linux/kernel/sched/core.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *              make semaphores SMP safe
  10 *  1998-11-19  Implemented schedule_timeout() and related stuff
  11 *              by Andrea Arcangeli
  12 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *              hybrid priority-list and round-robin design with
  14 *              an array-switch method of distributing timeslices
  15 *              and per-CPU runqueues.  Cleanups and useful suggestions
  16 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03  Interactivity tuning by Con Kolivas.
  18 *  2004-04-02  Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <asm/mmu_context.h>
  36#include <linux/interrupt.h>
  37#include <linux/capability.h>
  38#include <linux/completion.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/debug_locks.h>
  41#include <linux/perf_event.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/profile.h>
  45#include <linux/freezer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/blkdev.h>
  48#include <linux/delay.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/smp.h>
  51#include <linux/threads.h>
  52#include <linux/timer.h>
  53#include <linux/rcupdate.h>
  54#include <linux/cpu.h>
  55#include <linux/cpuset.h>
  56#include <linux/percpu.h>
  57#include <linux/proc_fs.h>
  58#include <linux/seq_file.h>
  59#include <linux/sysctl.h>
  60#include <linux/syscalls.h>
  61#include <linux/times.h>
  62#include <linux/tsacct_kern.h>
  63#include <linux/kprobes.h>
  64#include <linux/delayacct.h>
  65#include <linux/unistd.h>
  66#include <linux/pagemap.h>
  67#include <linux/hrtimer.h>
  68#include <linux/tick.h>
  69#include <linux/debugfs.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/binfmts.h>
  75#include <linux/context_tracking.h>
  76
  77#include <asm/switch_to.h>
  78#include <asm/tlb.h>
  79#include <asm/irq_regs.h>
  80#include <asm/mutex.h>
  81#ifdef CONFIG_PARAVIRT
  82#include <asm/paravirt.h>
  83#endif
  84
  85#include "sched.h"
  86#include "../workqueue_internal.h"
  87#include "../smpboot.h"
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/sched.h>
  91
  92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  93{
  94        unsigned long delta;
  95        ktime_t soft, hard, now;
  96
  97        for (;;) {
  98                if (hrtimer_active(period_timer))
  99                        break;
 100
 101                now = hrtimer_cb_get_time(period_timer);
 102                hrtimer_forward(period_timer, now, period);
 103
 104                soft = hrtimer_get_softexpires(period_timer);
 105                hard = hrtimer_get_expires(period_timer);
 106                delta = ktime_to_ns(ktime_sub(hard, soft));
 107                __hrtimer_start_range_ns(period_timer, soft, delta,
 108                                         HRTIMER_MODE_ABS_PINNED, 0);
 109        }
 110}
 111
 112DEFINE_MUTEX(sched_domains_mutex);
 113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 114
 115static void update_rq_clock_task(struct rq *rq, s64 delta);
 116
 117void update_rq_clock(struct rq *rq)
 118{
 119        s64 delta;
 120
 121        if (rq->skip_clock_update > 0)
 122                return;
 123
 124        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 125        rq->clock += delta;
 126        update_rq_clock_task(rq, delta);
 127}
 128
 129/*
 130 * Debugging: various feature bits
 131 */
 132
 133#define SCHED_FEAT(name, enabled)       \
 134        (1UL << __SCHED_FEAT_##name) * enabled |
 135
 136const_debug unsigned int sysctl_sched_features =
 137#include "features.h"
 138        0;
 139
 140#undef SCHED_FEAT
 141
 142#ifdef CONFIG_SCHED_DEBUG
 143#define SCHED_FEAT(name, enabled)       \
 144        #name ,
 145
 146static const char * const sched_feat_names[] = {
 147#include "features.h"
 148};
 149
 150#undef SCHED_FEAT
 151
 152static int sched_feat_show(struct seq_file *m, void *v)
 153{
 154        int i;
 155
 156        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 157                if (!(sysctl_sched_features & (1UL << i)))
 158                        seq_puts(m, "NO_");
 159                seq_printf(m, "%s ", sched_feat_names[i]);
 160        }
 161        seq_puts(m, "\n");
 162
 163        return 0;
 164}
 165
 166#ifdef HAVE_JUMP_LABEL
 167
 168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 169#define jump_label_key__false STATIC_KEY_INIT_FALSE
 170
 171#define SCHED_FEAT(name, enabled)       \
 172        jump_label_key__##enabled ,
 173
 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 175#include "features.h"
 176};
 177
 178#undef SCHED_FEAT
 179
 180static void sched_feat_disable(int i)
 181{
 182        if (static_key_enabled(&sched_feat_keys[i]))
 183                static_key_slow_dec(&sched_feat_keys[i]);
 184}
 185
 186static void sched_feat_enable(int i)
 187{
 188        if (!static_key_enabled(&sched_feat_keys[i]))
 189                static_key_slow_inc(&sched_feat_keys[i]);
 190}
 191#else
 192static void sched_feat_disable(int i) { };
 193static void sched_feat_enable(int i) { };
 194#endif /* HAVE_JUMP_LABEL */
 195
 196static int sched_feat_set(char *cmp)
 197{
 198        int i;
 199        int neg = 0;
 200
 201        if (strncmp(cmp, "NO_", 3) == 0) {
 202                neg = 1;
 203                cmp += 3;
 204        }
 205
 206        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 207                if (strcmp(cmp, sched_feat_names[i]) == 0) {
 208                        if (neg) {
 209                                sysctl_sched_features &= ~(1UL << i);
 210                                sched_feat_disable(i);
 211                        } else {
 212                                sysctl_sched_features |= (1UL << i);
 213                                sched_feat_enable(i);
 214                        }
 215                        break;
 216                }
 217        }
 218
 219        return i;
 220}
 221
 222static ssize_t
 223sched_feat_write(struct file *filp, const char __user *ubuf,
 224                size_t cnt, loff_t *ppos)
 225{
 226        char buf[64];
 227        char *cmp;
 228        int i;
 229
 230        if (cnt > 63)
 231                cnt = 63;
 232
 233        if (copy_from_user(&buf, ubuf, cnt))
 234                return -EFAULT;
 235
 236        buf[cnt] = 0;
 237        cmp = strstrip(buf);
 238
 239        i = sched_feat_set(cmp);
 240        if (i == __SCHED_FEAT_NR)
 241                return -EINVAL;
 242
 243        *ppos += cnt;
 244
 245        return cnt;
 246}
 247
 248static int sched_feat_open(struct inode *inode, struct file *filp)
 249{
 250        return single_open(filp, sched_feat_show, NULL);
 251}
 252
 253static const struct file_operations sched_feat_fops = {
 254        .open           = sched_feat_open,
 255        .write          = sched_feat_write,
 256        .read           = seq_read,
 257        .llseek         = seq_lseek,
 258        .release        = single_release,
 259};
 260
 261static __init int sched_init_debug(void)
 262{
 263        debugfs_create_file("sched_features", 0644, NULL, NULL,
 264                        &sched_feat_fops);
 265
 266        return 0;
 267}
 268late_initcall(sched_init_debug);
 269#endif /* CONFIG_SCHED_DEBUG */
 270
 271/*
 272 * Number of tasks to iterate in a single balance run.
 273 * Limited because this is done with IRQs disabled.
 274 */
 275const_debug unsigned int sysctl_sched_nr_migrate = 32;
 276
 277/*
 278 * period over which we average the RT time consumption, measured
 279 * in ms.
 280 *
 281 * default: 1s
 282 */
 283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 284
 285/*
 286 * period over which we measure -rt task cpu usage in us.
 287 * default: 1s
 288 */
 289unsigned int sysctl_sched_rt_period = 1000000;
 290
 291__read_mostly int scheduler_running;
 292
 293/*
 294 * part of the period that we allow rt tasks to run in us.
 295 * default: 0.95s
 296 */
 297int sysctl_sched_rt_runtime = 950000;
 298
 299
 300
 301/*
 302 * __task_rq_lock - lock the rq @p resides on.
 303 */
 304static inline struct rq *__task_rq_lock(struct task_struct *p)
 305        __acquires(rq->lock)
 306{
 307        struct rq *rq;
 308
 309        lockdep_assert_held(&p->pi_lock);
 310
 311        for (;;) {
 312                rq = task_rq(p);
 313                raw_spin_lock(&rq->lock);
 314                if (likely(rq == task_rq(p)))
 315                        return rq;
 316                raw_spin_unlock(&rq->lock);
 317        }
 318}
 319
 320/*
 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 322 */
 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 324        __acquires(p->pi_lock)
 325        __acquires(rq->lock)
 326{
 327        struct rq *rq;
 328
 329        for (;;) {
 330                raw_spin_lock_irqsave(&p->pi_lock, *flags);
 331                rq = task_rq(p);
 332                raw_spin_lock(&rq->lock);
 333                if (likely(rq == task_rq(p)))
 334                        return rq;
 335                raw_spin_unlock(&rq->lock);
 336                raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 337        }
 338}
 339
 340static void __task_rq_unlock(struct rq *rq)
 341        __releases(rq->lock)
 342{
 343        raw_spin_unlock(&rq->lock);
 344}
 345
 346static inline void
 347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 348        __releases(rq->lock)
 349        __releases(p->pi_lock)
 350{
 351        raw_spin_unlock(&rq->lock);
 352        raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 353}
 354
 355/*
 356 * this_rq_lock - lock this runqueue and disable interrupts.
 357 */
 358static struct rq *this_rq_lock(void)
 359        __acquires(rq->lock)
 360{
 361        struct rq *rq;
 362
 363        local_irq_disable();
 364        rq = this_rq();
 365        raw_spin_lock(&rq->lock);
 366
 367        return rq;
 368}
 369
 370#ifdef CONFIG_SCHED_HRTICK
 371/*
 372 * Use HR-timers to deliver accurate preemption points.
 373 */
 374
 375static void hrtick_clear(struct rq *rq)
 376{
 377        if (hrtimer_active(&rq->hrtick_timer))
 378                hrtimer_cancel(&rq->hrtick_timer);
 379}
 380
 381/*
 382 * High-resolution timer tick.
 383 * Runs from hardirq context with interrupts disabled.
 384 */
 385static enum hrtimer_restart hrtick(struct hrtimer *timer)
 386{
 387        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 388
 389        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 390
 391        raw_spin_lock(&rq->lock);
 392        update_rq_clock(rq);
 393        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 394        raw_spin_unlock(&rq->lock);
 395
 396        return HRTIMER_NORESTART;
 397}
 398
 399#ifdef CONFIG_SMP
 400
 401static int __hrtick_restart(struct rq *rq)
 402{
 403        struct hrtimer *timer = &rq->hrtick_timer;
 404        ktime_t time = hrtimer_get_softexpires(timer);
 405
 406        return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
 407}
 408
 409/*
 410 * called from hardirq (IPI) context
 411 */
 412static void __hrtick_start(void *arg)
 413{
 414        struct rq *rq = arg;
 415
 416        raw_spin_lock(&rq->lock);
 417        __hrtick_restart(rq);
 418        rq->hrtick_csd_pending = 0;
 419        raw_spin_unlock(&rq->lock);
 420}
 421
 422/*
 423 * Called to set the hrtick timer state.
 424 *
 425 * called with rq->lock held and irqs disabled
 426 */
 427void hrtick_start(struct rq *rq, u64 delay)
 428{
 429        struct hrtimer *timer = &rq->hrtick_timer;
 430        ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 431
 432        hrtimer_set_expires(timer, time);
 433
 434        if (rq == this_rq()) {
 435                __hrtick_restart(rq);
 436        } else if (!rq->hrtick_csd_pending) {
 437                __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 438                rq->hrtick_csd_pending = 1;
 439        }
 440}
 441
 442static int
 443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 444{
 445        int cpu = (int)(long)hcpu;
 446
 447        switch (action) {
 448        case CPU_UP_CANCELED:
 449        case CPU_UP_CANCELED_FROZEN:
 450        case CPU_DOWN_PREPARE:
 451        case CPU_DOWN_PREPARE_FROZEN:
 452        case CPU_DEAD:
 453        case CPU_DEAD_FROZEN:
 454                hrtick_clear(cpu_rq(cpu));
 455                return NOTIFY_OK;
 456        }
 457
 458        return NOTIFY_DONE;
 459}
 460
 461static __init void init_hrtick(void)
 462{
 463        hotcpu_notifier(hotplug_hrtick, 0);
 464}
 465#else
 466/*
 467 * Called to set the hrtick timer state.
 468 *
 469 * called with rq->lock held and irqs disabled
 470 */
 471void hrtick_start(struct rq *rq, u64 delay)
 472{
 473        __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 474                        HRTIMER_MODE_REL_PINNED, 0);
 475}
 476
 477static inline void init_hrtick(void)
 478{
 479}
 480#endif /* CONFIG_SMP */
 481
 482static void init_rq_hrtick(struct rq *rq)
 483{
 484#ifdef CONFIG_SMP
 485        rq->hrtick_csd_pending = 0;
 486
 487        rq->hrtick_csd.flags = 0;
 488        rq->hrtick_csd.func = __hrtick_start;
 489        rq->hrtick_csd.info = rq;
 490#endif
 491
 492        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 493        rq->hrtick_timer.function = hrtick;
 494}
 495#else   /* CONFIG_SCHED_HRTICK */
 496static inline void hrtick_clear(struct rq *rq)
 497{
 498}
 499
 500static inline void init_rq_hrtick(struct rq *rq)
 501{
 502}
 503
 504static inline void init_hrtick(void)
 505{
 506}
 507#endif  /* CONFIG_SCHED_HRTICK */
 508
 509/*
 510 * resched_task - mark a task 'to be rescheduled now'.
 511 *
 512 * On UP this means the setting of the need_resched flag, on SMP it
 513 * might also involve a cross-CPU call to trigger the scheduler on
 514 * the target CPU.
 515 */
 516#ifdef CONFIG_SMP
 517void resched_task(struct task_struct *p)
 518{
 519        int cpu;
 520
 521        assert_raw_spin_locked(&task_rq(p)->lock);
 522
 523        if (test_tsk_need_resched(p))
 524                return;
 525
 526        set_tsk_need_resched(p);
 527
 528        cpu = task_cpu(p);
 529        if (cpu == smp_processor_id())
 530                return;
 531
 532        /* NEED_RESCHED must be visible before we test polling */
 533        smp_mb();
 534        if (!tsk_is_polling(p))
 535                smp_send_reschedule(cpu);
 536}
 537
 538void resched_cpu(int cpu)
 539{
 540        struct rq *rq = cpu_rq(cpu);
 541        unsigned long flags;
 542
 543        if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 544                return;
 545        resched_task(cpu_curr(cpu));
 546        raw_spin_unlock_irqrestore(&rq->lock, flags);
 547}
 548
 549#ifdef CONFIG_NO_HZ_COMMON
 550/*
 551 * In the semi idle case, use the nearest busy cpu for migrating timers
 552 * from an idle cpu.  This is good for power-savings.
 553 *
 554 * We don't do similar optimization for completely idle system, as
 555 * selecting an idle cpu will add more delays to the timers than intended
 556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 557 */
 558int get_nohz_timer_target(void)
 559{
 560        int cpu = smp_processor_id();
 561        int i;
 562        struct sched_domain *sd;
 563
 564        rcu_read_lock();
 565        for_each_domain(cpu, sd) {
 566                for_each_cpu(i, sched_domain_span(sd)) {
 567                        if (!idle_cpu(i)) {
 568                                cpu = i;
 569                                goto unlock;
 570                        }
 571                }
 572        }
 573unlock:
 574        rcu_read_unlock();
 575        return cpu;
 576}
 577/*
 578 * When add_timer_on() enqueues a timer into the timer wheel of an
 579 * idle CPU then this timer might expire before the next timer event
 580 * which is scheduled to wake up that CPU. In case of a completely
 581 * idle system the next event might even be infinite time into the
 582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 583 * leaves the inner idle loop so the newly added timer is taken into
 584 * account when the CPU goes back to idle and evaluates the timer
 585 * wheel for the next timer event.
 586 */
 587static void wake_up_idle_cpu(int cpu)
 588{
 589        struct rq *rq = cpu_rq(cpu);
 590
 591        if (cpu == smp_processor_id())
 592                return;
 593
 594        /*
 595         * This is safe, as this function is called with the timer
 596         * wheel base lock of (cpu) held. When the CPU is on the way
 597         * to idle and has not yet set rq->curr to idle then it will
 598         * be serialized on the timer wheel base lock and take the new
 599         * timer into account automatically.
 600         */
 601        if (rq->curr != rq->idle)
 602                return;
 603
 604        /*
 605         * We can set TIF_RESCHED on the idle task of the other CPU
 606         * lockless. The worst case is that the other CPU runs the
 607         * idle task through an additional NOOP schedule()
 608         */
 609        set_tsk_need_resched(rq->idle);
 610
 611        /* NEED_RESCHED must be visible before we test polling */
 612        smp_mb();
 613        if (!tsk_is_polling(rq->idle))
 614                smp_send_reschedule(cpu);
 615}
 616
 617static bool wake_up_full_nohz_cpu(int cpu)
 618{
 619        if (tick_nohz_full_cpu(cpu)) {
 620                if (cpu != smp_processor_id() ||
 621                    tick_nohz_tick_stopped())
 622                        smp_send_reschedule(cpu);
 623                return true;
 624        }
 625
 626        return false;
 627}
 628
 629void wake_up_nohz_cpu(int cpu)
 630{
 631        if (!wake_up_full_nohz_cpu(cpu))
 632                wake_up_idle_cpu(cpu);
 633}
 634
 635static inline bool got_nohz_idle_kick(void)
 636{
 637        int cpu = smp_processor_id();
 638
 639        if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 640                return false;
 641
 642        if (idle_cpu(cpu) && !need_resched())
 643                return true;
 644
 645        /*
 646         * We can't run Idle Load Balance on this CPU for this time so we
 647         * cancel it and clear NOHZ_BALANCE_KICK
 648         */
 649        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 650        return false;
 651}
 652
 653#else /* CONFIG_NO_HZ_COMMON */
 654
 655static inline bool got_nohz_idle_kick(void)
 656{
 657        return false;
 658}
 659
 660#endif /* CONFIG_NO_HZ_COMMON */
 661
 662#ifdef CONFIG_NO_HZ_FULL
 663bool sched_can_stop_tick(void)
 664{
 665       struct rq *rq;
 666
 667       rq = this_rq();
 668
 669       /* Make sure rq->nr_running update is visible after the IPI */
 670       smp_rmb();
 671
 672       /* More than one running task need preemption */
 673       if (rq->nr_running > 1)
 674               return false;
 675
 676       return true;
 677}
 678#endif /* CONFIG_NO_HZ_FULL */
 679
 680void sched_avg_update(struct rq *rq)
 681{
 682        s64 period = sched_avg_period();
 683
 684        while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 685                /*
 686                 * Inline assembly required to prevent the compiler
 687                 * optimising this loop into a divmod call.
 688                 * See __iter_div_u64_rem() for another example of this.
 689                 */
 690                asm("" : "+rm" (rq->age_stamp));
 691                rq->age_stamp += period;
 692                rq->rt_avg /= 2;
 693        }
 694}
 695
 696#else /* !CONFIG_SMP */
 697void resched_task(struct task_struct *p)
 698{
 699        assert_raw_spin_locked(&task_rq(p)->lock);
 700        set_tsk_need_resched(p);
 701}
 702#endif /* CONFIG_SMP */
 703
 704#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 705                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 706/*
 707 * Iterate task_group tree rooted at *from, calling @down when first entering a
 708 * node and @up when leaving it for the final time.
 709 *
 710 * Caller must hold rcu_lock or sufficient equivalent.
 711 */
 712int walk_tg_tree_from(struct task_group *from,
 713                             tg_visitor down, tg_visitor up, void *data)
 714{
 715        struct task_group *parent, *child;
 716        int ret;
 717
 718        parent = from;
 719
 720down:
 721        ret = (*down)(parent, data);
 722        if (ret)
 723                goto out;
 724        list_for_each_entry_rcu(child, &parent->children, siblings) {
 725                parent = child;
 726                goto down;
 727
 728up:
 729                continue;
 730        }
 731        ret = (*up)(parent, data);
 732        if (ret || parent == from)
 733                goto out;
 734
 735        child = parent;
 736        parent = parent->parent;
 737        if (parent)
 738                goto up;
 739out:
 740        return ret;
 741}
 742
 743int tg_nop(struct task_group *tg, void *data)
 744{
 745        return 0;
 746}
 747#endif
 748
 749static void set_load_weight(struct task_struct *p)
 750{
 751        int prio = p->static_prio - MAX_RT_PRIO;
 752        struct load_weight *load = &p->se.load;
 753
 754        /*
 755         * SCHED_IDLE tasks get minimal weight:
 756         */
 757        if (p->policy == SCHED_IDLE) {
 758                load->weight = scale_load(WEIGHT_IDLEPRIO);
 759                load->inv_weight = WMULT_IDLEPRIO;
 760                return;
 761        }
 762
 763        load->weight = scale_load(prio_to_weight[prio]);
 764        load->inv_weight = prio_to_wmult[prio];
 765}
 766
 767static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 768{
 769        update_rq_clock(rq);
 770        sched_info_queued(p);
 771        p->sched_class->enqueue_task(rq, p, flags);
 772}
 773
 774static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 775{
 776        update_rq_clock(rq);
 777        sched_info_dequeued(p);
 778        p->sched_class->dequeue_task(rq, p, flags);
 779}
 780
 781void activate_task(struct rq *rq, struct task_struct *p, int flags)
 782{
 783        if (task_contributes_to_load(p))
 784                rq->nr_uninterruptible--;
 785
 786        enqueue_task(rq, p, flags);
 787}
 788
 789void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 790{
 791        if (task_contributes_to_load(p))
 792                rq->nr_uninterruptible++;
 793
 794        dequeue_task(rq, p, flags);
 795}
 796
 797static void update_rq_clock_task(struct rq *rq, s64 delta)
 798{
 799/*
 800 * In theory, the compile should just see 0 here, and optimize out the call
 801 * to sched_rt_avg_update. But I don't trust it...
 802 */
 803#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 804        s64 steal = 0, irq_delta = 0;
 805#endif
 806#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 807        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 808
 809        /*
 810         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 811         * this case when a previous update_rq_clock() happened inside a
 812         * {soft,}irq region.
 813         *
 814         * When this happens, we stop ->clock_task and only update the
 815         * prev_irq_time stamp to account for the part that fit, so that a next
 816         * update will consume the rest. This ensures ->clock_task is
 817         * monotonic.
 818         *
 819         * It does however cause some slight miss-attribution of {soft,}irq
 820         * time, a more accurate solution would be to update the irq_time using
 821         * the current rq->clock timestamp, except that would require using
 822         * atomic ops.
 823         */
 824        if (irq_delta > delta)
 825                irq_delta = delta;
 826
 827        rq->prev_irq_time += irq_delta;
 828        delta -= irq_delta;
 829#endif
 830#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 831        if (static_key_false((&paravirt_steal_rq_enabled))) {
 832                u64 st;
 833
 834                steal = paravirt_steal_clock(cpu_of(rq));
 835                steal -= rq->prev_steal_time_rq;
 836
 837                if (unlikely(steal > delta))
 838                        steal = delta;
 839
 840                st = steal_ticks(steal);
 841                steal = st * TICK_NSEC;
 842
 843                rq->prev_steal_time_rq += steal;
 844
 845                delta -= steal;
 846        }
 847#endif
 848
 849        rq->clock_task += delta;
 850
 851#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 852        if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 853                sched_rt_avg_update(rq, irq_delta + steal);
 854#endif
 855}
 856
 857void sched_set_stop_task(int cpu, struct task_struct *stop)
 858{
 859        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 860        struct task_struct *old_stop = cpu_rq(cpu)->stop;
 861
 862        if (stop) {
 863                /*
 864                 * Make it appear like a SCHED_FIFO task, its something
 865                 * userspace knows about and won't get confused about.
 866                 *
 867                 * Also, it will make PI more or less work without too
 868                 * much confusion -- but then, stop work should not
 869                 * rely on PI working anyway.
 870                 */
 871                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 872
 873                stop->sched_class = &stop_sched_class;
 874        }
 875
 876        cpu_rq(cpu)->stop = stop;
 877
 878        if (old_stop) {
 879                /*
 880                 * Reset it back to a normal scheduling class so that
 881                 * it can die in pieces.
 882                 */
 883                old_stop->sched_class = &rt_sched_class;
 884        }
 885}
 886
 887/*
 888 * __normal_prio - return the priority that is based on the static prio
 889 */
 890static inline int __normal_prio(struct task_struct *p)
 891{
 892        return p->static_prio;
 893}
 894
 895/*
 896 * Calculate the expected normal priority: i.e. priority
 897 * without taking RT-inheritance into account. Might be
 898 * boosted by interactivity modifiers. Changes upon fork,
 899 * setprio syscalls, and whenever the interactivity
 900 * estimator recalculates.
 901 */
 902static inline int normal_prio(struct task_struct *p)
 903{
 904        int prio;
 905
 906        if (task_has_rt_policy(p))
 907                prio = MAX_RT_PRIO-1 - p->rt_priority;
 908        else
 909                prio = __normal_prio(p);
 910        return prio;
 911}
 912
 913/*
 914 * Calculate the current priority, i.e. the priority
 915 * taken into account by the scheduler. This value might
 916 * be boosted by RT tasks, or might be boosted by
 917 * interactivity modifiers. Will be RT if the task got
 918 * RT-boosted. If not then it returns p->normal_prio.
 919 */
 920static int effective_prio(struct task_struct *p)
 921{
 922        p->normal_prio = normal_prio(p);
 923        /*
 924         * If we are RT tasks or we were boosted to RT priority,
 925         * keep the priority unchanged. Otherwise, update priority
 926         * to the normal priority:
 927         */
 928        if (!rt_prio(p->prio))
 929                return p->normal_prio;
 930        return p->prio;
 931}
 932
 933/**
 934 * task_curr - is this task currently executing on a CPU?
 935 * @p: the task in question.
 936 *
 937 * Return: 1 if the task is currently executing. 0 otherwise.
 938 */
 939inline int task_curr(const struct task_struct *p)
 940{
 941        return cpu_curr(task_cpu(p)) == p;
 942}
 943
 944static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 945                                       const struct sched_class *prev_class,
 946                                       int oldprio)
 947{
 948        if (prev_class != p->sched_class) {
 949                if (prev_class->switched_from)
 950                        prev_class->switched_from(rq, p);
 951                p->sched_class->switched_to(rq, p);
 952        } else if (oldprio != p->prio)
 953                p->sched_class->prio_changed(rq, p, oldprio);
 954}
 955
 956void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 957{
 958        const struct sched_class *class;
 959
 960        if (p->sched_class == rq->curr->sched_class) {
 961                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 962        } else {
 963                for_each_class(class) {
 964                        if (class == rq->curr->sched_class)
 965                                break;
 966                        if (class == p->sched_class) {
 967                                resched_task(rq->curr);
 968                                break;
 969                        }
 970                }
 971        }
 972
 973        /*
 974         * A queue event has occurred, and we're going to schedule.  In
 975         * this case, we can save a useless back to back clock update.
 976         */
 977        if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
 978                rq->skip_clock_update = 1;
 979}
 980
 981static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
 982
 983void register_task_migration_notifier(struct notifier_block *n)
 984{
 985        atomic_notifier_chain_register(&task_migration_notifier, n);
 986}
 987
 988#ifdef CONFIG_SMP
 989void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 990{
 991#ifdef CONFIG_SCHED_DEBUG
 992        /*
 993         * We should never call set_task_cpu() on a blocked task,
 994         * ttwu() will sort out the placement.
 995         */
 996        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
 997                        !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
 998
 999#ifdef CONFIG_LOCKDEP
1000        /*
1001         * The caller should hold either p->pi_lock or rq->lock, when changing
1002         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1003         *
1004         * sched_move_task() holds both and thus holding either pins the cgroup,
1005         * see task_group().
