linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/tick.h>
  22#include <linux/sysfs.h>
  23#include <linux/dcache.h>
  24#include <linux/percpu.h>
  25#include <linux/ptrace.h>
  26#include <linux/reboot.h>
  27#include <linux/vmstat.h>
  28#include <linux/device.h>
  29#include <linux/export.h>
  30#include <linux/vmalloc.h>
  31#include <linux/hardirq.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/perf_event.h>
  38#include <linux/ftrace_event.h>
  39#include <linux/hw_breakpoint.h>
  40#include <linux/mm_types.h>
  41#include <linux/cgroup.h>
  42
  43#include "internal.h"
  44
  45#include <asm/irq_regs.h>
  46
  47struct remote_function_call {
  48        struct task_struct      *p;
  49        int                     (*func)(void *info);
  50        void                    *info;
  51        int                     ret;
  52};
  53
  54static void remote_function(void *data)
  55{
  56        struct remote_function_call *tfc = data;
  57        struct task_struct *p = tfc->p;
  58
  59        if (p) {
  60                tfc->ret = -EAGAIN;
  61                if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  62                        return;
  63        }
  64
  65        tfc->ret = tfc->func(tfc->info);
  66}
  67
  68/**
  69 * task_function_call - call a function on the cpu on which a task runs
  70 * @p:          the task to evaluate
  71 * @func:       the function to be called
  72 * @info:       the function call argument
  73 *
  74 * Calls the function @func when the task is currently running. This might
  75 * be on the current CPU, which just calls the function directly
  76 *
  77 * returns: @func return value, or
  78 *          -ESRCH  - when the process isn't running
  79 *          -EAGAIN - when the process moved away
  80 */
  81static int
  82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  83{
  84        struct remote_function_call data = {
  85                .p      = p,
  86                .func   = func,
  87                .info   = info,
  88                .ret    = -ESRCH, /* No such (running) process */
  89        };
  90
  91        if (task_curr(p))
  92                smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  93
  94        return data.ret;
  95}
  96
  97/**
  98 * cpu_function_call - call a function on the cpu
  99 * @func:       the function to be called
 100 * @info:       the function call argument
 101 *
 102 * Calls the function @func on the remote cpu.
 103 *
 104 * returns: @func return value or -ENXIO when the cpu is offline
 105 */
 106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
 107{
 108        struct remote_function_call data = {
 109                .p      = NULL,
 110                .func   = func,
 111                .info   = info,
 112                .ret    = -ENXIO, /* No such CPU */
 113        };
 114
 115        smp_call_function_single(cpu, remote_function, &data, 1);
 116
 117        return data.ret;
 118}
 119
 120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 121                       PERF_FLAG_FD_OUTPUT  |\
 122                       PERF_FLAG_PID_CGROUP)
 123
 124/*
 125 * branch priv levels that need permission checks
 126 */
 127#define PERF_SAMPLE_BRANCH_PERM_PLM \
 128        (PERF_SAMPLE_BRANCH_KERNEL |\
 129         PERF_SAMPLE_BRANCH_HV)
 130
 131enum event_type_t {
 132        EVENT_FLEXIBLE = 0x1,
 133        EVENT_PINNED = 0x2,
 134        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 135};
 136
 137/*
 138 * perf_sched_events : >0 events exist
 139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 140 */
 141struct static_key_deferred perf_sched_events __read_mostly;
 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
 144
 145static atomic_t nr_mmap_events __read_mostly;
 146static atomic_t nr_comm_events __read_mostly;
 147static atomic_t nr_task_events __read_mostly;
 148
 149static LIST_HEAD(pmus);
 150static DEFINE_MUTEX(pmus_lock);
 151static struct srcu_struct pmus_srcu;
 152
 153/*
 154 * perf event paranoia level:
 155 *  -1 - not paranoid at all
 156 *   0 - disallow raw tracepoint access for unpriv
 157 *   1 - disallow cpu events for unpriv
 158 *   2 - disallow kernel profiling for unpriv
 159 */
 160int sysctl_perf_event_paranoid __read_mostly = 1;
 161
 162/* Minimum for 512 kiB + 1 user control page */
 163int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 164
 165/*
 166 * max perf event sample rate
 167 */
 168#define DEFAULT_MAX_SAMPLE_RATE         100000
 169#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 170#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 171
 172int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 173
 174static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 175static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 176
 177static atomic_t perf_sample_allowed_ns __read_mostly =
 178        ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
 179
 180void update_perf_cpu_limits(void)
 181{
 182        u64 tmp = perf_sample_period_ns;
 183
 184        tmp *= sysctl_perf_cpu_time_max_percent;
 185        do_div(tmp, 100);
 186        atomic_set(&perf_sample_allowed_ns, tmp);
 187}
 188
 189static int perf_rotate_context(struct perf_cpu_context *cpuctx);
 190
 191int perf_proc_update_handler(struct ctl_table *table, int write,
 192                void __user *buffer, size_t *lenp,
 193                loff_t *ppos)
 194{
 195        int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 196
 197        if (ret || !write)
 198                return ret;
 199
 200        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 201        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 202        update_perf_cpu_limits();
 203
 204        return 0;
 205}
 206
 207int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 208
 209int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 210                                void __user *buffer, size_t *lenp,
 211                                loff_t *ppos)
 212{
 213        int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 214
 215        if (ret || !write)
 216                return ret;
 217
 218        update_perf_cpu_limits();
 219
 220        return 0;
 221}
 222
 223/*
 224 * perf samples are done in some very critical code paths (NMIs).
 225 * If they take too much CPU time, the system can lock up and not
 226 * get any real work done.  This will drop the sample rate when
 227 * we detect that events are taking too long.
 228 */
 229#define NR_ACCUMULATED_SAMPLES 128
 230DEFINE_PER_CPU(u64, running_sample_length);
 231
 232void perf_sample_event_took(u64 sample_len_ns)
 233{
 234        u64 avg_local_sample_len;
 235        u64 local_samples_len;
 236
 237        if (atomic_read(&perf_sample_allowed_ns) == 0)
 238                return;
 239
 240        /* decay the counter by 1 average sample */
 241        local_samples_len = __get_cpu_var(running_sample_length);
 242        local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
 243        local_samples_len += sample_len_ns;
 244        __get_cpu_var(running_sample_length) = local_samples_len;
 245
 246        /*
 247         * note: this will be biased artifically low until we have
 248         * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
 249         * from having to maintain a count.
 250         */
 251        avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
 252
 253        if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
 254                return;
 255
 256        if (max_samples_per_tick <= 1)
 257                return;
 258
 259        max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
 260        sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
 261        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 262
 263        printk_ratelimited(KERN_WARNING
 264                        "perf samples too long (%lld > %d), lowering "
 265                        "kernel.perf_event_max_sample_rate to %d\n",
 266                        avg_local_sample_len,
 267                        atomic_read(&perf_sample_allowed_ns),
 268                        sysctl_perf_event_sample_rate);
 269
 270        update_perf_cpu_limits();
 271}
 272
 273static atomic64_t perf_event_id;
 274
 275static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 276                              enum event_type_t event_type);
 277
 278static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 279                             enum event_type_t event_type,
 280                             struct task_struct *task);
 281
 282static void update_context_time(struct perf_event_context *ctx);
 283static u64 perf_event_time(struct perf_event *event);
 284
 285void __weak perf_event_print_debug(void)        { }
 286
 287extern __weak const char *perf_pmu_name(void)
 288{
 289        return "pmu";
 290}
 291
 292static inline u64 perf_clock(void)
 293{
 294        return local_clock();
 295}
 296
 297static inline struct perf_cpu_context *
 298__get_cpu_context(struct perf_event_context *ctx)
 299{
 300        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 301}
 302
 303static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 304                          struct perf_event_context *ctx)
 305{
 306        raw_spin_lock(&cpuctx->ctx.lock);
 307        if (ctx)
 308                raw_spin_lock(&ctx->lock);
 309}
 310
 311static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 312                            struct perf_event_context *ctx)
 313{
 314        if (ctx)
 315                raw_spin_unlock(&ctx->lock);
 316        raw_spin_unlock(&cpuctx->ctx.lock);
 317}
 318
 319#ifdef CONFIG_CGROUP_PERF
 320
 321/*
 322 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 323 * This is a per-cpu dynamically allocated data structure.
 324 */
 325struct perf_cgroup_info {
 326        u64                             time;
 327        u64                             timestamp;
 328};
 329
 330struct perf_cgroup {
 331        struct cgroup_subsys_state      css;
 332        struct perf_cgroup_info __percpu *info;
 333};
 334
 335/*
 336 * Must ensure cgroup is pinned (css_get) before calling
 337 * this function. In other words, we cannot call this function
 338 * if there is no cgroup event for the current CPU context.
 339 */
 340static inline struct perf_cgroup *
 341perf_cgroup_from_task(struct task_struct *task)
 342{
 343        return container_of(task_subsys_state(task, perf_subsys_id),
 344                        struct perf_cgroup, css);
 345}
 346
 347static inline bool
 348perf_cgroup_match(struct perf_event *event)
 349{
 350        struct perf_event_context *ctx = event->ctx;
 351        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 352
 353        /* @event doesn't care about cgroup */
 354        if (!event->cgrp)
 355                return true;
 356
 357        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 358        if (!cpuctx->cgrp)
 359                return false;
 360
 361        /*
 362         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 363         * also enabled for all its descendant cgroups.  If @cpuctx's
 364         * cgroup is a descendant of @event's (the test covers identity
 365         * case), it's a match.
 366         */
 367        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 368                                    event->cgrp->css.cgroup);
 369}
 370
 371static inline bool perf_tryget_cgroup(struct perf_event *event)
 372{
 373        return css_tryget(&event->cgrp->css);
 374}
 375
 376static inline void perf_put_cgroup(struct perf_event *event)
 377{
 378        css_put(&event->cgrp->css);
 379}
 380
 381static inline void perf_detach_cgroup(struct perf_event *event)
 382{
 383        perf_put_cgroup(event);
 384        event->cgrp = NULL;
 385}
 386
 387static inline int is_cgroup_event(struct perf_event *event)
 388{
 389        return event->cgrp != NULL;
 390}
 391
 392static inline u64 perf_cgroup_event_time(struct perf_event *event)
 393{
 394        struct perf_cgroup_info *t;
 395
 396        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 397        return t->time;
 398}
 399
 400static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 401{
 402        struct perf_cgroup_info *info;
 403        u64 now;
 404
 405        now = perf_clock();
 406
 407        info = this_cpu_ptr(cgrp->info);
 408
 409        info->time += now - info->timestamp;
 410        info->timestamp = now;
 411}
 412
 413static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 414{
 415        struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 416        if (cgrp_out)
 417                __update_cgrp_time(cgrp_out);
 418}
 419
 420static inline void update_cgrp_time_from_event(struct perf_event *event)
 421{
 422        struct perf_cgroup *cgrp;
 423
 424        /*
 425         * ensure we access cgroup data only when needed and
 426         * when we know the cgroup is pinned (css_get)
 427         */
 428        if (!is_cgroup_event(event))
 429                return;
 430
 431        cgrp = perf_cgroup_from_task(current);
 432        /*
 433         * Do not update time when cgroup is not active
 434         */
 435        if (cgrp == event->cgrp)
 436                __update_cgrp_time(event->cgrp);
 437}
 438
 439static inline void
 440perf_cgroup_set_timestamp(struct task_struct *task,
 441                          struct perf_event_context *ctx)
 442{
 443        struct perf_cgroup *cgrp;
 444        struct perf_cgroup_info *info;
 445
 446        /*
 447         * ctx->lock held by caller
 448         * ensure we do not access cgroup data
 449         * unless we have the cgroup pinned (css_get)
 450         */
 451        if (!task || !ctx->nr_cgroups)
 452                return;
 453
 454        cgrp = perf_cgroup_from_task(task);
 455        info = this_cpu_ptr(cgrp->info);
 456        info->timestamp = ctx->timestamp;
 457}
 458
 459#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 460#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 461
 462/*
 463 * reschedule events based on the cgroup constraint of task.
 464 *
 465 * mode SWOUT : schedule out everything
 466 * mode SWIN : schedule in based on cgroup for next
 467 */
 468void perf_cgroup_switch(struct task_struct *task, int mode)
 469{
 470        struct perf_cpu_context *cpuctx;
 471        struct pmu *pmu;
 472        unsigned long flags;
 473
 474        /*
 475         * disable interrupts to avoid geting nr_cgroup
 476         * changes via __perf_event_disable(). Also
 477         * avoids preemption.
 478         */
 479        local_irq_save(flags);
 480
 481        /*
 482         * we reschedule only in the presence of cgroup
 483         * constrained events.
 484         */
 485        rcu_read_lock();
 486
 487        list_for_each_entry_rcu(pmu, &pmus, entry) {
 488                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 489                if (cpuctx->unique_pmu != pmu)
 490                        continue; /* ensure we process each cpuctx once */
 491
 492                /*
 493                 * perf_cgroup_events says at least one
 494                 * context on this CPU has cgroup events.
 495                 *
 496                 * ctx->nr_cgroups reports the number of cgroup
 497                 * events for a context.
 498                 */
 499                if (cpuctx->ctx.nr_cgroups > 0) {
 500                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 501                        perf_pmu_disable(cpuctx->ctx.pmu);
 502
 503                        if (mode & PERF_CGROUP_SWOUT) {
 504                                cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 505                                /*
 506                                 * must not be done before ctxswout due
 507                                 * to event_filter_match() in event_sched_out()
 508                                 */
 509                                cpuctx->cgrp = NULL;
 510                        }
 511
 512                        if (mode & PERF_CGROUP_SWIN) {
 513                                WARN_ON_ONCE(cpuctx->cgrp);
 514                                /*
 515                                 * set cgrp before ctxsw in to allow
 516                                 * event_filter_match() to not have to pass
 517                                 * task around
 518                                 */
 519                                cpuctx->cgrp = perf_cgroup_from_task(task);
 520                                cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 521                        }
 522                        perf_pmu_enable(cpuctx->ctx.pmu);
 523                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 524                }
 525        }
 526
 527        rcu_read_unlock();
 528
 529        local_irq_restore(flags);
 530}
 531
 532static inline void perf_cgroup_sched_out(struct task_struct *task,
 533                                         struct task_struct *next)
 534{
 535        struct perf_cgroup *cgrp1;
 536        struct perf_cgroup *cgrp2 = NULL;
 537
 538        /*
 539         * we come here when we know perf_cgroup_events > 0
 540         */
 541        cgrp1 = perf_cgroup_from_task(task);
 542
 543        /*
 544         * next is NULL when called from perf_event_enable_on_exec()
 545         * that will systematically cause a cgroup_switch()
 546         */
 547        if (next)
 548                cgrp2 = perf_cgroup_from_task(next);
 549
 550        /*
 551         * only schedule out current cgroup events if we know
 552         * that we are switching to a different cgroup. Otherwise,
 553         * do no touch the cgroup events.
 554         */
 555        if (cgrp1 != cgrp2)
 556                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 557}
 558
 559static inline void perf_cgroup_sched_in(struct task_struct *prev,
 560                                        struct task_struct *task)
 561{
 562        struct perf_cgroup *cgrp1;
 563        struct perf_cgroup *cgrp2 = NULL;
 564
 565        /*
 566         * we come here when we know perf_cgroup_events > 0
 567         */
 568        cgrp1 = perf_cgroup_from_task(task);
 569
 570        /* prev can never be NULL */
 571        cgrp2 = perf_cgroup_from_task(prev);
 572
 573        /*
 574         * only need to schedule in cgroup events if we are changing
 575         * cgroup during ctxsw. Cgroup events were not scheduled
 576         * out of ctxsw out if that was not the case.
 577         */
 578        if (cgrp1 != cgrp2)
 579                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 580}
 581
 582static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 583                                      struct perf_event_attr *attr,
 584                                      struct perf_event *group_leader)
 585{
 586        struct perf_cgroup *cgrp;
 587        struct cgroup_subsys_state *css;
 588        struct fd f = fdget(fd);
 589        int ret = 0;
 590
 591        if (!f.file)
 592                return -EBADF;
 593
 594        css = cgroup_css_from_dir(f.file, perf_subsys_id);
 595        if (IS_ERR(css)) {
 596                ret = PTR_ERR(css);
 597                goto out;
 598        }
 599
 600        cgrp = container_of(css, struct perf_cgroup, css);
 601        event->cgrp = cgrp;
 602
 603        /* must be done before we fput() the file */
 604        if (!perf_tryget_cgroup(event)) {
 605                event->cgrp = NULL;
 606                ret = -ENOENT;
 607                goto out;
 608        }
 609
 610        /*
 611         * all events in a group must monitor
 612         * the same cgroup because a task belongs
 613         * to only one perf cgroup at a time
 614         */
 615        if (group_leader && group_leader->cgrp != cgrp) {
 616                perf_detach_cgroup(event);
 617                ret = -EINVAL;
 618        }
 619out:
 620        fdput(f);
 621        return ret;
 622}
 623
 624static inline void
 625perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 626{
 627        struct perf_cgroup_info *t;
 628        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 629        event->shadow_ctx_time = now - t->timestamp;
 630}
 631
 632static inline void
 633perf_cgroup_defer_enabled(struct perf_event *event)
 634{
 635        /*
 636         * when the current task's perf cgroup does not match
 637         * the event's, we need to remember to call the
 638         * perf_mark_enable() function the first time a task with
 639         * a matching perf cgroup is scheduled in.
 640         */
 641        if (is_cgroup_event(event) && !perf_cgroup_match(event))
 642                event->cgrp_defer_enabled = 1;
 643}
 644
 645static inline void
 646perf_cgroup_mark_enabled(struct perf_event *event,
 647                         struct perf_event_context *ctx)
 648{
 649        struct perf_event *sub;
 650        u64 tstamp = perf_event_time(event);
 651
 652        if (!event->cgrp_defer_enabled)
 653                return;
 654
 655        event->cgrp_defer_enabled = 0;
 656
 657        event->tstamp_enabled = tstamp - event->total_time_enabled;
 658        list_for_each_entry(sub, &event->sibling_list, group_entry) {
 659                if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 660                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 661                        sub->cgrp_defer_enabled = 0;
 662                }
 663        }
 664}
 665#else /* !CONFIG_CGROUP_PERF */
 666
 667static inline bool
 668perf_cgroup_match(struct perf_event *event)
 669{
 670        return true;
 671}
 672
 673static inline void perf_detach_cgroup(struct perf_event *event)
 674{}
 675
 676static inline int is_cgroup_event(struct perf_event *event)
 677{
 678        return 0;
 679}
 680
 681static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 682{
 683        return 0;
 684}
 685
 686static inline void update_cgrp_time_from_event(struct perf_event *event)
 687{
 688}
 689
 690static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 691{
 692}
 693
 694static inline void perf_cgroup_sched_out(struct task_struct *task,
 695                                         struct task_struct *next)
 696{
 697}
 698
 699static inline void perf_cgroup_sched_in(struct task_struct *prev,
 700                                        struct task_struct *task)
 701{
 702}
 703
 704static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 705                                      struct perf_event_attr *attr,
 706                                      struct perf_event *group_leader)
 707{
 708        return -EINVAL;
 709}
 710
 711static inline void
 712perf_cgroup_set_timestamp(struct task_struct *task,
 713                          struct perf_event_context *ctx)
 714{
 715}
 716
 717void
 718perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 719{
 720}
 721
 722static inline void
 723perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 724{
 725}
 726
 727static inline u64 perf_cgroup_event_time(struct perf_event *event)
 728{
 729        return 0;
 730}
 731
 732static inline void
 733perf_cgroup_defer_enabled(struct perf_event *event)
 734{
 735}
 736
 737static inline void
 738perf_cgroup_mark_enabled(struct perf_event *event,
 739                         struct perf_event_context *ctx)
 740{
 741}
 742#endif
 743
 744/*
 745 * set default to be dependent on timer tick just
 746 * like original code
 747 */
 748#define PERF_CPU_HRTIMER (1000 / HZ)
 749/*
 750 * function must be called with interrupts disbled
 751 */
 752static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
 753{
 754        struct perf_cpu_context *cpuctx;
 755        enum hrtimer_restart ret = HRTIMER_NORESTART;
 756        int rotations = 0;
 757
 758        WARN_ON(!irqs_disabled());
 759
 760        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
 761
 762        rotations = perf_rotate_context(cpuctx);
 763
 764        /*
 765         * arm timer if needed
 766         */
 767        if (rotations) {
 768                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
 769                ret = HRTIMER_RESTART;
 770        }
 771
 772        return ret;
 773}
 774
 775/* CPU is going down */
 776void perf_cpu_hrtimer_cancel(int cpu)
 777{
 778        struct perf_cpu_context *cpuctx;
 779        struct pmu *pmu;
 780        unsigned long flags;
 781
 782        if (WARN_ON(cpu != smp_processor_id()))
 783                return;
 784
 785        local_irq_save(flags);
 786
 787        rcu_read_lock();
 788
 789        list_for_each_entry_rcu(pmu, &pmus, entry) {
 790                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 791
 792                if (pmu->task_ctx_nr == perf_sw_context)
 793                        continue;
 794
 795                hrtimer_cancel(&cpuctx->hrtimer);
 796        }
 797
 798        rcu_read_unlock();
 799
 800        local_irq_restore(flags);
 801}
 802
 803static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
 804{
 805        struct hrtimer *hr = &cpuctx->hrtimer;
 806        struct pmu *pmu = cpuctx->ctx.pmu;
 807        int timer;
 808
 809        /* no multiplexing needed for SW PMU */
 810        if (pmu->task_ctx_nr == perf_sw_context)
 811                return;
 812
 813        /*
 814         * check default is sane, if not set then force to
 815         * default interval (1/tick)
 816         */
 817        timer = pmu->hrtimer_interval_ms;
 818        if (timer < 1)
 819                timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
 820
 821        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
 822
 823        hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
 824        hr->function = perf_cpu_hrtimer_handler;
 825}
 826
 827static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
 828{
 829        struct hrtimer *hr = &cpuctx->hrtimer;
 830        struct pmu *pmu = cpuctx->ctx.pmu;
 831
 832        /* not for SW PMU */
 833        if (pmu->task_ctx_nr == perf_sw_context)
 834                return;
 835
 836        if (hrtimer_active(hr))
 837                return;
 838
 839        if (!hrtimer_callback_running(hr))
 840                __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
 841                                         0, HRTIMER_MODE_REL_PINNED, 0);
 842}
 843
 844void perf_pmu_disable(struct pmu *pmu)
 845{
 846        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 847        if (!(*count)++)
 848                pmu->pmu_disable(pmu);
 849}
 850
 851void perf_pmu_enable(struct pmu *pmu)
 852{
 853        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 854        if (!--(*count))
 855                pmu->pmu_enable(pmu);
 856}
 857
 858static DEFINE_PER_CPU(struct list_head, rotation_list);
 859
 860/*
 861 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 862 * because they're strictly cpu affine and rotate_start is called with IRQs
 863 * disabled, while rotate_context is called from IRQ context.
 864 */
 865static void perf_pmu_rotate_start(struct pmu *pmu)
 866{
 867        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 868        struct list_head *head = &__get_cpu_var(rotation_list);
 869
 870        WARN_ON(!irqs_disabled());
 871
 872        if (list_empty(&cpuctx->rotation_list)) {
 873                int was_empty = list_empty(head);
 874                list_add(&cpuctx->rotation_list, head);
 875                if (was_empty)
 876                        tick_nohz_full_kick();
 877        }
 878}
 879
 880static void get_ctx(struct perf_event_context *ctx)
 881{
 882        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 883}
 884
 885static void put_ctx(struct perf_event_context *ctx)
 886{
 887        if (atomic_dec_and_test(&ctx->refcount)) {
 888                if (ctx->parent_ctx)
 889                        put_ctx(ctx->parent_ctx);
 890                if (ctx->task)
 891                        put_task_struct(ctx->task);
 892                kfree_rcu(ctx, rcu_head);
 893        }
 894}
 895
 896static void unclone_ctx(struct perf_event_context *ctx)
 897{
 898        if (ctx->parent_ctx) {
 899                put_ctx(ctx->parent_ctx);
 900                ctx->parent_ctx = NULL;
 901        }
 902}
 903
 904static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 905{
 906        /*
 907         * only top level events have the pid namespace they were created in
 908         */
 909        if (event->parent)
 910                event = event->parent;
 911
 912        return task_tgid_nr_ns(p, event->ns);
 913}
 914
 915static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 916{
 917        /*
 918         * only top level events have the pid namespace they were created in
 919         */
 920        if (event->parent)
 921                event = event->parent;
 922
 923        return task_pid_nr_ns(p, event->ns);
 924}
 925
 926/*
 927 * If we inherit events we want to return the parent event id
 928 * to userspace.
 929 */
 930static u64 primary_event_id(struct perf_event *event)
 931{
 932        u64 id = event->id;
 933
 934        if (event->parent)
 935                id = event->parent->id;
 936
 937        return id;
 938}
 939
 940/*
 941 * Get the perf_event_context for a task and lock it.
 942 * This has to cope with with the fact that until it is locked,
 943 * the context could get moved to another task.
 944 */
 945static struct perf_event_context *
 946perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 947{
 948        struct perf_event_context *ctx;
 949
 950retry:
 951        /*
 952         * One of the few rules of preemptible RCU is that one cannot do
 953         * rcu_read_unlock() while holding a scheduler (or nested) lock when
 954         * part of the read side critical section was preemptible -- see
 955         * rcu_read_unlock_special().
 956         *
 957         * Since ctx->lock nests under rq->lock we must ensure the entire read
 958         * side critical section is non-preemptible.
 959         */
 960        preempt_disable();
 961        rcu_read_lock();
 962        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 963        if (ctx) {
 964                /*
 965                 * If this context is a clone of another, it might
 966                 * get swapped for another underneath us by
 967                 * perf_event_task_sched_out, though the
 968                 * rcu_read_lock() protects us from any context
 969                 * getting freed.  Lock the context and check if it
 970                 * got swapped before we could get the lock, and retry
 971                 * if so.  If we locked the right context, then it
 972                 * can't get swapped on us any more.
 973                 */
 974                raw_spin_lock_irqsave(&ctx->lock, *flags);
 975                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 976                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 977                        rcu_read_unlock();
 978                        preempt_enable();
 979                        goto retry;
 980                }
 981
 982                if (!atomic_inc_not_zero(&ctx->refcount)) {
 983                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 984                        ctx = NULL;
 985                }
 986        }
 987        rcu_read_unlock();
 988        preempt_enable();
 989        return ctx;
 990}
 991
 992/*
 993 * Get the context for a task and increment its pin_count so it
 994 * can't get swapped to another task.  This also increments its
 995 * reference count so that the context can't get freed.
 996 */
 997static struct perf_event_context *
 998perf_pin_task_context(struct task_struct *task, int ctxn)
 999{
1000        struct perf_event_context *ctx;
1001        unsigned long flags;
1002
1003        ctx = perf_lock_task_context(task, ctxn, &flags);
1004        if (ctx) {
1005                ++ctx->pin_count;
1006                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007        }
1008        return ctx;
1009}
1010
1011static void perf_unpin_context(struct perf_event_context *ctx)
1012{
1013        unsigned long flags;
1014
1015        raw_spin_lock_irqsave(&ctx->lock, flags);
1016        --ctx->pin_count;
1017        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018}
1019
1020/*
1021 * Update the record of the current time in a context.
1022 */
1023static void update_context_time(struct perf_event_context *ctx)
1024{
1025        u64 now = perf_clock();
1026
1027        ctx->time += now - ctx->timestamp;
1028        ctx->timestamp = now;
1029}
1030
1031static u64 perf_event_time(struct perf_event *event)
1032{
1033        struct perf_event_context *ctx = event->ctx;
1034
1035        if (is_cgroup_event(event))
1036                return perf_cgroup_event_time(event);
1037
1038        return ctx ? ctx->time : 0;
1039}
1040
1041/*
1042 * Update the total_time_enabled and total_time_running fields for a event.
1043 * The caller of this function needs to hold the ctx->lock.
1044 */
1045static void update_event_times(struct perf_event *event)
1046{
1047        struct perf_event_context *ctx = event->ctx;
1048        u64 run_end;
1049
1050        if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052                return;
1053        /*
1054         * in cgroup mode, time_enabled represents
1055         * the time the event was enabled AND active
1056         * tasks were in the monitored cgroup. This is
1057         * independent of the activity of the context as
1058         * there may be a mix of cgroup and non-cgroup events.
1059         *
1060         * That is why we treat cgroup events differently
1061         * here.
