linux/kernel/sched/fair.c
<<
>>
Prefs
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21 */
  22
  23#include <linux/latencytop.h>
  24#include <linux/sched.h>
  25#include <linux/cpumask.h>
  26#include <linux/slab.h>
  27#include <linux/profile.h>
  28#include <linux/interrupt.h>
  29#include <linux/mempolicy.h>
  30#include <linux/migrate.h>
  31#include <linux/task_work.h>
  32
  33#include <trace/events/sched.h>
  34
  35#include "sched.h"
  36
  37/*
  38 * Targeted preemption latency for CPU-bound tasks:
  39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  40 *
  41 * NOTE: this latency value is not the same as the concept of
  42 * 'timeslice length' - timeslices in CFS are of variable length
  43 * and have no persistent notion like in traditional, time-slice
  44 * based scheduling concepts.
  45 *
  46 * (to see the precise effective timeslice length of your workload,
  47 *  run vmstat and monitor the context-switches (cs) field)
  48 */
  49unsigned int sysctl_sched_latency = 6000000ULL;
  50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  51
  52/*
  53 * The initial- and re-scaling of tunables is configurable
  54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  55 *
  56 * Options are:
  57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  60 */
  61enum sched_tunable_scaling sysctl_sched_tunable_scaling
  62        = SCHED_TUNABLESCALING_LOG;
  63
  64/*
  65 * Minimal preemption granularity for CPU-bound tasks:
  66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  67 */
  68unsigned int sysctl_sched_min_granularity = 750000ULL;
  69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  70
  71/*
  72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  73 */
  74static unsigned int sched_nr_latency = 8;
  75
  76/*
  77 * After fork, child runs first. If set to 0 (default) then
  78 * parent will (try to) run first.
  79 */
  80unsigned int sysctl_sched_child_runs_first __read_mostly;
  81
  82/*
  83 * SCHED_OTHER wake-up granularity.
  84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  85 *
  86 * This option delays the preemption effects of decoupled workloads
  87 * and reduces their over-scheduling. Synchronous workloads will still
  88 * have immediate wakeup/sleep latencies.
  89 */
  90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  92
  93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  94
  95/*
  96 * The exponential sliding  window over which load is averaged for shares
  97 * distribution.
  98 * (default: 10msec)
  99 */
 100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
 101
 102#ifdef CONFIG_CFS_BANDWIDTH
 103/*
 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 105 * each time a cfs_rq requests quota.
 106 *
 107 * Note: in the case that the slice exceeds the runtime remaining (either due
 108 * to consumption or the quota being specified to be smaller than the slice)
 109 * we will always only issue the remaining available time.
 110 *
 111 * default: 5 msec, units: microseconds
 112  */
 113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 114#endif
 115
 116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 117{
 118        lw->weight += inc;
 119        lw->inv_weight = 0;
 120}
 121
 122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 123{
 124        lw->weight -= dec;
 125        lw->inv_weight = 0;
 126}
 127
 128static inline void update_load_set(struct load_weight *lw, unsigned long w)
 129{
 130        lw->weight = w;
 131        lw->inv_weight = 0;
 132}
 133
 134/*
 135 * Increase the granularity value when there are more CPUs,
 136 * because with more CPUs the 'effective latency' as visible
 137 * to users decreases. But the relationship is not linear,
 138 * so pick a second-best guess by going with the log2 of the
 139 * number of CPUs.
 140 *
 141 * This idea comes from the SD scheduler of Con Kolivas:
 142 */
 143static int get_update_sysctl_factor(void)
 144{
 145        unsigned int cpus = min_t(int, num_online_cpus(), 8);
 146        unsigned int factor;
 147
 148        switch (sysctl_sched_tunable_scaling) {
 149        case SCHED_TUNABLESCALING_NONE:
 150                factor = 1;
 151                break;
 152        case SCHED_TUNABLESCALING_LINEAR:
 153                factor = cpus;
 154                break;
 155        case SCHED_TUNABLESCALING_LOG:
 156        default:
 157                factor = 1 + ilog2(cpus);
 158                break;
 159        }
 160
 161        return factor;
 162}
 163
 164static void update_sysctl(void)
 165{
 166        unsigned int factor = get_update_sysctl_factor();
 167
 168#define SET_SYSCTL(name) \
 169        (sysctl_##name = (factor) * normalized_sysctl_##name)
 170        SET_SYSCTL(sched_min_granularity);
 171        SET_SYSCTL(sched_latency);
 172        SET_SYSCTL(sched_wakeup_granularity);
 173#undef SET_SYSCTL
 174}
 175
 176void sched_init_granularity(void)
 177{
 178        update_sysctl();
 179}
 180
 181#if BITS_PER_LONG == 32
 182# define WMULT_CONST    (~0UL)
 183#else
 184# define WMULT_CONST    (1UL << 32)
 185#endif
 186
 187#define WMULT_SHIFT     32
 188
 189/*
 190 * Shift right and round:
 191 */
 192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
 193
 194/*
 195 * delta *= weight / lw
 196 */
 197static unsigned long
 198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
 199                struct load_weight *lw)
 200{
 201        u64 tmp;
 202
 203        /*
 204         * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
 205         * entities since MIN_SHARES = 2. Treat weight as 1 if less than
 206         * 2^SCHED_LOAD_RESOLUTION.
 207         */
 208        if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
 209                tmp = (u64)delta_exec * scale_load_down(weight);
 210        else
 211                tmp = (u64)delta_exec;
 212
 213        if (!lw->inv_weight) {
 214                unsigned long w = scale_load_down(lw->weight);
 215
 216                if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 217                        lw->inv_weight = 1;
 218                else if (unlikely(!w))
 219                        lw->inv_weight = WMULT_CONST;
 220                else
 221                        lw->inv_weight = WMULT_CONST / w;
 222        }
 223
 224        /*
 225         * Check whether we'd overflow the 64-bit multiplication:
 226         */
 227        if (unlikely(tmp > WMULT_CONST))
 228                tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
 229                        WMULT_SHIFT/2);
 230        else
 231                tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
 232
 233        return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
 234}
 235
 236
 237const struct sched_class fair_sched_class;
 238
 239/**************************************************************
 240 * CFS operations on generic schedulable entities:
 241 */
 242
 243#ifdef CONFIG_FAIR_GROUP_SCHED
 244
 245/* cpu runqueue to which this cfs_rq is attached */
 246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 247{
 248        return cfs_rq->rq;
 249}
 250
 251/* An entity is a task if it doesn't "own" a runqueue */
 252#define entity_is_task(se)      (!se->my_q)
 253
 254static inline struct task_struct *task_of(struct sched_entity *se)
 255{
 256#ifdef CONFIG_SCHED_DEBUG
 257        WARN_ON_ONCE(!entity_is_task(se));
 258#endif
 259        return container_of(se, struct task_struct, se);
 260}
 261
 262/* Walk up scheduling entities hierarchy */
 263#define for_each_sched_entity(se) \
 264                for (; se; se = se->parent)
 265
 266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 267{
 268        return p->se.cfs_rq;
 269}
 270
 271/* runqueue on which this entity is (to be) queued */
 272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 273{
 274        return se->cfs_rq;
 275}
 276
 277/* runqueue "owned" by this group */
 278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 279{
 280        return grp->my_q;
 281}
 282
 283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
 284                                       int force_update);
 285
 286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 287{
 288        if (!cfs_rq->on_list) {
 289                /*
 290                 * Ensure we either appear before our parent (if already
 291                 * enqueued) or force our parent to appear after us when it is
 292                 * enqueued.  The fact that we always enqueue bottom-up
 293                 * reduces this to two cases.
 294                 */
 295                if (cfs_rq->tg->parent &&
 296                    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 297                        list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 298                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 299                } else {
 300                        list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 301                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 302                }
 303
 304                cfs_rq->on_list = 1;
 305                /* We should have no load, but we need to update last_decay. */
 306                update_cfs_rq_blocked_load(cfs_rq, 0);
 307        }
 308}
 309
 310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 311{
 312        if (cfs_rq->on_list) {
 313                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 314                cfs_rq->on_list = 0;
 315        }
 316}
 317
 318/* Iterate thr' all leaf cfs_rq's on a runqueue */
 319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 320        list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 321
 322/* Do the two (enqueued) entities belong to the same group ? */
 323static inline int
 324is_same_group(struct sched_entity *se, struct sched_entity *pse)
 325{
 326        if (se->cfs_rq == pse->cfs_rq)
 327                return 1;
 328
 329        return 0;
 330}
 331
 332static inline struct sched_entity *parent_entity(struct sched_entity *se)
 333{
 334        return se->parent;
 335}
 336
 337/* return depth at which a sched entity is present in the hierarchy */
 338static inline int depth_se(struct sched_entity *se)
 339{
 340        int depth = 0;
 341
 342        for_each_sched_entity(se)
 343                depth++;
 344
 345        return depth;
 346}
 347
 348static void
 349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 350{
 351        int se_depth, pse_depth;
 352
 353        /*
 354         * preemption test can be made between sibling entities who are in the
 355         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 356         * both tasks until we find their ancestors who are siblings of common
 357         * parent.
 358         */
 359
 360        /* First walk up until both entities are at same depth */
 361        se_depth = depth_se(*se);
 362        pse_depth = depth_se(*pse);
 363
 364        while (se_depth > pse_depth) {
 365                se_depth--;
 366                *se = parent_entity(*se);
 367        }
 368
 369        while (pse_depth > se_depth) {
 370                pse_depth--;
 371                *pse = parent_entity(*pse);
 372        }
 373
 374        while (!is_same_group(*se, *pse)) {
 375                *se = parent_entity(*se);
 376                *pse = parent_entity(*pse);
 377        }
 378}
 379
 380#else   /* !CONFIG_FAIR_GROUP_SCHED */
 381
 382static inline struct task_struct *task_of(struct sched_entity *se)
 383{
 384        return container_of(se, struct task_struct, se);
 385}
 386
 387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 388{
 389        return container_of(cfs_rq, struct rq, cfs);
 390}
 391
 392#define entity_is_task(se)      1
 393
 394#define for_each_sched_entity(se) \
 395                for (; se; se = NULL)
 396
 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 398{
 399        return &task_rq(p)->cfs;
 400}
 401
 402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 403{
 404        struct task_struct *p = task_of(se);
 405        struct rq *rq = task_rq(p);
 406
 407        return &rq->cfs;
 408}
 409
 410/* runqueue "owned" by this group */
 411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 412{
 413        return NULL;
 414}
 415
 416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 417{
 418}
 419
 420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 421{
 422}
 423
 424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 425                for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 426
 427static inline int
 428is_same_group(struct sched_entity *se, struct sched_entity *pse)
 429{
 430        return 1;
 431}
 432
 433static inline struct sched_entity *parent_entity(struct sched_entity *se)
 434{
 435        return NULL;
 436}
 437
 438static inline void
 439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 440{
 441}
 442
 443#endif  /* CONFIG_FAIR_GROUP_SCHED */
 444
 445static __always_inline
 446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
 447
 448/**************************************************************
 449 * Scheduling class tree data structure manipulation methods:
 450 */
 451
 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 453{
 454        s64 delta = (s64)(vruntime - max_vruntime);
 455        if (delta > 0)
 456                max_vruntime = vruntime;
 457
 458        return max_vruntime;
 459}
 460
 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 462{
 463        s64 delta = (s64)(vruntime - min_vruntime);
 464        if (delta < 0)
 465                min_vruntime = vruntime;
 466
 467        return min_vruntime;
 468}
 469
 470static inline int entity_before(struct sched_entity *a,
 471                                struct sched_entity *b)
 472{
 473        return (s64)(a->vruntime - b->vruntime) < 0;
 474}
 475
 476static void update_min_vruntime(struct cfs_rq *cfs_rq)
 477{
 478        u64 vruntime = cfs_rq->min_vruntime;
 479
 480        if (cfs_rq->curr)
 481                vruntime = cfs_rq->curr->vruntime;
 482
 483        if (cfs_rq->rb_leftmost) {
 484                struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 485                                                   struct sched_entity,
 486                                                   run_node);
 487
 488                if (!cfs_rq->curr)
 489                        vruntime = se->vruntime;
 490                else
 491                        vruntime = min_vruntime(vruntime, se->vruntime);
 492        }
 493
 494        /* ensure we never gain time by being placed backwards. */
 495        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 496#ifndef CONFIG_64BIT
 497        smp_wmb();
 498        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 499#endif
 500}
 501
 502/*
 503 * Enqueue an entity into the rb-tree:
 504 */
 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 506{
 507        struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 508        struct rb_node *parent = NULL;
 509        struct sched_entity *entry;
 510        int leftmost = 1;
 511
 512        /*
 513         * Find the right place in the rbtree:
 514         */
 515        while (*link) {
 516                parent = *link;
 517                entry = rb_entry(parent, struct sched_entity, run_node);
 518                /*
 519                 * We dont care about collisions. Nodes with
 520                 * the same key stay together.
 521                 */
 522                if (entity_before(se, entry)) {
 523                        link = &parent->rb_left;
 524                } else {
 525                        link = &parent->rb_right;
 526                        leftmost = 0;
 527                }
 528        }
 529
 530        /*
 531         * Maintain a cache of leftmost tree entries (it is frequently
 532         * used):
 533         */
 534        if (leftmost)
 535                cfs_rq->rb_leftmost = &se->run_node;
 536
 537        rb_link_node(&se->run_node, parent, link);
 538        rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 539}
 540
 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 542{
 543        if (cfs_rq->rb_leftmost == &se->run_node) {
 544                struct rb_node *next_node;
 545
 546                next_node = rb_next(&se->run_node);
 547                cfs_rq->rb_leftmost = next_node;
 548        }
 549
 550        rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 551}
 552
 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 554{
 555        struct rb_node *left = cfs_rq->rb_leftmost;
 556
 557        if (!left)
 558                return NULL;
 559
 560        return rb_entry(left, struct sched_entity, run_node);
 561}
 562
 563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 564{
 565        struct rb_node *next = rb_next(&se->run_node);
 566
 567        if (!next)
 568                return NULL;
 569
 570        return rb_entry(next, struct sched_entity, run_node);
 571}
 572
 573#ifdef CONFIG_SCHED_DEBUG
 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 575{
 576        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 577
 578        if (!last)
 579                return NULL;
 580
 581        return rb_entry(last, struct sched_entity, run_node);
 582}
 583
 584/**************************************************************
 585 * Scheduling class statistics methods:
 586 */
 587
 588int sched_proc_update_handler(struct ctl_table *table, int write,
 589                void __user *buffer, size_t *lenp,
 590                loff_t *ppos)
 591{
 592        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 593        int factor = get_update_sysctl_factor();
 594
 595        if (ret || !write)
 596                return ret;
 597
 598        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 599                                        sysctl_sched_min_granularity);
 600
 601#define WRT_SYSCTL(name) \
 602        (normalized_sysctl_##name = sysctl_##name / (factor))
 603        WRT_SYSCTL(sched_min_granularity);
 604        WRT_SYSCTL(sched_latency);
 605        WRT_SYSCTL(sched_wakeup_granularity);
 606#undef WRT_SYSCTL
 607
 608        return 0;
 609}
 610#endif
 611
 612/*
 613 * delta /= w
 614 */
 615static inline unsigned long
 616calc_delta_fair(unsigned long delta, struct sched_entity *se)
 617{
 618        if (unlikely(se->load.weight != NICE_0_LOAD))
 619                delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
 620
 621        return delta;
 622}
 623
 624/*
 625 * The idea is to set a period in which each task runs once.
 626 *
 627 * When there are too many tasks (sched_nr_latency) we have to stretch
 628 * this period because otherwise the slices get too small.
 629 *
 630 * p = (nr <= nl) ? l : l*nr/nl
 631 */
 632static u64 __sched_period(unsigned long nr_running)
 633{
 634        u64 period = sysctl_sched_latency;
 635        unsigned long nr_latency = sched_nr_latency;
 636
 637        if (unlikely(nr_running > nr_latency)) {
 638                period = sysctl_sched_min_granularity;
 639                period *= nr_running;
 640        }
 641
 642        return period;
 643}
 644
 645/*
 646 * We calculate the wall-time slice from the period by taking a part
 647 * proportional to the weight.
 648 *
 649 * s = p*P[w/rw]
 650 */
 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 652{
 653        u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 654
 655        for_each_sched_entity(se) {
 656                struct load_weight *load;
 657                struct load_weight lw;
 658
 659                cfs_rq = cfs_rq_of(se);
 660                load = &cfs_rq->load;
 661
 662                if (unlikely(!se->on_rq)) {
 663                        lw = cfs_rq->load;
 664
 665                        update_load_add(&lw, se->load.weight);
 666                        load = &lw;
 667                }
 668                slice = calc_delta_mine(slice, se->load.weight, load);
 669        }
 670        return slice;
 671}
 672
 673/*
 674 * We calculate the vruntime slice of a to-be-inserted task.
 675 *
 676 * vs = s/w
 677 */
 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 679{
 680        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 681}
 682
 683#ifdef CONFIG_SMP
 684static inline void __update_task_entity_contrib(struct sched_entity *se);
 685
 686/* Give new task start runnable values to heavy its load in infant time */
 687void init_task_runnable_average(struct task_struct *p)
 688{
 689        u32 slice;
 690
 691        p->se.avg.decay_count = 0;
 692        slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
 693        p->se.avg.runnable_avg_sum = slice;
 694        p->se.avg.runnable_avg_period = slice;
 695        __update_task_entity_contrib(&p->se);
 696}
 697#else
 698void init_task_runnable_average(struct task_struct *p)
 699{
 700}
 701#endif
 702
 703/*
 704 * Update the current task's runtime statistics. Skip current tasks that
 705 * are not in our scheduling class.
 706 */
 707static inline void
 708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 709              unsigned long delta_exec)
 710{
 711        unsigned long delta_exec_weighted;
 712
 713        schedstat_set(curr->statistics.exec_max,
 714                      max((u64)delta_exec, curr->statistics.exec_max));
 715
 716        curr->sum_exec_runtime += delta_exec;
 717        schedstat_add(cfs_rq, exec_clock, delta_exec);
 718        delta_exec_weighted = calc_delta_fair(delta_exec, curr);
 719
 720        curr->vruntime += delta_exec_weighted;
 721        update_min_vruntime(cfs_rq);
 722}
 723
 724static void update_curr(struct cfs_rq *cfs_rq)
 725{
 726        struct sched_entity *curr = cfs_rq->curr;
 727        u64 now = rq_clock_task(rq_of(cfs_rq));
 728        unsigned long delta_exec;
 729
 730        if (unlikely(!curr))
 731                return;
 732
 733        /*
 734         * Get the amount of time the current task was running
 735         * since the last time we changed load (this cannot
 736         * overflow on 32 bits):
 737         */
 738        delta_exec = (unsigned long)(now - curr->exec_start);
 739        if (!delta_exec)
 740                return;
 741
 742        __update_curr(cfs_rq, curr, delta_exec);
 743        curr->exec_start = now;
 744
 745        if (entity_is_task(curr)) {
 746                struct task_struct *curtask = task_of(curr);
 747
 748                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 749                cpuacct_charge(curtask, delta_exec);
 750                account_group_exec_runtime(curtask, delta_exec);
 751        }
 752
 753        account_cfs_rq_runtime(cfs_rq, delta_exec);
 754}
 755
 756static inline void
 757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 758{
 759        schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
 760}
 761
 762/*
 763 * Task is being enqueued - update stats:
 764 */
 765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 766{
 767        /*
 768         * Are we enqueueing a waiting task? (for current tasks
 769         * a dequeue/enqueue event is a NOP)
 770         */
 771        if (se != cfs_rq->curr)
 772                update_stats_wait_start(cfs_rq, se);
 773}
 774
 775static void
 776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 777{
 778        schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 779                        rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
 780        schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 781        schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 782                        rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 783#ifdef CONFIG_SCHEDSTATS
 784        if (entity_is_task(se)) {
 785                trace_sched_stat_wait(task_of(se),
 786                        rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 787        }
 788#endif
 789        schedstat_set(se->statistics.wait_start, 0);
 790}
 791
 792static inline void
 793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 794{
 795        /*
 796         * Mark the end of the wait period if dequeueing a
 797         * waiting task:
 798         */
 799        if (se != cfs_rq->curr)
 800                update_stats_wait_end(cfs_rq, se);
 801}
 802
 803/*
 804 * We are picking a new current task - update its stats:
 805 */
 806static inline void
 807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 808{
 809        /*
 810         * We are starting a new run period:
 811         */
 812        se->exec_start = rq_clock_task(rq_of(cfs_rq));
 813}
 814
 815/**************************************************
 816 * Scheduling class queueing methods:
 817 */
 818
 819#ifdef CONFIG_NUMA_BALANCING
 820/*
 821 * numa task sample period in ms
 822 */
 823unsigned int sysctl_numa_balancing_scan_period_min = 100;
 824unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
 825unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
 826
 827/* Portion of address space to scan in MB */
 828unsigned int sysctl_numa_balancing_scan_size = 256;
 829
 830/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 831unsigned int sysctl_numa_balancing_scan_delay = 1000;
 832
 833static void task_numa_placement(struct task_struct *p)
 834{
 835        int seq;
 836
 837        if (!p->mm)     /* for example, ksmd faulting in a user's mm */
 838                return;
 839        seq = ACCESS_ONCE(p->mm->numa_scan_seq);
 840        if (p->numa_scan_seq == seq)
 841                return;
 842        p->numa_scan_seq = seq;
 843
 844        /* FIXME: Scheduling placement policy hints go here */
 845}
 846
 847/*
 848 * Got a PROT_NONE fault for a page on @node.
 849 */
 850void task_numa_fault(int node, int pages, bool migrated)
 851{
 852        struct task_struct *p = current;
 853
 854        if (!numabalancing_enabled)
 855                return;
 856
 857        /* FIXME: Allocate task-specific structure for placement policy here */
 858
 859        /*
 860         * If pages are properly placed (did not migrate) then scan slower.
 861         * This is reset periodically in case of phase changes
 862         */
 863        if (!migrated)
 864                p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
 865                        p->numa_scan_period + jiffies_to_msecs(10));
 866
 867        task_numa_placement(p);
 868}
 869
 870static void reset_ptenuma_scan(struct task_struct *p)
 871{
 872        ACCESS_ONCE(p->mm->numa_scan_seq)++;
 873        p->mm->numa_scan_offset = 0;
 874}
 875
 876/*
 877 * The expensive part of numa migration is done from task_work context.
 878 * Triggered from task_tick_numa().
 879 */
 880void task_numa_work(struct callback_head *work)
 881{
 882        unsigned long migrate, next_scan, now = jiffies;
 883        struct task_struct *p = current;
 884        struct mm_struct *mm = p->mm;
 885        struct vm_area_struct *vma;
 886        unsigned long start, end;
 887        long pages;
 888
 889        WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
 890
 891        work->next = work; /* protect against double add */
 892        /*
 893         * Who cares about NUMA placement when they're dying.
 894         *
 895         * NOTE: make sure not to dereference p->mm before this check,
 896         * exit_task_work() happens _after_ exit_mm() so we could be called
 897         * without p->mm even though we still had it when we enqueued this
 898         * work.
