linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/ftrace_event.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
   9#include <linux/trace_seq.h>
  10#include <linux/spinlock.h>
  11#include <linux/irq_work.h>
  12#include <linux/debugfs.h>
  13#include <linux/uaccess.h>
  14#include <linux/hardirq.h>
  15#include <linux/kthread.h>      /* for self test */
  16#include <linux/kmemcheck.h>
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26#include <linux/fs.h>
  27
  28#include <asm/local.h>
  29
  30static void update_pages_handler(struct work_struct *work);
  31
  32/*
  33 * The ring buffer header is special. We must manually up keep it.
  34 */
  35int ring_buffer_print_entry_header(struct trace_seq *s)
  36{
  37        int ret;
  38
  39        ret = trace_seq_puts(s, "# compressed entry header\n");
  40        ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  41        ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  42        ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
  43        ret = trace_seq_putc(s, '\n');
  44        ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
  45                               RINGBUF_TYPE_PADDING);
  46        ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  47                               RINGBUF_TYPE_TIME_EXTEND);
  48        ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
  49                               RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  50
  51        return ret;
  52}
  53
  54/*
  55 * The ring buffer is made up of a list of pages. A separate list of pages is
  56 * allocated for each CPU. A writer may only write to a buffer that is
  57 * associated with the CPU it is currently executing on.  A reader may read
  58 * from any per cpu buffer.
  59 *
  60 * The reader is special. For each per cpu buffer, the reader has its own
  61 * reader page. When a reader has read the entire reader page, this reader
  62 * page is swapped with another page in the ring buffer.
  63 *
  64 * Now, as long as the writer is off the reader page, the reader can do what
  65 * ever it wants with that page. The writer will never write to that page
  66 * again (as long as it is out of the ring buffer).
  67 *
  68 * Here's some silly ASCII art.
  69 *
  70 *   +------+
  71 *   |reader|          RING BUFFER
  72 *   |page  |
  73 *   +------+        +---+   +---+   +---+
  74 *                   |   |-->|   |-->|   |
  75 *                   +---+   +---+   +---+
  76 *                     ^               |
  77 *                     |               |
  78 *                     +---------------+
  79 *
  80 *
  81 *   +------+
  82 *   |reader|          RING BUFFER
  83 *   |page  |------------------v
  84 *   +------+        +---+   +---+   +---+
  85 *                   |   |-->|   |-->|   |
  86 *                   +---+   +---+   +---+
  87 *                     ^               |
  88 *                     |               |
  89 *                     +---------------+
  90 *
  91 *
  92 *   +------+
  93 *   |reader|          RING BUFFER
  94 *   |page  |------------------v
  95 *   +------+        +---+   +---+   +---+
  96 *      ^            |   |-->|   |-->|   |
  97 *      |            +---+   +---+   +---+
  98 *      |                              |
  99 *      |                              |
 100 *      +------------------------------+
 101 *
 102 *
 103 *   +------+
 104 *   |buffer|          RING BUFFER
 105 *   |page  |------------------v
 106 *   +------+        +---+   +---+   +---+
 107 *      ^            |   |   |   |-->|   |
 108 *      |   New      +---+   +---+   +---+
 109 *      |  Reader------^               |
 110 *      |   page                       |
 111 *      +------------------------------+
 112 *
 113 *
 114 * After we make this swap, the reader can hand this page off to the splice
 115 * code and be done with it. It can even allocate a new page if it needs to
 116 * and swap that into the ring buffer.
 117 *
 118 * We will be using cmpxchg soon to make all this lockless.
 119 *
 120 */
 121
 122/*
 123 * A fast way to enable or disable all ring buffers is to
 124 * call tracing_on or tracing_off. Turning off the ring buffers
 125 * prevents all ring buffers from being recorded to.
 126 * Turning this switch on, makes it OK to write to the
 127 * ring buffer, if the ring buffer is enabled itself.
 128 *
 129 * There's three layers that must be on in order to write
 130 * to the ring buffer.
 131 *
 132 * 1) This global flag must be set.
 133 * 2) The ring buffer must be enabled for recording.
 134 * 3) The per cpu buffer must be enabled for recording.
 135 *
 136 * In case of an anomaly, this global flag has a bit set that
 137 * will permantly disable all ring buffers.
 138 */
 139
 140/*
 141 * Global flag to disable all recording to ring buffers
 142 *  This has two bits: ON, DISABLED
 143 *
 144 *  ON   DISABLED
 145 * ---- ----------
 146 *   0      0        : ring buffers are off
 147 *   1      0        : ring buffers are on
 148 *   X      1        : ring buffers are permanently disabled
 149 */
 150
 151enum {
 152        RB_BUFFERS_ON_BIT       = 0,
 153        RB_BUFFERS_DISABLED_BIT = 1,
 154};
 155
 156enum {
 157        RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
 158        RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
 159};
 160
 161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
 162
 163/* Used for individual buffers (after the counter) */
 164#define RB_BUFFER_OFF           (1 << 20)
 165
 166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 167
 168/**
 169 * tracing_off_permanent - permanently disable ring buffers
 170 *
 171 * This function, once called, will disable all ring buffers
 172 * permanently.
 173 */
 174void tracing_off_permanent(void)
 175{
 176        set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
 177}
 178
 179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 180#define RB_ALIGNMENT            4U
 181#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 182#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 183
 184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 185# define RB_FORCE_8BYTE_ALIGNMENT       0
 186# define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
 187#else
 188# define RB_FORCE_8BYTE_ALIGNMENT       1
 189# define RB_ARCH_ALIGNMENT              8U
 190#endif
 191
 192#define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
 193
 194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 196
 197enum {
 198        RB_LEN_TIME_EXTEND = 8,
 199        RB_LEN_TIME_STAMP = 16,
 200};
 201
 202#define skip_time_extend(event) \
 203        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 204
 205static inline int rb_null_event(struct ring_buffer_event *event)
 206{
 207        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 208}
 209
 210static void rb_event_set_padding(struct ring_buffer_event *event)
 211{
 212        /* padding has a NULL time_delta */
 213        event->type_len = RINGBUF_TYPE_PADDING;
 214        event->time_delta = 0;
 215}
 216
 217static unsigned
 218rb_event_data_length(struct ring_buffer_event *event)
 219{
 220        unsigned length;
 221
 222        if (event->type_len)
 223                length = event->type_len * RB_ALIGNMENT;
 224        else
 225                length = event->array[0];
 226        return length + RB_EVNT_HDR_SIZE;
 227}
 228
 229/*
 230 * Return the length of the given event. Will return
 231 * the length of the time extend if the event is a
 232 * time extend.
 233 */
 234static inline unsigned
 235rb_event_length(struct ring_buffer_event *event)
 236{
 237        switch (event->type_len) {
 238        case RINGBUF_TYPE_PADDING:
 239                if (rb_null_event(event))
 240                        /* undefined */
 241                        return -1;
 242                return  event->array[0] + RB_EVNT_HDR_SIZE;
 243
 244        case RINGBUF_TYPE_TIME_EXTEND:
 245                return RB_LEN_TIME_EXTEND;
 246
 247        case RINGBUF_TYPE_TIME_STAMP:
 248                return RB_LEN_TIME_STAMP;
 249
 250        case RINGBUF_TYPE_DATA:
 251                return rb_event_data_length(event);
 252        default:
 253                BUG();
 254        }
 255        /* not hit */
 256        return 0;
 257}
 258
 259/*
 260 * Return total length of time extend and data,
 261 *   or just the event length for all other events.
 262 */
 263static inline unsigned
 264rb_event_ts_length(struct ring_buffer_event *event)
 265{
 266        unsigned len = 0;
 267
 268        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 269                /* time extends include the data event after it */
 270                len = RB_LEN_TIME_EXTEND;
 271                event = skip_time_extend(event);
 272        }
 273        return len + rb_event_length(event);
 274}
 275
 276/**
 277 * ring_buffer_event_length - return the length of the event
 278 * @event: the event to get the length of
 279 *
 280 * Returns the size of the data load of a data event.
 281 * If the event is something other than a data event, it
 282 * returns the size of the event itself. With the exception
 283 * of a TIME EXTEND, where it still returns the size of the
 284 * data load of the data event after it.
 285 */
 286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 287{
 288        unsigned length;
 289
 290        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 291                event = skip_time_extend(event);
 292
 293        length = rb_event_length(event);
 294        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 295                return length;
 296        length -= RB_EVNT_HDR_SIZE;
 297        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 298                length -= sizeof(event->array[0]);
 299        return length;
 300}
 301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 302
 303/* inline for ring buffer fast paths */
 304static void *
 305rb_event_data(struct ring_buffer_event *event)
 306{
 307        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 308                event = skip_time_extend(event);
 309        BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 310        /* If length is in len field, then array[0] has the data */
 311        if (event->type_len)
 312                return (void *)&event->array[0];
 313        /* Otherwise length is in array[0] and array[1] has the data */
 314        return (void *)&event->array[1];
 315}
 316
 317/**
 318 * ring_buffer_event_data - return the data of the event
 319 * @event: the event to get the data from
 320 */
 321void *ring_buffer_event_data(struct ring_buffer_event *event)
 322{
 323        return rb_event_data(event);
 324}
 325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 326
 327#define for_each_buffer_cpu(buffer, cpu)                \
 328        for_each_cpu(cpu, buffer->cpumask)
 329
 330#define TS_SHIFT        27
 331#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 332#define TS_DELTA_TEST   (~TS_MASK)
 333
 334/* Flag when events were overwritten */
 335#define RB_MISSED_EVENTS        (1 << 31)
 336/* Missed count stored at end */
 337#define RB_MISSED_STORED        (1 << 30)
 338
 339struct buffer_data_page {
 340        u64              time_stamp;    /* page time stamp */
 341        local_t          commit;        /* write committed index */
 342        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 343};
 344
 345/*
 346 * Note, the buffer_page list must be first. The buffer pages
 347 * are allocated in cache lines, which means that each buffer
 348 * page will be at the beginning of a cache line, and thus
 349 * the least significant bits will be zero. We use this to
 350 * add flags in the list struct pointers, to make the ring buffer
 351 * lockless.
 352 */
 353struct buffer_page {
 354        struct list_head list;          /* list of buffer pages */
 355        local_t          write;         /* index for next write */
 356        unsigned         read;          /* index for next read */
 357        local_t          entries;       /* entries on this page */
 358        unsigned long    real_end;      /* real end of data */
 359        struct buffer_data_page *page;  /* Actual data page */
 360};
 361
 362/*
 363 * The buffer page counters, write and entries, must be reset
 364 * atomically when crossing page boundaries. To synchronize this
 365 * update, two counters are inserted into the number. One is
 366 * the actual counter for the write position or count on the page.
 367 *
 368 * The other is a counter of updaters. Before an update happens
 369 * the update partition of the counter is incremented. This will
 370 * allow the updater to update the counter atomically.