1062         */
1063        if (is_cgroup_event(event))
1064                run_end = perf_cgroup_event_time(event);
1065        else if (ctx->is_active)
1066                run_end = ctx->time;
1067        else
1068                run_end = event->tstamp_stopped;
1069
1070        event->total_time_enabled = run_end - event->tstamp_enabled;
1071
1072        if (event->state == PERF_EVENT_STATE_INACTIVE)
1073                run_end = event->tstamp_stopped;
1074        else
1075                run_end = perf_event_time(event);
1076
1077        event->total_time_running = run_end - event->tstamp_running;
1078
1079}
1080
1081/*
1082 * Update total_time_enabled and total_time_running for all events in a group.
1083 */
1084static void update_group_times(struct perf_event *leader)
1085{
1086        struct perf_event *event;
1087
1088        update_event_times(leader);
1089        list_for_each_entry(event, &leader->sibling_list, group_entry)
1090                update_event_times(event);
1091}
1092
1093static struct list_head *
1094ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095{
1096        if (event->attr.pinned)
1097                return &ctx->pinned_groups;
1098        else
1099                return &ctx->flexible_groups;
1100}
1101
1102/*
1103 * Add a event from the lists for its context.
1104 * Must be called with ctx->mutex and ctx->lock held.
1105 */
1106static void
1107list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108{
1109        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110        event->attach_state |= PERF_ATTACH_CONTEXT;
1111
1112        /*
1113         * If we're a stand alone event or group leader, we go to the context
1114         * list, group events are kept attached to the group so that
1115         * perf_group_detach can, at all times, locate all siblings.
1116         */
1117        if (event->group_leader == event) {
1118                struct list_head *list;
1119
1120                if (is_software_event(event))
1121                        event->group_flags |= PERF_GROUP_SOFTWARE;
1122
1123                list = ctx_group_list(event, ctx);
1124                list_add_tail(&event->group_entry, list);
1125        }
1126
1127        if (is_cgroup_event(event))
1128                ctx->nr_cgroups++;
1129
1130        if (has_branch_stack(event))
1131                ctx->nr_branch_stack++;
1132
1133        list_add_rcu(&event->event_entry, &ctx->event_list);
1134        if (!ctx->nr_events)
1135                perf_pmu_rotate_start(ctx->pmu);
1136        ctx->nr_events++;
1137        if (event->attr.inherit_stat)
1138                ctx->nr_stat++;
1139}
1140
1141/*
1142 * Initialize event state based on the perf_event_attr::disabled.
1143 */
1144static inline void perf_event__state_init(struct perf_event *event)
1145{
1146        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147                                              PERF_EVENT_STATE_INACTIVE;
1148}
1149
1150/*
1151 * Called at perf_event creation and when events are attached/detached from a
1152 * group.
1153 */
1154static void perf_event__read_size(struct perf_event *event)
1155{
1156        int entry = sizeof(u64); /* value */
1157        int size = 0;
1158        int nr = 1;
1159
1160        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161                size += sizeof(u64);
1162
1163        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164                size += sizeof(u64);
1165
1166        if (event->attr.read_format & PERF_FORMAT_ID)
1167                entry += sizeof(u64);
1168
1169        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170                nr += event->group_leader->nr_siblings;
1171                size += sizeof(u64);
1172        }
1173
1174        size += entry * nr;
1175        event->read_size = size;
1176}
1177
1178static void perf_event__header_size(struct perf_event *event)
1179{
1180        struct perf_sample_data *data;
1181        u64 sample_type = event->attr.sample_type;
1182        u16 size = 0;
1183
1184        perf_event__read_size(event);
1185
1186        if (sample_type & PERF_SAMPLE_IP)
1187                size += sizeof(data->ip);
1188
1189        if (sample_type & PERF_SAMPLE_ADDR)
1190                size += sizeof(data->addr);
1191
1192        if (sample_type & PERF_SAMPLE_PERIOD)
1193                size += sizeof(data->period);
1194
1195        if (sample_type & PERF_SAMPLE_WEIGHT)
1196                size += sizeof(data->weight);
1197
1198        if (sample_type & PERF_SAMPLE_READ)
1199                size += event->read_size;
1200
1201        if (sample_type & PERF_SAMPLE_DATA_SRC)
1202                size += sizeof(data->data_src.val);
1203
1204        event->header_size = size;
1205}
1206
1207static void perf_event__id_header_size(struct perf_event *event)
1208{
1209        struct perf_sample_data *data;
1210        u64 sample_type = event->attr.sample_type;
1211        u16 size = 0;
1212
1213        if (sample_type & PERF_SAMPLE_TID)
1214                size += sizeof(data->tid_entry);
1215
1216        if (sample_type & PERF_SAMPLE_TIME)
1217                size += sizeof(data->time);
1218
1219        if (sample_type & PERF_SAMPLE_ID)
1220                size += sizeof(data->id);
1221
1222        if (sample_type & PERF_SAMPLE_STREAM_ID)
1223                size += sizeof(data->stream_id);
1224
1225        if (sample_type & PERF_SAMPLE_CPU)
1226                size += sizeof(data->cpu_entry);
1227
1228        event->id_header_size = size;
1229}
1230
1231static void perf_group_attach(struct perf_event *event)
1232{
1233        struct perf_event *group_leader = event->group_leader, *pos;
1234
1235        /*
1236         * We can have double attach due to group movement in perf_event_open.
1237         */
1238        if (event->attach_state & PERF_ATTACH_GROUP)
1239                return;
1240
1241        event->attach_state |= PERF_ATTACH_GROUP;
1242
1243        if (group_leader == event)
1244                return;
1245
1246        if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1247                        !is_software_event(event))
1248                group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1249
1250        list_add_tail(&event->group_entry, &group_leader->sibling_list);
1251        group_leader->nr_siblings++;
1252
1253        perf_event__header_size(group_leader);
1254
1255        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1256                perf_event__header_size(pos);
1257}
1258
1259/*
1260 * Remove a event from the lists for its context.
1261 * Must be called with ctx->mutex and ctx->lock held.
1262 */
1263static void
1264list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1265{
1266        struct perf_cpu_context *cpuctx;
1267        /*
1268         * We can have double detach due to exit/hot-unplug + close.
1269         */
1270        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1271                return;
1272
1273        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1274
1275        if (is_cgroup_event(event)) {
1276                ctx->nr_cgroups--;
1277                cpuctx = __get_cpu_context(ctx);
1278                /*
1279                 * if there are no more cgroup events
1280                 * then cler cgrp to avoid stale pointer
1281                 * in update_cgrp_time_from_cpuctx()
1282                 */
1283                if (!ctx->nr_cgroups)
1284                        cpuctx->cgrp = NULL;
1285        }
1286
1287        if (has_branch_stack(event))
1288                ctx->nr_branch_stack--;
1289
1290        ctx->nr_events--;
1291        if (event->attr.inherit_stat)
1292                ctx->nr_stat--;
1293
1294        list_del_rcu(&event->event_entry);
1295
1296        if (event->group_leader == event)
1297                list_del_init(&event->group_entry);
1298
1299        update_group_times(event);
1300
1301        /*
1302         * If event was in error state, then keep it
1303         * that way, otherwise bogus counts will be
1304         * returned on read(). The only way to get out
1305         * of error state is by explicit re-enabling
1306         * of the event
1307         */
1308        if (event->state > PERF_EVENT_STATE_OFF)
1309                event->state = PERF_EVENT_STATE_OFF;
1310}
1311
1312static void perf_group_detach(struct perf_event *event)
1313{
1314        struct perf_event *sibling, *tmp;
1315        struct list_head *list = NULL;
1316
1317        /*
1318         * We can have double detach due to exit/hot-unplug + close.
1319         */
1320        if (!(event->attach_state & PERF_ATTACH_GROUP))
1321                return;
1322
1323        event->attach_state &= ~PERF_ATTACH_GROUP;
1324
1325        /*
1326         * If this is a sibling, remove it from its group.
1327         */
1328        if (event->group_leader != event) {
1329                list_del_init(&event->group_entry);
1330                event->group_leader->nr_siblings--;
1331                goto out;
1332        }
1333
1334        if (!list_empty(&event->group_entry))
1335                list = &event->group_entry;
1336
1337        /*
1338         * If this was a group event with sibling events then
1339         * upgrade the siblings to singleton events by adding them
1340         * to whatever list we are on.
1341         */
1342        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1343                if (list)
1344                        list_move_tail(&sibling->group_entry, list);
1345                sibling->group_leader = sibling;
1346
1347                /* Inherit group flags from the previous leader */
1348                sibling->group_flags = event->group_flags;
1349        }
1350
1351out:
1352        perf_event__header_size(event->group_leader);
1353
1354        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1355                perf_event__header_size(tmp);
1356}
1357
1358static inline int
1359event_filter_match(struct perf_event *event)
1360{
1361        return (event->cpu == -1 || event->cpu == smp_processor_id())
1362            && perf_cgroup_match(event);
1363}
1364
1365static void
1366event_sched_out(struct perf_event *event,
1367                  struct perf_cpu_context *cpuctx,
1368                  struct perf_event_context *ctx)
1369{
1370        u64 tstamp = perf_event_time(event);
1371        u64 delta;
1372        /*
1373         * An event which could not be activated because of
1374         * filter mismatch still needs to have its timings
1375         * maintained, otherwise bogus information is return
1376         * via read() for time_enabled, time_running:
1377         */
1378        if (event->state == PERF_EVENT_STATE_INACTIVE
1379            && !event_filter_match(event)) {
1380                delta = tstamp - event->tstamp_stopped;
1381                event->tstamp_running += delta;
1382                event->tstamp_stopped = tstamp;
1383        }
1384
1385        if (event->state != PERF_EVENT_STATE_ACTIVE)
1386                return;
1387
1388        event->state = PERF_EVENT_STATE_INACTIVE;
1389        if (event->pending_disable) {
1390                event->pending_disable = 0;
1391                event->state = PERF_EVENT_STATE_OFF;
1392        }
1393        event->tstamp_stopped = tstamp;
1394        event->pmu->del(event, 0);
1395        event->oncpu = -1;
1396
1397        if (!is_software_event(event))
1398                cpuctx->active_oncpu--;
1399        ctx->nr_active--;
1400        if (event->attr.freq && event->attr.sample_freq)
1401                ctx->nr_freq--;
1402        if (event->attr.exclusive || !cpuctx->active_oncpu)
1403                cpuctx->exclusive = 0;
1404}
1405
1406static void
1407group_sched_out(struct perf_event *group_event,
1408                struct perf_cpu_context *cpuctx,
1409                struct perf_event_context *ctx)
1410{
1411        struct perf_event *event;
1412        int state = group_event->state;
1413
1414        event_sched_out(group_event, cpuctx, ctx);
1415
1416        /*
1417         * Schedule out siblings (if any):
1418         */
1419        list_for_each_entry(event, &group_event->sibling_list, group_entry)
1420                event_sched_out(event, cpuctx, ctx);
1421
1422        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1423                cpuctx->exclusive = 0;
1424}
1425
1426/*
1427 * Cross CPU call to remove a performance event
1428 *
1429 * We disable the event on the hardware level first. After that we
1430 * remove it from the context list.
1431 */
1432static int __perf_remove_from_context(void *info)
1433{
1434        struct perf_event *event = info;
1435        struct perf_event_context *ctx = event->ctx;
1436        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1437
1438        raw_spin_lock(&ctx->lock);
1439        event_sched_out(event, cpuctx, ctx);
1440        list_del_event(event, ctx);
1441        if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1442                ctx->is_active = 0;
1443                cpuctx->task_ctx = NULL;
1444        }
1445        raw_spin_unlock(&ctx->lock);
1446
1447        return 0;
1448}
1449
1450
1451/*
1452 * Remove the event from a task's (or a CPU's) list of events.
1453 *
1454 * CPU events are removed with a smp call. For task events we only
1455 * call when the task is on a CPU.
1456 *
1457 * If event->ctx is a cloned context, callers must make sure that
1458 * every task struct that event->ctx->task could possibly point to
1459 * remains valid.  This is OK when called from perf_release since
1460 * that only calls us on the top-level context, which can't be a clone.
1461 * When called from perf_event_exit_task, it's OK because the
1462 * context has been detached from its task.
1463 */
1464static void perf_remove_from_context(struct perf_event *event)
1465{
1466        struct perf_event_context *ctx = event->ctx;
1467        struct task_struct *task = ctx->task;
1468
1469        lockdep_assert_held(&ctx->mutex);
1470
1471        if (!task) {
1472                /*
1473                 * Per cpu events are removed via an smp call and
1474                 * the removal is always successful.
1475                 */
1476                cpu_function_call(event->cpu, __perf_remove_from_context, event);
1477                return;
1478        }
1479
1480retry:
1481        if (!task_function_call(task, __perf_remove_from_context, event))
1482                return;
1483
1484        raw_spin_lock_irq(&ctx->lock);
1485        /*
1486         * If we failed to find a running task, but find the context active now
1487         * that we've acquired the ctx->lock, retry.
1488         */
1489        if (ctx->is_active) {
1490                raw_spin_unlock_irq(&ctx->lock);
1491                goto retry;
1492        }
1493
1494        /*
1495         * Since the task isn't running, its safe to remove the event, us
1496         * holding the ctx->lock ensures the task won't get scheduled in.
1497         */
1498        list_del_event(event, ctx);
1499        raw_spin_unlock_irq(&ctx->lock);
1500}
1501
1502/*
1503 * Cross CPU call to disable a performance event
1504 */
1505int __perf_event_disable(void *info)
1506{
1507        struct perf_event *event = info;
1508        struct perf_event_context *ctx = event->ctx;
1509        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1510
1511        /*
1512         * If this is a per-task event, need to check whether this
1513         * event's task is the current task on this cpu.
1514         *
1515         * Can trigger due to concurrent perf_event_context_sched_out()
1516         * flipping contexts around.
1517         */
1518        if (ctx->task && cpuctx->task_ctx != ctx)
1519                return -EINVAL;
1520
1521        raw_spin_lock(&ctx->lock);
1522
1523        /*
1524         * If the event is on, turn it off.
1525         * If it is in error state, leave it in error state.
1526         */
1527        if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1528                update_context_time(ctx);
1529                update_cgrp_time_from_event(event);
1530                update_group_times(event);
1531                if (event == event->group_leader)
1532                        group_sched_out(event, cpuctx, ctx);
1533                else
1534                        event_sched_out(event, cpuctx, ctx);
1535                event->state = PERF_EVENT_STATE_OFF;
1536        }
1537
1538        raw_spin_unlock(&ctx->lock);
1539
1540        return 0;
1541}
1542
1543/*
1544 * Disable a event.
1545 *
1546 * If event->ctx is a cloned context, callers must make sure that
1547 * every task struct that event->ctx->task could possibly point to
1548 * remains valid.  This condition is satisifed when called through
1549 * perf_event_for_each_child or perf_event_for_each because they
1550 * hold the top-level event's child_mutex, so any descendant that
1551 * goes to exit will block in sync_child_event.
1552 * When called from perf_pending_event it's OK because event->ctx
1553 * is the current context on this CPU and preemption is disabled,
1554 * hence we can't get into perf_event_task_sched_out for this context.
1555 */
1556void perf_event_disable(struct perf_event *event)
1557{
1558        struct perf_event_context *ctx = event->ctx;
1559        struct task_struct *task = ctx->task;
1560
1561        if (!task) {
1562                /*
1563                 * Disable the event on the cpu that it's on
1564                 */
1565                cpu_function_call(event->cpu, __perf_event_disable, event);
1566                return;
1567        }
1568
1569retry:
1570        if (!task_function_call(task, __perf_event_disable, event))
1571                return;
1572
1573        raw_spin_lock_irq(&ctx->lock);
1574        /*
1575         * If the event is still active, we need to retry the cross-call.
1576         */
1577        if (event->state == PERF_EVENT_STATE_ACTIVE) {
1578                raw_spin_unlock_irq(&ctx->lock);
1579                /*
1580                 * Reload the task pointer, it might have been changed by
1581                 * a concurrent perf_event_context_sched_out().
1582                 */
1583                task = ctx->task;
1584                goto retry;
1585        }
1586
1587        /*
1588         * Since we have the lock this context can't be scheduled
1589         * in, so we can change the state safely.
1590         */
1591        if (event->state == PERF_EVENT_STATE_INACTIVE) {
1592                update_group_times(event);
1593                event->state = PERF_EVENT_STATE_OFF;
1594        }
1595        raw_spin_unlock_irq(&ctx->lock);
1596}
1597EXPORT_SYMBOL_GPL(perf_event_disable);
1598
1599static void perf_set_shadow_time(struct perf_event *event,
1600                                 struct perf_event_context *ctx,
1601                                 u64 tstamp)
1602{
1603        /*
1604         * use the correct time source for the time snapshot
1605         *
1606         * We could get by without this by leveraging the
1607         * fact that to get to this function, the caller
1608         * has most likely already called update_context_time()
1609         * and update_cgrp_time_xx() and thus both timestamp
1610         * are identical (or very close). Given that tstamp is,
1611         * already adjusted for cgroup, we could say that:
1612         *    tstamp - ctx->timestamp
1613         * is equivalent to
1614         *    tstamp - cgrp->timestamp.
1615         *
1616         * Then, in perf_output_read(), the calculation would
1617         * work with no changes because:
1618         * - event is guaranteed scheduled in
1619         * - no scheduled out in between
1620         * - thus the timestamp would be the same
1621         *
1622         * But this is a bit hairy.
1623         *
1624         * So instead, we have an explicit cgroup call to remain
1625         * within the time time source all along. We believe it
1626         * is cleaner and simpler to understand.
1627         */
1628        if (is_cgroup_event(event))
1629                perf_cgroup_set_shadow_time(event, tstamp);
1630        else
1631                event->shadow_ctx_time = tstamp - ctx->timestamp;
1632}
1633
1634#define MAX_INTERRUPTS (~0ULL)
1635
1636static void perf_log_throttle(struct perf_event *event, int enable);
1637
1638static int
1639event_sched_in(struct perf_event *event,
1640                 struct perf_cpu_context *cpuctx,
1641                 struct perf_event_context *ctx)
1642{
1643        u64 tstamp = perf_event_time(event);
1644
1645        if (event->state <= PERF_EVENT_STATE_OFF)
1646                return 0;
1647
1648        event->state = PERF_EVENT_STATE_ACTIVE;
1649        event->oncpu = smp_processor_id();
1650
1651        /*
1652         * Unthrottle events, since we scheduled we might have missed several
1653         * ticks already, also for a heavily scheduling task there is little
1654         * guarantee it'll get a tick in a timely manner.
1655         */
1656        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1657                perf_log_throttle(event, 1);
1658                event->hw.interrupts = 0;
1659        }
1660
1661        /*
1662         * The new state must be visible before we turn it on in the hardware:
1663         */
1664        smp_wmb();
1665
1666        if (event->pmu->add(event, PERF_EF_START)) {
1667                event->state = PERF_EVENT_STATE_INACTIVE;
1668                event->oncpu = -1;
1669                return -EAGAIN;
1670        }
1671
1672        event->tstamp_running += tstamp - event->tstamp_stopped;
1673
1674        perf_set_shadow_time(event, ctx, tstamp);
1675
1676        if (!is_software_event(event))
1677                cpuctx->active_oncpu++;
1678        ctx->nr_active++;
1679        if (event->attr.freq && event->attr.sample_freq)
1680                ctx->nr_freq++;
1681
1682        if (event->attr.exclusive)
1683                cpuctx->exclusive = 1;
1684
1685        return 0;
1686}
1687
1688static int
1689group_sched_in(struct perf_event *group_event,
1690               struct perf_cpu_context *cpuctx,
1691               struct perf_event_context *ctx)
1692{
1693        struct perf_event *event, *partial_group = NULL;
1694        struct pmu *pmu = group_event->pmu;
1695        u64 now = ctx->time;
1696        bool simulate = false;
1697
1698        if (group_event->state == PERF_EVENT_STATE_OFF)
1699                return 0;
1700
1701        pmu->start_txn(pmu);
1702
1703        if (event_sched_in(group_event, cpuctx, ctx)) {
1704                pmu->cancel_txn(pmu);
1705                perf_cpu_hrtimer_restart(cpuctx);
1706                return -EAGAIN;
1707        }
1708
1709        /*
1710         * Schedule in siblings as one group (if any):
1711         */
1712        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1713                if (event_sched_in(event, cpuctx, ctx)) {
1714                        partial_group = event;
1715                        goto group_error;
1716                }
1717        }
1718
1719        if (!pmu->commit_txn(pmu))
1720                return 0;
1721
1722group_error:
1723        /*
1724         * Groups can be scheduled in as one unit only, so undo any
1725         * partial group before returning:
1726         * The events up to the failed event are scheduled out normally,
1727         * tstamp_stopped will be updated.
1728         *
1729         * The failed events and the remaining siblings need to have
1730         * their timings updated as if they had gone thru event_sched_in()
1731         * and event_sched_out(). This is required to get consistent timings
1732         * across the group. This also takes care of the case where the group
1733         * could never be scheduled by ensuring tstamp_stopped is set to mark
1734         * the time the event was actually stopped, such that time delta
1735         * calculation in update_event_times() is correct.
1736         */
1737        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1738                if (event == partial_group)
1739                        simulate = true;
1740
1741                if (simulate) {
1742                        event->tstamp_running += now - event->tstamp_stopped;
1743                        event->tstamp_stopped = now;
1744                } else {
1745                        event_sched_out(event, cpuctx, ctx);
1746                }
1747        }
1748        event_sched_out(group_event, cpuctx, ctx);
1749
1750        pmu->cancel_txn(pmu);
1751
1752        perf_cpu_hrtimer_restart(cpuctx);
1753
1754        return -EAGAIN;
1755}
1756
1757/*
1758 * Work out whether we can put this event group on the CPU now.
1759 */
1760static int group_can_go_on(struct perf_event *event,
1761                           struct perf_cpu_context *cpuctx,
1762                           int can_add_hw)
1763{
1764        /*
1765         * Groups consisting entirely of software events can always go on.
1766         */
1767        if (event->group_flags & PERF_GROUP_SOFTWARE)
1768                return 1;
1769        /*
1770         * If an exclusive group is already on, no other hardware
1771         * events can go on.
1772         */
1773        if (cpuctx->exclusive)
1774                return 0;
1775        /*
1776         * If this group is exclusive and there are already
1777         * events on the CPU, it can't go on.
1778         */
1779        if (event->attr.exclusive && cpuctx->active_oncpu)
1780                return 0;
1781        /*
1782         * Otherwise, try to add it if all previous groups were able
1783         * to go on.
1784         */
1785        return can_add_hw;
1786}
1787
1788static void add_event_to_ctx(struct perf_event *event,
1789                               struct perf_event_context *ctx)
1790{
1791        u64 tstamp = perf_event_time(event);
1792
1793        list_add_event(event, ctx);
1794        perf_group_attach(event);
1795        event->tstamp_enabled = tstamp;
1796        event->tstamp_running = tstamp;
1797        event->tstamp_stopped = tstamp;
1798}
1799
1800static void task_ctx_sched_out(struct perf_event_context *ctx);
1801static void
1802ctx_sched_in(struct perf_event_context *ctx,
1803             struct perf_cpu_context *cpuctx,
1804             enum event_type_t event_type,
1805             struct task_struct *task);
1806
1807static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1808                                struct perf_event_context *ctx,
1809                                struct task_struct *task)
1810{
1811        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1812        if (ctx)
1813                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1814        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1815        if (ctx)
1816                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1817}
1818
1819/*
1820 * Cross CPU call to install and enable a performance event
1821 *
1822 * Must be called with ctx->mutex held
1823 */
1824static int  __perf_install_in_context(void *info)
1825{
1826        struct perf_event *event = info;
1827        struct perf_event_context *ctx = event->ctx;
1828        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1829        struct perf_event_context *task_ctx = cpuctx->task_ctx;
1830        struct task_struct *task = current;
1831
1832        perf_ctx_lock(cpuctx, task_ctx);
1833        perf_pmu_disable(cpuctx->ctx.pmu);
1834
1835        /*
1836         * If there was an active task_ctx schedule it out.
1837         */
1838        if (task_ctx)
1839                task_ctx_sched_out(task_ctx);
1840
1841        /*
1842         * If the context we're installing events in is not the
1843         * active task_ctx, flip them.
1844         */
1845        if (ctx->task && task_ctx != ctx) {
1846                if (task_ctx)
1847                        raw_spin_unlock(&task_ctx->lock);
1848                raw_spin_lock(&ctx->lock);
1849                task_ctx = ctx;
1850        }
1851
1852        if (task_ctx) {
1853                cpuctx->task_ctx = task_ctx;
1854                task = task_ctx->task;
1855        }
1856
1857        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1858
1859        update_context_time(ctx);
1860        /*
1861         * update cgrp time only if current cgrp
1862         * matches event->cgrp. Must be done before
1863         * calling add_event_to_ctx()
1864         */
1865        update_cgrp_time_from_event(event);
1866
1867        add_event_to_ctx(event, ctx);
1868
1869        /*
1870         * Schedule everything back in
1871         */
1872        perf_event_sched_in(cpuctx, task_ctx, task);
1873
1874        perf_pmu_enable(cpuctx->ctx.pmu);
1875        perf_ctx_unlock(cpuctx, task_ctx);
1876
1877        return 0;
1878}
1879
1880/*
1881 * Attach a performance event to a context
1882 *
1883 * First we add the event to the list with the hardware enable bit
1884 * in event->hw_config cleared.
1885 *
1886 * If the event is attached to a task which is on a CPU we use a smp
1887 * call to enable it in the task context. The task might have been
1888 * scheduled away, but we check this in the smp call again.
1889 */
1890static void
1891perf_install_in_context(struct perf_event_context *ctx,
1892                        struct perf_event *event,
1893                        int cpu)
1894{
1895        struct task_struct *task = ctx->task;
1896
1897        lockdep_assert_held(&ctx->mutex);
1898
1899        event->ctx = ctx;
1900        if (event->cpu != -1)
1901                event->cpu = cpu;
1902
1903        if (!task) {
1904                /*
1905                 * Per cpu events are installed via an smp call and
1906                 * the install is always successful.
1907                 */
1908                cpu_function_call(cpu, __perf_install_in_context, event);
1909                return;
1910        }
1911
1912retry:
1913        if (!task_function_call(task, __perf_install_in_context, event))
1914                return;
1915
1916        raw_spin_lock_irq(&ctx->lock);
1917        /*
1918         * If we failed to find a running task, but find the context active now
1919         * that we've acquired the ctx->lock, retry.
1920         */
1921        if (ctx->is_active) {
1922                raw_spin_unlock_irq(&ctx->lock);
1923                goto retry;
1924        }
1925
1926        /*
1927         * Since the task isn't running, its safe to add the event, us holding
1928         * the ctx->lock ensures the task won't get scheduled in.
1929         */
1930        add_event_to_ctx(event, ctx);
1931        raw_spin_unlock_irq(&ctx->lock);
1932}
1933
1934/*
1935 * Put a event into inactive state and update time fields.
1936 * Enabling the leader of a group effectively enables all
1937 * the group members that aren't explicitly disabled, so we
1938 * have to update their ->tstamp_enabled also.
1939 * Note: this works for group members as well as group leaders
1940 * since the non-leader members' sibling_lists will be empty.
1941 */
1942static void __perf_event_mark_enabled(struct perf_event *event)
1943{
1944        struct perf_event *sub;
1945        u64 tstamp = perf_event_time(event);
1946
1947        event->state = PERF_EVENT_STATE_INACTIVE;
1948        event->tstamp_enabled = tstamp - event->total_time_enabled;
1949        list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1951                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1952        }
1953}
1954
1955/*
1956 * Cross CPU call to enable a performance event
1957 */
1958static int __perf_event_enable(void *info)
1959{
1960        struct perf_event *event = info;
1961        struct perf_event_context *ctx = event->ctx;
1962        struct perf_event *leader = event->group_leader;
1963        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1964        int err;
1965
1966        /*
1967         * There's a time window between 'ctx->is_active' check
1968         * in perf_event_enable function and this place having:
1969         *   - IRQs on
1970         *   - ctx->lock unlocked
1971         *
1972         * where the task could be killed and 'ctx' deactivated
1973         * by perf_event_exit_task.
1974         */
1975        if (!ctx->is_active)
1976                return -EINVAL;
1977
1978        raw_spin_lock(&ctx->lock);
1979        update_context_time(ctx);
1980
1981        if (event->state >= PERF_EVENT_STATE_INACTIVE)
1982                goto unlock;
1983
1984        /*
1985         * set current task's cgroup time reference point
1986         */
1987        perf_cgroup_set_timestamp(current, ctx);
1988
1989        __perf_event_mark_enabled(event);
1990
1991        if (!event_filter_match(event)) {
1992                if (is_cgroup_event(event))
1993                        perf_cgroup_defer_enabled(event);
1994                goto unlock;
1995        }
1996
1997        /*
1998         * If the event is in a group and isn't the group leader,
1999         * then don't put it on unless the group is on.
