linux/kernel/sched/cputime.c
<<
>>
Prefs
   1#include <linux/export.h>
   2#include <linux/sched.h>
   3#include <linux/tsacct_kern.h>
   4#include <linux/kernel_stat.h>
   5#include <linux/static_key.h>
   6#include <linux/context_tracking.h>
   7#include "sched.h"
   8
   9
  10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  11
  12/*
  13 * There are no locks covering percpu hardirq/softirq time.
  14 * They are only modified in vtime_account, on corresponding CPU
  15 * with interrupts disabled. So, writes are safe.
  16 * They are read and saved off onto struct rq in update_rq_clock().
  17 * This may result in other CPU reading this CPU's irq time and can
  18 * race with irq/vtime_account on this CPU. We would either get old
  19 * or new value with a side effect of accounting a slice of irq time to wrong
  20 * task when irq is in progress while we read rq->clock. That is a worthy
  21 * compromise in place of having locks on each irq in account_system_time.
  22 */
  23DEFINE_PER_CPU(u64, cpu_hardirq_time);
  24DEFINE_PER_CPU(u64, cpu_softirq_time);
  25
  26static DEFINE_PER_CPU(u64, irq_start_time);
  27static int sched_clock_irqtime;
  28
  29void enable_sched_clock_irqtime(void)
  30{
  31        sched_clock_irqtime = 1;
  32}
  33
  34void disable_sched_clock_irqtime(void)
  35{
  36        sched_clock_irqtime = 0;
  37}
  38
  39#ifndef CONFIG_64BIT
  40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  41#endif /* CONFIG_64BIT */
  42
  43/*
  44 * Called before incrementing preempt_count on {soft,}irq_enter
  45 * and before decrementing preempt_count on {soft,}irq_exit.
  46 */
  47void irqtime_account_irq(struct task_struct *curr)
  48{
  49        unsigned long flags;
  50        s64 delta;
  51        int cpu;
  52
  53        if (!sched_clock_irqtime)
  54                return;
  55
  56        local_irq_save(flags);
  57
  58        cpu = smp_processor_id();
  59        delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  60        __this_cpu_add(irq_start_time, delta);
  61
  62        irq_time_write_begin();
  63        /*
  64         * We do not account for softirq time from ksoftirqd here.
  65         * We want to continue accounting softirq time to ksoftirqd thread
  66         * in that case, so as not to confuse scheduler with a special task
  67         * that do not consume any time, but still wants to run.
  68         */
  69        if (hardirq_count())
  70                __this_cpu_add(cpu_hardirq_time, delta);
  71        else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  72                __this_cpu_add(cpu_softirq_time, delta);
  73
  74        irq_time_write_end();
  75        local_irq_restore(flags);
  76}
  77EXPORT_SYMBOL_GPL(irqtime_account_irq);
  78
  79static int irqtime_account_hi_update(void)
  80{
  81        u64 *cpustat = kcpustat_this_cpu->cpustat;
  82        unsigned long flags;
  83        u64 latest_ns;
  84        int ret = 0;
  85
  86        local_irq_save(flags);
  87        latest_ns = this_cpu_read(cpu_hardirq_time);
  88        if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  89                ret = 1;
  90        local_irq_restore(flags);
  91        return ret;
  92}
  93
  94static int irqtime_account_si_update(void)
  95{
  96        u64 *cpustat = kcpustat_this_cpu->cpustat;
  97        unsigned long flags;
  98        u64 latest_ns;
  99        int ret = 0;
 100
 101        local_irq_save(flags);
 102        latest_ns = this_cpu_read(cpu_softirq_time);
 103        if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
 104                ret = 1;
 105        local_irq_restore(flags);
 106        return ret;
 107}
 108
 109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 110
 111#define sched_clock_irqtime     (0)
 112
 113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 114
 115static inline void task_group_account_field(struct task_struct *p, int index,
 116                                            u64 tmp)
 117{
 118        /*
 119         * Since all updates are sure to touch the root cgroup, we
 120         * get ourselves ahead and touch it first. If the root cgroup
 121         * is the only cgroup, then nothing else should be necessary.
 122         *
 123         */
 124        __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
 125
 126        cpuacct_account_field(p, index, tmp);
 127}
 128
 129/*
 130 * Account user cpu time to a process.