 899         */
 900        if (p->flags & PF_EXITING)
 901                return;
 902
 903        /*
 904         * We do not care about task placement until a task runs on a node
 905         * other than the first one used by the address space. This is
 906         * largely because migrations are driven by what CPU the task
 907         * is running on. If it's never scheduled on another node, it'll
 908         * not migrate so why bother trapping the fault.
 909         */
 910        if (mm->first_nid == NUMA_PTE_SCAN_INIT)
 911                mm->first_nid = numa_node_id();
 912        if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
 913                /* Are we running on a new node yet? */
 914                if (numa_node_id() == mm->first_nid &&
 915                    !sched_feat_numa(NUMA_FORCE))
 916                        return;
 917
 918                mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
 919        }
 920
 921        /*
 922         * Reset the scan period if enough time has gone by. Objective is that
 923         * scanning will be reduced if pages are properly placed. As tasks
 924         * can enter different phases this needs to be re-examined. Lacking
 925         * proper tracking of reference behaviour, this blunt hammer is used.
 926         */
 927        migrate = mm->numa_next_reset;
 928        if (time_after(now, migrate)) {
 929                p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
 930                next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
 931                xchg(&mm->numa_next_reset, next_scan);
 932        }
 933
 934        /*
 935         * Enforce maximal scan/migration frequency..
 936         */
 937        migrate = mm->numa_next_scan;
 938        if (time_before(now, migrate))
 939                return;
 940
 941        if (p->numa_scan_period == 0)
 942                p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
 943
 944        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
 945        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
 946                return;
 947
 948        /*
 949         * Do not set pte_numa if the current running node is rate-limited.
 950         * This loses statistics on the fault but if we are unwilling to
 951         * migrate to this node, it is less likely we can do useful work
 952         */
 953        if (migrate_ratelimited(numa_node_id()))
 954                return;
 955
 956        start = mm->numa_scan_offset;
 957        pages = sysctl_numa_balancing_scan_size;
 958        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
 959        if (!pages)
 960                return;
 961
 962        down_read(&mm->mmap_sem);
 963        vma = find_vma(mm, start);
 964        if (!vma) {
 965                reset_ptenuma_scan(p);
 966                start = 0;
 967                vma = mm->mmap;
 968        }
 969        for (; vma; vma = vma->vm_next) {
 970                if (!vma_migratable(vma))
 971                        continue;
 972
 973                /* Skip small VMAs. They are not likely to be of relevance */
 974                if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
 975                        continue;
 976
 977                do {
 978                        start = max(start, vma->vm_start);
 979                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
 980                        end = min(end, vma->vm_end);
 981                        pages -= change_prot_numa(vma, start, end);
 982
 983                        start = end;
 984                        if (pages <= 0)
 985                                goto out;
 986                } while (end != vma->vm_end);
 987        }
 988
 989out:
 990        /*
 991         * It is possible to reach the end of the VMA list but the last few VMAs are
 992         * not guaranteed to the vma_migratable. If they are not, we would find the
 993         * !migratable VMA on the next scan but not reset the scanner to the start
 994         * so check it now.
 995         */
 996        if (vma)
 997                mm->numa_scan_offset = start;
 998        else
 999                reset_ptenuma_scan(p);
1000        up_read(&mm->mmap_sem);
1001}
1002
1003/*
1004 * Drive the periodic memory faults..
1005 */
1006void task_tick_numa(struct rq *rq, struct task_struct *curr)
1007{
1008        struct callback_head *work = &curr->numa_work;
1009        u64 period, now;
1010
1011        /*
1012         * We don't care about NUMA placement if we don't have memory.
1013         */
1014        if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1015                return;
1016
1017        /*
1018         * Using runtime rather than walltime has the dual advantage that
1019         * we (mostly) drive the selection from busy threads and that the
1020         * task needs to have done some actual work before we bother with
1021         * NUMA placement.
1022         */
1023        now = curr->se.sum_exec_runtime;
1024        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1025
1026        if (now - curr->node_stamp > period) {
1027                if (!curr->node_stamp)
1028                        curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
1029                curr->node_stamp = now;
1030
1031                if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1032                        init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1033                        task_work_add(curr, work, true);
1034                }
1035        }
1036}
1037#else
1038static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1039{
1040}
1041#endif /* CONFIG_NUMA_BALANCING */
1042
1043static void
1044account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1045{
1046        update_load_add(&cfs_rq->load, se->load.weight);
1047        if (!parent_entity(se))
1048                update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1049#ifdef CONFIG_SMP
1050        if (entity_is_task(se))
1051                list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1052#endif
1053        cfs_rq->nr_running++;
1054}
1055
1056static void
1057account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1058{
1059        update_load_sub(&cfs_rq->load, se->load.weight);
1060        if (!parent_entity(se))
1061                update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1062        if (entity_is_task(se))
1063                list_del_init(&se->group_node);
1064        cfs_rq->nr_running--;
1065}
1066
1067#ifdef CONFIG_FAIR_GROUP_SCHED
1068# ifdef CONFIG_SMP
1069static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1070{
1071        long tg_weight;
1072
1073        /*
1074         * Use this CPU's actual weight instead of the last load_contribution
1075         * to gain a more accurate current total weight. See
1076         * update_cfs_rq_load_contribution().
1077         */
1078        tg_weight = atomic_long_read(&tg->load_avg);
1079        tg_weight -= cfs_rq->tg_load_contrib;
1080        tg_weight += cfs_rq->load.weight;
1081
1082        return tg_weight;
1083}
1084
1085static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1086{
1087        long tg_weight, load, shares;
1088
1089        tg_weight = calc_tg_weight(tg, cfs_rq);
1090        load = cfs_rq->load.weight;
1091
1092        shares = (tg->shares * load);
1093        if (tg_weight)
1094                shares /= tg_weight;
1095
1096        if (shares < MIN_SHARES)
1097                shares = MIN_SHARES;
1098        if (shares > tg->shares)
1099                shares = tg->shares;
1100
1101        return shares;
1102}
1103# else /* CONFIG_SMP */
1104static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1105{
1106        return tg->shares;
1107}
1108# endif /* CONFIG_SMP */
1109static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1110                            unsigned long weight)
1111{
1112        if (se->on_rq) {
1113                /* commit outstanding execution time */
1114                if (cfs_rq->curr == se)
1115                        update_curr(cfs_rq);
1116                account_entity_dequeue(cfs_rq, se);
1117        }
1118
1119        update_load_set(&se->load, weight);
1120
1121        if (se->on_rq)
1122                account_entity_enqueue(cfs_rq, se);
1123}
1124
1125static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1126
1127static void update_cfs_shares(struct cfs_rq *cfs_rq)
1128{
1129        struct task_group *tg;
1130        struct sched_entity *se;
1131        long shares;
1132
1133        tg = cfs_rq->tg;
1134        se = tg->se[cpu_of(rq_of(cfs_rq))];
1135        if (!se || throttled_hierarchy(cfs_rq))
1136                return;
1137#ifndef CONFIG_SMP
1138        if (likely(se->load.weight == tg->shares))
1139                return;
1140#endif
1141        shares = calc_cfs_shares(cfs_rq, tg);
1142
1143        reweight_entity(cfs_rq_of(se), se, shares);
1144}
1145#else /* CONFIG_FAIR_GROUP_SCHED */
1146static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1147{
1148}
1149#endif /* CONFIG_FAIR_GROUP_SCHED */
1150
1151#ifdef CONFIG_SMP
1152/*
1153 * We choose a half-life close to 1 scheduling period.
1154 * Note: The tables below are dependent on this value.
1155 */
1156#define LOAD_AVG_PERIOD 32
1157#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1158#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1159
1160/* Precomputed fixed inverse multiplies for multiplication by y^n */
1161static const u32 runnable_avg_yN_inv[] = {
1162        0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1163        0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1164        0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1165        0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1166        0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1167        0x85aac367, 0x82cd8698,
1168};
1169
1170/*
1171 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
1172 * over-estimates when re-combining.
1173 */
1174static const u32 runnable_avg_yN_sum[] = {
1175            0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1176         9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1177        17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1178};
1179
1180/*
1181 * Approximate:
1182 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
1183 */
1184static __always_inline u64 decay_load(u64 val, u64 n)
1185{
1186        unsigned int local_n;
1187
1188        if (!n)
1189                return val;
1190        else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1191                return 0;
1192
1193        /* after bounds checking we can collapse to 32-bit */
1194        local_n = n;
1195
1196        /*
1197         * As y^PERIOD = 1/2, we can combine
1198         *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1199         * With a look-up table which covers k^n (n<PERIOD)
1200         *
1201         * To achieve constant time decay_load.
1202         */
1203        if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1204                val >>= local_n / LOAD_AVG_PERIOD;
1205                local_n %= LOAD_AVG_PERIOD;
1206        }
1207
1208        val *= runnable_avg_yN_inv[local_n];
1209        /* We don't use SRR here since we always want to round down. */
1210        return val >> 32;
1211}
1212
1213/*
1214 * For updates fully spanning n periods, the contribution to runnable
1215 * average will be: \Sum 1024*y^n
1216 *
1217 * We can compute this reasonably efficiently by combining:
1218 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
1219 */
1220static u32 __compute_runnable_contrib(u64 n)
1221{
1222        u32 contrib = 0;
1223
1224        if (likely(n <= LOAD_AVG_PERIOD))
1225                return runnable_avg_yN_sum[n];
1226        else if (unlikely(n >= LOAD_AVG_MAX_N))
1227                return LOAD_AVG_MAX;
1228
1229        /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1230        do {
1231                contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1232                contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1233
1234                n -= LOAD_AVG_PERIOD;
1235        } while (n > LOAD_AVG_PERIOD);
1236
1237        contrib = decay_load(contrib, n);
1238        return contrib + runnable_avg_yN_sum[n];
1239}
1240
1241/*
1242 * We can represent the historical contribution to runnable average as the
1243 * coefficients of a geometric series.  To do this we sub-divide our runnable
1244 * history into segments of approximately 1ms (1024us); label the segment that
1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1246 *
1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1248 *      p0            p1           p2
1249 *     (now)       (~1ms ago)  (~2ms ago)
1250 *
1251 * Let u_i denote the fraction of p_i that the entity was runnable.
1252 *
1253 * We then designate the fractions u_i as our co-efficients, yielding the
1254 * following representation of historical load:
1255 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1256 *
1257 * We choose y based on the with of a reasonably scheduling period, fixing:
1258 *   y^32 = 0.5
1259 *
1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1261 * approximately half as much as the contribution to load within the last ms
1262 * (u_0).
1263 *
1264 * When a period "rolls over" and we have new u_0`, multiplying the previous
1265 * sum again by y is sufficient to update:
1266 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1267 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1268 */
1269static __always_inline int __update_entity_runnable_avg(u64 now,
1270                                                        struct sched_avg *sa,
1271                                                        int runnable)
1272{
1273        u64 delta, periods;
1274        u32 runnable_contrib;
1275        int delta_w, decayed = 0;
1276
1277        delta = now - sa->last_runnable_update;
1278        /*
1279         * This should only happen when time goes backwards, which it
1280         * unfortunately does during sched clock init when we swap over to TSC.
1281         */
1282        if ((s64)delta < 0) {
1283                sa->last_runnable_update = now;
1284                return 0;
1285        }
1286
1287        /*
1288         * Use 1024ns as the unit of measurement since it's a reasonable
1289         * approximation of 1us and fast to compute.
1290         */
1291        delta >>= 10;
1292        if (!delta)
1293                return 0;
1294        sa->last_runnable_update = now;
1295
1296        /* delta_w is the amount already accumulated against our next period */
1297        delta_w = sa->runnable_avg_period % 1024;
1298        if (delta + delta_w >= 1024) {
1299                /* period roll-over */
1300                decayed = 1;
1301
1302                /*
1303                 * Now that we know we're crossing a period boundary, figure
1304                 * out how much from delta we need to complete the current
1305                 * period and accrue it.
1306                 */
1307                delta_w = 1024 - delta_w;
1308                if (runnable)
1309                        sa->runnable_avg_sum += delta_w;
1310                sa->runnable_avg_period += delta_w;
1311
1312                delta -= delta_w;
1313
1314                /* Figure out how many additional periods this update spans */
1315                periods = delta / 1024;
1316                delta %= 1024;
1317
1318                sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1319                                                  periods + 1);
1320                sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1321                                                     periods + 1);
1322
1323                /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1324                runnable_contrib = __compute_runnable_contrib(periods);
1325                if (runnable)
1326                        sa->runnable_avg_sum += runnable_contrib;
1327                sa->runnable_avg_period += runnable_contrib;
1328        }
1329
1330        /* Remainder of delta accrued against u_0` */
1331        if (runnable)
1332                sa->runnable_avg_sum += delta;
1333        sa->runnable_avg_period += delta;
1334
1335        return decayed;
1336}
1337
1338/* Synchronize an entity's decay with its parenting cfs_rq.*/
1339static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1340{
1341        struct cfs_rq *cfs_rq = cfs_rq_of(se);
1342        u64 decays = atomic64_read(&cfs_rq->decay_counter);
1343
1344        decays -= se->avg.decay_count;
1345        if (!decays)
1346                return 0;
1347
1348        se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1349        se->avg.decay_count = 0;
1350
1351        return decays;
1352}
1353
1354#ifdef CONFIG_FAIR_GROUP_SCHED
1355static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1356                                                 int force_update)
1357{
1358        struct task_group *tg = cfs_rq->tg;
1359        long tg_contrib;
1360
1361        tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1362        tg_contrib -= cfs_rq->tg_load_contrib;
1363
1364        if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1365                atomic_long_add(tg_contrib, &tg->load_avg);
1366                cfs_rq->tg_load_contrib += tg_contrib;
1367        }
1368}
1369
1370/*
1371 * Aggregate cfs_rq runnable averages into an equivalent task_group
1372 * representation for computing load contributions.
1373 */
1374static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1375                                                  struct cfs_rq *cfs_rq)
1376{
1377        struct task_group *tg = cfs_rq->tg;
1378        long contrib;
1379
1380        /* The fraction of a cpu used by this cfs_rq */
1381        contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1382                          sa->runnable_avg_period + 1);
1383        contrib -= cfs_rq->tg_runnable_contrib;
1384
1385        if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1386                atomic_add(contrib, &tg->runnable_avg);
1387                cfs_rq->tg_runnable_contrib += contrib;
1388        }
1389}
1390
1391static inline void __update_group_entity_contrib(struct sched_entity *se)
1392{
1393        struct cfs_rq *cfs_rq = group_cfs_rq(se);
1394        struct task_group *tg = cfs_rq->tg;
1395        int runnable_avg;
1396
1397        u64 contrib;
1398
1399        contrib = cfs_rq->tg_load_contrib * tg->shares;
1400        se->avg.load_avg_contrib = div_u64(contrib,
1401                                     atomic_long_read(&tg->load_avg) + 1);
1402
1403        /*
1404         * For group entities we need to compute a correction term in the case
1405         * that they are consuming <1 cpu so that we would contribute the same
1406         * load as a task of equal weight.
1407         *
1408         * Explicitly co-ordinating this measurement would be expensive, but
1409         * fortunately the sum of each cpus contribution forms a usable
1410         * lower-bound on the true value.
1411         *
1412         * Consider the aggregate of 2 contributions.  Either they are disjoint
1413         * (and the sum represents true value) or they are disjoint and we are
1414         * understating by the aggregate of their overlap.
1415         *
1416         * Extending this to N cpus, for a given overlap, the maximum amount we
1417         * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1418         * cpus that overlap for this interval and w_i is the interval width.
1419         *
1420         * On a small machine; the first term is well-bounded which bounds the
1421         * total error since w_i is a subset of the period.  Whereas on a
1422         * larger machine, while this first term can be larger, if w_i is the
1423         * of consequential size guaranteed to see n_i*w_i quickly converge to
1424         * our upper bound of 1-cpu.
1425         */
1426        runnable_avg = atomic_read(&tg->runnable_avg);
1427        if (runnable_avg < NICE_0_LOAD) {
1428                se->avg.load_avg_contrib *= runnable_avg;
1429                se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1430        }
1431}
1432#else
1433static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1434                                                 int force_update) {}
1435static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1436                                                  struct cfs_rq *cfs_rq) {}
1437static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1438#endif
1439
1440static inline void __update_task_entity_contrib(struct sched_entity *se)
1441{
1442        u32 contrib;
1443
1444        /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1445        contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1446        contrib /= (se->avg.runnable_avg_period + 1);
1447        se->avg.load_avg_contrib = scale_load(contrib);
1448}
1449
1450/* Compute the current contribution to load_avg by se, return any delta */
1451static long __update_entity_load_avg_contrib(struct sched_entity *se)
1452{
1453        long old_contrib = se->avg.load_avg_contrib;
1454
1455        if (entity_is_task(se)) {
1456                __update_task_entity_contrib(se);
1457        } else {
1458                __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1459                __update_group_entity_contrib(se);
1460        }
1461
1462        return se->avg.load_avg_contrib - old_contrib;
1463}
1464
1465static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1466                                                 long load_contrib)
1467{
1468        if (likely(load_contrib < cfs_rq->blocked_load_avg))
1469                cfs_rq->blocked_load_avg -= load_contrib;
1470        else
1471                cfs_rq->blocked_load_avg = 0;
1472}
1473
1474static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1475
1476/* Update a sched_entity's runnable average */
1477static inline void update_entity_load_avg(struct sched_entity *se,
1478                                          int update_cfs_rq)
1479{
1480        struct cfs_rq *cfs_rq = cfs_rq_of(se);
1481        long contrib_delta;
1482        u64 now;
1483
1484        /*
1485         * For a group entity we need to use their owned cfs_rq_clock_task() in
1486         * case they are the parent of a throttled hierarchy.
1487         */
1488        if (entity_is_task(se))
1489                now = cfs_rq_clock_task(cfs_rq);
1490        else
1491                now = cfs_rq_clock_task(group_cfs_rq(se));
1492
1493        if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1494                return;
1495
1496        contrib_delta = __update_entity_load_avg_contrib(se);
1497
1498        if (!update_cfs_rq)
1499                return;
1500
1501        if (se->on_rq)
1502                cfs_rq->runnable_load_avg += contrib_delta;
1503        else
1504                subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1505}
1506
1507/*
1508 * Decay the load contributed by all blocked children and account this so that
1509 * their contribution may appropriately discounted when they wake up.
1510 */
1511static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1512{
1513        u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1514        u64 decays;
1515
1516        decays = now - cfs_rq->last_decay;
1517        if (!decays && !force_update)
1518                return;
1519
1520        if (atomic_long_read(&cfs_rq->removed_load)) {
1521                unsigned long removed_load;
1522                removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1523                subtract_blocked_load_contrib(cfs_rq, removed_load);
1524        }
1525
1526        if (decays) {
1527                cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1528                                                      decays);
1529                atomic64_add(decays, &cfs_rq->decay_counter);
1530                cfs_rq->last_decay = now;
1531        }
1532
1533        __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1534}
1535
1536static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1537{
1538        __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1539        __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1540}
1541
1542/* Add the load generated by se into cfs_rq's child load-average */
1543static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1544                                                  struct sched_entity *se,
1545                                                  int wakeup)
1546{
1547        /*
1548         * We track migrations using entity decay_count <= 0, on a wake-up
1549         * migration we use a negative decay count to track the remote decays
1550         * accumulated while sleeping.
1551         *
1552         * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1553         * are seen by enqueue_entity_load_avg() as a migration with an already
1554         * constructed load_avg_contrib.
1555         */
1556        if (unlikely(se->avg.decay_count <= 0)) {
1557                se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1558                if (se->avg.decay_count) {
1559                        /*
1560                         * In a wake-up migration we have to approximate the
1561                         * time sleeping.  This is because we can't synchronize
1562                         * clock_task between the two cpus, and it is not
1563                         * guaranteed to be read-safe.  Instead, we can
1564                         * approximate this using our carried decays, which are
1565                         * explicitly atomically readable.
1566                         */
1567                        se->avg.last_runnable_update -= (-se->avg.decay_count)
1568                                                        << 20;
1569                        update_entity_load_avg(se, 0);
1570                        /* Indicate that we're now synchronized and on-rq */
1571                        se->avg.decay_count = 0;
1572                }
1573                wakeup = 0;
1574        } else {
1575                /*
1576                 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1577                 * would have made count negative); we must be careful to avoid
1578                 * double-accounting blocked time after synchronizing decays.
1579                 */
1580                se->avg.last_runnable_update += __synchronize_entity_decay(se)
1581                                                        << 20;
1582        }
1583
1584        /* migrated tasks did not contribute to our blocked load */
1585        if (wakeup) {
1586                subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1587                update_entity_load_avg(se, 0);
1588        }
1589
1590        cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1591        /* we force update consideration on load-balancer moves */
1592        update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1593}
1594
1595/*
1596 * Remove se's load from this cfs_rq child load-average, if the entity is
1597 * transitioning to a blocked state we track its projected decay using
1598 * blocked_load_avg.
1599 */
1600static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1601                                                  struct sched_entity *se,
1602                                                  int sleep)
1603{
1604        update_entity_load_avg(se, 1);
1605        /* we force update consideration on load-balancer moves */
1606        update_cfs_rq_blocked_load(cfs_rq, !sleep);
1607
1608        cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1609        if (sleep) {
1610                cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1611                se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1612        } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1613}
1614
1615/*
1616 * Update the rq's load with the elapsed running time before entering
1617 * idle. if the last scheduled task is not a CFS task, idle_enter will
1618 * be the only way to update the runnable statistic.
1619 */
1620void idle_enter_fair(struct rq *this_rq)
1621{
1622        update_rq_runnable_avg(this_rq, 1);
1623}
1624
1625/*
1626 * Update the rq's load with the elapsed idle time before a task is
1627 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1628 * be the only way to update the runnable statistic.