2000         */
2001        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2002                goto unlock;
2003
2004        if (!group_can_go_on(event, cpuctx, 1)) {
2005                err = -EEXIST;
2006        } else {
2007                if (event == leader)
2008                        err = group_sched_in(event, cpuctx, ctx);
2009                else
2010                        err = event_sched_in(event, cpuctx, ctx);
2011        }
2012
2013        if (err) {
2014                /*
2015                 * If this event can't go on and it's part of a
2016                 * group, then the whole group has to come off.
2017                 */
2018                if (leader != event) {
2019                        group_sched_out(leader, cpuctx, ctx);
2020                        perf_cpu_hrtimer_restart(cpuctx);
2021                }
2022                if (leader->attr.pinned) {
2023                        update_group_times(leader);
2024                        leader->state = PERF_EVENT_STATE_ERROR;
2025                }
2026        }
2027
2028unlock:
2029        raw_spin_unlock(&ctx->lock);
2030
2031        return 0;
2032}
2033
2034/*
2035 * Enable a event.
2036 *
2037 * If event->ctx is a cloned context, callers must make sure that
2038 * every task struct that event->ctx->task could possibly point to
2039 * remains valid.  This condition is satisfied when called through
2040 * perf_event_for_each_child or perf_event_for_each as described
2041 * for perf_event_disable.
2042 */
2043void perf_event_enable(struct perf_event *event)
2044{
2045        struct perf_event_context *ctx = event->ctx;
2046        struct task_struct *task = ctx->task;
2047
2048        if (!task) {
2049                /*
2050                 * Enable the event on the cpu that it's on
2051                 */
2052                cpu_function_call(event->cpu, __perf_event_enable, event);
2053                return;
2054        }
2055
2056        raw_spin_lock_irq(&ctx->lock);
2057        if (event->state >= PERF_EVENT_STATE_INACTIVE)
2058                goto out;
2059
2060        /*
2061         * If the event is in error state, clear that first.
2062         * That way, if we see the event in error state below, we
2063         * know that it has gone back into error state, as distinct
2064         * from the task having been scheduled away before the
2065         * cross-call arrived.
2066         */
2067        if (event->state == PERF_EVENT_STATE_ERROR)
2068                event->state = PERF_EVENT_STATE_OFF;
2069
2070retry:
2071        if (!ctx->is_active) {
2072                __perf_event_mark_enabled(event);
2073                goto out;
2074        }
2075
2076        raw_spin_unlock_irq(&ctx->lock);
2077
2078        if (!task_function_call(task, __perf_event_enable, event))
2079                return;
2080
2081        raw_spin_lock_irq(&ctx->lock);
2082
2083        /*
2084         * If the context is active and the event is still off,
2085         * we need to retry the cross-call.
2086         */
2087        if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2088                /*
2089                 * task could have been flipped by a concurrent
2090                 * perf_event_context_sched_out()
2091                 */
2092                task = ctx->task;
2093                goto retry;
2094        }
2095
2096out:
2097        raw_spin_unlock_irq(&ctx->lock);
2098}
2099EXPORT_SYMBOL_GPL(perf_event_enable);
2100
2101int perf_event_refresh(struct perf_event *event, int refresh)
2102{
2103        /*
2104         * not supported on inherited events
2105         */
2106        if (event->attr.inherit || !is_sampling_event(event))
2107                return -EINVAL;
2108
2109        atomic_add(refresh, &event->event_limit);
2110        perf_event_enable(event);
2111
2112        return 0;
2113}
2114EXPORT_SYMBOL_GPL(perf_event_refresh);
2115
2116static void ctx_sched_out(struct perf_event_context *ctx,
2117                          struct perf_cpu_context *cpuctx,
2118                          enum event_type_t event_type)
2119{
2120        struct perf_event *event;
2121        int is_active = ctx->is_active;
2122
2123        ctx->is_active &= ~event_type;
2124        if (likely(!ctx->nr_events))
2125                return;
2126
2127        update_context_time(ctx);
2128        update_cgrp_time_from_cpuctx(cpuctx);
2129        if (!ctx->nr_active)
2130                return;
2131
2132        perf_pmu_disable(ctx->pmu);
2133        if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2135                        group_sched_out(event, cpuctx, ctx);
2136        }
2137
2138        if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140                        group_sched_out(event, cpuctx, ctx);
2141        }
2142        perf_pmu_enable(ctx->pmu);
2143}
2144
2145/*
2146 * Test whether two contexts are equivalent, i.e. whether they
2147 * have both been cloned from the same version of the same context
2148 * and they both have the same number of enabled events.
2149 * If the number of enabled events is the same, then the set
2150 * of enabled events should be the same, because these are both
2151 * inherited contexts, therefore we can't access individual events
2152 * in them directly with an fd; we can only enable/disable all
2153 * events via prctl, or enable/disable all events in a family
2154 * via ioctl, which will have the same effect on both contexts.
2155 */
2156static int context_equiv(struct perf_event_context *ctx1,
2157                         struct perf_event_context *ctx2)
2158{
2159        return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160                && ctx1->parent_gen == ctx2->parent_gen
2161                && !ctx1->pin_count && !ctx2->pin_count;
2162}
2163
2164static void __perf_event_sync_stat(struct perf_event *event,
2165                                     struct perf_event *next_event)
2166{
2167        u64 value;
2168
2169        if (!event->attr.inherit_stat)
2170                return;
2171
2172        /*
2173         * Update the event value, we cannot use perf_event_read()
2174         * because we're in the middle of a context switch and have IRQs
2175         * disabled, which upsets smp_call_function_single(), however
2176         * we know the event must be on the current CPU, therefore we
2177         * don't need to use it.
2178         */
2179        switch (event->state) {
2180        case PERF_EVENT_STATE_ACTIVE:
2181                event->pmu->read(event);
2182                /* fall-through */
2183
2184        case PERF_EVENT_STATE_INACTIVE:
2185                update_event_times(event);
2186                break;
2187
2188        default:
2189                break;
2190        }
2191
2192        /*
2193         * In order to keep per-task stats reliable we need to flip the event
2194         * values when we flip the contexts.
2195         */
2196        value = local64_read(&next_event->count);
2197        value = local64_xchg(&event->count, value);
2198        local64_set(&next_event->count, value);
2199
2200        swap(event->total_time_enabled, next_event->total_time_enabled);
2201        swap(event->total_time_running, next_event->total_time_running);
2202
2203        /*
2204         * Since we swizzled the values, update the user visible data too.
2205         */
2206        perf_event_update_userpage(event);
2207        perf_event_update_userpage(next_event);
2208}
2209
2210#define list_next_entry(pos, member) \
2211        list_entry(pos->member.next, typeof(*pos), member)
2212
2213static void perf_event_sync_stat(struct perf_event_context *ctx,
2214                                   struct perf_event_context *next_ctx)
2215{
2216        struct perf_event *event, *next_event;
2217
2218        if (!ctx->nr_stat)
2219                return;
2220
2221        update_context_time(ctx);
2222
2223        event = list_first_entry(&ctx->event_list,
2224                                   struct perf_event, event_entry);
2225
2226        next_event = list_first_entry(&next_ctx->event_list,
2227                                        struct perf_event, event_entry);
2228
2229        while (&event->event_entry != &ctx->event_list &&
2230               &next_event->event_entry != &next_ctx->event_list) {
2231
2232                __perf_event_sync_stat(event, next_event);
2233
2234                event = list_next_entry(event, event_entry);
2235                next_event = list_next_entry(next_event, event_entry);
2236        }
2237}
2238
2239static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2240                                         struct task_struct *next)
2241{
2242        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243        struct perf_event_context *next_ctx;
2244        struct perf_event_context *parent;
2245        struct perf_cpu_context *cpuctx;
2246        int do_switch = 1;
2247
2248        if (likely(!ctx))
2249                return;
2250
2251        cpuctx = __get_cpu_context(ctx);
2252        if (!cpuctx->task_ctx)
2253                return;
2254
2255        rcu_read_lock();
2256        parent = rcu_dereference(ctx->parent_ctx);
2257        next_ctx = next->perf_event_ctxp[ctxn];
2258        if (parent && next_ctx &&
2259            rcu_dereference(next_ctx->parent_ctx) == parent) {
2260                /*
2261                 * Looks like the two contexts are clones, so we might be
2262                 * able to optimize the context switch.  We lock both
2263                 * contexts and check that they are clones under the
2264                 * lock (including re-checking that neither has been
2265                 * uncloned in the meantime).  It doesn't matter which
2266                 * order we take the locks because no other cpu could
2267                 * be trying to lock both of these tasks.
2268                 */
2269                raw_spin_lock(&ctx->lock);
2270                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271                if (context_equiv(ctx, next_ctx)) {
2272                        /*
2273                         * XXX do we need a memory barrier of sorts
2274                         * wrt to rcu_dereference() of perf_event_ctxp
2275                         */
2276                        task->perf_event_ctxp[ctxn] = next_ctx;
2277                        next->perf_event_ctxp[ctxn] = ctx;
2278                        ctx->task = next;
2279                        next_ctx->task = task;
2280                        do_switch = 0;
2281
2282                        perf_event_sync_stat(ctx, next_ctx);
2283                }
2284                raw_spin_unlock(&next_ctx->lock);
2285                raw_spin_unlock(&ctx->lock);
2286        }
2287        rcu_read_unlock();
2288
2289        if (do_switch) {
2290                raw_spin_lock(&ctx->lock);
2291                ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292                cpuctx->task_ctx = NULL;
2293                raw_spin_unlock(&ctx->lock);
2294        }
2295}
2296
2297#define for_each_task_context_nr(ctxn)                                  \
2298        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2299
2300/*
2301 * Called from scheduler to remove the events of the current task,
2302 * with interrupts disabled.
2303 *
2304 * We stop each event and update the event value in event->count.
2305 *
2306 * This does not protect us against NMI, but disable()
2307 * sets the disabled bit in the control field of event _before_
2308 * accessing the event control register. If a NMI hits, then it will
2309 * not restart the event.
2310 */
2311void __perf_event_task_sched_out(struct task_struct *task,
2312                                 struct task_struct *next)
2313{
2314        int ctxn;
2315
2316        for_each_task_context_nr(ctxn)
2317                perf_event_context_sched_out(task, ctxn, next);
2318
2319        /*
2320         * if cgroup events exist on this CPU, then we need
2321         * to check if we have to switch out PMU state.
2322         * cgroup event are system-wide mode only
2323         */
2324        if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325                perf_cgroup_sched_out(task, next);
2326}
2327
2328static void task_ctx_sched_out(struct perf_event_context *ctx)
2329{
2330        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2331
2332        if (!cpuctx->task_ctx)
2333                return;
2334
2335        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2336                return;
2337
2338        ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339        cpuctx->task_ctx = NULL;
2340}
2341
2342/*
2343 * Called with IRQs disabled
2344 */
2345static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2346                              enum event_type_t event_type)
2347{
2348        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2349}
2350
2351static void
2352ctx_pinned_sched_in(struct perf_event_context *ctx,
2353                    struct perf_cpu_context *cpuctx)
2354{
2355        struct perf_event *event;
2356
2357        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2358                if (event->state <= PERF_EVENT_STATE_OFF)
2359                        continue;
2360                if (!event_filter_match(event))
2361                        continue;
2362
2363                /* may need to reset tstamp_enabled */
2364                if (is_cgroup_event(event))
2365                        perf_cgroup_mark_enabled(event, ctx);
2366
2367                if (group_can_go_on(event, cpuctx, 1))
2368                        group_sched_in(event, cpuctx, ctx);
2369
2370                /*
2371                 * If this pinned group hasn't been scheduled,
2372                 * put it in error state.
2373                 */
2374                if (event->state == PERF_EVENT_STATE_INACTIVE) {
2375                        update_group_times(event);
2376                        event->state = PERF_EVENT_STATE_ERROR;
2377                }
2378        }
2379}
2380
2381static void
2382ctx_flexible_sched_in(struct perf_event_context *ctx,
2383                      struct perf_cpu_context *cpuctx)
2384{
2385        struct perf_event *event;
2386        int can_add_hw = 1;
2387
2388        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2389                /* Ignore events in OFF or ERROR state */
2390                if (event->state <= PERF_EVENT_STATE_OFF)
2391                        continue;
2392                /*
2393                 * Listen to the 'cpu' scheduling filter constraint
2394                 * of events:
2395                 */
2396                if (!event_filter_match(event))
2397                        continue;
2398
2399                /* may need to reset tstamp_enabled */
2400                if (is_cgroup_event(event))
2401                        perf_cgroup_mark_enabled(event, ctx);
2402
2403                if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404                        if (group_sched_in(event, cpuctx, ctx))
2405                                can_add_hw = 0;
2406                }
2407        }
2408}
2409
2410static void
2411ctx_sched_in(struct perf_event_context *ctx,
2412             struct perf_cpu_context *cpuctx,
2413             enum event_type_t event_type,
2414             struct task_struct *task)
2415{
2416        u64 now;
2417        int is_active = ctx->is_active;
2418
2419        ctx->is_active |= event_type;
2420        if (likely(!ctx->nr_events))
2421                return;
2422
2423        now = perf_clock();
2424        ctx->timestamp = now;
2425        perf_cgroup_set_timestamp(task, ctx);
2426        /*
2427         * First go through the list and put on any pinned groups
2428         * in order to give them the best chance of going on.
2429         */
2430        if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431                ctx_pinned_sched_in(ctx, cpuctx);
2432
2433        /* Then walk through the lower prio flexible groups */
2434        if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435                ctx_flexible_sched_in(ctx, cpuctx);
2436}
2437
2438static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2439                             enum event_type_t event_type,
2440                             struct task_struct *task)
2441{
2442        struct perf_event_context *ctx = &cpuctx->ctx;
2443
2444        ctx_sched_in(ctx, cpuctx, event_type, task);
2445}
2446
2447static void perf_event_context_sched_in(struct perf_event_context *ctx,
2448                                        struct task_struct *task)
2449{
2450        struct perf_cpu_context *cpuctx;
2451
2452        cpuctx = __get_cpu_context(ctx);
2453        if (cpuctx->task_ctx == ctx)
2454                return;
2455
2456        perf_ctx_lock(cpuctx, ctx);
2457        perf_pmu_disable(ctx->pmu);
2458        /*
2459         * We want to keep the following priority order:
2460         * cpu pinned (that don't need to move), task pinned,
2461         * cpu flexible, task flexible.
2462         */
2463        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2464
2465        if (ctx->nr_events)
2466                cpuctx->task_ctx = ctx;
2467
2468        perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2469
2470        perf_pmu_enable(ctx->pmu);
2471        perf_ctx_unlock(cpuctx, ctx);
2472
2473        /*
2474         * Since these rotations are per-cpu, we need to ensure the
2475         * cpu-context we got scheduled on is actually rotating.
2476         */
2477        perf_pmu_rotate_start(ctx->pmu);
2478}
2479
2480/*
2481 * When sampling the branck stack in system-wide, it may be necessary
2482 * to flush the stack on context switch. This happens when the branch
2483 * stack does not tag its entries with the pid of the current task.
2484 * Otherwise it becomes impossible to associate a branch entry with a
2485 * task. This ambiguity is more likely to appear when the branch stack
2486 * supports priv level filtering and the user sets it to monitor only
2487 * at the user level (which could be a useful measurement in system-wide
2488 * mode). In that case, the risk is high of having a branch stack with
2489 * branch from multiple tasks. Flushing may mean dropping the existing
2490 * entries or stashing them somewhere in the PMU specific code layer.
2491 *
2492 * This function provides the context switch callback to the lower code
2493 * layer. It is invoked ONLY when there is at least one system-wide context
2494 * with at least one active event using taken branch sampling.
2495 */
2496static void perf_branch_stack_sched_in(struct task_struct *prev,
2497                                       struct task_struct *task)
2498{
2499        struct perf_cpu_context *cpuctx;
2500        struct pmu *pmu;
2501        unsigned long flags;
2502
2503        /* no need to flush branch stack if not changing task */
2504        if (prev == task)
2505                return;
2506
2507        local_irq_save(flags);
2508
2509        rcu_read_lock();
2510
2511        list_for_each_entry_rcu(pmu, &pmus, entry) {
2512                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2513
2514                /*
2515                 * check if the context has at least one
2516                 * event using PERF_SAMPLE_BRANCH_STACK
2517                 */
2518                if (cpuctx->ctx.nr_branch_stack > 0
2519                    && pmu->flush_branch_stack) {
2520
2521                        pmu = cpuctx->ctx.pmu;
2522
2523                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2524
2525                        perf_pmu_disable(pmu);
2526
2527                        pmu->flush_branch_stack();
2528
2529                        perf_pmu_enable(pmu);
2530
2531                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2532                }
2533        }
2534
2535        rcu_read_unlock();
2536
2537        local_irq_restore(flags);
2538}
2539
2540/*
2541 * Called from scheduler to add the events of the current task
2542 * with interrupts disabled.
2543 *
2544 * We restore the event value and then enable it.
2545 *
2546 * This does not protect us against NMI, but enable()
2547 * sets the enabled bit in the control field of event _before_
2548 * accessing the event control register. If a NMI hits, then it will
2549 * keep the event running.
2550 */
2551void __perf_event_task_sched_in(struct task_struct *prev,
2552                                struct task_struct *task)
2553{
2554        struct perf_event_context *ctx;
2555        int ctxn;
2556
2557        for_each_task_context_nr(ctxn) {
2558                ctx = task->perf_event_ctxp[ctxn];
2559                if (likely(!ctx))
2560                        continue;
2561
2562                perf_event_context_sched_in(ctx, task);
2563        }
2564        /*
2565         * if cgroup events exist on this CPU, then we need
2566         * to check if we have to switch in PMU state.
2567         * cgroup event are system-wide mode only
2568         */
2569        if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570                perf_cgroup_sched_in(prev, task);
2571
2572        /* check for system-wide branch_stack events */
2573        if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2574                perf_branch_stack_sched_in(prev, task);
2575}
2576
2577static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2578{
2579        u64 frequency = event->attr.sample_freq;
2580        u64 sec = NSEC_PER_SEC;
2581        u64 divisor, dividend;
2582
2583        int count_fls, nsec_fls, frequency_fls, sec_fls;
2584
2585        count_fls = fls64(count);
2586        nsec_fls = fls64(nsec);
2587        frequency_fls = fls64(frequency);
2588        sec_fls = 30;
2589
2590        /*
2591         * We got @count in @nsec, with a target of sample_freq HZ
2592         * the target period becomes:
2593         *
2594         *             @count * 10^9
2595         * period = -------------------
2596         *          @nsec * sample_freq
2597         *
2598         */
2599
2600        /*
2601         * Reduce accuracy by one bit such that @a and @b converge
2602         * to a similar magnitude.
2603         */
2604#define REDUCE_FLS(a, b)                \
2605do {                                    \
2606        if (a##_fls > b##_fls) {        \
2607                a >>= 1;                \
2608                a##_fls--;              \
2609        } else {                        \
2610                b >>= 1;                \
2611                b##_fls--;              \
2612        }                               \
2613} while (0)
2614
2615        /*
2616         * Reduce accuracy until either term fits in a u64, then proceed with
2617         * the other, so that finally we can do a u64/u64 division.
2618         */
2619        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2620                REDUCE_FLS(nsec, frequency);
2621                REDUCE_FLS(sec, count);
2622        }
2623
2624        if (count_fls + sec_fls > 64) {
2625                divisor = nsec * frequency;
2626
2627                while (count_fls + sec_fls > 64) {
2628                        REDUCE_FLS(count, sec);
2629                        divisor >>= 1;
2630                }
2631
2632                dividend = count * sec;
2633        } else {
2634                dividend = count * sec;
2635
2636                while (nsec_fls + frequency_fls > 64) {
2637                        REDUCE_FLS(nsec, frequency);
2638                        dividend >>= 1;
2639                }
2640
2641                divisor = nsec * frequency;
2642        }
2643
2644        if (!divisor)
2645                return dividend;
2646
2647        return div64_u64(dividend, divisor);
2648}
2649
2650static DEFINE_PER_CPU(int, perf_throttled_count);
2651static DEFINE_PER_CPU(u64, perf_throttled_seq);
2652
2653static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2654{
2655        struct hw_perf_event *hwc = &event->hw;
2656        s64 period, sample_period;
2657        s64 delta;
2658
2659        period = perf_calculate_period(event, nsec, count);
2660
2661        delta = (s64)(period - hwc->sample_period);
2662        delta = (delta + 7) / 8; /* low pass filter */
2663
2664        sample_period = hwc->sample_period + delta;
2665
2666        if (!sample_period)
2667                sample_period = 1;
2668
2669        hwc->sample_period = sample_period;
2670
2671        if (local64_read(&hwc->period_left) > 8*sample_period) {
2672                if (disable)
2673                        event->pmu->stop(event, PERF_EF_UPDATE);
2674
2675                local64_set(&hwc->period_left, 0);
2676
2677                if (disable)
2678                        event->pmu->start(event, PERF_EF_RELOAD);
2679        }
2680}
2681
2682/*
2683 * combine freq adjustment with unthrottling to avoid two passes over the
2684 * events. At the same time, make sure, having freq events does not change
2685 * the rate of unthrottling as that would introduce bias.
2686 */
2687static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2688                                           int needs_unthr)
2689{
2690        struct perf_event *event;
2691        struct hw_perf_event *hwc;
2692        u64 now, period = TICK_NSEC;
2693        s64 delta;
2694
2695        /*
2696         * only need to iterate over all events iff:
2697         * - context have events in frequency mode (needs freq adjust)
2698         * - there are events to unthrottle on this cpu
2699         */
2700        if (!(ctx->nr_freq || needs_unthr))
2701                return;
2702
2703        raw_spin_lock(&ctx->lock);
2704        perf_pmu_disable(ctx->pmu);
2705
2706        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707                if (event->state != PERF_EVENT_STATE_ACTIVE)
2708                        continue;
2709
2710                if (!event_filter_match(event))
2711                        continue;
2712
2713                hwc = &event->hw;
2714
2715                if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2716                        hwc->interrupts = 0;
2717                        perf_log_throttle(event, 1);
2718                        event->pmu->start(event, 0);
2719                }
2720
2721                if (!event->attr.freq || !event->attr.sample_freq)
2722                        continue;
2723
2724                /*
2725                 * stop the event and update event->count
2726                 */
2727                event->pmu->stop(event, PERF_EF_UPDATE);
2728
2729                now = local64_read(&event->count);
2730                delta = now - hwc->freq_count_stamp;
2731                hwc->freq_count_stamp = now;
2732
2733                /*
2734                 * restart the event
2735                 * reload only if value has changed
2736                 * we have stopped the event so tell that
2737                 * to perf_adjust_period() to avoid stopping it
2738                 * twice.
2739                 */
2740                if (delta > 0)
2741                        perf_adjust_period(event, period, delta, false);
2742
2743                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2744        }
2745
2746        perf_pmu_enable(ctx->pmu);
2747        raw_spin_unlock(&ctx->lock);
2748}
2749
2750/*
2751 * Round-robin a context's events:
2752 */
2753static void rotate_ctx(struct perf_event_context *ctx)
2754{
2755        /*
2756         * Rotate the first entry last of non-pinned groups. Rotation might be
2757         * disabled by the inheritance code.
2758         */
2759        if (!ctx->rotate_disable)
2760                list_rotate_left(&ctx->flexible_groups);
2761}
2762
2763/*
2764 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2765 * because they're strictly cpu affine and rotate_start is called with IRQs
2766 * disabled, while rotate_context is called from IRQ context.
2767 */
2768static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2769{
2770        struct perf_event_context *ctx = NULL;
2771        int rotate = 0, remove = 1;
2772
2773        if (cpuctx->ctx.nr_events) {
2774                remove = 0;
2775                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2776                        rotate = 1;
2777        }
2778
2779        ctx = cpuctx->task_ctx;
2780        if (ctx && ctx->nr_events) {
2781                remove = 0;
2782                if (ctx->nr_events != ctx->nr_active)
2783                        rotate = 1;
2784        }
2785
2786        if (!rotate)
2787                goto done;
2788
2789        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2790        perf_pmu_disable(cpuctx->ctx.pmu);
2791
2792        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2793        if (ctx)
2794                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2795
2796        rotate_ctx(&cpuctx->ctx);
2797        if (ctx)
2798                rotate_ctx(ctx);
2799
2800        perf_event_sched_in(cpuctx, ctx, current);
2801
2802        perf_pmu_enable(cpuctx->ctx.pmu);
2803        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2804done:
2805        if (remove)
2806                list_del_init(&cpuctx->rotation_list);
2807
2808        return rotate;
2809}
2810
2811#ifdef CONFIG_NO_HZ_FULL
2812bool perf_event_can_stop_tick(void)
2813{
2814        if (list_empty(&__get_cpu_var(rotation_list)))
2815                return true;
2816        else
2817                return false;
2818}
2819#endif
2820
2821void perf_event_task_tick(void)
2822{
2823        struct list_head *head = &__get_cpu_var(rotation_list);
2824        struct perf_cpu_context *cpuctx, *tmp;
2825        struct perf_event_context *ctx;
2826        int throttled;
2827
2828        WARN_ON(!irqs_disabled());
2829
2830        __this_cpu_inc(perf_throttled_seq);
2831        throttled = __this_cpu_xchg(perf_throttled_count, 0);
2832
2833        list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2834                ctx = &cpuctx->ctx;
2835                perf_adjust_freq_unthr_context(ctx, throttled);
2836
2837                ctx = cpuctx->task_ctx;
2838                if (ctx)
2839                        perf_adjust_freq_unthr_context(ctx, throttled);
2840        }
2841}
2842
2843static int event_enable_on_exec(struct perf_event *event,
2844                                struct perf_event_context *ctx)
2845{
2846        if (!event->attr.enable_on_exec)
2847                return 0;
2848
2849        event->attr.enable_on_exec = 0;
2850        if (event->state >= PERF_EVENT_STATE_INACTIVE)
2851                return 0;
2852
2853        __perf_event_mark_enabled(event);
2854
2855        return 1;
2856}
2857
2858/*
2859 * Enable all of a task's events that have been marked enable-on-exec.
2860 * This expects task == current.
2861 */
2862static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2863{
2864        struct perf_event *event;
2865        unsigned long flags;
2866        int enabled = 0;
2867        int ret;
2868
2869        local_irq_save(flags);
2870        if (!ctx || !ctx->nr_events)
2871                goto out;
2872
2873        /*
2874         * We must ctxsw out cgroup events to avoid conflict
2875         * when invoking perf_task_event_sched_in() later on
2876         * in this function. Otherwise we end up trying to
2877         * ctxswin cgroup events which are already scheduled
2878         * in.
2879         */
2880        perf_cgroup_sched_out(current, NULL);
2881
2882        raw_spin_lock(&ctx->lock);
2883        task_ctx_sched_out(ctx);
2884
2885        list_for_each_entry(event, &ctx->event_list, event_entry) {
2886                ret = event_enable_on_exec(event, ctx);
2887                if (ret)
2888                        enabled = 1;
2889        }
2890
2891        /*
2892         * Unclone this context if we enabled any event.
2893         */
2894        if (enabled)
2895                unclone_ctx(ctx);
2896
2897        raw_spin_unlock(&ctx->lock);
2898
2899        /*
2900         * Also calls ctxswin for cgroup events, if any:
2901         */
2902        perf_event_context_sched_in(ctx, ctx->task);
2903out:
2904        local_irq_restore(flags);
2905}
2906
2907/*
2908 * Cross CPU call to read the hardware event
2909 */
2910static void __perf_event_read(void *info)
2911{
2912        struct perf_event *event = info;
2913        struct perf_event_context *ctx = event->ctx;
2914        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2915
2916        /*
2917         * If this is a task context, we need to check whether it is
2918         * the current task context of this cpu.  If not it has been
2919         * scheduled out before the smp call arrived.  In that case
2920         * event->count would have been updated to a recent sample
2921         * when the event was scheduled out.
