linux/kernel/time/ntp.c
<<
>>
Prefs
   1/*
   2 * NTP state machine interfaces and logic.
   3 *
   4 * This code was mainly moved from kernel/timer.c and kernel/time.c
   5 * Please see those files for relevant copyright info and historical
   6 * changelogs.
   7 */
   8#include <linux/capability.h>
   9#include <linux/clocksource.h>
  10#include <linux/workqueue.h>
  11#include <linux/hrtimer.h>
  12#include <linux/jiffies.h>
  13#include <linux/math64.h>
  14#include <linux/timex.h>
  15#include <linux/time.h>
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/rtc.h>
  19
  20#include "tick-internal.h"
  21#include "ntp_internal.h"
  22
  23/*
  24 * NTP timekeeping variables:
  25 *
  26 * Note: All of the NTP state is protected by the timekeeping locks.
  27 */
  28
  29
  30/* USER_HZ period (usecs): */
  31unsigned long                   tick_usec = TICK_USEC;
  32
  33/* SHIFTED_HZ period (nsecs): */
  34unsigned long                   tick_nsec;
  35
  36static u64                      tick_length;
  37static u64                      tick_length_base;
  38
  39#define MAX_TICKADJ             500LL           /* usecs */
  40#define MAX_TICKADJ_SCALED \
  41        (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  42
  43/*
  44 * phase-lock loop variables
  45 */
  46
  47/*
  48 * clock synchronization status
  49 *
  50 * (TIME_ERROR prevents overwriting the CMOS clock)
  51 */
  52static int                      time_state = TIME_OK;
  53
  54/* clock status bits:                                                   */
  55static int                      time_status = STA_UNSYNC;
  56
  57/* time adjustment (nsecs):                                             */
  58static s64                      time_offset;
  59
  60/* pll time constant:                                                   */
  61static long                     time_constant = 2;
  62
  63/* maximum error (usecs):                                               */
  64static long                     time_maxerror = NTP_PHASE_LIMIT;
  65
  66/* estimated error (usecs):                                             */
  67static long                     time_esterror = NTP_PHASE_LIMIT;
  68
  69/* frequency offset (scaled nsecs/secs):                                */
  70static s64                      time_freq;
  71
  72/* time at last adjustment (secs):                                      */
  73static long                     time_reftime;
  74
  75static long                     time_adjust;
  76
  77/* constant (boot-param configurable) NTP tick adjustment (upscaled)    */
  78static s64                      ntp_tick_adj;
  79
  80#ifdef CONFIG_NTP_PPS
  81
  82/*
  83 * The following variables are used when a pulse-per-second (PPS) signal
  84 * is available. They establish the engineering parameters of the clock
  85 * discipline loop when controlled by the PPS signal.
  86 */
  87#define PPS_VALID       10      /* PPS signal watchdog max (s) */
  88#define PPS_POPCORN     4       /* popcorn spike threshold (shift) */
  89#define PPS_INTMIN      2       /* min freq interval (s) (shift) */
  90#define PPS_INTMAX      8       /* max freq interval (s) (shift) */
  91#define PPS_INTCOUNT    4       /* number of consecutive good intervals to
  92                                   increase pps_shift or consecutive bad
  93                                   intervals to decrease it */
  94#define PPS_MAXWANDER   100000  /* max PPS freq wander (ns/s) */
  95
  96static int pps_valid;           /* signal watchdog counter */
  97static long pps_tf[3];          /* phase median filter */
  98static long pps_jitter;         /* current jitter (ns) */
  99static struct timespec pps_fbase; /* beginning of the last freq interval */
 100static int pps_shift;           /* current interval duration (s) (shift) */
 101static int pps_intcnt;          /* interval counter */
 102static s64 pps_freq;            /* frequency offset (scaled ns/s) */
 103static long pps_stabil;         /* current stability (scaled ns/s) */
 104
 105/*
 106 * PPS signal quality monitors
 107 */
 108static long pps_calcnt;         /* calibration intervals */
 109static long pps_jitcnt;         /* jitter limit exceeded */
 110static long pps_stbcnt;         /* stability limit exceeded */
 111static long pps_errcnt;         /* calibration errors */
 112
 113
 114/* PPS kernel consumer compensates the whole phase error immediately.
 115 * Otherwise, reduce the offset by a fixed factor times the time constant.