1006         *
1007         * Furthermore, all task_rq users should acquire both locks, see
1008         * task_rq_lock().
1009         */
1010        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1011                                      lockdep_is_held(&task_rq(p)->lock)));
1012#endif
1013#endif
1014
1015        trace_sched_migrate_task(p, new_cpu);
1016
1017        if (task_cpu(p) != new_cpu) {
1018                struct task_migration_notifier tmn;
1019
1020                if (p->sched_class->migrate_task_rq)
1021                        p->sched_class->migrate_task_rq(p, new_cpu);
1022                p->se.nr_migrations++;
1023                perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1024
1025                tmn.task = p;
1026                tmn.from_cpu = task_cpu(p);
1027                tmn.to_cpu = new_cpu;
1028
1029                atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1030        }
1031
1032        __set_task_cpu(p, new_cpu);
1033}
1034
1035struct migration_arg {
1036        struct task_struct *task;
1037        int dest_cpu;
1038};
1039
1040static int migration_cpu_stop(void *data);
1041
1042/*
1043 * wait_task_inactive - wait for a thread to unschedule.
1044 *
1045 * If @match_state is nonzero, it's the @p->state value just checked and
1046 * not expected to change.  If it changes, i.e. @p might have woken up,
1047 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1048 * we return a positive number (its total switch count).  If a second call
1049 * a short while later returns the same number, the caller can be sure that
1050 * @p has remained unscheduled the whole time.
1051 *
1052 * The caller must ensure that the task *will* unschedule sometime soon,
1053 * else this function might spin for a *long* time. This function can't
1054 * be called with interrupts off, or it may introduce deadlock with
1055 * smp_call_function() if an IPI is sent by the same process we are
1056 * waiting to become inactive.
1057 */
1058unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1059{
1060        unsigned long flags;
1061        int running, on_rq;
1062        unsigned long ncsw;
1063        struct rq *rq;
1064
1065        for (;;) {
1066                /*
1067                 * We do the initial early heuristics without holding
1068                 * any task-queue locks at all. We'll only try to get
1069                 * the runqueue lock when things look like they will
1070                 * work out!
1071                 */
1072                rq = task_rq(p);
1073
1074                /*
1075                 * If the task is actively running on another CPU
1076                 * still, just relax and busy-wait without holding
1077                 * any locks.
1078                 *
1079                 * NOTE! Since we don't hold any locks, it's not
1080                 * even sure that "rq" stays as the right runqueue!
1081                 * But we don't care, since "task_running()" will
1082                 * return false if the runqueue has changed and p
1083                 * is actually now running somewhere else!
1084                 */
1085                while (task_running(rq, p)) {
1086                        if (match_state && unlikely(p->state != match_state))
1087                                return 0;
1088                        cpu_relax();
1089                }
1090
1091                /*
1092                 * Ok, time to look more closely! We need the rq
1093                 * lock now, to be *sure*. If we're wrong, we'll
1094                 * just go back and repeat.
1095                 */
1096                rq = task_rq_lock(p, &flags);
1097                trace_sched_wait_task(p);
1098                running = task_running(rq, p);
1099                on_rq = p->on_rq;
1100                ncsw = 0;
1101                if (!match_state || p->state == match_state)
1102                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1103                task_rq_unlock(rq, p, &flags);
1104
1105                /*
1106                 * If it changed from the expected state, bail out now.
1107                 */
1108                if (unlikely(!ncsw))
1109                        break;
1110
1111                /*
1112                 * Was it really running after all now that we
1113                 * checked with the proper locks actually held?
1114                 *
1115                 * Oops. Go back and try again..
1116                 */
1117                if (unlikely(running)) {
1118                        cpu_relax();
1119                        continue;
1120                }
1121
1122                /*
1123                 * It's not enough that it's not actively running,
1124                 * it must be off the runqueue _entirely_, and not
1125                 * preempted!
1126                 *
1127                 * So if it was still runnable (but just not actively
1128                 * running right now), it's preempted, and we should
1129                 * yield - it could be a while.
1130                 */
1131                if (unlikely(on_rq)) {
1132                        ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1133
1134                        set_current_state(TASK_UNINTERRUPTIBLE);
1135                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1136                        continue;
1137                }
1138
1139                /*
1140                 * Ahh, all good. It wasn't running, and it wasn't
1141                 * runnable, which means that it will never become
1142                 * running in the future either. We're all done!
1143                 */
1144                break;
1145        }
1146
1147        return ncsw;
1148}
1149
1150/***
1151 * kick_process - kick a running thread to enter/exit the kernel
1152 * @p: the to-be-kicked thread
1153 *
1154 * Cause a process which is running on another CPU to enter
1155 * kernel-mode, without any delay. (to get signals handled.)
1156 *
1157 * NOTE: this function doesn't have to take the runqueue lock,
1158 * because all it wants to ensure is that the remote task enters
1159 * the kernel. If the IPI races and the task has been migrated
1160 * to another CPU then no harm is done and the purpose has been
1161 * achieved as well.
1162 */
1163void kick_process(struct task_struct *p)
1164{
1165        int cpu;
1166
1167        preempt_disable();
1168        cpu = task_cpu(p);
1169        if ((cpu != smp_processor_id()) && task_curr(p))
1170                smp_send_reschedule(cpu);
1171        preempt_enable();
1172}
1173EXPORT_SYMBOL_GPL(kick_process);
1174#endif /* CONFIG_SMP */
1175
1176#ifdef CONFIG_SMP
1177/*
1178 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1179 */
1180static int select_fallback_rq(int cpu, struct task_struct *p)
1181{
1182        int nid = cpu_to_node(cpu);
1183        const struct cpumask *nodemask = NULL;
1184        enum { cpuset, possible, fail } state = cpuset;
1185        int dest_cpu;
1186
1187        /*
1188         * If the node that the cpu is on has been offlined, cpu_to_node()
1189         * will return -1. There is no cpu on the node, and we should
1190         * select the cpu on the other node.
1191         */
1192        if (nid != -1) {
1193                nodemask = cpumask_of_node(nid);
1194
1195                /* Look for allowed, online CPU in same node. */
1196                for_each_cpu(dest_cpu, nodemask) {
1197                        if (!cpu_online(dest_cpu))
1198                                continue;
1199                        if (!cpu_active(dest_cpu))
1200                                continue;
1201                        if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1202                                return dest_cpu;
1203                }
1204        }
1205
1206        for (;;) {
1207                /* Any allowed, online CPU? */
1208                for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1209                        if (!cpu_online(dest_cpu))
1210                                continue;
1211                        if (!cpu_active(dest_cpu))
1212                                continue;
1213                        goto out;
1214                }
1215
1216                switch (state) {
1217                case cpuset:
1218                        /* No more Mr. Nice Guy. */
1219                        cpuset_cpus_allowed_fallback(p);
1220                        state = possible;
1221                        break;
1222
1223                case possible:
1224                        do_set_cpus_allowed(p, cpu_possible_mask);
1225                        state = fail;
1226                        break;
1227
1228                case fail:
1229                        BUG();
1230                        break;
1231                }
1232        }
1233
1234out:
1235        if (state != cpuset) {
1236                /*
1237                 * Don't tell them about moving exiting tasks or
1238                 * kernel threads (both mm NULL), since they never
1239                 * leave kernel.
1240                 */
1241                if (p->mm && printk_ratelimit()) {
1242                        printk_sched("process %d (%s) no longer affine to cpu%d\n",
1243                                        task_pid_nr(p), p->comm, cpu);
1244                }
1245        }
1246
1247        return dest_cpu;
1248}
1249
1250/*
1251 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1252 */
1253static inline
1254int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1255{
1256        int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1257
1258        /*
1259         * In order not to call set_task_cpu() on a blocking task we need
1260         * to rely on ttwu() to place the task on a valid ->cpus_allowed
1261         * cpu.
1262         *
1263         * Since this is common to all placement strategies, this lives here.
1264         *
1265         * [ this allows ->select_task() to simply return task_cpu(p) and
1266         *   not worry about this generic constraint ]
1267         */
1268        if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1269                     !cpu_online(cpu)))
1270                cpu = select_fallback_rq(task_cpu(p), p);
1271
1272        return cpu;
1273}
1274
1275static void update_avg(u64 *avg, u64 sample)
1276{
1277        s64 diff = sample - *avg;
1278        *avg += diff >> 3;
1279}
1280#endif
1281
1282static void
1283ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1284{
1285#ifdef CONFIG_SCHEDSTATS
1286        struct rq *rq = this_rq();
1287
1288#ifdef CONFIG_SMP
1289        int this_cpu = smp_processor_id();
1290
1291        if (cpu == this_cpu) {
1292                schedstat_inc(rq, ttwu_local);
1293                schedstat_inc(p, se.statistics.nr_wakeups_local);
1294        } else {
1295                struct sched_domain *sd;
1296
1297                schedstat_inc(p, se.statistics.nr_wakeups_remote);
1298                rcu_read_lock();
1299                for_each_domain(this_cpu, sd) {
1300                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1301                                schedstat_inc(sd, ttwu_wake_remote);
1302                                break;
1303                        }
1304                }
1305                rcu_read_unlock();
1306        }
1307
1308        if (wake_flags & WF_MIGRATED)
1309                schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1310
1311#endif /* CONFIG_SMP */
1312
1313        schedstat_inc(rq, ttwu_count);
1314        schedstat_inc(p, se.statistics.nr_wakeups);
1315
1316        if (wake_flags & WF_SYNC)
1317                schedstat_inc(p, se.statistics.nr_wakeups_sync);
1318
1319#endif /* CONFIG_SCHEDSTATS */
1320}
1321
1322static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1323{
1324        activate_task(rq, p, en_flags);
1325        p->on_rq = 1;
1326
1327        /* if a worker is waking up, notify workqueue */
1328        if (p->flags & PF_WQ_WORKER)
1329                wq_worker_waking_up(p, cpu_of(rq));
1330}
1331
1332/*
1333 * Mark the task runnable and perform wakeup-preemption.
1334 */
1335static void
1336ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1337{
1338        check_preempt_curr(rq, p, wake_flags);
1339        trace_sched_wakeup(p, true);
1340
1341        p->state = TASK_RUNNING;
1342#ifdef CONFIG_SMP
1343        if (p->sched_class->task_woken)
1344                p->sched_class->task_woken(rq, p);
1345
1346        if (rq->idle_stamp) {
1347                u64 delta = rq_clock(rq) - rq->idle_stamp;
1348                u64 max = 2*sysctl_sched_migration_cost;
1349
1350                if (delta > max)
1351                        rq->avg_idle = max;
1352                else
1353                        update_avg(&rq->avg_idle, delta);
1354                rq->idle_stamp = 0;
1355        }
1356#endif
1357}
1358
1359static void
1360ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1361{
1362#ifdef CONFIG_SMP
1363        if (p->sched_contributes_to_load)
1364                rq->nr_uninterruptible--;
1365#endif
1366
1367        ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1368        ttwu_do_wakeup(rq, p, wake_flags);
1369}
1370
1371/*
1372 * Called in case the task @p isn't fully descheduled from its runqueue,
1373 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1374 * since all we need to do is flip p->state to TASK_RUNNING, since
1375 * the task is still ->on_rq.
1376 */
1377static int ttwu_remote(struct task_struct *p, int wake_flags)
1378{
1379        struct rq *rq;
1380        int ret = 0;
1381
1382        rq = __task_rq_lock(p);
1383        if (p->on_rq) {
1384                /* check_preempt_curr() may use rq clock */
1385                update_rq_clock(rq);
1386                ttwu_do_wakeup(rq, p, wake_flags);
1387                ret = 1;
1388        }
1389        __task_rq_unlock(rq);
1390
1391        return ret;
1392}
1393
1394#ifdef CONFIG_SMP
1395static void sched_ttwu_pending(void)
1396{
1397        struct rq *rq = this_rq();
1398        struct llist_node *llist = llist_del_all(&rq->wake_list);
1399        struct task_struct *p;
1400
1401        raw_spin_lock(&rq->lock);
1402
1403        while (llist) {
1404                p = llist_entry(llist, struct task_struct, wake_entry);
1405                llist = llist_next(llist);
1406                ttwu_do_activate(rq, p, 0);
1407        }
1408
1409        raw_spin_unlock(&rq->lock);
1410}
1411
1412void scheduler_ipi(void)
1413{
1414        if (llist_empty(&this_rq()->wake_list)
1415                        && !tick_nohz_full_cpu(smp_processor_id())
1416                        && !got_nohz_idle_kick())
1417                return;
1418
1419        /*
1420         * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1421         * traditionally all their work was done from the interrupt return
1422         * path. Now that we actually do some work, we need to make sure
1423         * we do call them.
1424         *
1425         * Some archs already do call them, luckily irq_enter/exit nest
1426         * properly.
1427         *
1428         * Arguably we should visit all archs and update all handlers,
1429         * however a fair share of IPIs are still resched only so this would
1430         * somewhat pessimize the simple resched case.
1431         */
1432        irq_enter();
1433        tick_nohz_full_check();
1434        sched_ttwu_pending();
1435
1436        /*
1437         * Check if someone kicked us for doing the nohz idle load balance.
1438         */
1439        if (unlikely(got_nohz_idle_kick())) {
1440                this_rq()->idle_balance = 1;
1441                raise_softirq_irqoff(SCHED_SOFTIRQ);
1442        }
1443        irq_exit();
1444}
1445
1446static void ttwu_queue_remote(struct task_struct *p, int cpu)
1447{
1448        if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1449                smp_send_reschedule(cpu);
1450}
1451
1452bool cpus_share_cache(int this_cpu, int that_cpu)
1453{
1454        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1455}
1456#endif /* CONFIG_SMP */
1457
1458static void ttwu_queue(struct task_struct *p, int cpu)
1459{
1460        struct rq *rq = cpu_rq(cpu);
1461
1462#if defined(CONFIG_SMP)
1463        if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1464                sched_clock_cpu(cpu); /* sync clocks x-cpu */
1465                ttwu_queue_remote(p, cpu);
1466                return;
1467        }
1468#endif
1469
1470        raw_spin_lock(&rq->lock);
1471        ttwu_do_activate(rq, p, 0);
1472        raw_spin_unlock(&rq->lock);
1473}
1474
1475/**
1476 * try_to_wake_up - wake up a thread
1477 * @p: the thread to be awakened
1478 * @state: the mask of task states that can be woken
1479 * @wake_flags: wake modifier flags (WF_*)
1480 *
1481 * Put it on the run-queue if it's not already there. The "current"
1482 * thread is always on the run-queue (except when the actual
1483 * re-schedule is in progress), and as such you're allowed to do
1484 * the simpler "current->state = TASK_RUNNING" to mark yourself
1485 * runnable without the overhead of this.
1486 *
1487 * Return: %true if @p was woken up, %false if it was already running.
1488 * or @state didn't match @p's state.
1489 */
1490static int
1491try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1492{
1493        unsigned long flags;
1494        int cpu, success = 0;
1495
1496        /*
1497         * If we are going to wake up a thread waiting for CONDITION we
1498         * need to ensure that CONDITION=1 done by the caller can not be
1499         * reordered with p->state check below. This pairs with mb() in
1500         * set_current_state() the waiting thread does.
1501         */
1502        smp_mb__before_spinlock();
1503        raw_spin_lock_irqsave(&p->pi_lock, flags);
1504        if (!(p->state & state))
1505                goto out;
1506
1507        success = 1; /* we're going to change ->state */
1508        cpu = task_cpu(p);
1509
1510        if (p->on_rq && ttwu_remote(p, wake_flags))
1511                goto stat;
1512
1513#ifdef CONFIG_SMP
1514        /*
1515         * If the owning (remote) cpu is still in the middle of schedule() with
1516         * this task as prev, wait until its done referencing the task.
1517         */
1518        while (p->on_cpu)
1519                cpu_relax();
1520        /*
1521         * Pairs with the smp_wmb() in finish_lock_switch().
1522         */
1523        smp_rmb();
1524
1525        p->sched_contributes_to_load = !!task_contributes_to_load(p);
1526        p->state = TASK_WAKING;
1527
1528        if (p->sched_class->task_waking)
1529                p->sched_class->task_waking(p);
1530
1531        cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1532        if (task_cpu(p) != cpu) {
1533                wake_flags |= WF_MIGRATED;
1534                set_task_cpu(p, cpu);
1535        }
1536#endif /* CONFIG_SMP */
1537
1538        ttwu_queue(p, cpu);
1539stat:
1540        ttwu_stat(p, cpu, wake_flags);
1541out:
1542        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1543
1544        return success;
1545}
1546
1547/**
1548 * try_to_wake_up_local - try to wake up a local task with rq lock held
1549 * @p: the thread to be awakened
1550 *
1551 * Put @p on the run-queue if it's not already there. The caller must
1552 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1553 * the current task.
1554 */
1555static void try_to_wake_up_local(struct task_struct *p)
1556{
1557        struct rq *rq = task_rq(p);
1558
1559        if (WARN_ON_ONCE(rq != this_rq()) ||
1560            WARN_ON_ONCE(p == current))
1561                return;
1562
1563        lockdep_assert_held(&rq->lock);
1564
1565        if (!raw_spin_trylock(&p->pi_lock)) {
1566                raw_spin_unlock(&rq->lock);
1567                raw_spin_lock(&p->pi_lock);
1568                raw_spin_lock(&rq->lock);
1569        }
1570
1571        if (!(p->state & TASK_NORMAL))
1572                goto out;
1573
1574        if (!p->on_rq)
1575                ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1576
1577        ttwu_do_wakeup(rq, p, 0);
1578        ttwu_stat(p, smp_processor_id(), 0);
1579out:
1580        raw_spin_unlock(&p->pi_lock);
1581}
1582
1583/**
1584 * wake_up_process - Wake up a specific process
1585 * @p: The process to be woken up.
1586 *
1587 * Attempt to wake up the nominated process and move it to the set of runnable
1588 * processes.
1589 *
1590 * Return: 1 if the process was woken up, 0 if it was already running.
1591 *
1592 * It may be assumed that this function implies a write memory barrier before
1593 * changing the task state if and only if any tasks are woken up.
1594 */
1595int wake_up_process(struct task_struct *p)
1596{
1597        WARN_ON(task_is_stopped_or_traced(p));
1598        return try_to_wake_up(p, TASK_NORMAL, 0);
1599}
1600EXPORT_SYMBOL(wake_up_process);
1601
1602int wake_up_state(struct task_struct *p, unsigned int state)
1603{
1604        return try_to_wake_up(p, state, 0);
1605}
1606
1607/*
1608 * Perform scheduler related setup for a newly forked process p.
1609 * p is forked by current.
1610 *
1611 * __sched_fork() is basic setup used by init_idle() too:
1612 */
1613static void __sched_fork(struct task_struct *p)
1614{
1615        p->on_rq                        = 0;
1616
1617        p->se.on_rq                     = 0;
1618        p->se.exec_start                = 0;
1619        p->se.sum_exec_runtime          = 0;
1620        p->se.prev_sum_exec_runtime     = 0;
1621        p->se.nr_migrations             = 0;
1622        p->se.vruntime                  = 0;
1623        INIT_LIST_HEAD(&p->se.group_node);
1624
1625#ifdef CONFIG_SCHEDSTATS
1626        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1627#endif
1628
1629        INIT_LIST_HEAD(&p->rt.run_list);
1630
1631#ifdef CONFIG_PREEMPT_NOTIFIERS
1632        INIT_HLIST_HEAD(&p->preempt_notifiers);
1633#endif
1634
1635#ifdef CONFIG_NUMA_BALANCING
1636        if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1637                p->mm->numa_next_scan = jiffies;
1638                p->mm->numa_next_reset = jiffies;
1639                p->mm->numa_scan_seq = 0;
1640        }
1641
1642        p->node_stamp = 0ULL;
1643        p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1644        p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1645        p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1646        p->numa_work.next = &p->numa_work;
1647#endif /* CONFIG_NUMA_BALANCING */
1648}
1649
1650#ifdef CONFIG_NUMA_BALANCING
1651#ifdef CONFIG_SCHED_DEBUG
1652void set_numabalancing_state(bool enabled)
1653{
1654        if (enabled)
1655                sched_feat_set("NUMA");
1656        else
1657                sched_feat_set("NO_NUMA");
1658}
1659#else
1660__read_mostly bool numabalancing_enabled;
1661
1662void set_numabalancing_state(bool enabled)
1663{
1664        numabalancing_enabled = enabled;
1665}
1666#endif /* CONFIG_SCHED_DEBUG */
1667#endif /* CONFIG_NUMA_BALANCING */
1668
1669/*
1670 * fork()/clone()-time setup:
1671 */
1672void sched_fork(struct task_struct *p)
1673{
1674        unsigned long flags;
1675        int cpu = get_cpu();
1676
1677        __sched_fork(p);
1678        /*
1679         * We mark the process as running here. This guarantees that
1680         * nobody will actually run it, and a signal or other external
1681         * event cannot wake it up and insert it on the runqueue either.
1682         */
1683        p->state = TASK_RUNNING;
1684
1685        /*
1686         * Make sure we do not leak PI boosting priority to the child.
1687         */
1688        p->prio = current->normal_prio;
1689
1690        /*
1691         * Revert to default priority/policy on fork if requested.
1692         */
1693        if (unlikely(p->sched_reset_on_fork)) {
1694                if (task_has_rt_policy(p)) {
1695                        p->policy = SCHED_NORMAL;
1696                        p->static_prio = NICE_TO_PRIO(0);
1697                        p->rt_priority = 0;
1698                } else if (PRIO_TO_NICE(p->static_prio) < 0)
1699                        p->static_prio = NICE_TO_PRIO(0);
1700
1701                p->prio = p->normal_prio = __normal_prio(p);
1702                set_load_weight(p);
1703
1704                /*
1705                 * We don't need the reset flag anymore after the fork. It has
1706                 * fulfilled its duty:
1707                 */
1708                p->sched_reset_on_fork = 0;
1709        }
1710
1711        if (!rt_prio(p->prio))
1712                p->sched_class = &fair_sched_class;
1713
1714        if (p->sched_class->task_fork)
1715                p->sched_class->task_fork(p);
1716
1717        /*
1718         * The child is not yet in the pid-hash so no cgroup attach races,
1719         * and the cgroup is pinned to this child due to cgroup_fork()
1720         * is ran before sched_fork().
1721         *
1722         * Silence PROVE_RCU.
1723         */
1724        raw_spin_lock_irqsave(&p->pi_lock, flags);
1725        set_task_cpu(p, cpu);
1726        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1727
1728#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1729        if (likely(sched_info_on()))
1730                memset(&p->sched_info, 0, sizeof(p->sched_info));
1731#endif
1732#if defined(CONFIG_SMP)
1733        p->on_cpu = 0;
1734#endif
1735#ifdef CONFIG_PREEMPT_COUNT
1736        /* Want to start with kernel preemption disabled. */
1737        task_thread_info(p)->preempt_count = 1;
1738#endif
1739#ifdef CONFIG_SMP
1740        plist_node_init(&p->pushable_tasks, MAX_PRIO);
1741#endif
1742
1743        put_cpu();
1744}
1745
1746/*
1747 * wake_up_new_task - wake up a newly created task for the first time.
1748 *
1749 * This function will do some initial scheduler statistics housekeeping
1750 * that must be done for every newly created context, then puts the task
1751 * on the runqueue and wakes it.
1752 */
1753void wake_up_new_task(struct task_struct *p)
1754{
1755        unsigned long flags;
1756        struct rq *rq;
1757
1758        raw_spin_lock_irqsave(&p->pi_lock, flags);
1759#ifdef CONFIG_SMP
1760        /*
1761         * Fork balancing, do it here and not earlier because:
1762         *  - cpus_allowed can change in the fork path
1763         *  - any previously selected cpu might disappear through hotplug
1764         */
1765        set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1766#endif
1767
1768        /* Initialize new task's runnable average */
1769        init_task_runnable_average(p);
1770        rq = __task_rq_lock(p);
1771        activate_task(rq, p, 0);
1772        p->on_rq = 1;
1773        trace_sched_wakeup_new(p, true);
1774        check_preempt_curr(rq, p, WF_FORK);
1775#ifdef CONFIG_SMP
1776        if (p->sched_class->task_woken)
1777                p->sched_class->task_woken(rq, p);
1778#endif
1779        task_rq_unlock(rq, p, &flags);
1780}
1781
1782#ifdef CONFIG_PREEMPT_NOTIFIERS
1783
1784/**
1785 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1786 * @notifier: notifier struct to register
1787 */
1788void preempt_notifier_register(struct preempt_notifier *notifier)
1789{
1790        hlist_add_head(&notifier->link, &current->preempt_notifiers);
1791}
1792EXPORT_SYMBOL_GPL(preempt_notifier_register);
1793
1794/**
1795 * preempt_notifier_unregister - no longer interested in preemption notifications
1796 * @notifier: notifier struct to unregister
1797 *
1798 * This is safe to call from within a preemption notifier.
1799 */
1800void preempt_notifier_unregister(struct preempt_notifier *notifier)
1801{
1802        hlist_del(&notifier->link);
1803}
1804EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1805
1806static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1807{
1808        struct preempt_notifier *notifier;
1809
1810        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1811                notifier->ops->sched_in(notifier, raw_smp_processor_id());
1812}
1813
1814static void
1815fire_sched_out_preempt_notifiers(struct task_struct *curr,
1816                                 struct task_struct *next)
1817{
1818        struct preempt_notifier *notifier;
1819
1820        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1821                notifier->ops->sched_out(notifier, next);
1822}
1823
1824#else /* !CONFIG_PREEMPT_NOTIFIERS */
1825
1826static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1827{
1828}
1829
1830static void
1831fire_sched_out_preempt_notifiers(struct task_struct *curr,
1832                                 struct task_struct *next)
1833{
1834}
1835
1836#endif /* CONFIG_PREEMPT_NOTIFIERS */
1837
1838/**
1839 * prepare_task_switch - prepare to switch tasks
1840 * @rq: the runqueue preparing to switch
1841 * @prev: the current task that is being switched out
1842 * @next: the task we are going to switch to.
1843 *
1844 * This is called with the rq lock held and interrupts off. It must
1845 * be paired with a subsequent finish_task_switch after the context
1846 * switch.
1847 *
1848 * prepare_task_switch sets up locking and calls architecture specific
1849 * hooks.
1850 */
1851static inline void
1852prepare_task_switch(struct rq *rq, struct task_struct *prev,
1853                    struct task_struct *next)
1854{
1855        trace_sched_switch(prev, next);
1856        sched_info_switch(prev, next);
1857        perf_event_task_sched_out(prev, next);
1858        fire_sched_out_preempt_notifiers(prev, next);
1859        prepare_lock_switch(rq, next);
1860        prepare_arch_switch(next);
1861}
1862
1863/**
1864 * finish_task_switch - clean up after a task-switch
1865 * @rq: runqueue associated with task-switch
1866 * @prev: the thread we just switched away from.
1867 *
1868 * finish_task_switch must be called after the context switch, paired
1869 * with a prepare_task_switch call before the context switch.
1870 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1871 * and do any other architecture-specific cleanup actions.
1872 *
1873 * Note that we may have delayed dropping an mm in context_switch(). If
1874 * so, we finish that here outside of the runqueue lock. (Doing it
1875 * with the lock held can cause deadlocks; see schedule() for
1876 * details.)
1877 */
1878static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1879        __releases(rq->lock)
1880{
1881        struct mm_struct *mm = rq->prev_mm;
1882        long prev_state;
1883
1884        rq->prev_mm = NULL;
1885
1886        /*
1887         * A task struct has one reference for the use as "current".
1888         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1889         * schedule one last time. The schedule call will never return, and
1890         * the scheduled task must drop that reference.
1891         * The test for TASK_DEAD must occur while the runqueue locks are
1892         * still held, otherwise prev could be scheduled on another cpu, die
1893         * there before we look at prev->state, and then the reference would
1894         * be dropped twice.