2922         */
2923        if (ctx->task && cpuctx->task_ctx != ctx)
2924                return;
2925
2926        raw_spin_lock(&ctx->lock);
2927        if (ctx->is_active) {
2928                update_context_time(ctx);
2929                update_cgrp_time_from_event(event);
2930        }
2931        update_event_times(event);
2932        if (event->state == PERF_EVENT_STATE_ACTIVE)
2933                event->pmu->read(event);
2934        raw_spin_unlock(&ctx->lock);
2935}
2936
2937static inline u64 perf_event_count(struct perf_event *event)
2938{
2939        return local64_read(&event->count) + atomic64_read(&event->child_count);
2940}
2941
2942static u64 perf_event_read(struct perf_event *event)
2943{
2944        /*
2945         * If event is enabled and currently active on a CPU, update the
2946         * value in the event structure:
2947         */
2948        if (event->state == PERF_EVENT_STATE_ACTIVE) {
2949                smp_call_function_single(event->oncpu,
2950                                         __perf_event_read, event, 1);
2951        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2952                struct perf_event_context *ctx = event->ctx;
2953                unsigned long flags;
2954
2955                raw_spin_lock_irqsave(&ctx->lock, flags);
2956                /*
2957                 * may read while context is not active
2958                 * (e.g., thread is blocked), in that case
2959                 * we cannot update context time
2960                 */
2961                if (ctx->is_active) {
2962                        update_context_time(ctx);
2963                        update_cgrp_time_from_event(event);
2964                }
2965                update_event_times(event);
2966                raw_spin_unlock_irqrestore(&ctx->lock, flags);
2967        }
2968
2969        return perf_event_count(event);
2970}
2971
2972/*
2973 * Initialize the perf_event context in a task_struct:
2974 */
2975static void __perf_event_init_context(struct perf_event_context *ctx)
2976{
2977        raw_spin_lock_init(&ctx->lock);
2978        mutex_init(&ctx->mutex);
2979        INIT_LIST_HEAD(&ctx->pinned_groups);
2980        INIT_LIST_HEAD(&ctx->flexible_groups);
2981        INIT_LIST_HEAD(&ctx->event_list);
2982        atomic_set(&ctx->refcount, 1);
2983}
2984
2985static struct perf_event_context *
2986alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2987{
2988        struct perf_event_context *ctx;
2989
2990        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2991        if (!ctx)
2992                return NULL;
2993
2994        __perf_event_init_context(ctx);
2995        if (task) {
2996                ctx->task = task;
2997                get_task_struct(task);
2998        }
2999        ctx->pmu = pmu;
3000
3001        return ctx;
3002}
3003
3004static struct task_struct *
3005find_lively_task_by_vpid(pid_t vpid)
3006{
3007        struct task_struct *task;
3008        int err;
3009
3010        rcu_read_lock();
3011        if (!vpid)
3012                task = current;
3013        else
3014                task = find_task_by_vpid(vpid);
3015        if (task)
3016                get_task_struct(task);
3017        rcu_read_unlock();
3018
3019        if (!task)
3020                return ERR_PTR(-ESRCH);
3021
3022        /* Reuse ptrace permission checks for now. */
3023        err = -EACCES;
3024        if (!ptrace_may_access(task, PTRACE_MODE_READ))
3025                goto errout;
3026
3027        return task;
3028errout:
3029        put_task_struct(task);
3030        return ERR_PTR(err);
3031
3032}
3033
3034/*
3035 * Returns a matching context with refcount and pincount.
3036 */
3037static struct perf_event_context *
3038find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3039{
3040        struct perf_event_context *ctx;
3041        struct perf_cpu_context *cpuctx;
3042        unsigned long flags;
3043        int ctxn, err;
3044
3045        if (!task) {
3046                /* Must be root to operate on a CPU event: */
3047                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3048                        return ERR_PTR(-EACCES);
3049
3050                /*
3051                 * We could be clever and allow to attach a event to an
3052                 * offline CPU and activate it when the CPU comes up, but
3053                 * that's for later.
3054                 */
3055                if (!cpu_online(cpu))
3056                        return ERR_PTR(-ENODEV);
3057
3058                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3059                ctx = &cpuctx->ctx;
3060                get_ctx(ctx);
3061                ++ctx->pin_count;
3062
3063                return ctx;
3064        }
3065
3066        err = -EINVAL;
3067        ctxn = pmu->task_ctx_nr;
3068        if (ctxn < 0)
3069                goto errout;
3070
3071retry:
3072        ctx = perf_lock_task_context(task, ctxn, &flags);
3073        if (ctx) {
3074                unclone_ctx(ctx);
3075                ++ctx->pin_count;
3076                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3077        } else {
3078                ctx = alloc_perf_context(pmu, task);
3079                err = -ENOMEM;
3080                if (!ctx)
3081                        goto errout;
3082
3083                err = 0;
3084                mutex_lock(&task->perf_event_mutex);
3085                /*
3086                 * If it has already passed perf_event_exit_task().
3087                 * we must see PF_EXITING, it takes this mutex too.
3088                 */
3089                if (task->flags & PF_EXITING)
3090                        err = -ESRCH;
3091                else if (task->perf_event_ctxp[ctxn])
3092                        err = -EAGAIN;
3093                else {
3094                        get_ctx(ctx);
3095                        ++ctx->pin_count;
3096                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3097                }
3098                mutex_unlock(&task->perf_event_mutex);
3099
3100                if (unlikely(err)) {
3101                        put_ctx(ctx);
3102
3103                        if (err == -EAGAIN)
3104                                goto retry;
3105                        goto errout;
3106                }
3107        }
3108
3109        return ctx;
3110
3111errout:
3112        return ERR_PTR(err);
3113}
3114
3115static void perf_event_free_filter(struct perf_event *event);
3116
3117static void free_event_rcu(struct rcu_head *head)
3118{
3119        struct perf_event *event;
3120
3121        event = container_of(head, struct perf_event, rcu_head);
3122        if (event->ns)
3123                put_pid_ns(event->ns);
3124        perf_event_free_filter(event);
3125        kfree(event);
3126}
3127
3128static void ring_buffer_put(struct ring_buffer *rb);
3129static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3130
3131static void free_event(struct perf_event *event)
3132{
3133        irq_work_sync(&event->pending);
3134
3135        if (!event->parent) {
3136                if (event->attach_state & PERF_ATTACH_TASK)
3137                        static_key_slow_dec_deferred(&perf_sched_events);
3138                if (event->attr.mmap || event->attr.mmap_data)
3139                        atomic_dec(&nr_mmap_events);
3140                if (event->attr.comm)
3141                        atomic_dec(&nr_comm_events);
3142                if (event->attr.task)
3143                        atomic_dec(&nr_task_events);
3144                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3145                        put_callchain_buffers();
3146                if (is_cgroup_event(event)) {
3147                        atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3148                        static_key_slow_dec_deferred(&perf_sched_events);
3149                }
3150
3151                if (has_branch_stack(event)) {
3152                        static_key_slow_dec_deferred(&perf_sched_events);
3153                        /* is system-wide event */
3154                        if (!(event->attach_state & PERF_ATTACH_TASK)) {
3155                                atomic_dec(&per_cpu(perf_branch_stack_events,
3156                                                    event->cpu));
3157                        }
3158                }
3159        }
3160
3161        if (event->rb) {
3162                struct ring_buffer *rb;
3163
3164                /*
3165                 * Can happen when we close an event with re-directed output.
3166                 *
3167                 * Since we have a 0 refcount, perf_mmap_close() will skip
3168                 * over us; possibly making our ring_buffer_put() the last.
3169                 */
3170                mutex_lock(&event->mmap_mutex);
3171                rb = event->rb;
3172                if (rb) {
3173                        rcu_assign_pointer(event->rb, NULL);
3174                        ring_buffer_detach(event, rb);
3175                        ring_buffer_put(rb); /* could be last */
3176                }
3177                mutex_unlock(&event->mmap_mutex);
3178        }
3179
3180        if (is_cgroup_event(event))
3181                perf_detach_cgroup(event);
3182
3183        if (event->destroy)
3184                event->destroy(event);
3185
3186        if (event->ctx)
3187                put_ctx(event->ctx);
3188
3189        call_rcu(&event->rcu_head, free_event_rcu);
3190}
3191
3192int perf_event_release_kernel(struct perf_event *event)
3193{
3194        struct perf_event_context *ctx = event->ctx;
3195
3196        WARN_ON_ONCE(ctx->parent_ctx);
3197        /*
3198         * There are two ways this annotation is useful:
3199         *
3200         *  1) there is a lock recursion from perf_event_exit_task
3201         *     see the comment there.
3202         *
3203         *  2) there is a lock-inversion with mmap_sem through
3204         *     perf_event_read_group(), which takes faults while
3205         *     holding ctx->mutex, however this is called after
3206         *     the last filedesc died, so there is no possibility
3207         *     to trigger the AB-BA case.
3208         */
3209        mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3210        raw_spin_lock_irq(&ctx->lock);
3211        perf_group_detach(event);
3212        raw_spin_unlock_irq(&ctx->lock);
3213        perf_remove_from_context(event);
3214        mutex_unlock(&ctx->mutex);
3215
3216        free_event(event);
3217
3218        return 0;
3219}
3220EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3221
3222/*
3223 * Called when the last reference to the file is gone.
3224 */
3225static void put_event(struct perf_event *event)
3226{
3227        struct task_struct *owner;
3228
3229        if (!atomic_long_dec_and_test(&event->refcount))
3230                return;
3231
3232        rcu_read_lock();
3233        owner = ACCESS_ONCE(event->owner);
3234        /*
3235         * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3236         * !owner it means the list deletion is complete and we can indeed
3237         * free this event, otherwise we need to serialize on
3238         * owner->perf_event_mutex.
3239         */
3240        smp_read_barrier_depends();
3241        if (owner) {
3242                /*
3243                 * Since delayed_put_task_struct() also drops the last
3244                 * task reference we can safely take a new reference
3245                 * while holding the rcu_read_lock().
3246                 */
3247                get_task_struct(owner);
3248        }
3249        rcu_read_unlock();
3250
3251        if (owner) {
3252                mutex_lock(&owner->perf_event_mutex);
3253                /*
3254                 * We have to re-check the event->owner field, if it is cleared
3255                 * we raced with perf_event_exit_task(), acquiring the mutex
3256                 * ensured they're done, and we can proceed with freeing the
3257                 * event.
3258                 */
3259                if (event->owner)
3260                        list_del_init(&event->owner_entry);
3261                mutex_unlock(&owner->perf_event_mutex);
3262                put_task_struct(owner);
3263        }
3264
3265        perf_event_release_kernel(event);
3266}
3267
3268static int perf_release(struct inode *inode, struct file *file)
3269{
3270        put_event(file->private_data);
3271        return 0;
3272}
3273
3274u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3275{
3276        struct perf_event *child;
3277        u64 total = 0;
3278
3279        *enabled = 0;
3280        *running = 0;
3281
3282        mutex_lock(&event->child_mutex);
3283        total += perf_event_read(event);
3284        *enabled += event->total_time_enabled +
3285                        atomic64_read(&event->child_total_time_enabled);
3286        *running += event->total_time_running +
3287                        atomic64_read(&event->child_total_time_running);
3288
3289        list_for_each_entry(child, &event->child_list, child_list) {
3290                total += perf_event_read(child);
3291                *enabled += child->total_time_enabled;
3292                *running += child->total_time_running;
3293        }
3294        mutex_unlock(&event->child_mutex);
3295
3296        return total;
3297}
3298EXPORT_SYMBOL_GPL(perf_event_read_value);
3299
3300static int perf_event_read_group(struct perf_event *event,
3301                                   u64 read_format, char __user *buf)
3302{
3303        struct perf_event *leader = event->group_leader, *sub;
3304        int n = 0, size = 0, ret = -EFAULT;
3305        struct perf_event_context *ctx = leader->ctx;
3306        u64 values[5];
3307        u64 count, enabled, running;
3308
3309        mutex_lock(&ctx->mutex);
3310        count = perf_event_read_value(leader, &enabled, &running);
3311
3312        values[n++] = 1 + leader->nr_siblings;
3313        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3314                values[n++] = enabled;
3315        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3316                values[n++] = running;
3317        values[n++] = count;
3318        if (read_format & PERF_FORMAT_ID)
3319                values[n++] = primary_event_id(leader);
3320
3321        size = n * sizeof(u64);
3322
3323        if (copy_to_user(buf, values, size))
3324                goto unlock;
3325
3326        ret = size;
3327
3328        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3329                n = 0;
3330
3331                values[n++] = perf_event_read_value(sub, &enabled, &running);
3332                if (read_format & PERF_FORMAT_ID)
3333                        values[n++] = primary_event_id(sub);
3334
3335                size = n * sizeof(u64);
3336
3337                if (copy_to_user(buf + ret, values, size)) {
3338                        ret = -EFAULT;
3339                        goto unlock;
3340                }
3341
3342                ret += size;
3343        }
3344unlock:
3345        mutex_unlock(&ctx->mutex);
3346
3347        return ret;
3348}
3349
3350static int perf_event_read_one(struct perf_event *event,
3351                                 u64 read_format, char __user *buf)
3352{
3353        u64 enabled, running;
3354        u64 values[4];
3355        int n = 0;
3356
3357        values[n++] = perf_event_read_value(event, &enabled, &running);
3358        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3359                values[n++] = enabled;
3360        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3361                values[n++] = running;
3362        if (read_format & PERF_FORMAT_ID)
3363                values[n++] = primary_event_id(event);
3364
3365        if (copy_to_user(buf, values, n * sizeof(u64)))
3366                return -EFAULT;
3367
3368        return n * sizeof(u64);
3369}
3370
3371/*
3372 * Read the performance event - simple non blocking version for now
3373 */
3374static ssize_t
3375perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3376{
3377        u64 read_format = event->attr.read_format;
3378        int ret;
3379
3380        /*
3381         * Return end-of-file for a read on a event that is in
3382         * error state (i.e. because it was pinned but it couldn't be
3383         * scheduled on to the CPU at some point).
3384         */
3385        if (event->state == PERF_EVENT_STATE_ERROR)
3386                return 0;
3387
3388        if (count < event->read_size)
3389                return -ENOSPC;
3390
3391        WARN_ON_ONCE(event->ctx->parent_ctx);
3392        if (read_format & PERF_FORMAT_GROUP)
3393                ret = perf_event_read_group(event, read_format, buf);
3394        else
3395                ret = perf_event_read_one(event, read_format, buf);
3396
3397        return ret;
3398}
3399
3400static ssize_t
3401perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3402{
3403        struct perf_event *event = file->private_data;
3404
3405        return perf_read_hw(event, buf, count);
3406}
3407
3408static unsigned int perf_poll(struct file *file, poll_table *wait)
3409{
3410        struct perf_event *event = file->private_data;
3411        struct ring_buffer *rb;
3412        unsigned int events = POLL_HUP;
3413
3414        /*
3415         * Pin the event->rb by taking event->mmap_mutex; otherwise
3416         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3417         */
3418        mutex_lock(&event->mmap_mutex);
3419        rb = event->rb;
3420        if (rb)
3421                events = atomic_xchg(&rb->poll, 0);
3422        mutex_unlock(&event->mmap_mutex);
3423
3424        poll_wait(file, &event->waitq, wait);
3425
3426        return events;
3427}
3428
3429static void perf_event_reset(struct perf_event *event)
3430{
3431        (void)perf_event_read(event);
3432        local64_set(&event->count, 0);
3433        perf_event_update_userpage(event);
3434}
3435
3436/*
3437 * Holding the top-level event's child_mutex means that any
3438 * descendant process that has inherited this event will block
3439 * in sync_child_event if it goes to exit, thus satisfying the
3440 * task existence requirements of perf_event_enable/disable.
3441 */
3442static void perf_event_for_each_child(struct perf_event *event,
3443                                        void (*func)(struct perf_event *))
3444{
3445        struct perf_event *child;
3446
3447        WARN_ON_ONCE(event->ctx->parent_ctx);
3448        mutex_lock(&event->child_mutex);
3449        func(event);
3450        list_for_each_entry(child, &event->child_list, child_list)
3451                func(child);
3452        mutex_unlock(&event->child_mutex);
3453}
3454
3455static void perf_event_for_each(struct perf_event *event,
3456                                  void (*func)(struct perf_event *))
3457{
3458        struct perf_event_context *ctx = event->ctx;
3459        struct perf_event *sibling;
3460
3461        WARN_ON_ONCE(ctx->parent_ctx);
3462        mutex_lock(&ctx->mutex);
3463        event = event->group_leader;
3464
3465        perf_event_for_each_child(event, func);
3466        list_for_each_entry(sibling, &event->sibling_list, group_entry)
3467                perf_event_for_each_child(sibling, func);
3468        mutex_unlock(&ctx->mutex);
3469}
3470
3471static int perf_event_period(struct perf_event *event, u64 __user *arg)
3472{
3473        struct perf_event_context *ctx = event->ctx;
3474        int ret = 0;
3475        u64 value;
3476
3477        if (!is_sampling_event(event))
3478                return -EINVAL;
3479
3480        if (copy_from_user(&value, arg, sizeof(value)))
3481                return -EFAULT;
3482
3483        if (!value)
3484                return -EINVAL;
3485
3486        raw_spin_lock_irq(&ctx->lock);
3487        if (event->attr.freq) {
3488                if (value > sysctl_perf_event_sample_rate) {
3489                        ret = -EINVAL;
3490                        goto unlock;
3491                }
3492
3493                event->attr.sample_freq = value;
3494        } else {
3495                event->attr.sample_period = value;
3496                event->hw.sample_period = value;
3497        }
3498unlock:
3499        raw_spin_unlock_irq(&ctx->lock);
3500
3501        return ret;
3502}
3503
3504static const struct file_operations perf_fops;
3505
3506static inline int perf_fget_light(int fd, struct fd *p)
3507{
3508        struct fd f = fdget(fd);
3509        if (!f.file)
3510                return -EBADF;
3511
3512        if (f.file->f_op != &perf_fops) {
3513                fdput(f);
3514                return -EBADF;
3515        }
3516        *p = f;
3517        return 0;
3518}
3519
3520static int perf_event_set_output(struct perf_event *event,
3521                                 struct perf_event *output_event);
3522static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3523
3524static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3525{
3526        struct perf_event *event = file->private_data;
3527        void (*func)(struct perf_event *);
3528        u32 flags = arg;
3529
3530        switch (cmd) {
3531        case PERF_EVENT_IOC_ENABLE:
3532                func = perf_event_enable;
3533                break;
3534        case PERF_EVENT_IOC_DISABLE:
3535                func = perf_event_disable;
3536                break;
3537        case PERF_EVENT_IOC_RESET:
3538                func = perf_event_reset;
3539                break;
3540
3541        case PERF_EVENT_IOC_REFRESH:
3542                return perf_event_refresh(event, arg);
3543
3544        case PERF_EVENT_IOC_PERIOD:
3545                return perf_event_period(event, (u64 __user *)arg);
3546
3547        case PERF_EVENT_IOC_SET_OUTPUT:
3548        {
3549                int ret;
3550                if (arg != -1) {
3551                        struct perf_event *output_event;
3552                        struct fd output;
3553                        ret = perf_fget_light(arg, &output);
3554                        if (ret)
3555                                return ret;
3556                        output_event = output.file->private_data;
3557                        ret = perf_event_set_output(event, output_event);
3558                        fdput(output);
3559                } else {
3560                        ret = perf_event_set_output(event, NULL);
3561                }
3562                return ret;
3563        }
3564
3565        case PERF_EVENT_IOC_SET_FILTER:
3566                return perf_event_set_filter(event, (void __user *)arg);
3567
3568        default:
3569                return -ENOTTY;
3570        }
3571
3572        if (flags & PERF_IOC_FLAG_GROUP)
3573                perf_event_for_each(event, func);
3574        else
3575                perf_event_for_each_child(event, func);
3576
3577        return 0;
3578}
3579
3580int perf_event_task_enable(void)
3581{
3582        struct perf_event *event;
3583
3584        mutex_lock(&current->perf_event_mutex);
3585        list_for_each_entry(event, &current->perf_event_list, owner_entry)
3586                perf_event_for_each_child(event, perf_event_enable);
3587        mutex_unlock(&current->perf_event_mutex);
3588
3589        return 0;
3590}
3591
3592int perf_event_task_disable(void)
3593{
3594        struct perf_event *event;
3595
3596        mutex_lock(&current->perf_event_mutex);
3597        list_for_each_entry(event, &current->perf_event_list, owner_entry)
3598                perf_event_for_each_child(event, perf_event_disable);
3599        mutex_unlock(&current->perf_event_mutex);
3600
3601        return 0;
3602}
3603
3604static int perf_event_index(struct perf_event *event)
3605{
3606        if (event->hw.state & PERF_HES_STOPPED)
3607                return 0;
3608
3609        if (event->state != PERF_EVENT_STATE_ACTIVE)
3610                return 0;
3611
3612        return event->pmu->event_idx(event);
3613}
3614
3615static void calc_timer_values(struct perf_event *event,
3616                                u64 *now,
3617                                u64 *enabled,
3618                                u64 *running)
3619{
3620        u64 ctx_time;
3621
3622        *now = perf_clock();
3623        ctx_time = event->shadow_ctx_time + *now;
3624        *enabled = ctx_time - event->tstamp_enabled;
3625        *running = ctx_time - event->tstamp_running;
3626}
3627
3628void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3629{
3630}
3631
3632/*
3633 * Callers need to ensure there can be no nesting of this function, otherwise
3634 * the seqlock logic goes bad. We can not serialize this because the arch
3635 * code calls this from NMI context.
3636 */
3637void perf_event_update_userpage(struct perf_event *event)
3638{
3639        struct perf_event_mmap_page *userpg;
3640        struct ring_buffer *rb;
3641        u64 enabled, running, now;
3642
3643        rcu_read_lock();
3644        /*
3645         * compute total_time_enabled, total_time_running
3646         * based on snapshot values taken when the event
3647         * was last scheduled in.
3648         *
3649         * we cannot simply called update_context_time()
3650         * because of locking issue as we can be called in
3651         * NMI context
3652         */
3653        calc_timer_values(event, &now, &enabled, &running);
3654        rb = rcu_dereference(event->rb);
3655        if (!rb)
3656                goto unlock;
3657
3658        userpg = rb->user_page;
3659
3660        /*
3661         * Disable preemption so as to not let the corresponding user-space
3662         * spin too long if we get preempted.
3663         */
3664        preempt_disable();
3665        ++userpg->lock;
3666        barrier();
3667        userpg->index = perf_event_index(event);
3668        userpg->offset = perf_event_count(event);
3669        if (userpg->index)
3670                userpg->offset -= local64_read(&event->hw.prev_count);
3671
3672        userpg->time_enabled = enabled +
3673                        atomic64_read(&event->child_total_time_enabled);
3674
3675        userpg->time_running = running +
3676                        atomic64_read(&event->child_total_time_running);
3677
3678        arch_perf_update_userpage(userpg, now);
3679
3680        barrier();
3681        ++userpg->lock;
3682        preempt_enable();
3683unlock:
3684        rcu_read_unlock();
3685}
3686
3687static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3688{
3689        struct perf_event *event = vma->vm_file->private_data;
3690        struct ring_buffer *rb;
3691        int ret = VM_FAULT_SIGBUS;
3692
3693        if (vmf->flags & FAULT_FLAG_MKWRITE) {
3694                if (vmf->pgoff == 0)
3695                        ret = 0;
3696                return ret;
3697        }
3698
3699        rcu_read_lock();
3700        rb = rcu_dereference(event->rb);
3701        if (!rb)
3702                goto unlock;
3703
3704        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3705                goto unlock;
3706
3707        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3708        if (!vmf->page)
3709                goto unlock;
3710
3711        get_page(vmf->page);
3712        vmf->page->mapping = vma->vm_file->f_mapping;
3713        vmf->page->index   = vmf->pgoff;
3714
3715        ret = 0;
3716unlock:
3717        rcu_read_unlock();
3718
3719        return ret;
3720}
3721
3722static void ring_buffer_attach(struct perf_event *event,
3723                               struct ring_buffer *rb)
3724{
3725        unsigned long flags;
3726
3727        if (!list_empty(&event->rb_entry))
3728                return;
3729
3730        spin_lock_irqsave(&rb->event_lock, flags);
3731        if (list_empty(&event->rb_entry))
3732                list_add(&event->rb_entry, &rb->event_list);
3733        spin_unlock_irqrestore(&rb->event_lock, flags);
3734}
3735
3736static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3737{
3738        unsigned long flags;
3739
3740        if (list_empty(&event->rb_entry))
3741                return;
3742
3743        spin_lock_irqsave(&rb->event_lock, flags);
3744        list_del_init(&event->rb_entry);
3745        wake_up_all(&event->waitq);
3746        spin_unlock_irqrestore(&rb->event_lock, flags);
3747}
3748
3749static void ring_buffer_wakeup(struct perf_event *event)
3750{
3751        struct ring_buffer *rb;
3752
3753        rcu_read_lock();
3754        rb = rcu_dereference(event->rb);
3755        if (rb) {
3756                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3757                        wake_up_all(&event->waitq);
3758        }
3759        rcu_read_unlock();
3760}
3761
3762static void rb_free_rcu(struct rcu_head *rcu_head)
3763{
3764        struct ring_buffer *rb;
3765
3766        rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3767        rb_free(rb);
3768}
3769
3770static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3771{
3772        struct ring_buffer *rb;
3773
3774        rcu_read_lock();
3775        rb = rcu_dereference(event->rb);
3776        if (rb) {
3777                if (!atomic_inc_not_zero(&rb->refcount))
3778                        rb = NULL;
3779        }
3780        rcu_read_unlock();
3781
3782        return rb;
3783}
3784
3785static void ring_buffer_put(struct ring_buffer *rb)
3786{
3787        if (!atomic_dec_and_test(&rb->refcount))
3788                return;
3789
3790        WARN_ON_ONCE(!list_empty(&rb->event_list));
3791
3792        call_rcu(&rb->rcu_head, rb_free_rcu);
3793}
3794
3795static void perf_mmap_open(struct vm_area_struct *vma)
3796{
3797        struct perf_event *event = vma->vm_file->private_data;
3798
3799        atomic_inc(&event->mmap_count);
3800        atomic_inc(&event->rb->mmap_count);
3801}
3802
3803/*
3804 * A buffer can be mmap()ed multiple times; either directly through the same
3805 * event, or through other events by use of perf_event_set_output().
3806 *
3807 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3808 * the buffer here, where we still have a VM context. This means we need
3809 * to detach all events redirecting to us.
3810 */
3811static void perf_mmap_close(struct vm_area_struct *vma)
3812{
3813        struct perf_event *event = vma->vm_file->private_data;
3814
3815        struct ring_buffer *rb = event->rb;
3816        struct user_struct *mmap_user = rb->mmap_user;
3817        int mmap_locked = rb->mmap_locked;
3818        unsigned long size = perf_data_size(rb);
3819
3820        atomic_dec(&rb->mmap_count);
3821
3822        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3823                return;
3824
3825        /* Detach current event from the buffer. */
3826        rcu_assign_pointer(event->rb, NULL);
3827        ring_buffer_detach(event, rb);
3828        mutex_unlock(&event->mmap_mutex);
3829
3830        /* If there's still other mmap()s of this buffer, we're done. */
3831        if (atomic_read(&rb->mmap_count)) {
3832                ring_buffer_put(rb); /* can't be last */
3833                return;
3834        }
3835
3836        /*
3837         * No other mmap()s, detach from all other events that might redirect
3838         * into the now unreachable buffer. Somewhat complicated by the
3839         * fact that rb::event_lock otherwise nests inside mmap_mutex.
3840         */
3841again:
3842        rcu_read_lock();
3843        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3844                if (!atomic_long_inc_not_zero(&event->refcount)) {
3845                        /*
3846                         * This event is en-route to free_event() which will
3847                         * detach it and remove it from the list.
3848                         */
3849                        continue;
3850                }
3851                rcu_read_unlock();
3852
3853                mutex_lock(&event->mmap_mutex);
3854                /*
3855                 * Check we didn't race with perf_event_set_output() which can
3856                 * swizzle the rb from under us while we were waiting to
3857                 * acquire mmap_mutex.
3858                 *
3859                 * If we find a different rb; ignore this event, a next
3860                 * iteration will no longer find it on the list. We have to
3861                 * still restart the iteration to make sure we're not now
3862                 * iterating the wrong list.
3863                 */
3864                if (event->rb == rb) {
3865                        rcu_assign_pointer(event->rb, NULL);
3866                        ring_buffer_detach(event, rb);
3867                        ring_buffer_put(rb); /* can't be last, we still have one */
3868                }
3869                mutex_unlock(&event->mmap_mutex);
3870                put_event(event);
3871
3872                /*
3873                 * Restart the iteration; either we're on the wrong list or
3874                 * destroyed its integrity by doing a deletion.
3875                 */
3876                goto again;
3877        }
3878        rcu_read_unlock();
3879
3880        /*
3881         * It could be there's still a few 0-ref events on the list; they'll
3882         * get cleaned up by free_event() -- they'll also still have their
3883         * ref on the rb and will free it whenever they are done with it.
3884         *
3885         * Aside from that, this buffer is 'fully' detached and unmapped,
3886         * undo the VM accounting.
3887         */
3888
3889        atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3890        vma->vm_mm->pinned_vm -= mmap_locked;
3891        free_uid(mmap_user);
3892
3893        ring_buffer_put(rb); /* could be last */
3894}
3895
3896static const struct vm_operations_struct perf_mmap_vmops = {
3897        .open           = perf_mmap_open,
3898        .close          = perf_mmap_close,
3899        .fault          = perf_mmap_fault,
3900        .page_mkwrite   = perf_mmap_fault,
3901};
3902
3903static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3904{
3905        struct perf_event *event = file->private_data;
3906        unsigned long user_locked, user_lock_limit;
3907        struct user_struct *user = current_user();
3908        unsigned long locked, lock_limit;
3909        struct ring_buffer *rb;
3910        unsigned long vma_size;
3911        unsigned long nr_pages;
3912        long user_extra, extra;
3913        int ret = 0, flags = 0;
3914
3915        /*
3916         * Don't allow mmap() of inherited per-task counters. This would
3917         * create a performance issue due to all children writing to the
3918         * same rb.