 116 */
 117static inline s64 ntp_offset_chunk(s64 offset)
 118{
 119        if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
 120                return offset;
 121        else
 122                return shift_right(offset, SHIFT_PLL + time_constant);
 123}
 124
 125static inline void pps_reset_freq_interval(void)
 126{
 127        /* the PPS calibration interval may end
 128           surprisingly early */
 129        pps_shift = PPS_INTMIN;
 130        pps_intcnt = 0;
 131}
 132
 133/**
 134 * pps_clear - Clears the PPS state variables
 135 */
 136static inline void pps_clear(void)
 137{
 138        pps_reset_freq_interval();
 139        pps_tf[0] = 0;
 140        pps_tf[1] = 0;
 141        pps_tf[2] = 0;
 142        pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
 143        pps_freq = 0;
 144}
 145
 146/* Decrease pps_valid to indicate that another second has passed since
 147 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 148 * missing.
 149 */
 150static inline void pps_dec_valid(void)
 151{
 152        if (pps_valid > 0)
 153                pps_valid--;
 154        else {
 155                time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 156                                 STA_PPSWANDER | STA_PPSERROR);
 157                pps_clear();
 158        }
 159}
 160
 161static inline void pps_set_freq(s64 freq)
 162{
 163        pps_freq = freq;
 164}
 165
 166static inline int is_error_status(int status)
 167{
 168        return (time_status & (STA_UNSYNC|STA_CLOCKERR))
 169                /* PPS signal lost when either PPS time or
 170                 * PPS frequency synchronization requested
 171                 */
 172                || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
 173                        && !(time_status & STA_PPSSIGNAL))
 174                /* PPS jitter exceeded when
 175                 * PPS time synchronization requested */
 176                || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
 177                        == (STA_PPSTIME|STA_PPSJITTER))
 178                /* PPS wander exceeded or calibration error when
 179                 * PPS frequency synchronization requested
 180                 */
 181                || ((time_status & STA_PPSFREQ)
 182                        && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
 183}
 184
 185static inline void pps_fill_timex(struct timex *txc)
 186{
 187        txc->ppsfreq       = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
 188                                         PPM_SCALE_INV, NTP_SCALE_SHIFT);
 189        txc->jitter        = pps_jitter;
 190        if (!(time_status & STA_NANO))
 191                txc->jitter /= NSEC_PER_USEC;
 192        txc->shift         = pps_shift;
 193        txc->stabil        = pps_stabil;
 194        txc->jitcnt        = pps_jitcnt;
 195        txc->calcnt        = pps_calcnt;
 196        txc->errcnt        = pps_errcnt;
 197        txc->stbcnt        = pps_stbcnt;
 198}
 199
 200#else /* !CONFIG_NTP_PPS */
 201
 202static inline s64 ntp_offset_chunk(s64 offset)
 203{
 204        return shift_right(offset, SHIFT_PLL + time_constant);
 205}
 206
 207static inline void pps_reset_freq_interval(void) {}
 208static inline void pps_clear(void) {}
 209static inline void pps_dec_valid(void) {}
 210static inline void pps_set_freq(s64 freq) {}
 211
 212static inline int is_error_status(int status)
 213{
 214        return status & (STA_UNSYNC|STA_CLOCKERR);
 215}
 216
 217static inline void pps_fill_timex(struct timex *txc)
 218{
 219        /* PPS is not implemented, so these are zero */
 220        txc->ppsfreq       = 0;
 221        txc->jitter        = 0;
 222        txc->shift         = 0;
 223        txc->stabil        = 0;
 224        txc->jitcnt        = 0;
 225        txc->calcnt        = 0;
 226        txc->errcnt        = 0;
 227        txc->stbcnt        = 0;
 228}
 229
 230#endif /* CONFIG_NTP_PPS */
 231
 232
 233/**
 234 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 235 *
 236 */
 237static inline int ntp_synced(void)
 238{
 239        return !(time_status & STA_UNSYNC);
 240}
 241
 242
 243/*
 244 * NTP methods:
 245 */
 246
 247/*
 248 * Update (tick_length, tick_length_base, tick_nsec), based
 249 * on (tick_usec, ntp_tick_adj, time_freq):
 250 */
 251static void ntp_update_frequency(void)
 252{
 253        u64 second_length;
 254        u64 new_base;
 255
 256        second_length            = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 257                                                << NTP_SCALE_SHIFT;
 258
 259        second_length           += ntp_tick_adj;
 260        second_length           += time_freq;
 261
 262        tick_nsec                = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
 263        new_base                 = div_u64(second_length, NTP_INTERVAL_FREQ);
 264
 265        /*
 266         * Don't wait for the next second_overflow, apply
 267         * the change to the tick length immediately:
 268         */
 269        tick_length             += new_base - tick_length_base;
 270        tick_length_base         = new_base;
 271}
 272
 273static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
 274{
 275        time_status &= ~STA_MODE;
 276
 277        if (secs < MINSEC)
 278                return 0;
 279
 280        if (!(time_status & STA_FLL) && (secs <= MAXSEC))
 281                return 0;
 282
 283        time_status |= STA_MODE;
 284
 285        return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 286}
 287
 288static void ntp_update_offset(long offset)
 289{
 290        s64 freq_adj;
 291        s64 offset64;
 292        long secs;
 293
 294        if (!(time_status & STA_PLL))
 295                return;
 296
 297        if (!(time_status & STA_NANO))
 298                offset *= NSEC_PER_USEC;
 299
 300        /*
 301         * Scale the phase adjustment and
 302         * clamp to the operating range.