1629 */
1630void idle_exit_fair(struct rq *this_rq)
1631{
1632        update_rq_runnable_avg(this_rq, 0);
1633}
1634
1635#else
1636static inline void update_entity_load_avg(struct sched_entity *se,
1637                                          int update_cfs_rq) {}
1638static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1639static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1640                                           struct sched_entity *se,
1641                                           int wakeup) {}
1642static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1643                                           struct sched_entity *se,
1644                                           int sleep) {}
1645static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1646                                              int force_update) {}
1647#endif
1648
1649static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1650{
1651#ifdef CONFIG_SCHEDSTATS
1652        struct task_struct *tsk = NULL;
1653
1654        if (entity_is_task(se))
1655                tsk = task_of(se);
1656
1657        if (se->statistics.sleep_start) {
1658                u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1659
1660                if ((s64)delta < 0)
1661                        delta = 0;
1662
1663                if (unlikely(delta > se->statistics.sleep_max))
1664                        se->statistics.sleep_max = delta;
1665
1666                se->statistics.sleep_start = 0;
1667                se->statistics.sum_sleep_runtime += delta;
1668
1669                if (tsk) {
1670                        account_scheduler_latency(tsk, delta >> 10, 1);
1671                        trace_sched_stat_sleep(tsk, delta);
1672                }
1673        }
1674        if (se->statistics.block_start) {
1675                u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1676
1677                if ((s64)delta < 0)
1678                        delta = 0;
1679
1680                if (unlikely(delta > se->statistics.block_max))
1681                        se->statistics.block_max = delta;
1682
1683                se->statistics.block_start = 0;
1684                se->statistics.sum_sleep_runtime += delta;
1685
1686                if (tsk) {
1687                        if (tsk->in_iowait) {
1688                                se->statistics.iowait_sum += delta;
1689                                se->statistics.iowait_count++;
1690                                trace_sched_stat_iowait(tsk, delta);
1691                        }
1692
1693                        trace_sched_stat_blocked(tsk, delta);
1694
1695                        /*
1696                         * Blocking time is in units of nanosecs, so shift by
1697                         * 20 to get a milliseconds-range estimation of the
1698                         * amount of time that the task spent sleeping:
1699                         */
1700                        if (unlikely(prof_on == SLEEP_PROFILING)) {
1701                                profile_hits(SLEEP_PROFILING,
1702                                                (void *)get_wchan(tsk),
1703                                                delta >> 20);
1704                        }
1705                        account_scheduler_latency(tsk, delta >> 10, 0);
1706                }
1707        }
1708#endif
1709}
1710
1711static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1712{
1713#ifdef CONFIG_SCHED_DEBUG
1714        s64 d = se->vruntime - cfs_rq->min_vruntime;
1715
1716        if (d < 0)
1717                d = -d;
1718
1719        if (d > 3*sysctl_sched_latency)
1720                schedstat_inc(cfs_rq, nr_spread_over);
1721#endif
1722}
1723
1724static void
1725place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1726{
1727        u64 vruntime = cfs_rq->min_vruntime;
1728
1729        /*
1730         * The 'current' period is already promised to the current tasks,
1731         * however the extra weight of the new task will slow them down a
1732         * little, place the new task so that it fits in the slot that
1733         * stays open at the end.
1734         */
1735        if (initial && sched_feat(START_DEBIT))
1736                vruntime += sched_vslice(cfs_rq, se);
1737
1738        /* sleeps up to a single latency don't count. */
1739        if (!initial) {
1740                unsigned long thresh = sysctl_sched_latency;
1741
1742                /*
1743                 * Halve their sleep time's effect, to allow
1744                 * for a gentler effect of sleepers:
1745                 */
1746                if (sched_feat(GENTLE_FAIR_SLEEPERS))
1747                        thresh >>= 1;
1748
1749                vruntime -= thresh;
1750        }
1751
1752        /* ensure we never gain time by being placed backwards. */
1753        se->vruntime = max_vruntime(se->vruntime, vruntime);
1754}
1755
1756static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1757
1758static void
1759enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1760{
1761        /*
1762         * Update the normalized vruntime before updating min_vruntime
1763         * through calling update_curr().
1764         */
1765        if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1766                se->vruntime += cfs_rq->min_vruntime;
1767
1768        /*
1769         * Update run-time statistics of the 'current'.
1770         */
1771        update_curr(cfs_rq);
1772        enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1773        account_entity_enqueue(cfs_rq, se);
1774        update_cfs_shares(cfs_rq);
1775
1776        if (flags & ENQUEUE_WAKEUP) {
1777                place_entity(cfs_rq, se, 0);
1778                enqueue_sleeper(cfs_rq, se);
1779        }
1780
1781        update_stats_enqueue(cfs_rq, se);
1782        check_spread(cfs_rq, se);
1783        if (se != cfs_rq->curr)
1784                __enqueue_entity(cfs_rq, se);
1785        se->on_rq = 1;
1786
1787        if (cfs_rq->nr_running == 1) {
1788                list_add_leaf_cfs_rq(cfs_rq);
1789                check_enqueue_throttle(cfs_rq);
1790        }
1791}
1792
1793static void __clear_buddies_last(struct sched_entity *se)
1794{
1795        for_each_sched_entity(se) {
1796                struct cfs_rq *cfs_rq = cfs_rq_of(se);
1797                if (cfs_rq->last == se)
1798                        cfs_rq->last = NULL;
1799                else
1800                        break;
1801        }
1802}
1803
1804static void __clear_buddies_next(struct sched_entity *se)
1805{
1806        for_each_sched_entity(se) {
1807                struct cfs_rq *cfs_rq = cfs_rq_of(se);
1808                if (cfs_rq->next == se)
1809                        cfs_rq->next = NULL;
1810                else
1811                        break;
1812        }
1813}
1814
1815static void __clear_buddies_skip(struct sched_entity *se)
1816{
1817        for_each_sched_entity(se) {
1818                struct cfs_rq *cfs_rq = cfs_rq_of(se);
1819                if (cfs_rq->skip == se)
1820                        cfs_rq->skip = NULL;
1821                else
1822                        break;
1823        }
1824}
1825
1826static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1827{
1828        if (cfs_rq->last == se)
1829                __clear_buddies_last(se);
1830
1831        if (cfs_rq->next == se)
1832                __clear_buddies_next(se);
1833
1834        if (cfs_rq->skip == se)
1835                __clear_buddies_skip(se);
1836}
1837
1838static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1839
1840static void
1841dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1842{
1843        /*
1844         * Update run-time statistics of the 'current'.
1845         */
1846        update_curr(cfs_rq);
1847        dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1848
1849        update_stats_dequeue(cfs_rq, se);
1850        if (flags & DEQUEUE_SLEEP) {
1851#ifdef CONFIG_SCHEDSTATS
1852                if (entity_is_task(se)) {
1853                        struct task_struct *tsk = task_of(se);
1854
1855                        if (tsk->state & TASK_INTERRUPTIBLE)
1856                                se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
1857                        if (tsk->state & TASK_UNINTERRUPTIBLE)
1858                                se->statistics.block_start = rq_clock(rq_of(cfs_rq));
1859                }
1860#endif
1861        }
1862
1863        clear_buddies(cfs_rq, se);
1864
1865        if (se != cfs_rq->curr)
1866                __dequeue_entity(cfs_rq, se);
1867        se->on_rq = 0;
1868        account_entity_dequeue(cfs_rq, se);
1869
1870        /*
1871         * Normalize the entity after updating the min_vruntime because the
1872         * update can refer to the ->curr item and we need to reflect this
1873         * movement in our normalized position.
1874         */
1875        if (!(flags & DEQUEUE_SLEEP))
1876                se->vruntime -= cfs_rq->min_vruntime;
1877
1878        /* return excess runtime on last dequeue */
1879        return_cfs_rq_runtime(cfs_rq);
1880
1881        update_min_vruntime(cfs_rq);
1882        update_cfs_shares(cfs_rq);
1883}
1884
1885/*
1886 * Preempt the current task with a newly woken task if needed:
1887 */
1888static void
1889check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1890{
1891        unsigned long ideal_runtime, delta_exec;
1892        struct sched_entity *se;
1893        s64 delta;
1894
1895        ideal_runtime = sched_slice(cfs_rq, curr);
1896        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1897        if (delta_exec > ideal_runtime) {
1898                resched_task(rq_of(cfs_rq)->curr);
1899                /*
1900                 * The current task ran long enough, ensure it doesn't get
1901                 * re-elected due to buddy favours.
1902                 */
1903                clear_buddies(cfs_rq, curr);
1904                return;
1905        }
1906
1907        /*
1908         * Ensure that a task that missed wakeup preemption by a
1909         * narrow margin doesn't have to wait for a full slice.
1910         * This also mitigates buddy induced latencies under load.
1911         */
1912        if (delta_exec < sysctl_sched_min_granularity)
1913                return;
1914
1915        se = __pick_first_entity(cfs_rq);
1916        delta = curr->vruntime - se->vruntime;
1917
1918        if (delta < 0)
1919                return;
1920
1921        if (delta > ideal_runtime)
1922                resched_task(rq_of(cfs_rq)->curr);
1923}
1924
1925static void
1926set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1927{
1928        /* 'current' is not kept within the tree. */
1929        if (se->on_rq) {
1930                /*
1931                 * Any task has to be enqueued before it get to execute on
1932                 * a CPU. So account for the time it spent waiting on the
1933                 * runqueue.
1934                 */
1935                update_stats_wait_end(cfs_rq, se);
1936                __dequeue_entity(cfs_rq, se);
1937        }
1938
1939        update_stats_curr_start(cfs_rq, se);
1940        cfs_rq->curr = se;
1941#ifdef CONFIG_SCHEDSTATS
1942        /*
1943         * Track our maximum slice length, if the CPU's load is at
1944         * least twice that of our own weight (i.e. dont track it
1945         * when there are only lesser-weight tasks around):
1946         */
1947        if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1948                se->statistics.slice_max = max(se->statistics.slice_max,
1949                        se->sum_exec_runtime - se->prev_sum_exec_runtime);
1950        }
1951#endif
1952        se->prev_sum_exec_runtime = se->sum_exec_runtime;
1953}
1954
1955static int
1956wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1957
1958/*
1959 * Pick the next process, keeping these things in mind, in this order:
1960 * 1) keep things fair between processes/task groups
1961 * 2) pick the "next" process, since someone really wants that to run
1962 * 3) pick the "last" process, for cache locality
1963 * 4) do not run the "skip" process, if something else is available
1964 */
1965static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1966{
1967        struct sched_entity *se = __pick_first_entity(cfs_rq);
1968        struct sched_entity *left = se;
1969
1970        /*
1971         * Avoid running the skip buddy, if running something else can
1972         * be done without getting too unfair.
1973         */
1974        if (cfs_rq->skip == se) {
1975                struct sched_entity *second = __pick_next_entity(se);
1976                if (second && wakeup_preempt_entity(second, left) < 1)
1977                        se = second;
1978        }
1979
1980        /*
1981         * Prefer last buddy, try to return the CPU to a preempted task.
1982         */
1983        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1984                se = cfs_rq->last;
1985
1986        /*
1987         * Someone really wants this to run. If it's not unfair, run it.
1988         */
1989        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1990                se = cfs_rq->next;
1991
1992        clear_buddies(cfs_rq, se);
1993
1994        return se;
1995}
1996
1997static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1998
1999static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2000{
2001        /*
2002         * If still on the runqueue then deactivate_task()
2003         * was not called and update_curr() has to be done:
2004         */
2005        if (prev->on_rq)
2006                update_curr(cfs_rq);
2007
2008        /* throttle cfs_rqs exceeding runtime */
2009        check_cfs_rq_runtime(cfs_rq);
2010
2011        check_spread(cfs_rq, prev);
2012        if (prev->on_rq) {
2013                update_stats_wait_start(cfs_rq, prev);
2014                /* Put 'current' back into the tree. */
2015                __enqueue_entity(cfs_rq, prev);
2016                /* in !on_rq case, update occurred at dequeue */
2017                update_entity_load_avg(prev, 1);
2018        }
2019        cfs_rq->curr = NULL;
2020}
2021
2022static void
2023entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2024{
2025        /*
2026         * Update run-time statistics of the 'current'.
2027         */
2028        update_curr(cfs_rq);
2029
2030        /*
2031         * Ensure that runnable average is periodically updated.
2032         */
2033        update_entity_load_avg(curr, 1);
2034        update_cfs_rq_blocked_load(cfs_rq, 1);
2035        update_cfs_shares(cfs_rq);
2036
2037#ifdef CONFIG_SCHED_HRTICK
2038        /*
2039         * queued ticks are scheduled to match the slice, so don't bother
2040         * validating it and just reschedule.
2041         */
2042        if (queued) {
2043                resched_task(rq_of(cfs_rq)->curr);
2044                return;
2045        }
2046        /*
2047         * don't let the period tick interfere with the hrtick preemption
2048         */
2049        if (!sched_feat(DOUBLE_TICK) &&
2050                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2051                return;
2052#endif
2053
2054        if (cfs_rq->nr_running > 1)
2055                check_preempt_tick(cfs_rq, curr);
2056}
2057
2058
2059/**************************************************
2060 * CFS bandwidth control machinery
2061 */
2062
2063#ifdef CONFIG_CFS_BANDWIDTH
2064
2065#ifdef HAVE_JUMP_LABEL
2066static struct static_key __cfs_bandwidth_used;
2067
2068static inline bool cfs_bandwidth_used(void)
2069{
2070        return static_key_false(&__cfs_bandwidth_used);
2071}
2072
2073void account_cfs_bandwidth_used(int enabled, int was_enabled)
2074{
2075        /* only need to count groups transitioning between enabled/!enabled */
2076        if (enabled && !was_enabled)
2077                static_key_slow_inc(&__cfs_bandwidth_used);
2078        else if (!enabled && was_enabled)
2079                static_key_slow_dec(&__cfs_bandwidth_used);
2080}
2081#else /* HAVE_JUMP_LABEL */
2082static bool cfs_bandwidth_used(void)
2083{
2084        return true;
2085}
2086
2087void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2088#endif /* HAVE_JUMP_LABEL */
2089
2090/*
2091 * default period for cfs group bandwidth.
2092 * default: 0.1s, units: nanoseconds
2093 */
2094static inline u64 default_cfs_period(void)
2095{
2096        return 100000000ULL;
2097}
2098
2099static inline u64 sched_cfs_bandwidth_slice(void)
2100{
2101        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2102}
2103
2104/*
2105 * Replenish runtime according to assigned quota and update expiration time.
2106 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2107 * additional synchronization around rq->lock.
2108 *
2109 * requires cfs_b->lock
2110 */
2111void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2112{
2113        u64 now;
2114
2115        if (cfs_b->quota == RUNTIME_INF)
2116                return;
2117
2118        now = sched_clock_cpu(smp_processor_id());
2119        cfs_b->runtime = cfs_b->quota;
2120        cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2121}
2122
2123static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2124{
2125        return &tg->cfs_bandwidth;
2126}
2127
2128/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2129static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2130{
2131        if (unlikely(cfs_rq->throttle_count))
2132                return cfs_rq->throttled_clock_task;
2133
2134        return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2135}
2136
2137/* returns 0 on failure to allocate runtime */
2138static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2139{
2140        struct task_group *tg = cfs_rq->tg;
2141        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2142        u64 amount = 0, min_amount, expires;
2143
2144        /* note: this is a positive sum as runtime_remaining <= 0 */
2145        min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2146
2147        raw_spin_lock(&cfs_b->lock);
2148        if (cfs_b->quota == RUNTIME_INF)
2149                amount = min_amount;
2150        else {
2151                /*
2152                 * If the bandwidth pool has become inactive, then at least one
2153                 * period must have elapsed since the last consumption.
2154                 * Refresh the global state and ensure bandwidth timer becomes
2155                 * active.
2156                 */
2157                if (!cfs_b->timer_active) {
2158                        __refill_cfs_bandwidth_runtime(cfs_b);
2159                        __start_cfs_bandwidth(cfs_b);
2160                }
2161
2162                if (cfs_b->runtime > 0) {
2163                        amount = min(cfs_b->runtime, min_amount);
2164                        cfs_b->runtime -= amount;
2165                        cfs_b->idle = 0;
2166                }
2167        }
2168        expires = cfs_b->runtime_expires;
2169        raw_spin_unlock(&cfs_b->lock);
2170
2171        cfs_rq->runtime_remaining += amount;
2172        /*
2173         * we may have advanced our local expiration to account for allowed
2174         * spread between our sched_clock and the one on which runtime was
2175         * issued.
2176         */
2177        if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2178                cfs_rq->runtime_expires = expires;
2179
2180        return cfs_rq->runtime_remaining > 0;
2181}
2182
2183/*
2184 * Note: This depends on the synchronization provided by sched_clock and the
2185 * fact that rq->clock snapshots this value.
2186 */
2187static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2188{
2189        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2190
2191        /* if the deadline is ahead of our clock, nothing to do */
2192        if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2193                return;
2194
2195        if (cfs_rq->runtime_remaining < 0)
2196                return;
2197
2198        /*
2199         * If the local deadline has passed we have to consider the
2200         * possibility that our sched_clock is 'fast' and the global deadline
2201         * has not truly expired.
2202         *
2203         * Fortunately we can check determine whether this the case by checking
2204         * whether the global deadline has advanced.
2205         */
2206
2207        if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2208                /* extend local deadline, drift is bounded above by 2 ticks */
2209                cfs_rq->runtime_expires += TICK_NSEC;
2210        } else {
2211                /* global deadline is ahead, expiration has passed */
2212                cfs_rq->runtime_remaining = 0;
2213        }
2214}
2215
2216static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2217                                     unsigned long delta_exec)
2218{
2219        /* dock delta_exec before expiring quota (as it could span periods) */
2220        cfs_rq->runtime_remaining -= delta_exec;
2221        expire_cfs_rq_runtime(cfs_rq);
2222
2223        if (likely(cfs_rq->runtime_remaining > 0))
2224                return;
2225
2226        /*
2227         * if we're unable to extend our runtime we resched so that the active
2228         * hierarchy can be throttled
2229         */
2230        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2231                resched_task(rq_of(cfs_rq)->curr);
2232}
2233
2234static __always_inline
2235void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2236{
2237        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2238                return;
2239
2240        __account_cfs_rq_runtime(cfs_rq, delta_exec);
2241}
2242
2243static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2244{
2245        return cfs_bandwidth_used() && cfs_rq->throttled;
2246}
2247
2248/* check whether cfs_rq, or any parent, is throttled */
2249static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2250{
2251        return cfs_bandwidth_used() && cfs_rq->throttle_count;
2252}
2253
2254/*
2255 * Ensure that neither of the group entities corresponding to src_cpu or
2256 * dest_cpu are members of a throttled hierarchy when performing group
2257 * load-balance operations.
2258 */
2259static inline int throttled_lb_pair(struct task_group *tg,
2260                                    int src_cpu, int dest_cpu)
2261{
2262        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2263
2264        src_cfs_rq = tg->cfs_rq[src_cpu];
2265        dest_cfs_rq = tg->cfs_rq[dest_cpu];
2266
2267        return throttled_hierarchy(src_cfs_rq) ||
2268               throttled_hierarchy(dest_cfs_rq);
2269}
2270
2271/* updated child weight may affect parent so we have to do this bottom up */
2272static int tg_unthrottle_up(struct task_group *tg, void *data)
2273{
2274        struct rq *rq = data;
2275        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2276
2277        cfs_rq->throttle_count--;
2278#ifdef CONFIG_SMP
2279        if (!cfs_rq->throttle_count) {
2280                /* adjust cfs_rq_clock_task() */
2281                cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2282                                             cfs_rq->throttled_clock_task;
2283        }
2284#endif
2285
2286        return 0;
2287}
2288
2289static int tg_throttle_down(struct task_group *tg, void *data)
2290{
2291        struct rq *rq = data;
2292        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2293
2294        /* group is entering throttled state, stop time */
2295        if (!cfs_rq->throttle_count)
2296                cfs_rq->throttled_clock_task = rq_clock_task(rq);
2297        cfs_rq->throttle_count++;
2298
2299        return 0;
2300}
2301
2302static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2303{
2304        struct rq *rq = rq_of(cfs_rq);
2305        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2306        struct sched_entity *se;
2307        long task_delta, dequeue = 1;
2308
2309        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2310
2311        /* freeze hierarchy runnable averages while throttled */
2312        rcu_read_lock();
2313        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2314        rcu_read_unlock();
2315
2316        task_delta = cfs_rq->h_nr_running;
2317        for_each_sched_entity(se) {
2318                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2319                /* throttled entity or throttle-on-deactivate */
2320                if (!se->on_rq)
2321                        break;
2322
2323                if (dequeue)
2324                        dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2325                qcfs_rq->h_nr_running -= task_delta;
2326
2327                if (qcfs_rq->load.weight)
2328                        dequeue = 0;
2329        }
2330
2331        if (!se)
2332                rq->nr_running -= task_delta;
2333
2334        cfs_rq->throttled = 1;
2335        cfs_rq->throttled_clock = rq_clock(rq);
2336        raw_spin_lock(&cfs_b->lock);
2337        list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2338        raw_spin_unlock(&cfs_b->lock);
2339}
2340
2341void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2342{
2343        struct rq *rq = rq_of(cfs_rq);
2344        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2345        struct sched_entity *se;
2346        int enqueue = 1;
2347        long task_delta;
2348
2349        se = cfs_rq->tg->se[cpu_of(rq)];
2350
2351        cfs_rq->throttled = 0;
2352
2353        update_rq_clock(rq);
2354
2355        raw_spin_lock(&cfs_b->lock);
2356        cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2357        list_del_rcu(&cfs_rq->throttled_list);
2358        raw_spin_unlock(&cfs_b->lock);
2359
2360        /* update hierarchical throttle state */
2361        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2362
2363        if (!cfs_rq->load.weight)
2364                return;
2365
2366        task_delta = cfs_rq->h_nr_running;
2367        for_each_sched_entity(se) {
2368                if (se->on_rq)
2369                        enqueue = 0;
2370
2371                cfs_rq = cfs_rq_of(se);
2372                if (enqueue)
2373                        enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2374                cfs_rq->h_nr_running += task_delta;
2375
2376                if (cfs_rq_throttled(cfs_rq))
2377                        break;
2378        }
2379
2380        if (!se)
2381                rq->nr_running += task_delta;
2382
2383        /* determine whether we need to wake up potentially idle cpu */
2384        if (rq->curr == rq->idle && rq->cfs.nr_running)
2385                resched_task(rq->curr);
2386}
2387
2388static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2389                u64 remaining, u64 expires)
2390{
2391        struct cfs_rq *cfs_rq;
2392        u64 runtime = remaining;
2393
2394        rcu_read_lock();
2395        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2396                                throttled_list) {
2397                struct rq *rq = rq_of(cfs_rq);
2398
2399                raw_spin_lock(&rq->lock);
2400                if (!cfs_rq_throttled(cfs_rq))
2401                        goto next;
2402
2403                runtime = -cfs_rq->runtime_remaining + 1;
2404                if (runtime > remaining)
2405                        runtime = remaining;
2406                remaining -= runtime;
2407
2408                cfs_rq->runtime_remaining += runtime;
2409                cfs_rq->runtime_expires = expires;
2410
2411                /* we check whether we're throttled above */
2412                if (cfs_rq->runtime_remaining > 0)
2413                        unthrottle_cfs_rq(cfs_rq);
2414
2415next:
2416                raw_spin_unlock(&rq->lock);
2417
2418                if (!remaining)
2419                        break;
2420        }
2421        rcu_read_unlock();
2422
2423        return remaining;
2424}
2425
2426/*
2427 * Responsible for refilling a task_group's bandwidth and unthrottling its
2428 * cfs_rqs as appropriate. If there has been no activity within the last
2429 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2430 * used to track this state.
2431 */
2432static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2433{
2434        u64 runtime, runtime_expires;
2435        int idle = 1, throttled;
2436
2437        raw_spin_lock(&cfs_b->lock);
2438        /* no need to continue the timer with no bandwidth constraint */
2439        if (cfs_b->quota == RUNTIME_INF)
2440                goto out_unlock;
2441
2442        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2443        /* idle depends on !throttled (for the case of a large deficit) */
2444        idle = cfs_b->idle && !throttled;
2445        cfs_b->nr_periods += overrun;
2446
2447        /* if we're going inactive then everything else can be deferred */
2448        if (idle)
2449                goto out_unlock;
2450
2451        __refill_cfs_bandwidth_runtime(cfs_b);
2452
2453        if (!throttled) {
2454                /* mark as potentially idle for the upcoming period */
2455                cfs_b->idle = 1;
2456                goto out_unlock;
2457        }
2458
2459        /* account preceding periods in which throttling occurred */
2460        cfs_b->nr_throttled += overrun;
2461
2462        /*
2463         * There are throttled entities so we must first use the new bandwidth
2464         * to unthrottle them before making it generally available.  This
2465         * ensures that all existing debts will be paid before a new cfs_rq is
2466         * allowed to run.