1895         *              Manfred Spraul <manfred@colorfullife.com>
1896         */
1897        prev_state = prev->state;
1898        vtime_task_switch(prev);
1899        finish_arch_switch(prev);
1900        perf_event_task_sched_in(prev, current);
1901        finish_lock_switch(rq, prev);
1902        finish_arch_post_lock_switch();
1903
1904        fire_sched_in_preempt_notifiers(current);
1905        if (mm)
1906                mmdrop(mm);
1907        if (unlikely(prev_state == TASK_DEAD)) {
1908                /*
1909                 * Remove function-return probe instances associated with this
1910                 * task and put them back on the free list.
1911                 */
1912                kprobe_flush_task(prev);
1913                put_task_struct(prev);
1914        }
1915
1916        tick_nohz_task_switch(current);
1917}
1918
1919#ifdef CONFIG_SMP
1920
1921/* assumes rq->lock is held */
1922static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1923{
1924        if (prev->sched_class->pre_schedule)
1925                prev->sched_class->pre_schedule(rq, prev);
1926}
1927
1928/* rq->lock is NOT held, but preemption is disabled */
1929static inline void post_schedule(struct rq *rq)
1930{
1931        if (rq->post_schedule) {
1932                unsigned long flags;
1933
1934                raw_spin_lock_irqsave(&rq->lock, flags);
1935                if (rq->curr->sched_class->post_schedule)
1936                        rq->curr->sched_class->post_schedule(rq);
1937                raw_spin_unlock_irqrestore(&rq->lock, flags);
1938
1939                rq->post_schedule = 0;
1940        }
1941}
1942
1943#else
1944
1945static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1946{
1947}
1948
1949static inline void post_schedule(struct rq *rq)
1950{
1951}
1952
1953#endif
1954
1955/**
1956 * schedule_tail - first thing a freshly forked thread must call.
1957 * @prev: the thread we just switched away from.
1958 */
1959asmlinkage void schedule_tail(struct task_struct *prev)
1960        __releases(rq->lock)
1961{
1962        struct rq *rq = this_rq();
1963
1964        finish_task_switch(rq, prev);
1965
1966        /*
1967         * FIXME: do we need to worry about rq being invalidated by the
1968         * task_switch?
1969         */
1970        post_schedule(rq);
1971
1972#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1973        /* In this case, finish_task_switch does not reenable preemption */
1974        preempt_enable();
1975#endif
1976        if (current->set_child_tid)
1977                put_user(task_pid_vnr(current), current->set_child_tid);
1978}
1979
1980/*
1981 * context_switch - switch to the new MM and the new
1982 * thread's register state.
1983 */
1984static inline void
1985context_switch(struct rq *rq, struct task_struct *prev,
1986               struct task_struct *next)
1987{
1988        struct mm_struct *mm, *oldmm;
1989
1990        prepare_task_switch(rq, prev, next);
1991
1992        mm = next->mm;
1993        oldmm = prev->active_mm;
1994        /*
1995         * For paravirt, this is coupled with an exit in switch_to to
1996         * combine the page table reload and the switch backend into
1997         * one hypercall.
1998         */
1999        arch_start_context_switch(prev);
2000
2001        if (!mm) {
2002                next->active_mm = oldmm;
2003                atomic_inc(&oldmm->mm_count);
2004                enter_lazy_tlb(oldmm, next);
2005        } else
2006                switch_mm(oldmm, mm, next);
2007
2008        if (!prev->mm) {
2009                prev->active_mm = NULL;
2010                rq->prev_mm = oldmm;
2011        }
2012        /*
2013         * Since the runqueue lock will be released by the next
2014         * task (which is an invalid locking op but in the case
2015         * of the scheduler it's an obvious special-case), so we
2016         * do an early lockdep release here:
2017         */
2018#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2019        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2020#endif
2021
2022        context_tracking_task_switch(prev, next);
2023        /* Here we just switch the register state and the stack. */
2024        switch_to(prev, next, prev);
2025
2026        barrier();
2027        /*
2028         * this_rq must be evaluated again because prev may have moved
2029         * CPUs since it called schedule(), thus the 'rq' on its stack
2030         * frame will be invalid.
2031         */
2032        finish_task_switch(this_rq(), prev);
2033}
2034
2035/*
2036 * nr_running and nr_context_switches:
2037 *
2038 * externally visible scheduler statistics: current number of runnable
2039 * threads, total number of context switches performed since bootup.
2040 */
2041unsigned long nr_running(void)
2042{
2043        unsigned long i, sum = 0;
2044
2045        for_each_online_cpu(i)
2046                sum += cpu_rq(i)->nr_running;
2047
2048        return sum;
2049}
2050
2051unsigned long long nr_context_switches(void)
2052{
2053        int i;
2054        unsigned long long sum = 0;
2055
2056        for_each_possible_cpu(i)
2057                sum += cpu_rq(i)->nr_switches;
2058
2059        return sum;
2060}
2061
2062unsigned long nr_iowait(void)
2063{
2064        unsigned long i, sum = 0;
2065
2066        for_each_possible_cpu(i)
2067                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2068
2069        return sum;
2070}
2071
2072unsigned long nr_iowait_cpu(int cpu)
2073{
2074        struct rq *this = cpu_rq(cpu);
2075        return atomic_read(&this->nr_iowait);
2076}
2077
2078#ifdef CONFIG_SMP
2079
2080/*
2081 * sched_exec - execve() is a valuable balancing opportunity, because at
2082 * this point the task has the smallest effective memory and cache footprint.
2083 */
2084void sched_exec(void)
2085{
2086        struct task_struct *p = current;
2087        unsigned long flags;
2088        int dest_cpu;
2089
2090        raw_spin_lock_irqsave(&p->pi_lock, flags);
2091        dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2092        if (dest_cpu == smp_processor_id())
2093                goto unlock;
2094
2095        if (likely(cpu_active(dest_cpu))) {
2096                struct migration_arg arg = { p, dest_cpu };
2097
2098                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2099                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2100                return;
2101        }
2102unlock:
2103        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2104}
2105
2106#endif
2107
2108DEFINE_PER_CPU(struct kernel_stat, kstat);
2109DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2110
2111EXPORT_PER_CPU_SYMBOL(kstat);
2112EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2113
2114/*
2115 * Return any ns on the sched_clock that have not yet been accounted in
2116 * @p in case that task is currently running.
2117 *
2118 * Called with task_rq_lock() held on @rq.
2119 */
2120static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2121{
2122        u64 ns = 0;
2123
2124        if (task_current(rq, p)) {
2125                update_rq_clock(rq);
2126                ns = rq_clock_task(rq) - p->se.exec_start;
2127                if ((s64)ns < 0)
2128                        ns = 0;
2129        }
2130
2131        return ns;
2132}
2133
2134unsigned long long task_delta_exec(struct task_struct *p)
2135{
2136        unsigned long flags;
2137        struct rq *rq;
2138        u64 ns = 0;
2139
2140        rq = task_rq_lock(p, &flags);
2141        ns = do_task_delta_exec(p, rq);
2142        task_rq_unlock(rq, p, &flags);
2143
2144        return ns;
2145}
2146
2147/*
2148 * Return accounted runtime for the task.
2149 * In case the task is currently running, return the runtime plus current's
2150 * pending runtime that have not been accounted yet.
2151 */
2152unsigned long long task_sched_runtime(struct task_struct *p)
2153{
2154        unsigned long flags;
2155        struct rq *rq;
2156        u64 ns = 0;
2157
2158        rq = task_rq_lock(p, &flags);
2159        ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2160        task_rq_unlock(rq, p, &flags);
2161
2162        return ns;
2163}
2164
2165/*
2166 * This function gets called by the timer code, with HZ frequency.
2167 * We call it with interrupts disabled.
2168 */
2169void scheduler_tick(void)
2170{
2171        int cpu = smp_processor_id();
2172        struct rq *rq = cpu_rq(cpu);
2173        struct task_struct *curr = rq->curr;
2174
2175        sched_clock_tick();
2176
2177        raw_spin_lock(&rq->lock);
2178        update_rq_clock(rq);
2179        curr->sched_class->task_tick(rq, curr, 0);
2180        update_cpu_load_active(rq);
2181        raw_spin_unlock(&rq->lock);
2182
2183        perf_event_task_tick();
2184
2185#ifdef CONFIG_SMP
2186        rq->idle_balance = idle_cpu(cpu);
2187        trigger_load_balance(rq, cpu);
2188#endif
2189        rq_last_tick_reset(rq);
2190}
2191
2192#ifdef CONFIG_NO_HZ_FULL
2193/**
2194 * scheduler_tick_max_deferment
2195 *
2196 * Keep at least one tick per second when a single
2197 * active task is running because the scheduler doesn't
2198 * yet completely support full dynticks environment.
2199 *
2200 * This makes sure that uptime, CFS vruntime, load
2201 * balancing, etc... continue to move forward, even
2202 * with a very low granularity.
2203 *
2204 * Return: Maximum deferment in nanoseconds.
2205 */
2206u64 scheduler_tick_max_deferment(void)
2207{
2208        struct rq *rq = this_rq();
2209        unsigned long next, now = ACCESS_ONCE(jiffies);
2210
2211        next = rq->last_sched_tick + HZ;
2212
2213        if (time_before_eq(next, now))
2214                return 0;
2215
2216        return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2217}
2218#endif
2219
2220notrace unsigned long get_parent_ip(unsigned long addr)
2221{
2222        if (in_lock_functions(addr)) {
2223                addr = CALLER_ADDR2;
2224                if (in_lock_functions(addr))
2225                        addr = CALLER_ADDR3;
2226        }
2227        return addr;
2228}
2229
2230#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2231                                defined(CONFIG_PREEMPT_TRACER))
2232
2233void __kprobes add_preempt_count(int val)
2234{
2235#ifdef CONFIG_DEBUG_PREEMPT
2236        /*
2237         * Underflow?
2238         */
2239        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2240                return;
2241#endif
2242        preempt_count() += val;
2243#ifdef CONFIG_DEBUG_PREEMPT
2244        /*
2245         * Spinlock count overflowing soon?
2246         */
2247        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2248                                PREEMPT_MASK - 10);
2249#endif
2250        if (preempt_count() == val)
2251                trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2252}
2253EXPORT_SYMBOL(add_preempt_count);
2254
2255void __kprobes sub_preempt_count(int val)
2256{
2257#ifdef CONFIG_DEBUG_PREEMPT
2258        /*
2259         * Underflow?
2260         */
2261        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2262                return;
2263        /*
2264         * Is the spinlock portion underflowing?
2265         */
2266        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2267                        !(preempt_count() & PREEMPT_MASK)))
2268                return;
2269#endif
2270
2271        if (preempt_count() == val)
2272                trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2273        preempt_count() -= val;
2274}
2275EXPORT_SYMBOL(sub_preempt_count);
2276
2277#endif
2278
2279/*
2280 * Print scheduling while atomic bug:
2281 */
2282static noinline void __schedule_bug(struct task_struct *prev)
2283{
2284        if (oops_in_progress)
2285                return;
2286
2287        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2288                prev->comm, prev->pid, preempt_count());
2289
2290        debug_show_held_locks(prev);
2291        print_modules();
2292        if (irqs_disabled())
2293                print_irqtrace_events(prev);
2294        dump_stack();
2295        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2296}
2297
2298/*
2299 * Various schedule()-time debugging checks and statistics:
2300 */
2301static inline void schedule_debug(struct task_struct *prev)
2302{
2303        /*
2304         * Test if we are atomic. Since do_exit() needs to call into
2305         * schedule() atomically, we ignore that path for now.
2306         * Otherwise, whine if we are scheduling when we should not be.
2307         */
2308        if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2309                __schedule_bug(prev);
2310        rcu_sleep_check();
2311
2312        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2313
2314        schedstat_inc(this_rq(), sched_count);
2315}
2316
2317static void put_prev_task(struct rq *rq, struct task_struct *prev)
2318{
2319        if (prev->on_rq || rq->skip_clock_update < 0)
2320                update_rq_clock(rq);
2321        prev->sched_class->put_prev_task(rq, prev);
2322}
2323
2324/*
2325 * Pick up the highest-prio task:
2326 */
2327static inline struct task_struct *
2328pick_next_task(struct rq *rq)
2329{
2330        const struct sched_class *class;
2331        struct task_struct *p;
2332
2333        /*
2334         * Optimization: we know that if all tasks are in
2335         * the fair class we can call that function directly:
2336         */
2337        if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2338                p = fair_sched_class.pick_next_task(rq);
2339                if (likely(p))
2340                        return p;
2341        }
2342
2343        for_each_class(class) {
2344                p = class->pick_next_task(rq);
2345                if (p)
2346                        return p;
2347        }
2348
2349        BUG(); /* the idle class will always have a runnable task */
2350}
2351
2352/*
2353 * __schedule() is the main scheduler function.
2354 *
2355 * The main means of driving the scheduler and thus entering this function are:
2356 *
2357 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2358 *
2359 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2360 *      paths. For example, see arch/x86/entry_64.S.
2361 *
2362 *      To drive preemption between tasks, the scheduler sets the flag in timer
2363 *      interrupt handler scheduler_tick().
2364 *
2365 *   3. Wakeups don't really cause entry into schedule(). They add a
2366 *      task to the run-queue and that's it.
2367 *
2368 *      Now, if the new task added to the run-queue preempts the current
2369 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2370 *      called on the nearest possible occasion:
2371 *
2372 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2373 *
2374 *         - in syscall or exception context, at the next outmost
2375 *           preempt_enable(). (this might be as soon as the wake_up()'s
2376 *           spin_unlock()!)
2377 *
2378 *         - in IRQ context, return from interrupt-handler to
2379 *           preemptible context
2380 *
2381 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2382 *         then at the next:
2383 *
2384 *          - cond_resched() call
2385 *          - explicit schedule() call
2386 *          - return from syscall or exception to user-space
2387 *          - return from interrupt-handler to user-space
2388 */
2389static void __sched __schedule(void)
2390{
2391        struct task_struct *prev, *next;
2392        unsigned long *switch_count;
2393        struct rq *rq;
2394        int cpu;
2395
2396need_resched:
2397        preempt_disable();
2398        cpu = smp_processor_id();
2399        rq = cpu_rq(cpu);
2400        rcu_note_context_switch(cpu);
2401        prev = rq->curr;
2402
2403        schedule_debug(prev);
2404
2405        if (sched_feat(HRTICK))
2406                hrtick_clear(rq);
2407
2408        /*
2409         * Make sure that signal_pending_state()->signal_pending() below
2410         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2411         * done by the caller to avoid the race with signal_wake_up().
2412         */
2413        smp_mb__before_spinlock();
2414        raw_spin_lock_irq(&rq->lock);
2415
2416        switch_count = &prev->nivcsw;
2417        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2418                if (unlikely(signal_pending_state(prev->state, prev))) {
2419                        prev->state = TASK_RUNNING;
2420                } else {
2421                        deactivate_task(rq, prev, DEQUEUE_SLEEP);
2422                        prev->on_rq = 0;
2423
2424                        /*
2425                         * If a worker went to sleep, notify and ask workqueue
2426                         * whether it wants to wake up a task to maintain
2427                         * concurrency.
2428                         */
2429                        if (prev->flags & PF_WQ_WORKER) {
2430                                struct task_struct *to_wakeup;
2431
2432                                to_wakeup = wq_worker_sleeping(prev, cpu);
2433                                if (to_wakeup)
2434                                        try_to_wake_up_local(to_wakeup);
2435                        }
2436                }
2437                switch_count = &prev->nvcsw;
2438        }
2439
2440        pre_schedule(rq, prev);
2441
2442        if (unlikely(!rq->nr_running))
2443                idle_balance(cpu, rq);
2444
2445        put_prev_task(rq, prev);
2446        next = pick_next_task(rq);
2447        clear_tsk_need_resched(prev);
2448        rq->skip_clock_update = 0;
2449
2450        if (likely(prev != next)) {
2451                rq->nr_switches++;
2452                rq->curr = next;
2453                ++*switch_count;
2454
2455                context_switch(rq, prev, next); /* unlocks the rq */
2456                /*
2457                 * The context switch have flipped the stack from under us
2458                 * and restored the local variables which were saved when
2459                 * this task called schedule() in the past. prev == current
2460                 * is still correct, but it can be moved to another cpu/rq.
2461                 */
2462                cpu = smp_processor_id();
2463                rq = cpu_rq(cpu);
2464        } else
2465                raw_spin_unlock_irq(&rq->lock);
2466
2467        post_schedule(rq);
2468
2469        sched_preempt_enable_no_resched();
2470        if (need_resched())
2471                goto need_resched;
2472}
2473
2474static inline void sched_submit_work(struct task_struct *tsk)
2475{
2476        if (!tsk->state || tsk_is_pi_blocked(tsk))
2477                return;
2478        /*
2479         * If we are going to sleep and we have plugged IO queued,
2480         * make sure to submit it to avoid deadlocks.
2481         */
2482        if (blk_needs_flush_plug(tsk))
2483                blk_schedule_flush_plug(tsk);
2484}
2485
2486asmlinkage void __sched schedule(void)
2487{
2488        struct task_struct *tsk = current;
2489
2490        sched_submit_work(tsk);
2491        __schedule();
2492}
2493EXPORT_SYMBOL(schedule);
2494
2495#ifdef CONFIG_CONTEXT_TRACKING
2496asmlinkage void __sched schedule_user(void)
2497{
2498        /*
2499         * If we come here after a random call to set_need_resched(),
2500         * or we have been woken up remotely but the IPI has not yet arrived,
2501         * we haven't yet exited the RCU idle mode. Do it here manually until
2502         * we find a better solution.
2503         */
2504        user_exit();
2505        schedule();
2506        user_enter();
2507}
2508#endif
2509
2510/**
2511 * schedule_preempt_disabled - called with preemption disabled
2512 *
2513 * Returns with preemption disabled. Note: preempt_count must be 1
2514 */
2515void __sched schedule_preempt_disabled(void)
2516{
2517        sched_preempt_enable_no_resched();
2518        schedule();
2519        preempt_disable();
2520}
2521
2522#ifdef CONFIG_PREEMPT
2523/*
2524 * this is the entry point to schedule() from in-kernel preemption
2525 * off of preempt_enable. Kernel preemptions off return from interrupt
2526 * occur there and call schedule directly.
2527 */
2528asmlinkage void __sched notrace preempt_schedule(void)
2529{
2530        struct thread_info *ti = current_thread_info();
2531
2532        /*
2533         * If there is a non-zero preempt_count or interrupts are disabled,
2534         * we do not want to preempt the current task. Just return..
2535         */
2536        if (likely(ti->preempt_count || irqs_disabled()))
2537                return;
2538
2539        do {
2540                add_preempt_count_notrace(PREEMPT_ACTIVE);
2541                __schedule();
2542                sub_preempt_count_notrace(PREEMPT_ACTIVE);
2543
2544                /*
2545                 * Check again in case we missed a preemption opportunity
2546                 * between schedule and now.
2547                 */
2548                barrier();
2549        } while (need_resched());
2550}
2551EXPORT_SYMBOL(preempt_schedule);
2552
2553/*
2554 * this is the entry point to schedule() from kernel preemption
2555 * off of irq context.
2556 * Note, that this is called and return with irqs disabled. This will
2557 * protect us against recursive calling from irq.
2558 */
2559asmlinkage void __sched preempt_schedule_irq(void)
2560{
2561        struct thread_info *ti = current_thread_info();
2562        enum ctx_state prev_state;
2563
2564        /* Catch callers which need to be fixed */
2565        BUG_ON(ti->preempt_count || !irqs_disabled());
2566
2567        prev_state = exception_enter();
2568
2569        do {
2570                add_preempt_count(PREEMPT_ACTIVE);
2571                local_irq_enable();
2572                __schedule();
2573                local_irq_disable();
2574                sub_preempt_count(PREEMPT_ACTIVE);
2575
2576                /*
2577                 * Check again in case we missed a preemption opportunity
2578                 * between schedule and now.
2579                 */
2580                barrier();
2581        } while (need_resched());
2582
2583        exception_exit(prev_state);
2584}
2585
2586#endif /* CONFIG_PREEMPT */
2587
2588int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2589                          void *key)
2590{
2591        return try_to_wake_up(curr->private, mode, wake_flags);
2592}
2593EXPORT_SYMBOL(default_wake_function);
2594
2595/*
2596 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2597 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2598 * number) then we wake all the non-exclusive tasks and one exclusive task.
2599 *
2600 * There are circumstances in which we can try to wake a task which has already
2601 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2602 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2603 */
2604static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2605                        int nr_exclusive, int wake_flags, void *key)
2606{
2607        wait_queue_t *curr, *next;
2608
2609        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2610                unsigned flags = curr->flags;
2611
2612                if (curr->func(curr, mode, wake_flags, key) &&
2613                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2614                        break;
2615        }
2616}
2617
2618/**
2619 * __wake_up - wake up threads blocked on a waitqueue.
2620 * @q: the waitqueue
2621 * @mode: which threads
2622 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2623 * @key: is directly passed to the wakeup function
2624 *
2625 * It may be assumed that this function implies a write memory barrier before
2626 * changing the task state if and only if any tasks are woken up.
2627 */
2628void __wake_up(wait_queue_head_t *q, unsigned int mode,
2629                        int nr_exclusive, void *key)
2630{
2631        unsigned long flags;
2632
2633        spin_lock_irqsave(&q->lock, flags);
2634        __wake_up_common(q, mode, nr_exclusive, 0, key);
2635        spin_unlock_irqrestore(&q->lock, flags);
2636}
2637EXPORT_SYMBOL(__wake_up);
2638
2639/*
2640 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2641 */
2642void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2643{
2644        __wake_up_common(q, mode, nr, 0, NULL);
2645}
2646EXPORT_SYMBOL_GPL(__wake_up_locked);
2647
2648void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2649{
2650        __wake_up_common(q, mode, 1, 0, key);
2651}
2652EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2653
2654/**
2655 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2656 * @q: the waitqueue
2657 * @mode: which threads
2658 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2659 * @key: opaque value to be passed to wakeup targets
2660 *
2661 * The sync wakeup differs that the waker knows that it will schedule
2662 * away soon, so while the target thread will be woken up, it will not
2663 * be migrated to another CPU - ie. the two threads are 'synchronized'
2664 * with each other. This can prevent needless bouncing between CPUs.
2665 *
2666 * On UP it can prevent extra preemption.
2667 *
2668 * It may be assumed that this function implies a write memory barrier before
2669 * changing the task state if and only if any tasks are woken up.
2670 */
2671void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2672                        int nr_exclusive, void *key)
2673{
2674        unsigned long flags;
2675        int wake_flags = WF_SYNC;
2676
2677        if (unlikely(!q))
2678                return;
2679
2680        if (unlikely(!nr_exclusive))
2681                wake_flags = 0;
2682
2683        spin_lock_irqsave(&q->lock, flags);
2684        __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2685        spin_unlock_irqrestore(&q->lock, flags);
2686}
2687EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2688
2689/*
2690 * __wake_up_sync - see __wake_up_sync_key()
2691 */
2692void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2693{
2694        __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2695}
2696EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
2697
2698/**
2699 * complete: - signals a single thread waiting on this completion
2700 * @x:  holds the state of this particular completion
2701 *
2702 * This will wake up a single thread waiting on this completion. Threads will be
2703 * awakened in the same order in which they were queued.
2704 *
2705 * See also complete_all(), wait_for_completion() and related routines.
2706 *
2707 * It may be assumed that this function implies a write memory barrier before
2708 * changing the task state if and only if any tasks are woken up.
2709 */
2710void complete(struct completion *x)
2711{
2712        unsigned long flags;
2713
2714        spin_lock_irqsave(&x->wait.lock, flags);
2715        x->done++;
2716        __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2717        spin_unlock_irqrestore(&x->wait.lock, flags);
2718}
2719EXPORT_SYMBOL(complete);
2720
2721/**
2722 * complete_all: - signals all threads waiting on this completion
2723 * @x:  holds the state of this particular completion
2724 *
2725 * This will wake up all threads waiting on this particular completion event.
2726 *
2727 * It may be assumed that this function implies a write memory barrier before
2728 * changing the task state if and only if any tasks are woken up.
2729 */
2730void complete_all(struct completion *x)
2731{
2732        unsigned long flags;
2733
2734        spin_lock_irqsave(&x->wait.lock, flags);
2735        x->done += UINT_MAX/2;
2736        __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2737        spin_unlock_irqrestore(&x->wait.lock, flags);
2738}
2739EXPORT_SYMBOL(complete_all);
2740
2741static inline long __sched
2742do_wait_for_common(struct completion *x,
2743                   long (*action)(long), long timeout, int state)
2744{
2745        if (!x->done) {
2746                DECLARE_WAITQUEUE(wait, current);
2747
2748                __add_wait_queue_tail_exclusive(&x->wait, &wait);
2749                do {
2750                        if (signal_pending_state(state, current)) {
2751                                timeout = -ERESTARTSYS;
2752                                break;
2753                        }
2754                        __set_current_state(state);
2755                        spin_unlock_irq(&x->wait.lock);
2756                        timeout = action(timeout);
2757                        spin_lock_irq(&x->wait.lock);
2758                } while (!x->done && timeout);
2759                __remove_wait_queue(&x->wait, &wait);
2760                if (!x->done)
2761                        return timeout;
2762        }
2763        x->done--;
2764        return timeout ?: 1;
2765}
2766
2767static inline long __sched
2768__wait_for_common(struct completion *x,
2769                  long (*action)(long), long timeout, int state)
2770{
2771        might_sleep();
2772
2773        spin_lock_irq(&x->wait.lock);
2774        timeout = do_wait_for_common(x, action, timeout, state);
2775        spin_unlock_irq(&x->wait.lock);
2776        return timeout;
2777}
2778
2779static long __sched
2780wait_for_common(struct completion *x, long timeout, int state)
2781{
2782        return __wait_for_common(x, schedule_timeout, timeout, state);
2783}
2784
2785static long __sched
2786wait_for_common_io(struct completion *x, long timeout, int state)
2787{
2788        return __wait_for_common(x, io_schedule_timeout, timeout, state);
2789}
2790
2791/**
2792 * wait_for_completion: - waits for completion of a task
2793 * @x:  holds the state of this particular completion
2794 *
2795 * This waits to be signaled for completion of a specific task. It is NOT
2796 * interruptible and there is no timeout.
2797 *
2798 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2799 * and interrupt capability. Also see complete().
2800 */
2801void __sched wait_for_completion(struct completion *x)
2802{
2803        wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2804}
2805EXPORT_SYMBOL(wait_for_completion);
2806
2807/**
2808 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2809 * @x:  holds the state of this particular completion
2810 * @timeout:  timeout value in jiffies
2811 *
2812 * This waits for either a completion of a specific task to be signaled or for a
2813 * specified timeout to expire. The timeout is in jiffies. It is not
2814 * interruptible.
2815 *
2816 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2817 * till timeout) if completed.
2818 */
2819unsigned long __sched
2820wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2821{
2822        return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2823}
2824EXPORT_SYMBOL(wait_for_completion_timeout);
2825
2826/**
2827 * wait_for_completion_io: - waits for completion of a task
2828 * @x:  holds the state of this particular completion
2829 *
2830 * This waits to be signaled for completion of a specific task. It is NOT
2831 * interruptible and there is no timeout. The caller is accounted as waiting
2832 * for IO.
2833 */
2834void __sched wait_for_completion_io(struct completion *x)
2835{
2836        wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2837}
2838EXPORT_SYMBOL(wait_for_completion_io);
2839
2840/**
2841 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2842 * @x:  holds the state of this particular completion
2843 * @timeout:  timeout value in jiffies
2844 *
2845 * This waits for either a completion of a specific task to be signaled or for a
2846 * specified timeout to expire. The timeout is in jiffies. It is not
2847 * interruptible. The caller is accounted as waiting for IO.
2848 *
2849 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2850 * till timeout) if completed.
