linux/kernel/profile.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/profile.c
   3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
   4 *  with configurable resolution, support for restricting the cpus on
   5 *  which profiling is done, and switching between cpu time and
   6 *  schedule() calls via kernel command line parameters passed at boot.
   7 *
   8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
   9 *      Red Hat, July 2004
  10 *  Consolidation of architecture support code for profiling,
  11 *      Nadia Yvette Chambers, Oracle, July 2004
  12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
  13 *      to resolve timer interrupt livelocks, Nadia Yvette Chambers,
  14 *      Oracle, 2004
  15 */
  16
  17#include <linux/export.h>
  18#include <linux/profile.h>
  19#include <linux/bootmem.h>
  20#include <linux/notifier.h>
  21#include <linux/mm.h>
  22#include <linux/cpumask.h>
  23#include <linux/cpu.h>
  24#include <linux/highmem.h>
  25#include <linux/mutex.h>
  26#include <linux/slab.h>
  27#include <linux/vmalloc.h>
  28#include <asm/sections.h>
  29#include <asm/irq_regs.h>
  30#include <asm/ptrace.h>
  31
  32struct profile_hit {
  33        u32 pc, hits;
  34};
  35#define PROFILE_GRPSHIFT        3
  36#define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
  37#define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
  38#define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
  39
  40static atomic_t *prof_buffer;
  41static unsigned long prof_len, prof_shift;
  42
  43int prof_on __read_mostly;
  44EXPORT_SYMBOL_GPL(prof_on);
  45
  46static cpumask_var_t prof_cpu_mask;
  47#ifdef CONFIG_SMP
  48static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
  49static DEFINE_PER_CPU(int, cpu_profile_flip);
  50static DEFINE_MUTEX(profile_flip_mutex);
  51#endif /* CONFIG_SMP */
  52
  53int profile_setup(char *str)
  54{
  55        static char schedstr[] = "schedule";
  56        static char sleepstr[] = "sleep";
  57        static char kvmstr[] = "kvm";
  58        int par;
  59
  60        if (!strncmp(str, sleepstr, strlen(sleepstr))) {
  61#ifdef CONFIG_SCHEDSTATS
  62                prof_on = SLEEP_PROFILING;
  63                if (str[strlen(sleepstr)] == ',')
  64                        str += strlen(sleepstr) + 1;
  65                if (get_option(&str, &par))
  66                        prof_shift = par;
  67                printk(KERN_INFO
  68                        "kernel sleep profiling enabled (shift: %ld)\n",
  69                        prof_shift);
  70#else
  71                printk(KERN_WARNING
  72                        "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
  73#endif /* CONFIG_SCHEDSTATS */
  74        } else if (!strncmp(str, schedstr, strlen(schedstr))) {
  75                prof_on = SCHED_PROFILING;
  76                if (str[strlen(schedstr)] == ',')
  77                        str += strlen(schedstr) + 1;
  78                if (get_option(&str, &par))
  79                        prof_shift = par;
  80                printk(KERN_INFO
  81                        "kernel schedule profiling enabled (shift: %ld)\n",
  82                        prof_shift);
  83        } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
  84                prof_on = KVM_PROFILING;
  85                if (str[strlen(kvmstr)] == ',')
  86                        str += strlen(kvmstr) + 1;
  87                if (get_option(&str, &par))
  88                        prof_shift = par;
  89                printk(KERN_INFO
  90                        "kernel KVM profiling enabled (shift: %ld)\n",
  91                        prof_shift);
  92        } else if (get_option(&str, &par)) {
  93                prof_shift = par;
  94                prof_on = CPU_PROFILING;
  95                printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
  96                        prof_shift);
  97        }
  98        return 1;
  99}
 100__setup("profile=", profile_setup);
 101
 102
 103int __ref profile_init(void)
 104{
 105        int buffer_bytes;
 106        if (!prof_on)
 107                return 0;
 108
 109        /* only text is profiled */
 110        prof_len = (_etext - _stext) >> prof_shift;
 111        buffer_bytes = prof_len*sizeof(atomic_t);
 112