2467         */
2468        runtime = cfs_b->runtime;
2469        runtime_expires = cfs_b->runtime_expires;
2470        cfs_b->runtime = 0;
2471
2472        /*
2473         * This check is repeated as we are holding onto the new bandwidth
2474         * while we unthrottle.  This can potentially race with an unthrottled
2475         * group trying to acquire new bandwidth from the global pool.
2476         */
2477        while (throttled && runtime > 0) {
2478                raw_spin_unlock(&cfs_b->lock);
2479                /* we can't nest cfs_b->lock while distributing bandwidth */
2480                runtime = distribute_cfs_runtime(cfs_b, runtime,
2481                                                 runtime_expires);
2482                raw_spin_lock(&cfs_b->lock);
2483
2484                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2485        }
2486
2487        /* return (any) remaining runtime */
2488        cfs_b->runtime = runtime;
2489        /*
2490         * While we are ensured activity in the period following an
2491         * unthrottle, this also covers the case in which the new bandwidth is
2492         * insufficient to cover the existing bandwidth deficit.  (Forcing the
2493         * timer to remain active while there are any throttled entities.)
2494         */
2495        cfs_b->idle = 0;
2496out_unlock:
2497        if (idle)
2498                cfs_b->timer_active = 0;
2499        raw_spin_unlock(&cfs_b->lock);
2500
2501        return idle;
2502}
2503
2504/* a cfs_rq won't donate quota below this amount */
2505static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2506/* minimum remaining period time to redistribute slack quota */
2507static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2508/* how long we wait to gather additional slack before distributing */
2509static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2510
2511/* are we near the end of the current quota period? */
2512static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2513{
2514        struct hrtimer *refresh_timer = &cfs_b->period_timer;
2515        u64 remaining;
2516
2517        /* if the call-back is running a quota refresh is already occurring */
2518        if (hrtimer_callback_running(refresh_timer))
2519                return 1;
2520
2521        /* is a quota refresh about to occur? */
2522        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2523        if (remaining < min_expire)
2524                return 1;
2525
2526        return 0;
2527}
2528
2529static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2530{
2531        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2532
2533        /* if there's a quota refresh soon don't bother with slack */
2534        if (runtime_refresh_within(cfs_b, min_left))
2535                return;
2536
2537        start_bandwidth_timer(&cfs_b->slack_timer,
2538                                ns_to_ktime(cfs_bandwidth_slack_period));
2539}
2540
2541/* we know any runtime found here is valid as update_curr() precedes return */
2542static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2543{
2544        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2545        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2546
2547        if (slack_runtime <= 0)
2548                return;
2549
2550        raw_spin_lock(&cfs_b->lock);
2551        if (cfs_b->quota != RUNTIME_INF &&
2552            cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2553                cfs_b->runtime += slack_runtime;
2554
2555                /* we are under rq->lock, defer unthrottling using a timer */
2556                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2557                    !list_empty(&cfs_b->throttled_cfs_rq))
2558                        start_cfs_slack_bandwidth(cfs_b);
2559        }
2560        raw_spin_unlock(&cfs_b->lock);
2561
2562        /* even if it's not valid for return we don't want to try again */
2563        cfs_rq->runtime_remaining -= slack_runtime;
2564}
2565
2566static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2567{
2568        if (!cfs_bandwidth_used())
2569                return;
2570
2571        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2572                return;
2573
2574        __return_cfs_rq_runtime(cfs_rq);
2575}
2576
2577/*
2578 * This is done with a timer (instead of inline with bandwidth return) since
2579 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2580 */
2581static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2582{
2583        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2584        u64 expires;
2585
2586        /* confirm we're still not at a refresh boundary */
2587        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2588                return;
2589
2590        raw_spin_lock(&cfs_b->lock);
2591        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2592                runtime = cfs_b->runtime;
2593                cfs_b->runtime = 0;
2594        }
2595        expires = cfs_b->runtime_expires;
2596        raw_spin_unlock(&cfs_b->lock);
2597
2598        if (!runtime)
2599                return;
2600
2601        runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2602
2603        raw_spin_lock(&cfs_b->lock);
2604        if (expires == cfs_b->runtime_expires)
2605                cfs_b->runtime = runtime;
2606        raw_spin_unlock(&cfs_b->lock);
2607}
2608
2609/*
2610 * When a group wakes up we want to make sure that its quota is not already
2611 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2612 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2613 */
2614static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2615{
2616        if (!cfs_bandwidth_used())
2617                return;
2618
2619        /* an active group must be handled by the update_curr()->put() path */
2620        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2621                return;
2622
2623        /* ensure the group is not already throttled */
2624        if (cfs_rq_throttled(cfs_rq))
2625                return;
2626
2627        /* update runtime allocation */
2628        account_cfs_rq_runtime(cfs_rq, 0);
2629        if (cfs_rq->runtime_remaining <= 0)
2630                throttle_cfs_rq(cfs_rq);
2631}
2632
2633/* conditionally throttle active cfs_rq's from put_prev_entity() */
2634static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2635{
2636        if (!cfs_bandwidth_used())
2637                return;
2638
2639        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2640                return;
2641
2642        /*
2643         * it's possible for a throttled entity to be forced into a running
2644         * state (e.g. set_curr_task), in this case we're finished.
2645         */
2646        if (cfs_rq_throttled(cfs_rq))
2647                return;
2648
2649        throttle_cfs_rq(cfs_rq);
2650}
2651
2652static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2653{
2654        struct cfs_bandwidth *cfs_b =
2655                container_of(timer, struct cfs_bandwidth, slack_timer);
2656        do_sched_cfs_slack_timer(cfs_b);
2657
2658        return HRTIMER_NORESTART;
2659}
2660
2661static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2662{
2663        struct cfs_bandwidth *cfs_b =
2664                container_of(timer, struct cfs_bandwidth, period_timer);
2665        ktime_t now;
2666        int overrun;
2667        int idle = 0;
2668
2669        for (;;) {
2670                now = hrtimer_cb_get_time(timer);
2671                overrun = hrtimer_forward(timer, now, cfs_b->period);
2672
2673                if (!overrun)
2674                        break;
2675
2676                idle = do_sched_cfs_period_timer(cfs_b, overrun);
2677        }
2678
2679        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2680}
2681
2682void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2683{
2684        raw_spin_lock_init(&cfs_b->lock);
2685        cfs_b->runtime = 0;
2686        cfs_b->quota = RUNTIME_INF;
2687        cfs_b->period = ns_to_ktime(default_cfs_period());
2688
2689        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2690        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2691        cfs_b->period_timer.function = sched_cfs_period_timer;
2692        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2693        cfs_b->slack_timer.function = sched_cfs_slack_timer;
2694}
2695
2696static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2697{
2698        cfs_rq->runtime_enabled = 0;
2699        INIT_LIST_HEAD(&cfs_rq->throttled_list);
2700}
2701
2702/* requires cfs_b->lock, may release to reprogram timer */
2703void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2704{
2705        /*
2706         * The timer may be active because we're trying to set a new bandwidth
2707         * period or because we're racing with the tear-down path
2708         * (timer_active==0 becomes visible before the hrtimer call-back
2709         * terminates).  In either case we ensure that it's re-programmed
2710         */
2711        while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2712                raw_spin_unlock(&cfs_b->lock);
2713                /* ensure cfs_b->lock is available while we wait */
2714                hrtimer_cancel(&cfs_b->period_timer);
2715
2716                raw_spin_lock(&cfs_b->lock);
2717                /* if someone else restarted the timer then we're done */
2718                if (cfs_b->timer_active)
2719                        return;
2720        }
2721
2722        cfs_b->timer_active = 1;
2723        start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2724}
2725
2726static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2727{
2728        hrtimer_cancel(&cfs_b->period_timer);
2729        hrtimer_cancel(&cfs_b->slack_timer);
2730}
2731
2732static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2733{
2734        struct cfs_rq *cfs_rq;
2735
2736        for_each_leaf_cfs_rq(rq, cfs_rq) {
2737                struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2738
2739                if (!cfs_rq->runtime_enabled)
2740                        continue;
2741
2742                /*
2743                 * clock_task is not advancing so we just need to make sure
2744                 * there's some valid quota amount
2745                 */
2746                cfs_rq->runtime_remaining = cfs_b->quota;
2747                if (cfs_rq_throttled(cfs_rq))
2748                        unthrottle_cfs_rq(cfs_rq);
2749        }
2750}
2751
2752#else /* CONFIG_CFS_BANDWIDTH */
2753static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2754{
2755        return rq_clock_task(rq_of(cfs_rq));
2756}
2757
2758static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2759                                     unsigned long delta_exec) {}
2760static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2761static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2762static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2763
2764static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2765{
2766        return 0;
2767}
2768
2769static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2770{
2771        return 0;
2772}
2773
2774static inline int throttled_lb_pair(struct task_group *tg,
2775                                    int src_cpu, int dest_cpu)
2776{
2777        return 0;
2778}
2779
2780void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2781
2782#ifdef CONFIG_FAIR_GROUP_SCHED
2783static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2784#endif
2785
2786static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2787{
2788        return NULL;
2789}
2790static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2791static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2792
2793#endif /* CONFIG_CFS_BANDWIDTH */
2794
2795/**************************************************
2796 * CFS operations on tasks:
2797 */
2798
2799#ifdef CONFIG_SCHED_HRTICK
2800static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2801{
2802        struct sched_entity *se = &p->se;
2803        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2804
2805        WARN_ON(task_rq(p) != rq);
2806
2807        if (cfs_rq->nr_running > 1) {
2808                u64 slice = sched_slice(cfs_rq, se);
2809                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2810                s64 delta = slice - ran;
2811
2812                if (delta < 0) {
2813                        if (rq->curr == p)
2814                                resched_task(p);
2815                        return;
2816                }
2817
2818                /*
2819                 * Don't schedule slices shorter than 10000ns, that just
2820                 * doesn't make sense. Rely on vruntime for fairness.
2821                 */
2822                if (rq->curr != p)
2823                        delta = max_t(s64, 10000LL, delta);
2824
2825                hrtick_start(rq, delta);
2826        }
2827}
2828
2829/*
2830 * called from enqueue/dequeue and updates the hrtick when the
2831 * current task is from our class and nr_running is low enough
2832 * to matter.
2833 */
2834static void hrtick_update(struct rq *rq)
2835{
2836        struct task_struct *curr = rq->curr;
2837
2838        if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2839                return;
2840
2841        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2842                hrtick_start_fair(rq, curr);
2843}
2844#else /* !CONFIG_SCHED_HRTICK */
2845static inline void
2846hrtick_start_fair(struct rq *rq, struct task_struct *p)
2847{
2848}
2849
2850static inline void hrtick_update(struct rq *rq)
2851{
2852}
2853#endif
2854
2855/*
2856 * The enqueue_task method is called before nr_running is
2857 * increased. Here we update the fair scheduling stats and
2858 * then put the task into the rbtree:
2859 */
2860static void
2861enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2862{
2863        struct cfs_rq *cfs_rq;
2864        struct sched_entity *se = &p->se;
2865
2866        for_each_sched_entity(se) {
2867                if (se->on_rq)
2868                        break;
2869                cfs_rq = cfs_rq_of(se);
2870                enqueue_entity(cfs_rq, se, flags);
2871
2872                /*
2873                 * end evaluation on encountering a throttled cfs_rq
2874                 *
2875                 * note: in the case of encountering a throttled cfs_rq we will
2876                 * post the final h_nr_running increment below.
2877                */
2878                if (cfs_rq_throttled(cfs_rq))
2879                        break;
2880                cfs_rq->h_nr_running++;
2881
2882                flags = ENQUEUE_WAKEUP;
2883        }
2884
2885        for_each_sched_entity(se) {
2886                cfs_rq = cfs_rq_of(se);
2887                cfs_rq->h_nr_running++;
2888
2889                if (cfs_rq_throttled(cfs_rq))
2890                        break;
2891
2892                update_cfs_shares(cfs_rq);
2893                update_entity_load_avg(se, 1);
2894        }
2895
2896        if (!se) {
2897                update_rq_runnable_avg(rq, rq->nr_running);
2898                inc_nr_running(rq);
2899        }
2900        hrtick_update(rq);
2901}
2902
2903static void set_next_buddy(struct sched_entity *se);
2904
2905/*
2906 * The dequeue_task method is called before nr_running is
2907 * decreased. We remove the task from the rbtree and
2908 * update the fair scheduling stats:
2909 */
2910static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2911{
2912        struct cfs_rq *cfs_rq;
2913        struct sched_entity *se = &p->se;
2914        int task_sleep = flags & DEQUEUE_SLEEP;
2915
2916        for_each_sched_entity(se) {
2917                cfs_rq = cfs_rq_of(se);
2918                dequeue_entity(cfs_rq, se, flags);
2919
2920                /*
2921                 * end evaluation on encountering a throttled cfs_rq
2922                 *
2923                 * note: in the case of encountering a throttled cfs_rq we will
2924                 * post the final h_nr_running decrement below.
2925                */
2926                if (cfs_rq_throttled(cfs_rq))
2927                        break;
2928                cfs_rq->h_nr_running--;
2929
2930                /* Don't dequeue parent if it has other entities besides us */
2931                if (cfs_rq->load.weight) {
2932                        /*
2933                         * Bias pick_next to pick a task from this cfs_rq, as
2934                         * p is sleeping when it is within its sched_slice.
2935                         */
2936                        if (task_sleep && parent_entity(se))
2937                                set_next_buddy(parent_entity(se));
2938
2939                        /* avoid re-evaluating load for this entity */
2940                        se = parent_entity(se);
2941                        break;
2942                }
2943                flags |= DEQUEUE_SLEEP;
2944        }
2945
2946        for_each_sched_entity(se) {
2947                cfs_rq = cfs_rq_of(se);
2948                cfs_rq->h_nr_running--;
2949
2950                if (cfs_rq_throttled(cfs_rq))
2951                        break;
2952
2953                update_cfs_shares(cfs_rq);
2954                update_entity_load_avg(se, 1);
2955        }
2956
2957        if (!se) {
2958                dec_nr_running(rq);
2959                update_rq_runnable_avg(rq, 1);
2960        }
2961        hrtick_update(rq);
2962}
2963
2964#ifdef CONFIG_SMP
2965/* Used instead of source_load when we know the type == 0 */
2966static unsigned long weighted_cpuload(const int cpu)
2967{
2968        return cpu_rq(cpu)->cfs.runnable_load_avg;
2969}
2970
2971/*
2972 * Return a low guess at the load of a migration-source cpu weighted
2973 * according to the scheduling class and "nice" value.
2974 *
2975 * We want to under-estimate the load of migration sources, to
2976 * balance conservatively.
2977 */
2978static unsigned long source_load(int cpu, int type)
2979{
2980        struct rq *rq = cpu_rq(cpu);
2981        unsigned long total = weighted_cpuload(cpu);
2982
2983        if (type == 0 || !sched_feat(LB_BIAS))
2984                return total;
2985
2986        return min(rq->cpu_load[type-1], total);
2987}
2988
2989/*
2990 * Return a high guess at the load of a migration-target cpu weighted
2991 * according to the scheduling class and "nice" value.
2992 */
2993static unsigned long target_load(int cpu, int type)
2994{
2995        struct rq *rq = cpu_rq(cpu);
2996        unsigned long total = weighted_cpuload(cpu);
2997
2998        if (type == 0 || !sched_feat(LB_BIAS))
2999                return total;
3000
3001        return max(rq->cpu_load[type-1], total);
3002}
3003
3004static unsigned long power_of(int cpu)
3005{
3006        return cpu_rq(cpu)->cpu_power;
3007}
3008
3009static unsigned long cpu_avg_load_per_task(int cpu)
3010{
3011        struct rq *rq = cpu_rq(cpu);
3012        unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3013        unsigned long load_avg = rq->cfs.runnable_load_avg;
3014
3015        if (nr_running)
3016                return load_avg / nr_running;
3017
3018        return 0;
3019}
3020
3021
3022static void task_waking_fair(struct task_struct *p)
3023{
3024        struct sched_entity *se = &p->se;
3025        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3026        u64 min_vruntime;
3027
3028#ifndef CONFIG_64BIT
3029        u64 min_vruntime_copy;
3030
3031        do {
3032                min_vruntime_copy = cfs_rq->min_vruntime_copy;
3033                smp_rmb();
3034                min_vruntime = cfs_rq->min_vruntime;
3035        } while (min_vruntime != min_vruntime_copy);
3036#else
3037        min_vruntime = cfs_rq->min_vruntime;
3038#endif
3039
3040        se->vruntime -= min_vruntime;
3041}
3042
3043#ifdef CONFIG_FAIR_GROUP_SCHED
3044/*
3045 * effective_load() calculates the load change as seen from the root_task_group
3046 *
3047 * Adding load to a group doesn't make a group heavier, but can cause movement
3048 * of group shares between cpus. Assuming the shares were perfectly aligned one
3049 * can calculate the shift in shares.
3050 *
3051 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3052 * on this @cpu and results in a total addition (subtraction) of @wg to the
3053 * total group weight.
3054 *
3055 * Given a runqueue weight distribution (rw_i) we can compute a shares
3056 * distribution (s_i) using:
3057 *
3058 *   s_i = rw_i / \Sum rw_j                                             (1)
3059 *
3060 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3061 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3062 * shares distribution (s_i):
3063 *
3064 *   rw_i = {   2,   4,   1,   0 }
3065 *   s_i  = { 2/7, 4/7, 1/7,   0 }
3066 *
3067 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3068 * task used to run on and the CPU the waker is running on), we need to
3069 * compute the effect of waking a task on either CPU and, in case of a sync
3070 * wakeup, compute the effect of the current task going to sleep.
3071 *
3072 * So for a change of @wl to the local @cpu with an overall group weight change
3073 * of @wl we can compute the new shares distribution (s'_i) using:
3074 *
3075 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)                            (2)
3076 *
3077 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3078 * differences in waking a task to CPU 0. The additional task changes the
3079 * weight and shares distributions like:
3080 *
3081 *   rw'_i = {   3,   4,   1,   0 }
3082 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
3083 *
3084 * We can then compute the difference in effective weight by using:
3085 *
3086 *   dw_i = S * (s'_i - s_i)                                            (3)
3087 *
3088 * Where 'S' is the group weight as seen by its parent.
3089 *
3090 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3091 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3092 * 4/7) times the weight of the group.
3093 */
3094static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3095{
3096        struct sched_entity *se = tg->se[cpu];
3097
3098        if (!tg->parent)        /* the trivial, non-cgroup case */
3099                return wl;
3100
3101        for_each_sched_entity(se) {
3102                long w, W;
3103
3104                tg = se->my_q->tg;
3105
3106                /*
3107                 * W = @wg + \Sum rw_j
3108                 */
3109                W = wg + calc_tg_weight(tg, se->my_q);
3110
3111                /*
3112                 * w = rw_i + @wl
3113                 */
3114                w = se->my_q->load.weight + wl;
3115
3116                /*
3117                 * wl = S * s'_i; see (2)
3118                 */
3119                if (W > 0 && w < W)
3120                        wl = (w * tg->shares) / W;
3121                else
3122                        wl = tg->shares;
3123
3124                /*
3125                 * Per the above, wl is the new se->load.weight value; since
3126                 * those are clipped to [MIN_SHARES, ...) do so now. See
3127                 * calc_cfs_shares().
3128                 */
3129                if (wl < MIN_SHARES)
3130                        wl = MIN_SHARES;
3131
3132                /*
3133                 * wl = dw_i = S * (s'_i - s_i); see (3)
3134                 */
3135                wl -= se->load.weight;
3136
3137                /*
3138                 * Recursively apply this logic to all parent groups to compute
3139                 * the final effective load change on the root group. Since
3140                 * only the @tg group gets extra weight, all parent groups can
3141                 * only redistribute existing shares. @wl is the shift in shares
3142                 * resulting from this level per the above.
3143                 */
3144                wg = 0;
3145        }
3146
3147        return wl;
3148}
3149#else
3150
3151static inline unsigned long effective_load(struct task_group *tg, int cpu,
3152                unsigned long wl, unsigned long wg)
3153{
3154        return wl;
3155}
3156
3157#endif
3158
3159static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3160{
3161        s64 this_load, load;
3162        int idx, this_cpu, prev_cpu;
3163        unsigned long tl_per_task;
3164        struct task_group *tg;
3165        unsigned long weight;
3166        int balanced;
3167
3168        idx       = sd->wake_idx;
3169        this_cpu  = smp_processor_id();
3170        prev_cpu  = task_cpu(p);
3171        load      = source_load(prev_cpu, idx);
3172        this_load = target_load(this_cpu, idx);
3173
3174        /*
3175         * If sync wakeup then subtract the (maximum possible)
3176         * effect of the currently running task from the load
3177         * of the current CPU:
3178         */
3179        if (sync) {
3180                tg = task_group(current);
3181                weight = current->se.load.weight;
3182
3183                this_load += effective_load(tg, this_cpu, -weight, -weight);
3184                load += effective_load(tg, prev_cpu, 0, -weight);
3185        }
3186
3187        tg = task_group(p);
3188        weight = p->se.load.weight;
3189
3190        /*
3191         * In low-load situations, where prev_cpu is idle and this_cpu is idle
3192         * due to the sync cause above having dropped this_load to 0, we'll
3193         * always have an imbalance, but there's really nothing you can do
3194         * about that, so that's good too.
3195         *
3196         * Otherwise check if either cpus are near enough in load to allow this
3197         * task to be woken on this_cpu.
3198         */
3199        if (this_load > 0) {
3200                s64 this_eff_load, prev_eff_load;
3201
3202                this_eff_load = 100;
3203                this_eff_load *= power_of(prev_cpu);
3204                this_eff_load *= this_load +
3205                        effective_load(tg, this_cpu, weight, weight);
3206
3207                prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3208                prev_eff_load *= power_of(this_cpu);
3209                prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3210
3211                balanced = this_eff_load <= prev_eff_load;
3212        } else
3213                balanced = true;
3214
3215        /*
3216         * If the currently running task will sleep within
3217         * a reasonable amount of time then attract this newly
3218         * woken task:
3219         */
3220        if (sync && balanced)
3221                return 1;
3222
3223        schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3224        tl_per_task = cpu_avg_load_per_task(this_cpu);
3225
3226        if (balanced ||
3227            (this_load <= load &&
3228             this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3229                /*
3230                 * This domain has SD_WAKE_AFFINE and
3231                 * p is cache cold in this domain, and
3232                 * there is no bad imbalance.