 371 *
 372 * The counter is 20 bits, and the state data is 12.
 373 */
 374#define RB_WRITE_MASK           0xfffff
 375#define RB_WRITE_INTCNT         (1 << 20)
 376
 377static void rb_init_page(struct buffer_data_page *bpage)
 378{
 379        local_set(&bpage->commit, 0);
 380}
 381
 382/**
 383 * ring_buffer_page_len - the size of data on the page.
 384 * @page: The page to read
 385 *
 386 * Returns the amount of data on the page, including buffer page header.
 387 */
 388size_t ring_buffer_page_len(void *page)
 389{
 390        return local_read(&((struct buffer_data_page *)page)->commit)
 391                + BUF_PAGE_HDR_SIZE;
 392}
 393
 394/*
 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 396 * this issue out.
 397 */
 398static void free_buffer_page(struct buffer_page *bpage)
 399{
 400        free_page((unsigned long)bpage->page);
 401        kfree(bpage);
 402}
 403
 404/*
 405 * We need to fit the time_stamp delta into 27 bits.
 406 */
 407static inline int test_time_stamp(u64 delta)
 408{
 409        if (delta & TS_DELTA_TEST)
 410                return 1;
 411        return 0;
 412}
 413
 414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 415
 416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 418
 419int ring_buffer_print_page_header(struct trace_seq *s)
 420{
 421        struct buffer_data_page field;
 422        int ret;
 423
 424        ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 425                               "offset:0;\tsize:%u;\tsigned:%u;\n",
 426                               (unsigned int)sizeof(field.time_stamp),
 427                               (unsigned int)is_signed_type(u64));
 428
 429        ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
 430                               "offset:%u;\tsize:%u;\tsigned:%u;\n",
 431                               (unsigned int)offsetof(typeof(field), commit),
 432                               (unsigned int)sizeof(field.commit),
 433                               (unsigned int)is_signed_type(long));
 434
 435        ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
 436                               "offset:%u;\tsize:%u;\tsigned:%u;\n",
 437                               (unsigned int)offsetof(typeof(field), commit),
 438                               1,
 439                               (unsigned int)is_signed_type(long));
 440
 441        ret = trace_seq_printf(s, "\tfield: char data;\t"
 442                               "offset:%u;\tsize:%u;\tsigned:%u;\n",
 443                               (unsigned int)offsetof(typeof(field), data),
 444                               (unsigned int)BUF_PAGE_SIZE,
 445                               (unsigned int)is_signed_type(char));
 446
 447        return ret;
 448}
 449
 450struct rb_irq_work {
 451        struct irq_work                 work;
 452        wait_queue_head_t               waiters;
 453        bool                            waiters_pending;
 454};
 455
 456/*
 457 * head_page == tail_page && head == tail then buffer is empty.
 458 */
 459struct ring_buffer_per_cpu {
 460        int                             cpu;
 461        atomic_t                        record_disabled;
 462        struct ring_buffer              *buffer;
 463        raw_spinlock_t                  reader_lock;    /* serialize readers */
 464        arch_spinlock_t                 lock;
 465        struct lock_class_key           lock_key;
 466        unsigned int                    nr_pages;
 467        struct list_head                *pages;
 468        struct buffer_page              *head_page;     /* read from head */
 469        struct buffer_page              *tail_page;     /* write to tail */
 470        struct buffer_page              *commit_page;   /* committed pages */
 471        struct buffer_page              *reader_page;
 472        unsigned long                   lost_events;
 473        unsigned long                   last_overrun;
 474        local_t                         entries_bytes;
 475        local_t                         entries;
 476        local_t                         overrun;
 477        local_t                         commit_overrun;
 478        local_t                         dropped_events;
 479        local_t                         committing;
 480        local_t                         commits;
 481        unsigned long                   read;
 482        unsigned long                   read_bytes;
 483        u64                             write_stamp;
 484        u64                             read_stamp;
 485        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 486        int                             nr_pages_to_update;
 487        struct list_head                new_pages; /* new pages to add */
 488        struct work_struct              update_pages_work;
 489        struct completion               update_done;
 490
 491        struct rb_irq_work              irq_work;
 492};
 493
 494struct ring_buffer {
 495        unsigned                        flags;
 496        int                             cpus;
 497        atomic_t                        record_disabled;
 498        atomic_t                        resize_disabled;
 499        cpumask_var_t                   cpumask;
 500
 501        struct lock_class_key           *reader_lock_key;
 502
 503        struct mutex                    mutex;
 504
 505        struct ring_buffer_per_cpu      **buffers;
 506
 507#ifdef CONFIG_HOTPLUG_CPU
 508        struct notifier_block           cpu_notify;
 509#endif
 510        u64                             (*clock)(void);
 511
 512        struct rb_irq_work              irq_work;
 513};
 514
 515struct ring_buffer_iter {
 516        struct ring_buffer_per_cpu      *cpu_buffer;
 517        unsigned long                   head;
 518        struct buffer_page              *head_page;
 519        struct buffer_page              *cache_reader_page;
 520        unsigned long                   cache_read;
 521        u64                             read_stamp;
 522};
 523
 524/*
 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 526 *
 527 * Schedules a delayed work to wake up any task that is blocked on the
 528 * ring buffer waiters queue.
 529 */
 530static void rb_wake_up_waiters(struct irq_work *work)
 531{
 532        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 533
 534        wake_up_all(&rbwork->waiters);
 535}
 536
 537/**
 538 * ring_buffer_wait - wait for input to the ring buffer
 539 * @buffer: buffer to wait on
 540 * @cpu: the cpu buffer to wait on
 541 *
 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 543 * as data is added to any of the @buffer's cpu buffers. Otherwise
 544 * it will wait for data to be added to a specific cpu buffer.
 545 */
 546void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
 547{
 548        struct ring_buffer_per_cpu *cpu_buffer;
 549        DEFINE_WAIT(wait);
 550        struct rb_irq_work *work;
 551
 552        /*
 553         * Depending on what the caller is waiting for, either any
 554         * data in any cpu buffer, or a specific buffer, put the
 555         * caller on the appropriate wait queue.
 556         */
 557        if (cpu == RING_BUFFER_ALL_CPUS)
 558                work = &buffer->irq_work;
 559        else {
 560                cpu_buffer = buffer->buffers[cpu];
 561                work = &cpu_buffer->irq_work;
 562        }
 563
 564
 565        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 566
 567        /*
 568         * The events can happen in critical sections where
 569         * checking a work queue can cause deadlocks.
 570         * After adding a task to the queue, this flag is set
 571         * only to notify events to try to wake up the queue
 572         * using irq_work.
 573         *
 574         * We don't clear it even if the buffer is no longer
 575         * empty. The flag only causes the next event to run
 576         * irq_work to do the work queue wake up. The worse
 577         * that can happen if we race with !trace_empty() is that
 578         * an event will cause an irq_work to try to wake up
 579         * an empty queue.
 580         *
 581         * There's no reason to protect this flag either, as
 582         * the work queue and irq_work logic will do the necessary
 583         * synchronization for the wake ups. The only thing
 584         * that is necessary is that the wake up happens after
 585         * a task has been queued. It's OK for spurious wake ups.
 586         */
 587        work->waiters_pending = true;
 588
 589        if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
 590            (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
 591                schedule();
 592
 593        finish_wait(&work->waiters, &wait);
 594}
 595
 596/**
 597 * ring_buffer_poll_wait - poll on buffer input
 598 * @buffer: buffer to wait on
 599 * @cpu: the cpu buffer to wait on
 600 * @filp: the file descriptor
 601 * @poll_table: The poll descriptor
 602 *
 603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 604 * as data is added to any of the @buffer's cpu buffers. Otherwise
 605 * it will wait for data to be added to a specific cpu buffer.
 606 *
 607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
 608 * zero otherwise.
 609 */
 610int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 611                          struct file *filp, poll_table *poll_table)
 612{
 613        struct ring_buffer_per_cpu *cpu_buffer;
 614        struct rb_irq_work *work;
 615
 616        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 617            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 618                return POLLIN | POLLRDNORM;
 619
 620        if (cpu == RING_BUFFER_ALL_CPUS)
 621                work = &buffer->irq_work;
 622        else {
 623                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 624                        return -EINVAL;
 625
 626                cpu_buffer = buffer->buffers[cpu];
 627                work = &cpu_buffer->irq_work;
 628        }
 629
 630        work->waiters_pending = true;
 631        poll_wait(filp, &work->waiters, poll_table);
 632
 633        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 634            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 635                return POLLIN | POLLRDNORM;
 636        return 0;
 637}
 638
 639/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 640#define RB_WARN_ON(b, cond)                                             \
 641        ({                                                              \
 642                int _____ret = unlikely(cond);                          \
 643                if (_____ret) {                                         \
 644                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 645                                struct ring_buffer_per_cpu *__b =       \
 646                                        (void *)b;                      \
 647                                atomic_inc(&__b->buffer->record_disabled); \
 648                        } else                                          \
 649                                atomic_inc(&b->record_disabled);        \
 650                        WARN_ON(1);                                     \
 651                }                                                       \
 652                _____ret;                                               \
 653        })
 654
 655/* Up this if you want to test the TIME_EXTENTS and normalization */
 656#define DEBUG_SHIFT 0
 657
 658static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 659{
 660        /* shift to debug/test normalization and TIME_EXTENTS */
 661        return buffer->clock() << DEBUG_SHIFT;
 662}
 663
 664u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 665{
 666        u64 time;
 667
 668        preempt_disable_notrace();
 669        time = rb_time_stamp(buffer);
 670        preempt_enable_no_resched_notrace();
 671
 672        return time;
 673}
 674EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 675
 676void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 677                                      int cpu, u64 *ts)
 678{
 679        /* Just stupid testing the normalize function and deltas */
 680        *ts >>= DEBUG_SHIFT;
 681}
 682EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 683
 684/*
 685 * Making the ring buffer lockless makes things tricky.
 686 * Although writes only happen on the CPU that they are on,
 687 * and they only need to worry about interrupts. Reads can
 688 * happen on any CPU.
 689 *
 690 * The reader page is always off the ring buffer, but when the
 691 * reader finishes with a page, it needs to swap its page with
 692 * a new one from the buffer. The reader needs to take from
 693 * the head (writes go to the tail). But if a writer is in overwrite
 694 * mode and wraps, it must push the head page forward.
 695 *
 696 * Here lies the problem.
 697 *
 698 * The reader must be careful to replace only the head page, and
 699 * not another one. As described at the top of the file in the
 700 * ASCII art, the reader sets its old page to point to the next
 701 * page after head. It then sets the page after head to point to
 702 * the old reader page. But if the writer moves the head page
 703 * during this operation, the reader could end up with the tail.
 704 *
 705 * We use cmpxchg to help prevent this race. We also do something
 706 * special with the page before head. We set the LSB to 1.