 113        if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
 114                return -ENOMEM;
 115
 116        cpumask_copy(prof_cpu_mask, cpu_possible_mask);
 117
 118        prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
 119        if (prof_buffer)
 120                return 0;
 121
 122        prof_buffer = alloc_pages_exact(buffer_bytes,
 123                                        GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
 124        if (prof_buffer)
 125                return 0;
 126
 127        prof_buffer = vzalloc(buffer_bytes);
 128        if (prof_buffer)
 129                return 0;
 130
 131        free_cpumask_var(prof_cpu_mask);
 132        return -ENOMEM;
 133}
 134
 135/* Profile event notifications */
 136
 137static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
 138static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
 139static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
 140
 141void profile_task_exit(struct task_struct *task)
 142{
 143        blocking_notifier_call_chain(&task_exit_notifier, 0, task);
 144}
 145
 146int profile_handoff_task(struct task_struct *task)
 147{
 148        int ret;
 149        ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
 150        return (ret == NOTIFY_OK) ? 1 : 0;
 151}
 152
 153void profile_munmap(unsigned long addr)
 154{
 155        blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
 156}
 157
 158int task_handoff_register(struct notifier_block *n)
 159{
 160        return atomic_notifier_chain_register(&task_free_notifier, n);
 161}
 162EXPORT_SYMBOL_GPL(task_handoff_register);
 163
 164int task_handoff_unregister(struct notifier_block *n)
 165{
 166        return atomic_notifier_chain_unregister(&task_free_notifier, n);
 167}
 168EXPORT_SYMBOL_GPL(task_handoff_unregister);
 169
 170int profile_event_register(enum profile_type type, struct notifier_block *n)
 171{
 172        int err = -EINVAL;
 173
 174        switch (type) {
 175        case PROFILE_TASK_EXIT:
 176                err = blocking_notifier_chain_register(
 177                                &task_exit_notifier, n);
 178                break;
 179        case PROFILE_MUNMAP:
 180                err = blocking_notifier_chain_register(
 181                                &munmap_notifier, n);
 182                break;
 183        }
 184
 185        return err;
 186}
 187EXPORT_SYMBOL_GPL(profile_event_register);
 188
 189int profile_event_unregister(enum profile_type type, struct notifier_block *n)
 190{
 191        int err = -EINVAL;
 192
 193        switch (type) {
 194        case PROFILE_TASK_EXIT:
 195                err = blocking_notifier_chain_unregister(
 196                                &task_exit_notifier, n);
 197                break;
 198        case PROFILE_MUNMAP:
 199                err = blocking_notifier_chain_unregister(
 200                                &munmap_notifier, n);
 201                break;
 202        }
 203
 204        return err;
 205}
 206EXPORT_SYMBOL_GPL(profile_event_unregister);
 207
 208#ifdef CONFIG_SMP
 209/*
 210 * Each cpu has a pair of open-addressed hashtables for pending
 211 * profile hits. read_profile() IPI's all cpus to request them
 212 * to flip buffers and flushes their contents to prof_buffer itself.
 213 * Flip requests are serialized by the profile_flip_mutex. The sole
 214 * use of having a second hashtable is for avoiding cacheline
 215 * contention that would otherwise happen during flushes of pending
 216 * profile hits required for the accuracy of reported profile hits
 217 * and so resurrect the interrupt livelock issue.
 218 *
 219 * The open-addressed hashtables are indexed by profile buffer slot
 220 * and hold the number of pending hits to that profile buffer slot on
 221 * a cpu in an entry. When the hashtable overflows, all pending hits
 222 * are accounted to their corresponding profile buffer slots with
 223 * atomic_add() and the hashtable emptied. As numerous pending hits
 224 * may be accounted to a profile buffer slot in a hashtable entry,
 225 * this amortizes a number of atomic profile buffer increments likely
 226 * to be far larger than the number of entries in the hashtable,
 227 * particularly given that the number of distinct profile buffer
 228 * positions to which hits are accounted during short intervals (e.g.