2851 */
2852unsigned long __sched
2853wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2854{
2855        return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2856}
2857EXPORT_SYMBOL(wait_for_completion_io_timeout);
2858
2859/**
2860 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2861 * @x:  holds the state of this particular completion
2862 *
2863 * This waits for completion of a specific task to be signaled. It is
2864 * interruptible.
2865 *
2866 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2867 */
2868int __sched wait_for_completion_interruptible(struct completion *x)
2869{
2870        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2871        if (t == -ERESTARTSYS)
2872                return t;
2873        return 0;
2874}
2875EXPORT_SYMBOL(wait_for_completion_interruptible);
2876
2877/**
2878 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2879 * @x:  holds the state of this particular completion
2880 * @timeout:  timeout value in jiffies
2881 *
2882 * This waits for either a completion of a specific task to be signaled or for a
2883 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2884 *
2885 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2886 * or number of jiffies left till timeout) if completed.
2887 */
2888long __sched
2889wait_for_completion_interruptible_timeout(struct completion *x,
2890                                          unsigned long timeout)
2891{
2892        return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2893}
2894EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2895
2896/**
2897 * wait_for_completion_killable: - waits for completion of a task (killable)
2898 * @x:  holds the state of this particular completion
2899 *
2900 * This waits to be signaled for completion of a specific task. It can be
2901 * interrupted by a kill signal.
2902 *
2903 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2904 */
2905int __sched wait_for_completion_killable(struct completion *x)
2906{
2907        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2908        if (t == -ERESTARTSYS)
2909                return t;
2910        return 0;
2911}
2912EXPORT_SYMBOL(wait_for_completion_killable);
2913
2914/**
2915 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2916 * @x:  holds the state of this particular completion
2917 * @timeout:  timeout value in jiffies
2918 *
2919 * This waits for either a completion of a specific task to be
2920 * signaled or for a specified timeout to expire. It can be
2921 * interrupted by a kill signal. The timeout is in jiffies.
2922 *
2923 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2924 * or number of jiffies left till timeout) if completed.
2925 */
2926long __sched
2927wait_for_completion_killable_timeout(struct completion *x,
2928                                     unsigned long timeout)
2929{
2930        return wait_for_common(x, timeout, TASK_KILLABLE);
2931}
2932EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2933
2934/**
2935 *      try_wait_for_completion - try to decrement a completion without blocking
2936 *      @x:     completion structure
2937 *
2938 *      Return: 0 if a decrement cannot be done without blocking
2939 *               1 if a decrement succeeded.
2940 *
2941 *      If a completion is being used as a counting completion,
2942 *      attempt to decrement the counter without blocking. This
2943 *      enables us to avoid waiting if the resource the completion
2944 *      is protecting is not available.
2945 */
2946bool try_wait_for_completion(struct completion *x)
2947{
2948        unsigned long flags;
2949        int ret = 1;
2950
2951        spin_lock_irqsave(&x->wait.lock, flags);
2952        if (!x->done)
2953                ret = 0;
2954        else
2955                x->done--;
2956        spin_unlock_irqrestore(&x->wait.lock, flags);
2957        return ret;
2958}
2959EXPORT_SYMBOL(try_wait_for_completion);
2960
2961/**
2962 *      completion_done - Test to see if a completion has any waiters
2963 *      @x:     completion structure
2964 *
2965 *      Return: 0 if there are waiters (wait_for_completion() in progress)
2966 *               1 if there are no waiters.
2967 *
2968 */
2969bool completion_done(struct completion *x)
2970{
2971        unsigned long flags;
2972        int ret = 1;
2973
2974        spin_lock_irqsave(&x->wait.lock, flags);
2975        if (!x->done)
2976                ret = 0;
2977        spin_unlock_irqrestore(&x->wait.lock, flags);
2978        return ret;
2979}
2980EXPORT_SYMBOL(completion_done);
2981
2982static long __sched
2983sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2984{
2985        unsigned long flags;
2986        wait_queue_t wait;
2987
2988        init_waitqueue_entry(&wait, current);
2989
2990        __set_current_state(state);
2991
2992        spin_lock_irqsave(&q->lock, flags);
2993        __add_wait_queue(q, &wait);
2994        spin_unlock(&q->lock);
2995        timeout = schedule_timeout(timeout);
2996        spin_lock_irq(&q->lock);
2997        __remove_wait_queue(q, &wait);
2998        spin_unlock_irqrestore(&q->lock, flags);
2999
3000        return timeout;
3001}
3002
3003void __sched interruptible_sleep_on(wait_queue_head_t *q)
3004{
3005        sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3006}
3007EXPORT_SYMBOL(interruptible_sleep_on);
3008
3009long __sched
3010interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3011{
3012        return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3013}
3014EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3015
3016void __sched sleep_on(wait_queue_head_t *q)
3017{
3018        sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3019}
3020EXPORT_SYMBOL(sleep_on);
3021
3022long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3023{
3024        return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3025}
3026EXPORT_SYMBOL(sleep_on_timeout);
3027
3028#ifdef CONFIG_RT_MUTEXES
3029
3030/*
3031 * rt_mutex_setprio - set the current priority of a task
3032 * @p: task
3033 * @prio: prio value (kernel-internal form)
3034 *
3035 * This function changes the 'effective' priority of a task. It does
3036 * not touch ->normal_prio like __setscheduler().
3037 *
3038 * Used by the rt_mutex code to implement priority inheritance logic.
3039 */
3040void rt_mutex_setprio(struct task_struct *p, int prio)
3041{
3042        int oldprio, on_rq, running;
3043        struct rq *rq;
3044        const struct sched_class *prev_class;
3045
3046        BUG_ON(prio < 0 || prio > MAX_PRIO);
3047
3048        rq = __task_rq_lock(p);
3049
3050        /*
3051         * Idle task boosting is a nono in general. There is one
3052         * exception, when PREEMPT_RT and NOHZ is active:
3053         *
3054         * The idle task calls get_next_timer_interrupt() and holds
3055         * the timer wheel base->lock on the CPU and another CPU wants
3056         * to access the timer (probably to cancel it). We can safely
3057         * ignore the boosting request, as the idle CPU runs this code
3058         * with interrupts disabled and will complete the lock
3059         * protected section without being interrupted. So there is no
3060         * real need to boost.
3061         */
3062        if (unlikely(p == rq->idle)) {
3063                WARN_ON(p != rq->curr);
3064                WARN_ON(p->pi_blocked_on);
3065                goto out_unlock;
3066        }
3067
3068        trace_sched_pi_setprio(p, prio);
3069        oldprio = p->prio;
3070        prev_class = p->sched_class;
3071        on_rq = p->on_rq;
3072        running = task_current(rq, p);
3073        if (on_rq)
3074                dequeue_task(rq, p, 0);
3075        if (running)
3076                p->sched_class->put_prev_task(rq, p);
3077
3078        if (rt_prio(prio))
3079                p->sched_class = &rt_sched_class;
3080        else
3081                p->sched_class = &fair_sched_class;
3082
3083        p->prio = prio;
3084
3085        if (running)
3086                p->sched_class->set_curr_task(rq);
3087        if (on_rq)
3088                enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3089
3090        check_class_changed(rq, p, prev_class, oldprio);
3091out_unlock:
3092        __task_rq_unlock(rq);
3093}
3094#endif
3095void set_user_nice(struct task_struct *p, long nice)
3096{
3097        int old_prio, delta, on_rq;
3098        unsigned long flags;
3099        struct rq *rq;
3100
3101        if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3102                return;
3103        /*
3104         * We have to be careful, if called from sys_setpriority(),
3105         * the task might be in the middle of scheduling on another CPU.
3106         */
3107        rq = task_rq_lock(p, &flags);
3108        /*
3109         * The RT priorities are set via sched_setscheduler(), but we still
3110         * allow the 'normal' nice value to be set - but as expected
3111         * it wont have any effect on scheduling until the task is
3112         * SCHED_FIFO/SCHED_RR:
3113         */
3114        if (task_has_rt_policy(p)) {
3115                p->static_prio = NICE_TO_PRIO(nice);
3116                goto out_unlock;
3117        }
3118        on_rq = p->on_rq;
3119        if (on_rq)
3120                dequeue_task(rq, p, 0);
3121
3122        p->static_prio = NICE_TO_PRIO(nice);
3123        set_load_weight(p);
3124        old_prio = p->prio;
3125        p->prio = effective_prio(p);
3126        delta = p->prio - old_prio;
3127
3128        if (on_rq) {
3129                enqueue_task(rq, p, 0);
3130                /*
3131                 * If the task increased its priority or is running and
3132                 * lowered its priority, then reschedule its CPU:
3133                 */
3134                if (delta < 0 || (delta > 0 && task_running(rq, p)))
3135                        resched_task(rq->curr);
3136        }
3137out_unlock:
3138        task_rq_unlock(rq, p, &flags);
3139}
3140EXPORT_SYMBOL(set_user_nice);
3141
3142/*
3143 * can_nice - check if a task can reduce its nice value
3144 * @p: task
3145 * @nice: nice value
3146 */
3147int can_nice(const struct task_struct *p, const int nice)
3148{
3149        /* convert nice value [19,-20] to rlimit style value [1,40] */
3150        int nice_rlim = 20 - nice;
3151
3152        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3153                capable(CAP_SYS_NICE));
3154}
3155
3156#ifdef __ARCH_WANT_SYS_NICE
3157
3158/*
3159 * sys_nice - change the priority of the current process.
3160 * @increment: priority increment
3161 *
3162 * sys_setpriority is a more generic, but much slower function that
3163 * does similar things.
3164 */
3165SYSCALL_DEFINE1(nice, int, increment)
3166{
3167        long nice, retval;
3168
3169        /*
3170         * Setpriority might change our priority at the same moment.
3171         * We don't have to worry. Conceptually one call occurs first
3172         * and we have a single winner.
3173         */
3174        if (increment < -40)
3175                increment = -40;
3176        if (increment > 40)
3177                increment = 40;
3178
3179        nice = TASK_NICE(current) + increment;
3180        if (nice < -20)
3181                nice = -20;
3182        if (nice > 19)
3183                nice = 19;
3184
3185        if (increment < 0 && !can_nice(current, nice))
3186                return -EPERM;
3187
3188        retval = security_task_setnice(current, nice);
3189        if (retval)
3190                return retval;
3191
3192        set_user_nice(current, nice);
3193        return 0;
3194}
3195
3196#endif
3197
3198/**
3199 * task_prio - return the priority value of a given task.
3200 * @p: the task in question.
3201 *
3202 * Return: The priority value as seen by users in /proc.
3203 * RT tasks are offset by -200. Normal tasks are centered
3204 * around 0, value goes from -16 to +15.
3205 */
3206int task_prio(const struct task_struct *p)
3207{
3208        return p->prio - MAX_RT_PRIO;
3209}
3210
3211/**
3212 * task_nice - return the nice value of a given task.
3213 * @p: the task in question.
3214 *
3215 * Return: The nice value [ -20 ... 0 ... 19 ].
3216 */
3217int task_nice(const struct task_struct *p)
3218{
3219        return TASK_NICE(p);
3220}
3221EXPORT_SYMBOL(task_nice);
3222
3223/**
3224 * idle_cpu - is a given cpu idle currently?
3225 * @cpu: the processor in question.
3226 *
3227 * Return: 1 if the CPU is currently idle. 0 otherwise.
3228 */
3229int idle_cpu(int cpu)
3230{
3231        struct rq *rq = cpu_rq(cpu);
3232
3233        if (rq->curr != rq->idle)
3234                return 0;
3235
3236        if (rq->nr_running)
3237                return 0;
3238
3239#ifdef CONFIG_SMP
3240        if (!llist_empty(&rq->wake_list))
3241                return 0;
3242#endif
3243
3244        return 1;
3245}
3246
3247/**
3248 * idle_task - return the idle task for a given cpu.
3249 * @cpu: the processor in question.
3250 *
3251 * Return: The idle task for the cpu @cpu.
3252 */
3253struct task_struct *idle_task(int cpu)
3254{
3255        return cpu_rq(cpu)->idle;
3256}
3257
3258/**
3259 * find_process_by_pid - find a process with a matching PID value.
3260 * @pid: the pid in question.
3261 *
3262 * The task of @pid, if found. %NULL otherwise.
3263 */
3264static struct task_struct *find_process_by_pid(pid_t pid)
3265{
3266        return pid ? find_task_by_vpid(pid) : current;
3267}
3268
3269/* Actually do priority change: must hold rq lock. */
3270static void
3271__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3272{
3273        p->policy = policy;
3274        p->rt_priority = prio;
3275        p->normal_prio = normal_prio(p);
3276        /* we are holding p->pi_lock already */
3277        p->prio = rt_mutex_getprio(p);
3278        if (rt_prio(p->prio))
3279                p->sched_class = &rt_sched_class;
3280        else
3281                p->sched_class = &fair_sched_class;
3282        set_load_weight(p);
3283}
3284
3285/*
3286 * check the target process has a UID that matches the current process's
3287 */
3288static bool check_same_owner(struct task_struct *p)
3289{
3290        const struct cred *cred = current_cred(), *pcred;
3291        bool match;
3292
3293        rcu_read_lock();
3294        pcred = __task_cred(p);
3295        match = (uid_eq(cred->euid, pcred->euid) ||
3296                 uid_eq(cred->euid, pcred->uid));
3297        rcu_read_unlock();
3298        return match;
3299}
3300
3301static int __sched_setscheduler(struct task_struct *p, int policy,
3302                                const struct sched_param *param, bool user)
3303{
3304        int retval, oldprio, oldpolicy = -1, on_rq, running;
3305        unsigned long flags;
3306        const struct sched_class *prev_class;
3307        struct rq *rq;
3308        int reset_on_fork;
3309
3310        /* may grab non-irq protected spin_locks */
3311        BUG_ON(in_interrupt());
3312recheck:
3313        /* double check policy once rq lock held */
3314        if (policy < 0) {
3315                reset_on_fork = p->sched_reset_on_fork;
3316                policy = oldpolicy = p->policy;
3317        } else {
3318                reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3319                policy &= ~SCHED_RESET_ON_FORK;
3320
3321                if (policy != SCHED_FIFO && policy != SCHED_RR &&
3322                                policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3323                                policy != SCHED_IDLE)
3324                        return -EINVAL;
3325        }
3326
3327        /*
3328         * Valid priorities for SCHED_FIFO and SCHED_RR are
3329         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3330         * SCHED_BATCH and SCHED_IDLE is 0.
3331         */
3332        if (param->sched_priority < 0 ||
3333            (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3334            (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3335                return -EINVAL;
3336        if (rt_policy(policy) != (param->sched_priority != 0))
3337                return -EINVAL;
3338
3339        /*
3340         * Allow unprivileged RT tasks to decrease priority:
3341         */
3342        if (user && !capable(CAP_SYS_NICE)) {
3343                if (rt_policy(policy)) {
3344                        unsigned long rlim_rtprio =
3345                                        task_rlimit(p, RLIMIT_RTPRIO);
3346
3347                        /* can't set/change the rt policy */
3348                        if (policy != p->policy && !rlim_rtprio)
3349                                return -EPERM;
3350
3351                        /* can't increase priority */
3352                        if (param->sched_priority > p->rt_priority &&
3353                            param->sched_priority > rlim_rtprio)
3354                                return -EPERM;
3355                }
3356
3357                /*
3358                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3359                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3360                 */
3361                if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3362                        if (!can_nice(p, TASK_NICE(p)))
3363                                return -EPERM;
3364                }
3365
3366                /* can't change other user's priorities */
3367                if (!check_same_owner(p))
3368                        return -EPERM;
3369
3370                /* Normal users shall not reset the sched_reset_on_fork flag */
3371                if (p->sched_reset_on_fork && !reset_on_fork)
3372                        return -EPERM;
3373        }
3374
3375        if (user) {
3376                retval = security_task_setscheduler(p);
3377                if (retval)
3378                        return retval;
3379        }
3380
3381        /*
3382         * make sure no PI-waiters arrive (or leave) while we are
3383         * changing the priority of the task:
3384         *
3385         * To be able to change p->policy safely, the appropriate
3386         * runqueue lock must be held.
3387         */
3388        rq = task_rq_lock(p, &flags);
3389
3390        /*
3391         * Changing the policy of the stop threads its a very bad idea
3392         */
3393        if (p == rq->stop) {
3394                task_rq_unlock(rq, p, &flags);
3395                return -EINVAL;
3396        }
3397
3398        /*
3399         * If not changing anything there's no need to proceed further:
3400         */
3401        if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3402                        param->sched_priority == p->rt_priority))) {
3403                task_rq_unlock(rq, p, &flags);
3404                return 0;
3405        }
3406
3407#ifdef CONFIG_RT_GROUP_SCHED
3408        if (user) {
3409                /*
3410                 * Do not allow realtime tasks into groups that have no runtime
3411                 * assigned.
3412                 */
3413                if (rt_bandwidth_enabled() && rt_policy(policy) &&
3414                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3415                                !task_group_is_autogroup(task_group(p))) {
3416                        task_rq_unlock(rq, p, &flags);
3417                        return -EPERM;
3418                }
3419        }
3420#endif
3421
3422        /* recheck policy now with rq lock held */
3423        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3424                policy = oldpolicy = -1;
3425                task_rq_unlock(rq, p, &flags);
3426                goto recheck;
3427        }
3428        on_rq = p->on_rq;
3429        running = task_current(rq, p);
3430        if (on_rq)
3431                dequeue_task(rq, p, 0);
3432        if (running)
3433                p->sched_class->put_prev_task(rq, p);
3434
3435        p->sched_reset_on_fork = reset_on_fork;
3436
3437        oldprio = p->prio;
3438        prev_class = p->sched_class;
3439        __setscheduler(rq, p, policy, param->sched_priority);
3440
3441        if (running)
3442                p->sched_class->set_curr_task(rq);
3443        if (on_rq)
3444                enqueue_task(rq, p, 0);
3445
3446        check_class_changed(rq, p, prev_class, oldprio);
3447        task_rq_unlock(rq, p, &flags);
3448
3449        rt_mutex_adjust_pi(p);
3450
3451        return 0;
3452}
3453
3454/**
3455 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3456 * @p: the task in question.
3457 * @policy: new policy.
3458 * @param: structure containing the new RT priority.
3459 *
3460 * Return: 0 on success. An error code otherwise.
3461 *
3462 * NOTE that the task may be already dead.
3463 */
3464int sched_setscheduler(struct task_struct *p, int policy,
3465                       const struct sched_param *param)
3466{
3467        return __sched_setscheduler(p, policy, param, true);
3468}
3469EXPORT_SYMBOL_GPL(sched_setscheduler);
3470
3471/**
3472 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3473 * @p: the task in question.
3474 * @policy: new policy.
3475 * @param: structure containing the new RT priority.
3476 *
3477 * Just like sched_setscheduler, only don't bother checking if the
3478 * current context has permission.  For example, this is needed in
3479 * stop_machine(): we create temporary high priority worker threads,
3480 * but our caller might not have that capability.
3481 *
3482 * Return: 0 on success. An error code otherwise.
3483 */
3484int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3485                               const struct sched_param *param)
3486{
3487        return __sched_setscheduler(p, policy, param, false);
3488}
3489
3490static int
3491do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3492{
3493        struct sched_param lparam;
3494        struct task_struct *p;
3495        int retval;
3496
3497        if (!param || pid < 0)
3498                return -EINVAL;
3499        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3500                return -EFAULT;
3501
3502        rcu_read_lock();
3503        retval = -ESRCH;
3504        p = find_process_by_pid(pid);
3505        if (p != NULL)
3506                retval = sched_setscheduler(p, policy, &lparam);
3507        rcu_read_unlock();
3508
3509        return retval;
3510}
3511
3512/**
3513 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3514 * @pid: the pid in question.
3515 * @policy: new policy.
3516 * @param: structure containing the new RT priority.
3517 *
3518 * Return: 0 on success. An error code otherwise.
3519 */
3520SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3521                struct sched_param __user *, param)
3522{
3523        /* negative values for policy are not valid */
3524        if (policy < 0)
3525                return -EINVAL;
3526
3527        return do_sched_setscheduler(pid, policy, param);
3528}
3529
3530/**
3531 * sys_sched_setparam - set/change the RT priority of a thread
3532 * @pid: the pid in question.
3533 * @param: structure containing the new RT priority.
3534 *
3535 * Return: 0 on success. An error code otherwise.
3536 */
3537SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3538{
3539        return do_sched_setscheduler(pid, -1, param);
3540}
3541
3542/**
3543 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3544 * @pid: the pid in question.
3545 *
3546 * Return: On success, the policy of the thread. Otherwise, a negative error
3547 * code.
3548 */
3549SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3550{
3551        struct task_struct *p;
3552        int retval;
3553
3554        if (pid < 0)
3555                return -EINVAL;
3556
3557        retval = -ESRCH;
3558        rcu_read_lock();
3559        p = find_process_by_pid(pid);
3560        if (p) {
3561                retval = security_task_getscheduler(p);
3562                if (!retval)
3563                        retval = p->policy
3564                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3565        }
3566        rcu_read_unlock();
3567        return retval;
3568}
3569
3570/**
3571 * sys_sched_getparam - get the RT priority of a thread
3572 * @pid: the pid in question.
3573 * @param: structure containing the RT priority.
3574 *
3575 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3576 * code.
3577 */
3578SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3579{
3580        struct sched_param lp;
3581        struct task_struct *p;
3582        int retval;
3583
3584        if (!param || pid < 0)
3585                return -EINVAL;
3586
3587        rcu_read_lock();
3588        p = find_process_by_pid(pid);
3589        retval = -ESRCH;
3590        if (!p)
3591                goto out_unlock;
3592
3593        retval = security_task_getscheduler(p);
3594        if (retval)
3595                goto out_unlock;
3596
3597        lp.sched_priority = p->rt_priority;
3598        rcu_read_unlock();
3599
3600        /*
3601         * This one might sleep, we cannot do it with a spinlock held ...
3602         */
3603        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3604
3605        return retval;
3606
3607out_unlock:
3608        rcu_read_unlock();
3609        return retval;
3610}
3611
3612long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3613{
3614        cpumask_var_t cpus_allowed, new_mask;
3615        struct task_struct *p;
3616        int retval;
3617
3618        get_online_cpus();
3619        rcu_read_lock();
3620
3621        p = find_process_by_pid(pid);
3622        if (!p) {
3623                rcu_read_unlock();
3624                put_online_cpus();
3625                return -ESRCH;
3626        }
3627
3628        /* Prevent p going away */
3629        get_task_struct(p);
3630        rcu_read_unlock();
3631
3632        if (p->flags & PF_NO_SETAFFINITY) {
3633                retval = -EINVAL;
3634                goto out_put_task;
3635        }
3636        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3637                retval = -ENOMEM;
3638                goto out_put_task;
3639        }
3640        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3641                retval = -ENOMEM;
3642                goto out_free_cpus_allowed;
3643        }
3644        retval = -EPERM;
3645        if (!check_same_owner(p)) {
3646                rcu_read_lock();
3647                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3648                        rcu_read_unlock();
3649                        goto out_unlock;
3650                }
3651                rcu_read_unlock();
3652        }
3653
3654        retval = security_task_setscheduler(p);
3655        if (retval)
3656                goto out_unlock;
3657
3658        cpuset_cpus_allowed(p, cpus_allowed);
3659        cpumask_and(new_mask, in_mask, cpus_allowed);
3660again:
3661        retval = set_cpus_allowed_ptr(p, new_mask);
3662
3663        if (!retval) {
3664                cpuset_cpus_allowed(p, cpus_allowed);
3665                if (!cpumask_subset(new_mask, cpus_allowed)) {
3666                        /*
3667                         * We must have raced with a concurrent cpuset
3668                         * update. Just reset the cpus_allowed to the
3669                         * cpuset's cpus_allowed
3670                         */
3671                        cpumask_copy(new_mask, cpus_allowed);
3672                        goto again;
3673                }
3674        }
3675out_unlock:
3676        free_cpumask_var(new_mask);
3677out_free_cpus_allowed:
3678        free_cpumask_var(cpus_allowed);
3679out_put_task:
3680        put_task_struct(p);
3681        put_online_cpus();
3682        return retval;
3683}
3684
3685static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3686                             struct cpumask *new_mask)
3687{
3688        if (len < cpumask_size())
3689                cpumask_clear(new_mask);
3690        else if (len > cpumask_size())
3691                len = cpumask_size();
3692
3693        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3694}
3695
3696/**
3697 * sys_sched_setaffinity - set the cpu affinity of a process
3698 * @pid: pid of the process
3699 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3700 * @user_mask_ptr: user-space pointer to the new cpu mask
3701 *
3702 * Return: 0 on success. An error code otherwise.
3703 */
3704SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3705                unsigned long __user *, user_mask_ptr)
3706{
3707        cpumask_var_t new_mask;
3708        int retval;
3709
3710        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3711                return -ENOMEM;
3712
3713        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3714        if (retval == 0)
3715                retval = sched_setaffinity(pid, new_mask);
3716        free_cpumask_var(new_mask);
3717        return retval;
3718}
3719
3720long sched_getaffinity(pid_t pid, struct cpumask *mask)
3721{
3722        struct task_struct *p;
3723        unsigned long flags;
3724        int retval;
3725
3726        get_online_cpus();
3727        rcu_read_lock();
3728
3729        retval = -ESRCH;
3730        p = find_process_by_pid(pid);
3731        if (!p)
3732                goto out_unlock;
3733
3734        retval = security_task_getscheduler(p);
3735        if (retval)
3736                goto out_unlock;
3737
3738        raw_spin_lock_irqsave(&p->pi_lock, flags);
3739        cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3740        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3741
3742out_unlock:
3743        rcu_read_unlock();
3744        put_online_cpus();
3745
3746        return retval;
3747}
3748
3749/**
3750 * sys_sched_getaffinity - get the cpu affinity of a process
3751 * @pid: pid of the process
3752 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3753 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3754 *
3755 * Return: 0 on success. An error code otherwise.
3756 */
3757SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3758                unsigned long __user *, user_mask_ptr)
3759{
3760        int ret;
3761        cpumask_var_t mask;
3762
3763        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3764                return -EINVAL;
3765        if (len & (sizeof(unsigned long)-1))
3766                return -EINVAL;
3767
3768        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3769                return -ENOMEM;
3770
3771        ret = sched_getaffinity(pid, mask);
3772        if (ret == 0) {
3773                size_t retlen = min_t(size_t, len, cpumask_size());
3774
3775                if (copy_to_user(user_mask_ptr, mask, retlen))
3776                        ret = -EFAULT;
3777                else
3778                        ret = retlen;
3779        }
3780        free_cpumask_var(mask);
3781
3782        return ret;
3783}
3784
3785/**
3786 * sys_sched_yield - yield the current processor to other threads.
3787 *
3788 * This function yields the current CPU to other tasks. If there are no
3789 * other threads running on this CPU then this function will return.
3790 *
3791 * Return: 0.
3792 */
3793SYSCALL_DEFINE0(sched_yield)
3794{
3795        struct rq *rq = this_rq_lock();
3796
3797        schedstat_inc(rq, yld_count);
3798        current->sched_class->yield_task(rq);
3799
3800        /*
3801         * Since we are going to call schedule() anyway, there's
3802         * no need to preempt or enable interrupts:
3803         */
3804        __release(rq->lock);
3805        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3806        do_raw_spin_unlock(&rq->lock);
3807        sched_preempt_enable_no_resched();
3808
3809        schedule();
3810
3811        return 0;
3812}
3813
3814static inline int should_resched(void)
3815{
3816        return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3817}
3818
3819static void __cond_resched(void)
3820{
3821        add_preempt_count(PREEMPT_ACTIVE);
3822        __schedule();
3823        sub_preempt_count(PREEMPT_ACTIVE);
3824}
3825
3826int __sched _cond_resched(void)
3827{
3828        if (should_resched()) {
3829                __cond_resched();
3830                return 1;
3831        }
3832        return 0;
3833}
3834EXPORT_SYMBOL(_cond_resched);
3835
3836/*
3837 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3838 * call schedule, and on return reacquire the lock.