3919         */
3920        if (event->cpu == -1 && event->attr.inherit)
3921                return -EINVAL;
3922
3923        if (!(vma->vm_flags & VM_SHARED))
3924                return -EINVAL;
3925
3926        vma_size = vma->vm_end - vma->vm_start;
3927        nr_pages = (vma_size / PAGE_SIZE) - 1;
3928
3929        /*
3930         * If we have rb pages ensure they're a power-of-two number, so we
3931         * can do bitmasks instead of modulo.
3932         */
3933        if (nr_pages != 0 && !is_power_of_2(nr_pages))
3934                return -EINVAL;
3935
3936        if (vma_size != PAGE_SIZE * (1 + nr_pages))
3937                return -EINVAL;
3938
3939        if (vma->vm_pgoff != 0)
3940                return -EINVAL;
3941
3942        WARN_ON_ONCE(event->ctx->parent_ctx);
3943again:
3944        mutex_lock(&event->mmap_mutex);
3945        if (event->rb) {
3946                if (event->rb->nr_pages != nr_pages) {
3947                        ret = -EINVAL;
3948                        goto unlock;
3949                }
3950
3951                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3952                        /*
3953                         * Raced against perf_mmap_close() through
3954                         * perf_event_set_output(). Try again, hope for better
3955                         * luck.
3956                         */
3957                        mutex_unlock(&event->mmap_mutex);
3958                        goto again;
3959                }
3960
3961                goto unlock;
3962        }
3963
3964        user_extra = nr_pages + 1;
3965        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3966
3967        /*
3968         * Increase the limit linearly with more CPUs:
3969         */
3970        user_lock_limit *= num_online_cpus();
3971
3972        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3973
3974        extra = 0;
3975        if (user_locked > user_lock_limit)
3976                extra = user_locked - user_lock_limit;
3977
3978        lock_limit = rlimit(RLIMIT_MEMLOCK);
3979        lock_limit >>= PAGE_SHIFT;
3980        locked = vma->vm_mm->pinned_vm + extra;
3981
3982        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3983                !capable(CAP_IPC_LOCK)) {
3984                ret = -EPERM;
3985                goto unlock;
3986        }
3987
3988        WARN_ON(event->rb);
3989
3990        if (vma->vm_flags & VM_WRITE)
3991                flags |= RING_BUFFER_WRITABLE;
3992
3993        rb = rb_alloc(nr_pages, 
3994                event->attr.watermark ? event->attr.wakeup_watermark : 0,
3995                event->cpu, flags);
3996
3997        if (!rb) {
3998                ret = -ENOMEM;
3999                goto unlock;
4000        }
4001
4002        atomic_set(&rb->mmap_count, 1);
4003        rb->mmap_locked = extra;
4004        rb->mmap_user = get_current_user();
4005
4006        atomic_long_add(user_extra, &user->locked_vm);
4007        vma->vm_mm->pinned_vm += extra;
4008
4009        ring_buffer_attach(event, rb);
4010        rcu_assign_pointer(event->rb, rb);
4011
4012        perf_event_update_userpage(event);
4013
4014unlock:
4015        if (!ret)
4016                atomic_inc(&event->mmap_count);
4017        mutex_unlock(&event->mmap_mutex);
4018
4019        /*
4020         * Since pinned accounting is per vm we cannot allow fork() to copy our
4021         * vma.
4022         */
4023        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4024        vma->vm_ops = &perf_mmap_vmops;
4025
4026        return ret;
4027}
4028
4029static int perf_fasync(int fd, struct file *filp, int on)
4030{
4031        struct inode *inode = file_inode(filp);
4032        struct perf_event *event = filp->private_data;
4033        int retval;
4034
4035        mutex_lock(&inode->i_mutex);
4036        retval = fasync_helper(fd, filp, on, &event->fasync);
4037        mutex_unlock(&inode->i_mutex);
4038
4039        if (retval < 0)
4040                return retval;
4041
4042        return 0;
4043}
4044
4045static const struct file_operations perf_fops = {
4046        .llseek                 = no_llseek,
4047        .release                = perf_release,
4048        .read                   = perf_read,
4049        .poll                   = perf_poll,
4050        .unlocked_ioctl         = perf_ioctl,
4051        .compat_ioctl           = perf_ioctl,
4052        .mmap                   = perf_mmap,
4053        .fasync                 = perf_fasync,
4054};
4055
4056/*
4057 * Perf event wakeup
4058 *
4059 * If there's data, ensure we set the poll() state and publish everything
4060 * to user-space before waking everybody up.
4061 */
4062
4063void perf_event_wakeup(struct perf_event *event)
4064{
4065        ring_buffer_wakeup(event);
4066
4067        if (event->pending_kill) {
4068                kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4069                event->pending_kill = 0;
4070        }
4071}
4072
4073static void perf_pending_event(struct irq_work *entry)
4074{
4075        struct perf_event *event = container_of(entry,
4076                        struct perf_event, pending);
4077
4078        if (event->pending_disable) {
4079                event->pending_disable = 0;
4080                __perf_event_disable(event);
4081        }
4082
4083        if (event->pending_wakeup) {
4084                event->pending_wakeup = 0;
4085                perf_event_wakeup(event);
4086        }
4087}
4088
4089/*
4090 * We assume there is only KVM supporting the callbacks.
4091 * Later on, we might change it to a list if there is
4092 * another virtualization implementation supporting the callbacks.
4093 */
4094struct perf_guest_info_callbacks *perf_guest_cbs;
4095
4096int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4097{
4098        perf_guest_cbs = cbs;
4099        return 0;
4100}
4101EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4102
4103int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4104{
4105        perf_guest_cbs = NULL;
4106        return 0;
4107}
4108EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4109
4110static void
4111perf_output_sample_regs(struct perf_output_handle *handle,
4112                        struct pt_regs *regs, u64 mask)
4113{
4114        int bit;
4115
4116        for_each_set_bit(bit, (const unsigned long *) &mask,
4117                         sizeof(mask) * BITS_PER_BYTE) {
4118                u64 val;
4119
4120                val = perf_reg_value(regs, bit);
4121                perf_output_put(handle, val);
4122        }
4123}
4124
4125static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4126                                  struct pt_regs *regs)
4127{
4128        if (!user_mode(regs)) {
4129                if (current->mm)
4130                        regs = task_pt_regs(current);
4131                else
4132                        regs = NULL;
4133        }
4134
4135        if (regs) {
4136                regs_user->regs = regs;
4137                regs_user->abi  = perf_reg_abi(current);
4138        }
4139}
4140
4141/*
4142 * Get remaining task size from user stack pointer.
4143 *
4144 * It'd be better to take stack vma map and limit this more
4145 * precisly, but there's no way to get it safely under interrupt,
4146 * so using TASK_SIZE as limit.
4147 */
4148static u64 perf_ustack_task_size(struct pt_regs *regs)
4149{
4150        unsigned long addr = perf_user_stack_pointer(regs);
4151
4152        if (!addr || addr >= TASK_SIZE)
4153                return 0;
4154
4155        return TASK_SIZE - addr;
4156}
4157
4158static u16
4159perf_sample_ustack_size(u16 stack_size, u16 header_size,
4160                        struct pt_regs *regs)
4161{
4162        u64 task_size;
4163
4164        /* No regs, no stack pointer, no dump. */
4165        if (!regs)
4166                return 0;
4167
4168        /*
4169         * Check if we fit in with the requested stack size into the:
4170         * - TASK_SIZE
4171         *   If we don't, we limit the size to the TASK_SIZE.
4172         *
4173         * - remaining sample size
4174         *   If we don't, we customize the stack size to
4175         *   fit in to the remaining sample size.
4176         */
4177
4178        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4179        stack_size = min(stack_size, (u16) task_size);
4180
4181        /* Current header size plus static size and dynamic size. */
4182        header_size += 2 * sizeof(u64);
4183
4184        /* Do we fit in with the current stack dump size? */
4185        if ((u16) (header_size + stack_size) < header_size) {
4186                /*
4187                 * If we overflow the maximum size for the sample,
4188                 * we customize the stack dump size to fit in.
4189                 */
4190                stack_size = USHRT_MAX - header_size - sizeof(u64);
4191                stack_size = round_up(stack_size, sizeof(u64));
4192        }
4193
4194        return stack_size;
4195}
4196
4197static void
4198perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4199                          struct pt_regs *regs)
4200{
4201        /* Case of a kernel thread, nothing to dump */
4202        if (!regs) {
4203                u64 size = 0;
4204                perf_output_put(handle, size);
4205        } else {
4206                unsigned long sp;
4207                unsigned int rem;
4208                u64 dyn_size;
4209
4210                /*
4211                 * We dump:
4212                 * static size
4213                 *   - the size requested by user or the best one we can fit
4214                 *     in to the sample max size
4215                 * data
4216                 *   - user stack dump data
4217                 * dynamic size
4218                 *   - the actual dumped size
4219                 */
4220
4221                /* Static size. */
4222                perf_output_put(handle, dump_size);
4223
4224                /* Data. */
4225                sp = perf_user_stack_pointer(regs);
4226                rem = __output_copy_user(handle, (void *) sp, dump_size);
4227                dyn_size = dump_size - rem;
4228
4229                perf_output_skip(handle, rem);
4230
4231                /* Dynamic size. */
4232                perf_output_put(handle, dyn_size);
4233        }
4234}
4235
4236static void __perf_event_header__init_id(struct perf_event_header *header,
4237                                         struct perf_sample_data *data,
4238                                         struct perf_event *event)
4239{
4240        u64 sample_type = event->attr.sample_type;
4241
4242        data->type = sample_type;
4243        header->size += event->id_header_size;
4244
4245        if (sample_type & PERF_SAMPLE_TID) {
4246                /* namespace issues */
4247                data->tid_entry.pid = perf_event_pid(event, current);
4248                data->tid_entry.tid = perf_event_tid(event, current);
4249        }
4250
4251        if (sample_type & PERF_SAMPLE_TIME)
4252                data->time = perf_clock();
4253
4254        if (sample_type & PERF_SAMPLE_ID)
4255                data->id = primary_event_id(event);
4256
4257        if (sample_type & PERF_SAMPLE_STREAM_ID)
4258                data->stream_id = event->id;
4259
4260        if (sample_type & PERF_SAMPLE_CPU) {
4261                data->cpu_entry.cpu      = raw_smp_processor_id();
4262                data->cpu_entry.reserved = 0;
4263        }
4264}
4265
4266void perf_event_header__init_id(struct perf_event_header *header,
4267                                struct perf_sample_data *data,
4268                                struct perf_event *event)
4269{
4270        if (event->attr.sample_id_all)
4271                __perf_event_header__init_id(header, data, event);
4272}
4273
4274static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4275                                           struct perf_sample_data *data)
4276{
4277        u64 sample_type = data->type;
4278
4279        if (sample_type & PERF_SAMPLE_TID)
4280                perf_output_put(handle, data->tid_entry);
4281
4282        if (sample_type & PERF_SAMPLE_TIME)
4283                perf_output_put(handle, data->time);
4284
4285        if (sample_type & PERF_SAMPLE_ID)
4286                perf_output_put(handle, data->id);
4287
4288        if (sample_type & PERF_SAMPLE_STREAM_ID)
4289                perf_output_put(handle, data->stream_id);
4290
4291        if (sample_type & PERF_SAMPLE_CPU)
4292                perf_output_put(handle, data->cpu_entry);
4293}
4294
4295void perf_event__output_id_sample(struct perf_event *event,
4296                                  struct perf_output_handle *handle,
4297                                  struct perf_sample_data *sample)
4298{
4299        if (event->attr.sample_id_all)
4300                __perf_event__output_id_sample(handle, sample);
4301}
4302
4303static void perf_output_read_one(struct perf_output_handle *handle,
4304                                 struct perf_event *event,
4305                                 u64 enabled, u64 running)
4306{
4307        u64 read_format = event->attr.read_format;
4308        u64 values[4];
4309        int n = 0;
4310
4311        values[n++] = perf_event_count(event);
4312        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4313                values[n++] = enabled +
4314                        atomic64_read(&event->child_total_time_enabled);
4315        }
4316        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4317                values[n++] = running +
4318                        atomic64_read(&event->child_total_time_running);
4319        }
4320        if (read_format & PERF_FORMAT_ID)
4321                values[n++] = primary_event_id(event);
4322
4323        __output_copy(handle, values, n * sizeof(u64));
4324}
4325
4326/*
4327 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4328 */
4329static void perf_output_read_group(struct perf_output_handle *handle,
4330                            struct perf_event *event,
4331                            u64 enabled, u64 running)
4332{
4333        struct perf_event *leader = event->group_leader, *sub;
4334        u64 read_format = event->attr.read_format;
4335        u64 values[5];
4336        int n = 0;
4337
4338        values[n++] = 1 + leader->nr_siblings;
4339
4340        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4341                values[n++] = enabled;
4342
4343        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4344                values[n++] = running;
4345
4346        if (leader != event)
4347                leader->pmu->read(leader);
4348
4349        values[n++] = perf_event_count(leader);
4350        if (read_format & PERF_FORMAT_ID)
4351                values[n++] = primary_event_id(leader);
4352
4353        __output_copy(handle, values, n * sizeof(u64));
4354
4355        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4356                n = 0;
4357
4358                if (sub != event)
4359                        sub->pmu->read(sub);
4360
4361                values[n++] = perf_event_count(sub);
4362                if (read_format & PERF_FORMAT_ID)
4363                        values[n++] = primary_event_id(sub);
4364
4365                __output_copy(handle, values, n * sizeof(u64));
4366        }
4367}
4368
4369#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4370                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
4371
4372static void perf_output_read(struct perf_output_handle *handle,
4373                             struct perf_event *event)
4374{
4375        u64 enabled = 0, running = 0, now;
4376        u64 read_format = event->attr.read_format;
4377
4378        /*
4379         * compute total_time_enabled, total_time_running
4380         * based on snapshot values taken when the event
4381         * was last scheduled in.
4382         *
4383         * we cannot simply called update_context_time()
4384         * because of locking issue as we are called in
4385         * NMI context
4386         */
4387        if (read_format & PERF_FORMAT_TOTAL_TIMES)
4388                calc_timer_values(event, &now, &enabled, &running);
4389
4390        if (event->attr.read_format & PERF_FORMAT_GROUP)
4391                perf_output_read_group(handle, event, enabled, running);
4392        else
4393                perf_output_read_one(handle, event, enabled, running);
4394}
4395
4396void perf_output_sample(struct perf_output_handle *handle,
4397                        struct perf_event_header *header,
4398                        struct perf_sample_data *data,
4399                        struct perf_event *event)
4400{
4401        u64 sample_type = data->type;
4402
4403        perf_output_put(handle, *header);
4404
4405        if (sample_type & PERF_SAMPLE_IP)
4406                perf_output_put(handle, data->ip);
4407
4408        if (sample_type & PERF_SAMPLE_TID)
4409                perf_output_put(handle, data->tid_entry);
4410
4411        if (sample_type & PERF_SAMPLE_TIME)
4412                perf_output_put(handle, data->time);
4413
4414        if (sample_type & PERF_SAMPLE_ADDR)
4415                perf_output_put(handle, data->addr);
4416
4417        if (sample_type & PERF_SAMPLE_ID)
4418                perf_output_put(handle, data->id);
4419
4420        if (sample_type & PERF_SAMPLE_STREAM_ID)
4421                perf_output_put(handle, data->stream_id);
4422
4423        if (sample_type & PERF_SAMPLE_CPU)
4424                perf_output_put(handle, data->cpu_entry);
4425
4426        if (sample_type & PERF_SAMPLE_PERIOD)
4427                perf_output_put(handle, data->period);
4428
4429        if (sample_type & PERF_SAMPLE_READ)
4430                perf_output_read(handle, event);
4431
4432        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4433                if (data->callchain) {
4434                        int size = 1;
4435
4436                        if (data->callchain)
4437                                size += data->callchain->nr;
4438
4439                        size *= sizeof(u64);
4440
4441                        __output_copy(handle, data->callchain, size);
4442                } else {
4443                        u64 nr = 0;
4444                        perf_output_put(handle, nr);
4445                }
4446        }
4447
4448        if (sample_type & PERF_SAMPLE_RAW) {
4449                if (data->raw) {
4450                        perf_output_put(handle, data->raw->size);
4451                        __output_copy(handle, data->raw->data,
4452                                           data->raw->size);
4453                } else {
4454                        struct {
4455                                u32     size;
4456                                u32     data;
4457                        } raw = {
4458                                .size = sizeof(u32),
4459                                .data = 0,
4460                        };
4461                        perf_output_put(handle, raw);
4462                }
4463        }
4464
4465        if (!event->attr.watermark) {
4466                int wakeup_events = event->attr.wakeup_events;
4467
4468                if (wakeup_events) {
4469                        struct ring_buffer *rb = handle->rb;
4470                        int events = local_inc_return(&rb->events);
4471
4472                        if (events >= wakeup_events) {
4473                                local_sub(wakeup_events, &rb->events);
4474                                local_inc(&rb->wakeup);
4475                        }
4476                }
4477        }
4478
4479        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4480                if (data->br_stack) {
4481                        size_t size;
4482
4483                        size = data->br_stack->nr
4484                             * sizeof(struct perf_branch_entry);
4485
4486                        perf_output_put(handle, data->br_stack->nr);
4487                        perf_output_copy(handle, data->br_stack->entries, size);
4488                } else {
4489                        /*
4490                         * we always store at least the value of nr
4491                         */
4492                        u64 nr = 0;
4493                        perf_output_put(handle, nr);
4494                }
4495        }
4496
4497        if (sample_type & PERF_SAMPLE_REGS_USER) {
4498                u64 abi = data->regs_user.abi;
4499
4500                /*
4501                 * If there are no regs to dump, notice it through
4502                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4503                 */
4504                perf_output_put(handle, abi);
4505
4506                if (abi) {
4507                        u64 mask = event->attr.sample_regs_user;
4508                        perf_output_sample_regs(handle,
4509                                                data->regs_user.regs,
4510                                                mask);
4511                }
4512        }
4513
4514        if (sample_type & PERF_SAMPLE_STACK_USER)
4515                perf_output_sample_ustack(handle,
4516                                          data->stack_user_size,
4517                                          data->regs_user.regs);
4518
4519        if (sample_type & PERF_SAMPLE_WEIGHT)
4520                perf_output_put(handle, data->weight);
4521
4522        if (sample_type & PERF_SAMPLE_DATA_SRC)
4523                perf_output_put(handle, data->data_src.val);
4524}
4525
4526void perf_prepare_sample(struct perf_event_header *header,
4527                         struct perf_sample_data *data,
4528                         struct perf_event *event,
4529                         struct pt_regs *regs)
4530{
4531        u64 sample_type = event->attr.sample_type;
4532
4533        header->type = PERF_RECORD_SAMPLE;
4534        header->size = sizeof(*header) + event->header_size;
4535
4536        header->misc = 0;
4537        header->misc |= perf_misc_flags(regs);
4538
4539        __perf_event_header__init_id(header, data, event);
4540
4541        if (sample_type & PERF_SAMPLE_IP)
4542                data->ip = perf_instruction_pointer(regs);
4543
4544        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4545                int size = 1;
4546
4547                data->callchain = perf_callchain(event, regs);
4548
4549                if (data->callchain)
4550                        size += data->callchain->nr;
4551
4552                header->size += size * sizeof(u64);
4553        }
4554
4555        if (sample_type & PERF_SAMPLE_RAW) {
4556                int size = sizeof(u32);
4557
4558                if (data->raw)
4559                        size += data->raw->size;
4560                else
4561                        size += sizeof(u32);
4562
4563                WARN_ON_ONCE(size & (sizeof(u64)-1));
4564                header->size += size;
4565        }
4566
4567        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4568                int size = sizeof(u64); /* nr */
4569                if (data->br_stack) {
4570                        size += data->br_stack->nr
4571                              * sizeof(struct perf_branch_entry);
4572                }
4573                header->size += size;
4574        }
4575
4576        if (sample_type & PERF_SAMPLE_REGS_USER) {
4577                /* regs dump ABI info */
4578                int size = sizeof(u64);
4579
4580                perf_sample_regs_user(&data->regs_user, regs);
4581
4582                if (data->regs_user.regs) {
4583                        u64 mask = event->attr.sample_regs_user;
4584                        size += hweight64(mask) * sizeof(u64);
4585                }
4586
4587                header->size += size;
4588        }
4589
4590        if (sample_type & PERF_SAMPLE_STACK_USER) {
4591                /*
4592                 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4593                 * processed as the last one or have additional check added
4594                 * in case new sample type is added, because we could eat
4595                 * up the rest of the sample size.
4596                 */
4597                struct perf_regs_user *uregs = &data->regs_user;
4598                u16 stack_size = event->attr.sample_stack_user;
4599                u16 size = sizeof(u64);
4600
4601                if (!uregs->abi)
4602                        perf_sample_regs_user(uregs, regs);
4603
4604                stack_size = perf_sample_ustack_size(stack_size, header->size,
4605                                                     uregs->regs);
4606
4607                /*
4608                 * If there is something to dump, add space for the dump
4609                 * itself and for the field that tells the dynamic size,
4610                 * which is how many have been actually dumped.
4611                 */
4612                if (stack_size)
4613                        size += sizeof(u64) + stack_size;
4614
4615                data->stack_user_size = stack_size;
4616                header->size += size;
4617        }
4618}
4619
4620static void perf_event_output(struct perf_event *event,
4621                                struct perf_sample_data *data,
4622                                struct pt_regs *regs)
4623{
4624        struct perf_output_handle handle;
4625        struct perf_event_header header;
4626
4627        /* protect the callchain buffers */
4628        rcu_read_lock();
4629
4630        perf_prepare_sample(&header, data, event, regs);
4631
4632        if (perf_output_begin(&handle, event, header.size))
4633                goto exit;
4634
4635        perf_output_sample(&handle, &header, data, event);
4636
4637        perf_output_end(&handle);
4638
4639exit:
4640        rcu_read_unlock();
4641}
4642
4643/*
4644 * read event_id
4645 */
4646
4647struct perf_read_event {
4648        struct perf_event_header        header;
4649
4650        u32                             pid;
4651        u32                             tid;
4652};
4653
4654static void
4655perf_event_read_event(struct perf_event *event,
4656                        struct task_struct *task)
4657{
4658        struct perf_output_handle handle;
4659        struct perf_sample_data sample;
4660        struct perf_read_event read_event = {
4661                .header = {
4662                        .type = PERF_RECORD_READ,
4663                        .misc = 0,
4664                        .size = sizeof(read_event) + event->read_size,
4665                },
4666                .pid = perf_event_pid(event, task),
4667                .tid = perf_event_tid(event, task),
4668        };
4669        int ret;
4670
4671        perf_event_header__init_id(&read_event.header, &sample, event);
4672        ret = perf_output_begin(&handle, event, read_event.header.size);
4673        if (ret)
4674                return;
4675
4676        perf_output_put(&handle, read_event);
4677        perf_output_read(&handle, event);
4678        perf_event__output_id_sample(event, &handle, &sample);
4679
4680        perf_output_end(&handle);
4681}
4682
4683typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4684typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4685
4686static void
4687perf_event_aux_ctx(struct perf_event_context *ctx,
4688                   perf_event_aux_match_cb match,
4689                   perf_event_aux_output_cb output,
4690                   void *data)
4691{
4692        struct perf_event *event;
4693
4694        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4695                if (event->state < PERF_EVENT_STATE_INACTIVE)
4696                        continue;
4697                if (!event_filter_match(event))
4698                        continue;
4699                if (match(event, data))
4700                        output(event, data);
4701        }
4702}
4703
4704static void
4705perf_event_aux(perf_event_aux_match_cb match,
4706               perf_event_aux_output_cb output,
4707               void *data,
4708               struct perf_event_context *task_ctx)
4709{
4710        struct perf_cpu_context *cpuctx;
4711        struct perf_event_context *ctx;
4712        struct pmu *pmu;
4713        int ctxn;
4714
4715        rcu_read_lock();
4716        list_for_each_entry_rcu(pmu, &pmus, entry) {
4717                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4718                if (cpuctx->unique_pmu != pmu)
4719                        goto next;
4720                perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4721                if (task_ctx)
4722                        goto next;
4723                ctxn = pmu->task_ctx_nr;
4724                if (ctxn < 0)
4725                        goto next;
4726                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4727                if (ctx)
4728                        perf_event_aux_ctx(ctx, match, output, data);
4729next:
4730                put_cpu_ptr(pmu->pmu_cpu_context);
4731        }
4732
4733        if (task_ctx) {
4734                preempt_disable();
4735                perf_event_aux_ctx(task_ctx, match, output, data);
4736                preempt_enable();
4737        }
4738        rcu_read_unlock();
4739}
4740
4741/*
4742 * task tracking -- fork/exit
4743 *
4744 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4745 */
4746
4747struct perf_task_event {
4748        struct task_struct              *task;
4749        struct perf_event_context       *task_ctx;
4750
4751        struct {
4752                struct perf_event_header        header;
4753
4754                u32                             pid;
4755                u32                             ppid;
4756                u32                             tid;
4757                u32                             ptid;
4758                u64                             time;
4759        } event_id;
4760};
4761
4762static void perf_event_task_output(struct perf_event *event,
4763                                   void *data)
4764{
4765        struct perf_task_event *task_event = data;
4766        struct perf_output_handle handle;
4767        struct perf_sample_data sample;
4768        struct task_struct *task = task_event->task;
4769        int ret, size = task_event->event_id.header.size;
4770
4771        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4772
4773        ret = perf_output_begin(&handle, event,
4774                                task_event->event_id.header.size);
4775        if (ret)
4776                goto out;
4777
4778        task_event->event_id.pid = perf_event_pid(event, task);
4779        task_event->event_id.ppid = perf_event_pid(event, current);
4780
4781        task_event->event_id.tid = perf_event_tid(event, task);
4782        task_event->event_id.ptid = perf_event_tid(event, current);
4783
4784        perf_output_put(&handle, task_event->event_id);
4785
4786        perf_event__output_id_sample(event, &handle, &sample);
4787
4788        perf_output_end(&handle);
4789out:
4790        task_event->event_id.header.size = size;
4791}
4792
4793static int perf_event_task_match(struct perf_event *event,
4794                                 void *data __maybe_unused)
4795{
4796        return event->attr.comm || event->attr.mmap ||
4797               event->attr.mmap_data || event->attr.task;
4798}
4799
4800static void perf_event_task(struct task_struct *task,
4801                              struct perf_event_context *task_ctx,
4802                              int new)
4803{
4804        struct perf_task_event task_event;
4805
4806        if (!atomic_read(&nr_comm_events) &&
4807            !atomic_read(&nr_mmap_events) &&
4808            !atomic_read(&nr_task_events))
4809                return;
4810
4811        task_event = (struct perf_task_event){
4812                .task     = task,
4813                .task_ctx = task_ctx,
4814                .event_id    = {
4815                        .header = {
4816                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4817                                .misc = 0,
4818                                .size = sizeof(task_event.event_id),
4819                        },
4820                        /* .pid  */
4821                        /* .ppid */
4822                        /* .tid  */
4823                        /* .ptid */
4824                        .time = perf_clock(),
4825                },
4826        };
4827
4828        perf_event_aux(perf_event_task_match,
4829                       perf_event_task_output,
4830                       &task_event,
4831                       task_ctx);
4832}
4833
4834void perf_event_fork(struct task_struct *task)
4835{
4836        perf_event_task(task, NULL, 1);
4837}
4838
4839/*
4840 * comm tracking
4841 */
4842
4843struct perf_comm_event {
4844        struct task_struct      *task;
4845        char                    *comm;
4846        int                     comm_size;
4847
4848        struct {
4849                struct perf_event_header        header;
4850
4851                u32                             pid;
4852                u32                             tid;
4853        } event_id;
4854};
4855
4856static void perf_event_comm_output(struct perf_event *event,
4857                                   void *data)
4858{
4859        struct perf_comm_event *comm_event = data;
4860        struct perf_output_handle handle;
4861        struct perf_sample_data sample;
4862        int size = comm_event->event_id.header.size;
4863        int ret;
4864
4865        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4866        ret = perf_output_begin(&handle, event,
4867                                comm_event->event_id.header.size);
4868
4869        if (ret)
4870                goto out;
4871
4872        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4873        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4874
4875        perf_output_put(&handle, comm_event->event_id);
4876        __output_copy(&handle, comm_event->comm,
4877                                   comm_event->comm_size);
4878
4879        perf_event__output_id_sample(event, &handle, &sample);
4880
4881        perf_output_end(&handle);
4882out:
4883        comm_event->event_id.header.size = size;
4884}
4885
4886static int perf_event_comm_match(struct perf_event *event,
4887                                 void *data __maybe_unused)
4888{
4889        return event->attr.comm;
4890}
4891
4892static void perf_event_comm_event(struct perf_comm_event *comm_event)
4893{
4894        char comm[TASK_COMM_LEN];
4895        unsigned int size;
4896
4897        memset(comm, 0, sizeof(comm));
4898        strlcpy(comm, comm_event->task->comm, sizeof(comm));
4899        size = ALIGN(strlen(comm)+1, sizeof(u64));
4900
4901        comm_event->comm = comm;
4902        comm_event->comm_size = size;
4903
4904        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4905
4906        perf_event_aux(perf_event_comm_match,
4907                       perf_event_comm_output,
4908                       comm_event,
4909                       NULL);
4910}
4911
4912void perf_event_comm(struct task_struct *task)
4913{
4914        struct perf_comm_event comm_event;
4915        struct perf_event_context *ctx;
4916        int ctxn;
4917
4918        rcu_read_lock();
4919        for_each_task_context_nr(ctxn) {
4920                ctx = task->perf_event_ctxp[ctxn];
4921                if (!ctx)
4922                        continue;
4923
4924                perf_event_enable_on_exec(ctx);
4925        }
4926        rcu_read_unlock();
4927
4928        if (!atomic_read(&nr_comm_events))
4929                return;
4930
4931        comm_event = (struct perf_comm_event){
4932                .task   = task,
4933                /* .comm      */
4934                /* .comm_size */
4935                .event_id  = {
4936                        .header = {
4937                                .type = PERF_RECORD_COMM,
4938                                .misc = 0,
4939                                /* .size */
4940                        },
4941                        /* .pid */
4942                        /* .tid */
4943                },
4944        };
4945
4946        perf_event_comm_event(&comm_event);
4947}
4948
4949/*
4950 * mmap tracking
4951 */
4952
4953struct perf_mmap_event {
4954        struct vm_area_struct   *vma;
4955
4956        const char              *file_name;
4957        int                     file_size;
4958
4959        struct {
4960                struct perf_event_header        header;
4961
4962                u32                             pid;
4963                u32                             tid;
4964                u64                             start;
4965                u64                             len;
4966                u64                             pgoff;
4967        } event_id;
4968};
4969
4970static void perf_event_mmap_output(struct perf_event *event,
4971                                   void *data)
4972{
4973        struct perf_mmap_event *mmap_event = data;
4974        struct perf_output_handle handle;
4975        struct perf_sample_data sample;
4976        int size = mmap_event->event_id.header.size;
4977        int ret;
4978
4979        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4980        ret = perf_output_begin(&handle, event,
4981                                mmap_event->event_id.header.size);
4982        if (ret)
4983                goto out;
4984
4985        mmap_event->event_id.pid = perf_event_pid(event, current);
4986        mmap_event->event_id.tid = perf_event_tid(event, current);
4987
4988        perf_output_put(&handle, mmap_event->event_id);
4989        __output_copy(&handle, mmap_event->file_name,
4990                                   mmap_event->file_size);
4991
4992        perf_event__output_id_sample(event, &handle, &sample);
4993
4994        perf_output_end(&handle);
4995out:
4996        mmap_event->event_id.header.size = size;
4997}
4998
4999static int perf_event_mmap_match(struct perf_event *event,
5000                                 void *data)
5001{
5002        struct perf_mmap_event *mmap_event = data;
5003        struct vm_area_struct *vma = mmap_event->vma;
5004        int executable = vma->vm_flags & VM_EXEC;
5005
5006        return (!executable && event->attr.mmap_data) ||
5007               (executable && event->attr.mmap);
5008}
5009
5010static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5011{
5012        struct vm_area_struct *vma = mmap_event->vma;
5013        struct file *file = vma->vm_file;
5014        unsigned int size;
5015        char tmp[16];
5016        char *buf = NULL;
5017        const char *name;
5018
5019        memset(tmp, 0, sizeof(tmp));
5020
5021        if (file) {
5022                /*
5023                 * d_path works from the end of the rb backwards, so we
5024                 * need to add enough zero bytes after the string to handle
5025                 * the 64bit alignment we do later.
