcu_read_unlock();
1624                un = ERR_PTR(-EIDRM);
1625                goto out;
1626        }
1627        rcu_read_unlock();
1628
1629        /* step 2: allocate new undo structure */
1630        new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1631        if (!new) {
1632                sem_putref(sma);
1633                return ERR_PTR(-ENOMEM);
1634        }
1635
1636        /* step 3: Acquire the lock on semaphore array */
1637        rcu_read_lock();
1638        sem_lock_and_putref(sma);
1639        if (sma->sem_perm.deleted) {
1640                sem_unlock(sma, -1);
1641                rcu_read_unlock();
1642                kfree(new);
1643                un = ERR_PTR(-EIDRM);
1644                goto out;
1645        }
1646        spin_lock(&ulp->lock);
1647
1648        /*
1649         * step 4: check for races: did someone else allocate the undo struct?
1650         */
1651        un = lookup_undo(ulp, semid);
1652        if (un) {
1653                kfree(new);
1654                goto success;
1655        }
1656        /* step 5: initialize & link new undo structure */
1657        new->semadj = (short *) &new[1];
1658        new->ulp = ulp;
1659        new->semid = semid;
1660        assert_spin_locked(&ulp->lock);
1661        list_add_rcu(&new->list_proc, &ulp->list_proc);
1662        ipc_assert_locked_object(&sma->sem_perm);
1663        list_add(&new->list_id, &sma->list_id);
1664        un = new;
1665
1666success:
1667        spin_unlock(&ulp->lock);
1668        sem_unlock(sma, -1);
1669out:
1670        return un;
1671}
1672
1673
1674/**
1675 * get_queue_result - Retrieve the result code from sem_queue
1676 * @q: Pointer to queue structure
1677 *
1678 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1679 * q->status, then we must loop until the value is replaced with the final
1680 * value: This may happen if a task is woken up by an unrelated event (e.g.
1681 * signal) and in parallel the task is woken up by another task because it got
1682 * the requested semaphores.
1683 *
1684 * The function can be called with or without holding the semaphore spinlock.
1685 */
1686static int get_queue_result(struct sem_queue *q)
1687{
1688        int error;
1689
1690        error = q->status;
1691        while (unlikely(error == IN_WAKEUP)) {
1692                cpu_relax();
1693                error = q->status;
1694        }
1695
1696        return error;
1697}
1698
1699SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1700                unsigned, nsops, const struct timespec __user *, timeout)
1701{
1702        int error = -EINVAL;
1703        struct sem_array *sma;
1704        struct sembuf fast_sops[SEMOPM_FAST];
1705        struct sembuf* sops = fast_sops, *sop;
1706        struct sem_undo *un;
1707        int undos = 0, alter = 0, max, locknum;
1708        struct sem_queue queue;
1709        unsigned long jiffies_left = 0;
1710        struct ipc_namespace *ns;
1711        struct list_head tasks;
1712
1713        ns = current->nsproxy->ipc_ns;
1714
1715        if (nsops < 1 || semid < 0)
1716                return -EINVAL;
1717        if (nsops > ns->sc_semopm)
1718                return -E2BIG;
1719        if(nsops > SEMOPM_FAST) {
1720                sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1721                if(sops==NULL)
1722                        return -ENOMEM;
1723        }
1724        if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1725                error=-EFAULT;
1726                goto out_free;
1727        }
1728        if (timeout) {
1729                struct timespec _timeout;
1730                if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1731                        error = -EFAULT;
1732                        goto out_free;
1733                }
1734                if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1735                        _timeout.tv_nsec >= 1000000000L) {
1736                        error = -EINVAL;
1737                        goto out_free;
1738                }
1739                jiffies_left = timespec_to_jiffies(&_timeout);
1740        }
1741        max = 0;
1742        for (sop = sops; sop < sops + nsops; sop++) {
1743                if (sop->sem_num >= max)
1744                        max = sop->sem_num;
1745                if (sop->sem_flg & SEM_UNDO)
1746                        undos = 1;
1747                if (sop->sem_op != 0)
1748                        alter = 1;
1749        }
1750
1751        INIT_LIST_HEAD(&tasks);
1752
1753        if (undos) {
1754                /* On success, find_alloc_undo takes the rcu_read_lock */
1755                un = find_alloc_undo(ns, semid);
1756                if (IS_ERR(un)) {
1757                        error = PTR_ERR(un);
1758                        goto out_free;
1759                }
1760        } else {
1761                un = NULL;
1762                rcu_read_lock();
1763        }
1764
1765        sma = sem_obtain_object_check(ns, semid);
1766        if (IS_ERR(sma)) {
1767                rcu_read_unlock();
1768                error = PTR_ERR(sma);
1769                goto out_free;
1770        }
1771
1772        error = -EFBIG;
1773        if (max >= sma->sem_nsems)
1774                goto out_rcu_wakeup;
1775
1776        error = -EACCES;
1777        if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1778                goto out_rcu_wakeup;
1779
1780        error = security_sem_semop(sma, sops, nsops, alter);
1781        if (error)
1782                goto out_rcu_wakeup;
1783
1784        /*
1785         * semid identifiers are not unique - find_alloc_undo may have
1786         * allocated an undo structure, it was invalidated by an RMID
1787         * and now a new array with received the same id. Check and fail.