3839 *
3840 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3841 * operations here to prevent schedule() from being called twice (once via
3842 * spin_unlock(), once by hand).
3843 */
3844int __cond_resched_lock(spinlock_t *lock)
3845{
3846        int resched = should_resched();
3847        int ret = 0;
3848
3849        lockdep_assert_held(lock);
3850
3851        if (spin_needbreak(lock) || resched) {
3852                spin_unlock(lock);
3853                if (resched)
3854                        __cond_resched();
3855                else
3856                        cpu_relax();
3857                ret = 1;
3858                spin_lock(lock);
3859        }
3860        return ret;
3861}
3862EXPORT_SYMBOL(__cond_resched_lock);
3863
3864int __sched __cond_resched_softirq(void)
3865{
3866        BUG_ON(!in_softirq());
3867
3868        if (should_resched()) {
3869                local_bh_enable();
3870                __cond_resched();
3871                local_bh_disable();
3872                return 1;
3873        }
3874        return 0;
3875}
3876EXPORT_SYMBOL(__cond_resched_softirq);
3877
3878/**
3879 * yield - yield the current processor to other threads.
3880 *
3881 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3882 *
3883 * The scheduler is at all times free to pick the calling task as the most
3884 * eligible task to run, if removing the yield() call from your code breaks
3885 * it, its already broken.
3886 *
3887 * Typical broken usage is:
3888 *
3889 * while (!event)
3890 *      yield();
3891 *
3892 * where one assumes that yield() will let 'the other' process run that will
3893 * make event true. If the current task is a SCHED_FIFO task that will never
3894 * happen. Never use yield() as a progress guarantee!!
3895 *
3896 * If you want to use yield() to wait for something, use wait_event().
3897 * If you want to use yield() to be 'nice' for others, use cond_resched().
3898 * If you still want to use yield(), do not!
3899 */
3900void __sched yield(void)
3901{
3902        set_current_state(TASK_RUNNING);
3903        sys_sched_yield();
3904}
3905EXPORT_SYMBOL(yield);
3906
3907/**
3908 * yield_to - yield the current processor to another thread in
3909 * your thread group, or accelerate that thread toward the
3910 * processor it's on.
3911 * @p: target task
3912 * @preempt: whether task preemption is allowed or not
3913 *
3914 * It's the caller's job to ensure that the target task struct
3915 * can't go away on us before we can do any checks.
3916 *
3917 * Return:
3918 *      true (>0) if we indeed boosted the target task.
3919 *      false (0) if we failed to boost the target.
3920 *      -ESRCH if there's no task to yield to.
3921 */
3922bool __sched yield_to(struct task_struct *p, bool preempt)
3923{
3924        struct task_struct *curr = current;
3925        struct rq *rq, *p_rq;
3926        unsigned long flags;
3927        int yielded = 0;
3928
3929        local_irq_save(flags);
3930        rq = this_rq();
3931
3932again:
3933        p_rq = task_rq(p);
3934        /*
3935         * If we're the only runnable task on the rq and target rq also
3936         * has only one task, there's absolutely no point in yielding.
3937         */
3938        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3939                yielded = -ESRCH;
3940                goto out_irq;
3941        }
3942
3943        double_rq_lock(rq, p_rq);
3944        while (task_rq(p) != p_rq) {
3945                double_rq_unlock(rq, p_rq);
3946                goto again;
3947        }
3948
3949        if (!curr->sched_class->yield_to_task)
3950                goto out_unlock;
3951
3952        if (curr->sched_class != p->sched_class)
3953                goto out_unlock;
3954
3955        if (task_running(p_rq, p) || p->state)
3956                goto out_unlock;
3957
3958        yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3959        if (yielded) {
3960                schedstat_inc(rq, yld_count);
3961                /*
3962                 * Make p's CPU reschedule; pick_next_entity takes care of
3963                 * fairness.
3964                 */
3965                if (preempt && rq != p_rq)
3966                        resched_task(p_rq->curr);
3967        }
3968
3969out_unlock:
3970        double_rq_unlock(rq, p_rq);
3971out_irq:
3972        local_irq_restore(flags);
3973
3974        if (yielded > 0)
3975                schedule();
3976
3977        return yielded;
3978}
3979EXPORT_SYMBOL_GPL(yield_to);
3980
3981/*
3982 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3983 * that process accounting knows that this is a task in IO wait state.
3984 */
3985void __sched io_schedule(void)
3986{
3987        struct rq *rq = raw_rq();
3988
3989        delayacct_blkio_start();
3990        atomic_inc(&rq->nr_iowait);
3991        blk_flush_plug(current);
3992        current->in_iowait = 1;
3993        schedule();
3994        current->in_iowait = 0;
3995        atomic_dec(&rq->nr_iowait);
3996        delayacct_blkio_end();
3997}
3998EXPORT_SYMBOL(io_schedule);
3999
4000long __sched io_schedule_timeout(long timeout)
4001{
4002        struct rq *rq = raw_rq();
4003        long ret;
4004
4005        delayacct_blkio_start();
4006        atomic_inc(&rq->nr_iowait);
4007        blk_flush_plug(current);
4008        current->in_iowait = 1;
4009        ret = schedule_timeout(timeout);
4010        current->in_iowait = 0;
4011        atomic_dec(&rq->nr_iowait);
4012        delayacct_blkio_end();
4013        return ret;
4014}
4015
4016/**
4017 * sys_sched_get_priority_max - return maximum RT priority.
4018 * @policy: scheduling class.
4019 *
4020 * Return: On success, this syscall returns the maximum
4021 * rt_priority that can be used by a given scheduling class.
4022 * On failure, a negative error code is returned.
4023 */
4024SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4025{
4026        int ret = -EINVAL;
4027
4028        switch (policy) {
4029        case SCHED_FIFO:
4030        case SCHED_RR:
4031                ret = MAX_USER_RT_PRIO-1;
4032                break;
4033        case SCHED_NORMAL:
4034        case SCHED_BATCH:
4035        case SCHED_IDLE:
4036                ret = 0;
4037                break;
4038        }
4039        return ret;
4040}
4041
4042/**
4043 * sys_sched_get_priority_min - return minimum RT priority.
4044 * @policy: scheduling class.
4045 *
4046 * Return: On success, this syscall returns the minimum
4047 * rt_priority that can be used by a given scheduling class.
4048 * On failure, a negative error code is returned.
4049 */
4050SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4051{
4052        int ret = -EINVAL;
4053
4054        switch (policy) {
4055        case SCHED_FIFO:
4056        case SCHED_RR:
4057                ret = 1;
4058                break;
4059        case SCHED_NORMAL:
4060        case SCHED_BATCH:
4061        case SCHED_IDLE:
4062                ret = 0;
4063        }
4064        return ret;
4065}
4066
4067/**
4068 * sys_sched_rr_get_interval - return the default timeslice of a process.
4069 * @pid: pid of the process.
4070 * @interval: userspace pointer to the timeslice value.
4071 *
4072 * this syscall writes the default timeslice value of a given process
4073 * into the user-space timespec buffer. A value of '0' means infinity.
4074 *
4075 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4076 * an error code.
4077 */
4078SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4079                struct timespec __user *, interval)
4080{
4081        struct task_struct *p;
4082        unsigned int time_slice;
4083        unsigned long flags;
4084        struct rq *rq;
4085        int retval;
4086        struct timespec t;
4087
4088        if (pid < 0)
4089                return -EINVAL;
4090
4091        retval = -ESRCH;
4092        rcu_read_lock();
4093        p = find_process_by_pid(pid);
4094        if (!p)
4095                goto out_unlock;
4096
4097        retval = security_task_getscheduler(p);
4098        if (retval)
4099                goto out_unlock;
4100
4101        rq = task_rq_lock(p, &flags);
4102        time_slice = p->sched_class->get_rr_interval(rq, p);
4103        task_rq_unlock(rq, p, &flags);
4104
4105        rcu_read_unlock();
4106        jiffies_to_timespec(time_slice, &t);
4107        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4108        return retval;
4109
4110out_unlock:
4111        rcu_read_unlock();
4112        return retval;
4113}
4114
4115static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4116
4117void sched_show_task(struct task_struct *p)
4118{
4119        unsigned long free = 0;
4120        int ppid;
4121        unsigned state;
4122
4123        state = p->state ? __ffs(p->state) + 1 : 0;
4124        printk(KERN_INFO "%-15.15s %c", p->comm,
4125                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4126#if BITS_PER_LONG == 32
4127        if (state == TASK_RUNNING)
4128                printk(KERN_CONT " running  ");
4129        else
4130                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4131#else
4132        if (state == TASK_RUNNING)
4133                printk(KERN_CONT "  running task    ");
4134        else
4135                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4136#endif
4137#ifdef CONFIG_DEBUG_STACK_USAGE
4138        free = stack_not_used(p);
4139#endif
4140        rcu_read_lock();
4141        ppid = task_pid_nr(rcu_dereference(p->real_parent));
4142        rcu_read_unlock();
4143        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4144                task_pid_nr(p), ppid,
4145                (unsigned long)task_thread_info(p)->flags);
4146
4147        print_worker_info(KERN_INFO, p);
4148        show_stack(p, NULL);
4149}
4150
4151void show_state_filter(unsigned long state_filter)
4152{
4153        struct task_struct *g, *p;
4154
4155#if BITS_PER_LONG == 32
4156        printk(KERN_INFO
4157                "  task                PC stack   pid father\n");
4158#else
4159        printk(KERN_INFO
4160                "  task                        PC stack   pid father\n");
4161#endif
4162        rcu_read_lock();
4163        do_each_thread(g, p) {
4164                /*
4165                 * reset the NMI-timeout, listing all files on a slow
4166                 * console might take a lot of time:
4167                 */
4168                touch_nmi_watchdog();
4169                if (!state_filter || (p->state & state_filter))
4170                        sched_show_task(p);
4171        } while_each_thread(g, p);
4172
4173        touch_all_softlockup_watchdogs();
4174
4175#ifdef CONFIG_SCHED_DEBUG
4176        sysrq_sched_debug_show();
4177#endif
4178        rcu_read_unlock();
4179        /*
4180         * Only show locks if all tasks are dumped:
4181         */
4182        if (!state_filter)
4183                debug_show_all_locks();
4184}
4185
4186void init_idle_bootup_task(struct task_struct *idle)
4187{
4188        idle->sched_class = &idle_sched_class;
4189}
4190
4191/**
4192 * init_idle - set up an idle thread for a given CPU
4193 * @idle: task in question
4194 * @cpu: cpu the idle task belongs to
4195 *
4196 * NOTE: this function does not set the idle thread's NEED_RESCHED
4197 * flag, to make booting more robust.
4198 */
4199void init_idle(struct task_struct *idle, int cpu)
4200{
4201        struct rq *rq = cpu_rq(cpu);
4202        unsigned long flags;
4203
4204        raw_spin_lock_irqsave(&rq->lock, flags);
4205
4206        __sched_fork(idle);
4207        idle->state = TASK_RUNNING;
4208        idle->se.exec_start = sched_clock();
4209
4210        do_set_cpus_allowed(idle, cpumask_of(cpu));
4211        /*
4212         * We're having a chicken and egg problem, even though we are
4213         * holding rq->lock, the cpu isn't yet set to this cpu so the
4214         * lockdep check in task_group() will fail.
4215         *
4216         * Similar case to sched_fork(). / Alternatively we could
4217         * use task_rq_lock() here and obtain the other rq->lock.
4218         *
4219         * Silence PROVE_RCU
4220         */
4221        rcu_read_lock();
4222        __set_task_cpu(idle, cpu);
4223        rcu_read_unlock();
4224
4225        rq->curr = rq->idle = idle;
4226#if defined(CONFIG_SMP)
4227        idle->on_cpu = 1;
4228#endif
4229        raw_spin_unlock_irqrestore(&rq->lock, flags);
4230
4231        /* Set the preempt count _outside_ the spinlocks! */
4232        task_thread_info(idle)->preempt_count = 0;
4233
4234        /*
4235         * The idle tasks have their own, simple scheduling class:
4236         */
4237        idle->sched_class = &idle_sched_class;
4238        ftrace_graph_init_idle_task(idle, cpu);
4239        vtime_init_idle(idle, cpu);
4240#if defined(CONFIG_SMP)
4241        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4242#endif
4243}
4244
4245#ifdef CONFIG_SMP
4246void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4247{
4248        if (p->sched_class && p->sched_class->set_cpus_allowed)
4249                p->sched_class->set_cpus_allowed(p, new_mask);
4250
4251        cpumask_copy(&p->cpus_allowed, new_mask);
4252        p->nr_cpus_allowed = cpumask_weight(new_mask);
4253}
4254
4255/*
4256 * This is how migration works:
4257 *
4258 * 1) we invoke migration_cpu_stop() on the target CPU using
4259 *    stop_one_cpu().
4260 * 2) stopper starts to run (implicitly forcing the migrated thread
4261 *    off the CPU)
4262 * 3) it checks whether the migrated task is still in the wrong runqueue.
4263 * 4) if it's in the wrong runqueue then the migration thread removes
4264 *    it and puts it into the right queue.
4265 * 5) stopper completes and stop_one_cpu() returns and the migration
4266 *    is done.
4267 */
4268
4269/*
4270 * Change a given task's CPU affinity. Migrate the thread to a
4271 * proper CPU and schedule it away if the CPU it's executing on
4272 * is removed from the allowed bitmask.
4273 *
4274 * NOTE: the caller must have a valid reference to the task, the
4275 * task must not exit() & deallocate itself prematurely. The
4276 * call is not atomic; no spinlocks may be held.
4277 */
4278int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4279{
4280        unsigned long flags;
4281        struct rq *rq;
4282        unsigned int dest_cpu;
4283        int ret = 0;
4284
4285        rq = task_rq_lock(p, &flags);
4286
4287        if (cpumask_equal(&p->cpus_allowed, new_mask))
4288                goto out;
4289
4290        if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4291                ret = -EINVAL;
4292                goto out;
4293        }
4294
4295        do_set_cpus_allowed(p, new_mask);
4296
4297        /* Can the task run on the task's current CPU? If so, we're done */
4298        if (cpumask_test_cpu(task_cpu(p), new_mask))
4299                goto out;
4300
4301        dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4302        if (p->on_rq) {
4303                struct migration_arg arg = { p, dest_cpu };
4304                /* Need help from migration thread: drop lock and wait. */
4305                task_rq_unlock(rq, p, &flags);
4306                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4307                tlb_migrate_finish(p->mm);
4308                return 0;
4309        }
4310out:
4311        task_rq_unlock(rq, p, &flags);
4312
4313        return ret;
4314}
4315EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4316
4317/*
4318 * Move (not current) task off this cpu, onto dest cpu. We're doing
4319 * this because either it can't run here any more (set_cpus_allowed()
4320 * away from this CPU, or CPU going down), or because we're
4321 * attempting to rebalance this task on exec (sched_exec).
4322 *
4323 * So we race with normal scheduler movements, but that's OK, as long
4324 * as the task is no longer on this CPU.
4325 *
4326 * Returns non-zero if task was successfully migrated.
4327 */
4328static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4329{
4330        struct rq *rq_dest, *rq_src;
4331        int ret = 0;
4332
4333        if (unlikely(!cpu_active(dest_cpu)))
4334                return ret;
4335
4336        rq_src = cpu_rq(src_cpu);
4337        rq_dest = cpu_rq(dest_cpu);
4338
4339        raw_spin_lock(&p->pi_lock);
4340        double_rq_lock(rq_src, rq_dest);
4341        /* Already moved. */
4342        if (task_cpu(p) != src_cpu)
4343                goto done;
4344        /* Affinity changed (again). */
4345        if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4346                goto fail;
4347
4348        /*
4349         * If we're not on a rq, the next wake-up will ensure we're
4350         * placed properly.
4351         */
4352        if (p->on_rq) {
4353                dequeue_task(rq_src, p, 0);
4354                set_task_cpu(p, dest_cpu);
4355                enqueue_task(rq_dest, p, 0);
4356                check_preempt_curr(rq_dest, p, 0);
4357        }
4358done:
4359        ret = 1;
4360fail:
4361        double_rq_unlock(rq_src, rq_dest);
4362        raw_spin_unlock(&p->pi_lock);
4363        return ret;
4364}
4365
4366/*
4367 * migration_cpu_stop - this will be executed by a highprio stopper thread
4368 * and performs thread migration by bumping thread off CPU then
4369 * 'pushing' onto another runqueue.
4370 */
4371static int migration_cpu_stop(void *data)
4372{
4373        struct migration_arg *arg = data;
4374
4375        /*
4376         * The original target cpu might have gone down and we might
4377         * be on another cpu but it doesn't matter.
4378         */
4379        local_irq_disable();
4380        __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4381        local_irq_enable();
4382        return 0;
4383}
4384
4385#ifdef CONFIG_HOTPLUG_CPU
4386
4387/*
4388 * Ensures that the idle task is using init_mm right before its cpu goes
4389 * offline.
4390 */
4391void idle_task_exit(void)
4392{
4393        struct mm_struct *mm = current->active_mm;
4394
4395        BUG_ON(cpu_online(smp_processor_id()));
4396
4397        if (mm != &init_mm)
4398                switch_mm(mm, &init_mm, current);
4399        mmdrop(mm);
4400}
4401
4402/*
4403 * Since this CPU is going 'away' for a while, fold any nr_active delta
4404 * we might have. Assumes we're called after migrate_tasks() so that the
4405 * nr_active count is stable.
4406 *
4407 * Also see the comment "Global load-average calculations".
4408 */
4409static void calc_load_migrate(struct rq *rq)
4410{
4411        long delta = calc_load_fold_active(rq);
4412        if (delta)
4413                atomic_long_add(delta, &calc_load_tasks);
4414}
4415
4416/*
4417 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4418 * try_to_wake_up()->select_task_rq().
4419 *
4420 * Called with rq->lock held even though we'er in stop_machine() and
4421 * there's no concurrency possible, we hold the required locks anyway
4422 * because of lock validation efforts.
4423 */
4424static void migrate_tasks(unsigned int dead_cpu)
4425{
4426        struct rq *rq = cpu_rq(dead_cpu);
4427        struct task_struct *next, *stop = rq->stop;
4428        int dest_cpu;
4429
4430        /*
4431         * Fudge the rq selection such that the below task selection loop
4432         * doesn't get stuck on the currently eligible stop task.
4433         *
4434         * We're currently inside stop_machine() and the rq is either stuck
4435         * in the stop_machine_cpu_stop() loop, or we're executing this code,
4436         * either way we should never end up calling schedule() until we're
4437         * done here.
4438         */
4439        rq->stop = NULL;
4440
4441        /*
4442         * put_prev_task() and pick_next_task() sched
4443         * class method both need to have an up-to-date
4444         * value of rq->clock[_task]
4445         */
4446        update_rq_clock(rq);
4447
4448        for ( ; ; ) {
4449                /*
4450                 * There's this thread running, bail when that's the only
4451                 * remaining thread.
4452                 */
4453                if (rq->nr_running == 1)
4454                        break;
4455
4456                next = pick_next_task(rq);
4457                BUG_ON(!next);
4458                next->sched_class->put_prev_task(rq, next);
4459
4460                /* Find suitable destination for @next, with force if needed. */
4461                dest_cpu = select_fallback_rq(dead_cpu, next);
4462                raw_spin_unlock(&rq->lock);
4463
4464                __migrate_task(next, dead_cpu, dest_cpu);
4465
4466                raw_spin_lock(&rq->lock);
4467        }
4468
4469        rq->stop = stop;
4470}
4471
4472#endif /* CONFIG_HOTPLUG_CPU */
4473
4474#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4475
4476static struct ctl_table sd_ctl_dir[] = {
4477        {
4478                .procname       = "sched_domain",
4479                .mode           = 0555,
4480        },
4481        {}
4482};
4483
4484static struct ctl_table sd_ctl_root[] = {
4485        {
4486                .procname       = "kernel",
4487                .mode           = 0555,
4488                .child          = sd_ctl_dir,
4489        },
4490        {}
4491};
4492
4493static struct ctl_table *sd_alloc_ctl_entry(int n)
4494{
4495        struct ctl_table *entry =
4496                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4497
4498        return entry;
4499}
4500
4501static void sd_free_ctl_entry(struct ctl_table **tablep)
4502{
4503        struct ctl_table *entry;
4504
4505        /*
4506         * In the intermediate directories, both the child directory and
4507         * procname are dynamically allocated and could fail but the mode
4508         * will always be set. In the lowest directory the names are
4509         * static strings and all have proc handlers.
4510         */
4511        for (entry = *tablep; entry->mode; entry++) {
4512                if (entry->child)
4513                        sd_free_ctl_entry(&entry->child);
4514                if (entry->proc_handler == NULL)
4515                        kfree(entry->procname);
4516        }
4517
4518        kfree(*tablep);
4519        *tablep = NULL;
4520}
4521
4522static int min_load_idx = 0;
4523static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4524
4525static void
4526set_table_entry(struct ctl_table *entry,
4527                const char *procname, void *data, int maxlen,
4528                umode_t mode, proc_handler *proc_handler,
4529                bool load_idx)
4530{
4531        entry->procname = procname;
4532        entry->data = data;
4533        entry->maxlen = maxlen;
4534        entry->mode = mode;
4535        entry->proc_handler = proc_handler;
4536
4537        if (load_idx) {
4538                entry->extra1 = &min_load_idx;
4539                entry->extra2 = &max_load_idx;
4540        }
4541}
4542
4543static struct ctl_table *
4544sd_alloc_ctl_domain_table(struct sched_domain *sd)
4545{
4546        struct ctl_table *table = sd_alloc_ctl_entry(13);
4547
4548        if (table == NULL)
4549                return NULL;
4550
4551        set_table_entry(&table[0], "min_interval", &sd->min_interval,
4552                sizeof(long), 0644, proc_doulongvec_minmax, false);
4553        set_table_entry(&table[1], "max_interval", &sd->max_interval,
4554                sizeof(long), 0644, proc_doulongvec_minmax, false);
4555        set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4556                sizeof(int), 0644, proc_dointvec_minmax, true);
4557        set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4558                sizeof(int), 0644, proc_dointvec_minmax, true);
4559        set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4560                sizeof(int), 0644, proc_dointvec_minmax, true);
4561        set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4562                sizeof(int), 0644, proc_dointvec_minmax, true);
4563        set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4564                sizeof(int), 0644, proc_dointvec_minmax, true);
4565        set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4566                sizeof(int), 0644, proc_dointvec_minmax, false);
4567        set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4568                sizeof(int), 0644, proc_dointvec_minmax, false);
4569        set_table_entry(&table[9], "cache_nice_tries",
4570                &sd->cache_nice_tries,
4571                sizeof(int), 0644, proc_dointvec_minmax, false);
4572        set_table_entry(&table[10], "flags", &sd->flags,
4573                sizeof(int), 0644, proc_dointvec_minmax, false);
4574        set_table_entry(&table[11], "name", sd->name,
4575                CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4576        /* &table[12] is terminator */
4577
4578        return table;
4579}
4580
4581static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4582{
4583        struct ctl_table *entry, *table;
4584        struct sched_domain *sd;
4585        int domain_num = 0, i;
4586        char buf[32];
4587
4588        for_each_domain(cpu, sd)
4589                domain_num++;
4590        entry = table = sd_alloc_ctl_entry(domain_num + 1);
4591        if (table == NULL)
4592                return NULL;
4593
4594        i = 0;
4595        for_each_domain(cpu, sd) {
4596                snprintf(buf, 32, "domain%d", i);
4597                entry->procname = kstrdup(buf, GFP_KERNEL);
4598                entry->mode = 0555;
4599                entry->child = sd_alloc_ctl_domain_table(sd);
4600                entry++;
4601                i++;
4602        }
4603        return table;
4604}
4605
4606static struct ctl_table_header *sd_sysctl_header;
4607static void register_sched_domain_sysctl(void)
4608{
4609        int i, cpu_num = num_possible_cpus();
4610        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4611        char buf[32];
4612
4613        WARN_ON(sd_ctl_dir[0].child);
4614        sd_ctl_dir[0].child = entry;
4615
4616        if (entry == NULL)
4617                return;
4618
4619        for_each_possible_cpu(i) {
4620                snprintf(buf, 32, "cpu%d", i);
4621                entry->procname = kstrdup(buf, GFP_KERNEL);
4622                entry->mode = 0555;
4623                entry->child = sd_alloc_ctl_cpu_table(i);
4624                entry++;
4625        }
4626
4627        WARN_ON(sd_sysctl_header);
4628        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4629}
4630
4631/* may be called multiple times per register */
4632static void unregister_sched_domain_sysctl(void)
4633{
4634        if (sd_sysctl_header)
4635                unregister_sysctl_table(sd_sysctl_header);
4636        sd_sysctl_header = NULL;
4637        if (sd_ctl_dir[0].child)
4638                sd_free_ctl_entry(&sd_ctl_dir[0].child);
4639}
4640#else
4641static void register_sched_domain_sysctl(void)
4642{
4643}
4644static void unregister_sched_domain_sysctl(void)
4645{
4646}
4647#endif
4648
4649static void set_rq_online(struct rq *rq)
4650{
4651        if (!rq->online) {
4652                const struct sched_class *class;
4653
4654                cpumask_set_cpu(rq->cpu, rq->rd->online);
4655                rq->online = 1;
4656
4657                for_each_class(class) {
4658                        if (class->rq_online)
4659                                class->rq_online(rq);
4660                }
4661        }
4662}
4663
4664static void set_rq_offline(struct rq *rq)
4665{
4666        if (rq->online) {
4667                const struct sched_class *class;
4668
4669                for_each_class(class) {
4670                        if (class->rq_offline)
4671                                class->rq_offline(rq);
4672                }
4673
4674                cpumask_clear_cpu(rq->cpu, rq->rd->online);
4675                rq->online = 0;
4676        }
4677}
4678
4679/*
4680 * migration_call - callback that gets triggered when a CPU is added.
4681 * Here we can start up the necessary migration thread for the new CPU.
4682 */
4683static int
4684migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4685{
4686        int cpu = (long)hcpu;
4687        unsigned long flags;
4688        struct rq *rq = cpu_rq(cpu);
4689
4690        switch (action & ~CPU_TASKS_FROZEN) {
4691
4692        case CPU_UP_PREPARE:
4693                rq->calc_load_update = calc_load_update;
4694                break;
4695
4696        case CPU_ONLINE:
4697                /* Update our root-domain */
4698                raw_spin_lock_irqsave(&rq->lock, flags);
4699                if (rq->rd) {
4700                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4701
4702                        set_rq_online(rq);
4703                }
4704                raw_spin_unlock_irqrestore(&rq->lock, flags);
4705                break;
4706
4707#ifdef CONFIG_HOTPLUG_CPU
4708        case CPU_DYING:
4709                sched_ttwu_pending();
4710                /* Update our root-domain */
4711                raw_spin_lock_irqsave(&rq->lock, flags);
4712                if (rq->rd) {
4713                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4714                        set_rq_offline(rq);
4715                }
4716                migrate_tasks(cpu);
4717                BUG_ON(rq->nr_running != 1); /* the migration thread */
4718                raw_spin_unlock_irqrestore(&rq->lock, flags);
4719                break;
4720
4721        case CPU_DEAD:
4722                calc_load_migrate(rq);
4723                break;
4724#endif
4725        }
4726
4727        update_max_interval();
4728
4729        return NOTIFY_OK;
4730}
4731
4732/*
4733 * Register at high priority so that task migration (migrate_all_tasks)
4734 * happens before everything else.  This has to be lower priority than
4735 * the notifier in the perf_event subsystem, though.