 229 * several seconds) is usually very small. Exclusion from buffer
 230 * flipping is provided by interrupt disablement (note that for
 231 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 232 * process context).
 233 * The hash function is meant to be lightweight as opposed to strong,
 234 * and was vaguely inspired by ppc64 firmware-supported inverted
 235 * pagetable hash functions, but uses a full hashtable full of finite
 236 * collision chains, not just pairs of them.
 237 *
 238 * -- nyc
 239 */
 240static void __profile_flip_buffers(void *unused)
 241{
 242        int cpu = smp_processor_id();
 243
 244        per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
 245}
 246
 247static void profile_flip_buffers(void)
 248{
 249        int i, j, cpu;
 250
 251        mutex_lock(&profile_flip_mutex);
 252        j = per_cpu(cpu_profile_flip, get_cpu());
 253        put_cpu();
 254        on_each_cpu(__profile_flip_buffers, NULL, 1);
 255        for_each_online_cpu(cpu) {
 256                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
 257                for (i = 0; i < NR_PROFILE_HIT; ++i) {
 258                        if (!hits[i].hits) {
 259                                if (hits[i].pc)
 260                                        hits[i].pc = 0;
 261                                continue;
 262                        }
 263                        atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 264                        hits[i].hits = hits[i].pc = 0;
 265                }
 266        }
 267        mutex_unlock(&profile_flip_mutex);
 268}
 269
 270static void profile_discard_flip_buffers(void)
 271{
 272        int i, cpu;
 273
 274        mutex_lock(&profile_flip_mutex);
 275        i = per_cpu(cpu_profile_flip, get_cpu());
 276        put_cpu();
 277        on_each_cpu(__profile_flip_buffers, NULL, 1);
 278        for_each_online_cpu(cpu) {
 279                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
 280                memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
 281        }
 282        mutex_unlock(&profile_flip_mutex);
 283}
 284
 285static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 286{
 287        unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
 288        int i, j, cpu;
 289        struct profile_hit *hits;
 290
 291        pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
 292        i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 293        secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 294        cpu = get_cpu();
 295        hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
 296        if (!hits) {
 297                put_cpu();
 298                return;
 299        }
 300        /*
 301         * We buffer the global profiler buffer into a per-CPU
 302         * queue and thus reduce the number of global (and possibly
 303         * NUMA-alien) accesses. The write-queue is self-coalescing:
 304         */
 305        local_irq_save(flags);
 306        do {
 307                for (j = 0; j < PROFILE_GRPSZ; ++j) {
 308                        if (hits[i + j].pc == pc) {
 309                                hits[i + j].hits += nr_hits;
 310                                goto out;
 311                        } else if (!hits[i + j].hits) {
 312                                hits[i + j].pc = pc;
 313                                hits[i + j].hits = nr_hits;
 314                                goto out;
 315                        }
 316                }
 317                i = (i + secondary) & (NR_PROFILE_HIT - 1);
 318        } while (i != primary);
 319
 320        /*
 321         * Add the current hit(s) and flush the write-queue out
 322         * to the global buffer:
 323         */
 324        atomic_add(nr_hits, &prof_buffer[pc]);
 325        for (i = 0; i < NR_PROFILE_HIT; ++i) {
 326                atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 327                hits[i].pc = hits[i].hits = 0;
 328        }
 329out:
 330        local_irq_restore(flags);
 331        put_cpu();
 332}
 333
 334static int profile_cpu_callback(struct notifier_block *info,
 335                                        unsigned long action, void *__cpu)
 336{
 337        int node, cpu = (unsigned long)__cpu;
 338        struct page *page;
 339
 340        switch (action) {
 341        case CPU_UP_PREPARE:
 342        case CPU_UP_PREPARE_FROZEN:
 343                node = cpu_to_mem(cpu);
 344                per_cpu(cpu_profile_flip, cpu) = 0;
 345                if (!per_cpu(cpu_profile_hits, cpu)[1]) {
 346                        page = alloc_pages_exact_node(node,
 347                                        GFP_KERNEL | __GFP_ZERO,
 348                                        0);
 349                        if (!page)