 707 *
 708 * When the writer must push the page forward, it will clear the
 709 * bit that points to the head page, move the head, and then set
 710 * the bit that points to the new head page.
 711 *
 712 * We also don't want an interrupt coming in and moving the head
 713 * page on another writer. Thus we use the second LSB to catch
 714 * that too. Thus:
 715 *
 716 * head->list->prev->next        bit 1          bit 0
 717 *                              -------        -------
 718 * Normal page                     0              0
 719 * Points to head page             0              1
 720 * New head page                   1              0
 721 *
 722 * Note we can not trust the prev pointer of the head page, because:
 723 *
 724 * +----+       +-----+        +-----+
 725 * |    |------>|  T  |---X--->|  N  |
 726 * |    |<------|     |        |     |
 727 * +----+       +-----+        +-----+
 728 *   ^                           ^ |
 729 *   |          +-----+          | |
 730 *   +----------|  R  |----------+ |
 731 *              |     |<-----------+
 732 *              +-----+
 733 *
 734 * Key:  ---X-->  HEAD flag set in pointer
 735 *         T      Tail page
 736 *         R      Reader page
 737 *         N      Next page
 738 *
 739 * (see __rb_reserve_next() to see where this happens)
 740 *
 741 *  What the above shows is that the reader just swapped out
 742 *  the reader page with a page in the buffer, but before it
 743 *  could make the new header point back to the new page added
 744 *  it was preempted by a writer. The writer moved forward onto
 745 *  the new page added by the reader and is about to move forward
 746 *  again.
 747 *
 748 *  You can see, it is legitimate for the previous pointer of
 749 *  the head (or any page) not to point back to itself. But only
 750 *  temporarially.
 751 */
 752
 753#define RB_PAGE_NORMAL          0UL
 754#define RB_PAGE_HEAD            1UL
 755#define RB_PAGE_UPDATE          2UL
 756
 757
 758#define RB_FLAG_MASK            3UL
 759
 760/* PAGE_MOVED is not part of the mask */
 761#define RB_PAGE_MOVED           4UL
 762
 763/*
 764 * rb_list_head - remove any bit
 765 */
 766static struct list_head *rb_list_head(struct list_head *list)
 767{
 768        unsigned long val = (unsigned long)list;
 769
 770        return (struct list_head *)(val & ~RB_FLAG_MASK);
 771}
 772
 773/*
 774 * rb_is_head_page - test if the given page is the head page
 775 *
 776 * Because the reader may move the head_page pointer, we can
 777 * not trust what the head page is (it may be pointing to
 778 * the reader page). But if the next page is a header page,
 779 * its flags will be non zero.
 780 */
 781static inline int
 782rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 783                struct buffer_page *page, struct list_head *list)
 784{
 785        unsigned long val;
 786
 787        val = (unsigned long)list->next;
 788
 789        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 790                return RB_PAGE_MOVED;
 791
 792        return val & RB_FLAG_MASK;
 793}
 794
 795/*
 796 * rb_is_reader_page
 797 *
 798 * The unique thing about the reader page, is that, if the
 799 * writer is ever on it, the previous pointer never points
 800 * back to the reader page.
 801 */
 802static int rb_is_reader_page(struct buffer_page *page)
 803{
 804        struct list_head *list = page->list.prev;
 805
 806        return rb_list_head(list->next) != &page->list;
 807}
 808
 809/*
 810 * rb_set_list_to_head - set a list_head to be pointing to head.
 811 */
 812static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 813                                struct list_head *list)
 814{
 815        unsigned long *ptr;
 816
 817        ptr = (unsigned long *)&list->next;
 818        *ptr |= RB_PAGE_HEAD;
 819        *ptr &= ~RB_PAGE_UPDATE;
 820}
 821
 822/*
 823 * rb_head_page_activate - sets up head page
 824 */
 825static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 826{
 827        struct buffer_page *head;
 828
 829        head = cpu_buffer->head_page;
 830        if (!head)
 831                return;
 832
 833        /*
 834         * Set the previous list pointer to have the HEAD flag.
 835         */
 836        rb_set_list_to_head(cpu_buffer, head->list.prev);
 837}
 838
 839static void rb_list_head_clear(struct list_head *list)
 840{
 841        unsigned long *ptr = (unsigned long *)&list->next;
 842
 843        *ptr &= ~RB_FLAG_MASK;
 844}
 845
 846/*
 847 * rb_head_page_dactivate - clears head page ptr (for free list)
 848 */
 849static void
 850rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 851{
 852        struct list_head *hd;
 853
 854        /* Go through the whole list and clear any pointers found. */
 855        rb_list_head_clear(cpu_buffer->pages);
 856
 857        list_for_each(hd, cpu_buffer->pages)
 858                rb_list_head_clear(hd);
 859}
 860
 861static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 862                            struct buffer_page *head,
 863                            struct buffer_page *prev,
 864                            int old_flag, int new_flag)
 865{
 866        struct list_head *list;
 867        unsigned long val = (unsigned long)&head->list;
 868        unsigned long ret;
 869
 870        list = &prev->list;
 871
 872        val &= ~RB_FLAG_MASK;
 873
 874        ret = cmpxchg((unsigned long *)&list->next,
 875                      val | old_flag, val | new_flag);
 876
 877        /* check if the reader took the page */
 878        if ((ret & ~RB_FLAG_MASK) != val)
 879                return RB_PAGE_MOVED;
 880
 881        return ret & RB_FLAG_MASK;
 882}
 883
 884static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 885                                   struct buffer_page *head,
 886                                   struct buffer_page *prev,
 887                                   int old_flag)
 888{
 889        return rb_head_page_set(cpu_buffer, head, prev,
 890                                old_flag, RB_PAGE_UPDATE);
 891}
 892
 893static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 894                                 struct buffer_page *head,
 895                                 struct buffer_page *prev,
 896                                 int old_flag)
 897{
 898        return rb_head_page_set(cpu_buffer, head, prev,
 899                                old_flag, RB_PAGE_HEAD);
 900}
 901
 902static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 903                                   struct buffer_page *head,
 904                                   struct buffer_page *prev,
 905                                   int old_flag)
 906{
 907        return rb_head_page_set(cpu_buffer, head, prev,
 908                                old_flag, RB_PAGE_NORMAL);
 909}
 910
 911static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 912                               struct buffer_page **bpage)
 913{
 914        struct list_head *p = rb_list_head((*bpage)->list.next);
 915
 916        *bpage = list_entry(p, struct buffer_page, list);
 917}
 918
 919static struct buffer_page *
 920rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 921{
 922        struct buffer_page *head;
 923        struct buffer_page *page;
 924        struct list_head *list;
 925        int i;
 926
 927        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 928                return NULL;
 929
 930        /* sanity check */
 931        list = cpu_buffer->pages;
 932        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 933                return NULL;
 934
 935        page = head = cpu_buffer->head_page;
 936        /*
 937         * It is possible that the writer moves the header behind
 938         * where we started, and we miss in one loop.
 939         * A second loop should grab the header, but we'll do
 940         * three loops just because I'm paranoid.
 941         */
 942        for (i = 0; i < 3; i++) {
 943                do {
 944                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 945                                cpu_buffer->head_page = page;
 946                                return page;
 947                        }
 948                        rb_inc_page(cpu_buffer, &page);
 949                } while (page != head);
 950        }
 951
 952        RB_WARN_ON(cpu_buffer, 1);
 953
 954        return NULL;
 955}
 956
 957static int rb_head_page_replace(struct buffer_page *old,
 958                                struct buffer_page *new)
 959{
 960        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 961        unsigned long val;
 962        unsigned long ret;
 963
 964        val = *ptr & ~RB_FLAG_MASK;
 965        val |= RB_PAGE_HEAD;
 966
 967        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 968
 969        return ret == val;
 970}
 971
 972/*
 973 * rb_tail_page_update - move the tail page forward
 974 *
 975 * Returns 1 if moved tail page, 0 if someone else did.
 976 */
 977static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
 978                               struct buffer_page *tail_page,
 979                               struct buffer_page *next_page)
 980{
 981        struct buffer_page *old_tail;
 982        unsigned long old_entries;
 983        unsigned long old_write;
 984        int ret = 0;
 985
 986        /*
 987         * The tail page now needs to be moved forward.
 988         *
 989         * We need to reset the tail page, but without messing
 990         * with possible erasing of data brought in by interrupts
 991         * that have moved the tail page and are currently on it.
 992         *
 993         * We add a counter to the write field to denote this.
 994         */
 995        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
 996        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
 997
 998        /*
 999         * Just make sure we have seen our old_write and synchronize
1000         * with any interrupts that come in.
1001         */
1002        barrier();
1003
1004        /*
1005         * If the tail page is still the same as what we think
1006         * it is, then it is up to us to update the tail
1007         * pointer.
1008         */
1009        if (tail_page == cpu_buffer->tail_page) {
1010                /* Zero the write counter */
1011                unsigned long val = old_write & ~RB_WRITE_MASK;
1012                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013
1014                /*
1015                 * This will only succeed if an interrupt did
1016                 * not come in and change it. In which case, we
1017                 * do not want to modify it.
1018                 *
1019                 * We add (void) to let the compiler know that we do not care
1020                 * about the return value of these functions. We use the
1021                 * cmpxchg to only update if an interrupt did not already
1022                 * do it for us. If the cmpxchg fails, we don't care.
1023                 */
1024                (void)local_cmpxchg(&next_page->write, old_write, val);
1025                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026
1027                /*
1028                 * No need to worry about races with clearing out the commit.
1029                 * it only can increment when a commit takes place. But that
1030                 * only happens in the outer most nested commit.
1031                 */
1032                local_set(&next_page->page->commit, 0);
1033
1034                old_tail = cmpxchg(&cpu_buffer->tail_page,
1035                                   tail_page, next_page);
1036
1037                if (old_tail == tail_page)
1038                        ret = 1;
1039        }
1040
1041        return ret;
1042}
1043
1044static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045                          struct buffer_page *bpage)
1046{
1047        unsigned long val = (unsigned long)bpage;
1048
1049        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050                return 1;
1051
1052        return 0;
1053}
1054
1055/**
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1057 */
1058static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059                         struct list_head *list)
1060{
1061        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062                return 1;
1063        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064                return 1;
1065        return 0;
1066}
1067
1068/**
1069 * rb_check_pages - integrity check of buffer pages
1070 * @cpu_buffer: CPU buffer with pages to test
1071 *
1072 * As a safety measure we check to make sure the data pages have not
1073 * been corrupted.