 131 * @p: the process that the cpu time gets accounted to
 132 * @cputime: the cpu time spent in user space since the last update
 133 * @cputime_scaled: cputime scaled by cpu frequency
 134 */
 135void account_user_time(struct task_struct *p, cputime_t cputime,
 136                       cputime_t cputime_scaled)
 137{
 138        int index;
 139
 140        /* Add user time to process. */
 141        p->utime += cputime;
 142        p->utimescaled += cputime_scaled;
 143        account_group_user_time(p, cputime);
 144
 145        index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 146
 147        /* Add user time to cpustat. */
 148        task_group_account_field(p, index, (__force u64) cputime);
 149
 150        /* Account for user time used */
 151        acct_account_cputime(p);
 152}
 153
 154/*
 155 * Account guest cpu time to a process.
 156 * @p: the process that the cpu time gets accounted to
 157 * @cputime: the cpu time spent in virtual machine since the last update
 158 * @cputime_scaled: cputime scaled by cpu frequency
 159 */
 160static void account_guest_time(struct task_struct *p, cputime_t cputime,
 161                               cputime_t cputime_scaled)
 162{
 163        u64 *cpustat = kcpustat_this_cpu->cpustat;
 164
 165        /* Add guest time to process. */
 166        p->utime += cputime;
 167        p->utimescaled += cputime_scaled;
 168        account_group_user_time(p, cputime);
 169        p->gtime += cputime;
 170
 171        /* Add guest time to cpustat. */
 172        if (TASK_NICE(p) > 0) {
 173                cpustat[CPUTIME_NICE] += (__force u64) cputime;
 174                cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
 175        } else {
 176                cpustat[CPUTIME_USER] += (__force u64) cputime;
 177                cpustat[CPUTIME_GUEST] += (__force u64) cputime;
 178        }
 179}
 180
 181/*
 182 * Account system cpu time to a process and desired cpustat field
 183 * @p: the process that the cpu time gets accounted to
 184 * @cputime: the cpu time spent in kernel space since the last update
 185 * @cputime_scaled: cputime scaled by cpu frequency
 186 * @target_cputime64: pointer to cpustat field that has to be updated
 187 */
 188static inline
 189void __account_system_time(struct task_struct *p, cputime_t cputime,
 190                        cputime_t cputime_scaled, int index)
 191{
 192        /* Add system time to process. */
 193        p->stime += cputime;
 194        p->stimescaled += cputime_scaled;
 195        account_group_system_time(p, cputime);
 196
 197        /* Add system time to cpustat. */
 198        task_group_account_field(p, index, (__force u64) cputime);
 199
 200        /* Account for system time used */
 201        acct_account_cputime(p);
 202}
 203
 204/*
 205 * Account system cpu time to a process.
 206 * @p: the process that the cpu time gets accounted to
 207 * @hardirq_offset: the offset to subtract from hardirq_count()
 208 * @cputime: the cpu time spent in kernel space since the last update
 209 * @cputime_scaled: cputime scaled by cpu frequency
 210 */
 211void account_system_time(struct task_struct *p, int hardirq_offset,
 212                         cputime_t cputime, cputime_t cputime_scaled)
 213{
 214        int index;
 215
 216        if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 217                account_guest_time(p, cputime, cputime_scaled);
 218                return;
 219        }
 220
 221        if (hardirq_count() - hardirq_offset)
 222                index = CPUTIME_IRQ;
 223        else if (in_serving_softirq())
 224                index = CPUTIME_SOFTIRQ;
 225        else
 226                index = CPUTIME_SYSTEM;
 227
 228        __account_system_time(p, cputime, cputime_scaled, index);
 229}
 230
 231/*
 232 * Account for involuntary wait time.
 233 * @cputime: the cpu time spent in involuntary wait
 234 */
 235void account_steal_time(cputime_t cputime)
 236{
 237        u64 *cpustat = kcpustat_this_cpu->cpustat;
 238
 239        cpustat[CPUTIME_STEAL] += (__force u64) cputime;
 240}
 241
 242/*
 243 * Account for idle time.
 244 * @cputime: the cpu time spent in idle wait
 245 */
 246void account_idle_time(cputime_t cputime)
 247{
 248        u64 *cpustat = kcpustat_this_cpu->cpustat;
 249        struct rq *rq = this_rq();
 250
 251        if (atomic_read(&rq->nr_iowait) > 0)
 252                cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
 253        else
 254                cpustat[CPUTIME_IDLE] += (__force u64) cputime;
 255}
 256
 257static __always_inline bool steal_account_process_tick(void)
 258{
 259#ifdef CONFIG_PARAVIRT
 260        if (static_key_false(&paravirt_steal_enabled)) {
 261                u64 steal, st = 0;
 262
 263                steal = paravirt_steal_clock(smp_processor_id());
 264                steal -= this_rq()->prev_steal_time;
 265
 266                st = steal_ticks(steal);
 267                this_rq()->prev_steal_time += st * TICK_NSEC;
 268
 269                account_steal_time(st);
 270                return st;
 271        }
 272#endif
 273        return false;
 274}
 275
 276/*
 277 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 278 * tasks (sum on group iteration) belonging to @tsk's group.