 350                                return notifier_from_errno(-ENOMEM);
 351                        per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
 352                }
 353                if (!per_cpu(cpu_profile_hits, cpu)[0]) {
 354                        page = alloc_pages_exact_node(node,
 355                                        GFP_KERNEL | __GFP_ZERO,
 356                                        0);
 357                        if (!page)
 358                                goto out_free;
 359                        per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
 360                }
 361                break;
 362out_free:
 363                page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 364                per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 365                __free_page(page);
 366                return notifier_from_errno(-ENOMEM);
 367        case CPU_ONLINE:
 368        case CPU_ONLINE_FROZEN:
 369                if (prof_cpu_mask != NULL)
 370                        cpumask_set_cpu(cpu, prof_cpu_mask);
 371                break;
 372        case CPU_UP_CANCELED:
 373        case CPU_UP_CANCELED_FROZEN:
 374        case CPU_DEAD:
 375        case CPU_DEAD_FROZEN:
 376                if (prof_cpu_mask != NULL)
 377                        cpumask_clear_cpu(cpu, prof_cpu_mask);
 378                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 379                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 380                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 381                        __free_page(page);
 382                }
 383                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 384                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 385                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 386                        __free_page(page);
 387                }
 388                break;
 389        }
 390        return NOTIFY_OK;
 391}
 392#else /* !CONFIG_SMP */
 393#define profile_flip_buffers()          do { } while (0)
 394#define profile_discard_flip_buffers()  do { } while (0)
 395#define profile_cpu_callback            NULL
 396
 397static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 398{
 399        unsigned long pc;
 400        pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
 401        atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 402}
 403#endif /* !CONFIG_SMP */
 404
 405void profile_hits(int type, void *__pc, unsigned int nr_hits)
 406{
 407        if (prof_on != type || !prof_buffer)
 408                return;
 409        do_profile_hits(type, __pc, nr_hits);
 410}
 411EXPORT_SYMBOL_GPL(profile_hits);
 412
 413void profile_tick(int type)
 414{
 415        struct pt_regs *regs = get_irq_regs();
 416
 417        if (!user_mode(regs) && prof_cpu_mask != NULL &&
 418            cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
 419                profile_hit(type, (void *)profile_pc(regs));
 420}
 421
 422#ifdef CONFIG_PROC_FS
 423#include <linux/proc_fs.h>
 424#include <linux/seq_file.h>
 425#include <asm/uaccess.h>
 426
 427static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
 428{
 429        seq_cpumask(m, prof_cpu_mask);
 430        seq_putc(m, '\n');
 431        return 0;
 432}
 433
 434static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
 435{
 436        return single_open(file, prof_cpu_mask_proc_show, NULL);
 437}
 438
 439static ssize_t prof_cpu_mask_proc_write(struct file *file,
 440        const char __user *buffer, size_t count, loff_t *pos)
 441{
 442        cpumask_var_t new_value;
 443        int err;
 444
 445        if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
 446                return -ENOMEM;
 447
 448        err = cpumask_parse_user(buffer, count, new_value);
 449        if (!err) {
 450                cpumask_copy(prof_cpu_mask, new_value);
 451                err = count;
 452        }
 453        free_cpumask_var(new_value);
 454        return err;
 455}
 456
 457static const struct file_operations prof_cpu_mask_proc_fops = {
 458        .open           = prof_cpu_mask_proc_open,
 459        .read           = seq_read,
 460        .llseek         = seq_lseek,
 461        .release        = single_release,
 462        .write          = prof_cpu_mask_proc_write,
 463};
 464
 465void create_prof_cpu_mask(void)
 466{
 467        /* create /proc/irq/prof_cpu_mask */
 468        proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
 469}
 470
 471/*
 472 * This function accesses profiling information. The returned data is
 473 * binary: the sampling step and the actual contents of the profile
 474 * buffer. Use of the program readprofile is recommended in order to
 475 * get meaningful info out of these data.