5026                 */
5027                buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5028                if (!buf) {
5029                        name = strncpy(tmp, "//enomem", sizeof(tmp));
5030                        goto got_name;
5031                }
5032                name = d_path(&file->f_path, buf, PATH_MAX);
5033                if (IS_ERR(name)) {
5034                        name = strncpy(tmp, "//toolong", sizeof(tmp));
5035                        goto got_name;
5036                }
5037        } else {
5038                if (arch_vma_name(mmap_event->vma)) {
5039                        name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5040                                       sizeof(tmp) - 1);
5041                        tmp[sizeof(tmp) - 1] = '\0';
5042                        goto got_name;
5043                }
5044
5045                if (!vma->vm_mm) {
5046                        name = strncpy(tmp, "[vdso]", sizeof(tmp));
5047                        goto got_name;
5048                } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5049                                vma->vm_end >= vma->vm_mm->brk) {
5050                        name = strncpy(tmp, "[heap]", sizeof(tmp));
5051                        goto got_name;
5052                } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5053                                vma->vm_end >= vma->vm_mm->start_stack) {
5054                        name = strncpy(tmp, "[stack]", sizeof(tmp));
5055                        goto got_name;
5056                }
5057
5058                name = strncpy(tmp, "//anon", sizeof(tmp));
5059                goto got_name;
5060        }
5061
5062got_name:
5063        size = ALIGN(strlen(name)+1, sizeof(u64));
5064
5065        mmap_event->file_name = name;
5066        mmap_event->file_size = size;
5067
5068        if (!(vma->vm_flags & VM_EXEC))
5069                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5070
5071        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5072
5073        perf_event_aux(perf_event_mmap_match,
5074                       perf_event_mmap_output,
5075                       mmap_event,
5076                       NULL);
5077
5078        kfree(buf);
5079}
5080
5081void perf_event_mmap(struct vm_area_struct *vma)
5082{
5083        struct perf_mmap_event mmap_event;
5084
5085        if (!atomic_read(&nr_mmap_events))
5086                return;
5087
5088        mmap_event = (struct perf_mmap_event){
5089                .vma    = vma,
5090                /* .file_name */
5091                /* .file_size */
5092                .event_id  = {
5093                        .header = {
5094                                .type = PERF_RECORD_MMAP,
5095                                .misc = PERF_RECORD_MISC_USER,
5096                                /* .size */
5097                        },
5098                        /* .pid */
5099                        /* .tid */
5100                        .start  = vma->vm_start,
5101                        .len    = vma->vm_end - vma->vm_start,
5102                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5103                },
5104        };
5105
5106        perf_event_mmap_event(&mmap_event);
5107}
5108
5109/*
5110 * IRQ throttle logging
5111 */
5112
5113static void perf_log_throttle(struct perf_event *event, int enable)
5114{
5115        struct perf_output_handle handle;
5116        struct perf_sample_data sample;
5117        int ret;
5118
5119        struct {
5120                struct perf_event_header        header;
5121                u64                             time;
5122                u64                             id;
5123                u64                             stream_id;
5124        } throttle_event = {
5125                .header = {
5126                        .type = PERF_RECORD_THROTTLE,
5127                        .misc = 0,
5128                        .size = sizeof(throttle_event),
5129                },
5130                .time           = perf_clock(),
5131                .id             = primary_event_id(event),
5132                .stream_id      = event->id,
5133        };
5134
5135        if (enable)
5136                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5137
5138        perf_event_header__init_id(&throttle_event.header, &sample, event);
5139
5140        ret = perf_output_begin(&handle, event,
5141                                throttle_event.header.size);
5142        if (ret)
5143                return;
5144
5145        perf_output_put(&handle, throttle_event);
5146        perf_event__output_id_sample(event, &handle, &sample);
5147        perf_output_end(&handle);
5148}
5149
5150/*
5151 * Generic event overflow handling, sampling.
5152 */
5153
5154static int __perf_event_overflow(struct perf_event *event,
5155                                   int throttle, struct perf_sample_data *data,
5156                                   struct pt_regs *regs)
5157{
5158        int events = atomic_read(&event->event_limit);
5159        struct hw_perf_event *hwc = &event->hw;
5160        u64 seq;
5161        int ret = 0;
5162
5163        /*
5164         * Non-sampling counters might still use the PMI to fold short
5165         * hardware counters, ignore those.
5166         */
5167        if (unlikely(!is_sampling_event(event)))
5168                return 0;
5169
5170        seq = __this_cpu_read(perf_throttled_seq);
5171        if (seq != hwc->interrupts_seq) {
5172                hwc->interrupts_seq = seq;
5173                hwc->interrupts = 1;
5174        } else {
5175                hwc->interrupts++;
5176                if (unlikely(throttle
5177                             && hwc->interrupts >= max_samples_per_tick)) {
5178                        __this_cpu_inc(perf_throttled_count);
5179                        hwc->interrupts = MAX_INTERRUPTS;
5180                        perf_log_throttle(event, 0);
5181                        ret = 1;
5182                }
5183        }
5184
5185        if (event->attr.freq) {
5186                u64 now = perf_clock();
5187                s64 delta = now - hwc->freq_time_stamp;
5188
5189                hwc->freq_time_stamp = now;
5190
5191                if (delta > 0 && delta < 2*TICK_NSEC)
5192                        perf_adjust_period(event, delta, hwc->last_period, true);
5193        }
5194
5195        /*
5196         * XXX event_limit might not quite work as expected on inherited
5197         * events
5198         */
5199
5200        event->pending_kill = POLL_IN;
5201        if (events && atomic_dec_and_test(&event->event_limit)) {
5202                ret = 1;
5203                event->pending_kill = POLL_HUP;
5204                event->pending_disable = 1;
5205                irq_work_queue(&event->pending);
5206        }
5207
5208        if (event->overflow_handler)
5209                event->overflow_handler(event, data, regs);
5210        else
5211                perf_event_output(event, data, regs);
5212
5213        if (event->fasync && event->pending_kill) {
5214                event->pending_wakeup = 1;
5215                irq_work_queue(&event->pending);
5216        }
5217
5218        return ret;
5219}
5220
5221int perf_event_overflow(struct perf_event *event,
5222                          struct perf_sample_data *data,
5223                          struct pt_regs *regs)
5224{
5225        return __perf_event_overflow(event, 1, data, regs);
5226}
5227
5228/*
5229 * Generic software event infrastructure
5230 */
5231
5232struct swevent_htable {
5233        struct swevent_hlist            *swevent_hlist;
5234        struct mutex                    hlist_mutex;
5235        int                             hlist_refcount;
5236
5237        /* Recursion avoidance in each contexts */
5238        int                             recursion[PERF_NR_CONTEXTS];
5239};
5240
5241static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5242
5243/*
5244 * We directly increment event->count and keep a second value in
5245 * event->hw.period_left to count intervals. This period event
5246 * is kept in the range [-sample_period, 0] so that we can use the
5247 * sign as trigger.
5248 */
5249
5250u64 perf_swevent_set_period(struct perf_event *event)
5251{
5252        struct hw_perf_event *hwc = &event->hw;
5253        u64 period = hwc->last_period;
5254        u64 nr, offset;
5255        s64 old, val;
5256
5257        hwc->last_period = hwc->sample_period;
5258
5259again:
5260        old = val = local64_read(&hwc->period_left);
5261        if (val < 0)
5262                return 0;
5263
5264        nr = div64_u64(period + val, period);
5265        offset = nr * period;
5266        val -= offset;
5267        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5268                goto again;
5269
5270        return nr;
5271}
5272
5273static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5274                                    struct perf_sample_data *data,
5275                                    struct pt_regs *regs)
5276{
5277        struct hw_perf_event *hwc = &event->hw;
5278        int throttle = 0;
5279
5280        if (!overflow)
5281                overflow = perf_swevent_set_period(event);
5282
5283        if (hwc->interrupts == MAX_INTERRUPTS)
5284                return;
5285
5286        for (; overflow; overflow--) {
5287                if (__perf_event_overflow(event, throttle,
5288                                            data, regs)) {
5289                        /*
5290                         * We inhibit the overflow from happening when
5291                         * hwc->interrupts == MAX_INTERRUPTS.
5292                         */
5293                        break;
5294                }
5295                throttle = 1;
5296        }
5297}
5298
5299static void perf_swevent_event(struct perf_event *event, u64 nr,
5300                               struct perf_sample_data *data,
5301                               struct pt_regs *regs)
5302{
5303        struct hw_perf_event *hwc = &event->hw;
5304
5305        local64_add(nr, &event->count);
5306
5307        if (!regs)
5308                return;
5309
5310        if (!is_sampling_event(event))
5311                return;
5312
5313        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5314                data->period = nr;
5315                return perf_swevent_overflow(event, 1, data, regs);
5316        } else
5317                data->period = event->hw.last_period;
5318
5319        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5320                return perf_swevent_overflow(event, 1, data, regs);
5321
5322        if (local64_add_negative(nr, &hwc->period_left))
5323                return;
5324
5325        perf_swevent_overflow(event, 0, data, regs);
5326}
5327
5328static int perf_exclude_event(struct perf_event *event,
5329                              struct pt_regs *regs)
5330{
5331        if (event->hw.state & PERF_HES_STOPPED)
5332                return 1;
5333
5334        if (regs) {
5335                if (event->attr.exclude_user && user_mode(regs))
5336                        return 1;
5337
5338                if (event->attr.exclude_kernel && !user_mode(regs))
5339                        return 1;
5340        }
5341
5342        return 0;
5343}
5344
5345static int perf_swevent_match(struct perf_event *event,
5346                                enum perf_type_id type,
5347                                u32 event_id,
5348                                struct perf_sample_data *data,
5349                                struct pt_regs *regs)
5350{
5351        if (event->attr.type != type)
5352                return 0;
5353
5354        if (event->attr.config != event_id)
5355                return 0;
5356
5357        if (perf_exclude_event(event, regs))
5358                return 0;
5359
5360        return 1;
5361}
5362
5363static inline u64 swevent_hash(u64 type, u32 event_id)
5364{
5365        u64 val = event_id | (type << 32);
5366
5367        return hash_64(val, SWEVENT_HLIST_BITS);
5368}
5369
5370static inline struct hlist_head *
5371__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5372{
5373        u64 hash = swevent_hash(type, event_id);
5374
5375        return &hlist->heads[hash];
5376}
5377
5378/* For the read side: events when they trigger */
5379static inline struct hlist_head *
5380find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5381{
5382        struct swevent_hlist *hlist;
5383
5384        hlist = rcu_dereference(swhash->swevent_hlist);
5385        if (!hlist)
5386                return NULL;
5387
5388        return __find_swevent_head(hlist, type, event_id);
5389}
5390
5391/* For the event head insertion and removal in the hlist */
5392static inline struct hlist_head *
5393find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5394{
5395        struct swevent_hlist *hlist;
5396        u32 event_id = event->attr.config;
5397        u64 type = event->attr.type;
5398
5399        /*
5400         * Event scheduling is always serialized against hlist allocation
5401         * and release. Which makes the protected version suitable here.
5402         * The context lock guarantees that.
5403         */
5404        hlist = rcu_dereference_protected(swhash->swevent_hlist,
5405                                          lockdep_is_held(&event->ctx->lock));
5406        if (!hlist)
5407                return NULL;
5408
5409        return __find_swevent_head(hlist, type, event_id);
5410}
5411
5412static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5413                                    u64 nr,
5414                                    struct perf_sample_data *data,
5415                                    struct pt_regs *regs)
5416{
5417        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5418        struct perf_event *event;
5419        struct hlist_head *head;
5420
5421        rcu_read_lock();
5422        head = find_swevent_head_rcu(swhash, type, event_id);
5423        if (!head)
5424                goto end;
5425
5426        hlist_for_each_entry_rcu(event, head, hlist_entry) {
5427                if (perf_swevent_match(event, type, event_id, data, regs))
5428                        perf_swevent_event(event, nr, data, regs);
5429        }
5430end:
5431        rcu_read_unlock();
5432}
5433
5434int perf_swevent_get_recursion_context(void)
5435{
5436        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5437
5438        return get_recursion_context(swhash->recursion);
5439}
5440EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5441
5442inline void perf_swevent_put_recursion_context(int rctx)
5443{
5444        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5445
5446        put_recursion_context(swhash->recursion, rctx);
5447}
5448
5449void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5450{
5451        struct perf_sample_data data;
5452        int rctx;
5453
5454        preempt_disable_notrace();
5455        rctx = perf_swevent_get_recursion_context();
5456        if (rctx < 0)
5457                return;
5458
5459        perf_sample_data_init(&data, addr, 0);
5460
5461        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5462
5463        perf_swevent_put_recursion_context(rctx);
5464        preempt_enable_notrace();
5465}
5466
5467static void perf_swevent_read(struct perf_event *event)
5468{
5469}
5470
5471static int perf_swevent_add(struct perf_event *event, int flags)
5472{
5473        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5474        struct hw_perf_event *hwc = &event->hw;
5475        struct hlist_head *head;
5476
5477        if (is_sampling_event(event)) {
5478                hwc->last_period = hwc->sample_period;
5479                perf_swevent_set_period(event);
5480        }
5481
5482        hwc->state = !(flags & PERF_EF_START);
5483
5484        head = find_swevent_head(swhash, event);
5485        if (WARN_ON_ONCE(!head))
5486                return -EINVAL;
5487
5488        hlist_add_head_rcu(&event->hlist_entry, head);
5489
5490        return 0;
5491}
5492
5493static void perf_swevent_del(struct perf_event *event, int flags)
5494{
5495        hlist_del_rcu(&event->hlist_entry);
5496}
5497
5498static void perf_swevent_start(struct perf_event *event, int flags)
5499{
5500        event->hw.state = 0;
5501}
5502
5503static void perf_swevent_stop(struct perf_event *event, int flags)
5504{
5505        event->hw.state = PERF_HES_STOPPED;
5506}
5507
5508/* Deref the hlist from the update side */
5509static inline struct swevent_hlist *
5510swevent_hlist_deref(struct swevent_htable *swhash)
5511{
5512        return rcu_dereference_protected(swhash->swevent_hlist,
5513                                         lockdep_is_held(&swhash->hlist_mutex));
5514}
5515
5516static void swevent_hlist_release(struct swevent_htable *swhash)
5517{
5518        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5519
5520        if (!hlist)
5521                return;
5522
5523        rcu_assign_pointer(swhash->swevent_hlist, NULL);
5524        kfree_rcu(hlist, rcu_head);
5525}
5526
5527static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5528{
5529        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5530
5531        mutex_lock(&swhash->hlist_mutex);
5532
5533        if (!--swhash->hlist_refcount)
5534                swevent_hlist_release(swhash);
5535
5536        mutex_unlock(&swhash->hlist_mutex);
5537}
5538
5539static void swevent_hlist_put(struct perf_event *event)
5540{
5541        int cpu;
5542
5543        if (event->cpu != -1) {
5544                swevent_hlist_put_cpu(event, event->cpu);
5545                return;
5546        }
5547
5548        for_each_possible_cpu(cpu)
5549                swevent_hlist_put_cpu(event, cpu);
5550}
5551
5552static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5553{
5554        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5555        int err = 0;
5556
5557        mutex_lock(&swhash->hlist_mutex);
5558
5559        if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5560                struct swevent_hlist *hlist;
5561
5562                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5563                if (!hlist) {
5564                        err = -ENOMEM;
5565                        goto exit;
5566                }
5567                rcu_assign_pointer(swhash->swevent_hlist, hlist);
5568        }
5569        swhash->hlist_refcount++;
5570exit:
5571        mutex_unlock(&swhash->hlist_mutex);
5572
5573        return err;
5574}
5575
5576static int swevent_hlist_get(struct perf_event *event)
5577{
5578        int err;
5579        int cpu, failed_cpu;
5580
5581        if (event->cpu != -1)
5582                return swevent_hlist_get_cpu(event, event->cpu);
5583
5584        get_online_cpus();
5585        for_each_possible_cpu(cpu) {
5586                err = swevent_hlist_get_cpu(event, cpu);
5587                if (err) {
5588                        failed_cpu = cpu;
5589                        goto fail;
5590                }
5591        }
5592        put_online_cpus();
5593
5594        return 0;
5595fail:
5596        for_each_possible_cpu(cpu) {
5597                if (cpu == failed_cpu)
5598                        break;
5599                swevent_hlist_put_cpu(event, cpu);
5600        }
5601
5602        put_online_cpus();
5603        return err;
5604}
5605
5606struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5607
5608static void sw_perf_event_destroy(struct perf_event *event)
5609{
5610        u64 event_id = event->attr.config;
5611
5612        WARN_ON(event->parent);
5613
5614        static_key_slow_dec(&perf_swevent_enabled[event_id]);
5615        swevent_hlist_put(event);
5616}
5617
5618static int perf_swevent_init(struct perf_event *event)
5619{
5620        u64 event_id = event->attr.config;
5621
5622        if (event->attr.type != PERF_TYPE_SOFTWARE)
5623                return -ENOENT;
5624
5625        /*
5626         * no branch sampling for software events
5627         */
5628        if (has_branch_stack(event))
5629                return -EOPNOTSUPP;
5630
5631        switch (event_id) {
5632        case PERF_COUNT_SW_CPU_CLOCK:
5633        case PERF_COUNT_SW_TASK_CLOCK:
5634                return -ENOENT;
5635
5636        default:
5637                break;
5638        }
5639
5640        if (event_id >= PERF_COUNT_SW_MAX)
5641                return -ENOENT;
5642
5643        if (!event->parent) {
5644                int err;
5645
5646                err = swevent_hlist_get(event);
5647                if (err)
5648                        return err;
5649
5650                static_key_slow_inc(&perf_swevent_enabled[event_id]);
5651                event->destroy = sw_perf_event_destroy;
5652        }
5653
5654        return 0;
5655}
5656
5657static int perf_swevent_event_idx(struct perf_event *event)
5658{
5659        return 0;
5660}
5661
5662static struct pmu perf_swevent = {
5663        .task_ctx_nr    = perf_sw_context,
5664
5665        .event_init     = perf_swevent_init,
5666        .add            = perf_swevent_add,
5667        .del            = perf_swevent_del,
5668        .start          = perf_swevent_start,
5669        .stop           = perf_swevent_stop,
5670        .read           = perf_swevent_read,
5671
5672        .event_idx      = perf_swevent_event_idx,
5673};
5674
5675#ifdef CONFIG_EVENT_TRACING
5676
5677static int perf_tp_filter_match(struct perf_event *event,
5678                                struct perf_sample_data *data)
5679{
5680        void *record = data->raw->data;
5681
5682        if (likely(!event->filter) || filter_match_preds(event->filter, record))
5683                return 1;
5684        return 0;
5685}
5686
5687static int perf_tp_event_match(struct perf_event *event,
5688                                struct perf_sample_data *data,
5689                                struct pt_regs *regs)
5690{
5691        if (event->hw.state & PERF_HES_STOPPED)
5692                return 0;
5693        /*
5694         * All tracepoints are from kernel-space.
5695         */
5696        if (event->attr.exclude_kernel)
5697                return 0;
5698
5699        if (!perf_tp_filter_match(event, data))
5700                return 0;
5701
5702        return 1;
5703}
5704
5705void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5706                   struct pt_regs *regs, struct hlist_head *head, int rctx,
5707                   struct task_struct *task)
5708{
5709        struct perf_sample_data data;
5710        struct perf_event *event;
5711
5712        struct perf_raw_record raw = {
5713                .size = entry_size,
5714                .data = record,
5715        };
5716
5717        perf_sample_data_init(&data, addr, 0);
5718        data.raw = &raw;
5719
5720        hlist_for_each_entry_rcu(event, head, hlist_entry) {
5721                if (perf_tp_event_match(event, &data, regs))
5722                        perf_swevent_event(event, count, &data, regs);
5723        }
5724
5725        /*
5726         * If we got specified a target task, also iterate its context and
5727         * deliver this event there too.
5728         */
5729        if (task && task != current) {
5730                struct perf_event_context *ctx;
5731                struct trace_entry *entry = record;
5732
5733                rcu_read_lock();
5734                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5735                if (!ctx)
5736                        goto unlock;
5737
5738                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5739                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5740                                continue;
5741                        if (event->attr.config != entry->type)
5742                                continue;
5743                        if (perf_tp_event_match(event, &data, regs))
5744                                perf_swevent_event(event, count, &data, regs);
5745                }
5746unlock:
5747                rcu_read_unlock();
5748        }
5749
5750        perf_swevent_put_recursion_context(rctx);
5751}
5752EXPORT_SYMBOL_GPL(perf_tp_event);
5753
5754static void tp_perf_event_destroy(struct perf_event *event)
5755{
5756        perf_trace_destroy(event);
5757}
5758
5759static int perf_tp_event_init(struct perf_event *event)
5760{
5761        int err;
5762
5763        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5764                return -ENOENT;
5765
5766        /*
5767         * no branch sampling for tracepoint events
5768         */
5769        if (has_branch_stack(event))
5770                return -EOPNOTSUPP;
5771
5772        err = perf_trace_init(event);
5773        if (err)
5774                return err;
5775
5776        event->destroy = tp_perf_event_destroy;
5777
5778        return 0;
5779}
5780
5781static struct pmu perf_tracepoint = {
5782        .task_ctx_nr    = perf_sw_context,
5783
5784        .event_init     = perf_tp_event_init,
5785        .add            = perf_trace_add,
5786        .del            = perf_trace_del,
5787        .start          = perf_swevent_start,
5788        .stop           = perf_swevent_stop,
5789        .read           = perf_swevent_read,
5790
5791        .event_idx      = perf_swevent_event_idx,
5792};
5793
5794static inline void perf_tp_register(void)
5795{
5796        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5797}
5798
5799static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5800{
5801        char *filter_str;
5802        int ret;
5803
5804        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5805                return -EINVAL;
5806
5807        filter_str = strndup_user(arg, PAGE_SIZE);
5808        if (IS_ERR(filter_str))
5809                return PTR_ERR(filter_str);
5810
5811        ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5812
5813        kfree(filter_str);
5814        return ret;
5815}
5816
5817static void perf_event_free_filter(struct perf_event *event)
5818{
5819        ftrace_profile_free_filter(event);
5820}
5821
5822#else
5823
5824static inline void perf_tp_register(void)
5825{
5826}
5827
5828static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5829{
5830        return -ENOENT;
5831}
5832
5833static void perf_event_free_filter(struct perf_event *event)
5834{
5835}
5836
5837#endif /* CONFIG_EVENT_TRACING */
5838
5839#ifdef CONFIG_HAVE_HW_BREAKPOINT
5840void perf_bp_event(struct perf_event *bp, void *data)
5841{
5842        struct perf_sample_data sample;
5843        struct pt_regs *regs = data;
5844
5845        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5846
5847        if (!bp->hw.state && !perf_exclude_event(bp, regs))
5848                perf_swevent_event(bp, 1, &sample, regs);
5849}
5850#endif
5851
5852/*
5853 * hrtimer based swevent callback
5854 */
5855
5856static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5857{
5858        enum hrtimer_restart ret = HRTIMER_RESTART;
5859        struct perf_sample_data data;
5860        struct pt_regs *regs;
5861        struct perf_event *event;
5862        u64 period;
5863
5864        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5865
5866        if (event->state != PERF_EVENT_STATE_ACTIVE)
5867                return HRTIMER_NORESTART;
5868
5869        event->pmu->read(event);
5870
5871        perf_sample_data_init(&data, 0, event->hw.last_period);
5872        regs = get_irq_regs();
5873
5874        if (regs && !perf_exclude_event(event, regs)) {
5875                if (!(event->attr.exclude_idle && is_idle_task(current)))
5876                        if (__perf_event_overflow(event, 1, &data, regs))
5877                                ret = HRTIMER_NORESTART;
5878        }
5879
5880        period = max_t(u64, 10000, event->hw.sample_period);
5881        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5882
5883        return ret;
5884}
5885
5886static void perf_swevent_start_hrtimer(struct perf_event *event)
5887{
5888        struct hw_perf_event *hwc = &event->hw;
5889        s64 period;
5890
5891        if (!is_sampling_event(event))
5892                return;
5893
5894        period = local64_read(&hwc->period_left);
5895        if (period) {
5896                if (period < 0)
5897                        period = 10000;
5898
5899                local64_set(&hwc->period_left, 0);
5900        } else {
5901                period = max_t(u64, 10000, hwc->sample_period);
5902        }
5903        __hrtimer_start_range_ns(&hwc->hrtimer,
5904                                ns_to_ktime(period), 0,
5905                                HRTIMER_MODE_REL_PINNED, 0);
5906}
5907
5908static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5909{
5910        struct hw_perf_event *hwc = &event->hw;
5911
5912        if (is_sampling_event(event)) {
5913                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5914                local64_set(&hwc->period_left, ktime_to_ns(remaining));
5915
5916                hrtimer_cancel(&hwc->hrtimer);
5917        }
5918}
5919
5920static void perf_swevent_init_hrtimer(struct perf_event *event)
5921{
5922        struct hw_perf_event *hwc = &event->hw;
5923
5924        if (!is_sampling_event(event))
5925                return;
5926
5927        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5928        hwc->hrtimer.function = perf_swevent_hrtimer;
5929
5930        /*
5931         * Since hrtimers have a fixed rate, we can do a static freq->period
5932         * mapping and avoid the whole period adjust feedback stuff.