 279 */
 280void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 281{
 282        struct signal_struct *sig = tsk->signal;
 283        cputime_t utime, stime;
 284        struct task_struct *t;
 285
 286        times->utime = sig->utime;
 287        times->stime = sig->stime;
 288        times->sum_exec_runtime = sig->sum_sched_runtime;
 289
 290        rcu_read_lock();
 291        /* make sure we can trust tsk->thread_group list */
 292        if (!likely(pid_alive(tsk)))
 293                goto out;
 294
 295        t = tsk;
 296        do {
 297                task_cputime(t, &utime, &stime);
 298                times->utime += utime;
 299                times->stime += stime;
 300                times->sum_exec_runtime += task_sched_runtime(t);
 301        } while_each_thread(tsk, t);
 302out:
 303        rcu_read_unlock();
 304}
 305
 306#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 307/*
 308 * Account a tick to a process and cpustat
 309 * @p: the process that the cpu time gets accounted to
 310 * @user_tick: is the tick from userspace
 311 * @rq: the pointer to rq
 312 *
 313 * Tick demultiplexing follows the order
 314 * - pending hardirq update
 315 * - pending softirq update
 316 * - user_time
 317 * - idle_time
 318 * - system time
 319 *   - check for guest_time
 320 *   - else account as system_time
 321 *
 322 * Check for hardirq is done both for system and user time as there is
 323 * no timer going off while we are on hardirq and hence we may never get an
 324 * opportunity to update it solely in system time.
 325 * p->stime and friends are only updated on system time and not on irq
 326 * softirq as those do not count in task exec_runtime any more.
 327 */
 328static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 329                                                struct rq *rq)
 330{
 331        cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 332        u64 *cpustat = kcpustat_this_cpu->cpustat;
 333
 334        if (steal_account_process_tick())
 335                return;
 336
 337        if (irqtime_account_hi_update()) {
 338                cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
 339        } else if (irqtime_account_si_update()) {
 340                cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
 341        } else if (this_cpu_ksoftirqd() == p) {
 342                /*
 343                 * ksoftirqd time do not get accounted in cpu_softirq_time.
 344                 * So, we have to handle it separately here.
 345                 * Also, p->stime needs to be updated for ksoftirqd.
 346                 */
 347                __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
 348                                        CPUTIME_SOFTIRQ);
 349        } else if (user_tick) {
 350                account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 351        } else if (p == rq->idle) {
 352                account_idle_time(cputime_one_jiffy);
 353        } else if (p->flags & PF_VCPU) { /* System time or guest time */
 354                account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
 355        } else {
 356                __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
 357                                        CPUTIME_SYSTEM);
 358        }
 359}
 360
 361static void irqtime_account_idle_ticks(int ticks)
 362{
 363        int i;
 364        struct rq *rq = this_rq();
 365
 366        for (i = 0; i < ticks; i++)
 367                irqtime_account_process_tick(current, 0, rq);
 368}
 369#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 370static inline void irqtime_account_idle_ticks(int ticks) {}
 371static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 372                                                struct rq *rq) {}
 373#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 374
 375/*
 376 * Use precise platform statistics if available:
 377 */
 378#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 379
 380#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 381void vtime_task_switch(struct task_struct *prev)
 382{
 383        if (!vtime_accounting_enabled())
 384                return;
 385
 386        if (is_idle_task(prev))
 387                vtime_account_idle(prev);
 388        else
 389                vtime_account_system(prev);
 390
 391#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 392        vtime_account_user(prev);
 393#endif
 394        arch_vtime_task_switch(prev);
 395}
 396#endif
 397
 398/*
 399 * Archs that account the whole time spent in the idle task
 400 * (outside irq) as idle time can rely on this and just implement
 401 * vtime_account_system() and vtime_account_idle(). Archs that
 402 * have other meaning of the idle time (s390 only includes the
 403 * time spent by the CPU when it's in low power mode) must override
 404 * vtime_account().