3233                 */
3234                schedstat_inc(sd, ttwu_move_affine);
3235                schedstat_inc(p, se.statistics.nr_wakeups_affine);
3236
3237                return 1;
3238        }
3239        return 0;
3240}
3241
3242/*
3243 * find_idlest_group finds and returns the least busy CPU group within the
3244 * domain.
3245 */
3246static struct sched_group *
3247find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3248                  int this_cpu, int load_idx)
3249{
3250        struct sched_group *idlest = NULL, *group = sd->groups;
3251        unsigned long min_load = ULONG_MAX, this_load = 0;
3252        int imbalance = 100 + (sd->imbalance_pct-100)/2;
3253
3254        do {
3255                unsigned long load, avg_load;
3256                int local_group;
3257                int i;
3258
3259                /* Skip over this group if it has no CPUs allowed */
3260                if (!cpumask_intersects(sched_group_cpus(group),
3261                                        tsk_cpus_allowed(p)))
3262                        continue;
3263
3264                local_group = cpumask_test_cpu(this_cpu,
3265                                               sched_group_cpus(group));
3266
3267                /* Tally up the load of all CPUs in the group */
3268                avg_load = 0;
3269
3270                for_each_cpu(i, sched_group_cpus(group)) {
3271                        /* Bias balancing toward cpus of our domain */
3272                        if (local_group)
3273                                load = source_load(i, load_idx);
3274                        else
3275                                load = target_load(i, load_idx);
3276
3277                        avg_load += load;
3278                }
3279
3280                /* Adjust by relative CPU power of the group */
3281                avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3282
3283                if (local_group) {
3284                        this_load = avg_load;
3285                } else if (avg_load < min_load) {
3286                        min_load = avg_load;
3287                        idlest = group;
3288                }
3289        } while (group = group->next, group != sd->groups);
3290
3291        if (!idlest || 100*this_load < imbalance*min_load)
3292                return NULL;
3293        return idlest;
3294}
3295
3296/*
3297 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3298 */
3299static int
3300find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3301{
3302        unsigned long load, min_load = ULONG_MAX;
3303        int idlest = -1;
3304        int i;
3305
3306        /* Traverse only the allowed CPUs */
3307        for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3308                load = weighted_cpuload(i);
3309
3310                if (load < min_load || (load == min_load && i == this_cpu)) {
3311                        min_load = load;
3312                        idlest = i;
3313                }
3314        }
3315
3316        return idlest;
3317}
3318
3319/*
3320 * Try and locate an idle CPU in the sched_domain.
3321 */
3322static int select_idle_sibling(struct task_struct *p, int target)
3323{
3324        struct sched_domain *sd;
3325        struct sched_group *sg;
3326        int i = task_cpu(p);
3327
3328        if (idle_cpu(target))
3329                return target;
3330
3331        /*
3332         * If the prevous cpu is cache affine and idle, don't be stupid.
3333         */
3334        if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3335                return i;
3336
3337        /*
3338         * Otherwise, iterate the domains and find an elegible idle cpu.
3339         */
3340        sd = rcu_dereference(per_cpu(sd_llc, target));
3341        for_each_lower_domain(sd) {
3342                sg = sd->groups;
3343                do {
3344                        if (!cpumask_intersects(sched_group_cpus(sg),
3345                                                tsk_cpus_allowed(p)))
3346                                goto next;
3347
3348                        for_each_cpu(i, sched_group_cpus(sg)) {
3349                                if (i == target || !idle_cpu(i))
3350                                        goto next;
3351                        }
3352
3353                        target = cpumask_first_and(sched_group_cpus(sg),
3354                                        tsk_cpus_allowed(p));
3355                        goto done;
3356next:
3357                        sg = sg->next;
3358                } while (sg != sd->groups);
3359        }
3360done:
3361        return target;
3362}
3363
3364/*
3365 * sched_balance_self: balance the current task (running on cpu) in domains
3366 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3367 * SD_BALANCE_EXEC.
3368 *
3369 * Balance, ie. select the least loaded group.
3370 *
3371 * Returns the target CPU number, or the same CPU if no balancing is needed.
3372 *
3373 * preempt must be disabled.
3374 */
3375static int
3376select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3377{
3378        struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3379        int cpu = smp_processor_id();
3380        int prev_cpu = task_cpu(p);
3381        int new_cpu = cpu;
3382        int want_affine = 0;
3383        int sync = wake_flags & WF_SYNC;
3384
3385        if (p->nr_cpus_allowed == 1)
3386                return prev_cpu;
3387
3388        if (sd_flag & SD_BALANCE_WAKE) {
3389                if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3390                        want_affine = 1;
3391                new_cpu = prev_cpu;
3392        }
3393
3394        rcu_read_lock();
3395        for_each_domain(cpu, tmp) {
3396                if (!(tmp->flags & SD_LOAD_BALANCE))
3397                        continue;
3398
3399                /*
3400                 * If both cpu and prev_cpu are part of this domain,
3401                 * cpu is a valid SD_WAKE_AFFINE target.
3402                 */
3403                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3404                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3405                        affine_sd = tmp;
3406                        break;
3407                }
3408
3409                if (tmp->flags & sd_flag)
3410                        sd = tmp;
3411        }
3412
3413        if (affine_sd) {
3414                if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3415                        prev_cpu = cpu;
3416
3417                new_cpu = select_idle_sibling(p, prev_cpu);
3418                goto unlock;
3419        }
3420
3421        while (sd) {
3422                int load_idx = sd->forkexec_idx;
3423                struct sched_group *group;
3424                int weight;
3425
3426                if (!(sd->flags & sd_flag)) {
3427                        sd = sd->child;
3428                        continue;
3429                }
3430
3431                if (sd_flag & SD_BALANCE_WAKE)
3432                        load_idx = sd->wake_idx;
3433
3434                group = find_idlest_group(sd, p, cpu, load_idx);
3435                if (!group) {
3436                        sd = sd->child;
3437                        continue;
3438                }
3439
3440                new_cpu = find_idlest_cpu(group, p, cpu);
3441                if (new_cpu == -1 || new_cpu == cpu) {
3442                        /* Now try balancing at a lower domain level of cpu */
3443                        sd = sd->child;
3444                        continue;
3445                }
3446
3447                /* Now try balancing at a lower domain level of new_cpu */
3448                cpu = new_cpu;
3449                weight = sd->span_weight;
3450                sd = NULL;
3451                for_each_domain(cpu, tmp) {
3452                        if (weight <= tmp->span_weight)
3453                                break;
3454                        if (tmp->flags & sd_flag)
3455                                sd = tmp;
3456                }
3457                /* while loop will break here if sd == NULL */
3458        }
3459unlock:
3460        rcu_read_unlock();
3461
3462        return new_cpu;
3463}
3464
3465/*
3466 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3467 * cfs_rq_of(p) references at time of call are still valid and identify the
3468 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
3469 * other assumptions, including the state of rq->lock, should be made.
3470 */
3471static void
3472migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3473{
3474        struct sched_entity *se = &p->se;
3475        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3476
3477        /*
3478         * Load tracking: accumulate removed load so that it can be processed
3479         * when we next update owning cfs_rq under rq->lock.  Tasks contribute
3480         * to blocked load iff they have a positive decay-count.  It can never
3481         * be negative here since on-rq tasks have decay-count == 0.
3482         */
3483        if (se->avg.decay_count) {
3484                se->avg.decay_count = -__synchronize_entity_decay(se);
3485                atomic_long_add(se->avg.load_avg_contrib,
3486                                                &cfs_rq->removed_load);
3487        }
3488}
3489#endif /* CONFIG_SMP */
3490
3491static unsigned long
3492wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3493{
3494        unsigned long gran = sysctl_sched_wakeup_granularity;
3495
3496        /*
3497         * Since its curr running now, convert the gran from real-time
3498         * to virtual-time in his units.
3499         *
3500         * By using 'se' instead of 'curr' we penalize light tasks, so
3501         * they get preempted easier. That is, if 'se' < 'curr' then
3502         * the resulting gran will be larger, therefore penalizing the
3503         * lighter, if otoh 'se' > 'curr' then the resulting gran will
3504         * be smaller, again penalizing the lighter task.
3505         *
3506         * This is especially important for buddies when the leftmost
3507         * task is higher priority than the buddy.
3508         */
3509        return calc_delta_fair(gran, se);
3510}
3511
3512/*
3513 * Should 'se' preempt 'curr'.
3514 *
3515 *             |s1
3516 *        |s2
3517 *   |s3
3518 *         g
3519 *      |<--->|c
3520 *
3521 *  w(c, s1) = -1
3522 *  w(c, s2) =  0
3523 *  w(c, s3) =  1
3524 *
3525 */
3526static int
3527wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3528{
3529        s64 gran, vdiff = curr->vruntime - se->vruntime;
3530
3531        if (vdiff <= 0)
3532                return -1;
3533
3534        gran = wakeup_gran(curr, se);
3535        if (vdiff > gran)
3536                return 1;
3537
3538        return 0;
3539}
3540
3541static void set_last_buddy(struct sched_entity *se)
3542{
3543        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3544                return;
3545
3546        for_each_sched_entity(se)
3547                cfs_rq_of(se)->last = se;
3548}
3549
3550static void set_next_buddy(struct sched_entity *se)
3551{
3552        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3553                return;
3554
3555        for_each_sched_entity(se)
3556                cfs_rq_of(se)->next = se;
3557}
3558
3559static void set_skip_buddy(struct sched_entity *se)
3560{
3561        for_each_sched_entity(se)
3562                cfs_rq_of(se)->skip = se;
3563}
3564
3565/*
3566 * Preempt the current task with a newly woken task if needed:
3567 */
3568static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3569{
3570        struct task_struct *curr = rq->curr;
3571        struct sched_entity *se = &curr->se, *pse = &p->se;
3572        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3573        int scale = cfs_rq->nr_running >= sched_nr_latency;
3574        int next_buddy_marked = 0;
3575
3576        if (unlikely(se == pse))
3577                return;
3578
3579        /*
3580         * This is possible from callers such as move_task(), in which we
3581         * unconditionally check_prempt_curr() after an enqueue (which may have
3582         * lead to a throttle).  This both saves work and prevents false
3583         * next-buddy nomination below.
3584         */
3585        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3586                return;
3587
3588        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3589                set_next_buddy(pse);
3590                next_buddy_marked = 1;
3591        }
3592
3593        /*
3594         * We can come here with TIF_NEED_RESCHED already set from new task
3595         * wake up path.
3596         *
3597         * Note: this also catches the edge-case of curr being in a throttled
3598         * group (e.g. via set_curr_task), since update_curr() (in the
3599         * enqueue of curr) will have resulted in resched being set.  This
3600         * prevents us from potentially nominating it as a false LAST_BUDDY
3601         * below.
3602         */
3603        if (test_tsk_need_resched(curr))
3604                return;
3605
3606        /* Idle tasks are by definition preempted by non-idle tasks. */
3607        if (unlikely(curr->policy == SCHED_IDLE) &&
3608            likely(p->policy != SCHED_IDLE))
3609                goto preempt;
3610
3611        /*
3612         * Batch and idle tasks do not preempt non-idle tasks (their preemption
3613         * is driven by the tick):
3614         */
3615        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3616                return;
3617
3618        find_matching_se(&se, &pse);
3619        update_curr(cfs_rq_of(se));
3620        BUG_ON(!pse);
3621        if (wakeup_preempt_entity(se, pse) == 1) {
3622                /*
3623                 * Bias pick_next to pick the sched entity that is
3624                 * triggering this preemption.
3625                 */
3626                if (!next_buddy_marked)
3627                        set_next_buddy(pse);
3628                goto preempt;
3629        }
3630
3631        return;
3632
3633preempt:
3634        resched_task(curr);
3635        /*
3636         * Only set the backward buddy when the current task is still
3637         * on the rq. This can happen when a wakeup gets interleaved
3638         * with schedule on the ->pre_schedule() or idle_balance()
3639         * point, either of which can * drop the rq lock.
3640         *
3641         * Also, during early boot the idle thread is in the fair class,
3642         * for obvious reasons its a bad idea to schedule back to it.
3643         */
3644        if (unlikely(!se->on_rq || curr == rq->idle))
3645                return;
3646
3647        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3648                set_last_buddy(se);
3649}
3650
3651static struct task_struct *pick_next_task_fair(struct rq *rq)
3652{
3653        struct task_struct *p;
3654        struct cfs_rq *cfs_rq = &rq->cfs;
3655        struct sched_entity *se;
3656
3657        if (!cfs_rq->nr_running)
3658                return NULL;
3659
3660        do {
3661                se = pick_next_entity(cfs_rq);
3662                set_next_entity(cfs_rq, se);
3663                cfs_rq = group_cfs_rq(se);
3664        } while (cfs_rq);
3665
3666        p = task_of(se);
3667        if (hrtick_enabled(rq))
3668                hrtick_start_fair(rq, p);
3669
3670        return p;
3671}
3672
3673/*
3674 * Account for a descheduled task:
3675 */
3676static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3677{
3678        struct sched_entity *se = &prev->se;
3679        struct cfs_rq *cfs_rq;
3680
3681        for_each_sched_entity(se) {
3682                cfs_rq = cfs_rq_of(se);
3683                put_prev_entity(cfs_rq, se);
3684        }
3685}
3686
3687/*
3688 * sched_yield() is very simple
3689 *
3690 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3691 */
3692static void yield_task_fair(struct rq *rq)
3693{
3694        struct task_struct *curr = rq->curr;
3695        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3696        struct sched_entity *se = &curr->se;
3697
3698        /*
3699         * Are we the only task in the tree?
3700         */
3701        if (unlikely(rq->nr_running == 1))
3702                return;
3703
3704        clear_buddies(cfs_rq, se);
3705
3706        if (curr->policy != SCHED_BATCH) {
3707                update_rq_clock(rq);
3708                /*
3709                 * Update run-time statistics of the 'current'.
3710                 */
3711                update_curr(cfs_rq);
3712                /*
3713                 * Tell update_rq_clock() that we've just updated,
3714                 * so we don't do microscopic update in schedule()
3715                 * and double the fastpath cost.
3716                 */
3717                 rq->skip_clock_update = 1;
3718        }
3719
3720        set_skip_buddy(se);
3721}
3722
3723static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3724{
3725        struct sched_entity *se = &p->se;
3726
3727        /* throttled hierarchies are not runnable */
3728        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3729                return false;
3730
3731        /* Tell the scheduler that we'd really like pse to run next. */
3732        set_next_buddy(se);
3733
3734        yield_task_fair(rq);
3735
3736        return true;
3737}
3738
3739#ifdef CONFIG_SMP
3740/**************************************************
3741 * Fair scheduling class load-balancing methods.
3742 *
3743 * BASICS
3744 *
3745 * The purpose of load-balancing is to achieve the same basic fairness the
3746 * per-cpu scheduler provides, namely provide a proportional amount of compute
3747 * time to each task. This is expressed in the following equation:
3748 *
3749 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
3750 *
3751 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3752 * W_i,0 is defined as:
3753 *
3754 *   W_i,0 = \Sum_j w_i,j                                             (2)
3755 *
3756 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3757 * is derived from the nice value as per prio_to_weight[].
3758 *
3759 * The weight average is an exponential decay average of the instantaneous
3760 * weight:
3761 *
3762 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
3763 *
3764 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3765 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3766 * can also include other factors [XXX].
3767 *
3768 * To achieve this balance we define a measure of imbalance which follows
3769 * directly from (1):
3770 *
3771 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
3772 *
3773 * We them move tasks around to minimize the imbalance. In the continuous
3774 * function space it is obvious this converges, in the discrete case we get
3775 * a few fun cases generally called infeasible weight scenarios.
3776 *
3777 * [XXX expand on:
3778 *     - infeasible weights;
3779 *     - local vs global optima in the discrete case. ]
3780 *
3781 *
3782 * SCHED DOMAINS
3783 *
3784 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3785 * for all i,j solution, we create a tree of cpus that follows the hardware
3786 * topology where each level pairs two lower groups (or better). This results
3787 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3788 * tree to only the first of the previous level and we decrease the frequency
3789 * of load-balance at each level inv. proportional to the number of cpus in
3790 * the groups.
3791 *
3792 * This yields:
3793 *
3794 *     log_2 n     1     n
3795 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
3796 *     i = 0      2^i   2^i
3797 *                               `- size of each group
3798 *         |         |     `- number of cpus doing load-balance
3799 *         |         `- freq
3800 *         `- sum over all levels
3801 *
3802 * Coupled with a limit on how many tasks we can migrate every balance pass,
3803 * this makes (5) the runtime complexity of the balancer.
3804 *
3805 * An important property here is that each CPU is still (indirectly) connected
3806 * to every other cpu in at most O(log n) steps:
3807 *
3808 * The adjacency matrix of the resulting graph is given by:
3809 *
3810 *             log_2 n     
3811 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
3812 *             k = 0
3813 *
3814 * And you'll find that:
3815 *
3816 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
3817 *
3818 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3819 * The task movement gives a factor of O(m), giving a convergence complexity
3820 * of:
3821 *
3822 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
3823 *
3824 *
3825 * WORK CONSERVING
3826 *
3827 * In order to avoid CPUs going idle while there's still work to do, new idle
3828 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3829 * tree itself instead of relying on other CPUs to bring it work.
3830 *
3831 * This adds some complexity to both (5) and (8) but it reduces the total idle
3832 * time.
3833 *
3834 * [XXX more?]
3835 *
3836 *
3837 * CGROUPS
3838 *
3839 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3840 *
3841 *                                s_k,i
3842 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
3843 *                                 S_k
3844 *
3845 * Where
3846 *
3847 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
3848 *
3849 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3850 *
3851 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3852 * property.
3853 *
3854 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3855 *      rewrite all of this once again.]
3856 */ 
3857
3858static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3859
3860#define LBF_ALL_PINNED  0x01
3861#define LBF_NEED_BREAK  0x02
3862#define LBF_SOME_PINNED 0x04
3863
3864struct lb_env {
3865        struct sched_domain     *sd;
3866
3867        struct rq               *src_rq;
3868        int                     src_cpu;
3869
3870        int                     dst_cpu;
3871        struct rq               *dst_rq;
3872
3873        struct cpumask          *dst_grpmask;
3874        int                     new_dst_cpu;
3875        enum cpu_idle_type      idle;
3876        long                    imbalance;
3877        /* The set of CPUs under consideration for load-balancing */
3878        struct cpumask          *cpus;
3879
3880        unsigned int            flags;
3881
3882        unsigned int            loop;
3883        unsigned int            loop_break;
3884        unsigned int            loop_max;
3885};
3886
3887/*
3888 * move_task - move a task from one runqueue to another runqueue.
3889 * Both runqueues must be locked.
3890 */
3891static void move_task(struct task_struct *p, struct lb_env *env)
3892{
3893        deactivate_task(env->src_rq, p, 0);
3894        set_task_cpu(p, env->dst_cpu);
3895        activate_task(env->dst_rq, p, 0);
3896        check_preempt_curr(env->dst_rq, p, 0);
3897}
3898
3899/*
3900 * Is this task likely cache-hot:
3901 */
3902static int
3903task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3904{
3905        s64 delta;
3906
3907        if (p->sched_class != &fair_sched_class)
3908                return 0;
3909
3910        if (unlikely(p->policy == SCHED_IDLE))
3911                return 0;
3912
3913        /*
3914         * Buddy candidates are cache hot:
3915         */
3916        if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3917                        (&p->se == cfs_rq_of(&p->se)->next ||
3918                         &p->se == cfs_rq_of(&p->se)->last))
3919                return 1;
3920
3921        if (sysctl_sched_migration_cost == -1)
3922                return 1;
3923        if (sysctl_sched_migration_cost == 0)
3924                return 0;
3925
3926        delta = now - p->se.exec_start;
3927
3928        return delta < (s64)sysctl_sched_migration_cost;
3929}
3930
3931/*
3932 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3933 */
3934static
3935int can_migrate_task(struct task_struct *p, struct lb_env *env)
3936{
3937        int tsk_cache_hot = 0;
3938        /*
3939         * We do not migrate tasks that are:
3940         * 1) throttled_lb_pair, or
3941         * 2) cannot be migrated to this CPU due to cpus_allowed, or
3942         * 3) running (obviously), or
3943         * 4) are cache-hot on their current CPU.
3944         */
3945        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3946                return 0;
3947
3948        if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3949                int cpu;
3950
3951                schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3952
3953                /*
3954                 * Remember if this task can be migrated to any other cpu in
3955                 * our sched_group. We may want to revisit it if we couldn't
3956                 * meet load balance goals by pulling other tasks on src_cpu.
3957                 *
3958                 * Also avoid computing new_dst_cpu if we have already computed
3959                 * one in current iteration.
3960                 */
3961                if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3962                        return 0;
3963
3964                /* Prevent to re-select dst_cpu via env's cpus */
3965                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3966                        if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3967                                env->flags |= LBF_SOME_PINNED;
3968                                env->new_dst_cpu = cpu;
3969                                break;
3970                        }
3971                }
3972
3973                return 0;
3974        }
3975
3976        /* Record that we found atleast one task that could run on dst_cpu */
3977        env->flags &= ~LBF_ALL_PINNED;
3978
3979        if (task_running(env->src_rq, p)) {
3980                schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3981                return 0;
3982        }
3983
3984        /*
3985         * Aggressive migration if:
3986         * 1) task is cache cold, or
3987         * 2) too many balance attempts have failed.
3988         */
3989
3990        tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
3991        if (!tsk_cache_hot ||
3992                env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3993
3994                if (tsk_cache_hot) {
3995                        schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3996                        schedstat_inc(p, se.statistics.nr_forced_migrations);
3997                }
3998
3999                return 1;
4000        }
4001
4002        schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4003        return 0;
4004}
4005
4006/*
4007 * move_one_task tries to move exactly one task from busiest to this_rq, as
4008 * part of active balancing operations within "domain".
4009 * Returns 1 if successful and 0 otherwise.
4010 *
4011 * Called with both runqueues locked.
4012 */
4013static int move_one_task(struct lb_env *env)
4014{
4015        struct task_struct *p, *n;
4016
4017        list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4018                if (!can_migrate_task(p, env))
4019                        continue;
4020
4021                move_task(p, env);
4022                /*
4023                 * Right now, this is only the second place move_task()
4024                 * is called, so we can safely collect move_task()
4025                 * stats here rather than inside move_task().
4026                 */
4027                schedstat_inc(env->sd, lb_gained[env->idle]);
4028                return 1;
4029        }
4030        return 0;
4031}
4032
4033static unsigned long task_h_load(struct task_struct *p);
4034
4035static const unsigned int sched_nr_migrate_break = 32;
4036
4037/*
4038 * move_tasks tries to move up to imbalance weighted load from busiest to
4039 * this_rq, as part of a balancing operation within domain "sd".
4040 * Returns 1 if successful and 0 otherwise.
4041 *
4042 * Called with both runqueues locked.