1074 */
1075static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076{
1077        struct list_head *head = cpu_buffer->pages;
1078        struct buffer_page *bpage, *tmp;
1079
1080        /* Reset the head page if it exists */
1081        if (cpu_buffer->head_page)
1082                rb_set_head_page(cpu_buffer);
1083
1084        rb_head_page_deactivate(cpu_buffer);
1085
1086        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087                return -1;
1088        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089                return -1;
1090
1091        if (rb_check_list(cpu_buffer, head))
1092                return -1;
1093
1094        list_for_each_entry_safe(bpage, tmp, head, list) {
1095                if (RB_WARN_ON(cpu_buffer,
1096                               bpage->list.next->prev != &bpage->list))
1097                        return -1;
1098                if (RB_WARN_ON(cpu_buffer,
1099                               bpage->list.prev->next != &bpage->list))
1100                        return -1;
1101                if (rb_check_list(cpu_buffer, &bpage->list))
1102                        return -1;
1103        }
1104
1105        rb_head_page_activate(cpu_buffer);
1106
1107        return 0;
1108}
1109
1110static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111{
1112        int i;
1113        struct buffer_page *bpage, *tmp;
1114
1115        for (i = 0; i < nr_pages; i++) {
1116                struct page *page;
1117                /*
1118                 * __GFP_NORETRY flag makes sure that the allocation fails
1119                 * gracefully without invoking oom-killer and the system is
1120                 * not destabilized.
1121                 */
1122                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123                                    GFP_KERNEL | __GFP_NORETRY,
1124                                    cpu_to_node(cpu));
1125                if (!bpage)
1126                        goto free_pages;
1127
1128                list_add(&bpage->list, pages);
1129
1130                page = alloc_pages_node(cpu_to_node(cpu),
1131                                        GFP_KERNEL | __GFP_NORETRY, 0);
1132                if (!page)
1133                        goto free_pages;
1134                bpage->page = page_address(page);
1135                rb_init_page(bpage->page);
1136        }
1137
1138        return 0;
1139
1140free_pages:
1141        list_for_each_entry_safe(bpage, tmp, pages, list) {
1142                list_del_init(&bpage->list);
1143                free_buffer_page(bpage);
1144        }
1145
1146        return -ENOMEM;
1147}
1148
1149static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150                             unsigned nr_pages)
1151{
1152        LIST_HEAD(pages);
1153
1154        WARN_ON(!nr_pages);
1155
1156        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157                return -ENOMEM;
1158
1159        /*
1160         * The ring buffer page list is a circular list that does not
1161         * start and end with a list head. All page list items point to
1162         * other pages.
1163         */
1164        cpu_buffer->pages = pages.next;
1165        list_del(&pages);
1166
1167        cpu_buffer->nr_pages = nr_pages;
1168
1169        rb_check_pages(cpu_buffer);
1170
1171        return 0;
1172}
1173
1174static struct ring_buffer_per_cpu *
1175rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176{
1177        struct ring_buffer_per_cpu *cpu_buffer;
1178        struct buffer_page *bpage;
1179        struct page *page;
1180        int ret;
1181
1182        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183                                  GFP_KERNEL, cpu_to_node(cpu));
1184        if (!cpu_buffer)
1185                return NULL;
1186
1187        cpu_buffer->cpu = cpu;
1188        cpu_buffer->buffer = buffer;
1189        raw_spin_lock_init(&cpu_buffer->reader_lock);
1190        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193        init_completion(&cpu_buffer->update_done);
1194        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196
1197        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198                            GFP_KERNEL, cpu_to_node(cpu));
1199        if (!bpage)
1200                goto fail_free_buffer;
1201
1202        rb_check_bpage(cpu_buffer, bpage);
1203
1204        cpu_buffer->reader_page = bpage;
1205        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206        if (!page)
1207                goto fail_free_reader;
1208        bpage->page = page_address(page);
1209        rb_init_page(bpage->page);
1210
1211        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213
1214        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215        if (ret < 0)
1216                goto fail_free_reader;
1217
1218        cpu_buffer->head_page
1219                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1220        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221
1222        rb_head_page_activate(cpu_buffer);
1223
1224        return cpu_buffer;
1225
1226 fail_free_reader:
1227        free_buffer_page(cpu_buffer->reader_page);
1228
1229 fail_free_buffer:
1230        kfree(cpu_buffer);
1231        return NULL;
1232}
1233
1234static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235{
1236        struct list_head *head = cpu_buffer->pages;
1237        struct buffer_page *bpage, *tmp;
1238
1239        free_buffer_page(cpu_buffer->reader_page);
1240
1241        rb_head_page_deactivate(cpu_buffer);
1242
1243        if (head) {
1244                list_for_each_entry_safe(bpage, tmp, head, list) {
1245                        list_del_init(&bpage->list);
1246                        free_buffer_page(bpage);
1247                }
1248                bpage = list_entry(head, struct buffer_page, list);
1249                free_buffer_page(bpage);
1250        }
1251
1252        kfree(cpu_buffer);
1253}
1254
1255#ifdef CONFIG_HOTPLUG_CPU
1256static int rb_cpu_notify(struct notifier_block *self,
1257                         unsigned long action, void *hcpu);
1258#endif
1259
1260/**
1261 * __ring_buffer_alloc - allocate a new ring_buffer
1262 * @size: the size in bytes per cpu that is needed.
1263 * @flags: attributes to set for the ring buffer.
1264 *
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1269 */
1270struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271                                        struct lock_class_key *key)
1272{
1273        struct ring_buffer *buffer;
1274        int bsize;
1275        int cpu, nr_pages;
1276
1277        /* keep it in its own cache line */
1278        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279                         GFP_KERNEL);
1280        if (!buffer)
1281                return NULL;
1282
1283        if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284                goto fail_free_buffer;
1285
1286        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287        buffer->flags = flags;
1288        buffer->clock = trace_clock_local;
1289        buffer->reader_lock_key = key;
1290
1291        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292        init_waitqueue_head(&buffer->irq_work.waiters);
1293
1294        /* need at least two pages */
1295        if (nr_pages < 2)
1296                nr_pages = 2;
1297
1298        /*
1299         * In case of non-hotplug cpu, if the ring-buffer is allocated
1300         * in early initcall, it will not be notified of secondary cpus.
1301         * In that off case, we need to allocate for all possible cpus.
1302         */
1303#ifdef CONFIG_HOTPLUG_CPU
1304        get_online_cpus();
1305        cpumask_copy(buffer->cpumask, cpu_online_mask);
1306#else
1307        cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308#endif
1309        buffer->cpus = nr_cpu_ids;
1310
1311        bsize = sizeof(void *) * nr_cpu_ids;
1312        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313                                  GFP_KERNEL);
1314        if (!buffer->buffers)
1315                goto fail_free_cpumask;
1316
1317        for_each_buffer_cpu(buffer, cpu) {
1318                buffer->buffers[cpu] =
1319                        rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320                if (!buffer->buffers[cpu])
1321                        goto fail_free_buffers;
1322        }
1323
1324#ifdef CONFIG_HOTPLUG_CPU
1325        buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326        buffer->cpu_notify.priority = 0;
1327        register_cpu_notifier(&buffer->cpu_notify);
1328#endif
1329
1330        put_online_cpus();
1331        mutex_init(&buffer->mutex);
1332
1333        return buffer;
1334
1335 fail_free_buffers:
1336        for_each_buffer_cpu(buffer, cpu) {
1337                if (buffer->buffers[cpu])
1338                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1339        }
1340        kfree(buffer->buffers);
1341
1342 fail_free_cpumask:
1343        free_cpumask_var(buffer->cpumask);
1344        put_online_cpus();
1345
1346 fail_free_buffer:
1347        kfree(buffer);
1348        return NULL;
1349}
1350EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1351
1352/**
1353 * ring_buffer_free - free a ring buffer.
1354 * @buffer: the buffer to free.
1355 */
1356void
1357ring_buffer_free(struct ring_buffer *buffer)
1358{
1359        int cpu;
1360
1361        get_online_cpus();
1362
1363#ifdef CONFIG_HOTPLUG_CPU
1364        unregister_cpu_notifier(&buffer->cpu_notify);
1365#endif
1366
1367        for_each_buffer_cpu(buffer, cpu)
1368                rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
1370        put_online_cpus();
1371
1372        kfree(buffer->buffers);
1373        free_cpumask_var(buffer->cpumask);
1374
1375        kfree(buffer);
1376}
1377EXPORT_SYMBOL_GPL(ring_buffer_free);
1378
1379void ring_buffer_set_clock(struct ring_buffer *buffer,
1380                           u64 (*clock)(void))
1381{
1382        buffer->clock = clock;
1383}
1384
1385static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
1387static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388{
1389        return local_read(&bpage->entries) & RB_WRITE_MASK;
1390}
1391
1392static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393{
1394        return local_read(&bpage->write) & RB_WRITE_MASK;
1395}
1396
1397static int
1398rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399{
1400        struct list_head *tail_page, *to_remove, *next_page;
1401        struct buffer_page *to_remove_page, *tmp_iter_page;
1402        struct buffer_page *last_page, *first_page;
1403        unsigned int nr_removed;
1404        unsigned long head_bit;
1405        int page_entries;
1406
1407        head_bit = 0;
1408
1409        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410        atomic_inc(&cpu_buffer->record_disabled);
1411        /*
1412         * We don't race with the readers since we have acquired the reader
1413         * lock. We also don't race with writers after disabling recording.
1414         * This makes it easy to figure out the first and the last page to be
1415         * removed from the list. We unlink all the pages in between including
1416         * the first and last pages. This is done in a busy loop so that we
1417         * lose the least number of traces.
1418         * The pages are freed after we restart recording and unlock readers.
1419         */
1420        tail_page = &cpu_buffer->tail_page->list;
1421
1422        /*
1423         * tail page might be on reader page, we remove the next page
1424         * from the ring buffer
1425         */
1426        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427                tail_page = rb_list_head(tail_page->next);
1428        to_remove = tail_page;
1429
1430        /* start of pages to remove */
1431        first_page = list_entry(rb_list_head(to_remove->next),
1432                                struct buffer_page, list);
1433
1434        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435                to_remove = rb_list_head(to_remove)->next;
1436                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437        }
1438
1439        next_page = rb_list_head(to_remove)->next;
1440
1441        /*
1442         * Now we remove all pages between tail_page and next_page.
1443         * Make sure that we have head_bit value preserved for the
1444         * next page
1445         */
1446        tail_page->next = (struct list_head *)((unsigned long)next_page |
1447                                                head_bit);
1448        next_page = rb_list_head(next_page);
1449        next_page->prev = tail_page;
1450
1451        /* make sure pages points to a valid page in the ring buffer */
1452        cpu_buffer->pages = next_page;
1453
1454        /* update head page */
1455        if (head_bit)
1456                cpu_buffer->head_page = list_entry(next_page,
1457                                                struct buffer_page, list);
1458
1459        /*
1460         * change read pointer to make sure any read iterators reset
1461         * themselves
1462         */
1463        cpu_buffer->read = 0;
1464
1465        /* pages are removed, resume tracing and then free the pages */
1466        atomic_dec(&cpu_buffer->record_disabled);
1467        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468
1469        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471        /* last buffer page to remove */
1472        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473                                list);
1474        tmp_iter_page = first_page;
1475
1476        do {
1477                to_remove_page = tmp_iter_page;
1478                rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480                /* update the counters */
1481                page_entries = rb_page_entries(to_remove_page);
1482                if (page_entries) {
1483                        /*
1484                         * If something was added to this page, it was full
1485                         * since it is not the tail page. So we deduct the
1486                         * bytes consumed in ring buffer from here.