1788         * This case can be detected checking un->semid. The existence of
1789         * "un" itself is guaranteed by rcu.
1790         */
1791        error = -EIDRM;
1792        locknum = sem_lock(sma, sops, nsops);
1793        if (un && un->semid == -1)
1794                goto out_unlock_free;
1795
1796        error = perform_atomic_semop(sma, sops, nsops, un,
1797                                        task_tgid_vnr(current));
1798        if (error <= 0) {
1799                if (alter && error == 0)
1800                        do_smart_update(sma, sops, nsops, 1, &tasks);
1801
1802                goto out_unlock_free;
1803        }
1804
1805        /* We need to sleep on this operation, so we put the current
1806         * task into the pending queue and go to sleep.
1807         */
1808                
1809        queue.sops = sops;
1810        queue.nsops = nsops;
1811        queue.undo = un;
1812        queue.pid = task_tgid_vnr(current);
1813        queue.alter = alter;
1814
1815        if (nsops == 1) {
1816                struct sem *curr;
1817                curr = &sma->sem_base[sops->sem_num];
1818
1819                if (alter) {
1820                        if (sma->complex_count) {
1821                                list_add_tail(&queue.list,
1822                                                &sma->pending_alter);
1823                        } else {
1824
1825                                list_add_tail(&queue.list,
1826                                                &curr->pending_alter);
1827                        }
1828                } else {
1829                        list_add_tail(&queue.list, &curr->pending_const);
1830                }
1831        } else {
1832                if (!sma->complex_count)
1833                        merge_queues(sma);
1834
1835                if (alter)
1836                        list_add_tail(&queue.list, &sma->pending_alter);
1837                else
1838                        list_add_tail(&queue.list, &sma->pending_const);
1839
1840                sma->complex_count++;
1841        }
1842
1843        queue.status = -EINTR;
1844        queue.sleeper = current;
1845
1846sleep_again:
1847        current->state = TASK_INTERRUPTIBLE;
1848        sem_unlock(sma, locknum);
1849        rcu_read_unlock();
1850
1851        if (timeout)
1852                jiffies_left = schedule_timeout(jiffies_left);
1853        else
1854                schedule();
1855
1856        error = get_queue_result(&queue);
1857
1858        if (error != -EINTR) {
1859                /* fast path: update_queue already obtained all requested
1860                 * resources.
1861                 * Perform a smp_mb(): User space could assume that semop()
1862                 * is a memory barrier: Without the mb(), the cpu could
1863                 * speculatively read in user space stale data that was
1864                 * overwritten by the previous owner of the semaphore.
1865                 */
1866                smp_mb();
1867
1868                goto out_free;
1869        }
1870
1871        rcu_read_lock();
1872        sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1873
1874        /*
1875         * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1876         */
1877        error = get_queue_result(&queue);
1878
1879        /*
1880         * Array removed? If yes, leave without sem_unlock().
1881         */
1882        if (IS_ERR(sma)) {
1883                rcu_read_unlock();
1884                goto out_free;
1885        }
1886
1887
1888        /*
1889         * If queue.status != -EINTR we are woken up by another process.
1890         * Leave without unlink_queue(), but with sem_unlock().
1891         */
1892
1893        if (error != -EINTR) {
1894                goto out_unlock_free;
1895        }
1896
1897        /*
1898         * If an interrupt occurred we have to clean up the queue
1899         */
1900        if (timeout && jiffies_left == 0)
1901                error = -EAGAIN;
1902
1903        /*
1904         * If the wakeup was spurious, just retry
1905         */
1906        if (error == -EINTR && !signal_pending(current))
1907                goto sleep_again;
1908
1909        unlink_queue(sma, &queue);
1910
1911out_unlock_free:
1912        sem_unlock(sma, locknum);
1913out_rcu_wakeup:
1914        rcu_read_unlock();
1915        wake_up_sem_queue_do(&tasks);
1916out_free:
1917        if(sops != fast_sops)
1918                kfree(sops);
1919        return error;
1920}
1921
1922SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1923                unsigned, nsops)
1924{
1925        return sys_semtimedop(semid, tsops, nsops, NULL);
1926}
1927
1928/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1929 * parent and child tasks.
1930 */
1931
1932int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1933{
1934        struct sem_undo_list *undo_list;
1935        int error;
1936
1937        if (clone_flags & CLONE_SYSVSEM) {
1938                error = get_undo_list(&undo_list);
1939                if (error)
1940                        return error;
1941                atomic_inc(&undo_list->refcnt);
1942                tsk->sysvsem.undo_list = undo_list;
1943        } else 
1944                tsk->sysvsem.undo_list = NULL;
1945
1946        return 0;
1947}
1948
1949/*
1950 * add semadj values to semaphores, free undo structures.