4043 */
4044static int move_tasks(struct lb_env *env)
4045{
4046        struct list_head *tasks = &env->src_rq->cfs_tasks;
4047        struct task_struct *p;
4048        unsigned long load;
4049        int pulled = 0;
4050
4051        if (env->imbalance <= 0)
4052                return 0;
4053
4054        while (!list_empty(tasks)) {
4055                p = list_first_entry(tasks, struct task_struct, se.group_node);
4056
4057                env->loop++;
4058                /* We've more or less seen every task there is, call it quits */
4059                if (env->loop > env->loop_max)
4060                        break;
4061
4062                /* take a breather every nr_migrate tasks */
4063                if (env->loop > env->loop_break) {
4064                        env->loop_break += sched_nr_migrate_break;
4065                        env->flags |= LBF_NEED_BREAK;
4066                        break;
4067                }
4068
4069                if (!can_migrate_task(p, env))
4070                        goto next;
4071
4072                load = task_h_load(p);
4073
4074                if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4075                        goto next;
4076
4077                if ((load / 2) > env->imbalance)
4078                        goto next;
4079
4080                move_task(p, env);
4081                pulled++;
4082                env->imbalance -= load;
4083
4084#ifdef CONFIG_PREEMPT
4085                /*
4086                 * NEWIDLE balancing is a source of latency, so preemptible
4087                 * kernels will stop after the first task is pulled to minimize
4088                 * the critical section.
4089                 */
4090                if (env->idle == CPU_NEWLY_IDLE)
4091                        break;
4092#endif
4093
4094                /*
4095                 * We only want to steal up to the prescribed amount of
4096                 * weighted load.
4097                 */
4098                if (env->imbalance <= 0)
4099                        break;
4100
4101                continue;
4102next:
4103                list_move_tail(&p->se.group_node, tasks);
4104        }
4105
4106        /*
4107         * Right now, this is one of only two places move_task() is called,
4108         * so we can safely collect move_task() stats here rather than
4109         * inside move_task().
4110         */
4111        schedstat_add(env->sd, lb_gained[env->idle], pulled);
4112
4113        return pulled;
4114}
4115
4116#ifdef CONFIG_FAIR_GROUP_SCHED
4117/*
4118 * update tg->load_weight by folding this cpu's load_avg
4119 */
4120static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4121{
4122        struct sched_entity *se = tg->se[cpu];
4123        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4124
4125        /* throttled entities do not contribute to load */
4126        if (throttled_hierarchy(cfs_rq))
4127                return;
4128
4129        update_cfs_rq_blocked_load(cfs_rq, 1);
4130
4131        if (se) {
4132                update_entity_load_avg(se, 1);
4133                /*
4134                 * We pivot on our runnable average having decayed to zero for
4135                 * list removal.  This generally implies that all our children
4136                 * have also been removed (modulo rounding error or bandwidth
4137                 * control); however, such cases are rare and we can fix these
4138                 * at enqueue.
4139                 *
4140                 * TODO: fix up out-of-order children on enqueue.
4141                 */
4142                if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4143                        list_del_leaf_cfs_rq(cfs_rq);
4144        } else {
4145                struct rq *rq = rq_of(cfs_rq);
4146                update_rq_runnable_avg(rq, rq->nr_running);
4147        }
4148}
4149
4150static void update_blocked_averages(int cpu)
4151{
4152        struct rq *rq = cpu_rq(cpu);
4153        struct cfs_rq *cfs_rq;
4154        unsigned long flags;
4155
4156        raw_spin_lock_irqsave(&rq->lock, flags);
4157        update_rq_clock(rq);
4158        /*
4159         * Iterates the task_group tree in a bottom up fashion, see
4160         * list_add_leaf_cfs_rq() for details.
4161         */
4162        for_each_leaf_cfs_rq(rq, cfs_rq) {
4163                /*
4164                 * Note: We may want to consider periodically releasing
4165                 * rq->lock about these updates so that creating many task
4166                 * groups does not result in continually extending hold time.
4167                 */
4168                __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4169        }
4170
4171        raw_spin_unlock_irqrestore(&rq->lock, flags);
4172}
4173
4174/*
4175 * Compute the cpu's hierarchical load factor for each task group.
4176 * This needs to be done in a top-down fashion because the load of a child
4177 * group is a fraction of its parents load.
4178 */
4179static int tg_load_down(struct task_group *tg, void *data)
4180{
4181        unsigned long load;
4182        long cpu = (long)data;
4183
4184        if (!tg->parent) {
4185                load = cpu_rq(cpu)->avg.load_avg_contrib;
4186        } else {
4187                load = tg->parent->cfs_rq[cpu]->h_load;
4188                load = div64_ul(load * tg->se[cpu]->avg.load_avg_contrib,
4189                                tg->parent->cfs_rq[cpu]->runnable_load_avg + 1);
4190        }
4191
4192        tg->cfs_rq[cpu]->h_load = load;
4193
4194        return 0;
4195}
4196
4197static void update_h_load(long cpu)
4198{
4199        struct rq *rq = cpu_rq(cpu);
4200        unsigned long now = jiffies;
4201
4202        if (rq->h_load_throttle == now)
4203                return;
4204
4205        rq->h_load_throttle = now;
4206
4207        rcu_read_lock();
4208        walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4209        rcu_read_unlock();
4210}
4211
4212static unsigned long task_h_load(struct task_struct *p)
4213{
4214        struct cfs_rq *cfs_rq = task_cfs_rq(p);
4215
4216        return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4217                        cfs_rq->runnable_load_avg + 1);
4218}
4219#else
4220static inline void update_blocked_averages(int cpu)
4221{
4222}
4223
4224static inline void update_h_load(long cpu)
4225{
4226}
4227
4228static unsigned long task_h_load(struct task_struct *p)
4229{
4230        return p->se.avg.load_avg_contrib;
4231}
4232#endif
4233
4234/********** Helpers for find_busiest_group ************************/
4235/*
4236 * sd_lb_stats - Structure to store the statistics of a sched_domain
4237 *              during load balancing.
4238 */
4239struct sd_lb_stats {
4240        struct sched_group *busiest; /* Busiest group in this sd */
4241        struct sched_group *this;  /* Local group in this sd */
4242        unsigned long total_load;  /* Total load of all groups in sd */
4243        unsigned long total_pwr;   /*   Total power of all groups in sd */
4244        unsigned long avg_load;    /* Average load across all groups in sd */
4245
4246        /** Statistics of this group */
4247        unsigned long this_load;
4248        unsigned long this_load_per_task;
4249        unsigned long this_nr_running;
4250        unsigned long this_has_capacity;
4251        unsigned int  this_idle_cpus;
4252
4253        /* Statistics of the busiest group */
4254        unsigned int  busiest_idle_cpus;
4255        unsigned long max_load;
4256        unsigned long busiest_load_per_task;
4257        unsigned long busiest_nr_running;
4258        unsigned long busiest_group_capacity;
4259        unsigned long busiest_has_capacity;
4260        unsigned int  busiest_group_weight;
4261
4262        int group_imb; /* Is there imbalance in this sd */
4263};
4264
4265/*
4266 * sg_lb_stats - stats of a sched_group required for load_balancing
4267 */
4268struct sg_lb_stats {
4269        unsigned long avg_load; /*Avg load across the CPUs of the group */
4270        unsigned long group_load; /* Total load over the CPUs of the group */
4271        unsigned long sum_nr_running; /* Nr tasks running in the group */
4272        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4273        unsigned long group_capacity;
4274        unsigned long idle_cpus;
4275        unsigned long group_weight;
4276        int group_imb; /* Is there an imbalance in the group ? */
4277        int group_has_capacity; /* Is there extra capacity in the group? */
4278};
4279
4280/**
4281 * get_sd_load_idx - Obtain the load index for a given sched domain.
4282 * @sd: The sched_domain whose load_idx is to be obtained.
4283 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4284 *
4285 * Return: The load index.
4286 */
4287static inline int get_sd_load_idx(struct sched_domain *sd,
4288                                        enum cpu_idle_type idle)
4289{
4290        int load_idx;
4291
4292        switch (idle) {
4293        case CPU_NOT_IDLE:
4294                load_idx = sd->busy_idx;
4295                break;
4296
4297        case CPU_NEWLY_IDLE:
4298                load_idx = sd->newidle_idx;
4299                break;
4300        default:
4301                load_idx = sd->idle_idx;
4302                break;
4303        }
4304
4305        return load_idx;
4306}
4307
4308static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4309{
4310        return SCHED_POWER_SCALE;
4311}
4312
4313unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4314{
4315        return default_scale_freq_power(sd, cpu);
4316}
4317
4318static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4319{
4320        unsigned long weight = sd->span_weight;
4321        unsigned long smt_gain = sd->smt_gain;
4322
4323        smt_gain /= weight;
4324
4325        return smt_gain;
4326}
4327
4328unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4329{
4330        return default_scale_smt_power(sd, cpu);
4331}
4332
4333static unsigned long scale_rt_power(int cpu)
4334{
4335        struct rq *rq = cpu_rq(cpu);
4336        u64 total, available, age_stamp, avg;
4337
4338        /*
4339         * Since we're reading these variables without serialization make sure
4340         * we read them once before doing sanity checks on them.
4341         */
4342        age_stamp = ACCESS_ONCE(rq->age_stamp);
4343        avg = ACCESS_ONCE(rq->rt_avg);
4344
4345        total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4346
4347        if (unlikely(total < avg)) {
4348                /* Ensures that power won't end up being negative */
4349                available = 0;
4350        } else {
4351                available = total - avg;
4352        }
4353
4354        if (unlikely((s64)total < SCHED_POWER_SCALE))
4355                total = SCHED_POWER_SCALE;
4356
4357        total >>= SCHED_POWER_SHIFT;
4358
4359        return div_u64(available, total);
4360}
4361
4362static void update_cpu_power(struct sched_domain *sd, int cpu)
4363{
4364        unsigned long weight = sd->span_weight;
4365        unsigned long power = SCHED_POWER_SCALE;
4366        struct sched_group *sdg = sd->groups;
4367
4368        if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4369                if (sched_feat(ARCH_POWER))
4370                        power *= arch_scale_smt_power(sd, cpu);
4371                else
4372                        power *= default_scale_smt_power(sd, cpu);
4373
4374                power >>= SCHED_POWER_SHIFT;
4375        }
4376
4377        sdg->sgp->power_orig = power;
4378
4379        if (sched_feat(ARCH_POWER))
4380                power *= arch_scale_freq_power(sd, cpu);
4381        else
4382                power *= default_scale_freq_power(sd, cpu);
4383
4384        power >>= SCHED_POWER_SHIFT;
4385
4386        power *= scale_rt_power(cpu);
4387        power >>= SCHED_POWER_SHIFT;
4388
4389        if (!power)
4390                power = 1;
4391
4392        cpu_rq(cpu)->cpu_power = power;
4393        sdg->sgp->power = power;
4394}
4395
4396void update_group_power(struct sched_domain *sd, int cpu)
4397{
4398        struct sched_domain *child = sd->child;
4399        struct sched_group *group, *sdg = sd->groups;
4400        unsigned long power;
4401        unsigned long interval;
4402
4403        interval = msecs_to_jiffies(sd->balance_interval);
4404        interval = clamp(interval, 1UL, max_load_balance_interval);
4405        sdg->sgp->next_update = jiffies + interval;
4406
4407        if (!child) {
4408                update_cpu_power(sd, cpu);
4409                return;
4410        }
4411
4412        power = 0;
4413
4414        if (child->flags & SD_OVERLAP) {
4415                /*
4416                 * SD_OVERLAP domains cannot assume that child groups
4417                 * span the current group.
4418                 */
4419
4420                for_each_cpu(cpu, sched_group_cpus(sdg))
4421                        power += power_of(cpu);
4422        } else  {
4423                /*
4424                 * !SD_OVERLAP domains can assume that child groups
4425                 * span the current group.
4426                 */ 
4427
4428                group = child->groups;
4429                do {
4430                        power += group->sgp->power;
4431                        group = group->next;
4432                } while (group != child->groups);
4433        }
4434
4435        sdg->sgp->power_orig = sdg->sgp->power = power;
4436}
4437
4438/*
4439 * Try and fix up capacity for tiny siblings, this is needed when
4440 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4441 * which on its own isn't powerful enough.
4442 *
4443 * See update_sd_pick_busiest() and check_asym_packing().
4444 */
4445static inline int
4446fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4447{
4448        /*
4449         * Only siblings can have significantly less than SCHED_POWER_SCALE
4450         */
4451        if (!(sd->flags & SD_SHARE_CPUPOWER))
4452                return 0;
4453
4454        /*
4455         * If ~90% of the cpu_power is still there, we're good.
4456         */
4457        if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4458                return 1;
4459
4460        return 0;
4461}
4462
4463/**
4464 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4465 * @env: The load balancing environment.
4466 * @group: sched_group whose statistics are to be updated.
4467 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4468 * @local_group: Does group contain this_cpu.
4469 * @balance: Should we balance.
4470 * @sgs: variable to hold the statistics for this group.
4471 */
4472static inline void update_sg_lb_stats(struct lb_env *env,
4473                        struct sched_group *group, int load_idx,
4474                        int local_group, int *balance, struct sg_lb_stats *sgs)
4475{
4476        unsigned long nr_running, max_nr_running, min_nr_running;
4477        unsigned long load, max_cpu_load, min_cpu_load;
4478        unsigned int balance_cpu = -1, first_idle_cpu = 0;
4479        unsigned long avg_load_per_task = 0;
4480        int i;
4481
4482        if (local_group)
4483                balance_cpu = group_balance_cpu(group);
4484
4485        /* Tally up the load of all CPUs in the group */
4486        max_cpu_load = 0;
4487        min_cpu_load = ~0UL;
4488        max_nr_running = 0;
4489        min_nr_running = ~0UL;
4490
4491        for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4492                struct rq *rq = cpu_rq(i);
4493
4494                nr_running = rq->nr_running;
4495
4496                /* Bias balancing toward cpus of our domain */
4497                if (local_group) {
4498                        if (idle_cpu(i) && !first_idle_cpu &&
4499                                        cpumask_test_cpu(i, sched_group_mask(group))) {
4500                                first_idle_cpu = 1;
4501                                balance_cpu = i;
4502                        }
4503
4504                        load = target_load(i, load_idx);
4505                } else {
4506                        load = source_load(i, load_idx);
4507                        if (load > max_cpu_load)
4508                                max_cpu_load = load;
4509                        if (min_cpu_load > load)
4510                                min_cpu_load = load;
4511
4512                        if (nr_running > max_nr_running)
4513                                max_nr_running = nr_running;
4514                        if (min_nr_running > nr_running)
4515                                min_nr_running = nr_running;
4516                }
4517
4518                sgs->group_load += load;
4519                sgs->sum_nr_running += nr_running;
4520                sgs->sum_weighted_load += weighted_cpuload(i);
4521                if (idle_cpu(i))
4522                        sgs->idle_cpus++;
4523        }
4524
4525        /*
4526         * First idle cpu or the first cpu(busiest) in this sched group
4527         * is eligible for doing load balancing at this and above
4528         * domains. In the newly idle case, we will allow all the cpu's
4529         * to do the newly idle load balance.
4530         */
4531        if (local_group) {
4532                if (env->idle != CPU_NEWLY_IDLE) {
4533                        if (balance_cpu != env->dst_cpu) {
4534                                *balance = 0;
4535                                return;
4536                        }
4537                        update_group_power(env->sd, env->dst_cpu);
4538                } else if (time_after_eq(jiffies, group->sgp->next_update))
4539                        update_group_power(env->sd, env->dst_cpu);
4540        }
4541
4542        /* Adjust by relative CPU power of the group */
4543        sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4544
4545        /*
4546         * Consider the group unbalanced when the imbalance is larger
4547         * than the average weight of a task.
4548         *
4549         * APZ: with cgroup the avg task weight can vary wildly and
4550         *      might not be a suitable number - should we keep a
4551         *      normalized nr_running number somewhere that negates
4552         *      the hierarchy?
4553         */
4554        if (sgs->sum_nr_running)
4555                avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4556
4557        if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4558            (max_nr_running - min_nr_running) > 1)
4559                sgs->group_imb = 1;
4560
4561        sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4562                                                SCHED_POWER_SCALE);
4563        if (!sgs->group_capacity)
4564                sgs->group_capacity = fix_small_capacity(env->sd, group);
4565        sgs->group_weight = group->group_weight;
4566
4567        if (sgs->group_capacity > sgs->sum_nr_running)
4568                sgs->group_has_capacity = 1;
4569}
4570
4571/**
4572 * update_sd_pick_busiest - return 1 on busiest group
4573 * @env: The load balancing environment.
4574 * @sds: sched_domain statistics
4575 * @sg: sched_group candidate to be checked for being the busiest
4576 * @sgs: sched_group statistics
4577 *
4578 * Determine if @sg is a busier group than the previously selected
4579 * busiest group.
4580 *
4581 * Return: %true if @sg is a busier group than the previously selected
4582 * busiest group. %false otherwise.
4583 */
4584static bool update_sd_pick_busiest(struct lb_env *env,
4585                                   struct sd_lb_stats *sds,
4586                                   struct sched_group *sg,
4587                                   struct sg_lb_stats *sgs)
4588{
4589        if (sgs->avg_load <= sds->max_load)
4590                return false;
4591
4592        if (sgs->sum_nr_running > sgs->group_capacity)
4593                return true;
4594
4595        if (sgs->group_imb)
4596                return true;
4597
4598        /*
4599         * ASYM_PACKING needs to move all the work to the lowest
4600         * numbered CPUs in the group, therefore mark all groups
4601         * higher than ourself as busy.
4602         */
4603        if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4604            env->dst_cpu < group_first_cpu(sg)) {
4605                if (!sds->busiest)
4606                        return true;
4607
4608                if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4609                        return true;
4610        }
4611
4612        return false;
4613}
4614
4615/**
4616 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4617 * @env: The load balancing environment.
4618 * @balance: Should we balance.
4619 * @sds: variable to hold the statistics for this sched_domain.
4620 */
4621static inline void update_sd_lb_stats(struct lb_env *env,
4622                                        int *balance, struct sd_lb_stats *sds)
4623{
4624        struct sched_domain *child = env->sd->child;
4625        struct sched_group *sg = env->sd->groups;
4626        struct sg_lb_stats sgs;
4627        int load_idx, prefer_sibling = 0;
4628
4629        if (child && child->flags & SD_PREFER_SIBLING)
4630                prefer_sibling = 1;
4631
4632        load_idx = get_sd_load_idx(env->sd, env->idle);
4633
4634        do {
4635                int local_group;
4636
4637                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4638                memset(&sgs, 0, sizeof(sgs));
4639                update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4640
4641                if (local_group && !(*balance))
4642                        return;
4643
4644                sds->total_load += sgs.group_load;
4645                sds->total_pwr += sg->sgp->power;
4646
4647                /*
4648                 * In case the child domain prefers tasks go to siblings
4649                 * first, lower the sg capacity to one so that we'll try
4650                 * and move all the excess tasks away. We lower the capacity
4651                 * of a group only if the local group has the capacity to fit
4652                 * these excess tasks, i.e. nr_running < group_capacity. The
4653                 * extra check prevents the case where you always pull from the
4654                 * heaviest group when it is already under-utilized (possible
4655                 * with a large weight task outweighs the tasks on the system).
4656                 */
4657                if (prefer_sibling && !local_group && sds->this_has_capacity)
4658                        sgs.group_capacity = min(sgs.group_capacity, 1UL);
4659
4660                if (local_group) {
4661                        sds->this_load = sgs.avg_load;
4662                        sds->this = sg;
4663                        sds->this_nr_running = sgs.sum_nr_running;
4664                        sds->this_load_per_task = sgs.sum_weighted_load;
4665                        sds->this_has_capacity = sgs.group_has_capacity;
4666                        sds->this_idle_cpus = sgs.idle_cpus;
4667                } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4668                        sds->max_load = sgs.avg_load;
4669                        sds->busiest = sg;
4670                        sds->busiest_nr_running = sgs.sum_nr_running;
4671                        sds->busiest_idle_cpus = sgs.idle_cpus;
4672                        sds->busiest_group_capacity = sgs.group_capacity;
4673                        sds->busiest_load_per_task = sgs.sum_weighted_load;
4674                        sds->busiest_has_capacity = sgs.group_has_capacity;
4675                        sds->busiest_group_weight = sgs.group_weight;
4676                        sds->group_imb = sgs.group_imb;
4677                }
4678
4679                sg = sg->next;
4680        } while (sg != env->sd->groups);
4681}
4682
4683/**
4684 * check_asym_packing - Check to see if the group is packed into the
4685 *                      sched doman.
4686 *
4687 * This is primarily intended to used at the sibling level.  Some
4688 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
4689 * case of POWER7, it can move to lower SMT modes only when higher
4690 * threads are idle.  When in lower SMT modes, the threads will
4691 * perform better since they share less core resources.  Hence when we
4692 * have idle threads, we want them to be the higher ones.
4693 *
4694 * This packing function is run on idle threads.  It checks to see if
4695 * the busiest CPU in this domain (core in the P7 case) has a higher
4696 * CPU number than the packing function is being run on.  Here we are
4697 * assuming lower CPU number will be equivalent to lower a SMT thread
4698 * number.
4699 *
4700 * Return: 1 when packing is required and a task should be moved to
4701 * this CPU.  The amount of the imbalance is returned in *imbalance.
4702 *
4703 * @env: The load balancing environment.
4704 * @sds: Statistics of the sched_domain which is to be packed
4705 */
4706static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4707{
4708        int busiest_cpu;
4709
4710        if (!(env->sd->flags & SD_ASYM_PACKING))
4711                return 0;
4712
4713        if (!sds->busiest)
4714                return 0;
4715
4716        busiest_cpu = group_first_cpu(sds->busiest);
4717        if (env->dst_cpu > busiest_cpu)
4718                return 0;
4719
4720        env->imbalance = DIV_ROUND_CLOSEST(
4721                sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4722
4723        return 1;
4724}
4725
4726/**
4727 * fix_small_imbalance - Calculate the minor imbalance that exists
4728 *                      amongst the groups of a sched_domain, during
4729 *                      load balancing.
4730 * @env: The load balancing environment.
4731 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4732 */
4733static inline
4734void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4735{
4736        unsigned long tmp, pwr_now = 0, pwr_move = 0;
4737        unsigned int imbn = 2;
4738        unsigned long scaled_busy_load_per_task;
4739
4740        if (sds->this_nr_running) {
4741                sds->this_load_per_task /= sds->this_nr_running;
4742                if (sds->busiest_load_per_task >
4743                                sds->this_load_per_task)
4744                        imbn = 1;
4745        } else {
4746                sds->this_load_per_task =
4747                        cpu_avg_load_per_task(env->dst_cpu);
4748        }
4749
4750        scaled_busy_load_per_task = sds->busiest_load_per_task
4751                                         * SCHED_POWER_SCALE;
4752        scaled_busy_load_per_task /= sds->busiest->sgp->power;
4753
4754        if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4755                        (scaled_busy_load_per_task * imbn)) {
4756                env->imbalance = sds->busiest_load_per_task;
4757                return;
4758        }
4759
4760        /*
4761         * OK, we don't have enough imbalance to justify moving tasks,
4762         * however we may be able to increase total CPU power used by
4763         * moving them.