1487                         * Increment overrun to account for the lost events.
1488                         */
1489                        local_add(page_entries, &cpu_buffer->overrun);
1490                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491                }
1492
1493                /*
1494                 * We have already removed references to this list item, just
1495                 * free up the buffer_page and its page
1496                 */
1497                free_buffer_page(to_remove_page);
1498                nr_removed--;
1499
1500        } while (to_remove_page != last_page);
1501
1502        RB_WARN_ON(cpu_buffer, nr_removed);
1503
1504        return nr_removed == 0;
1505}
1506
1507static int
1508rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509{
1510        struct list_head *pages = &cpu_buffer->new_pages;
1511        int retries, success;
1512
1513        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514        /*
1515         * We are holding the reader lock, so the reader page won't be swapped
1516         * in the ring buffer. Now we are racing with the writer trying to
1517         * move head page and the tail page.
1518         * We are going to adapt the reader page update process where:
1519         * 1. We first splice the start and end of list of new pages between
1520         *    the head page and its previous page.
1521         * 2. We cmpxchg the prev_page->next to point from head page to the
1522         *    start of new pages list.
1523         * 3. Finally, we update the head->prev to the end of new list.
1524         *
1525         * We will try this process 10 times, to make sure that we don't keep
1526         * spinning.
1527         */
1528        retries = 10;
1529        success = 0;
1530        while (retries--) {
1531                struct list_head *head_page, *prev_page, *r;
1532                struct list_head *last_page, *first_page;
1533                struct list_head *head_page_with_bit;
1534
1535                head_page = &rb_set_head_page(cpu_buffer)->list;
1536                if (!head_page)
1537                        break;
1538                prev_page = head_page->prev;
1539
1540                first_page = pages->next;
1541                last_page  = pages->prev;
1542
1543                head_page_with_bit = (struct list_head *)
1544                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546                last_page->next = head_page_with_bit;
1547                first_page->prev = prev_page;
1548
1549                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551                if (r == head_page_with_bit) {
1552                        /*
1553                         * yay, we replaced the page pointer to our new list,
1554                         * now, we just have to update to head page's prev
1555                         * pointer to point to end of list
1556                         */
1557                        head_page->prev = last_page;
1558                        success = 1;
1559                        break;
1560                }
1561        }
1562
1563        if (success)
1564                INIT_LIST_HEAD(pages);
1565        /*
1566         * If we weren't successful in adding in new pages, warn and stop
1567         * tracing
1568         */
1569        RB_WARN_ON(cpu_buffer, !success);
1570        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571
1572        /* free pages if they weren't inserted */
1573        if (!success) {
1574                struct buffer_page *bpage, *tmp;
1575                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576                                         list) {
1577                        list_del_init(&bpage->list);
1578                        free_buffer_page(bpage);
1579                }
1580        }
1581        return success;
1582}
1583
1584static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585{
1586        int success;
1587
1588        if (cpu_buffer->nr_pages_to_update > 0)
1589                success = rb_insert_pages(cpu_buffer);
1590        else
1591                success = rb_remove_pages(cpu_buffer,
1592                                        -cpu_buffer->nr_pages_to_update);
1593
1594        if (success)
1595                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596}
1597
1598static void update_pages_handler(struct work_struct *work)
1599{
1600        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601                        struct ring_buffer_per_cpu, update_pages_work);
1602        rb_update_pages(cpu_buffer);
1603        complete(&cpu_buffer->update_done);
1604}
1605
1606/**
1607 * ring_buffer_resize - resize the ring buffer
1608 * @buffer: the buffer to resize.
1609 * @size: the new size.
1610 * @cpu_id: the cpu buffer to resize
1611 *
1612 * Minimum size is 2 * BUF_PAGE_SIZE.
1613 *
1614 * Returns 0 on success and < 0 on failure.
1615 */
1616int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617                        int cpu_id)
1618{
1619        struct ring_buffer_per_cpu *cpu_buffer;
1620        unsigned nr_pages;
1621        int cpu, err = 0;
1622
1623        /*
1624         * Always succeed at resizing a non-existent buffer:
1625         */
1626        if (!buffer)
1627                return size;
1628
1629        /* Make sure the requested buffer exists */
1630        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632                return size;
1633
1634        size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1635        size *= BUF_PAGE_SIZE;
1636
1637        /* we need a minimum of two pages */
1638        if (size < BUF_PAGE_SIZE * 2)
1639                size = BUF_PAGE_SIZE * 2;
1640
1641        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1642
1643        /*
1644         * Don't succeed if resizing is disabled, as a reader might be
1645         * manipulating the ring buffer and is expecting a sane state while
1646         * this is true.
1647         */
1648        if (atomic_read(&buffer->resize_disabled))
1649                return -EBUSY;
1650
1651        /* prevent another thread from changing buffer sizes */
1652        mutex_lock(&buffer->mutex);
1653
1654        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1655                /* calculate the pages to update */
1656                for_each_buffer_cpu(buffer, cpu) {
1657                        cpu_buffer = buffer->buffers[cpu];
1658
1659                        cpu_buffer->nr_pages_to_update = nr_pages -
1660                                                        cpu_buffer->nr_pages;
1661                        /*
1662                         * nothing more to do for removing pages or no update
1663                         */
1664                        if (cpu_buffer->nr_pages_to_update <= 0)
1665                                continue;
1666                        /*
1667                         * to add pages, make sure all new pages can be
1668                         * allocated without receiving ENOMEM
1669                         */
1670                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1671                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1672                                                &cpu_buffer->new_pages, cpu)) {
1673                                /* not enough memory for new pages */
1674                                err = -ENOMEM;
1675                                goto out_err;
1676                        }
1677                }
1678
1679                get_online_cpus();
1680                /*
1681                 * Fire off all the required work handlers
1682                 * We can't schedule on offline CPUs, but it's not necessary
1683                 * since we can change their buffer sizes without any race.
1684                 */
1685                for_each_buffer_cpu(buffer, cpu) {
1686                        cpu_buffer = buffer->buffers[cpu];
1687                        if (!cpu_buffer->nr_pages_to_update)
1688                                continue;
1689
1690                        /* The update must run on the CPU that is being updated. */
1691                        preempt_disable();
1692                        if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1693                                rb_update_pages(cpu_buffer);
1694                                cpu_buffer->nr_pages_to_update = 0;
1695                        } else {
1696                                /*
1697                                 * Can not disable preemption for schedule_work_on()
1698                                 * on PREEMPT_RT.
1699                                 */
1700                                preempt_enable();
1701                                schedule_work_on(cpu,
1702                                                &cpu_buffer->update_pages_work);
1703                                preempt_disable();
1704                        }
1705                        preempt_enable();
1706                }
1707
1708                /* wait for all the updates to complete */
1709                for_each_buffer_cpu(buffer, cpu) {
1710                        cpu_buffer = buffer->buffers[cpu];
1711                        if (!cpu_buffer->nr_pages_to_update)
1712                                continue;
1713
1714                        if (cpu_online(cpu))
1715                                wait_for_completion(&cpu_buffer->update_done);
1716                        cpu_buffer->nr_pages_to_update = 0;
1717                }
1718
1719                put_online_cpus();
1720        } else {
1721                /* Make sure this CPU has been intitialized */
1722                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1723                        goto out;
1724
1725                cpu_buffer = buffer->buffers[cpu_id];
1726
1727                if (nr_pages == cpu_buffer->nr_pages)
1728                        goto out;
1729
1730                cpu_buffer->nr_pages_to_update = nr_pages -
1731                                                cpu_buffer->nr_pages;
1732
1733                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1734                if (cpu_buffer->nr_pages_to_update > 0 &&
1735                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1736                                            &cpu_buffer->new_pages, cpu_id)) {
1737                        err = -ENOMEM;
1738                        goto out_err;
1739                }
1740
1741                get_online_cpus();
1742
1743                preempt_disable();
1744                /* The update must run on the CPU that is being updated. */
1745                if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1746                        rb_update_pages(cpu_buffer);
1747                else {
1748                        /*
1749                         * Can not disable preemption for schedule_work_on()
1750                         * on PREEMPT_RT.
1751                         */
1752                        preempt_enable();
1753                        schedule_work_on(cpu_id,
1754                                         &cpu_buffer->update_pages_work);
1755                        wait_for_completion(&cpu_buffer->update_done);
1756                        preempt_disable();
1757                }
1758                preempt_enable();
1759
1760                cpu_buffer->nr_pages_to_update = 0;
1761                put_online_cpus();
1762        }
1763
1764 out:
1765        /*
1766         * The ring buffer resize can happen with the ring buffer
1767         * enabled, so that the update disturbs the tracing as little
1768         * as possible. But if the buffer is disabled, we do not need
1769         * to worry about that, and we can take the time to verify
1770         * that the buffer is not corrupt.
1771         */
1772        if (atomic_read(&buffer->record_disabled)) {
1773                atomic_inc(&buffer->record_disabled);
1774                /*
1775                 * Even though the buffer was disabled, we must make sure
1776                 * that it is truly disabled before calling rb_check_pages.
1777                 * There could have been a race between checking
1778                 * record_disable and incrementing it.