4736 */
4737static struct notifier_block migration_notifier = {
4738        .notifier_call = migration_call,
4739        .priority = CPU_PRI_MIGRATION,
4740};
4741
4742static int sched_cpu_active(struct notifier_block *nfb,
4743                                      unsigned long action, void *hcpu)
4744{
4745        switch (action & ~CPU_TASKS_FROZEN) {
4746        case CPU_STARTING:
4747        case CPU_DOWN_FAILED:
4748                set_cpu_active((long)hcpu, true);
4749                return NOTIFY_OK;
4750        default:
4751                return NOTIFY_DONE;
4752        }
4753}
4754
4755static int sched_cpu_inactive(struct notifier_block *nfb,
4756                                        unsigned long action, void *hcpu)
4757{
4758        switch (action & ~CPU_TASKS_FROZEN) {
4759        case CPU_DOWN_PREPARE:
4760                set_cpu_active((long)hcpu, false);
4761                return NOTIFY_OK;
4762        default:
4763                return NOTIFY_DONE;
4764        }
4765}
4766
4767static int __init migration_init(void)
4768{
4769        void *cpu = (void *)(long)smp_processor_id();
4770        int err;
4771
4772        /* Initialize migration for the boot CPU */
4773        err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4774        BUG_ON(err == NOTIFY_BAD);
4775        migration_call(&migration_notifier, CPU_ONLINE, cpu);
4776        register_cpu_notifier(&migration_notifier);
4777
4778        /* Register cpu active notifiers */
4779        cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4780        cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4781
4782        return 0;
4783}
4784early_initcall(migration_init);
4785#endif
4786
4787#ifdef CONFIG_SMP
4788
4789static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4790
4791#ifdef CONFIG_SCHED_DEBUG
4792
4793static __read_mostly int sched_debug_enabled;
4794
4795static int __init sched_debug_setup(char *str)
4796{
4797        sched_debug_enabled = 1;
4798
4799        return 0;
4800}
4801early_param("sched_debug", sched_debug_setup);
4802
4803static inline bool sched_debug(void)
4804{
4805        return sched_debug_enabled;
4806}
4807
4808static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4809                                  struct cpumask *groupmask)
4810{
4811        struct sched_group *group = sd->groups;
4812        char str[256];
4813
4814        cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4815        cpumask_clear(groupmask);
4816
4817        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4818
4819        if (!(sd->flags & SD_LOAD_BALANCE)) {
4820                printk("does not load-balance\n");
4821                if (sd->parent)
4822                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4823                                        " has parent");
4824                return -1;
4825        }
4826
4827        printk(KERN_CONT "span %s level %s\n", str, sd->name);
4828
4829        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4830                printk(KERN_ERR "ERROR: domain->span does not contain "
4831                                "CPU%d\n", cpu);
4832        }
4833        if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4834                printk(KERN_ERR "ERROR: domain->groups does not contain"
4835                                " CPU%d\n", cpu);
4836        }
4837
4838        printk(KERN_DEBUG "%*s groups:", level + 1, "");
4839        do {
4840                if (!group) {
4841                        printk("\n");
4842                        printk(KERN_ERR "ERROR: group is NULL\n");
4843                        break;
4844                }
4845
4846                /*
4847                 * Even though we initialize ->power to something semi-sane,
4848                 * we leave power_orig unset. This allows us to detect if
4849                 * domain iteration is still funny without causing /0 traps.
4850                 */
4851                if (!group->sgp->power_orig) {
4852                        printk(KERN_CONT "\n");
4853                        printk(KERN_ERR "ERROR: domain->cpu_power not "
4854                                        "set\n");
4855                        break;
4856                }
4857
4858                if (!cpumask_weight(sched_group_cpus(group))) {
4859                        printk(KERN_CONT "\n");
4860                        printk(KERN_ERR "ERROR: empty group\n");
4861                        break;
4862                }
4863
4864                if (!(sd->flags & SD_OVERLAP) &&
4865                    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4866                        printk(KERN_CONT "\n");
4867                        printk(KERN_ERR "ERROR: repeated CPUs\n");
4868                        break;
4869                }
4870
4871                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4872
4873                cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4874
4875                printk(KERN_CONT " %s", str);
4876                if (group->sgp->power != SCHED_POWER_SCALE) {
4877                        printk(KERN_CONT " (cpu_power = %d)",
4878                                group->sgp->power);
4879                }
4880
4881                group = group->next;
4882        } while (group != sd->groups);
4883        printk(KERN_CONT "\n");
4884
4885        if (!cpumask_equal(sched_domain_span(sd), groupmask))
4886                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4887
4888        if (sd->parent &&
4889            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4890                printk(KERN_ERR "ERROR: parent span is not a superset "
4891                        "of domain->span\n");
4892        return 0;
4893}
4894
4895static void sched_domain_debug(struct sched_domain *sd, int cpu)
4896{
4897        int level = 0;
4898
4899        if (!sched_debug_enabled)
4900                return;
4901
4902        if (!sd) {
4903                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4904                return;
4905        }
4906
4907        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4908
4909        for (;;) {
4910                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4911                        break;
4912                level++;
4913                sd = sd->parent;
4914                if (!sd)
4915                        break;
4916        }
4917}
4918#else /* !CONFIG_SCHED_DEBUG */
4919# define sched_domain_debug(sd, cpu) do { } while (0)
4920static inline bool sched_debug(void)
4921{
4922        return false;
4923}
4924#endif /* CONFIG_SCHED_DEBUG */
4925
4926static int sd_degenerate(struct sched_domain *sd)
4927{
4928        if (cpumask_weight(sched_domain_span(sd)) == 1)
4929                return 1;
4930
4931        /* Following flags need at least 2 groups */
4932        if (sd->flags & (SD_LOAD_BALANCE |
4933                         SD_BALANCE_NEWIDLE |
4934                         SD_BALANCE_FORK |
4935                         SD_BALANCE_EXEC |
4936                         SD_SHARE_CPUPOWER |
4937                         SD_SHARE_PKG_RESOURCES)) {
4938                if (sd->groups != sd->groups->next)
4939                        return 0;
4940        }
4941
4942        /* Following flags don't use groups */
4943        if (sd->flags & (SD_WAKE_AFFINE))
4944                return 0;
4945
4946        return 1;
4947}
4948
4949static int
4950sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4951{
4952        unsigned long cflags = sd->flags, pflags = parent->flags;
4953
4954        if (sd_degenerate(parent))
4955                return 1;
4956
4957        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4958                return 0;
4959
4960        /* Flags needing groups don't count if only 1 group in parent */
4961        if (parent->groups == parent->groups->next) {
4962                pflags &= ~(SD_LOAD_BALANCE |
4963                                SD_BALANCE_NEWIDLE |
4964                                SD_BALANCE_FORK |
4965                                SD_BALANCE_EXEC |
4966                                SD_SHARE_CPUPOWER |
4967                                SD_SHARE_PKG_RESOURCES);
4968                if (nr_node_ids == 1)
4969                        pflags &= ~SD_SERIALIZE;
4970        }
4971        if (~cflags & pflags)
4972                return 0;
4973
4974        return 1;
4975}
4976
4977static void free_rootdomain(struct rcu_head *rcu)
4978{
4979        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4980
4981        cpupri_cleanup(&rd->cpupri);
4982        free_cpumask_var(rd->rto_mask);
4983        free_cpumask_var(rd->online);
4984        free_cpumask_var(rd->span);
4985        kfree(rd);
4986}
4987
4988static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4989{
4990        struct root_domain *old_rd = NULL;
4991        unsigned long flags;
4992
4993        raw_spin_lock_irqsave(&rq->lock, flags);
4994
4995        if (rq->rd) {
4996                old_rd = rq->rd;
4997
4998                if (cpumask_test_cpu(rq->cpu, old_rd->online))
4999                        set_rq_offline(rq);
5000
5001                cpumask_clear_cpu(rq->cpu, old_rd->span);
5002
5003                /*
5004                 * If we dont want to free the old_rt yet then
5005                 * set old_rd to NULL to skip the freeing later
5006                 * in this function:
5007                 */
5008                if (!atomic_dec_and_test(&old_rd->refcount))
5009                        old_rd = NULL;
5010        }
5011
5012        atomic_inc(&rd->refcount);
5013        rq->rd = rd;
5014
5015        cpumask_set_cpu(rq->cpu, rd->span);
5016        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5017                set_rq_online(rq);
5018
5019        raw_spin_unlock_irqrestore(&rq->lock, flags);
5020
5021        if (old_rd)
5022                call_rcu_sched(&old_rd->rcu, free_rootdomain);
5023}
5024
5025static int init_rootdomain(struct root_domain *rd)
5026{
5027        memset(rd, 0, sizeof(*rd));
5028
5029        if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5030                goto out;
5031        if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5032                goto free_span;
5033        if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5034                goto free_online;
5035
5036        if (cpupri_init(&rd->cpupri) != 0)
5037                goto free_rto_mask;
5038        return 0;
5039
5040free_rto_mask:
5041        free_cpumask_var(rd->rto_mask);
5042free_online:
5043        free_cpumask_var(rd->online);
5044free_span:
5045        free_cpumask_var(rd->span);
5046out:
5047        return -ENOMEM;
5048}
5049
5050/*
5051 * By default the system creates a single root-domain with all cpus as
5052 * members (mimicking the global state we have today).
5053 */
5054struct root_domain def_root_domain;
5055
5056static void init_defrootdomain(void)
5057{
5058        init_rootdomain(&def_root_domain);
5059
5060        atomic_set(&def_root_domain.refcount, 1);
5061}
5062
5063static struct root_domain *alloc_rootdomain(void)
5064{
5065        struct root_domain *rd;
5066
5067        rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5068        if (!rd)
5069                return NULL;
5070
5071        if (init_rootdomain(rd) != 0) {
5072                kfree(rd);
5073                return NULL;
5074        }
5075
5076        return rd;
5077}
5078
5079static void free_sched_groups(struct sched_group *sg, int free_sgp)
5080{
5081        struct sched_group *tmp, *first;
5082
5083        if (!sg)
5084                return;
5085
5086        first = sg;
5087        do {
5088                tmp = sg->next;
5089
5090                if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5091                        kfree(sg->sgp);
5092
5093                kfree(sg);
5094                sg = tmp;
5095        } while (sg != first);
5096}
5097
5098static void free_sched_domain(struct rcu_head *rcu)
5099{
5100        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5101
5102        /*
5103         * If its an overlapping domain it has private groups, iterate and
5104         * nuke them all.
5105         */
5106        if (sd->flags & SD_OVERLAP) {
5107                free_sched_groups(sd->groups, 1);
5108        } else if (atomic_dec_and_test(&sd->groups->ref)) {
5109                kfree(sd->groups->sgp);
5110                kfree(sd->groups);
5111        }
5112        kfree(sd);
5113}
5114
5115static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5116{
5117        call_rcu(&sd->rcu, free_sched_domain);
5118}
5119
5120static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5121{
5122        for (; sd; sd = sd->parent)
5123                destroy_sched_domain(sd, cpu);
5124}
5125
5126/*
5127 * Keep a special pointer to the highest sched_domain that has
5128 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5129 * allows us to avoid some pointer chasing select_idle_sibling().
5130 *
5131 * Also keep a unique ID per domain (we use the first cpu number in
5132 * the cpumask of the domain), this allows us to quickly tell if
5133 * two cpus are in the same cache domain, see cpus_share_cache().
5134 */
5135DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5136DEFINE_PER_CPU(int, sd_llc_id);
5137
5138static void update_top_cache_domain(int cpu)
5139{
5140        struct sched_domain *sd;
5141        int id = cpu;
5142
5143        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5144        if (sd)
5145                id = cpumask_first(sched_domain_span(sd));
5146
5147        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5148        per_cpu(sd_llc_id, cpu) = id;
5149}
5150
5151/*
5152 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5153 * hold the hotplug lock.
5154 */
5155static void
5156cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5157{
5158        struct rq *rq = cpu_rq(cpu);
5159        struct sched_domain *tmp;
5160
5161        /* Remove the sched domains which do not contribute to scheduling. */
5162        for (tmp = sd; tmp; ) {
5163                struct sched_domain *parent = tmp->parent;
5164                if (!parent)
5165                        break;
5166
5167                if (sd_parent_degenerate(tmp, parent)) {
5168                        tmp->parent = parent->parent;
5169                        if (parent->parent)
5170                                parent->parent->child = tmp;
5171                        destroy_sched_domain(parent, cpu);
5172                } else
5173                        tmp = tmp->parent;
5174        }
5175
5176        if (sd && sd_degenerate(sd)) {
5177                tmp = sd;
5178                sd = sd->parent;
5179                destroy_sched_domain(tmp, cpu);
5180                if (sd)
5181                        sd->child = NULL;
5182        }
5183
5184        sched_domain_debug(sd, cpu);
5185
5186        rq_attach_root(rq, rd);
5187        tmp = rq->sd;
5188        rcu_assign_pointer(rq->sd, sd);
5189        destroy_sched_domains(tmp, cpu);
5190
5191        update_top_cache_domain(cpu);
5192}
5193
5194/* cpus with isolated domains */
5195static cpumask_var_t cpu_isolated_map;
5196
5197/* Setup the mask of cpus configured for isolated domains */
5198static int __init isolated_cpu_setup(char *str)
5199{
5200        alloc_bootmem_cpumask_var(&cpu_isolated_map);
5201        cpulist_parse(str, cpu_isolated_map);
5202        return 1;
5203}
5204
5205__setup("isolcpus=", isolated_cpu_setup);
5206
5207static const struct cpumask *cpu_cpu_mask(int cpu)
5208{
5209        return cpumask_of_node(cpu_to_node(cpu));
5210}
5211
5212struct sd_data {
5213        struct sched_domain **__percpu sd;
5214        struct sched_group **__percpu sg;
5215        struct sched_group_power **__percpu sgp;
5216};
5217
5218struct s_data {
5219        struct sched_domain ** __percpu sd;
5220        struct root_domain      *rd;
5221};
5222
5223enum s_alloc {
5224        sa_rootdomain,
5225        sa_sd,
5226        sa_sd_storage,
5227        sa_none,
5228};
5229
5230struct sched_domain_topology_level;
5231
5232typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5233typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5234
5235#define SDTL_OVERLAP    0x01
5236
5237struct sched_domain_topology_level {
5238        sched_domain_init_f init;
5239        sched_domain_mask_f mask;
5240        int                 flags;
5241        int                 numa_level;
5242        struct sd_data      data;
5243};
5244
5245/*
5246 * Build an iteration mask that can exclude certain CPUs from the upwards
5247 * domain traversal.
5248 *
5249 * Asymmetric node setups can result in situations where the domain tree is of
5250 * unequal depth, make sure to skip domains that already cover the entire
5251 * range.
5252 *
5253 * In that case build_sched_domains() will have terminated the iteration early
5254 * and our sibling sd spans will be empty. Domains should always include the
5255 * cpu they're built on, so check that.
5256 *
5257 */
5258static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5259{
5260        const struct cpumask *span = sched_domain_span(sd);
5261        struct sd_data *sdd = sd->private;
5262        struct sched_domain *sibling;
5263        int i;
5264
5265        for_each_cpu(i, span) {
5266                sibling = *per_cpu_ptr(sdd->sd, i);
5267                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5268                        continue;
5269
5270                cpumask_set_cpu(i, sched_group_mask(sg));
5271        }
5272}
5273
5274/*
5275 * Return the canonical balance cpu for this group, this is the first cpu
5276 * of this group that's also in the iteration mask.
5277 */
5278int group_balance_cpu(struct sched_group *sg)
5279{
5280        return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5281}
5282
5283static int
5284build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5285{
5286        struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5287        const struct cpumask *span = sched_domain_span(sd);
5288        struct cpumask *covered = sched_domains_tmpmask;
5289        struct sd_data *sdd = sd->private;
5290        struct sched_domain *child;
5291        int i;
5292
5293        cpumask_clear(covered);
5294
5295        for_each_cpu(i, span) {
5296                struct cpumask *sg_span;
5297
5298                if (cpumask_test_cpu(i, covered))
5299                        continue;
5300
5301                child = *per_cpu_ptr(sdd->sd, i);
5302
5303                /* See the comment near build_group_mask(). */
5304                if (!cpumask_test_cpu(i, sched_domain_span(child)))
5305                        continue;
5306
5307                sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5308                                GFP_KERNEL, cpu_to_node(cpu));
5309
5310                if (!sg)
5311                        goto fail;
5312
5313                sg_span = sched_group_cpus(sg);
5314                if (child->child) {
5315                        child = child->child;
5316                        cpumask_copy(sg_span, sched_domain_span(child));
5317                } else
5318                        cpumask_set_cpu(i, sg_span);
5319
5320                cpumask_or(covered, covered, sg_span);
5321
5322                sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5323                if (atomic_inc_return(&sg->sgp->ref) == 1)
5324                        build_group_mask(sd, sg);
5325
5326                /*
5327                 * Initialize sgp->power such that even if we mess up the
5328                 * domains and no possible iteration will get us here, we won't
5329                 * die on a /0 trap.
5330                 */
5331                sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5332
5333                /*
5334                 * Make sure the first group of this domain contains the
5335                 * canonical balance cpu. Otherwise the sched_domain iteration
5336                 * breaks. See update_sg_lb_stats().
5337                 */
5338                if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5339                    group_balance_cpu(sg) == cpu)
5340                        groups = sg;
5341
5342                if (!first)
5343                        first = sg;
5344                if (last)
5345                        last->next = sg;
5346                last = sg;
5347                last->next = first;
5348        }
5349        sd->groups = groups;
5350
5351        return 0;
5352
5353fail:
5354        free_sched_groups(first, 0);
5355
5356        return -ENOMEM;
5357}
5358
5359static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5360{
5361        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5362        struct sched_domain *child = sd->child;
5363
5364        if (child)
5365                cpu = cpumask_first(sched_domain_span(child));
5366
5367        if (sg) {
5368                *sg = *per_cpu_ptr(sdd->sg, cpu);
5369                (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5370                atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5371        }
5372
5373        return cpu;
5374}
5375
5376/*
5377 * build_sched_groups will build a circular linked list of the groups
5378 * covered by the given span, and will set each group's ->cpumask correctly,
5379 * and ->cpu_power to 0.
5380 *
5381 * Assumes the sched_domain tree is fully constructed
5382 */
5383static int
5384build_sched_groups(struct sched_domain *sd, int cpu)
5385{
5386        struct sched_group *first = NULL, *last = NULL;
5387        struct sd_data *sdd = sd->private;
5388        const struct cpumask *span = sched_domain_span(sd);
5389        struct cpumask *covered;
5390        int i;
5391
5392        get_group(cpu, sdd, &sd->groups);
5393        atomic_inc(&sd->groups->ref);
5394
5395        if (cpu != cpumask_first(span))
5396                return 0;
5397
5398        lockdep_assert_held(&sched_domains_mutex);
5399        covered = sched_domains_tmpmask;
5400
5401        cpumask_clear(covered);
5402
5403        for_each_cpu(i, span) {
5404                struct sched_group *sg;
5405                int group, j;
5406
5407                if (cpumask_test_cpu(i, covered))
5408                        continue;
5409
5410                group = get_group(i, sdd, &sg);
5411                cpumask_clear(sched_group_cpus(sg));
5412                sg->sgp->power = 0;
5413                cpumask_setall(sched_group_mask(sg));
5414
5415                for_each_cpu(j, span) {
5416                        if (get_group(j, sdd, NULL) != group)
5417                                continue;
5418
5419                        cpumask_set_cpu(j, covered);
5420                        cpumask_set_cpu(j, sched_group_cpus(sg));
5421                }
5422
5423                if (!first)
5424                        first = sg;
5425                if (last)
5426                        last->next = sg;
5427                last = sg;
5428        }
5429        last->next = first;
5430
5431        return 0;
5432}
5433
5434/*
5435 * Initialize sched groups cpu_power.
5436 *
5437 * cpu_power indicates the capacity of sched group, which is used while
5438 * distributing the load between different sched groups in a sched domain.
5439 * Typically cpu_power for all the groups in a sched domain will be same unless
5440 * there are asymmetries in the topology. If there are asymmetries, group
5441 * having more cpu_power will pickup more load compared to the group having
5442 * less cpu_power.
5443 */
5444static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5445{
5446        struct sched_group *sg = sd->groups;
5447
5448        WARN_ON(!sg);
5449
5450        do {
5451                sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5452                sg = sg->next;
5453        } while (sg != sd->groups);
5454
5455        if (cpu != group_balance_cpu(sg))
5456                return;
5457
5458        update_group_power(sd, cpu);
5459        atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5460}
5461
5462int __weak arch_sd_sibling_asym_packing(void)
5463{
5464       return 0*SD_ASYM_PACKING;
5465}
5466
5467/*
5468 * Initializers for schedule domains
5469 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5470 */
5471
5472#ifdef CONFIG_SCHED_DEBUG
5473# define SD_INIT_NAME(sd, type)         sd->name = #type
5474#else
5475# define SD_INIT_NAME(sd, type)         do { } while (0)
5476#endif
5477
5478#define SD_INIT_FUNC(type)                                              \
5479static noinline struct sched_domain *                                   \
5480sd_init_##type(struct sched_domain_topology_level *tl, int cpu)         \
5481{                                                                       \
5482        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
5483        *sd = SD_##type##_INIT;                                         \
5484        SD_INIT_NAME(sd, type);                                         \
5485        sd->private = &tl->data;                                        \
5486        return sd;                                                      \
5487}
5488
5489SD_INIT_FUNC(CPU)
5490#ifdef CONFIG_SCHED_SMT
5491 SD_INIT_FUNC(SIBLING)
5492#endif
5493#ifdef CONFIG_SCHED_MC
5494 SD_INIT_FUNC(MC)
5495#endif
5496#ifdef CONFIG_SCHED_BOOK
5497 SD_INIT_FUNC(BOOK)
5498#endif
5499
5500static int default_relax_domain_level = -1;
5501int sched_domain_level_max;
5502
5503static int __init setup_relax_domain_level(char *str)
5504{
5505        if (kstrtoint(str, 0, &default_relax_domain_level))
5506                pr_warn("Unable to set relax_domain_level\n");
5507
5508        return 1;
5509}
5510__setup("relax_domain_level=", setup_relax_domain_level);
5511
5512static void set_domain_attribute(struct sched_domain *sd,
5513                                 struct sched_domain_attr *attr)
5514{
5515        int request;
5516
5517        if (!attr || attr->relax_domain_level < 0) {
5518                if (default_relax_domain_level < 0)
5519                        return;
5520                else
5521                        request = default_relax_domain_level;
5522        } else
5523                request = attr->relax_domain_level;
5524        if (request < sd->level) {
5525                /* turn off idle balance on this domain */
5526                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5527        } else {
5528                /* turn on idle balance on this domain */
5529                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5530        }
5531}
5532
5533static void __sdt_free(const struct cpumask *cpu_map);
5534static int __sdt_alloc(const struct cpumask *cpu_map);
5535
5536static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5537                                 const struct cpumask *cpu_map)
5538{
5539        switch (what) {
5540        case sa_rootdomain:
5541                if (!atomic_read(&d->rd->refcount))
5542                        free_rootdomain(&d->rd->rcu); /* fall through */
5543        case sa_sd:
5544                free_percpu(d->sd); /* fall through */
5545        case sa_sd_storage:
5546                __sdt_free(cpu_map); /* fall through */
5547        case sa_none:
5548                break;
5549        }
5550}
5551
5552static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5553                                                   const struct cpumask *cpu_map)
5554{
5555        memset(d, 0, sizeof(*d));
5556
5557        if (__sdt_alloc(cpu_map))
5558                return sa_sd_storage;
5559        d->sd = alloc_percpu(struct sched_domain *);
5560        if (!d->sd)
5561                return sa_sd_storage;
5562        d->rd = alloc_rootdomain();
5563        if (!d->rd)
5564                return sa_sd;
5565        return sa_rootdomain;
5566}
5567
5568/*
5569 * NULL the sd_data elements we've used to build the sched_domain and
5570 * sched_group structure so that the subsequent __free_domain_allocs()
5571 * will not free the data we're using.
5572 */
5573static void claim_allocations(int cpu, struct sched_domain *sd)
5574{
5575        struct sd_data *sdd = sd->private;
5576
5577        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5578        *per_cpu_ptr(sdd->sd, cpu) = NULL;
5579
5580        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5581                *per_cpu_ptr(sdd->sg, cpu) = NULL;
5582
5583        if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5584                *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5585}
5586
5587#ifdef CONFIG_SCHED_SMT
5588static const struct cpumask *cpu_smt_mask(int cpu)
5589{
5590        return topology_thread_cpumask(cpu);
5591}
5592#endif
5593
5594/*
5595 * Topology list, bottom-up.
5596 */
5597static struct sched_domain_topology_level default_topology[] = {
5598#ifdef CONFIG_SCHED_SMT
5599        { sd_init_SIBLING, cpu_smt_mask, },
5600#endif
5601#ifdef CONFIG_SCHED_MC
5602        { sd_init_MC, cpu_coregroup_mask, },
5603#endif
5604#ifdef CONFIG_SCHED_BOOK
5605        { sd_init_BOOK, cpu_book_mask, },
5606#endif
5607        { sd_init_CPU, cpu_cpu_mask, },
5608        { NULL, },
5609};
5610
5611static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5612
5613#define for_each_sd_topology(tl)                        \
5614        for (tl = sched_domain_topology; tl->init; tl++)
5615
5616#ifdef CONFIG_NUMA
5617
5618static int sched_domains_numa_levels;
5619static int *sched_domains_numa_distance;
5620static struct cpumask ***sched_domains_numa_masks;
5621static int sched_domains_curr_level;
5622
5623static inline int sd_local_flags(int level)
5624{
5625        if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5626                return 0;
5627
5628        return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5629}
5630
5631static struct sched_domain *
5632sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5633{
5634        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5635        int level = tl->numa_level;
5636        int sd_weight = cpumask_weight(
5637                        sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5638
5639        *sd = (struct sched_domain){
5640                .min_interval           = sd_weight,
5641                .max_interval           = 2*sd_weight,
5642                .busy_factor            = 32,
5643                .imbalance_pct          = 125,
5644                .cache_nice_tries       = 2,
5645                .busy_idx               = 3,
5646                .idle_idx               = 2,
5647                .newidle_idx            = 0,
5648                .wake_idx               = 0,
5649                .forkexec_idx           = 0,
5650
5651                .flags                  = 1*SD_LOAD_BALANCE
5652                                        | 1*SD_BALANCE_NEWIDLE
5653                                        | 0*SD_BALANCE_EXEC
5654                                        | 0*SD_BALANCE_FORK
5655                                        | 0*SD_BALANCE_WAKE
5656                                        | 0*SD_WAKE_AFFINE
5657                                        | 0*SD_SHARE_CPUPOWER
5658                                        | 0*SD_SHARE_PKG_RESOURCES
5659                                        | 1*SD_SERIALIZE
5660                                        | 0*SD_PREFER_SIBLING
5661                                        | sd_local_flags(level)
5662                                        ,
5663                .last_balance           = jiffies,
5664                .balance_interval       = sd_weight,
5665        };
5666        SD_INIT_NAME(sd, NUMA);
5667        sd->private = &tl->data;
5668
5669        /*
5670         * Ugly hack to pass state to sd_numa_mask()...