 303         */
 304        offset = min(offset, MAXPHASE);
 305        offset = max(offset, -MAXPHASE);
 306
 307        /*
 308         * Select how the frequency is to be controlled
 309         * and in which mode (PLL or FLL).
 310         */
 311        secs = get_seconds() - time_reftime;
 312        if (unlikely(time_status & STA_FREQHOLD))
 313                secs = 0;
 314
 315        time_reftime = get_seconds();
 316
 317        offset64    = offset;
 318        freq_adj    = ntp_update_offset_fll(offset64, secs);
 319
 320        /*
 321         * Clamp update interval to reduce PLL gain with low
 322         * sampling rate (e.g. intermittent network connection)
 323         * to avoid instability.
 324         */
 325        if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
 326                secs = 1 << (SHIFT_PLL + 1 + time_constant);
 327
 328        freq_adj    += (offset64 * secs) <<
 329                        (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
 330
 331        freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
 332
 333        time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 334
 335        time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 336}
 337
 338/**
 339 * ntp_clear - Clears the NTP state variables
 340 */
 341void ntp_clear(void)
 342{
 343        time_adjust     = 0;            /* stop active adjtime() */
 344        time_status     |= STA_UNSYNC;
 345        time_maxerror   = NTP_PHASE_LIMIT;
 346        time_esterror   = NTP_PHASE_LIMIT;
 347
 348        ntp_update_frequency();
 349
 350        tick_length     = tick_length_base;
 351        time_offset     = 0;
 352
 353        /* Clear PPS state variables */
 354        pps_clear();
 355}
 356
 357
 358u64 ntp_tick_length(void)
 359{
 360        return tick_length;
 361}
 362
 363
 364/*
 365 * this routine handles the overflow of the microsecond field
 366 *
 367 * The tricky bits of code to handle the accurate clock support
 368 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 369 * They were originally developed for SUN and DEC kernels.
 370 * All the kudos should go to Dave for this stuff.
 371 *
 372 * Also handles leap second processing, and returns leap offset
 373 */
 374int second_overflow(unsigned long secs)
 375{
 376        s64 delta;
 377        int leap = 0;
 378
 379        /*
 380         * Leap second processing. If in leap-insert state at the end of the
 381         * day, the system clock is set back one second; if in leap-delete
 382         * state, the system clock is set ahead one second.