 405 */
 406#ifndef __ARCH_HAS_VTIME_ACCOUNT
 407void vtime_account_irq_enter(struct task_struct *tsk)
 408{
 409        if (!vtime_accounting_enabled())
 410                return;
 411
 412        if (!in_interrupt()) {
 413                /*
 414                 * If we interrupted user, context_tracking_in_user()
 415                 * is 1 because the context tracking don't hook
 416                 * on irq entry/exit. This way we know if
 417                 * we need to flush user time on kernel entry.
 418                 */
 419                if (context_tracking_in_user()) {
 420                        vtime_account_user(tsk);
 421                        return;
 422                }
 423
 424                if (is_idle_task(tsk)) {
 425                        vtime_account_idle(tsk);
 426                        return;
 427                }
 428        }
 429        vtime_account_system(tsk);
 430}
 431EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
 432#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 433#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
 434
 435
 436#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 437void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 438{
 439        *ut = p->utime;
 440        *st = p->stime;
 441}
 442
 443void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 444{
 445        struct task_cputime cputime;
 446
 447        thread_group_cputime(p, &cputime);
 448
 449        *ut = cputime.utime;
 450        *st = cputime.stime;
 451}
 452#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 453/*
 454 * Account a single tick of cpu time.
 455 * @p: the process that the cpu time gets accounted to
 456 * @user_tick: indicates if the tick is a user or a system tick
 457 */
 458void account_process_tick(struct task_struct *p, int user_tick)
 459{
 460        cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 461        struct rq *rq = this_rq();
 462
 463        if (vtime_accounting_enabled())
 464                return;
 465
 466        if (sched_clock_irqtime) {
 467                irqtime_account_process_tick(p, user_tick, rq);
 468                return;
 469        }
 470
 471        if (steal_account_process_tick())
 472                return;
 473
 474        if (user_tick)
 475                account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 476        else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
 477                account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
 478                                    one_jiffy_scaled);
 479        else
 480                account_idle_time(cputime_one_jiffy);
 481}
 482
 483/*
 484 * Account multiple ticks of steal time.
 485 * @p: the process from which the cpu time has been stolen
 486 * @ticks: number of stolen ticks
 487 */
 488void account_steal_ticks(unsigned long ticks)
 489{
 490        account_steal_time(jiffies_to_cputime(ticks));
 491}
 492
 493/*
 494 * Account multiple ticks of idle time.
 495 * @ticks: number of stolen ticks
 496 */
 497void account_idle_ticks(unsigned long ticks)
 498{
 499
 500        if (sched_clock_irqtime) {
 501                irqtime_account_idle_ticks(ticks);
 502                return;
 503        }
 504
 505        account_idle_time(jiffies_to_cputime(ticks));
 506}
 507
 508/*
 509 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 510 * loosing precision when the numbers are big.
 511 */
 512static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
 513{
 514        u64 scaled;
 515
 516        for (;;) {
 517                /* Make sure "rtime" is the bigger of stime/rtime */
 518                if (stime > rtime)
 519                        swap(rtime, stime);
 520
 521                /* Make sure 'total' fits in 32 bits */
 522                if (total >> 32)
 523                        goto drop_precision;
 524
 525                /* Does rtime (and thus stime) fit in 32 bits? */
 526                if (!(rtime >> 32))
 527                        break;
 528
 529                /* Can we just balance rtime/stime rather than dropping bits? */
 530                if (stime >> 31)
 531                        goto drop_precision;
 532
 533                /* We can grow stime and shrink rtime and try to make them both fit */
 534                stime <<= 1;
 535                rtime >>= 1;
 536                continue;
 537
 538drop_precision:
 539                /* We drop from rtime, it has more bits than stime */
 540                rtime >>= 1;
 541                total >>= 1;
 542        }
 543
 544        /*
 545         * Make sure gcc understands that this is a 32x32->64 multiply,
 546         * followed by a 64/32->64 divide.
 547         */
 548        scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
 549        return (__force cputime_t) scaled;
 550}
 551
 552/*
 553 * Adjust tick based cputime random precision against scheduler
 554 * runtime accounting.
 555 */
 556static void cputime_adjust(struct task_cputime *curr,
 557                           struct cputime *prev,
 558                           cputime_t *ut, cputime_t *st)
 559{
 560        cputime_t rtime, stime, utime, total;
 561
 562        if (vtime_accounting_enabled()) {
 563                *ut = curr->utime;
 564                *st = curr->stime;
 565                return;
 566        }
 567
 568        stime = curr->stime;
 569        total = stime + curr->utime;
 570
 571        /*
 572         * Tick based cputime accounting depend on random scheduling
 573         * timeslices of a task to be interrupted or not by the timer.