1951 * undo structures are not freed when semaphore arrays are destroyed
1952 * so some of them may be out of date.
1953 * IMPLEMENTATION NOTE: There is some confusion over whether the
1954 * set of adjustments that needs to be done should be done in an atomic
1955 * manner or not. That is, if we are attempting to decrement the semval
1956 * should we queue up and wait until we can do so legally?
1957 * The original implementation attempted to do this (queue and wait).
1958 * The current implementation does not do so. The POSIX standard
1959 * and SVID should be consulted to determine what behavior is mandated.
1960 */
1961void exit_sem(struct task_struct *tsk)
1962{
1963        struct sem_undo_list *ulp;
1964
1965        ulp = tsk->sysvsem.undo_list;
1966        if (!ulp)
1967                return;
1968        tsk->sysvsem.undo_list = NULL;
1969
1970        if (!atomic_dec_and_test(&ulp->refcnt))
1971                return;
1972
1973        for (;;) {
1974                struct sem_array *sma;
1975                struct sem_undo *un;
1976                struct list_head tasks;
1977                int semid, i;
1978
1979                rcu_read_lock();
1980                un = list_entry_rcu(ulp->list_proc.next,
1981                                    struct sem_undo, list_proc);
1982                if (&un->list_proc == &ulp->list_proc)
1983                        semid = -1;
1984                 else
1985                        semid = un->semid;
1986
1987                if (semid == -1) {
1988                        rcu_read_unlock();
1989                        break;
1990                }
1991
1992                sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
1993                /* exit_sem raced with IPC_RMID, nothing to do */
1994                if (IS_ERR(sma)) {
1995                        rcu_read_unlock();
1996                        continue;
1997                }
1998
1999                sem_lock(sma, NULL, -1);
2000                un = __lookup_undo(ulp, semid);
2001                if (un == NULL) {
2002                        /* exit_sem raced with IPC_RMID+semget() that created
2003                         * exactly the same semid. Nothing to do.
2004                         */
2005                        sem_unlock(sma, -1);
2006                        rcu_read_unlock();
2007                        continue;
2008                }
2009
2010                /* remove un from the linked lists */
2011                ipc_assert_locked_object(&sma->sem_perm);
2012                list_del(&un->list_id);
2013
2014                spin_lock(&ulp->lock);
2015                list_del_rcu(&un->list_proc);
2016                spin_unlock(&ulp->lock);
2017
2018                /* perform adjustments registered in un */
2019                for (i = 0; i < sma->sem_nsems; i++) {
2020                        struct sem * semaphore = &sma->sem_base[i];
2021                        if (un->semadj[i]) {
2022                                semaphore->semval += un->semadj[i];
2023                                /*
2024                                 * Range checks of the new semaphore value,
2025                                 * not defined by sus:
2026                                 * - Some unices ignore the undo entirely
2027                                 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2028                                 * - some cap the value (e.g. FreeBSD caps
2029                                 *   at 0, but doesn't enforce SEMVMX)
2030                                 *
2031                                 * Linux caps the semaphore value, both at 0
2032                                 * and at SEMVMX.
2033                                 *
2034                                 *      Manfred <manfred@colorfullife.com>
2035                                 */
2036                                if (semaphore->semval < 0)
2037                                        semaphore->semval = 0;
2038                                if (semaphore->semval > SEMVMX)
2039                                        semaphore->semval = SEMVMX;
2040                                semaphore->sempid = task_tgid_vnr(current);
2041                        }
2042                }
2043                /* maybe some queued-up processes were waiting for this */
2044                INIT_LIST_HEAD(&tasks);
2045                do_smart_update(sma, NULL, 0, 1, &tasks);
2046                sem_unlock(sma, -1);
2047                rcu_read_unlock();
2048                wake_up_sem_queue_do(&tasks);
2049
2050                kfree_rcu(un, rcu);
2051        }
2052        kfree(ulp);
2053}
2054
2055#ifdef CONFIG_PROC_FS
2056static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2057{
2058        struct user_namespace *user_ns = seq_user_ns(s);
2059        struct sem_array *sma = it;
2060        time_t sem_otime;
2061
2062        sem_otime = get_semotime(sma);
2063
2064        return seq_printf(s,
2065                          "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2066                          sma->sem_perm.key,
2067                          sma->sem_perm.id,
2068                          sma->sem_perm.mode,
2069                          sma->sem_nsems,
2070                          from_kuid_munged(user_ns, sma->sem_perm.uid),
2071                          from_kgid_munged(user_ns, sma->sem_perm.gid),
2072                          from_kuid_munged(user_ns, sma->sem_perm.cuid),
2073                          from_kgid_munged(user_ns, sma->sem_perm.cgid),
2074                          sem_otime,
2075                          sma->sem_ctime);
2076}
2077#endif
2078