5671         */
5672        sched_domains_curr_level = tl->numa_level;
5673
5674        return sd;
5675}
5676
5677static const struct cpumask *sd_numa_mask(int cpu)
5678{
5679        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5680}
5681
5682static void sched_numa_warn(const char *str)
5683{
5684        static int done = false;
5685        int i,j;
5686
5687        if (done)
5688                return;
5689
5690        done = true;
5691
5692        printk(KERN_WARNING "ERROR: %s\n\n", str);
5693
5694        for (i = 0; i < nr_node_ids; i++) {
5695                printk(KERN_WARNING "  ");
5696                for (j = 0; j < nr_node_ids; j++)
5697                        printk(KERN_CONT "%02d ", node_distance(i,j));
5698                printk(KERN_CONT "\n");
5699        }
5700        printk(KERN_WARNING "\n");
5701}
5702
5703static bool find_numa_distance(int distance)
5704{
5705        int i;
5706
5707        if (distance == node_distance(0, 0))
5708                return true;
5709
5710        for (i = 0; i < sched_domains_numa_levels; i++) {
5711                if (sched_domains_numa_distance[i] == distance)
5712                        return true;
5713        }
5714
5715        return false;
5716}
5717
5718static void sched_init_numa(void)
5719{
5720        int next_distance, curr_distance = node_distance(0, 0);
5721        struct sched_domain_topology_level *tl;
5722        int level = 0;
5723        int i, j, k;
5724
5725        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5726        if (!sched_domains_numa_distance)
5727                return;
5728
5729        /*
5730         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5731         * unique distances in the node_distance() table.
5732         *
5733         * Assumes node_distance(0,j) includes all distances in
5734         * node_distance(i,j) in order to avoid cubic time.
5735         */
5736        next_distance = curr_distance;
5737        for (i = 0; i < nr_node_ids; i++) {
5738                for (j = 0; j < nr_node_ids; j++) {
5739                        for (k = 0; k < nr_node_ids; k++) {
5740                                int distance = node_distance(i, k);
5741
5742                                if (distance > curr_distance &&
5743                                    (distance < next_distance ||
5744                                     next_distance == curr_distance))
5745                                        next_distance = distance;
5746
5747                                /*
5748                                 * While not a strong assumption it would be nice to know
5749                                 * about cases where if node A is connected to B, B is not
5750                                 * equally connected to A.
5751                                 */
5752                                if (sched_debug() && node_distance(k, i) != distance)
5753                                        sched_numa_warn("Node-distance not symmetric");
5754
5755                                if (sched_debug() && i && !find_numa_distance(distance))
5756                                        sched_numa_warn("Node-0 not representative");
5757                        }
5758                        if (next_distance != curr_distance) {
5759                                sched_domains_numa_distance[level++] = next_distance;
5760                                sched_domains_numa_levels = level;
5761                                curr_distance = next_distance;
5762                        } else break;
5763                }
5764
5765                /*
5766                 * In case of sched_debug() we verify the above assumption.
5767                 */
5768                if (!sched_debug())
5769                        break;
5770        }
5771        /*
5772         * 'level' contains the number of unique distances, excluding the
5773         * identity distance node_distance(i,i).
5774         *
5775         * The sched_domains_numa_distance[] array includes the actual distance
5776         * numbers.
5777         */
5778
5779        /*
5780         * Here, we should temporarily reset sched_domains_numa_levels to 0.
5781         * If it fails to allocate memory for array sched_domains_numa_masks[][],
5782         * the array will contain less then 'level' members. This could be
5783         * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5784         * in other functions.
5785         *
5786         * We reset it to 'level' at the end of this function.
5787         */
5788        sched_domains_numa_levels = 0;
5789
5790        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5791        if (!sched_domains_numa_masks)
5792                return;
5793
5794        /*
5795         * Now for each level, construct a mask per node which contains all
5796         * cpus of nodes that are that many hops away from us.
5797         */
5798        for (i = 0; i < level; i++) {
5799                sched_domains_numa_masks[i] =
5800                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5801                if (!sched_domains_numa_masks[i])
5802                        return;
5803
5804                for (j = 0; j < nr_node_ids; j++) {
5805                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5806                        if (!mask)
5807                                return;
5808
5809                        sched_domains_numa_masks[i][j] = mask;
5810
5811                        for (k = 0; k < nr_node_ids; k++) {
5812                                if (node_distance(j, k) > sched_domains_numa_distance[i])
5813                                        continue;
5814
5815                                cpumask_or(mask, mask, cpumask_of_node(k));
5816                        }
5817                }
5818        }
5819
5820        tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5821                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5822        if (!tl)
5823                return;
5824
5825        /*
5826         * Copy the default topology bits..
5827         */
5828        for (i = 0; default_topology[i].init; i++)
5829                tl[i] = default_topology[i];
5830
5831        /*
5832         * .. and append 'j' levels of NUMA goodness.
5833         */
5834        for (j = 0; j < level; i++, j++) {
5835                tl[i] = (struct sched_domain_topology_level){
5836                        .init = sd_numa_init,
5837                        .mask = sd_numa_mask,
5838                        .flags = SDTL_OVERLAP,
5839                        .numa_level = j,
5840                };
5841        }
5842
5843        sched_domain_topology = tl;
5844
5845        sched_domains_numa_levels = level;
5846}
5847
5848static void sched_domains_numa_masks_set(int cpu)
5849{
5850        int i, j;
5851        int node = cpu_to_node(cpu);
5852
5853        for (i = 0; i < sched_domains_numa_levels; i++) {
5854                for (j = 0; j < nr_node_ids; j++) {
5855                        if (node_distance(j, node) <= sched_domains_numa_distance[i])
5856                                cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5857                }
5858        }
5859}
5860
5861static void sched_domains_numa_masks_clear(int cpu)
5862{
5863        int i, j;
5864        for (i = 0; i < sched_domains_numa_levels; i++) {
5865                for (j = 0; j < nr_node_ids; j++)
5866                        cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5867        }
5868}
5869
5870/*
5871 * Update sched_domains_numa_masks[level][node] array when new cpus
5872 * are onlined.
5873 */
5874static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5875                                           unsigned long action,
5876                                           void *hcpu)
5877{
5878        int cpu = (long)hcpu;
5879
5880        switch (action & ~CPU_TASKS_FROZEN) {
5881        case CPU_ONLINE:
5882                sched_domains_numa_masks_set(cpu);
5883                break;
5884
5885        case CPU_DEAD:
5886                sched_domains_numa_masks_clear(cpu);
5887                break;
5888
5889        default:
5890                return NOTIFY_DONE;
5891        }
5892
5893        return NOTIFY_OK;
5894}
5895#else
5896static inline void sched_init_numa(void)
5897{
5898}
5899
5900static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5901                                           unsigned long action,
5902                                           void *hcpu)
5903{
5904        return 0;
5905}
5906#endif /* CONFIG_NUMA */
5907
5908static int __sdt_alloc(const struct cpumask *cpu_map)
5909{
5910        struct sched_domain_topology_level *tl;
5911        int j;
5912
5913        for_each_sd_topology(tl) {
5914                struct sd_data *sdd = &tl->data;
5915
5916                sdd->sd = alloc_percpu(struct sched_domain *);
5917                if (!sdd->sd)
5918                        return -ENOMEM;
5919
5920                sdd->sg = alloc_percpu(struct sched_group *);
5921                if (!sdd->sg)
5922                        return -ENOMEM;
5923
5924                sdd->sgp = alloc_percpu(struct sched_group_power *);
5925                if (!sdd->sgp)
5926                        return -ENOMEM;
5927
5928                for_each_cpu(j, cpu_map) {
5929                        struct sched_domain *sd;
5930                        struct sched_group *sg;
5931                        struct sched_group_power *sgp;
5932
5933                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5934                                        GFP_KERNEL, cpu_to_node(j));
5935                        if (!sd)
5936                                return -ENOMEM;
5937
5938                        *per_cpu_ptr(sdd->sd, j) = sd;
5939
5940                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5941                                        GFP_KERNEL, cpu_to_node(j));
5942                        if (!sg)
5943                                return -ENOMEM;
5944
5945                        sg->next = sg;
5946
5947                        *per_cpu_ptr(sdd->sg, j) = sg;
5948
5949                        sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5950                                        GFP_KERNEL, cpu_to_node(j));
5951                        if (!sgp)
5952                                return -ENOMEM;
5953
5954                        *per_cpu_ptr(sdd->sgp, j) = sgp;
5955                }
5956        }
5957
5958        return 0;
5959}
5960
5961static void __sdt_free(const struct cpumask *cpu_map)
5962{
5963        struct sched_domain_topology_level *tl;
5964        int j;
5965
5966        for_each_sd_topology(tl) {
5967                struct sd_data *sdd = &tl->data;
5968
5969                for_each_cpu(j, cpu_map) {
5970                        struct sched_domain *sd;
5971
5972                        if (sdd->sd) {
5973                                sd = *per_cpu_ptr(sdd->sd, j);
5974                                if (sd && (sd->flags & SD_OVERLAP))
5975                                        free_sched_groups(sd->groups, 0);
5976                                kfree(*per_cpu_ptr(sdd->sd, j));
5977                        }
5978
5979                        if (sdd->sg)
5980                                kfree(*per_cpu_ptr(sdd->sg, j));
5981                        if (sdd->sgp)
5982                                kfree(*per_cpu_ptr(sdd->sgp, j));
5983                }
5984                free_percpu(sdd->sd);
5985                sdd->sd = NULL;
5986                free_percpu(sdd->sg);
5987                sdd->sg = NULL;
5988                free_percpu(sdd->sgp);
5989                sdd->sgp = NULL;
5990        }
5991}
5992
5993struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5994                const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5995                struct sched_domain *child, int cpu)
5996{
5997        struct sched_domain *sd = tl->init(tl, cpu);
5998        if (!sd)
5999                return child;
6000
6001        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6002        if (child) {
6003                sd->level = child->level + 1;
6004                sched_domain_level_max = max(sched_domain_level_max, sd->level);
6005                child->parent = sd;
6006                sd->child = child;
6007        }
6008        set_domain_attribute(sd, attr);
6009
6010        return sd;
6011}
6012
6013/*
6014 * Build sched domains for a given set of cpus and attach the sched domains
6015 * to the individual cpus
6016 */
6017static int build_sched_domains(const struct cpumask *cpu_map,
6018                               struct sched_domain_attr *attr)
6019{
6020        enum s_alloc alloc_state;
6021        struct sched_domain *sd;
6022        struct s_data d;
6023        int i, ret = -ENOMEM;
6024
6025        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6026        if (alloc_state != sa_rootdomain)
6027                goto error;
6028
6029        /* Set up domains for cpus specified by the cpu_map. */
6030        for_each_cpu(i, cpu_map) {
6031                struct sched_domain_topology_level *tl;
6032
6033                sd = NULL;
6034                for_each_sd_topology(tl) {
6035                        sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6036                        if (tl == sched_domain_topology)
6037                                *per_cpu_ptr(d.sd, i) = sd;
6038                        if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6039                                sd->flags |= SD_OVERLAP;
6040                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6041                                break;
6042                }
6043        }
6044
6045        /* Build the groups for the domains */
6046        for_each_cpu(i, cpu_map) {
6047                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6048                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
6049                        if (sd->flags & SD_OVERLAP) {
6050                                if (build_overlap_sched_groups(sd, i))
6051                                        goto error;
6052                        } else {
6053                                if (build_sched_groups(sd, i))
6054                                        goto error;
6055                        }
6056                }
6057        }
6058
6059        /* Calculate CPU power for physical packages and nodes */
6060        for (i = nr_cpumask_bits-1; i >= 0; i--) {
6061                if (!cpumask_test_cpu(i, cpu_map))
6062                        continue;
6063
6064                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6065                        claim_allocations(i, sd);
6066                        init_sched_groups_power(i, sd);
6067                }
6068        }
6069
6070        /* Attach the domains */
6071        rcu_read_lock();
6072        for_each_cpu(i, cpu_map) {
6073                sd = *per_cpu_ptr(d.sd, i);
6074                cpu_attach_domain(sd, d.rd, i);
6075        }
6076        rcu_read_unlock();
6077
6078        ret = 0;
6079error:
6080        __free_domain_allocs(&d, alloc_state, cpu_map);
6081        return ret;
6082}
6083
6084static cpumask_var_t *doms_cur; /* current sched domains */
6085static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6086static struct sched_domain_attr *dattr_cur;
6087                                /* attribues of custom domains in 'doms_cur' */
6088
6089/*
6090 * Special case: If a kmalloc of a doms_cur partition (array of
6091 * cpumask) fails, then fallback to a single sched domain,
6092 * as determined by the single cpumask fallback_doms.
6093 */
6094static cpumask_var_t fallback_doms;
6095
6096/*
6097 * arch_update_cpu_topology lets virtualized architectures update the
6098 * cpu core maps. It is supposed to return 1 if the topology changed
6099 * or 0 if it stayed the same.
6100 */
6101int __attribute__((weak)) arch_update_cpu_topology(void)
6102{
6103        return 0;
6104}
6105
6106cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6107{
6108        int i;
6109        cpumask_var_t *doms;
6110
6111        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6112        if (!doms)
6113                return NULL;
6114        for (i = 0; i < ndoms; i++) {
6115                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6116                        free_sched_domains(doms, i);
6117                        return NULL;
6118                }
6119        }
6120        return doms;
6121}
6122
6123void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6124{
6125        unsigned int i;
6126        for (i = 0; i < ndoms; i++)
6127                free_cpumask_var(doms[i]);
6128        kfree(doms);
6129}
6130
6131/*
6132 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6133 * For now this just excludes isolated cpus, but could be used to
6134 * exclude other special cases in the future.
6135 */
6136static int init_sched_domains(const struct cpumask *cpu_map)
6137{
6138        int err;
6139
6140        arch_update_cpu_topology();
6141        ndoms_cur = 1;
6142        doms_cur = alloc_sched_domains(ndoms_cur);
6143        if (!doms_cur)
6144                doms_cur = &fallback_doms;
6145        cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6146        err = build_sched_domains(doms_cur[0], NULL);
6147        register_sched_domain_sysctl();
6148
6149        return err;
6150}
6151
6152/*
6153 * Detach sched domains from a group of cpus specified in cpu_map
6154 * These cpus will now be attached to the NULL domain
6155 */
6156static void detach_destroy_domains(const struct cpumask *cpu_map)
6157{
6158        int i;
6159
6160        rcu_read_lock();
6161        for_each_cpu(i, cpu_map)
6162                cpu_attach_domain(NULL, &def_root_domain, i);
6163        rcu_read_unlock();
6164}
6165
6166/* handle null as "default" */
6167static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6168                        struct sched_domain_attr *new, int idx_new)
6169{
6170        struct sched_domain_attr tmp;
6171
6172        /* fast path */
6173        if (!new && !cur)
6174                return 1;
6175
6176        tmp = SD_ATTR_INIT;
6177        return !memcmp(cur ? (cur + idx_cur) : &tmp,
6178                        new ? (new + idx_new) : &tmp,
6179                        sizeof(struct sched_domain_attr));
6180}
6181
6182/*
6183 * Partition sched domains as specified by the 'ndoms_new'
6184 * cpumasks in the array doms_new[] of cpumasks. This compares
6185 * doms_new[] to the current sched domain partitioning, doms_cur[].
6186 * It destroys each deleted domain and builds each new domain.
6187 *
6188 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6189 * The masks don't intersect (don't overlap.) We should setup one
6190 * sched domain for each mask. CPUs not in any of the cpumasks will
6191 * not be load balanced. If the same cpumask appears both in the
6192 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6193 * it as it is.
6194 *
6195 * The passed in 'doms_new' should be allocated using
6196 * alloc_sched_domains.  This routine takes ownership of it and will
6197 * free_sched_domains it when done with it. If the caller failed the
6198 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6199 * and partition_sched_domains() will fallback to the single partition
6200 * 'fallback_doms', it also forces the domains to be rebuilt.
6201 *
6202 * If doms_new == NULL it will be replaced with cpu_online_mask.
6203 * ndoms_new == 0 is a special case for destroying existing domains,
6204 * and it will not create the default domain.
6205 *
6206 * Call with hotplug lock held
6207 */
6208void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6209                             struct sched_domain_attr *dattr_new)
6210{
6211        int i, j, n;
6212        int new_topology;
6213
6214        mutex_lock(&sched_domains_mutex);
6215
6216        /* always unregister in case we don't destroy any domains */
6217        unregister_sched_domain_sysctl();
6218
6219        /* Let architecture update cpu core mappings. */
6220        new_topology = arch_update_cpu_topology();
6221
6222        n = doms_new ? ndoms_new : 0;
6223
6224        /* Destroy deleted domains */
6225        for (i = 0; i < ndoms_cur; i++) {
6226                for (j = 0; j < n && !new_topology; j++) {
6227                        if (cpumask_equal(doms_cur[i], doms_new[j])
6228                            && dattrs_equal(dattr_cur, i, dattr_new, j))
6229                                goto match1;
6230                }
6231                /* no match - a current sched domain not in new doms_new[] */
6232                detach_destroy_domains(doms_cur[i]);
6233match1:
6234                ;
6235        }
6236
6237        if (doms_new == NULL) {
6238                ndoms_cur = 0;
6239                doms_new = &fallback_doms;
6240                cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6241                WARN_ON_ONCE(dattr_new);
6242        }
6243
6244        /* Build new domains */
6245        for (i = 0; i < ndoms_new; i++) {
6246                for (j = 0; j < ndoms_cur && !new_topology; j++) {
6247                        if (cpumask_equal(doms_new[i], doms_cur[j])
6248                            && dattrs_equal(dattr_new, i, dattr_cur, j))
6249                                goto match2;
6250                }
6251                /* no match - add a new doms_new */
6252                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6253match2:
6254                ;
6255        }
6256
6257        /* Remember the new sched domains */
6258        if (doms_cur != &fallback_doms)
6259                free_sched_domains(doms_cur, ndoms_cur);
6260        kfree(dattr_cur);       /* kfree(NULL) is safe */
6261        doms_cur = doms_new;
6262        dattr_cur = dattr_new;
6263        ndoms_cur = ndoms_new;
6264
6265        register_sched_domain_sysctl();
6266
6267        mutex_unlock(&sched_domains_mutex);
6268}
6269
6270static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
6271
6272/*
6273 * Update cpusets according to cpu_active mask.  If cpusets are
6274 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6275 * around partition_sched_domains().
6276 *
6277 * If we come here as part of a suspend/resume, don't touch cpusets because we
6278 * want to restore it back to its original state upon resume anyway.
6279 */
6280static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6281                             void *hcpu)
6282{
6283        switch (action) {
6284        case CPU_ONLINE_FROZEN:
6285        case CPU_DOWN_FAILED_FROZEN:
6286
6287                /*
6288                 * num_cpus_frozen tracks how many CPUs are involved in suspend
6289                 * resume sequence. As long as this is not the last online
6290                 * operation in the resume sequence, just build a single sched
6291                 * domain, ignoring cpusets.
6292                 */
6293                num_cpus_frozen--;
6294                if (likely(num_cpus_frozen)) {
6295                        partition_sched_domains(1, NULL, NULL);
6296                        break;
6297                }
6298
6299                /*
6300                 * This is the last CPU online operation. So fall through and
6301                 * restore the original sched domains by considering the
6302                 * cpuset configurations.
6303                 */
6304
6305        case CPU_ONLINE:
6306        case CPU_DOWN_FAILED:
6307                cpuset_update_active_cpus(true);
6308                break;
6309        default:
6310                return NOTIFY_DONE;
6311        }
6312        return NOTIFY_OK;
6313}
6314
6315static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6316                               void *hcpu)
6317{
6318        switch (action) {
6319        case CPU_DOWN_PREPARE:
6320                cpuset_update_active_cpus(false);
6321                break;
6322        case CPU_DOWN_PREPARE_FROZEN:
6323                num_cpus_frozen++;
6324                partition_sched_domains(1, NULL, NULL);
6325                break;
6326        default:
6327                return NOTIFY_DONE;
6328        }
6329        return NOTIFY_OK;
6330}
6331
6332void __init sched_init_smp(void)
6333{
6334        cpumask_var_t non_isolated_cpus;
6335
6336        alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6337        alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6338
6339        sched_init_numa();
6340
6341        get_online_cpus();
6342        mutex_lock(&sched_domains_mutex);
6343        init_sched_domains(cpu_active_mask);
6344        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6345        if (cpumask_empty(non_isolated_cpus))
6346                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6347        mutex_unlock(&sched_domains_mutex);
6348        put_online_cpus();
6349
6350        hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6351        hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6352        hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6353
6354        init_hrtick();
6355
6356        /* Move init over to a non-isolated CPU */
6357        if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6358                BUG();
6359        sched_init_granularity();
6360        free_cpumask_var(non_isolated_cpus);
6361
6362        init_sched_rt_class();
6363}
6364#else
6365void __init sched_init_smp(void)
6366{
6367        sched_init_granularity();
6368}
6369#endif /* CONFIG_SMP */
6370
6371const_debug unsigned int sysctl_timer_migration = 1;
6372
6373int in_sched_functions(unsigned long addr)
6374{
6375        return in_lock_functions(addr) ||
6376                (addr >= (unsigned long)__sched_text_start
6377                && addr < (unsigned long)__sched_text_end);
6378}
6379
6380#ifdef CONFIG_CGROUP_SCHED
6381/*
6382 * Default task group.
6383 * Every task in system belongs to this group at bootup.
6384 */
6385struct task_group root_task_group;
6386LIST_HEAD(task_groups);
6387#endif
6388
6389DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6390
6391void __init sched_init(void)
6392{
6393        int i, j;
6394        unsigned long alloc_size = 0, ptr;
6395
6396#ifdef CONFIG_FAIR_GROUP_SCHED
6397        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6398#endif
6399#ifdef CONFIG_RT_GROUP_SCHED
6400        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6401#endif
6402#ifdef CONFIG_CPUMASK_OFFSTACK
6403        alloc_size += num_possible_cpus() * cpumask_size();
6404#endif
6405        if (alloc_size) {
6406                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6407
6408#ifdef CONFIG_FAIR_GROUP_SCHED
6409                root_task_group.se = (struct sched_entity **)ptr;
6410                ptr += nr_cpu_ids * sizeof(void **);
6411
6412                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6413                ptr += nr_cpu_ids * sizeof(void **);
6414
6415#endif /* CONFIG_FAIR_GROUP_SCHED */
6416#ifdef CONFIG_RT_GROUP_SCHED
6417                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6418                ptr += nr_cpu_ids * sizeof(void **);
6419
6420                root_task_group.rt_rq = (struct rt_rq **)ptr;
6421                ptr += nr_cpu_ids * sizeof(void **);
6422
6423#endif /* CONFIG_RT_GROUP_SCHED */
6424#ifdef CONFIG_CPUMASK_OFFSTACK
6425                for_each_possible_cpu(i) {
6426                        per_cpu(load_balance_mask, i) = (void *)ptr;
6427                        ptr += cpumask_size();
6428                }
6429#endif /* CONFIG_CPUMASK_OFFSTACK */
6430        }
6431
6432#ifdef CONFIG_SMP
6433        init_defrootdomain();
6434#endif
6435
6436        init_rt_bandwidth(&def_rt_bandwidth,
6437                        global_rt_period(), global_rt_runtime());
6438
6439#ifdef CONFIG_RT_GROUP_SCHED
6440        init_rt_bandwidth(&root_task_group.rt_bandwidth,
6441                        global_rt_period(), global_rt_runtime());
6442#endif /* CONFIG_RT_GROUP_SCHED */
6443
6444#ifdef CONFIG_CGROUP_SCHED
6445        list_add(&root_task_group.list, &task_groups);
6446        INIT_LIST_HEAD(&root_task_group.children);
6447        INIT_LIST_HEAD(&root_task_group.siblings);
6448        autogroup_init(&init_task);
6449
6450#endif /* CONFIG_CGROUP_SCHED */
6451
6452        for_each_possible_cpu(i) {
6453                struct rq *rq;
6454
6455                rq = cpu_rq(i);
6456                raw_spin_lock_init(&rq->lock);
6457                rq->nr_running = 0;
6458                rq->calc_load_active = 0;
6459                rq->calc_load_update = jiffies + LOAD_FREQ;
6460                init_cfs_rq(&rq->cfs);
6461                init_rt_rq(&rq->rt, rq);
6462#ifdef CONFIG_FAIR_GROUP_SCHED
6463                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6464                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6465                /*
6466                 * How much cpu bandwidth does root_task_group get?
6467                 *
6468                 * In case of task-groups formed thr' the cgroup filesystem, it
6469                 * gets 100% of the cpu resources in the system. This overall
6470                 * system cpu resource is divided among the tasks of
6471                 * root_task_group and its child task-groups in a fair manner,
6472                 * based on each entity's (task or task-group's) weight
6473                 * (se->load.weight).
6474                 *
6475                 * In other words, if root_task_group has 10 tasks of weight
6476                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6477                 * then A0's share of the cpu resource is:
6478                 *
6479                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6480                 *
6481                 * We achieve this by letting root_task_group's tasks sit
6482                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6483                 */
6484                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6485                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6486#endif /* CONFIG_FAIR_GROUP_SCHED */
6487
6488                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6489#ifdef CONFIG_RT_GROUP_SCHED
6490                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6491                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6492#endif
6493
6494                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6495                        rq->cpu_load[j] = 0;
6496
6497                rq->last_load_update_tick = jiffies;
6498
6499#ifdef CONFIG_SMP
6500                rq->sd = NULL;
6501                rq->rd = NULL;
6502                rq->cpu_power = SCHED_POWER_SCALE;
6503                rq->post_schedule = 0;
6504                rq->active_balance = 0;
6505                rq->next_balance = jiffies;
6506                rq->push_cpu = 0;
6507                rq->cpu = i;
6508                rq->online = 0;
6509                rq->idle_stamp = 0;
6510                rq->avg_idle = 2*sysctl_sched_migration_cost;
6511
6512                INIT_LIST_HEAD(&rq->cfs_tasks);
6513
6514                rq_attach_root(rq, &def_root_domain);
6515#ifdef CONFIG_NO_HZ_COMMON
6516                rq->nohz_flags = 0;
6517#endif
6518#ifdef CONFIG_NO_HZ_FULL
6519                rq->last_sched_tick = 0;
6520#endif
6521#endif
6522                init_rq_hrtick(rq);
6523                atomic_set(&rq->nr_iowait, 0);
6524        }
6525
6526        set_load_weight(&init_task);
6527
6528#ifdef CONFIG_PREEMPT_NOTIFIERS
6529        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6530#endif
6531
6532#ifdef CONFIG_RT_MUTEXES
6533        plist_head_init(&init_task.pi_waiters);
6534#endif
6535
6536        /*
6537         * The boot idle thread does lazy MMU switching as well:
6538         */
6539        atomic_inc(&init_mm.mm_count);
6540        enter_lazy_tlb(&init_mm, current);
6541
6542        /*
6543         * Make us the idle thread. Technically, schedule() should not be
6544         * called from this thread, however somewhere below it might be,
6545         * but because we are the idle thread, we just pick up running again
6546         * when this runqueue becomes "idle".