 574         * Depending on these circumstances, the number of these interrupts
 575         * may be over or under-optimistic, matching the real user and system
 576         * cputime with a variable precision.
 577         *
 578         * Fix this by scaling these tick based values against the total
 579         * runtime accounted by the CFS scheduler.
 580         */
 581        rtime = nsecs_to_cputime(curr->sum_exec_runtime);
 582
 583        /*
 584         * Update userspace visible utime/stime values only if actual execution
 585         * time is bigger than already exported. Note that can happen, that we
 586         * provided bigger values due to scaling inaccuracy on big numbers.
 587         */
 588        if (prev->stime + prev->utime >= rtime)
 589                goto out;
 590
 591        if (total) {
 592                stime = scale_stime((__force u64)stime,
 593                                    (__force u64)rtime, (__force u64)total);
 594                utime = rtime - stime;
 595        } else {
 596                stime = rtime;
 597                utime = 0;
 598        }
 599
 600        /*
 601         * If the tick based count grows faster than the scheduler one,
 602         * the result of the scaling may go backward.
 603         * Let's enforce monotonicity.
 604         */
 605        prev->stime = max(prev->stime, stime);
 606        prev->utime = max(prev->utime, utime);
 607
 608out:
 609        *ut = prev->utime;
 610        *st = prev->stime;
 611}
 612
 613void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 614{
 615        struct task_cputime cputime = {
 616                .sum_exec_runtime = p->se.sum_exec_runtime,
 617        };
 618
 619        task_cputime(p, &cputime.utime, &cputime.stime);
 620        cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 621}
 622
 623/*
 624 * Must be called with siglock held.
 625 */
 626void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 627{
 628        struct task_cputime cputime;
 629
 630        thread_group_cputime(p, &cputime);
 631        cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 632}
 633#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 634
 635#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 636static unsigned long long vtime_delta(struct task_struct *tsk)
 637{
 638        unsigned long long clock;
 639
 640        clock = local_clock();
 641        if (clock < tsk->vtime_snap)
 642                return 0;
 643
 644        return clock - tsk->vtime_snap;
 645}
 646
 647static cputime_t get_vtime_delta(struct task_struct *tsk)
 648{
 649        unsigned long long delta = vtime_delta(tsk);
 650
 651        WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
 652        tsk->vtime_snap += delta;
 653
 654        /* CHECKME: always safe to convert nsecs to cputime? */
 655        return nsecs_to_cputime(delta);
 656}
 657
 658static void __vtime_account_system(struct task_struct *tsk)
 659{
 660        cputime_t delta_cpu = get_vtime_delta(tsk);
 661
 662        account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
 663}
 664
 665void vtime_account_system(struct task_struct *tsk)
 666{
 667        if (!vtime_accounting_enabled())
 668                return;
 669
 670        write_seqlock(&tsk->vtime_seqlock);
 671        __vtime_account_system(tsk);
 672        write_sequnlock(&tsk->vtime_seqlock);
 673}
 674
 675void vtime_account_irq_exit(struct task_struct *tsk)
 676{
 677        if (!vtime_accounting_enabled())
 678                return;
 679
 680        write_seqlock(&tsk->vtime_seqlock);
 681        if (context_tracking_in_user())
 682                tsk->vtime_snap_whence = VTIME_USER;
 683        __vtime_account_system(tsk);
 684        write_sequnlock(&tsk->vtime_seqlock);
 685}
 686
 687void vtime_account_user(struct task_struct *tsk)
 688{
 689        cputime_t delta_cpu;
 690
 691        if (!vtime_accounting_enabled())
 692                return;
 693
 694        delta_cpu = get_vtime_delta(tsk);
 695
 696        write_seqlock(&tsk->vtime_seqlock);
 697        tsk->vtime_snap_whence = VTIME_SYS;
 698        account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
 699        write_sequnlock(&tsk->vtime_seqlock);
 700}
 701
 702void vtime_user_enter(struct task_struct *tsk)
 703{
 704        if (!vtime_accounting_enabled())
 705                return;
 706
 707        write_seqlock(&tsk->vtime_seqlock);
 708        tsk->vtime_snap_whence = VTIME_USER;
 709        __vtime_account_system(tsk);
 710        write_sequnlock(&tsk->vtime_seqlock);