 383         */
 384        switch (time_state) {
 385        case TIME_OK:
 386                if (time_status & STA_INS)
 387                        time_state = TIME_INS;
 388                else if (time_status & STA_DEL)
 389                        time_state = TIME_DEL;
 390                break;
 391        case TIME_INS:
 392                if (!(time_status & STA_INS))
 393                        time_state = TIME_OK;
 394                else if (secs % 86400 == 0) {
 395                        leap = -1;
 396                        time_state = TIME_OOP;
 397                        printk(KERN_NOTICE
 398                                "Clock: inserting leap second 23:59:60 UTC\n");
 399                }
 400                break;
 401        case TIME_DEL:
 402                if (!(time_status & STA_DEL))
 403                        time_state = TIME_OK;
 404                else if ((secs + 1) % 86400 == 0) {
 405                        leap = 1;
 406                        time_state = TIME_WAIT;
 407                        printk(KERN_NOTICE
 408                                "Clock: deleting leap second 23:59:59 UTC\n");
 409                }
 410                break;
 411        case TIME_OOP:
 412                time_state = TIME_WAIT;
 413                break;
 414
 415        case TIME_WAIT:
 416                if (!(time_status & (STA_INS | STA_DEL)))
 417                        time_state = TIME_OK;
 418                break;
 419        }
 420
 421
 422        /* Bump the maxerror field */
 423        time_maxerror += MAXFREQ / NSEC_PER_USEC;
 424        if (time_maxerror > NTP_PHASE_LIMIT) {
 425                time_maxerror = NTP_PHASE_LIMIT;
 426                time_status |= STA_UNSYNC;
 427        }
 428
 429        /* Compute the phase adjustment for the next second */
 430        tick_length      = tick_length_base;
 431
 432        delta            = ntp_offset_chunk(time_offset);
 433        time_offset     -= delta;
 434        tick_length     += delta;
 435
 436        /* Check PPS signal */
 437        pps_dec_valid();
 438
 439        if (!time_adjust)
 440                goto out;
 441
 442        if (time_adjust > MAX_TICKADJ) {
 443                time_adjust -= MAX_TICKADJ;
 444                tick_length += MAX_TICKADJ_SCALED;
 445                goto out;
 446        }
 447
 448        if (time_adjust < -MAX_TICKADJ) {
 449                time_adjust += MAX_TICKADJ;
 450                tick_length -= MAX_TICKADJ_SCALED;
 451                goto out;
 452        }
 453
 454        tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 455                                                         << NTP_SCALE_SHIFT;
 456        time_adjust = 0;
 457
 458out:
 459        return leap;
 460}
 461
 462#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
 463static void sync_cmos_clock(struct work_struct *work);
 464
 465static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
 466
 467static void sync_cmos_clock(struct work_struct *work)
 468{
 469        struct timespec now, next;
 470        int fail = 1;
 471
 472        /*
 473         * If we have an externally synchronized Linux clock, then update
 474         * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
 475         * called as close as possible to 500 ms before the new second starts.
 476         * This code is run on a timer.  If the clock is set, that timer
 477         * may not expire at the correct time.  Thus, we adjust...
 478         */
 479        if (!ntp_synced()) {
 480                /*
 481                 * Not synced, exit, do not restart a timer (if one is
 482                 * running, let it run out).
 483                 */
 484                return;
 485        }
 486
 487        getnstimeofday(&now);
 488        if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
 489                struct timespec adjust = now;
 490
 491                fail = -ENODEV;
 492                if (persistent_clock_is_local)
 493                        adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
 494#ifdef CONFIG_GENERIC_CMOS_UPDATE
 495                fail = update_persistent_clock(adjust);
 496#endif
 497#ifdef CONFIG_RTC_SYSTOHC
 498                if (fail == -ENODEV)
 499                        fail = rtc_set_ntp_time(adjust);
 500#endif
 501        }
 502
 503        next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
 504        if (next.tv_nsec <= 0)
 505                next.tv_nsec += NSEC_PER_SEC;
 506
 507        if (!fail || fail == -ENODEV)
 508                next.tv_sec = 659;
 509        else
 510                next.tv_sec = 0;
 511
 512        if (next.tv_nsec >= NSEC_PER_SEC) {
 513                next.tv_sec++;
 514                next.tv_nsec -= NSEC_PER_SEC;
 515        }
 516        schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
 517}
 518
 519static void notify_cmos_timer(void)
 520{
 521        schedule_delayed_work(&sync_cmos_work, 0);
 522}
 523
 524#else
 525static inline void notify_cmos_timer(void) { }
 526#endif
 527
 528
 529/*
 530 * Propagate a new txc->status value into the NTP state:
 531 */
 532static inline void process_adj_status(struct timex *txc, struct timespec *ts)
 533{
 534        if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 535                time_state = TIME_OK;
 536                time_status = STA_UNSYNC;
 537                /* restart PPS frequency calibration */
 538                pps_reset_freq_interval();
 539        }
 540
 541        /*
 542         * If we turn on PLL adjustments then reset the
 543         * reference time to current time.