4764         */
4765
4766        pwr_now += sds->busiest->sgp->power *
4767                        min(sds->busiest_load_per_task, sds->max_load);
4768        pwr_now += sds->this->sgp->power *
4769                        min(sds->this_load_per_task, sds->this_load);
4770        pwr_now /= SCHED_POWER_SCALE;
4771
4772        /* Amount of load we'd subtract */
4773        tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4774                sds->busiest->sgp->power;
4775        if (sds->max_load > tmp)
4776                pwr_move += sds->busiest->sgp->power *
4777                        min(sds->busiest_load_per_task, sds->max_load - tmp);
4778
4779        /* Amount of load we'd add */
4780        if (sds->max_load * sds->busiest->sgp->power <
4781                sds->busiest_load_per_task * SCHED_POWER_SCALE)
4782                tmp = (sds->max_load * sds->busiest->sgp->power) /
4783                        sds->this->sgp->power;
4784        else
4785                tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4786                        sds->this->sgp->power;
4787        pwr_move += sds->this->sgp->power *
4788                        min(sds->this_load_per_task, sds->this_load + tmp);
4789        pwr_move /= SCHED_POWER_SCALE;
4790
4791        /* Move if we gain throughput */
4792        if (pwr_move > pwr_now)
4793                env->imbalance = sds->busiest_load_per_task;
4794}
4795
4796/**
4797 * calculate_imbalance - Calculate the amount of imbalance present within the
4798 *                       groups of a given sched_domain during load balance.
4799 * @env: load balance environment
4800 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4801 */
4802static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4803{
4804        unsigned long max_pull, load_above_capacity = ~0UL;
4805
4806        sds->busiest_load_per_task /= sds->busiest_nr_running;
4807        if (sds->group_imb) {
4808                sds->busiest_load_per_task =
4809                        min(sds->busiest_load_per_task, sds->avg_load);
4810        }
4811
4812        /*
4813         * In the presence of smp nice balancing, certain scenarios can have
4814         * max load less than avg load(as we skip the groups at or below
4815         * its cpu_power, while calculating max_load..)
4816         */
4817        if (sds->max_load < sds->avg_load) {
4818                env->imbalance = 0;
4819                return fix_small_imbalance(env, sds);
4820        }
4821
4822        if (!sds->group_imb) {
4823                /*
4824                 * Don't want to pull so many tasks that a group would go idle.
4825                 */
4826                load_above_capacity = (sds->busiest_nr_running -
4827                                                sds->busiest_group_capacity);
4828
4829                load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4830
4831                load_above_capacity /= sds->busiest->sgp->power;
4832        }
4833
4834        /*
4835         * We're trying to get all the cpus to the average_load, so we don't
4836         * want to push ourselves above the average load, nor do we wish to
4837         * reduce the max loaded cpu below the average load. At the same time,
4838         * we also don't want to reduce the group load below the group capacity
4839         * (so that we can implement power-savings policies etc). Thus we look
4840         * for the minimum possible imbalance.
4841         * Be careful of negative numbers as they'll appear as very large values
4842         * with unsigned longs.
4843         */
4844        max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4845
4846        /* How much load to actually move to equalise the imbalance */
4847        env->imbalance = min(max_pull * sds->busiest->sgp->power,
4848                (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4849                        / SCHED_POWER_SCALE;
4850
4851        /*
4852         * if *imbalance is less than the average load per runnable task
4853         * there is no guarantee that any tasks will be moved so we'll have
4854         * a think about bumping its value to force at least one task to be
4855         * moved
4856         */
4857        if (env->imbalance < sds->busiest_load_per_task)
4858                return fix_small_imbalance(env, sds);
4859
4860}
4861
4862/******* find_busiest_group() helpers end here *********************/
4863
4864/**
4865 * find_busiest_group - Returns the busiest group within the sched_domain
4866 * if there is an imbalance. If there isn't an imbalance, and
4867 * the user has opted for power-savings, it returns a group whose
4868 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4869 * such a group exists.
4870 *
4871 * Also calculates the amount of weighted load which should be moved
4872 * to restore balance.
4873 *
4874 * @env: The load balancing environment.
4875 * @balance: Pointer to a variable indicating if this_cpu
4876 *      is the appropriate cpu to perform load balancing at this_level.
4877 *
4878 * Return:      - The busiest group if imbalance exists.
4879 *              - If no imbalance and user has opted for power-savings balance,
4880 *                 return the least loaded group whose CPUs can be
4881 *                 put to idle by rebalancing its tasks onto our group.
4882 */
4883static struct sched_group *
4884find_busiest_group(struct lb_env *env, int *balance)
4885{
4886        struct sd_lb_stats sds;
4887
4888        memset(&sds, 0, sizeof(sds));
4889
4890        /*
4891         * Compute the various statistics relavent for load balancing at
4892         * this level.
4893         */
4894        update_sd_lb_stats(env, balance, &sds);
4895
4896        /*
4897         * this_cpu is not the appropriate cpu to perform load balancing at
4898         * this level.
4899         */
4900        if (!(*balance))
4901                goto ret;
4902
4903        if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4904            check_asym_packing(env, &sds))
4905                return sds.busiest;
4906
4907        /* There is no busy sibling group to pull tasks from */
4908        if (!sds.busiest || sds.busiest_nr_running == 0)
4909                goto out_balanced;
4910
4911        sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4912
4913        /*
4914         * If the busiest group is imbalanced the below checks don't
4915         * work because they assumes all things are equal, which typically
4916         * isn't true due to cpus_allowed constraints and the like.
4917         */
4918        if (sds.group_imb)
4919                goto force_balance;
4920
4921        /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4922        if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4923                        !sds.busiest_has_capacity)
4924                goto force_balance;
4925
4926        /*
4927         * If the local group is more busy than the selected busiest group
4928         * don't try and pull any tasks.
4929         */
4930        if (sds.this_load >= sds.max_load)
4931                goto out_balanced;
4932
4933        /*
4934         * Don't pull any tasks if this group is already above the domain
4935         * average load.
4936         */
4937        if (sds.this_load >= sds.avg_load)
4938                goto out_balanced;
4939
4940        if (env->idle == CPU_IDLE) {
4941                /*
4942                 * This cpu is idle. If the busiest group load doesn't
4943                 * have more tasks than the number of available cpu's and
4944                 * there is no imbalance between this and busiest group
4945                 * wrt to idle cpu's, it is balanced.
4946                 */
4947                if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4948                    sds.busiest_nr_running <= sds.busiest_group_weight)
4949                        goto out_balanced;
4950        } else {
4951                /*
4952                 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4953                 * imbalance_pct to be conservative.
4954                 */
4955                if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4956                        goto out_balanced;
4957        }
4958
4959force_balance:
4960        /* Looks like there is an imbalance. Compute it */
4961        calculate_imbalance(env, &sds);
4962        return sds.busiest;
4963
4964out_balanced:
4965ret:
4966        env->imbalance = 0;
4967        return NULL;
4968}
4969
4970/*
4971 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4972 */
4973static struct rq *find_busiest_queue(struct lb_env *env,
4974                                     struct sched_group *group)
4975{
4976        struct rq *busiest = NULL, *rq;
4977        unsigned long max_load = 0;
4978        int i;
4979
4980        for_each_cpu(i, sched_group_cpus(group)) {
4981                unsigned long power = power_of(i);
4982                unsigned long capacity = DIV_ROUND_CLOSEST(power,
4983                                                           SCHED_POWER_SCALE);
4984                unsigned long wl;
4985
4986                if (!capacity)
4987                        capacity = fix_small_capacity(env->sd, group);
4988
4989                if (!cpumask_test_cpu(i, env->cpus))
4990                        continue;
4991
4992                rq = cpu_rq(i);
4993                wl = weighted_cpuload(i);
4994
4995                /*
4996                 * When comparing with imbalance, use weighted_cpuload()
4997                 * which is not scaled with the cpu power.
4998                 */
4999                if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5000                        continue;
5001
5002                /*
5003                 * For the load comparisons with the other cpu's, consider
5004                 * the weighted_cpuload() scaled with the cpu power, so that
5005                 * the load can be moved away from the cpu that is potentially
5006                 * running at a lower capacity.
5007                 */
5008                wl = (wl * SCHED_POWER_SCALE) / power;
5009
5010                if (wl > max_load) {
5011                        max_load = wl;
5012                        busiest = rq;
5013                }
5014        }
5015
5016        return busiest;
5017}
5018
5019/*
5020 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5021 * so long as it is large enough.
5022 */
5023#define MAX_PINNED_INTERVAL     512
5024
5025/* Working cpumask for load_balance and load_balance_newidle. */
5026DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5027
5028static int need_active_balance(struct lb_env *env)
5029{
5030        struct sched_domain *sd = env->sd;
5031
5032        if (env->idle == CPU_NEWLY_IDLE) {
5033
5034                /*
5035                 * ASYM_PACKING needs to force migrate tasks from busy but
5036                 * higher numbered CPUs in order to pack all tasks in the
5037                 * lowest numbered CPUs.
5038                 */
5039                if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5040                        return 1;
5041        }
5042
5043        return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5044}
5045
5046static int active_load_balance_cpu_stop(void *data);
5047
5048/*
5049 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5050 * tasks if there is an imbalance.
5051 */
5052static int load_balance(int this_cpu, struct rq *this_rq,
5053                        struct sched_domain *sd, enum cpu_idle_type idle,
5054                        int *balance)
5055{
5056        int ld_moved, cur_ld_moved, active_balance = 0;
5057        struct sched_group *group;
5058        struct rq *busiest;
5059        unsigned long flags;
5060        struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5061
5062        struct lb_env env = {
5063                .sd             = sd,
5064                .dst_cpu        = this_cpu,
5065                .dst_rq         = this_rq,
5066                .dst_grpmask    = sched_group_cpus(sd->groups),
5067                .idle           = idle,
5068                .loop_break     = sched_nr_migrate_break,
5069                .cpus           = cpus,
5070        };
5071
5072        /*
5073         * For NEWLY_IDLE load_balancing, we don't need to consider
5074         * other cpus in our group
5075         */
5076        if (idle == CPU_NEWLY_IDLE)
5077                env.dst_grpmask = NULL;
5078
5079        cpumask_copy(cpus, cpu_active_mask);
5080
5081        schedstat_inc(sd, lb_count[idle]);
5082
5083redo:
5084        group = find_busiest_group(&env, balance);
5085
5086        if (*balance == 0)
5087                goto out_balanced;
5088
5089        if (!group) {
5090                schedstat_inc(sd, lb_nobusyg[idle]);
5091                goto out_balanced;
5092        }
5093
5094        busiest = find_busiest_queue(&env, group);
5095        if (!busiest) {
5096                schedstat_inc(sd, lb_nobusyq[idle]);
5097                goto out_balanced;
5098        }
5099
5100        BUG_ON(busiest == env.dst_rq);
5101
5102        schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5103
5104        ld_moved = 0;
5105        if (busiest->nr_running > 1) {
5106                /*
5107                 * Attempt to move tasks. If find_busiest_group has found
5108                 * an imbalance but busiest->nr_running <= 1, the group is
5109                 * still unbalanced. ld_moved simply stays zero, so it is
5110                 * correctly treated as an imbalance.
5111                 */
5112                env.flags |= LBF_ALL_PINNED;
5113                env.src_cpu   = busiest->cpu;
5114                env.src_rq    = busiest;
5115                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
5116
5117                update_h_load(env.src_cpu);
5118more_balance:
5119                local_irq_save(flags);
5120                double_rq_lock(env.dst_rq, busiest);
5121
5122                /*
5123                 * cur_ld_moved - load moved in current iteration
5124                 * ld_moved     - cumulative load moved across iterations
5125                 */
5126                cur_ld_moved = move_tasks(&env);
5127                ld_moved += cur_ld_moved;
5128                double_rq_unlock(env.dst_rq, busiest);
5129                local_irq_restore(flags);
5130
5131                /*
5132                 * some other cpu did the load balance for us.
5133                 */
5134                if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5135                        resched_cpu(env.dst_cpu);
5136
5137                if (env.flags & LBF_NEED_BREAK) {
5138                        env.flags &= ~LBF_NEED_BREAK;
5139                        goto more_balance;
5140                }
5141
5142                /*
5143                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5144                 * us and move them to an alternate dst_cpu in our sched_group
5145                 * where they can run. The upper limit on how many times we
5146                 * iterate on same src_cpu is dependent on number of cpus in our
5147                 * sched_group.
5148                 *
5149                 * This changes load balance semantics a bit on who can move
5150                 * load to a given_cpu. In addition to the given_cpu itself
5151                 * (or a ilb_cpu acting on its behalf where given_cpu is
5152                 * nohz-idle), we now have balance_cpu in a position to move
5153                 * load to given_cpu. In rare situations, this may cause
5154                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5155                 * _independently_ and at _same_ time to move some load to
5156                 * given_cpu) causing exceess load to be moved to given_cpu.
5157                 * This however should not happen so much in practice and
5158                 * moreover subsequent load balance cycles should correct the
5159                 * excess load moved.
5160                 */
5161                if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5162
5163                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
5164                        env.dst_cpu      = env.new_dst_cpu;
5165                        env.flags       &= ~LBF_SOME_PINNED;
5166                        env.loop         = 0;
5167                        env.loop_break   = sched_nr_migrate_break;
5168
5169                        /* Prevent to re-select dst_cpu via env's cpus */
5170                        cpumask_clear_cpu(env.dst_cpu, env.cpus);
5171
5172                        /*
5173                         * Go back to "more_balance" rather than "redo" since we
5174                         * need to continue with same src_cpu.
5175                         */
5176                        goto more_balance;
5177                }
5178
5179                /* All tasks on this runqueue were pinned by CPU affinity */
5180                if (unlikely(env.flags & LBF_ALL_PINNED)) {
5181                        cpumask_clear_cpu(cpu_of(busiest), cpus);
5182                        if (!cpumask_empty(cpus)) {
5183                                env.loop = 0;
5184                                env.loop_break = sched_nr_migrate_break;
5185                                goto redo;
5186                        }
5187                        goto out_balanced;
5188                }
5189        }
5190
5191        if (!ld_moved) {
5192                schedstat_inc(sd, lb_failed[idle]);
5193                /*
5194                 * Increment the failure counter only on periodic balance.
5195                 * We do not want newidle balance, which can be very
5196                 * frequent, pollute the failure counter causing
5197                 * excessive cache_hot migrations and active balances.
5198                 */
5199                if (idle != CPU_NEWLY_IDLE)
5200                        sd->nr_balance_failed++;
5201
5202                if (need_active_balance(&env)) {
5203                        raw_spin_lock_irqsave(&busiest->lock, flags);
5204
5205                        /* don't kick the active_load_balance_cpu_stop,
5206                         * if the curr task on busiest cpu can't be
5207                         * moved to this_cpu
5208                         */
5209                        if (!cpumask_test_cpu(this_cpu,
5210                                        tsk_cpus_allowed(busiest->curr))) {
5211                                raw_spin_unlock_irqrestore(&busiest->lock,
5212                                                            flags);
5213                                env.flags |= LBF_ALL_PINNED;
5214                                goto out_one_pinned;
5215                        }
5216
5217                        /*
5218                         * ->active_balance synchronizes accesses to
5219                         * ->active_balance_work.  Once set, it's cleared
5220                         * only after active load balance is finished.
5221                         */
5222                        if (!busiest->active_balance) {
5223                                busiest->active_balance = 1;
5224                                busiest->push_cpu = this_cpu;
5225                                active_balance = 1;
5226                        }
5227                        raw_spin_unlock_irqrestore(&busiest->lock, flags);
5228
5229                        if (active_balance) {
5230                                stop_one_cpu_nowait(cpu_of(busiest),
5231                                        active_load_balance_cpu_stop, busiest,
5232                                        &busiest->active_balance_work);
5233                        }
5234
5235                        /*
5236                         * We've kicked active balancing, reset the failure
5237                         * counter.
5238                         */
5239                        sd->nr_balance_failed = sd->cache_nice_tries+1;
5240                }
5241        } else
5242                sd->nr_balance_failed = 0;
5243
5244        if (likely(!active_balance)) {
5245                /* We were unbalanced, so reset the balancing interval */
5246                sd->balance_interval = sd->min_interval;
5247        } else {
5248                /*
5249                 * If we've begun active balancing, start to back off. This
5250                 * case may not be covered by the all_pinned logic if there
5251                 * is only 1 task on the busy runqueue (because we don't call
5252                 * move_tasks).
5253                 */
5254                if (sd->balance_interval < sd->max_interval)
5255                        sd->balance_interval *= 2;
5256        }
5257
5258        goto out;
5259
5260out_balanced:
5261        schedstat_inc(sd, lb_balanced[idle]);
5262
5263        sd->nr_balance_failed = 0;
5264
5265out_one_pinned:
5266        /* tune up the balancing interval */
5267        if (((env.flags & LBF_ALL_PINNED) &&
5268                        sd->balance_interval < MAX_PINNED_INTERVAL) ||
5269                        (sd->balance_interval < sd->max_interval))
5270                sd->balance_interval *= 2;
5271
5272        ld_moved = 0;
5273out:
5274        return ld_moved;
5275}
5276
5277/*
5278 * idle_balance is called by schedule() if this_cpu is about to become
5279 * idle. Attempts to pull tasks from other CPUs.
5280 */
5281void idle_balance(int this_cpu, struct rq *this_rq)
5282{
5283        struct sched_domain *sd;
5284        int pulled_task = 0;
5285        unsigned long next_balance = jiffies + HZ;
5286
5287        this_rq->idle_stamp = rq_clock(this_rq);
5288
5289        if (this_rq->avg_idle < sysctl_sched_migration_cost)
5290                return;
5291
5292        /*
5293         * Drop the rq->lock, but keep IRQ/preempt disabled.
5294         */
5295        raw_spin_unlock(&this_rq->lock);
5296
5297        update_blocked_averages(this_cpu);
5298        rcu_read_lock();
5299        for_each_domain(this_cpu, sd) {
5300                unsigned long interval;
5301                int balance = 1;
5302
5303                if (!(sd->flags & SD_LOAD_BALANCE))
5304                        continue;
5305
5306                if (sd->flags & SD_BALANCE_NEWIDLE) {
5307                        /* If we've pulled tasks over stop searching: */
5308                        pulled_task = load_balance(this_cpu, this_rq,
5309                                                   sd, CPU_NEWLY_IDLE, &balance);
5310                }
5311
5312                interval = msecs_to_jiffies(sd->balance_interval);
5313                if (time_after(next_balance, sd->last_balance + interval))
5314                        next_balance = sd->last_balance + interval;
5315                if (pulled_task) {
5316                        this_rq->idle_stamp = 0;
5317                        break;
5318                }
5319        }
5320        rcu_read_unlock();
5321
5322        raw_spin_lock(&this_rq->lock);
5323
5324        if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5325                /*
5326                 * We are going idle. next_balance may be set based on
5327                 * a busy processor. So reset next_balance.
5328                 */
5329                this_rq->next_balance = next_balance;
5330        }
5331}
5332
5333/*
5334 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5335 * running tasks off the busiest CPU onto idle CPUs. It requires at
5336 * least 1 task to be running on each physical CPU where possible, and
5337 * avoids physical / logical imbalances.
5338 */
5339static int active_load_balance_cpu_stop(void *data)
5340{
5341        struct rq *busiest_rq = data;
5342        int busiest_cpu = cpu_of(busiest_rq);
5343        int target_cpu = busiest_rq->push_cpu;
5344        struct rq *target_rq = cpu_rq(target_cpu);
5345        struct sched_domain *sd;
5346
5347        raw_spin_lock_irq(&busiest_rq->lock);
5348
5349        /* make sure the requested cpu hasn't gone down in the meantime */
5350        if (unlikely(busiest_cpu != smp_processor_id() ||
5351                     !busiest_rq->active_balance))
5352                goto out_unlock;
5353
5354        /* Is there any task to move? */
5355        if (busiest_rq->nr_running <= 1)
5356                goto out_unlock;
5357
5358        /*
5359         * This condition is "impossible", if it occurs
5360         * we need to fix it. Originally reported by
5361         * Bjorn Helgaas on a 128-cpu setup.
5362         */
5363        BUG_ON(busiest_rq == target_rq);
5364
5365        /* move a task from busiest_rq to target_rq */
5366        double_lock_balance(busiest_rq, target_rq);
5367
5368        /* Search for an sd spanning us and the target CPU. */
5369        rcu_read_lock();
5370        for_each_domain(target_cpu, sd) {
5371                if ((sd->flags & SD_LOAD_BALANCE) &&
5372                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5373                                break;
5374        }
5375
5376        if (likely(sd)) {
5377                struct lb_env env = {
5378                        .sd             = sd,
5379                        .dst_cpu        = target_cpu,
5380                        .dst_rq         = target_rq,
5381                        .src_cpu        = busiest_rq->cpu,
5382                        .src_rq         = busiest_rq,
5383                        .idle           = CPU_IDLE,
5384                };
5385
5386                schedstat_inc(sd, alb_count);
5387
5388                if (move_one_task(&env))
5389                        schedstat_inc(sd, alb_pushed);
5390                else
5391                        schedstat_inc(sd, alb_failed);
5392        }
5393        rcu_read_unlock();
5394        double_unlock_balance(busiest_rq, target_rq);
5395out_unlock:
5396        busiest_rq->active_balance = 0;
5397        raw_spin_unlock_irq(&busiest_rq->lock);
5398        return 0;
5399}
5400
5401#ifdef CONFIG_NO_HZ_COMMON
5402/*
5403 * idle load balancing details
5404 * - When one of the busy CPUs notice that there may be an idle rebalancing
5405 *   needed, they will kick the idle load balancer, which then does idle
5406 *   load balancing for all the idle CPUs.
5407 */
5408static struct {
5409        cpumask_var_t idle_cpus_mask;
5410        atomic_t nr_cpus;
5411        unsigned long next_balance;     /* in jiffy units */
5412} nohz ____cacheline_aligned;
5413
5414static inline int find_new_ilb(int call_cpu)
5415{
5416        int ilb = cpumask_first(nohz.idle_cpus_mask);
5417
5418        if (ilb < nr_cpu_ids && idle_cpu(ilb))
5419                return ilb;
5420
5421        return nr_cpu_ids;
5422}
5423
5424/*
5425 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5426 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5427 * CPU (if there is one).
5428 */
5429static void nohz_balancer_kick(int cpu)
5430{
5431        int ilb_cpu;
5432
5433        nohz.next_balance++;
5434
5435        ilb_cpu = find_new_ilb(cpu);
5436
5437        if (ilb_cpu >= nr_cpu_ids)
5438                return;
5439
5440        if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5441                return;
5442        /*
5443         * Use smp_send_reschedule() instead of resched_cpu().
5444         * This way we generate a sched IPI on the target cpu which
5445         * is idle. And the softirq performing nohz idle load balance
5446         * will be run before returning from the IPI.