1779                 */
1780                synchronize_sched();
1781                for_each_buffer_cpu(buffer, cpu) {
1782                        cpu_buffer = buffer->buffers[cpu];
1783                        rb_check_pages(cpu_buffer);
1784                }
1785                atomic_dec(&buffer->record_disabled);
1786        }
1787
1788        mutex_unlock(&buffer->mutex);
1789        return size;
1790
1791 out_err:
1792        for_each_buffer_cpu(buffer, cpu) {
1793                struct buffer_page *bpage, *tmp;
1794
1795                cpu_buffer = buffer->buffers[cpu];
1796                cpu_buffer->nr_pages_to_update = 0;
1797
1798                if (list_empty(&cpu_buffer->new_pages))
1799                        continue;
1800
1801                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1802                                        list) {
1803                        list_del_init(&bpage->list);
1804                        free_buffer_page(bpage);
1805                }
1806        }
1807        mutex_unlock(&buffer->mutex);
1808        return err;
1809}
1810EXPORT_SYMBOL_GPL(ring_buffer_resize);
1811
1812void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1813{
1814        mutex_lock(&buffer->mutex);
1815        if (val)
1816                buffer->flags |= RB_FL_OVERWRITE;
1817        else
1818                buffer->flags &= ~RB_FL_OVERWRITE;
1819        mutex_unlock(&buffer->mutex);
1820}
1821EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1822
1823static inline void *
1824__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1825{
1826        return bpage->data + index;
1827}
1828
1829static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1830{
1831        return bpage->page->data + index;
1832}
1833
1834static inline struct ring_buffer_event *
1835rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1836{
1837        return __rb_page_index(cpu_buffer->reader_page,
1838                               cpu_buffer->reader_page->read);
1839}
1840
1841static inline struct ring_buffer_event *
1842rb_iter_head_event(struct ring_buffer_iter *iter)
1843{
1844        return __rb_page_index(iter->head_page, iter->head);
1845}
1846
1847static inline unsigned rb_page_commit(struct buffer_page *bpage)
1848{
1849        return local_read(&bpage->page->commit);
1850}
1851
1852/* Size is determined by what has been committed */
1853static inline unsigned rb_page_size(struct buffer_page *bpage)
1854{
1855        return rb_page_commit(bpage);
1856}
1857
1858static inline unsigned
1859rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1860{
1861        return rb_page_commit(cpu_buffer->commit_page);
1862}
1863
1864static inline unsigned
1865rb_event_index(struct ring_buffer_event *event)
1866{
1867        unsigned long addr = (unsigned long)event;
1868
1869        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1870}
1871
1872static inline int
1873rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1874                   struct ring_buffer_event *event)
1875{
1876        unsigned long addr = (unsigned long)event;
1877        unsigned long index;
1878
1879        index = rb_event_index(event);
1880        addr &= PAGE_MASK;
1881
1882        return cpu_buffer->commit_page->page == (void *)addr &&
1883                rb_commit_index(cpu_buffer) == index;
1884}
1885
1886static void
1887rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1888{
1889        unsigned long max_count;
1890
1891        /*
1892         * We only race with interrupts and NMIs on this CPU.
1893         * If we own the commit event, then we can commit
1894         * all others that interrupted us, since the interruptions
1895         * are in stack format (they finish before they come
1896         * back to us). This allows us to do a simple loop to
1897         * assign the commit to the tail.
1898         */
1899 again:
1900        max_count = cpu_buffer->nr_pages * 100;
1901
1902        while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1903                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1904                        return;
1905                if (RB_WARN_ON(cpu_buffer,
1906                               rb_is_reader_page(cpu_buffer->tail_page)))
1907                        return;
1908                local_set(&cpu_buffer->commit_page->page->commit,
1909                          rb_page_write(cpu_buffer->commit_page));
1910                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1911                cpu_buffer->write_stamp =
1912                        cpu_buffer->commit_page->page->time_stamp;
1913                /* add barrier to keep gcc from optimizing too much */
1914                barrier();
1915        }
1916        while (rb_commit_index(cpu_buffer) !=
1917               rb_page_write(cpu_buffer->commit_page)) {
1918
1919                local_set(&cpu_buffer->commit_page->page->commit,
1920                          rb_page_write(cpu_buffer->commit_page));
1921                RB_WARN_ON(cpu_buffer,
1922                           local_read(&cpu_buffer->commit_page->page->commit) &
1923                           ~RB_WRITE_MASK);
1924                barrier();
1925        }
1926
1927        /* again, keep gcc from optimizing */
1928        barrier();
1929
1930        /*
1931         * If an interrupt came in just after the first while loop
1932         * and pushed the tail page forward, we will be left with
1933         * a dangling commit that will never go forward.
1934         */
1935        if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1936                goto again;
1937}
1938
1939static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1940{
1941        cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1942        cpu_buffer->reader_page->read = 0;
1943}
1944
1945static void rb_inc_iter(struct ring_buffer_iter *iter)
1946{
1947        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1948
1949        /*
1950         * The iterator could be on the reader page (it starts there).
1951         * But the head could have moved, since the reader was
1952         * found. Check for this case and assign the iterator
1953         * to the head page instead of next.
1954         */
1955        if (iter->head_page == cpu_buffer->reader_page)
1956                iter->head_page = rb_set_head_page(cpu_buffer);
1957        else
1958                rb_inc_page(cpu_buffer, &iter->head_page);
1959
1960        iter->read_stamp = iter->head_page->page->time_stamp;
1961        iter->head = 0;
1962}
1963
1964/* Slow path, do not inline */
1965static noinline struct ring_buffer_event *
1966rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1967{
1968        event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1969
1970        /* Not the first event on the page? */
1971        if (rb_event_index(event)) {
1972                event->time_delta = delta & TS_MASK;
1973                event->array[0] = delta >> TS_SHIFT;
1974        } else {
1975                /* nope, just zero it */
1976                event->time_delta = 0;
1977                event->array[0] = 0;
1978        }
1979
1980        return skip_time_extend(event);
1981}
1982
1983/**
1984 * rb_update_event - update event type and data
1985 * @event: the even to update
1986 * @type: the type of event
1987 * @length: the size of the event field in the ring buffer
1988 *
1989 * Update the type and data fields of the event. The length
1990 * is the actual size that is written to the ring buffer,
1991 * and with this, we can determine what to place into the
1992 * data field.
1993 */
1994static void
1995rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1996                struct ring_buffer_event *event, unsigned length,
1997                int add_timestamp, u64 delta)
1998{
1999        /* Only a commit updates the timestamp */
2000        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2001                delta = 0;
2002
2003        /*
2004         * If we need to add a timestamp, then we
2005         * add it to the start of the resevered space.
2006         */
2007        if (unlikely(add_timestamp)) {
2008                event = rb_add_time_stamp(event, delta);
2009                length -= RB_LEN_TIME_EXTEND;
2010                delta = 0;
2011        }
2012
2013        event->time_delta = delta;
2014        length -= RB_EVNT_HDR_SIZE;
2015        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2016                event->type_len = 0;
2017                event->array[0] = length;
2018        } else
2019                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2020}
2021
2022/*
2023 * rb_handle_head_page - writer hit the head page
2024 *
2025 * Returns: +1 to retry page
2026 *           0 to continue
2027 *          -1 on error
2028 */
2029static int
2030rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2031                    struct buffer_page *tail_page,
2032                    struct buffer_page *next_page)
2033{
2034        struct buffer_page *new_head;
2035        int entries;
2036        int type;
2037        int ret;
2038
2039        entries = rb_page_entries(next_page);
2040
2041        /*
2042         * The hard part is here. We need to move the head
2043         * forward, and protect against both readers on
2044         * other CPUs and writers coming in via interrupts.
2045         */
2046        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2047                                       RB_PAGE_HEAD);
2048
2049        /*
2050         * type can be one of four:
2051         *  NORMAL - an interrupt already moved it for us
2052         *  HEAD   - we are the first to get here.
2053         *  UPDATE - we are the interrupt interrupting
2054         *           a current move.
2055         *  MOVED  - a reader on another CPU moved the next
2056         *           pointer to its reader page. Give up
2057         *           and try again.
2058         */
2059
2060        switch (type) {
2061        case RB_PAGE_HEAD:
2062                /*
2063                 * We changed the head to UPDATE, thus
2064                 * it is our responsibility to update
2065                 * the counters.
2066                 */
2067                local_add(entries, &cpu_buffer->overrun);
2068                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2069
2070                /*
2071                 * The entries will be zeroed out when we move the
2072                 * tail page.
2073                 */
2074
2075                /* still more to do */
2076                break;
2077
2078        case RB_PAGE_UPDATE:
2079                /*
2080                 * This is an interrupt that interrupt the
2081                 * previous update. Still more to do.
2082                 */
2083                break;
2084        case RB_PAGE_NORMAL:
2085                /*
2086                 * An interrupt came in before the update
2087                 * and processed this for us.
2088                 * Nothing left to do.
2089                 */
2090                return 1;
2091        case RB_PAGE_MOVED:
2092                /*
2093                 * The reader is on another CPU and just did
2094                 * a swap with our next_page.
2095                 * Try again.
2096                 */
2097                return 1;
2098        default:
2099                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2100                return -1;
2101        }
2102
2103        /*
2104         * Now that we are here, the old head pointer is
2105         * set to UPDATE. This will keep the reader from
2106         * swapping the head page with the reader page.
2107         * The reader (on another CPU) will spin till
2108         * we are finished.
2109         *
2110         * We just need to protect against interrupts
2111         * doing the job. We will set the next pointer
2112         * to HEAD. After that, we set the old pointer
2113         * to NORMAL, but only if it was HEAD before.
2114         * otherwise we are an interrupt, and only
2115         * want the outer most commit to reset it.
2116         */
2117        new_head = next_page;
2118        rb_inc_page(cpu_buffer, &new_head);
2119
2120        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2121                                    RB_PAGE_NORMAL);
2122
2123        /*
2124         * Valid returns are:
2125         *  HEAD   - an interrupt came in and already set it.
2126         *  NORMAL - One of two things:
2127         *            1) We really set it.
2128         *            2) A bunch of interrupts came in and moved
2129         *               the page forward again.
2130         */
2131        switch (ret) {
2132        case RB_PAGE_HEAD:
2133        case RB_PAGE_NORMAL:
2134                /* OK */
2135                break;
2136        default:
2137                RB_WARN_ON(cpu_buffer, 1);
2138                return -1;
2139        }
2140
2141        /*
2142         * It is possible that an interrupt came in,
2143         * set the head up, then more interrupts came in
2144         * and moved it again. When we get back here,
2145         * the page would have been set to NORMAL but we
2146         * just set it back to HEAD.
2147         *
2148         * How do you detect this? Well, if that happened
2149         * the tail page would have moved.
2150         */
2151        if (ret == RB_PAGE_NORMAL) {
2152                /*
2153                 * If the tail had moved passed next, then we need
2154                 * to reset the pointer.
2155                 */
2156                if (cpu_buffer->tail_page != tail_page &&
2157                    cpu_buffer->tail_page != next_page)
2158                        rb_head_page_set_normal(cpu_buffer, new_head,
2159                                                next_page,
2160                                                RB_PAGE_HEAD);
2161        }
2162
2163        /*
2164         * If this was the outer most commit (the one that
2165         * changed the original pointer from HEAD to UPDATE),
2166         * then it is up to us to reset it to NORMAL.