 544         */
 545        if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
 546                time_reftime = get_seconds();
 547
 548        /* only set allowed bits */
 549        time_status &= STA_RONLY;
 550        time_status |= txc->status & ~STA_RONLY;
 551}
 552
 553
 554static inline void process_adjtimex_modes(struct timex *txc,
 555                                                struct timespec *ts,
 556                                                s32 *time_tai)
 557{
 558        if (txc->modes & ADJ_STATUS)
 559                process_adj_status(txc, ts);
 560
 561        if (txc->modes & ADJ_NANO)
 562                time_status |= STA_NANO;
 563
 564        if (txc->modes & ADJ_MICRO)
 565                time_status &= ~STA_NANO;
 566
 567        if (txc->modes & ADJ_FREQUENCY) {
 568                time_freq = txc->freq * PPM_SCALE;
 569                time_freq = min(time_freq, MAXFREQ_SCALED);
 570                time_freq = max(time_freq, -MAXFREQ_SCALED);
 571                /* update pps_freq */
 572                pps_set_freq(time_freq);
 573        }
 574
 575        if (txc->modes & ADJ_MAXERROR)
 576                time_maxerror = txc->maxerror;
 577
 578        if (txc->modes & ADJ_ESTERROR)
 579                time_esterror = txc->esterror;
 580
 581        if (txc->modes & ADJ_TIMECONST) {
 582                time_constant = txc->constant;
 583                if (!(time_status & STA_NANO))
 584                        time_constant += 4;
 585                time_constant = min(time_constant, (long)MAXTC);
 586                time_constant = max(time_constant, 0l);
 587        }
 588
 589        if (txc->modes & ADJ_TAI && txc->constant > 0)
 590                *time_tai = txc->constant;
 591
 592        if (txc->modes & ADJ_OFFSET)
 593                ntp_update_offset(txc->offset);
 594
 595        if (txc->modes & ADJ_TICK)
 596                tick_usec = txc->tick;
 597
 598        if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 599                ntp_update_frequency();
 600}
 601
 602
 603
 604/**
 605 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
 606 */
 607int ntp_validate_timex(struct timex *txc)
 608{
 609        if (txc->modes & ADJ_ADJTIME) {
 610                /* singleshot must not be used with any other mode bits */
 611                if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
 612                        return -EINVAL;
 613                if (!(txc->modes & ADJ_OFFSET_READONLY) &&
 614                    !capable(CAP_SYS_TIME))
 615                        return -EPERM;
 616        } else {
 617                /* In order to modify anything, you gotta be super-user! */
 618                 if (txc->modes && !capable(CAP_SYS_TIME))
 619                        return -EPERM;
 620                /*
 621                 * if the quartz is off by more than 10% then
 622                 * something is VERY wrong!
 623                 */
 624                if (txc->modes & ADJ_TICK &&
 625                    (txc->tick <  900000/USER_HZ ||
 626                     txc->tick > 1100000/USER_HZ))
 627                        return -EINVAL;
 628        }
 629
 630        if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
 631                return -EPERM;
 632
 633        return 0;
 634}
 635
 636
 637/*
 638 * adjtimex mainly allows reading (and writing, if superuser) of
 639 * kernel time-keeping variables. used by xntpd.