5933         */
5934        if (event->attr.freq) {
5935                long freq = event->attr.sample_freq;
5936
5937                event->attr.sample_period = NSEC_PER_SEC / freq;
5938                hwc->sample_period = event->attr.sample_period;
5939                local64_set(&hwc->period_left, hwc->sample_period);
5940                hwc->last_period = hwc->sample_period;
5941                event->attr.freq = 0;
5942        }
5943}
5944
5945/*
5946 * Software event: cpu wall time clock
5947 */
5948
5949static void cpu_clock_event_update(struct perf_event *event)
5950{
5951        s64 prev;
5952        u64 now;
5953
5954        now = local_clock();
5955        prev = local64_xchg(&event->hw.prev_count, now);
5956        local64_add(now - prev, &event->count);
5957}
5958
5959static void cpu_clock_event_start(struct perf_event *event, int flags)
5960{
5961        local64_set(&event->hw.prev_count, local_clock());
5962        perf_swevent_start_hrtimer(event);
5963}
5964
5965static void cpu_clock_event_stop(struct perf_event *event, int flags)
5966{
5967        perf_swevent_cancel_hrtimer(event);
5968        cpu_clock_event_update(event);
5969}
5970
5971static int cpu_clock_event_add(struct perf_event *event, int flags)
5972{
5973        if (flags & PERF_EF_START)
5974                cpu_clock_event_start(event, flags);
5975
5976        return 0;
5977}
5978
5979static void cpu_clock_event_del(struct perf_event *event, int flags)
5980{
5981        cpu_clock_event_stop(event, flags);
5982}
5983
5984static void cpu_clock_event_read(struct perf_event *event)
5985{
5986        cpu_clock_event_update(event);
5987}
5988
5989static int cpu_clock_event_init(struct perf_event *event)
5990{
5991        if (event->attr.type != PERF_TYPE_SOFTWARE)
5992                return -ENOENT;
5993
5994        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5995                return -ENOENT;
5996
5997        /*
5998         * no branch sampling for software events
5999         */
6000        if (has_branch_stack(event))
6001                return -EOPNOTSUPP;
6002
6003        perf_swevent_init_hrtimer(event);
6004
6005        return 0;
6006}
6007
6008static struct pmu perf_cpu_clock = {
6009        .task_ctx_nr    = perf_sw_context,
6010
6011        .event_init     = cpu_clock_event_init,
6012        .add            = cpu_clock_event_add,
6013        .del            = cpu_clock_event_del,
6014        .start          = cpu_clock_event_start,
6015        .stop           = cpu_clock_event_stop,
6016        .read           = cpu_clock_event_read,
6017
6018        .event_idx      = perf_swevent_event_idx,
6019};
6020
6021/*
6022 * Software event: task time clock
6023 */
6024
6025static void task_clock_event_update(struct perf_event *event, u64 now)
6026{
6027        u64 prev;
6028        s64 delta;
6029
6030        prev = local64_xchg(&event->hw.prev_count, now);
6031        delta = now - prev;
6032        local64_add(delta, &event->count);
6033}
6034
6035static void task_clock_event_start(struct perf_event *event, int flags)
6036{
6037        local64_set(&event->hw.prev_count, event->ctx->time);
6038        perf_swevent_start_hrtimer(event);
6039}
6040
6041static void task_clock_event_stop(struct perf_event *event, int flags)
6042{
6043        perf_swevent_cancel_hrtimer(event);
6044        task_clock_event_update(event, event->ctx->time);
6045}
6046
6047static int task_clock_event_add(struct perf_event *event, int flags)
6048{
6049        if (flags & PERF_EF_START)
6050                task_clock_event_start(event, flags);
6051
6052        return 0;
6053}
6054
6055static void task_clock_event_del(struct perf_event *event, int flags)
6056{
6057        task_clock_event_stop(event, PERF_EF_UPDATE);
6058}
6059
6060static void task_clock_event_read(struct perf_event *event)
6061{
6062        u64 now = perf_clock();
6063        u64 delta = now - event->ctx->timestamp;
6064        u64 time = event->ctx->time + delta;
6065
6066        task_clock_event_update(event, time);
6067}
6068
6069static int task_clock_event_init(struct perf_event *event)
6070{
6071        if (event->attr.type != PERF_TYPE_SOFTWARE)
6072                return -ENOENT;
6073
6074        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6075                return -ENOENT;
6076
6077        /*
6078         * no branch sampling for software events
6079         */
6080        if (has_branch_stack(event))
6081                return -EOPNOTSUPP;
6082
6083        perf_swevent_init_hrtimer(event);
6084
6085        return 0;
6086}
6087
6088static struct pmu perf_task_clock = {
6089        .task_ctx_nr    = perf_sw_context,
6090
6091        .event_init     = task_clock_event_init,
6092        .add            = task_clock_event_add,
6093        .del            = task_clock_event_del,
6094        .start          = task_clock_event_start,
6095        .stop           = task_clock_event_stop,
6096        .read           = task_clock_event_read,
6097
6098        .event_idx      = perf_swevent_event_idx,
6099};
6100
6101static void perf_pmu_nop_void(struct pmu *pmu)
6102{
6103}
6104
6105static int perf_pmu_nop_int(struct pmu *pmu)
6106{
6107        return 0;
6108}
6109
6110static void perf_pmu_start_txn(struct pmu *pmu)
6111{
6112        perf_pmu_disable(pmu);
6113}
6114
6115static int perf_pmu_commit_txn(struct pmu *pmu)
6116{
6117        perf_pmu_enable(pmu);
6118        return 0;
6119}
6120
6121static void perf_pmu_cancel_txn(struct pmu *pmu)
6122{
6123        perf_pmu_enable(pmu);
6124}
6125
6126static int perf_event_idx_default(struct perf_event *event)
6127{
6128        return event->hw.idx + 1;
6129}
6130
6131/*
6132 * Ensures all contexts with the same task_ctx_nr have the same
6133 * pmu_cpu_context too.
6134 */
6135static void *find_pmu_context(int ctxn)
6136{
6137        struct pmu *pmu;
6138
6139        if (ctxn < 0)
6140                return NULL;
6141
6142        list_for_each_entry(pmu, &pmus, entry) {
6143                if (pmu->task_ctx_nr == ctxn)
6144                        return pmu->pmu_cpu_context;
6145        }
6146
6147        return NULL;
6148}
6149
6150static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6151{
6152        int cpu;
6153
6154        for_each_possible_cpu(cpu) {
6155                struct perf_cpu_context *cpuctx;
6156
6157                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6158
6159                if (cpuctx->unique_pmu == old_pmu)
6160                        cpuctx->unique_pmu = pmu;
6161        }
6162}
6163
6164static void free_pmu_context(struct pmu *pmu)
6165{
6166        struct pmu *i;
6167
6168        mutex_lock(&pmus_lock);
6169        /*
6170         * Like a real lame refcount.
6171         */
6172        list_for_each_entry(i, &pmus, entry) {
6173                if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6174                        update_pmu_context(i, pmu);
6175                        goto out;
6176                }
6177        }
6178
6179        free_percpu(pmu->pmu_cpu_context);
6180out:
6181        mutex_unlock(&pmus_lock);
6182}
6183static struct idr pmu_idr;
6184
6185static ssize_t
6186type_show(struct device *dev, struct device_attribute *attr, char *page)
6187{
6188        struct pmu *pmu = dev_get_drvdata(dev);
6189
6190        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6191}
6192
6193static ssize_t
6194perf_event_mux_interval_ms_show(struct device *dev,
6195                                struct device_attribute *attr,
6196                                char *page)
6197{
6198        struct pmu *pmu = dev_get_drvdata(dev);
6199
6200        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6201}
6202
6203static ssize_t
6204perf_event_mux_interval_ms_store(struct device *dev,
6205                                 struct device_attribute *attr,
6206                                 const char *buf, size_t count)
6207{
6208        struct pmu *pmu = dev_get_drvdata(dev);
6209        int timer, cpu, ret;
6210
6211        ret = kstrtoint(buf, 0, &timer);
6212        if (ret)
6213                return ret;
6214
6215        if (timer < 1)
6216                return -EINVAL;
6217
6218        /* same value, noting to do */
6219        if (timer == pmu->hrtimer_interval_ms)
6220                return count;
6221
6222        pmu->hrtimer_interval_ms = timer;
6223
6224        /* update all cpuctx for this PMU */
6225        for_each_possible_cpu(cpu) {
6226                struct perf_cpu_context *cpuctx;
6227                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6228                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6229
6230                if (hrtimer_active(&cpuctx->hrtimer))
6231                        hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6232        }
6233
6234        return count;
6235}
6236
6237static struct device_attribute pmu_dev_attrs[] = {
6238        __ATTR_RO(type),
6239        __ATTR_RW(perf_event_mux_interval_ms),
6240        __ATTR_NULL,
6241};
6242
6243static int pmu_bus_running;
6244static struct bus_type pmu_bus = {
6245        .name           = "event_source",
6246        .dev_attrs      = pmu_dev_attrs,
6247};
6248
6249static void pmu_dev_release(struct device *dev)
6250{
6251        kfree(dev);
6252}
6253
6254static int pmu_dev_alloc(struct pmu *pmu)
6255{
6256        int ret = -ENOMEM;
6257
6258        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6259        if (!pmu->dev)
6260                goto out;
6261
6262        pmu->dev->groups = pmu->attr_groups;
6263        device_initialize(pmu->dev);
6264        ret = dev_set_name(pmu->dev, "%s", pmu->name);
6265        if (ret)
6266                goto free_dev;
6267
6268        dev_set_drvdata(pmu->dev, pmu);
6269        pmu->dev->bus = &pmu_bus;
6270        pmu->dev->release = pmu_dev_release;
6271        ret = device_add(pmu->dev);
6272        if (ret)
6273                goto free_dev;
6274
6275out:
6276        return ret;
6277
6278free_dev:
6279        put_device(pmu->dev);
6280        goto out;
6281}
6282
6283static struct lock_class_key cpuctx_mutex;
6284static struct lock_class_key cpuctx_lock;
6285
6286int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6287{
6288        int cpu, ret;
6289
6290        mutex_lock(&pmus_lock);
6291        ret = -ENOMEM;
6292        pmu->pmu_disable_count = alloc_percpu(int);
6293        if (!pmu->pmu_disable_count)
6294                goto unlock;
6295
6296        pmu->type = -1;
6297        if (!name)
6298                goto skip_type;
6299        pmu->name = name;
6300
6301        if (type < 0) {
6302                type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6303                if (type < 0) {
6304                        ret = type;
6305                        goto free_pdc;
6306                }
6307        }
6308        pmu->type = type;
6309
6310        if (pmu_bus_running) {
6311                ret = pmu_dev_alloc(pmu);
6312                if (ret)
6313                        goto free_idr;
6314        }
6315
6316skip_type:
6317        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6318        if (pmu->pmu_cpu_context)
6319                goto got_cpu_context;
6320
6321        ret = -ENOMEM;
6322        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6323        if (!pmu->pmu_cpu_context)
6324                goto free_dev;
6325
6326        for_each_possible_cpu(cpu) {
6327                struct perf_cpu_context *cpuctx;
6328
6329                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6330                __perf_event_init_context(&cpuctx->ctx);
6331                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6332                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6333                cpuctx->ctx.type = cpu_context;
6334                cpuctx->ctx.pmu = pmu;
6335
6336                __perf_cpu_hrtimer_init(cpuctx, cpu);
6337
6338                INIT_LIST_HEAD(&cpuctx->rotation_list);
6339                cpuctx->unique_pmu = pmu;
6340        }
6341
6342got_cpu_context:
6343        if (!pmu->start_txn) {
6344                if (pmu->pmu_enable) {
6345                        /*
6346                         * If we have pmu_enable/pmu_disable calls, install
6347                         * transaction stubs that use that to try and batch
6348                         * hardware accesses.
6349                         */
6350                        pmu->start_txn  = perf_pmu_start_txn;
6351                        pmu->commit_txn = perf_pmu_commit_txn;
6352                        pmu->cancel_txn = perf_pmu_cancel_txn;
6353                } else {
6354                        pmu->start_txn  = perf_pmu_nop_void;
6355                        pmu->commit_txn = perf_pmu_nop_int;
6356                        pmu->cancel_txn = perf_pmu_nop_void;
6357                }
6358        }
6359
6360        if (!pmu->pmu_enable) {
6361                pmu->pmu_enable  = perf_pmu_nop_void;
6362                pmu->pmu_disable = perf_pmu_nop_void;
6363        }
6364
6365        if (!pmu->event_idx)
6366                pmu->event_idx = perf_event_idx_default;
6367
6368        list_add_rcu(&pmu->entry, &pmus);
6369        ret = 0;
6370unlock:
6371        mutex_unlock(&pmus_lock);
6372
6373        return ret;
6374
6375free_dev:
6376        device_del(pmu->dev);
6377        put_device(pmu->dev);
6378
6379free_idr:
6380        if (pmu->type >= PERF_TYPE_MAX)
6381                idr_remove(&pmu_idr, pmu->type);
6382
6383free_pdc:
6384        free_percpu(pmu->pmu_disable_count);
6385        goto unlock;
6386}
6387
6388void perf_pmu_unregister(struct pmu *pmu)
6389{
6390        mutex_lock(&pmus_lock);
6391        list_del_rcu(&pmu->entry);
6392        mutex_unlock(&pmus_lock);
6393
6394        /*
6395         * We dereference the pmu list under both SRCU and regular RCU, so
6396         * synchronize against both of those.
6397         */
6398        synchronize_srcu(&pmus_srcu);
6399        synchronize_rcu();
6400
6401        free_percpu(pmu->pmu_disable_count);
6402        if (pmu->type >= PERF_TYPE_MAX)
6403                idr_remove(&pmu_idr, pmu->type);
6404        device_del(pmu->dev);
6405        put_device(pmu->dev);
6406        free_pmu_context(pmu);
6407}
6408
6409struct pmu *perf_init_event(struct perf_event *event)
6410{
6411        struct pmu *pmu = NULL;
6412        int idx;
6413        int ret;
6414
6415        idx = srcu_read_lock(&pmus_srcu);
6416
6417        rcu_read_lock();
6418        pmu = idr_find(&pmu_idr, event->attr.type);
6419        rcu_read_unlock();
6420        if (pmu) {
6421                event->pmu = pmu;
6422                ret = pmu->event_init(event);
6423                if (ret)
6424                        pmu = ERR_PTR(ret);
6425                goto unlock;
6426        }
6427
6428        list_for_each_entry_rcu(pmu, &pmus, entry) {
6429                event->pmu = pmu;
6430                ret = pmu->event_init(event);
6431                if (!ret)
6432                        goto unlock;
6433
6434                if (ret != -ENOENT) {
6435                        pmu = ERR_PTR(ret);
6436                        goto unlock;
6437                }
6438        }
6439        pmu = ERR_PTR(-ENOENT);
6440unlock:
6441        srcu_read_unlock(&pmus_srcu, idx);
6442
6443        return pmu;
6444}
6445
6446/*
6447 * Allocate and initialize a event structure
6448 */
6449static struct perf_event *
6450perf_event_alloc(struct perf_event_attr *attr, int cpu,
6451                 struct task_struct *task,
6452                 struct perf_event *group_leader,
6453                 struct perf_event *parent_event,
6454                 perf_overflow_handler_t overflow_handler,
6455                 void *context)
6456{
6457        struct pmu *pmu;
6458        struct perf_event *event;
6459        struct hw_perf_event *hwc;
6460        long err;
6461
6462        if ((unsigned)cpu >= nr_cpu_ids) {
6463                if (!task || cpu != -1)
6464                        return ERR_PTR(-EINVAL);
6465        }
6466
6467        event = kzalloc(sizeof(*event), GFP_KERNEL);
6468        if (!event)
6469                return ERR_PTR(-ENOMEM);
6470
6471        /*
6472         * Single events are their own group leaders, with an
6473         * empty sibling list:
6474         */
6475        if (!group_leader)
6476                group_leader = event;
6477
6478        mutex_init(&event->child_mutex);
6479        INIT_LIST_HEAD(&event->child_list);
6480
6481        INIT_LIST_HEAD(&event->group_entry);
6482        INIT_LIST_HEAD(&event->event_entry);
6483        INIT_LIST_HEAD(&event->sibling_list);
6484        INIT_LIST_HEAD(&event->rb_entry);
6485
6486        init_waitqueue_head(&event->waitq);
6487        init_irq_work(&event->pending, perf_pending_event);
6488
6489        mutex_init(&event->mmap_mutex);
6490
6491        atomic_long_set(&event->refcount, 1);
6492        event->cpu              = cpu;
6493        event->attr             = *attr;
6494        event->group_leader     = group_leader;
6495        event->pmu              = NULL;
6496        event->oncpu            = -1;
6497
6498        event->parent           = parent_event;
6499
6500        event->ns               = get_pid_ns(task_active_pid_ns(current));
6501        event->id               = atomic64_inc_return(&perf_event_id);
6502
6503        event->state            = PERF_EVENT_STATE_INACTIVE;
6504
6505        if (task) {
6506                event->attach_state = PERF_ATTACH_TASK;
6507
6508                if (attr->type == PERF_TYPE_TRACEPOINT)
6509                        event->hw.tp_target = task;
6510#ifdef CONFIG_HAVE_HW_BREAKPOINT
6511                /*
6512                 * hw_breakpoint is a bit difficult here..
6513                 */
6514                else if (attr->type == PERF_TYPE_BREAKPOINT)
6515                        event->hw.bp_target = task;
6516#endif
6517        }
6518
6519        if (!overflow_handler && parent_event) {
6520                overflow_handler = parent_event->overflow_handler;
6521                context = parent_event->overflow_handler_context;
6522        }
6523
6524        event->overflow_handler = overflow_handler;
6525        event->overflow_handler_context = context;
6526
6527        perf_event__state_init(event);
6528
6529        pmu = NULL;
6530
6531        hwc = &event->hw;
6532        hwc->sample_period = attr->sample_period;
6533        if (attr->freq && attr->sample_freq)
6534                hwc->sample_period = 1;
6535        hwc->last_period = hwc->sample_period;
6536
6537        local64_set(&hwc->period_left, hwc->sample_period);
6538
6539        /*
6540         * we currently do not support PERF_FORMAT_GROUP on inherited events
6541         */
6542        if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6543                goto done;
6544
6545        pmu = perf_init_event(event);
6546
6547done:
6548        err = 0;
6549        if (!pmu)
6550                err = -EINVAL;
6551        else if (IS_ERR(pmu))
6552                err = PTR_ERR(pmu);
6553
6554        if (err) {
6555                if (event->ns)
6556                        put_pid_ns(event->ns);
6557                kfree(event);
6558                return ERR_PTR(err);
6559        }
6560
6561        if (!event->parent) {
6562                if (event->attach_state & PERF_ATTACH_TASK)
6563                        static_key_slow_inc(&perf_sched_events.key);
6564                if (event->attr.mmap || event->attr.mmap_data)
6565                        atomic_inc(&nr_mmap_events);
6566                if (event->attr.comm)
6567                        atomic_inc(&nr_comm_events);
6568                if (event->attr.task)
6569                        atomic_inc(&nr_task_events);
6570                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6571                        err = get_callchain_buffers();
6572                        if (err) {
6573                                free_event(event);
6574                                return ERR_PTR(err);
6575                        }
6576                }
6577                if (has_branch_stack(event)) {
6578                        static_key_slow_inc(&perf_sched_events.key);
6579                        if (!(event->attach_state & PERF_ATTACH_TASK))
6580                                atomic_inc(&per_cpu(perf_branch_stack_events,
6581                                                    event->cpu));
6582                }
6583        }
6584
6585        return event;
6586}
6587
6588static int perf_copy_attr(struct perf_event_attr __user *uattr,
6589                          struct perf_event_attr *attr)
6590{
6591        u32 size;
6592        int ret;
6593
6594        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6595                return -EFAULT;
6596
6597        /*
6598         * zero the full structure, so that a short copy will be nice.
6599         */
6600        memset(attr, 0, sizeof(*attr));
6601
6602        ret = get_user(size, &uattr->size);
6603        if (ret)
6604                return ret;
6605
6606        if (size > PAGE_SIZE)   /* silly large */
6607                goto err_size;
6608
6609        if (!size)              /* abi compat */
6610                size = PERF_ATTR_SIZE_VER0;
6611
6612        if (size < PERF_ATTR_SIZE_VER0)
6613                goto err_size;
6614
6615        /*
6616         * If we're handed a bigger struct than we know of,
6617         * ensure all the unknown bits are 0 - i.e. new
6618         * user-space does not rely on any kernel feature
6619         * extensions we dont know about yet.
6620         */
6621        if (size > sizeof(*attr)) {
6622                unsigned char __user *addr;
6623                unsigned char __user *end;
6624                unsigned char val;
6625
6626                addr = (void __user *)uattr + sizeof(*attr);
6627                end  = (void __user *)uattr + size;
6628
6629                for (; addr < end; addr++) {
6630                        ret = get_user(val, addr);
6631                        if (ret)
6632                                return ret;
6633                        if (val)
6634                                goto err_size;
6635                }
6636                size = sizeof(*attr);
6637        }
6638
6639        ret = copy_from_user(attr, uattr, size);
6640        if (ret)
6641                return -EFAULT;
6642
6643        if (attr->__reserved_1)
6644                return -EINVAL;
6645
6646        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6647                return -EINVAL;
6648
6649        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6650                return -EINVAL;
6651
6652        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6653                u64 mask = attr->branch_sample_type;
6654
6655                /* only using defined bits */
6656                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6657                        return -EINVAL;
6658
6659                /* at least one branch bit must be set */
6660                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6661                        return -EINVAL;
6662
6663                /* propagate priv level, when not set for branch */
6664                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6665
6666                        /* exclude_kernel checked on syscall entry */
6667                        if (!attr->exclude_kernel)
6668                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
6669
6670                        if (!attr->exclude_user)
6671                                mask |= PERF_SAMPLE_BRANCH_USER;
6672
6673                        if (!attr->exclude_hv)
6674                                mask |= PERF_SAMPLE_BRANCH_HV;
6675                        /*
6676                         * adjust user setting (for HW filter setup)
6677                         */
6678                        attr->branch_sample_type = mask;
6679                }
6680                /* privileged levels capture (kernel, hv): check permissions */
6681                if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6682                    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6683                        return -EACCES;
6684        }
6685
6686        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6687                ret = perf_reg_validate(attr->sample_regs_user);
6688                if (ret)
6689                        return ret;
6690        }
6691
6692        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6693                if (!arch_perf_have_user_stack_dump())
6694                        return -ENOSYS;
6695
6696                /*
6697                 * We have __u32 type for the size, but so far
6698                 * we can only use __u16 as maximum due to the
6699                 * __u16 sample size limit.
6700                 */
6701                if (attr->sample_stack_user >= USHRT_MAX)
6702                        ret = -EINVAL;
6703                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6704                        ret = -EINVAL;
6705        }
6706
6707out:
6708        return ret;
6709
6710err_size:
6711        put_user(sizeof(*attr), &uattr->size);
6712        ret = -E2BIG;
6713        goto out;
6714}
6715
6716static int
6717perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6718{
6719        struct ring_buffer *rb = NULL, *old_rb = NULL;
6720        int ret = -EINVAL;
6721
6722        if (!output_event)
6723                goto set;
6724
6725        /* don't allow circular references */
6726        if (event == output_event)
6727                goto out;
6728
6729        /*
6730         * Don't allow cross-cpu buffers
6731         */
6732        if (output_event->cpu != event->cpu)
6733                goto out;
6734
6735        /*
6736         * If its not a per-cpu rb, it must be the same task.
6737         */
6738        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6739                goto out;
6740
6741set:
6742        mutex_lock(&event->mmap_mutex);
6743        /* Can't redirect output if we've got an active mmap() */
6744        if (atomic_read(&event->mmap_count))
6745                goto unlock;
6746
6747        old_rb = event->rb;
6748
6749        if (output_event) {
6750                /* get the rb we want to redirect to */
6751                rb = ring_buffer_get(output_event);
6752                if (!rb)
6753                        goto unlock;
6754        }
6755
6756        if (old_rb)
6757                ring_buffer_detach(event, old_rb);
6758
6759        if (rb)
6760                ring_buffer_attach(event, rb);
6761
6762        rcu_assign_pointer(event->rb, rb);
6763
6764        if (old_rb) {
6765                ring_buffer_put(old_rb);
6766                /*
6767                 * Since we detached before setting the new rb, so that we
6768                 * could attach the new rb, we could have missed a wakeup.
6769                 * Provide it now.
6770                 */
6771                wake_up_all(&event->waitq);
6772        }
6773
6774        ret = 0;
6775unlock:
6776        mutex_unlock(&event->mmap_mutex);
6777
6778out:
6779        return ret;
6780}
6781
6782/**
6783 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6784 *
6785 * @attr_uptr:  event_id type attributes for monitoring/sampling
6786 * @pid:                target pid
6787 * @cpu:                target cpu
6788 * @group_fd:           group leader event fd
6789 */
6790SYSCALL_DEFINE5(perf_event_open,
6791                struct perf_event_attr __user *, attr_uptr,
6792                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6793{
6794        struct perf_event *group_leader = NULL, *output_event = NULL;
6795        struct perf_event *event, *sibling;
6796        struct perf_event_attr attr;
6797        struct perf_event_context *ctx;
6798        struct file *event_file = NULL;
6799        struct fd group = {NULL, 0};
6800        struct task_struct *task = NULL;
6801        struct pmu *pmu;
6802        int event_fd;
6803        int move_group = 0;
6804        int err;
6805
6806        /* for future expandability... */
6807        if (flags & ~PERF_FLAG_ALL)
6808                return -EINVAL;
6809
6810        err = perf_copy_attr(attr_uptr, &attr);
6811        if (err)
6812                return err;
6813
6814        if (!attr.exclude_kernel) {
6815                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6816                        return -EACCES;
6817        }
6818
6819        if (attr.freq) {
6820                if (attr.sample_freq > sysctl_perf_event_sample_rate)
6821                        return -EINVAL;
6822        }
6823
6824        /*
6825         * In cgroup mode, the pid argument is used to pass the fd
6826         * opened to the cgroup directory in cgroupfs. The cpu argument
6827         * designates the cpu on which to monitor threads from that
6828         * cgroup.
6829         */
6830        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6831                return -EINVAL;
6832
6833        event_fd = get_unused_fd();
6834        if (event_fd < 0)
6835                return event_fd;
6836
6837        if (group_fd != -1) {
6838                err = perf_fget_light(group_fd, &group);
6839                if (err)
6840                        goto err_fd;
6841                group_leader = group.file->private_data;
6842                if (flags & PERF_FLAG_FD_OUTPUT)
6843                        output_event = group_leader;
6844                if (flags & PERF_FLAG_FD_NO_GROUP)
6845                        group_leader = NULL;
6846        }
6847
6848        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6849                task = find_lively_task_by_vpid(pid);
6850                if (IS_ERR(task)) {
6851                        err = PTR_ERR(task);
6852                        goto err_group_fd;
6853                }
6854        }
6855
6856        get_online_cpus();
6857
6858        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6859                                 NULL, NULL);
6860        if (IS_ERR(event)) {
6861                err = PTR_ERR(event);
6862                goto err_task;
6863        }
6864
6865        if (flags & PERF_FLAG_PID_CGROUP) {
6866                err = perf_cgroup_connect(pid, event, &attr, group_leader);
6867                if (err)
6868                        goto err_alloc;
6869                /*
6870                 * one more event:
6871                 * - that has cgroup constraint on event->cpu
6872                 * - that may need work on context switch
6873                 */
6874                atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6875                static_key_slow_inc(&perf_sched_events.key);
6876        }
6877
6878        /*
6879         * Special case software events and allow them to be part of
6880         * any hardware group.
6881         */
6882        pmu = event->pmu;
6883
6884        if (group_leader &&
6885            (is_software_event(event) != is_software_event(group_leader))) {
6886                if (is_software_event(event)) {
6887                        /*
6888                         * If event and group_leader are not both a software
6889                         * event, and event is, then group leader is not.