 711}
 712
 713void vtime_guest_enter(struct task_struct *tsk)
 714{
 715        write_seqlock(&tsk->vtime_seqlock);
 716        __vtime_account_system(tsk);
 717        current->flags |= PF_VCPU;
 718        write_sequnlock(&tsk->vtime_seqlock);
 719}
 720
 721void vtime_guest_exit(struct task_struct *tsk)
 722{
 723        write_seqlock(&tsk->vtime_seqlock);
 724        __vtime_account_system(tsk);
 725        current->flags &= ~PF_VCPU;
 726        write_sequnlock(&tsk->vtime_seqlock);
 727}
 728
 729void vtime_account_idle(struct task_struct *tsk)
 730{
 731        cputime_t delta_cpu = get_vtime_delta(tsk);
 732
 733        account_idle_time(delta_cpu);
 734}
 735
 736bool vtime_accounting_enabled(void)
 737{
 738        return context_tracking_active();
 739}
 740
 741void arch_vtime_task_switch(struct task_struct *prev)
 742{
 743        write_seqlock(&prev->vtime_seqlock);
 744        prev->vtime_snap_whence = VTIME_SLEEPING;
 745        write_sequnlock(&prev->vtime_seqlock);
 746
 747        write_seqlock(&current->vtime_seqlock);
 748        current->vtime_snap_whence = VTIME_SYS;
 749        current->vtime_snap = sched_clock_cpu(smp_processor_id());
 750        write_sequnlock(&current->vtime_seqlock);
 751}
 752
 753void vtime_init_idle(struct task_struct *t, int cpu)
 754{
 755        unsigned long flags;
 756
 757        write_seqlock_irqsave(&t->vtime_seqlock, flags);
 758        t->vtime_snap_whence = VTIME_SYS;
 759        t->vtime_snap = sched_clock_cpu(cpu);
 760        write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
 761}
 762
 763cputime_t task_gtime(struct task_struct *t)
 764{
 765        unsigned int seq;
 766        cputime_t gtime;
 767
 768        do {
 769                seq = read_seqbegin(&t->vtime_seqlock);
 770
 771                gtime = t->gtime;
 772                if (t->flags & PF_VCPU)
 773                        gtime += vtime_delta(t);
 774
 775        } while (read_seqretry(&t->vtime_seqlock, seq));
 776
 777        return gtime;
 778}
 779
 780/*
 781 * Fetch cputime raw values from fields of task_struct and
 782 * add up the pending nohz execution time since the last
 783 * cputime snapshot.
 784 */
 785static void
 786fetch_task_cputime(struct task_struct *t,
 787                   cputime_t *u_dst, cputime_t *s_dst,
 788                   cputime_t *u_src, cputime_t *s_src,
 789                   cputime_t *udelta, cputime_t *sdelta)
 790{
 791        unsigned int seq;
 792        unsigned long long delta;
 793
 794        do {
 795                *udelta = 0;
 796                *sdelta = 0;
 797
 798                seq = read_seqbegin(&t->vtime_seqlock);
 799
 800                if (u_dst)
 801                        *u_dst = *u_src;
 802                if (s_dst)
 803                        *s_dst = *s_src;
 804
 805                /* Task is sleeping, nothing to add */
 806                if (t->vtime_snap_whence == VTIME_SLEEPING ||
 807                    is_idle_task(t))
 808                        continue;
 809
 810                delta = vtime_delta(t);
 811
 812                /*
 813                 * Task runs either in user or kernel space, add pending nohz time to
 814                 * the right place.
 815                 */
 816                if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
 817                        *udelta = delta;
 818                } else {
 819                        if (t->vtime_snap_whence == VTIME_SYS)
 820                                *sdelta = delta;
 821                }
 822        } while (read_seqretry(&t->vtime_seqlock, seq));
 823}
 824
 825
 826void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
 827{
 828        cputime_t udelta, sdelta;
 829
 830        fetch_task_cputime(t, utime, stime, &t->utime,
 831                           &t->stime, &udelta, &sdelta);
 832        if (utime)
 833                *utime += udelta;
 834        if (stime)
 835                *stime += sdelta;
 836}
 837
 838void task_cputime_scaled(struct task_struct *t,
 839                         cputime_t *utimescaled, cputime_t *stimescaled)
 840{
 841        cputime_t udelta, sdelta;
 842
 843        fetch_task_cputime(t, utimescaled, stimescaled,
 844                           &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
 845        if (utimescaled)
 846                *utimescaled += cputime_to_scaled(udelta);
 847        if (stimescaled)
 848                *stimescaled += cputime_to_scaled(sdelta);
 849}
 850#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
 851