 640 */
 641int __do_adjtimex(struct timex *txc, struct timespec *ts, s32 *time_tai)
 642{
 643        int result;
 644
 645        if (txc->modes & ADJ_ADJTIME) {
 646                long save_adjust = time_adjust;
 647
 648                if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 649                        /* adjtime() is independent from ntp_adjtime() */
 650                        time_adjust = txc->offset;
 651                        ntp_update_frequency();
 652                }
 653                txc->offset = save_adjust;
 654        } else {
 655
 656                /* If there are input parameters, then process them: */
 657                if (txc->modes)
 658                        process_adjtimex_modes(txc, ts, time_tai);
 659
 660                txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
 661                                  NTP_SCALE_SHIFT);
 662                if (!(time_status & STA_NANO))
 663                        txc->offset /= NSEC_PER_USEC;
 664        }
 665
 666        result = time_state;    /* mostly `TIME_OK' */
 667        /* check for errors */
 668        if (is_error_status(time_status))
 669                result = TIME_ERROR;
 670
 671        txc->freq          = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
 672                                         PPM_SCALE_INV, NTP_SCALE_SHIFT);
 673        txc->maxerror      = time_maxerror;
 674        txc->esterror      = time_esterror;
 675        txc->status        = time_status;
 676        txc->constant      = time_constant;
 677        txc->precision     = 1;
 678        txc->tolerance     = MAXFREQ_SCALED / PPM_SCALE;
 679        txc->tick          = tick_usec;
 680        txc->tai           = *time_tai;
 681
 682        /* fill PPS status fields */
 683        pps_fill_timex(txc);
 684
 685        txc->time.tv_sec = ts->tv_sec;
 686        txc->time.tv_usec = ts->tv_nsec;
 687        if (!(time_status & STA_NANO))
 688                txc->time.tv_usec /= NSEC_PER_USEC;
 689
 690        notify_cmos_timer();
 691
 692        return result;
 693}
 694
 695#ifdef  CONFIG_NTP_PPS
 696
 697/* actually struct pps_normtime is good old struct timespec, but it is
 698 * semantically different (and it is the reason why it was invented):
 699 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 700 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
 701struct pps_normtime {
 702        __kernel_time_t sec;    /* seconds */
 703        long            nsec;   /* nanoseconds */
 704};
 705
 706/* normalize the timestamp so that nsec is in the
 707   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
 708static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
 709{
 710        struct pps_normtime norm = {
 711                .sec = ts.tv_sec,
 712                .nsec = ts.tv_nsec
 713        };
 714
 715        if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 716                norm.nsec -= NSEC_PER_SEC;
 717                norm.sec++;
 718        }
 719
 720        return norm;
 721}
 722
 723/* get current phase correction and jitter */
 724static inline long pps_phase_filter_get(long *jitter)
 725{
 726        *jitter = pps_tf[0] - pps_tf[1];
 727        if (*jitter < 0)
 728                *jitter = -*jitter;
 729
 730        /* TODO: test various filters */
 731        return pps_tf[0];
 732}
 733
 734/* add the sample to the phase filter */
 735static inline void pps_phase_filter_add(long err)
 736{
 737        pps_tf[2] = pps_tf[1];
 738        pps_tf[1] = pps_tf[0];
 739        pps_tf[0] = err;
 740}
 741
 742/* decrease frequency calibration interval length.
 743 * It is halved after four consecutive unstable intervals.
 744 */
 745static inline void pps_dec_freq_interval(void)
 746{
 747        if (--pps_intcnt <= -PPS_INTCOUNT) {
 748                pps_intcnt = -PPS_INTCOUNT;
 749                if (pps_shift > PPS_INTMIN) {
 750                        pps_shift--;
 751                        pps_intcnt = 0;
 752                }
 753        }
 754}
 755
 756/* increase frequency calibration interval length.
 757 * It is doubled after four consecutive stable intervals.
 758 */
 759static inline void pps_inc_freq_interval(void)
 760{
 761        if (++pps_intcnt >= PPS_INTCOUNT) {
 762                pps_intcnt = PPS_INTCOUNT;
 763                if (pps_shift < PPS_INTMAX) {
 764                        pps_shift++;
 765                        pps_intcnt = 0;
 766                }
 767        }
 768}
 769
 770/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 771 * timestamps
 772 *
 773 * At the end of the calibration interval the difference between the
 774 * first and last MONOTONIC_RAW clock timestamps divided by the length
 775 * of the interval becomes the frequency update. If the interval was
 776 * too long, the data are discarded.
 777 * Returns the difference between old and new frequency values.
 778 */
 779static long hardpps_update_freq(struct pps_normtime freq_norm)
 780{
 781        long delta, delta_mod;
 782        s64 ftemp;
 783
 784        /* check if the frequency interval was too long */
 785        if (freq_norm.sec > (2 << pps_shift)) {
 786                time_status |= STA_PPSERROR;
 787                pps_errcnt++;
 788                pps_dec_freq_interval();
 789                pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
 790                                freq_norm.sec);
 791                return 0;
 792        }
 793
 794        /* here the raw frequency offset and wander (stability) is
 795         * calculated. If the wander is less than the wander threshold
 796         * the interval is increased; otherwise it is decreased.