6890                         *
6891                         * Allow the addition of software events to !software
6892                         * groups, this is safe because software events never
6893                         * fail to schedule.
6894                         */
6895                        pmu = group_leader->pmu;
6896                } else if (is_software_event(group_leader) &&
6897                           (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6898                        /*
6899                         * In case the group is a pure software group, and we
6900                         * try to add a hardware event, move the whole group to
6901                         * the hardware context.
6902                         */
6903                        move_group = 1;
6904                }
6905        }
6906
6907        /*
6908         * Get the target context (task or percpu):
6909         */
6910        ctx = find_get_context(pmu, task, event->cpu);
6911        if (IS_ERR(ctx)) {
6912                err = PTR_ERR(ctx);
6913                goto err_alloc;
6914        }
6915
6916        if (task) {
6917                put_task_struct(task);
6918                task = NULL;
6919        }
6920
6921        /*
6922         * Look up the group leader (we will attach this event to it):
6923         */
6924        if (group_leader) {
6925                err = -EINVAL;
6926
6927                /*
6928                 * Do not allow a recursive hierarchy (this new sibling
6929                 * becoming part of another group-sibling):
6930                 */
6931                if (group_leader->group_leader != group_leader)
6932                        goto err_context;
6933                /*
6934                 * Do not allow to attach to a group in a different
6935                 * task or CPU context:
6936                 */
6937                if (move_group) {
6938                        if (group_leader->ctx->type != ctx->type)
6939                                goto err_context;
6940                } else {
6941                        if (group_leader->ctx != ctx)
6942                                goto err_context;
6943                }
6944
6945                /*
6946                 * Only a group leader can be exclusive or pinned
6947                 */
6948                if (attr.exclusive || attr.pinned)
6949                        goto err_context;
6950        }
6951
6952        if (output_event) {
6953                err = perf_event_set_output(event, output_event);
6954                if (err)
6955                        goto err_context;
6956        }
6957
6958        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6959        if (IS_ERR(event_file)) {
6960                err = PTR_ERR(event_file);
6961                goto err_context;
6962        }
6963
6964        if (move_group) {
6965                struct perf_event_context *gctx = group_leader->ctx;
6966
6967                mutex_lock(&gctx->mutex);
6968                perf_remove_from_context(group_leader);
6969
6970                /*
6971                 * Removing from the context ends up with disabled
6972                 * event. What we want here is event in the initial
6973                 * startup state, ready to be add into new context.
6974                 */
6975                perf_event__state_init(group_leader);
6976                list_for_each_entry(sibling, &group_leader->sibling_list,
6977                                    group_entry) {
6978                        perf_remove_from_context(sibling);
6979                        perf_event__state_init(sibling);
6980                        put_ctx(gctx);
6981                }
6982                mutex_unlock(&gctx->mutex);
6983                put_ctx(gctx);
6984        }
6985
6986        WARN_ON_ONCE(ctx->parent_ctx);
6987        mutex_lock(&ctx->mutex);
6988
6989        if (move_group) {
6990                synchronize_rcu();
6991                perf_install_in_context(ctx, group_leader, event->cpu);
6992                get_ctx(ctx);
6993                list_for_each_entry(sibling, &group_leader->sibling_list,
6994                                    group_entry) {
6995                        perf_install_in_context(ctx, sibling, event->cpu);
6996                        get_ctx(ctx);
6997                }
6998        }
6999
7000        perf_install_in_context(ctx, event, event->cpu);
7001        ++ctx->generation;
7002        perf_unpin_context(ctx);
7003        mutex_unlock(&ctx->mutex);
7004
7005        put_online_cpus();
7006
7007        event->owner = current;
7008
7009        mutex_lock(&current->perf_event_mutex);
7010        list_add_tail(&event->owner_entry, &current->perf_event_list);
7011        mutex_unlock(&current->perf_event_mutex);
7012
7013        /*
7014         * Precalculate sample_data sizes
7015         */
7016        perf_event__header_size(event);
7017        perf_event__id_header_size(event);
7018
7019        /*
7020         * Drop the reference on the group_event after placing the
7021         * new event on the sibling_list. This ensures destruction
7022         * of the group leader will find the pointer to itself in
7023         * perf_group_detach().
7024         */
7025        fdput(group);
7026        fd_install(event_fd, event_file);
7027        return event_fd;
7028
7029err_context:
7030        perf_unpin_context(ctx);
7031        put_ctx(ctx);
7032err_alloc:
7033        free_event(event);
7034err_task:
7035        put_online_cpus();
7036        if (task)
7037                put_task_struct(task);
7038err_group_fd:
7039        fdput(group);
7040err_fd:
7041        put_unused_fd(event_fd);
7042        return err;
7043}
7044
7045/**
7046 * perf_event_create_kernel_counter
7047 *
7048 * @attr: attributes of the counter to create
7049 * @cpu: cpu in which the counter is bound
7050 * @task: task to profile (NULL for percpu)
7051 */
7052struct perf_event *
7053perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7054                                 struct task_struct *task,
7055                                 perf_overflow_handler_t overflow_handler,
7056                                 void *context)
7057{
7058        struct perf_event_context *ctx;
7059        struct perf_event *event;
7060        int err;
7061
7062        /*
7063         * Get the target context (task or percpu):
7064         */
7065
7066        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7067                                 overflow_handler, context);
7068        if (IS_ERR(event)) {
7069                err = PTR_ERR(event);
7070                goto err;
7071        }
7072
7073        ctx = find_get_context(event->pmu, task, cpu);
7074        if (IS_ERR(ctx)) {
7075                err = PTR_ERR(ctx);
7076                goto err_free;
7077        }
7078
7079        WARN_ON_ONCE(ctx->parent_ctx);
7080        mutex_lock(&ctx->mutex);
7081        perf_install_in_context(ctx, event, cpu);
7082        ++ctx->generation;
7083        perf_unpin_context(ctx);
7084        mutex_unlock(&ctx->mutex);
7085
7086        return event;
7087
7088err_free:
7089        free_event(event);
7090err:
7091        return ERR_PTR(err);
7092}
7093EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7094
7095void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7096{
7097        struct perf_event_context *src_ctx;
7098        struct perf_event_context *dst_ctx;
7099        struct perf_event *event, *tmp;
7100        LIST_HEAD(events);
7101
7102        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7103        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7104
7105        mutex_lock(&src_ctx->mutex);
7106        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7107                                 event_entry) {
7108                perf_remove_from_context(event);
7109                put_ctx(src_ctx);
7110                list_add(&event->event_entry, &events);
7111        }
7112        mutex_unlock(&src_ctx->mutex);
7113
7114        synchronize_rcu();
7115
7116        mutex_lock(&dst_ctx->mutex);
7117        list_for_each_entry_safe(event, tmp, &events, event_entry) {
7118                list_del(&event->event_entry);
7119                if (event->state >= PERF_EVENT_STATE_OFF)
7120                        event->state = PERF_EVENT_STATE_INACTIVE;
7121                perf_install_in_context(dst_ctx, event, dst_cpu);
7122                get_ctx(dst_ctx);
7123        }
7124        mutex_unlock(&dst_ctx->mutex);
7125}
7126EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7127
7128static void sync_child_event(struct perf_event *child_event,
7129                               struct task_struct *child)
7130{
7131        struct perf_event *parent_event = child_event->parent;
7132        u64 child_val;
7133
7134        if (child_event->attr.inherit_stat)
7135                perf_event_read_event(child_event, child);
7136
7137        child_val = perf_event_count(child_event);
7138
7139        /*
7140         * Add back the child's count to the parent's count:
7141         */
7142        atomic64_add(child_val, &parent_event->child_count);
7143        atomic64_add(child_event->total_time_enabled,
7144                     &parent_event->child_total_time_enabled);
7145        atomic64_add(child_event->total_time_running,
7146                     &parent_event->child_total_time_running);
7147
7148        /*
7149         * Remove this event from the parent's list
7150         */
7151        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7152        mutex_lock(&parent_event->child_mutex);
7153        list_del_init(&child_event->child_list);
7154        mutex_unlock(&parent_event->child_mutex);
7155
7156        /*
7157         * Release the parent event, if this was the last
7158         * reference to it.
7159         */
7160        put_event(parent_event);
7161}
7162
7163static void
7164__perf_event_exit_task(struct perf_event *child_event,
7165                         struct perf_event_context *child_ctx,
7166                         struct task_struct *child)
7167{
7168        if (child_event->parent) {
7169                raw_spin_lock_irq(&child_ctx->lock);
7170                perf_group_detach(child_event);
7171                raw_spin_unlock_irq(&child_ctx->lock);
7172        }
7173
7174        perf_remove_from_context(child_event);
7175
7176        /*
7177         * It can happen that the parent exits first, and has events
7178         * that are still around due to the child reference. These
7179         * events need to be zapped.
7180         */
7181        if (child_event->parent) {
7182                sync_child_event(child_event, child);
7183                free_event(child_event);
7184        }
7185}
7186
7187static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7188{
7189        struct perf_event *child_event, *tmp;
7190        struct perf_event_context *child_ctx;
7191        unsigned long flags;
7192
7193        if (likely(!child->perf_event_ctxp[ctxn])) {
7194                perf_event_task(child, NULL, 0);
7195                return;
7196        }
7197
7198        local_irq_save(flags);
7199        /*
7200         * We can't reschedule here because interrupts are disabled,
7201         * and either child is current or it is a task that can't be
7202         * scheduled, so we are now safe from rescheduling changing
7203         * our context.
7204         */
7205        child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7206
7207        /*
7208         * Take the context lock here so that if find_get_context is
7209         * reading child->perf_event_ctxp, we wait until it has
7210         * incremented the context's refcount before we do put_ctx below.
7211         */
7212        raw_spin_lock(&child_ctx->lock);
7213        task_ctx_sched_out(child_ctx);
7214        child->perf_event_ctxp[ctxn] = NULL;
7215        /*
7216         * If this context is a clone; unclone it so it can't get
7217         * swapped to another process while we're removing all
7218         * the events from it.
7219         */
7220        unclone_ctx(child_ctx);
7221        update_context_time(child_ctx);
7222        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7223
7224        /*
7225         * Report the task dead after unscheduling the events so that we
7226         * won't get any samples after PERF_RECORD_EXIT. We can however still
7227         * get a few PERF_RECORD_READ events.
7228         */
7229        perf_event_task(child, child_ctx, 0);
7230
7231        /*
7232         * We can recurse on the same lock type through:
7233         *
7234         *   __perf_event_exit_task()
7235         *     sync_child_event()
7236         *       put_event()
7237         *         mutex_lock(&ctx->mutex)
7238         *
7239         * But since its the parent context it won't be the same instance.
7240         */
7241        mutex_lock(&child_ctx->mutex);
7242
7243again:
7244        list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7245                                 group_entry)
7246                __perf_event_exit_task(child_event, child_ctx, child);
7247
7248        list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7249                                 group_entry)
7250                __perf_event_exit_task(child_event, child_ctx, child);
7251
7252        /*
7253         * If the last event was a group event, it will have appended all
7254         * its siblings to the list, but we obtained 'tmp' before that which
7255         * will still point to the list head terminating the iteration.
7256         */
7257        if (!list_empty(&child_ctx->pinned_groups) ||
7258            !list_empty(&child_ctx->flexible_groups))
7259                goto again;
7260
7261        mutex_unlock(&child_ctx->mutex);
7262
7263        put_ctx(child_ctx);
7264}
7265
7266/*
7267 * When a child task exits, feed back event values to parent events.
7268 */
7269void perf_event_exit_task(struct task_struct *child)
7270{
7271        struct perf_event *event, *tmp;
7272        int ctxn;
7273
7274        mutex_lock(&child->perf_event_mutex);
7275        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7276                                 owner_entry) {
7277                list_del_init(&event->owner_entry);
7278
7279                /*
7280                 * Ensure the list deletion is visible before we clear
7281                 * the owner, closes a race against perf_release() where
7282                 * we need to serialize on the owner->perf_event_mutex.
7283                 */
7284                smp_wmb();
7285                event->owner = NULL;
7286        }
7287        mutex_unlock(&child->perf_event_mutex);
7288
7289        for_each_task_context_nr(ctxn)
7290                perf_event_exit_task_context(child, ctxn);
7291}
7292
7293static void perf_free_event(struct perf_event *event,
7294                            struct perf_event_context *ctx)
7295{
7296        struct perf_event *parent = event->parent;
7297
7298        if (WARN_ON_ONCE(!parent))
7299                return;
7300
7301        mutex_lock(&parent->child_mutex);
7302        list_del_init(&event->child_list);
7303        mutex_unlock(&parent->child_mutex);
7304
7305        put_event(parent);
7306
7307        perf_group_detach(event);
7308        list_del_event(event, ctx);
7309        free_event(event);
7310}
7311
7312/*
7313 * free an unexposed, unused context as created by inheritance by
7314 * perf_event_init_task below, used by fork() in case of fail.
7315 */
7316void perf_event_free_task(struct task_struct *task)
7317{
7318        struct perf_event_context *ctx;
7319        struct perf_event *event, *tmp;
7320        int ctxn;
7321
7322        for_each_task_context_nr(ctxn) {
7323                ctx = task->perf_event_ctxp[ctxn];
7324                if (!ctx)
7325                        continue;
7326
7327                mutex_lock(&ctx->mutex);
7328again:
7329                list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7330                                group_entry)
7331                        perf_free_event(event, ctx);
7332
7333                list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7334                                group_entry)
7335                        perf_free_event(event, ctx);
7336
7337                if (!list_empty(&ctx->pinned_groups) ||
7338                                !list_empty(&ctx->flexible_groups))
7339                        goto again;
7340
7341                mutex_unlock(&ctx->mutex);
7342
7343                put_ctx(ctx);
7344        }
7345}
7346
7347void perf_event_delayed_put(struct task_struct *task)
7348{
7349        int ctxn;
7350
7351        for_each_task_context_nr(ctxn)
7352                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7353}
7354
7355/*
7356 * inherit a event from parent task to child task:
7357 */
7358static struct perf_event *
7359inherit_event(struct perf_event *parent_event,
7360              struct task_struct *parent,
7361              struct perf_event_context *parent_ctx,
7362              struct task_struct *child,
7363              struct perf_event *group_leader,
7364              struct perf_event_context *child_ctx)
7365{
7366        struct perf_event *child_event;
7367        unsigned long flags;
7368
7369        /*
7370         * Instead of creating recursive hierarchies of events,
7371         * we link inherited events back to the original parent,
7372         * which has a filp for sure, which we use as the reference
7373         * count:
7374         */
7375        if (parent_event->parent)
7376                parent_event = parent_event->parent;
7377
7378        child_event = perf_event_alloc(&parent_event->attr,
7379                                           parent_event->cpu,
7380                                           child,
7381                                           group_leader, parent_event,
7382                                           NULL, NULL);
7383        if (IS_ERR(child_event))
7384                return child_event;
7385
7386        if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7387                free_event(child_event);
7388                return NULL;
7389        }
7390
7391        get_ctx(child_ctx);
7392
7393        /*
7394         * Make the child state follow the state of the parent event,
7395         * not its attr.disabled bit.  We hold the parent's mutex,
7396         * so we won't race with perf_event_{en, dis}able_family.
7397         */
7398        if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7399                child_event->state = PERF_EVENT_STATE_INACTIVE;
7400        else
7401                child_event->state = PERF_EVENT_STATE_OFF;
7402
7403        if (parent_event->attr.freq) {
7404                u64 sample_period = parent_event->hw.sample_period;
7405                struct hw_perf_event *hwc = &child_event->hw;
7406
7407                hwc->sample_period = sample_period;
7408                hwc->last_period   = sample_period;
7409
7410                local64_set(&hwc->period_left, sample_period);
7411        }
7412
7413        child_event->ctx = child_ctx;
7414        child_event->overflow_handler = parent_event->overflow_handler;
7415        child_event->overflow_handler_context
7416                = parent_event->overflow_handler_context;
7417
7418        /*
7419         * Precalculate sample_data sizes
7420         */
7421        perf_event__header_size(child_event);
7422        perf_event__id_header_size(child_event);
7423
7424        /*
7425         * Link it up in the child's context:
7426         */
7427        raw_spin_lock_irqsave(&child_ctx->lock, flags);
7428        add_event_to_ctx(child_event, child_ctx);
7429        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7430
7431        /*
7432         * Link this into the parent event's child list
7433         */
7434        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7435        mutex_lock(&parent_event->child_mutex);
7436        list_add_tail(&child_event->child_list, &parent_event->child_list);
7437        mutex_unlock(&parent_event->child_mutex);
7438
7439        return child_event;
7440}
7441
7442static int inherit_group(struct perf_event *parent_event,
7443              struct task_struct *parent,
7444              struct perf_event_context *parent_ctx,
7445              struct task_struct *child,
7446              struct perf_event_context *child_ctx)
7447{
7448        struct perf_event *leader;
7449        struct perf_event *sub;
7450        struct perf_event *child_ctr;
7451
7452        leader = inherit_event(parent_event, parent, parent_ctx,
7453                                 child, NULL, child_ctx);
7454        if (IS_ERR(leader))
7455                return PTR_ERR(leader);
7456        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7457                child_ctr = inherit_event(sub, parent, parent_ctx,
7458                                            child, leader, child_ctx);
7459                if (IS_ERR(child_ctr))
7460                        return PTR_ERR(child_ctr);
7461        }
7462        return 0;
7463}
7464
7465static int
7466inherit_task_group(struct perf_event *event, struct task_struct *parent,
7467                   struct perf_event_context *parent_ctx,
7468                   struct task_struct *child, int ctxn,
7469                   int *inherited_all)
7470{
7471        int ret;
7472        struct perf_event_context *child_ctx;
7473
7474        if (!event->attr.inherit) {
7475                *inherited_all = 0;
7476                return 0;
7477        }
7478
7479        child_ctx = child->perf_event_ctxp[ctxn];
7480        if (!child_ctx) {
7481                /*
7482                 * This is executed from the parent task context, so
7483                 * inherit events that have been marked for cloning.
7484                 * First allocate and initialize a context for the
7485                 * child.
7486                 */
7487
7488                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7489                if (!child_ctx)
7490                        return -ENOMEM;
7491
7492                child->perf_event_ctxp[ctxn] = child_ctx;
7493        }
7494
7495        ret = inherit_group(event, parent, parent_ctx,
7496                            child, child_ctx);
7497
7498        if (ret)
7499                *inherited_all = 0;
7500
7501        return ret;
7502}
7503
7504/*
7505 * Initialize the perf_event context in task_struct
7506 */
7507int perf_event_init_context(struct task_struct *child, int ctxn)
7508{
7509        struct perf_event_context *child_ctx, *parent_ctx;
7510        struct perf_event_context *cloned_ctx;
7511        struct perf_event *event;
7512        struct task_struct *parent = current;
7513        int inherited_all = 1;
7514        unsigned long flags;
7515        int ret = 0;
7516
7517        if (likely(!parent->perf_event_ctxp[ctxn]))
7518                return 0;
7519
7520        /*
7521         * If the parent's context is a clone, pin it so it won't get
7522         * swapped under us.
7523         */
7524        parent_ctx = perf_pin_task_context(parent, ctxn);
7525
7526        /*
7527         * No need to check if parent_ctx != NULL here; since we saw
7528         * it non-NULL earlier, the only reason for it to become NULL
7529         * is if we exit, and since we're currently in the middle of
7530         * a fork we can't be exiting at the same time.
7531         */
7532
7533        /*
7534         * Lock the parent list. No need to lock the child - not PID
7535         * hashed yet and not running, so nobody can access it.
7536         */
7537        mutex_lock(&parent_ctx->mutex);
7538
7539        /*
7540         * We dont have to disable NMIs - we are only looking at
7541         * the list, not manipulating it:
7542         */
7543        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7544                ret = inherit_task_group(event, parent, parent_ctx,
7545                                         child, ctxn, &inherited_all);
7546                if (ret)
7547                        break;
7548        }
7549
7550        /*
7551         * We can't hold ctx->lock when iterating the ->flexible_group list due
7552         * to allocations, but we need to prevent rotation because
7553         * rotate_ctx() will change the list from interrupt context.
7554         */
7555        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7556        parent_ctx->rotate_disable = 1;
7557        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7558
7559        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7560                ret = inherit_task_group(event, parent, parent_ctx,
7561                                         child, ctxn, &inherited_all);
7562                if (ret)
7563                        break;
7564        }
7565
7566        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7567        parent_ctx->rotate_disable = 0;
7568
7569        child_ctx = child->perf_event_ctxp[ctxn];
7570
7571        if (child_ctx && inherited_all) {
7572                /*
7573                 * Mark the child context as a clone of the parent
7574                 * context, or of whatever the parent is a clone of.
7575                 *
7576                 * Note that if the parent is a clone, the holding of
7577                 * parent_ctx->lock avoids it from being uncloned.
7578                 */
7579                cloned_ctx = parent_ctx->parent_ctx;
7580                if (cloned_ctx) {
7581                        child_ctx->parent_ctx = cloned_ctx;
7582                        child_ctx->parent_gen = parent_ctx->parent_gen;
7583                } else {
7584                        child_ctx->parent_ctx = parent_ctx;
7585                        child_ctx->parent_gen = parent_ctx->generation;
7586                }
7587                get_ctx(child_ctx->parent_ctx);
7588        }
7589
7590        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7591        mutex_unlock(&parent_ctx->mutex);
7592
7593        perf_unpin_context(parent_ctx);
7594        put_ctx(parent_ctx);
7595
7596        return ret;
7597}
7598
7599/*
7600 * Initialize the perf_event context in task_struct
7601 */
7602int perf_event_init_task(struct task_struct *child)
7603{
7604        int ctxn, ret;
7605
7606        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7607        mutex_init(&child->perf_event_mutex);
7608        INIT_LIST_HEAD(&child->perf_event_list);
7609
7610        for_each_task_context_nr(ctxn) {
7611                ret = perf_event_init_context(child, ctxn);
7612                if (ret)
7613                        return ret;
7614        }
7615
7616        return 0;
7617}
7618
7619static void __init perf_event_init_all_cpus(void)
7620{
7621        struct swevent_htable *swhash;
7622        int cpu;
7623
7624        for_each_possible_cpu(cpu) {
7625                swhash = &per_cpu(swevent_htable, cpu);
7626                mutex_init(&swhash->hlist_mutex);
7627                INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7628        }
7629}
7630
7631static void perf_event_init_cpu(int cpu)
7632{
7633        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7634
7635        mutex_lock(&swhash->hlist_mutex);
7636        if (swhash->hlist_refcount > 0) {
7637                struct swevent_hlist *hlist;
7638
7639                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7640                WARN_ON(!hlist);
7641                rcu_assign_pointer(swhash->swevent_hlist, hlist);
7642        }
7643        mutex_unlock(&swhash->hlist_mutex);
7644}
7645
7646#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7647static void perf_pmu_rotate_stop(struct pmu *pmu)
7648{
7649        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7650
7651        WARN_ON(!irqs_disabled());
7652
7653        list_del_init(&cpuctx->rotation_list);
7654}
7655
7656static void __perf_event_exit_context(void *__info)
7657{
7658        struct perf_event_context *ctx = __info;
7659        struct perf_event *event, *tmp;
7660
7661        perf_pmu_rotate_stop(ctx->pmu);
7662
7663        list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7664                __perf_remove_from_context(event);
7665        list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7666                __perf_remove_from_context(event);
7667}
7668
7669static void perf_event_exit_cpu_context(int cpu)
7670{
7671        struct perf_event_context *ctx;
7672        struct pmu *pmu;
7673        int idx;
7674
7675        idx = srcu_read_lock(&pmus_srcu);
7676        list_for_each_entry_rcu(pmu, &pmus, entry) {
7677                ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7678
7679                mutex_lock(&ctx->mutex);
7680                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7681                mutex_unlock(&ctx->mutex);
7682        }
7683        srcu_read_unlock(&pmus_srcu, idx);
7684}
7685
7686static void perf_event_exit_cpu(int cpu)
7687{
7688        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7689
7690        mutex_lock(&swhash->hlist_mutex);
7691        swevent_hlist_release(swhash);
7692        mutex_unlock(&swhash->hlist_mutex);
7693
7694        perf_event_exit_cpu_context(cpu);
7695}
7696#else
7697static inline void perf_event_exit_cpu(int cpu) { }
7698#endif
7699
7700static int
7701perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7702{
7703        int cpu;
7704
7705        for_each_online_cpu(cpu)
7706                perf_event_exit_cpu(cpu);
7707
7708        return NOTIFY_OK;
7709}
7710
7711/*
7712 * Run the perf reboot notifier at the very last possible moment so that
7713 * the generic watchdog code runs as long as possible.
7714 */
7715static struct notifier_block perf_reboot_notifier = {
7716        .notifier_call = perf_reboot,
7717        .priority = INT_MIN,
7718};
7719
7720static int
7721perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7722{
7723        unsigned int cpu = (long)hcpu;
7724
7725        switch (action & ~CPU_TASKS_FROZEN) {
7726
7727        case CPU_UP_PREPARE:
7728        case CPU_DOWN_FAILED:
7729                perf_event_init_cpu(cpu);
7730                break;
7731
7732        case CPU_UP_CANCELED:
7733        case CPU_DOWN_PREPARE:
7734                perf_event_exit_cpu(cpu);
7735                break;
7736        default:
7737                break;
7738        }
7739
7740        return NOTIFY_OK;
7741}
7742
7743void __init perf_event_init(void)
7744{
7745        int ret;
7746
7747        idr_init(&pmu_idr);
7748
7749        perf_event_init_all_cpus();
7750        init_srcu_struct(&pmus_srcu);
7751        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7752        perf_pmu_register(&perf_cpu_clock, NULL, -1);
7753        perf_pmu_register(&perf_task_clock, NULL, -1);
7754        perf_tp_register();
7755        perf_cpu_notifier(perf_cpu_notify);
7756        register_reboot_notifier(&perf_reboot_notifier);
7757
7758        ret = init_hw_breakpoint();
7759        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7760
7761        /* do not patch jump label more than once per second */
7762        jump_label_rate_limit(&perf_sched_events, HZ);
7763
7764        /*
7765         * Build time assertion that we keep the data_head at the intended
7766         * location.  IOW, validation we got the __reserved[] size right.
7767         */
7768        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7769                     != 1024);
7770}
7771
7772static int __init perf_event_sysfs_init(void)
7773{
7774        struct pmu *pmu;
7775        int ret;
7776
7777        mutex_lock(&pmus_lock);
7778
7779        ret = bus_register(&pmu_bus);
7780        if (ret)
7781                goto unlock;
7782
7783        list_for_each_entry(pmu, &pmus, entry) {
7784                if (!pmu->name || pmu->type < 0)
7785                        continue;
7786
7787                ret = pmu_dev_alloc(pmu);
7788                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7789        }
7790        pmu_bus_running = 1;
7791        ret = 0;
7792
7793unlock:
7794        mutex_unlock(&pmus_lock);
7795
7796        return ret;
7797}
7798device_initcall(perf_event_sysfs_init);
7799
7800#ifdef CONFIG_CGROUP_PERF
7801static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7802{
7803        struct perf_cgroup *jc;
7804
7805        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7806        if (!jc)
7807                return ERR_PTR(-ENOMEM);
7808
7809        jc->info = alloc_percpu(struct perf_cgroup_info);
7810        if (!jc->info) {
7811                kfree(jc);
7812                return ERR_PTR(-ENOMEM);
7813        }
7814
7815        return &jc->css;
7816}
7817
7818static void perf_cgroup_css_free(struct cgroup *cont)
7819{
7820        struct perf_cgroup *jc;
7821        jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7822                          struct perf_cgroup, css);
7823        free_percpu(jc->info);
7824        kfree(jc);
7825}
7826
7827static int __perf_cgroup_move(void *info)
7828{
7829        struct task_struct *task = info;
7830        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7831        return 0;
7832}
7833
7834static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7835{
7836        struct task_struct *task;
7837
7838        cgroup_taskset_for_each(task, cgrp, tset)
7839                task_function_call(task, __perf_cgroup_move, task);
7840}
7841
7842static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7843                             struct task_struct *task)
7844{
7845        /*
7846         * cgroup_exit() is called in the copy_process() failure path.
7847         * Ignore this case since the task hasn't ran yet, this avoids
7848         * trying to poke a half freed task state from generic code.
7849         */
7850        if (!(task->flags & PF_EXITING))
7851                return;
7852
7853        task_function_call(task, __perf_cgroup_move, task);
7854}
7855
7856struct cgroup_subsys perf_subsys = {
7857        .name           = "perf_event",
7858        .subsys_id      = perf_subsys_id,
7859        .css_alloc      = perf_cgroup_css_alloc,
7860        .css_free       = perf_cgroup_css_free,
7861        .exit           = perf_cgroup_exit,
7862        .attach         = perf_cgroup_attach,
7863};
7864#endif /* CONFIG_CGROUP_PERF */
7865