 476 */
 477static ssize_t
 478read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 479{
 480        unsigned long p = *ppos;
 481        ssize_t read;
 482        char *pnt;
 483        unsigned int sample_step = 1 << prof_shift;
 484
 485        profile_flip_buffers();
 486        if (p >= (prof_len+1)*sizeof(unsigned int))
 487                return 0;
 488        if (count > (prof_len+1)*sizeof(unsigned int) - p)
 489                count = (prof_len+1)*sizeof(unsigned int) - p;
 490        read = 0;
 491
 492        while (p < sizeof(unsigned int) && count > 0) {
 493                if (put_user(*((char *)(&sample_step)+p), buf))
 494                        return -EFAULT;
 495                buf++; p++; count--; read++;
 496        }
 497        pnt = (char *)prof_buffer + p - sizeof(atomic_t);
 498        if (copy_to_user(buf, (void *)pnt, count))
 499                return -EFAULT;
 500        read += count;
 501        *ppos += read;
 502        return read;
 503}
 504
 505/*
 506 * Writing to /proc/profile resets the counters
 507 *
 508 * Writing a 'profiling multiplier' value into it also re-sets the profiling
 509 * interrupt frequency, on architectures that support this.
 510 */
 511static ssize_t write_profile(struct file *file, const char __user *buf,
 512                             size_t count, loff_t *ppos)
 513{
 514#ifdef CONFIG_SMP
 515        extern int setup_profiling_timer(unsigned int multiplier);
 516
 517        if (count == sizeof(int)) {
 518                unsigned int multiplier;
 519
 520                if (copy_from_user(&multiplier, buf, sizeof(int)))
 521                        return -EFAULT;
 522
 523                if (setup_profiling_timer(multiplier))
 524                        return -EINVAL;
 525        }
 526#endif
 527        profile_discard_flip_buffers();
 528        memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
 529        return count;
 530}
 531
 532static const struct file_operations proc_profile_operations = {
 533        .read           = read_profile,
 534        .write          = write_profile,
 535        .llseek         = default_llseek,
 536};
 537
 538#ifdef CONFIG_SMP
 539static void profile_nop(void *unused)
 540{
 541}
 542
 543static int create_hash_tables(void)
 544{
 545        int cpu;
 546
 547        for_each_online_cpu(cpu) {
 548                int node = cpu_to_mem(cpu);
 549                struct page *page;
 550
 551                page = alloc_pages_exact_node(node,
 552                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 553                                0);
 554                if (!page)
 555                        goto out_cleanup;
 556                per_cpu(cpu_profile_hits, cpu)[1]
 557                                = (struct profile_hit *)page_address(page);
 558                page = alloc_pages_exact_node(node,
 559                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
 560                                0);
 561                if (!page)
 562                        goto out_cleanup;
 563                per_cpu(cpu_profile_hits, cpu)[0]
 564                                = (struct profile_hit *)page_address(page);
 565        }
 566        return 0;
 567out_cleanup:
 568        prof_on = 0;
 569        smp_mb();
 570        on_each_cpu(profile_nop, NULL, 1);
 571        for_each_online_cpu(cpu) {
 572                struct page *page;
 573
 574                if (per_cpu(cpu_profile_hits, cpu)[0]) {
 575                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
 576                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
 577                        __free_page(page);
 578                }
 579                if (per_cpu(cpu_profile_hits, cpu)[1]) {
 580                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
 581                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
 582                        __free_page(page);
 583                }
 584        }
 585        return -1;
 586}
 587#else
 588#define create_hash_tables()                    ({ 0; })
 589#endif
 590
 591int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
 592{
 593        struct proc_dir_entry *entry;
 594
 595        if (!prof_on)
 596                return 0;
 597        if (create_hash_tables())
 598                return -ENOMEM;
 599        entry = proc_create("profile", S_IWUSR | S_IRUGO,
 600                            NULL, &proc_profile_operations);
 601        if (!entry)
 602                return 0;
 603        proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
 604        hotcpu_notifier(profile_cpu_callback, 0);
 605        return 0;
 606}
 607module_init(create_proc_profile);
 608#endif /* CONFIG_PROC_FS */
 609