2167         */
2168        if (type == RB_PAGE_HEAD) {
2169                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2170                                              tail_page,
2171                                              RB_PAGE_UPDATE);
2172                if (RB_WARN_ON(cpu_buffer,
2173                               ret != RB_PAGE_UPDATE))
2174                        return -1;
2175        }
2176
2177        return 0;
2178}
2179
2180static unsigned rb_calculate_event_length(unsigned length)
2181{
2182        struct ring_buffer_event event; /* Used only for sizeof array */
2183
2184        /* zero length can cause confusions */
2185        if (!length)
2186                length = 1;
2187
2188        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2189                length += sizeof(event.array[0]);
2190
2191        length += RB_EVNT_HDR_SIZE;
2192        length = ALIGN(length, RB_ARCH_ALIGNMENT);
2193
2194        return length;
2195}
2196
2197static inline void
2198rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199              struct buffer_page *tail_page,
2200              unsigned long tail, unsigned long length)
2201{
2202        struct ring_buffer_event *event;
2203
2204        /*
2205         * Only the event that crossed the page boundary
2206         * must fill the old tail_page with padding.
2207         */
2208        if (tail >= BUF_PAGE_SIZE) {
2209                /*
2210                 * If the page was filled, then we still need
2211                 * to update the real_end. Reset it to zero
2212                 * and the reader will ignore it.
2213                 */
2214                if (tail == BUF_PAGE_SIZE)
2215                        tail_page->real_end = 0;
2216
2217                local_sub(length, &tail_page->write);
2218                return;
2219        }
2220
2221        event = __rb_page_index(tail_page, tail);
2222        kmemcheck_annotate_bitfield(event, bitfield);
2223
2224        /* account for padding bytes */
2225        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226
2227        /*
2228         * Save the original length to the meta data.
2229         * This will be used by the reader to add lost event
2230         * counter.
2231         */
2232        tail_page->real_end = tail;
2233
2234        /*
2235         * If this event is bigger than the minimum size, then
2236         * we need to be careful that we don't subtract the
2237         * write counter enough to allow another writer to slip
2238         * in on this page.
2239         * We put in a discarded commit instead, to make sure
2240         * that this space is not used again.
2241         *
2242         * If we are less than the minimum size, we don't need to
2243         * worry about it.
2244         */
2245        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246                /* No room for any events */
2247
2248                /* Mark the rest of the page with padding */
2249                rb_event_set_padding(event);
2250
2251                /* Set the write back to the previous setting */
2252                local_sub(length, &tail_page->write);
2253                return;
2254        }
2255
2256        /* Put in a discarded event */
2257        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258        event->type_len = RINGBUF_TYPE_PADDING;
2259        /* time delta must be non zero */
2260        event->time_delta = 1;
2261
2262        /* Set write to end of buffer */
2263        length = (tail + length) - BUF_PAGE_SIZE;
2264        local_sub(length, &tail_page->write);
2265}
2266
2267/*
2268 * This is the slow path, force gcc not to inline it.
2269 */
2270static noinline struct ring_buffer_event *
2271rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2272             unsigned long length, unsigned long tail,
2273             struct buffer_page *tail_page, u64 ts)
2274{
2275        struct buffer_page *commit_page = cpu_buffer->commit_page;
2276        struct ring_buffer *buffer = cpu_buffer->buffer;
2277        struct buffer_page *next_page;
2278        int ret;
2279
2280        next_page = tail_page;
2281
2282        rb_inc_page(cpu_buffer, &next_page);
2283
2284        /*
2285         * If for some reason, we had an interrupt storm that made
2286         * it all the way around the buffer, bail, and warn
2287         * about it.
2288         */
2289        if (unlikely(next_page == commit_page)) {
2290                local_inc(&cpu_buffer->commit_overrun);
2291                goto out_reset;
2292        }
2293
2294        /*
2295         * This is where the fun begins!
2296         *
2297         * We are fighting against races between a reader that
2298         * could be on another CPU trying to swap its reader
2299         * page with the buffer head.
2300         *
2301         * We are also fighting against interrupts coming in and
2302         * moving the head or tail on us as well.
2303         *
2304         * If the next page is the head page then we have filled
2305         * the buffer, unless the commit page is still on the
2306         * reader page.
2307         */
2308        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2309
2310                /*
2311                 * If the commit is not on the reader page, then
2312                 * move the header page.
2313                 */
2314                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2315                        /*
2316                         * If we are not in overwrite mode,
2317                         * this is easy, just stop here.
2318                         */
2319                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2320                                local_inc(&cpu_buffer->dropped_events);
2321                                goto out_reset;
2322                        }
2323
2324                        ret = rb_handle_head_page(cpu_buffer,
2325                                                  tail_page,
2326                                                  next_page);
2327                        if (ret < 0)
2328                                goto out_reset;
2329                        if (ret)
2330                                goto out_again;
2331                } else {
2332                        /*
2333                         * We need to be careful here too. The
2334                         * commit page could still be on the reader
2335                         * page. We could have a small buffer, and
2336                         * have filled up the buffer with events
2337                         * from interrupts and such, and wrapped.
2338                         *
2339                         * Note, if the tail page is also the on the
2340                         * reader_page, we let it move out.
2341                         */
2342                        if (unlikely((cpu_buffer->commit_page !=
2343                                      cpu_buffer->tail_page) &&
2344                                     (cpu_buffer->commit_page ==
2345                                      cpu_buffer->reader_page))) {
2346                                local_inc(&cpu_buffer->commit_overrun);
2347                                goto out_reset;
2348                        }
2349                }
2350        }
2351
2352        ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2353        if (ret) {
2354                /*
2355                 * Nested commits always have zero deltas, so
2356                 * just reread the time stamp
2357                 */
2358                ts = rb_time_stamp(buffer);
2359                next_page->page->time_stamp = ts;
2360        }
2361
2362 out_again:
2363
2364        rb_reset_tail(cpu_buffer, tail_page, tail, length);
2365
2366        /* fail and let the caller try again */
2367        return ERR_PTR(-EAGAIN);
2368
2369 out_reset:
2370        /* reset write */
2371        rb_reset_tail(cpu_buffer, tail_page, tail, length);
2372
2373        return NULL;
2374}
2375
2376static struct ring_buffer_event *
2377__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2378                  unsigned long length, u64 ts,
2379                  u64 delta, int add_timestamp)
2380{
2381        struct buffer_page *tail_page;
2382        struct ring_buffer_event *event;
2383        unsigned long tail, write;
2384
2385        /*
2386         * If the time delta since the last event is too big to
2387         * hold in the time field of the event, then we append a
2388         * TIME EXTEND event ahead of the data event.
2389         */
2390        if (unlikely(add_timestamp))
2391                length += RB_LEN_TIME_EXTEND;
2392
2393        tail_page = cpu_buffer->tail_page;
2394        write = local_add_return(length, &tail_page->write);
2395
2396        /* set write to only the index of the write */
2397        write &= RB_WRITE_MASK;
2398        tail = write - length;
2399
2400        /* See if we shot pass the end of this buffer page */
2401        if (unlikely(write > BUF_PAGE_SIZE))
2402                return rb_move_tail(cpu_buffer, length, tail,
2403                                    tail_page, ts);
2404
2405        /* We reserved something on the buffer */
2406
2407        event = __rb_page_index(tail_page, tail);
2408        kmemcheck_annotate_bitfield(event, bitfield);
2409        rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2410
2411        local_inc(&tail_page->entries);
2412
2413        /*
2414         * If this is the first commit on the page, then update
2415         * its timestamp.
2416         */
2417        if (!tail)
2418                tail_page->page->time_stamp = ts;
2419
2420        /* account for these added bytes */
2421        local_add(length, &cpu_buffer->entries_bytes);
2422
2423        return event;
2424}
2425
2426static inline int
2427rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2428                  struct ring_buffer_event *event)
2429{
2430        unsigned long new_index, old_index;
2431        struct buffer_page *bpage;
2432        unsigned long index;
2433        unsigned long addr;
2434
2435        new_index = rb_event_index(event);
2436        old_index = new_index + rb_event_ts_length(event);
2437        addr = (unsigned long)event;
2438        addr &= PAGE_MASK;
2439
2440        bpage = cpu_buffer->tail_page;
2441
2442        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2443                unsigned long write_mask =
2444                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2445                unsigned long event_length = rb_event_length(event);
2446                /*
2447                 * This is on the tail page. It is possible that
2448                 * a write could come in and move the tail page
2449                 * and write to the next page. That is fine
2450                 * because we just shorten what is on this page.
2451                 */
2452                old_index += write_mask;
2453                new_index += write_mask;
2454                index = local_cmpxchg(&bpage->write, old_index, new_index);
2455                if (index == old_index) {
2456                        /* update counters */
2457                        local_sub(event_length, &cpu_buffer->entries_bytes);
2458                        return 1;
2459                }
2460        }
2461
2462        /* could not discard */
2463        return 0;
2464}
2465
2466static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2467{
2468        local_inc(&cpu_buffer->committing);
2469        local_inc(&cpu_buffer->commits);
2470}
2471
2472static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2473{
2474        unsigned long commits;
2475
2476        if (RB_WARN_ON(cpu_buffer,
2477                       !local_read(&cpu_buffer->committing)))
2478                return;
2479
2480 again:
2481        commits = local_read(&cpu_buffer->commits);
2482        /* synchronize with interrupts */
2483        barrier();
2484        if (local_read(&cpu_buffer->committing) == 1)
2485                rb_set_commit_to_write(cpu_buffer);
2486
2487        local_dec(&cpu_buffer->committing);
2488
2489        /* synchronize with interrupts */
2490        barrier();
2491
2492        /*
2493         * Need to account for interrupts coming in between the
2494         * updating of the commit page and the clearing of the
2495         * committing counter.
2496         */
2497        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2498            !local_read(&cpu_buffer->committing)) {
2499                local_inc(&cpu_buffer->committing);
2500                goto again;
2501        }
2502}
2503
2504static struct ring_buffer_event *
2505rb_reserve_next_event(struct ring_buffer *buffer,
2506                      struct ring_buffer_per_cpu *cpu_buffer,
2507                      unsigned long length)
2508{
2509        struct ring_buffer_event *event;
2510        u64 ts, delta;
2511        int nr_loops = 0;
2512        int add_timestamp;
2513        u64 diff;
2514
2515        rb_start_commit(cpu_buffer);
2516
2517#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2518        /*
2519         * Due to the ability to swap a cpu buffer from a buffer
2520         * it is possible it was swapped before we committed.
2521         * (committing stops a swap). We check for it here and
2522         * if it happened, we have to fail the write.
2523         */
2524        barrier();
2525        if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2526                local_dec(&cpu_buffer->committing);
2527                local_dec(&cpu_buffer->commits);
2528                return NULL;
2529        }
2530#endif
2531
2532        length = rb_calculate_event_length(length);
2533 again:
2534        add_timestamp = 0;
2535        delta = 0;
2536
2537        /*
2538         * We allow for interrupts to reenter here and do a trace.
2539         * If one does, it will cause this original code to loop
2540         * back here. Even with heavy interrupts happening, this
2541         * should only happen a few times in a row. If this happens
2542         * 1000 times in a row, there must be either an interrupt
2543         * storm or we have something buggy.
2544         * Bail!