6547         */
6548        init_idle(current, smp_processor_id());
6549
6550        calc_load_update = jiffies + LOAD_FREQ;
6551
6552        /*
6553         * During early bootup we pretend to be a normal task:
6554         */
6555        current->sched_class = &fair_sched_class;
6556
6557#ifdef CONFIG_SMP
6558        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6559        /* May be allocated at isolcpus cmdline parse time */
6560        if (cpu_isolated_map == NULL)
6561                zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6562        idle_thread_set_boot_cpu();
6563#endif
6564        init_sched_fair_class();
6565
6566        scheduler_running = 1;
6567}
6568
6569#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6570static inline int preempt_count_equals(int preempt_offset)
6571{
6572        int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6573
6574        return (nested == preempt_offset);
6575}
6576
6577void __might_sleep(const char *file, int line, int preempt_offset)
6578{
6579        static unsigned long prev_jiffy;        /* ratelimiting */
6580
6581        rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6582        if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6583            system_state != SYSTEM_RUNNING || oops_in_progress)
6584                return;
6585        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6586                return;
6587        prev_jiffy = jiffies;
6588
6589        printk(KERN_ERR
6590                "BUG: sleeping function called from invalid context at %s:%d\n",
6591                        file, line);
6592        printk(KERN_ERR
6593                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6594                        in_atomic(), irqs_disabled(),
6595                        current->pid, current->comm);
6596
6597        debug_show_held_locks(current);
6598        if (irqs_disabled())
6599                print_irqtrace_events(current);
6600        dump_stack();
6601}
6602EXPORT_SYMBOL(__might_sleep);
6603#endif
6604
6605#ifdef CONFIG_MAGIC_SYSRQ
6606static void normalize_task(struct rq *rq, struct task_struct *p)
6607{
6608        const struct sched_class *prev_class = p->sched_class;
6609        int old_prio = p->prio;
6610        int on_rq;
6611
6612        on_rq = p->on_rq;
6613        if (on_rq)
6614                dequeue_task(rq, p, 0);
6615        __setscheduler(rq, p, SCHED_NORMAL, 0);
6616        if (on_rq) {
6617                enqueue_task(rq, p, 0);
6618                resched_task(rq->curr);
6619        }
6620
6621        check_class_changed(rq, p, prev_class, old_prio);
6622}
6623
6624void normalize_rt_tasks(void)
6625{
6626        struct task_struct *g, *p;
6627        unsigned long flags;
6628        struct rq *rq;
6629
6630        read_lock_irqsave(&tasklist_lock, flags);
6631        do_each_thread(g, p) {
6632                /*
6633                 * Only normalize user tasks:
6634                 */
6635                if (!p->mm)
6636                        continue;
6637
6638                p->se.exec_start                = 0;
6639#ifdef CONFIG_SCHEDSTATS
6640                p->se.statistics.wait_start     = 0;
6641                p->se.statistics.sleep_start    = 0;
6642                p->se.statistics.block_start    = 0;
6643#endif
6644
6645                if (!rt_task(p)) {
6646                        /*
6647                         * Renice negative nice level userspace
6648                         * tasks back to 0:
6649                         */
6650                        if (TASK_NICE(p) < 0 && p->mm)
6651                                set_user_nice(p, 0);
6652                        continue;
6653                }
6654
6655                raw_spin_lock(&p->pi_lock);
6656                rq = __task_rq_lock(p);
6657
6658                normalize_task(rq, p);
6659
6660                __task_rq_unlock(rq);
6661                raw_spin_unlock(&p->pi_lock);
6662        } while_each_thread(g, p);
6663
6664        read_unlock_irqrestore(&tasklist_lock, flags);
6665}
6666
6667#endif /* CONFIG_MAGIC_SYSRQ */
6668
6669#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6670/*
6671 * These functions are only useful for the IA64 MCA handling, or kdb.
6672 *
6673 * They can only be called when the whole system has been
6674 * stopped - every CPU needs to be quiescent, and no scheduling
6675 * activity can take place. Using them for anything else would
6676 * be a serious bug, and as a result, they aren't even visible
6677 * under any other configuration.
6678 */
6679
6680/**
6681 * curr_task - return the current task for a given cpu.
6682 * @cpu: the processor in question.
6683 *
6684 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6685 *
6686 * Return: The current task for @cpu.
6687 */
6688struct task_struct *curr_task(int cpu)
6689{
6690        return cpu_curr(cpu);
6691}
6692
6693#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6694
6695#ifdef CONFIG_IA64
6696/**
6697 * set_curr_task - set the current task for a given cpu.
6698 * @cpu: the processor in question.
6699 * @p: the task pointer to set.
6700 *
6701 * Description: This function must only be used when non-maskable interrupts
6702 * are serviced on a separate stack. It allows the architecture to switch the
6703 * notion of the current task on a cpu in a non-blocking manner. This function
6704 * must be called with all CPU's synchronized, and interrupts disabled, the
6705 * and caller must save the original value of the current task (see
6706 * curr_task() above) and restore that value before reenabling interrupts and
6707 * re-starting the system.
6708 *
6709 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6710 */
6711void set_curr_task(int cpu, struct task_struct *p)
6712{
6713        cpu_curr(cpu) = p;
6714}
6715
6716#endif
6717
6718#ifdef CONFIG_CGROUP_SCHED
6719/* task_group_lock serializes the addition/removal of task groups */
6720static DEFINE_SPINLOCK(task_group_lock);
6721
6722static void free_sched_group(struct task_group *tg)
6723{
6724        free_fair_sched_group(tg);
6725        free_rt_sched_group(tg);
6726        autogroup_free(tg);
6727        kfree(tg);
6728}
6729
6730/* allocate runqueue etc for a new task group */
6731struct task_group *sched_create_group(struct task_group *parent)
6732{
6733        struct task_group *tg;
6734
6735        tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6736        if (!tg)
6737                return ERR_PTR(-ENOMEM);
6738
6739        if (!alloc_fair_sched_group(tg, parent))
6740                goto err;
6741
6742        if (!alloc_rt_sched_group(tg, parent))
6743                goto err;
6744
6745        return tg;
6746
6747err:
6748        free_sched_group(tg);
6749        return ERR_PTR(-ENOMEM);
6750}
6751
6752void sched_online_group(struct task_group *tg, struct task_group *parent)
6753{
6754        unsigned long flags;
6755
6756        spin_lock_irqsave(&task_group_lock, flags);
6757        list_add_rcu(&tg->list, &task_groups);
6758
6759        WARN_ON(!parent); /* root should already exist */
6760
6761        tg->parent = parent;
6762        INIT_LIST_HEAD(&tg->children);
6763        list_add_rcu(&tg->siblings, &parent->children);
6764        spin_unlock_irqrestore(&task_group_lock, flags);
6765}
6766
6767/* rcu callback to free various structures associated with a task group */
6768static void free_sched_group_rcu(struct rcu_head *rhp)
6769{
6770        /* now it should be safe to free those cfs_rqs */
6771        free_sched_group(container_of(rhp, struct task_group, rcu));
6772}
6773
6774/* Destroy runqueue etc associated with a task group */
6775void sched_destroy_group(struct task_group *tg)
6776{
6777        /* wait for possible concurrent references to cfs_rqs complete */
6778        call_rcu(&tg->rcu, free_sched_group_rcu);
6779}
6780
6781void sched_offline_group(struct task_group *tg)
6782{
6783        unsigned long flags;
6784        int i;
6785
6786        /* end participation in shares distribution */
6787        for_each_possible_cpu(i)
6788                unregister_fair_sched_group(tg, i);
6789
6790        spin_lock_irqsave(&task_group_lock, flags);
6791        list_del_rcu(&tg->list);
6792        list_del_rcu(&tg->siblings);
6793        spin_unlock_irqrestore(&task_group_lock, flags);
6794}
6795
6796/* change task's runqueue when it moves between groups.
6797 *      The caller of this function should have put the task in its new group
6798 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6799 *      reflect its new group.
6800 */
6801void sched_move_task(struct task_struct *tsk)
6802{
6803        struct task_group *tg;
6804        int on_rq, running;
6805        unsigned long flags;
6806        struct rq *rq;
6807
6808        rq = task_rq_lock(tsk, &flags);
6809
6810        running = task_current(rq, tsk);
6811        on_rq = tsk->on_rq;
6812
6813        if (on_rq)
6814                dequeue_task(rq, tsk, 0);
6815        if (unlikely(running))
6816                tsk->sched_class->put_prev_task(rq, tsk);
6817
6818        tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6819                                lockdep_is_held(&tsk->sighand->siglock)),
6820                          struct task_group, css);
6821        tg = autogroup_task_group(tsk, tg);
6822        tsk->sched_task_group = tg;
6823
6824#ifdef CONFIG_FAIR_GROUP_SCHED
6825        if (tsk->sched_class->task_move_group)
6826                tsk->sched_class->task_move_group(tsk, on_rq);
6827        else
6828#endif
6829                set_task_rq(tsk, task_cpu(tsk));
6830
6831        if (unlikely(running))
6832                tsk->sched_class->set_curr_task(rq);
6833        if (on_rq)
6834                enqueue_task(rq, tsk, 0);
6835
6836        task_rq_unlock(rq, tsk, &flags);
6837}
6838#endif /* CONFIG_CGROUP_SCHED */
6839
6840#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6841static unsigned long to_ratio(u64 period, u64 runtime)
6842{
6843        if (runtime == RUNTIME_INF)
6844                return 1ULL << 20;
6845
6846        return div64_u64(runtime << 20, period);
6847}
6848#endif
6849
6850#ifdef CONFIG_RT_GROUP_SCHED
6851/*
6852 * Ensure that the real time constraints are schedulable.
6853 */
6854static DEFINE_MUTEX(rt_constraints_mutex);
6855
6856/* Must be called with tasklist_lock held */
6857static inline int tg_has_rt_tasks(struct task_group *tg)
6858{
6859        struct task_struct *g, *p;
6860
6861        do_each_thread(g, p) {
6862                if (rt_task(p) && task_rq(p)->rt.tg == tg)
6863                        return 1;
6864        } while_each_thread(g, p);
6865
6866        return 0;
6867}
6868
6869struct rt_schedulable_data {
6870        struct task_group *tg;
6871        u64 rt_period;
6872        u64 rt_runtime;
6873};
6874
6875static int tg_rt_schedulable(struct task_group *tg, void *data)
6876{
6877        struct rt_schedulable_data *d = data;
6878        struct task_group *child;
6879        unsigned long total, sum = 0;
6880        u64 period, runtime;
6881
6882        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6883        runtime = tg->rt_bandwidth.rt_runtime;
6884
6885        if (tg == d->tg) {
6886                period = d->rt_period;
6887                runtime = d->rt_runtime;
6888        }
6889
6890        /*
6891         * Cannot have more runtime than the period.
6892         */
6893        if (runtime > period && runtime != RUNTIME_INF)
6894                return -EINVAL;
6895
6896        /*
6897         * Ensure we don't starve existing RT tasks.
6898         */
6899        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6900                return -EBUSY;
6901
6902        total = to_ratio(period, runtime);
6903
6904        /*
6905         * Nobody can have more than the global setting allows.
6906         */
6907        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6908                return -EINVAL;
6909
6910        /*
6911         * The sum of our children's runtime should not exceed our own.
6912         */
6913        list_for_each_entry_rcu(child, &tg->children, siblings) {
6914                period = ktime_to_ns(child->rt_bandwidth.rt_period);
6915                runtime = child->rt_bandwidth.rt_runtime;
6916
6917                if (child == d->tg) {
6918                        period = d->rt_period;
6919                        runtime = d->rt_runtime;
6920                }
6921
6922                sum += to_ratio(period, runtime);
6923        }
6924
6925        if (sum > total)
6926                return -EINVAL;
6927
6928        return 0;
6929}
6930
6931static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6932{
6933        int ret;
6934
6935        struct rt_schedulable_data data = {
6936                .tg = tg,
6937                .rt_period = period,
6938                .rt_runtime = runtime,
6939        };
6940
6941        rcu_read_lock();
6942        ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6943        rcu_read_unlock();
6944
6945        return ret;
6946}
6947
6948static int tg_set_rt_bandwidth(struct task_group *tg,
6949                u64 rt_period, u64 rt_runtime)
6950{
6951        int i, err = 0;
6952
6953        mutex_lock(&rt_constraints_mutex);
6954        read_lock(&tasklist_lock);
6955        err = __rt_schedulable(tg, rt_period, rt_runtime);
6956        if (err)
6957                goto unlock;
6958
6959        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6960        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6961        tg->rt_bandwidth.rt_runtime = rt_runtime;
6962
6963        for_each_possible_cpu(i) {
6964                struct rt_rq *rt_rq = tg->rt_rq[i];
6965
6966                raw_spin_lock(&rt_rq->rt_runtime_lock);
6967                rt_rq->rt_runtime = rt_runtime;
6968                raw_spin_unlock(&rt_rq->rt_runtime_lock);
6969        }
6970        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6971unlock:
6972        read_unlock(&tasklist_lock);
6973        mutex_unlock(&rt_constraints_mutex);
6974
6975        return err;
6976}
6977
6978static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6979{
6980        u64 rt_runtime, rt_period;
6981
6982        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6983        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6984        if (rt_runtime_us < 0)
6985                rt_runtime = RUNTIME_INF;
6986
6987        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6988}
6989
6990static long sched_group_rt_runtime(struct task_group *tg)
6991{
6992        u64 rt_runtime_us;
6993
6994        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6995                return -1;
6996
6997        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6998        do_div(rt_runtime_us, NSEC_PER_USEC);
6999        return rt_runtime_us;
7000}
7001
7002static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7003{
7004        u64 rt_runtime, rt_period;
7005
7006        rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7007        rt_runtime = tg->rt_bandwidth.rt_runtime;
7008
7009        if (rt_period == 0)
7010                return -EINVAL;
7011
7012        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7013}
7014
7015static long sched_group_rt_period(struct task_group *tg)
7016{
7017        u64 rt_period_us;
7018
7019        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7020        do_div(rt_period_us, NSEC_PER_USEC);
7021        return rt_period_us;
7022}
7023
7024static int sched_rt_global_constraints(void)
7025{
7026        u64 runtime, period;
7027        int ret = 0;
7028
7029        if (sysctl_sched_rt_period <= 0)
7030                return -EINVAL;
7031
7032        runtime = global_rt_runtime();
7033        period = global_rt_period();
7034
7035        /*
7036         * Sanity check on the sysctl variables.
7037         */
7038        if (runtime > period && runtime != RUNTIME_INF)
7039                return -EINVAL;
7040
7041        mutex_lock(&rt_constraints_mutex);
7042        read_lock(&tasklist_lock);
7043        ret = __rt_schedulable(NULL, 0, 0);
7044        read_unlock(&tasklist_lock);
7045        mutex_unlock(&rt_constraints_mutex);
7046
7047        return ret;
7048}
7049
7050static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7051{
7052        /* Don't accept realtime tasks when there is no way for them to run */
7053        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7054                return 0;
7055
7056        return 1;
7057}
7058
7059#else /* !CONFIG_RT_GROUP_SCHED */
7060static int sched_rt_global_constraints(void)
7061{
7062        unsigned long flags;
7063        int i;
7064
7065        if (sysctl_sched_rt_period <= 0)
7066                return -EINVAL;
7067
7068        /*
7069         * There's always some RT tasks in the root group
7070         * -- migration, kstopmachine etc..
7071         */
7072        if (sysctl_sched_rt_runtime == 0)
7073                return -EBUSY;
7074
7075        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7076        for_each_possible_cpu(i) {
7077                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7078
7079                raw_spin_lock(&rt_rq->rt_runtime_lock);
7080                rt_rq->rt_runtime = global_rt_runtime();
7081                raw_spin_unlock(&rt_rq->rt_runtime_lock);
7082        }
7083        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7084
7085        return 0;
7086}
7087#endif /* CONFIG_RT_GROUP_SCHED */
7088
7089int sched_rr_handler(struct ctl_table *table, int write,
7090                void __user *buffer, size_t *lenp,
7091                loff_t *ppos)
7092{
7093        int ret;
7094        static DEFINE_MUTEX(mutex);
7095
7096        mutex_lock(&mutex);
7097        ret = proc_dointvec(table, write, buffer, lenp, ppos);
7098        /* make sure that internally we keep jiffies */
7099        /* also, writing zero resets timeslice to default */
7100        if (!ret && write) {
7101                sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7102                        RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7103        }
7104        mutex_unlock(&mutex);
7105        return ret;
7106}
7107
7108int sched_rt_handler(struct ctl_table *table, int write,
7109                void __user *buffer, size_t *lenp,
7110                loff_t *ppos)
7111{
7112        int ret;
7113        int old_period, old_runtime;
7114        static DEFINE_MUTEX(mutex);
7115
7116        mutex_lock(&mutex);
7117        old_period = sysctl_sched_rt_period;
7118        old_runtime = sysctl_sched_rt_runtime;
7119
7120        ret = proc_dointvec(table, write, buffer, lenp, ppos);
7121
7122        if (!ret && write) {
7123                ret = sched_rt_global_constraints();
7124                if (ret) {
7125                        sysctl_sched_rt_period = old_period;
7126                        sysctl_sched_rt_runtime = old_runtime;
7127                } else {
7128                        def_rt_bandwidth.rt_runtime = global_rt_runtime();
7129                        def_rt_bandwidth.rt_period =
7130                                ns_to_ktime(global_rt_period());
7131                }
7132        }
7133        mutex_unlock(&mutex);
7134
7135        return ret;
7136}
7137
7138#ifdef CONFIG_CGROUP_SCHED
7139
7140/* return corresponding task_group object of a cgroup */
7141static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7142{
7143        return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7144                            struct task_group, css);
7145}
7146
7147static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7148{
7149        struct task_group *tg, *parent;
7150
7151        if (!cgrp->parent) {
7152                /* This is early initialization for the top cgroup */
7153                return &root_task_group.css;
7154        }
7155
7156        parent = cgroup_tg(cgrp->parent);
7157        tg = sched_create_group(parent);
7158        if (IS_ERR(tg))
7159                return ERR_PTR(-ENOMEM);
7160
7161        return &tg->css;
7162}
7163
7164static int cpu_cgroup_css_online(struct cgroup *cgrp)
7165{
7166        struct task_group *tg = cgroup_tg(cgrp);
7167        struct task_group *parent;
7168
7169        if (!cgrp->parent)
7170                return 0;
7171
7172        parent = cgroup_tg(cgrp->parent);
7173        sched_online_group(tg, parent);
7174        return 0;
7175}
7176
7177static void cpu_cgroup_css_free(struct cgroup *cgrp)
7178{
7179        struct task_group *tg = cgroup_tg(cgrp);
7180
7181        sched_destroy_group(tg);
7182}
7183
7184static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7185{
7186        struct task_group *tg = cgroup_tg(cgrp);
7187
7188        sched_offline_group(tg);
7189}
7190
7191static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7192                                 struct cgroup_taskset *tset)
7193{
7194        struct task_struct *task;
7195
7196        cgroup_taskset_for_each(task, cgrp, tset) {
7197#ifdef CONFIG_RT_GROUP_SCHED
7198                if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7199                        return -EINVAL;
7200#else
7201                /* We don't support RT-tasks being in separate groups */
7202                if (task->sched_class != &fair_sched_class)
7203                        return -EINVAL;
7204#endif
7205        }
7206        return 0;
7207}
7208
7209static void cpu_cgroup_attach(struct cgroup *cgrp,
7210                              struct cgroup_taskset *tset)
7211{
7212        struct task_struct *task;
7213
7214        cgroup_taskset_for_each(task, cgrp, tset)
7215                sched_move_task(task);
7216}
7217
7218static void
7219cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7220                struct task_struct *task)
7221{
7222        /*
7223         * cgroup_exit() is called in the copy_process() failure path.
7224         * Ignore this case since the task hasn't ran yet, this avoids
7225         * trying to poke a half freed task state from generic code.
7226         */
7227        if (!(task->flags & PF_EXITING))
7228                return;
7229
7230        sched_move_task(task);
7231}
7232
7233#ifdef CONFIG_FAIR_GROUP_SCHED
7234static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7235                                u64 shareval)
7236{
7237        return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7238}
7239
7240static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7241{
7242        struct task_group *tg = cgroup_tg(cgrp);
7243
7244        return (u64) scale_load_down(tg->shares);
7245}
7246
7247#ifdef CONFIG_CFS_BANDWIDTH
7248static DEFINE_MUTEX(cfs_constraints_mutex);
7249
7250const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7251const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7252
7253static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7254
7255static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7256{
7257        int i, ret = 0, runtime_enabled, runtime_was_enabled;
7258        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7259
7260        if (tg == &root_task_group)
7261                return -EINVAL;
7262
7263        /*
7264         * Ensure we have at some amount of bandwidth every period.  This is
7265         * to prevent reaching a state of large arrears when throttled via
7266         * entity_tick() resulting in prolonged exit starvation.
7267         */
7268        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7269                return -EINVAL;
7270
7271        /*
7272         * Likewise, bound things on the otherside by preventing insane quota
7273         * periods.  This also allows us to normalize in computing quota
7274         * feasibility.
7275         */
7276        if (period > max_cfs_quota_period)
7277                return -EINVAL;
7278
7279        mutex_lock(&cfs_constraints_mutex);
7280        ret = __cfs_schedulable(tg, period, quota);
7281        if (ret)
7282                goto out_unlock;
7283
7284        runtime_enabled = quota != RUNTIME_INF;
7285        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7286        account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7287        raw_spin_lock_irq(&cfs_b->lock);
7288        cfs_b->period = ns_to_ktime(period);
7289        cfs_b->quota = quota;
7290
7291        __refill_cfs_bandwidth_runtime(cfs_b);
7292        /* restart the period timer (if active) to handle new period expiry */
7293        if (runtime_enabled && cfs_b->timer_active) {
7294                /* force a reprogram */
7295                cfs_b->timer_active = 0;
7296                __start_cfs_bandwidth(cfs_b);
7297        }
7298        raw_spin_unlock_irq(&cfs_b->lock);
7299
7300        for_each_possible_cpu(i) {
7301                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7302                struct rq *rq = cfs_rq->rq;
7303
7304                raw_spin_lock_irq(&rq->lock);
7305                cfs_rq->runtime_enabled = runtime_enabled;
7306                cfs_rq->runtime_remaining = 0;
7307
7308                if (cfs_rq->throttled)
7309                        unthrottle_cfs_rq(cfs_rq);
7310                raw_spin_unlock_irq(&rq->lock);
7311        }
7312out_unlock:
7313        mutex_unlock(&cfs_constraints_mutex);
7314
7315        return ret;
7316}
7317
7318int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7319{
7320        u64 quota, period;
7321
7322        period = ktime_to_ns(tg->cfs_bandwidth.period);
7323        if (cfs_quota_us < 0)
7324                quota = RUNTIME_INF;
7325        else
7326                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7327
7328        return tg_set_cfs_bandwidth(tg, period, quota);
7329}
7330
7331long tg_get_cfs_quota(struct task_group *tg)
7332{
7333        u64 quota_us;
7334
7335        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7336                return -1;
7337
7338        quota_us = tg->cfs_bandwidth.quota;
7339        do_div(quota_us, NSEC_PER_USEC);
7340
7341        return quota_us;
7342}
7343
7344int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7345{
7346        u64 quota, period;
7347
7348        period = (u64)cfs_period_us * NSEC_PER_USEC;
7349        quota = tg->cfs_bandwidth.quota;
7350
7351        return tg_set_cfs_bandwidth(tg, period, quota);
7352}
7353
7354long tg_get_cfs_period(struct task_group *tg)
7355{
7356        u64 cfs_period_us;
7357
7358        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7359        do_div(cfs_period_us, NSEC_PER_USEC);
7360
7361        return cfs_period_us;
7362}
7363
7364static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7365{
7366        return tg_get_cfs_quota(cgroup_tg(cgrp));
7367}
7368
7369static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7370                                s64 cfs_quota_us)
7371{
7372        return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7373}
7374
7375static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7376{
7377        return tg_get_cfs_period(cgroup_tg(cgrp));
7378}
7379
7380static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7381                                u64 cfs_period_us)
7382{
7383        return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7384}
7385
7386struct cfs_schedulable_data {
7387        struct task_group *tg;
7388        u64 period, quota;
7389};
7390
7391/*
7392 * normalize group quota/period to be quota/max_period
7393 * note: units are usecs
7394 */
7395static u64 normalize_cfs_quota(struct task_group *tg,
7396                               struct cfs_schedulable_data *d)
7397{
7398        u64 quota, period;
7399
7400        if (tg == d->tg) {
7401                period = d->period;
7402                quota = d->quota;
7403        } else {
7404                period = tg_get_cfs_period(tg);
7405                quota = tg_get_cfs_quota(tg);
7406        }
7407
7408        /* note: these should typically be equivalent */
7409        if (quota == RUNTIME_INF || quota == -1)
7410                return RUNTIME_INF;
7411
7412        return to_ratio(period, quota);
7413}
7414
7415static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7416{
7417        struct cfs_schedulable_data *d = data;
7418        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7419        s64 quota = 0, parent_quota = -1;
7420
7421        if (!tg->parent) {
7422                quota = RUNTIME_INF;
7423        } else {
7424                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7425
7426                quota = normalize_cfs_quota(tg, d);
7427                parent_quota = parent_b->hierarchal_quota;
7428
7429                /*
7430                 * ensure max(child_quota) <= parent_quota, inherit when no
7431                 * limit is set
7432                 */
7433                if (quota == RUNTIME_INF)
7434                        quota = parent_quota;
7435                else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7436                        return -EINVAL;
7437        }
7438        cfs_b->hierarchal_quota = quota;
7439
7440        return 0;
7441}
7442
7443static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7444{
7445        int ret;
7446        struct cfs_schedulable_data data = {
7447                .tg = tg,
7448                .period = period,
7449                .quota = quota,
7450        };
7451
7452        if (quota != RUNTIME_INF) {
7453                do_div(data.period, NSEC_PER_USEC);
7454                do_div(data.quota, NSEC_PER_USEC);
7455        }
7456
7457        rcu_read_lock();
7458        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7459        rcu_read_unlock();
7460
7461        return ret;
7462}
7463
7464static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7465                struct cgroup_map_cb *cb)
7466{
7467        struct task_group *tg = cgroup_tg(cgrp);
7468        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7469
7470        cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7471        cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7472        cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7473
7474        return 0;
7475}
7476#endif /* CONFIG_CFS_BANDWIDTH */
7477#endif /* CONFIG_FAIR_GROUP_SCHED */
7478
7479#ifdef CONFIG_RT_GROUP_SCHED
7480static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7481                                s64 val)
7482{
7483        return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7484}
7485
7486static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7487{
7488        return sched_group_rt_runtime(cgroup_tg(cgrp));
7489}
7490
7491static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7492                u64 rt_period_us)
7493{
7494        return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7495}
7496
7497static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7498{
7499        return sched_group_rt_period(cgroup_tg(cgrp));
7500}
7501#endif /* CONFIG_RT_GROUP_SCHED */
7502
7503static struct cftype cpu_files[] = {
7504#ifdef CONFIG_FAIR_GROUP_SCHED
7505        {
7506                .name = "shares",
7507                .read_u64 = cpu_shares_read_u64,
7508                .write_u64 = cpu_shares_write_u64,
7509        },
7510#endif
7511#ifdef CONFIG_CFS_BANDWIDTH
7512        {
7513                .name = "cfs_quota_us",
7514                .read_s64 = cpu_cfs_quota_read_s64,
7515                .write_s64 = cpu_cfs_quota_write_s64,
7516        },
7517        {
7518                .name = "cfs_period_us",
7519                .read_u64 = cpu_cfs_period_read_u64,
7520                .write_u64 = cpu_cfs_period_write_u64,
7521        },
7522        {
7523                .name = "stat",
7524                .read_map = cpu_stats_show,
7525        },
7526#endif
7527#ifdef CONFIG_RT_GROUP_SCHED
7528        {
7529                .name = "rt_runtime_us",
7530                .read_s64 = cpu_rt_runtime_read,
7531                .write_s64 = cpu_rt_runtime_write,
7532        },
7533        {
7534                .name = "rt_period_us",
7535                .read_u64 = cpu_rt_period_read_uint,
7536                .write_u64 = cpu_rt_period_write_uint,
7537        },
7538#endif
7539        { }     /* terminate */
7540};
7541
7542struct cgroup_subsys cpu_cgroup_subsys = {
7543        .name           = "cpu",
7544        .css_alloc      = cpu_cgroup_css_alloc,
7545        .css_free       = cpu_cgroup_css_free,
7546        .css_online     = cpu_cgroup_css_online,
7547        .css_offline    = cpu_cgroup_css_offline,
7548        .can_attach     = cpu_cgroup_can_attach,
7549        .attach         = cpu_cgroup_attach,
7550        .exit           = cpu_cgroup_exit,
7551        .subsys_id      = cpu_cgroup_subsys_id,
7552        .base_cftypes   = cpu_files,
7553        .early_init     = 1,
7554};
7555
7556#endif  /* CONFIG_CGROUP_SCHED */
7557
7558void dump_cpu_task(int cpu)
7559{
7560        pr_info("Task dump for CPU %d:\n", cpu);
7561        sched_show_task(cpu_curr(cpu));
7562}
7563