5447         */
5448        smp_send_reschedule(ilb_cpu);
5449        return;
5450}
5451
5452static inline void nohz_balance_exit_idle(int cpu)
5453{
5454        if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5455                cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5456                atomic_dec(&nohz.nr_cpus);
5457                clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5458        }
5459}
5460
5461static inline void set_cpu_sd_state_busy(void)
5462{
5463        struct sched_domain *sd;
5464
5465        rcu_read_lock();
5466        sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5467
5468        if (!sd || !sd->nohz_idle)
5469                goto unlock;
5470        sd->nohz_idle = 0;
5471
5472        for (; sd; sd = sd->parent)
5473                atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5474unlock:
5475        rcu_read_unlock();
5476}
5477
5478void set_cpu_sd_state_idle(void)
5479{
5480        struct sched_domain *sd;
5481
5482        rcu_read_lock();
5483        sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5484
5485        if (!sd || sd->nohz_idle)
5486                goto unlock;
5487        sd->nohz_idle = 1;
5488
5489        for (; sd; sd = sd->parent)
5490                atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5491unlock:
5492        rcu_read_unlock();
5493}
5494
5495/*
5496 * This routine will record that the cpu is going idle with tick stopped.
5497 * This info will be used in performing idle load balancing in the future.
5498 */
5499void nohz_balance_enter_idle(int cpu)
5500{
5501        /*
5502         * If this cpu is going down, then nothing needs to be done.
5503         */
5504        if (!cpu_active(cpu))
5505                return;
5506
5507        if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5508                return;
5509
5510        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5511        atomic_inc(&nohz.nr_cpus);
5512        set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5513}
5514
5515static int sched_ilb_notifier(struct notifier_block *nfb,
5516                                        unsigned long action, void *hcpu)
5517{
5518        switch (action & ~CPU_TASKS_FROZEN) {
5519        case CPU_DYING:
5520                nohz_balance_exit_idle(smp_processor_id());
5521                return NOTIFY_OK;
5522        default:
5523                return NOTIFY_DONE;
5524        }
5525}
5526#endif
5527
5528static DEFINE_SPINLOCK(balancing);
5529
5530/*
5531 * Scale the max load_balance interval with the number of CPUs in the system.
5532 * This trades load-balance latency on larger machines for less cross talk.
5533 */
5534void update_max_interval(void)
5535{
5536        max_load_balance_interval = HZ*num_online_cpus()/10;
5537}
5538
5539/*
5540 * It checks each scheduling domain to see if it is due to be balanced,
5541 * and initiates a balancing operation if so.
5542 *
5543 * Balancing parameters are set up in init_sched_domains.
5544 */
5545static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5546{
5547        int balance = 1;
5548        struct rq *rq = cpu_rq(cpu);
5549        unsigned long interval;
5550        struct sched_domain *sd;
5551        /* Earliest time when we have to do rebalance again */
5552        unsigned long next_balance = jiffies + 60*HZ;
5553        int update_next_balance = 0;
5554        int need_serialize;
5555
5556        update_blocked_averages(cpu);
5557
5558        rcu_read_lock();
5559        for_each_domain(cpu, sd) {
5560                if (!(sd->flags & SD_LOAD_BALANCE))
5561                        continue;
5562
5563                interval = sd->balance_interval;
5564                if (idle != CPU_IDLE)
5565                        interval *= sd->busy_factor;
5566
5567                /* scale ms to jiffies */
5568                interval = msecs_to_jiffies(interval);
5569                interval = clamp(interval, 1UL, max_load_balance_interval);
5570
5571                need_serialize = sd->flags & SD_SERIALIZE;
5572
5573                if (need_serialize) {
5574                        if (!spin_trylock(&balancing))
5575                                goto out;
5576                }
5577
5578                if (time_after_eq(jiffies, sd->last_balance + interval)) {
5579                        if (load_balance(cpu, rq, sd, idle, &balance)) {
5580                                /*
5581                                 * The LBF_SOME_PINNED logic could have changed
5582                                 * env->dst_cpu, so we can't know our idle
5583                                 * state even if we migrated tasks. Update it.
5584                                 */
5585                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5586                        }
5587                        sd->last_balance = jiffies;
5588                }
5589                if (need_serialize)
5590                        spin_unlock(&balancing);
5591out:
5592                if (time_after(next_balance, sd->last_balance + interval)) {
5593                        next_balance = sd->last_balance + interval;
5594                        update_next_balance = 1;
5595                }
5596
5597                /*
5598                 * Stop the load balance at this level. There is another
5599                 * CPU in our sched group which is doing load balancing more
5600                 * actively.
5601                 */
5602                if (!balance)
5603                        break;
5604        }
5605        rcu_read_unlock();
5606
5607        /*
5608         * next_balance will be updated only when there is a need.
5609         * When the cpu is attached to null domain for ex, it will not be
5610         * updated.
5611         */
5612        if (likely(update_next_balance))
5613                rq->next_balance = next_balance;
5614}
5615
5616#ifdef CONFIG_NO_HZ_COMMON
5617/*
5618 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5619 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5620 */
5621static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5622{
5623        struct rq *this_rq = cpu_rq(this_cpu);
5624        struct rq *rq;
5625        int balance_cpu;
5626
5627        if (idle != CPU_IDLE ||
5628            !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5629                goto end;
5630
5631        for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5632                if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5633                        continue;
5634
5635                /*
5636                 * If this cpu gets work to do, stop the load balancing
5637                 * work being done for other cpus. Next load
5638                 * balancing owner will pick it up.
5639                 */
5640                if (need_resched())
5641                        break;
5642
5643                rq = cpu_rq(balance_cpu);
5644
5645                raw_spin_lock_irq(&rq->lock);
5646                update_rq_clock(rq);
5647                update_idle_cpu_load(rq);
5648                raw_spin_unlock_irq(&rq->lock);
5649
5650                rebalance_domains(balance_cpu, CPU_IDLE);
5651
5652                if (time_after(this_rq->next_balance, rq->next_balance))
5653                        this_rq->next_balance = rq->next_balance;
5654        }
5655        nohz.next_balance = this_rq->next_balance;
5656end:
5657        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5658}
5659
5660/*
5661 * Current heuristic for kicking the idle load balancer in the presence
5662 * of an idle cpu is the system.
5663 *   - This rq has more than one task.
5664 *   - At any scheduler domain level, this cpu's scheduler group has multiple
5665 *     busy cpu's exceeding the group's power.
5666 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5667 *     domain span are idle.
5668 */
5669static inline int nohz_kick_needed(struct rq *rq, int cpu)
5670{
5671        unsigned long now = jiffies;
5672        struct sched_domain *sd;
5673
5674        if (unlikely(idle_cpu(cpu)))
5675                return 0;
5676
5677       /*
5678        * We may be recently in ticked or tickless idle mode. At the first
5679        * busy tick after returning from idle, we will update the busy stats.
5680        */
5681        set_cpu_sd_state_busy();
5682        nohz_balance_exit_idle(cpu);
5683
5684        /*
5685         * None are in tickless mode and hence no need for NOHZ idle load
5686         * balancing.
5687         */
5688        if (likely(!atomic_read(&nohz.nr_cpus)))
5689                return 0;
5690
5691        if (time_before(now, nohz.next_balance))
5692                return 0;
5693
5694        if (rq->nr_running >= 2)
5695                goto need_kick;
5696
5697        rcu_read_lock();
5698        for_each_domain(cpu, sd) {
5699                struct sched_group *sg = sd->groups;
5700                struct sched_group_power *sgp = sg->sgp;
5701                int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5702
5703                if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5704                        goto need_kick_unlock;
5705
5706                if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5707                    && (cpumask_first_and(nohz.idle_cpus_mask,
5708                                          sched_domain_span(sd)) < cpu))
5709                        goto need_kick_unlock;
5710
5711                if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5712                        break;
5713        }
5714        rcu_read_unlock();
5715        return 0;
5716
5717need_kick_unlock:
5718        rcu_read_unlock();
5719need_kick:
5720        return 1;
5721}
5722#else
5723static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5724#endif
5725
5726/*
5727 * run_rebalance_domains is triggered when needed from the scheduler tick.
5728 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5729 */
5730static void run_rebalance_domains(struct softirq_action *h)
5731{
5732        int this_cpu = smp_processor_id();
5733        struct rq *this_rq = cpu_rq(this_cpu);
5734        enum cpu_idle_type idle = this_rq->idle_balance ?
5735                                                CPU_IDLE : CPU_NOT_IDLE;
5736
5737        rebalance_domains(this_cpu, idle);
5738
5739        /*
5740         * If this cpu has a pending nohz_balance_kick, then do the
5741         * balancing on behalf of the other idle cpus whose ticks are
5742         * stopped.
5743         */
5744        nohz_idle_balance(this_cpu, idle);
5745}
5746
5747static inline int on_null_domain(int cpu)
5748{
5749        return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5750}
5751
5752/*
5753 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5754 */
5755void trigger_load_balance(struct rq *rq, int cpu)
5756{
5757        /* Don't need to rebalance while attached to NULL domain */
5758        if (time_after_eq(jiffies, rq->next_balance) &&
5759            likely(!on_null_domain(cpu)))
5760                raise_softirq(SCHED_SOFTIRQ);
5761#ifdef CONFIG_NO_HZ_COMMON
5762        if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5763                nohz_balancer_kick(cpu);
5764#endif
5765}
5766
5767static void rq_online_fair(struct rq *rq)
5768{
5769        update_sysctl();
5770}
5771
5772static void rq_offline_fair(struct rq *rq)
5773{
5774        update_sysctl();
5775
5776        /* Ensure any throttled groups are reachable by pick_next_task */
5777        unthrottle_offline_cfs_rqs(rq);
5778}
5779
5780#endif /* CONFIG_SMP */
5781
5782/*
5783 * scheduler tick hitting a task of our scheduling class:
5784 */
5785static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5786{
5787        struct cfs_rq *cfs_rq;
5788        struct sched_entity *se = &curr->se;
5789
5790        for_each_sched_entity(se) {
5791                cfs_rq = cfs_rq_of(se);
5792                entity_tick(cfs_rq, se, queued);
5793        }
5794
5795        if (numabalancing_enabled)
5796                task_tick_numa(rq, curr);
5797
5798        update_rq_runnable_avg(rq, 1);
5799}
5800
5801/*
5802 * called on fork with the child task as argument from the parent's context
5803 *  - child not yet on the tasklist
5804 *  - preemption disabled
5805 */
5806static void task_fork_fair(struct task_struct *p)
5807{
5808        struct cfs_rq *cfs_rq;
5809        struct sched_entity *se = &p->se, *curr;
5810        int this_cpu = smp_processor_id();
5811        struct rq *rq = this_rq();
5812        unsigned long flags;
5813
5814        raw_spin_lock_irqsave(&rq->lock, flags);
5815
5816        update_rq_clock(rq);
5817
5818        cfs_rq = task_cfs_rq(current);
5819        curr = cfs_rq->curr;
5820
5821        if (unlikely(task_cpu(p) != this_cpu)) {
5822                rcu_read_lock();
5823                __set_task_cpu(p, this_cpu);
5824                rcu_read_unlock();
5825        }
5826
5827        update_curr(cfs_rq);
5828
5829        if (curr)
5830                se->vruntime = curr->vruntime;
5831        place_entity(cfs_rq, se, 1);
5832
5833        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5834                /*
5835                 * Upon rescheduling, sched_class::put_prev_task() will place
5836                 * 'current' within the tree based on its new key value.
5837                 */
5838                swap(curr->vruntime, se->vruntime);
5839                resched_task(rq->curr);
5840        }
5841
5842        se->vruntime -= cfs_rq->min_vruntime;
5843
5844        raw_spin_unlock_irqrestore(&rq->lock, flags);
5845}
5846
5847/*
5848 * Priority of the task has changed. Check to see if we preempt
5849 * the current task.
5850 */
5851static void
5852prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5853{
5854        if (!p->se.on_rq)
5855                return;
5856
5857        /*
5858         * Reschedule if we are currently running on this runqueue and
5859         * our priority decreased, or if we are not currently running on
5860         * this runqueue and our priority is higher than the current's
5861         */
5862        if (rq->curr == p) {
5863                if (p->prio > oldprio)
5864                        resched_task(rq->curr);
5865        } else
5866                check_preempt_curr(rq, p, 0);
5867}
5868
5869static void switched_from_fair(struct rq *rq, struct task_struct *p)
5870{
5871        struct sched_entity *se = &p->se;
5872        struct cfs_rq *cfs_rq = cfs_rq_of(se);
5873
5874        /*
5875         * Ensure the task's vruntime is normalized, so that when its
5876         * switched back to the fair class the enqueue_entity(.flags=0) will
5877         * do the right thing.
5878         *
5879         * If it was on_rq, then the dequeue_entity(.flags=0) will already
5880         * have normalized the vruntime, if it was !on_rq, then only when
5881         * the task is sleeping will it still have non-normalized vruntime.
5882         */
5883        if (!se->on_rq && p->state != TASK_RUNNING) {
5884                /*
5885                 * Fix up our vruntime so that the current sleep doesn't
5886                 * cause 'unlimited' sleep bonus.
5887                 */
5888                place_entity(cfs_rq, se, 0);
5889                se->vruntime -= cfs_rq->min_vruntime;
5890        }
5891
5892#ifdef CONFIG_SMP
5893        /*
5894        * Remove our load from contribution when we leave sched_fair
5895        * and ensure we don't carry in an old decay_count if we
5896        * switch back.
5897        */
5898        if (p->se.avg.decay_count) {
5899                struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5900                __synchronize_entity_decay(&p->se);
5901                subtract_blocked_load_contrib(cfs_rq,
5902                                p->se.avg.load_avg_contrib);
5903        }
5904#endif
5905}
5906
5907/*
5908 * We switched to the sched_fair class.
5909 */
5910static void switched_to_fair(struct rq *rq, struct task_struct *p)
5911{
5912        if (!p->se.on_rq)
5913                return;
5914
5915        /*
5916         * We were most likely switched from sched_rt, so
5917         * kick off the schedule if running, otherwise just see
5918         * if we can still preempt the current task.
5919         */
5920        if (rq->curr == p)
5921                resched_task(rq->curr);
5922        else
5923                check_preempt_curr(rq, p, 0);
5924}
5925
5926/* Account for a task changing its policy or group.
5927 *
5928 * This routine is mostly called to set cfs_rq->curr field when a task
5929 * migrates between groups/classes.
5930 */
5931static void set_curr_task_fair(struct rq *rq)
5932{
5933        struct sched_entity *se = &rq->curr->se;
5934
5935        for_each_sched_entity(se) {
5936                struct cfs_rq *cfs_rq = cfs_rq_of(se);
5937
5938                set_next_entity(cfs_rq, se);
5939                /* ensure bandwidth has been allocated on our new cfs_rq */
5940                account_cfs_rq_runtime(cfs_rq, 0);
5941        }
5942}
5943
5944void init_cfs_rq(struct cfs_rq *cfs_rq)
5945{
5946        cfs_rq->tasks_timeline = RB_ROOT;
5947        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5948#ifndef CONFIG_64BIT
5949        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5950#endif
5951#ifdef CONFIG_SMP
5952        atomic64_set(&cfs_rq->decay_counter, 1);
5953        atomic_long_set(&cfs_rq->removed_load, 0);
5954#endif
5955}
5956
5957#ifdef CONFIG_FAIR_GROUP_SCHED
5958static void task_move_group_fair(struct task_struct *p, int on_rq)
5959{
5960        struct cfs_rq *cfs_rq;
5961        /*
5962         * If the task was not on the rq at the time of this cgroup movement
5963         * it must have been asleep, sleeping tasks keep their ->vruntime
5964         * absolute on their old rq until wakeup (needed for the fair sleeper
5965         * bonus in place_entity()).
5966         *
5967         * If it was on the rq, we've just 'preempted' it, which does convert
5968         * ->vruntime to a relative base.
5969         *
5970         * Make sure both cases convert their relative position when migrating
5971         * to another cgroup's rq. This does somewhat interfere with the
5972         * fair sleeper stuff for the first placement, but who cares.
5973         */
5974        /*
5975         * When !on_rq, vruntime of the task has usually NOT been normalized.
5976         * But there are some cases where it has already been normalized:
5977         *
5978         * - Moving a forked child which is waiting for being woken up by
5979         *   wake_up_new_task().
5980         * - Moving a task which has been woken up by try_to_wake_up() and
5981         *   waiting for actually being woken up by sched_ttwu_pending().
5982         *
5983         * To prevent boost or penalty in the new cfs_rq caused by delta
5984         * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5985         */
5986        if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5987                on_rq = 1;
5988
5989        if (!on_rq)
5990                p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5991        set_task_rq(p, task_cpu(p));
5992        if (!on_rq) {
5993                cfs_rq = cfs_rq_of(&p->se);
5994                p->se.vruntime += cfs_rq->min_vruntime;
5995#ifdef CONFIG_SMP
5996                /*
5997                 * migrate_task_rq_fair() will have removed our previous
5998                 * contribution, but we must synchronize for ongoing future
5999                 * decay.
6000                 */
6001                p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6002                cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6003#endif
6004        }
6005}
6006
6007void free_fair_sched_group(struct task_group *tg)
6008{
6009        int i;
6010
6011        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6012
6013        for_each_possible_cpu(i) {
6014                if (tg->cfs_rq)
6015                        kfree(tg->cfs_rq[i]);
6016                if (tg->se)
6017                        kfree(tg->se[i]);
6018        }
6019
6020        kfree(tg->cfs_rq);
6021        kfree(tg->se);
6022}
6023
6024int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6025{
6026        struct cfs_rq *cfs_rq;
6027        struct sched_entity *se;
6028        int i;
6029
6030        tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6031        if (!tg->cfs_rq)
6032                goto err;
6033        tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6034        if (!tg->se)
6035                goto err;
6036
6037        tg->shares = NICE_0_LOAD;
6038
6039        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6040
6041        for_each_possible_cpu(i) {
6042                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6043                                      GFP_KERNEL, cpu_to_node(i));
6044                if (!cfs_rq)
6045                        goto err;
6046
6047                se = kzalloc_node(sizeof(struct sched_entity),
6048                                  GFP_KERNEL, cpu_to_node(i));
6049                if (!se)
6050                        goto err_free_rq;
6051
6052                init_cfs_rq(cfs_rq);
6053                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6054        }
6055
6056        return 1;
6057
6058err_free_rq:
6059        kfree(cfs_rq);
6060err:
6061        return 0;
6062}
6063
6064void unregister_fair_sched_group(struct task_group *tg, int cpu)
6065{
6066        struct rq *rq = cpu_rq(cpu);
6067        unsigned long flags;
6068
6069        /*
6070        * Only empty task groups can be destroyed; so we can speculatively
6071        * check on_list without danger of it being re-added.
6072        */
6073        if (!tg->cfs_rq[cpu]->on_list)
6074                return;
6075
6076        raw_spin_lock_irqsave(&rq->lock, flags);
6077        list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6078        raw_spin_unlock_irqrestore(&rq->lock, flags);
6079}
6080
6081void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6082                        struct sched_entity *se, int cpu,
6083                        struct sched_entity *parent)
6084{
6085        struct rq *rq = cpu_rq(cpu);
6086
6087        cfs_rq->tg = tg;
6088        cfs_rq->rq = rq;
6089        init_cfs_rq_runtime(cfs_rq);
6090
6091        tg->cfs_rq[cpu] = cfs_rq;
6092        tg->se[cpu] = se;
6093
6094        /* se could be NULL for root_task_group */
6095        if (!se)
6096                return;
6097
6098        if (!parent)
6099                se->cfs_rq = &rq->cfs;
6100        else
6101                se->cfs_rq = parent->my_q;
6102
6103        se->my_q = cfs_rq;
6104        update_load_set(&se->load, 0);
6105        se->parent = parent;
6106}
6107
6108static DEFINE_MUTEX(shares_mutex);
6109
6110int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6111{
6112        int i;
6113        unsigned long flags;
6114
6115        /*
6116         * We can't change the weight of the root cgroup.
6117         */
6118        if (!tg->se[0])
6119                return -EINVAL;
6120
6121        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6122
6123        mutex_lock(&shares_mutex);
6124        if (tg->shares == shares)
6125                goto done;
6126
6127        tg->shares = shares;
6128        for_each_possible_cpu(i) {
6129                struct rq *rq = cpu_rq(i);
6130                struct sched_entity *se;
6131
6132                se = tg->se[i];
6133                /* Propagate contribution to hierarchy */
6134                raw_spin_lock_irqsave(&rq->lock, flags);
6135
6136                /* Possible calls to update_curr() need rq clock */
6137                update_rq_clock(rq);
6138                for_each_sched_entity(se)
6139                        update_cfs_shares(group_cfs_rq(se));
6140                raw_spin_unlock_irqrestore(&rq->lock, flags);
6141        }
6142
6143done:
6144        mutex_unlock(&shares_mutex);
6145        return 0;
6146}
6147#else /* CONFIG_FAIR_GROUP_SCHED */
6148
6149void free_fair_sched_group(struct task_group *tg) { }
6150
6151int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6152{
6153        return 1;
6154}
6155
6156void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6157
6158#endif /* CONFIG_FAIR_GROUP_SCHED */
6159
6160
6161static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6162{
6163        struct sched_entity *se = &task->se;
6164        unsigned int rr_interval = 0;
6165
6166        /*
6167         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6168         * idle runqueue:
6169         */
6170        if (rq->cfs.load.weight)
6171                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6172
6173        return rr_interval;
6174}
6175
6176/*
6177 * All the scheduling class methods:
6178 */
6179const struct sched_class fair_sched_class = {
6180        .next                   = &idle_sched_class,
6181        .enqueue_task           = enqueue_task_fair,
6182        .dequeue_task           = dequeue_task_fair,
6183        .yield_task             = yield_task_fair,
6184        .yield_to_task          = yield_to_task_fair,
6185
6186        .check_preempt_curr     = check_preempt_wakeup,
6187
6188        .pick_next_task         = pick_next_task_fair,
6189        .put_prev_task          = put_prev_task_fair,
6190
6191#ifdef CONFIG_SMP
6192        .select_task_rq         = select_task_rq_fair,
6193        .migrate_task_rq        = migrate_task_rq_fair,
6194
6195        .rq_online              = rq_online_fair,
6196        .rq_offline             = rq_offline_fair,
6197
6198        .task_waking            = task_waking_fair,
6199#endif
6200
6201        .set_curr_task          = set_curr_task_fair,
6202        .task_tick              = task_tick_fair,
6203        .task_fork              = task_fork_fair,
6204
6205        .prio_changed           = prio_changed_fair,
6206        .switched_from          = switched_from_fair,
6207        .switched_to            = switched_to_fair,
6208
6209        .get_rr_interval        = get_rr_interval_fair,
6210
6211#ifdef CONFIG_FAIR_GROUP_SCHED
6212        .task_move_group        = task_move_group_fair,
6213#endif
6214};
6215
6216#ifdef CONFIG_SCHED_DEBUG
6217void print_cfs_stats(struct seq_file *m, int cpu)
6218{
6219        struct cfs_rq *cfs_rq;
6220
6221        rcu_read_lock();
6222        for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6223                print_cfs_rq(m, cpu, cfs_rq);
6224        rcu_read_unlock();
6225}
6226#endif
6227
6228__init void init_sched_fair_class(void)
6229{
6230#ifdef CONFIG_SMP
6231        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6232
6233#ifdef CONFIG_NO_HZ_COMMON
6234        nohz.next_balance = jiffies;
6235        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6236        cpu_notifier(sched_ilb_notifier, 0);
6237#endif
6238#endif /* SMP */
6239
6240}
6241