 797         */
 798        ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 799                        freq_norm.sec);
 800        delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
 801        pps_freq = ftemp;
 802        if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 803                pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
 804                time_status |= STA_PPSWANDER;
 805                pps_stbcnt++;
 806                pps_dec_freq_interval();
 807        } else {        /* good sample */
 808                pps_inc_freq_interval();
 809        }
 810
 811        /* the stability metric is calculated as the average of recent
 812         * frequency changes, but is used only for performance
 813         * monitoring
 814         */
 815        delta_mod = delta;
 816        if (delta_mod < 0)
 817                delta_mod = -delta_mod;
 818        pps_stabil += (div_s64(((s64)delta_mod) <<
 819                                (NTP_SCALE_SHIFT - SHIFT_USEC),
 820                                NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
 821
 822        /* if enabled, the system clock frequency is updated */
 823        if ((time_status & STA_PPSFREQ) != 0 &&
 824            (time_status & STA_FREQHOLD) == 0) {
 825                time_freq = pps_freq;
 826                ntp_update_frequency();
 827        }
 828
 829        return delta;
 830}
 831
 832/* correct REALTIME clock phase error against PPS signal */
 833static void hardpps_update_phase(long error)
 834{
 835        long correction = -error;
 836        long jitter;
 837
 838        /* add the sample to the median filter */
 839        pps_phase_filter_add(correction);
 840        correction = pps_phase_filter_get(&jitter);
 841
 842        /* Nominal jitter is due to PPS signal noise. If it exceeds the
 843         * threshold, the sample is discarded; otherwise, if so enabled,
 844         * the time offset is updated.
 845         */
 846        if (jitter > (pps_jitter << PPS_POPCORN)) {
 847                pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
 848                       jitter, (pps_jitter << PPS_POPCORN));
 849                time_status |= STA_PPSJITTER;
 850                pps_jitcnt++;
 851        } else if (time_status & STA_PPSTIME) {
 852                /* correct the time using the phase offset */
 853                time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
 854                                NTP_INTERVAL_FREQ);
 855                /* cancel running adjtime() */
 856                time_adjust = 0;
 857        }
 858        /* update jitter */
 859        pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
 860}
 861
 862/*
 863 * __hardpps() - discipline CPU clock oscillator to external PPS signal
 864 *
 865 * This routine is called at each PPS signal arrival in order to
 866 * discipline the CPU clock oscillator to the PPS signal. It takes two
 867 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 868 * is used to correct clock phase error and the latter is used to
 869 * correct the frequency.
 870 *
 871 * This code is based on David Mills's reference nanokernel
 872 * implementation. It was mostly rewritten but keeps the same idea.
 873 */
 874void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
 875{
 876        struct pps_normtime pts_norm, freq_norm;
 877
 878        pts_norm = pps_normalize_ts(*phase_ts);
 879
 880        /* clear the error bits, they will be set again if needed */
 881        time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
 882
 883        /* indicate signal presence */
 884        time_status |= STA_PPSSIGNAL;
 885        pps_valid = PPS_VALID;
 886
 887        /* when called for the first time,
 888         * just start the frequency interval */
 889        if (unlikely(pps_fbase.tv_sec == 0)) {
 890                pps_fbase = *raw_ts;
 891                return;
 892        }
 893
 894        /* ok, now we have a base for frequency calculation */
 895        freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
 896
 897        /* check that the signal is in the range
 898         * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
 899        if ((freq_norm.sec == 0) ||
 900                        (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
 901                        (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
 902                time_status |= STA_PPSJITTER;
 903                /* restart the frequency calibration interval */
 904                pps_fbase = *raw_ts;
 905                pr_err("hardpps: PPSJITTER: bad pulse\n");
 906                return;
 907        }
 908
 909        /* signal is ok */
 910
 911        /* check if the current frequency interval is finished */
 912        if (freq_norm.sec >= (1 << pps_shift)) {
 913                pps_calcnt++;
 914                /* restart the frequency calibration interval */
 915                pps_fbase = *raw_ts;
 916                hardpps_update_freq(freq_norm);
 917        }
 918
 919        hardpps_update_phase(pts_norm.nsec);
 920
 921}
 922#endif  /* CONFIG_NTP_PPS */
 923
 924static int __init ntp_tick_adj_setup(char *str)
 925{
 926        ntp_tick_adj = simple_strtol(str, NULL, 0);
 927        ntp_tick_adj <<= NTP_SCALE_SHIFT;
 928
 929        return 1;
 930}
 931
 932__setup("ntp_tick_adj=", ntp_tick_adj_setup);
 933
 934void __init ntp_init(void)
 935{
 936        ntp_clear();
 937}
 938