2545         */
2546        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2547                goto out_fail;
2548
2549        ts = rb_time_stamp(cpu_buffer->buffer);
2550        diff = ts - cpu_buffer->write_stamp;
2551
2552        /* make sure this diff is calculated here */
2553        barrier();
2554
2555        /* Did the write stamp get updated already? */
2556        if (likely(ts >= cpu_buffer->write_stamp)) {
2557                delta = diff;
2558                if (unlikely(test_time_stamp(delta))) {
2559                        int local_clock_stable = 1;
2560#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2561                        local_clock_stable = sched_clock_stable;
2562#endif
2563                        WARN_ONCE(delta > (1ULL << 59),
2564                                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2565                                  (unsigned long long)delta,
2566                                  (unsigned long long)ts,
2567                                  (unsigned long long)cpu_buffer->write_stamp,
2568                                  local_clock_stable ? "" :
2569                                  "If you just came from a suspend/resume,\n"
2570                                  "please switch to the trace global clock:\n"
2571                                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2572                        add_timestamp = 1;
2573                }
2574        }
2575
2576        event = __rb_reserve_next(cpu_buffer, length, ts,
2577                                  delta, add_timestamp);
2578        if (unlikely(PTR_ERR(event) == -EAGAIN))
2579                goto again;
2580
2581        if (!event)
2582                goto out_fail;
2583
2584        return event;
2585
2586 out_fail:
2587        rb_end_commit(cpu_buffer);
2588        return NULL;
2589}
2590
2591#ifdef CONFIG_TRACING
2592
2593/*
2594 * The lock and unlock are done within a preempt disable section.
2595 * The current_context per_cpu variable can only be modified
2596 * by the current task between lock and unlock. But it can
2597 * be modified more than once via an interrupt. To pass this
2598 * information from the lock to the unlock without having to
2599 * access the 'in_interrupt()' functions again (which do show
2600 * a bit of overhead in something as critical as function tracing,
2601 * we use a bitmask trick.
2602 *
2603 *  bit 0 =  NMI context
2604 *  bit 1 =  IRQ context
2605 *  bit 2 =  SoftIRQ context
2606 *  bit 3 =  normal context.
2607 *
2608 * This works because this is the order of contexts that can
2609 * preempt other contexts. A SoftIRQ never preempts an IRQ
2610 * context.
2611 *
2612 * When the context is determined, the corresponding bit is
2613 * checked and set (if it was set, then a recursion of that context
2614 * happened).
2615 *
2616 * On unlock, we need to clear this bit. To do so, just subtract
2617 * 1 from the current_context and AND it to itself.
2618 *
2619 * (binary)
2620 *  101 - 1 = 100
2621 *  101 & 100 = 100 (clearing bit zero)
2622 *
2623 *  1010 - 1 = 1001
2624 *  1010 & 1001 = 1000 (clearing bit 1)
2625 *
2626 * The least significant bit can be cleared this way, and it
2627 * just so happens that it is the same bit corresponding to
2628 * the current context.
2629 */
2630static DEFINE_PER_CPU(unsigned int, current_context);
2631
2632static __always_inline int trace_recursive_lock(void)
2633{
2634        unsigned int val = this_cpu_read(current_context);
2635        int bit;
2636
2637        if (in_interrupt()) {
2638                if (in_nmi())
2639                        bit = 0;
2640                else if (in_irq())
2641                        bit = 1;
2642                else
2643                        bit = 2;
2644        } else
2645                bit = 3;
2646
2647        if (unlikely(val & (1 << bit)))
2648                return 1;
2649
2650        val |= (1 << bit);
2651        this_cpu_write(current_context, val);
2652
2653        return 0;
2654}
2655
2656static __always_inline void trace_recursive_unlock(void)
2657{
2658        unsigned int val = this_cpu_read(current_context);
2659
2660        val--;
2661        val &= this_cpu_read(current_context);
2662        this_cpu_write(current_context, val);
2663}
2664
2665#else
2666
2667#define trace_recursive_lock()          (0)
2668#define trace_recursive_unlock()        do { } while (0)
2669
2670#endif
2671
2672/**
2673 * ring_buffer_lock_reserve - reserve a part of the buffer
2674 * @buffer: the ring buffer to reserve from
2675 * @length: the length of the data to reserve (excluding event header)
2676 *
2677 * Returns a reseverd event on the ring buffer to copy directly to.
2678 * The user of this interface will need to get the body to write into
2679 * and can use the ring_buffer_event_data() interface.
2680 *
2681 * The length is the length of the data needed, not the event length
2682 * which also includes the event header.
2683 *
2684 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2685 * If NULL is returned, then nothing has been allocated or locked.
2686 */
2687struct ring_buffer_event *
2688ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2689{
2690        struct ring_buffer_per_cpu *cpu_buffer;
2691        struct ring_buffer_event *event;
2692        int cpu;
2693
2694        if (ring_buffer_flags != RB_BUFFERS_ON)
2695                return NULL;
2696
2697        /* If we are tracing schedule, we don't want to recurse */
2698        preempt_disable_notrace();
2699
2700        if (atomic_read(&buffer->record_disabled))
2701                goto out_nocheck;
2702
2703        if (trace_recursive_lock())
2704                goto out_nocheck;
2705
2706        cpu = raw_smp_processor_id();
2707
2708        if (!cpumask_test_cpu(cpu, buffer->cpumask))
2709                goto out;
2710
2711        cpu_buffer = buffer->buffers[cpu];
2712
2713        if (atomic_read(&cpu_buffer->record_disabled))
2714                goto out;
2715
2716        if (length > BUF_MAX_DATA_SIZE)
2717                goto out;
2718
2719        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2720        if (!event)
2721                goto out;
2722
2723        return event;
2724
2725 out:
2726        trace_recursive_unlock();
2727
2728 out_nocheck:
2729        preempt_enable_notrace();
2730        return NULL;
2731}
2732EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2733
2734static void
2735rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2736                      struct ring_buffer_event *event)
2737{
2738        u64 delta;
2739
2740        /*
2741         * The event first in the commit queue updates the
2742         * time stamp.
2743         */
2744        if (rb_event_is_commit(cpu_buffer, event)) {
2745                /*
2746                 * A commit event that is first on a page
2747                 * updates the write timestamp with the page stamp
2748                 */
2749                if (!rb_event_index(event))
2750                        cpu_buffer->write_stamp =
2751                                cpu_buffer->commit_page->page->time_stamp;
2752                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2753                        delta = event->array[0];
2754                        delta <<= TS_SHIFT;
2755                        delta += event->time_delta;
2756                        cpu_buffer->write_stamp += delta;
2757                } else
2758                        cpu_buffer->write_stamp += event->time_delta;
2759        }
2760}
2761
2762static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2763                      struct ring_buffer_event *event)
2764{
2765        local_inc(&cpu_buffer->entries);
2766        rb_update_write_stamp(cpu_buffer, event);
2767        rb_end_commit(cpu_buffer);
2768}
2769
2770static __always_inline void
2771rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2772{
2773        if (buffer->irq_work.waiters_pending) {
2774                buffer->irq_work.waiters_pending = false;
2775                /* irq_work_queue() supplies it's own memory barriers */
2776                irq_work_queue(&buffer->irq_work.work);
2777        }
2778
2779        if (cpu_buffer->irq_work.waiters_pending) {
2780                cpu_buffer->irq_work.waiters_pending = false;
2781                /* irq_work_queue() supplies it's own memory barriers */
2782                irq_work_queue(&cpu_buffer->irq_work.work);
2783        }
2784}
2785
2786/**
2787 * ring_buffer_unlock_commit - commit a reserved
2788 * @buffer: The buffer to commit to
2789 * @event: The event pointer to commit.
2790 *
2791 * This commits the data to the ring buffer, and releases any locks held.
2792 *
2793 * Must be paired with ring_buffer_lock_reserve.
2794 */
2795int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2796                              struct ring_buffer_event *event)
2797{
2798        struct ring_buffer_per_cpu *cpu_buffer;
2799        int cpu = raw_smp_processor_id();
2800
2801        cpu_buffer = buffer->buffers[cpu];
2802
2803        rb_commit(cpu_buffer, event);
2804
2805        rb_wakeups(buffer, cpu_buffer);
2806
2807        trace_recursive_unlock();
2808
2809        preempt_enable_notrace();
2810
2811        return 0;
2812}
2813EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2814
2815static inline void rb_event_discard(struct ring_buffer_event *event)
2816{
2817        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2818                event = skip_time_extend(event);
2819
2820        /* array[0] holds the actual length for the discarded event */
2821        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2822        event->type_len = RINGBUF_TYPE_PADDING;
2823        /* time delta must be non zero */
2824        if (!event->time_delta)
2825                event->time_delta = 1;
2826}
2827
2828/*
2829 * Decrement the entries to the page that an event is on.
2830 * The event does not even need to exist, only the pointer
2831 * to the page it is on. This may only be called before the commit
2832 * takes place.
2833 */
2834static inline void
2835rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2836                   struct ring_buffer_event *event)
2837{
2838        unsigned long addr = (unsigned long)event;
2839        struct buffer_page *bpage = cpu_buffer->commit_page;
2840        struct buffer_page *start;
2841
2842        addr &= PAGE_MASK;
2843
2844        /* Do the likely case first */
2845        if (likely(bpage->page == (void *)addr)) {
2846                local_dec(&bpage->entries);
2847                return;
2848        }
2849
2850        /*
2851         * Because the commit page may be on the reader page we
2852         * start with the next page and check the end loop there.
2853         */
2854        rb_inc_page(cpu_buffer, &bpage);
2855        start = bpage;
2856        do {
2857                if (bpage->page == (void *)addr) {
2858                        local_dec(&bpage->entries);
2859                        return;
2860                }
2861                rb_inc_page(cpu_buffer, &bpage);
2862        } while (bpage != start);
2863
2864        /* commit not part of this buffer?? */
2865        RB_WARN_ON(cpu_buffer, 1);
2866}
2867
2868/**
2869 * ring_buffer_commit_discard - discard an event that has not been committed
2870 * @buffer: the ring buffer
2871 * @event: non committed event to discard
2872 *
2873 * Sometimes an event that is in the ring buffer needs to be ignored.
2874 * This function lets the user discard an event in the ring buffer
2875 * and then that event will not be read later.
2876 *
2877 * This function only works if it is called before the the item has been
2878 * committed. It will try to free the event from the ring buffer
2879 * if another event has not been added behind it.
2880 *
2881 * If another event has been added behind it, it will set the event
2882 * up as discarded, and perform the commit.
2883 *
2884 * If this function is called, do not call ring_buffer_unlock_commit on
2885 * the event.
2886 */
2887void ring_buffer_discard_commit(struct ring_buffer *buffer,
2888                                struct ring_buffer_event *event)
2889{
2890        struct ring_buffer_per_cpu *cpu_buffer;
2891        int cpu;
2892
2893        /* The event is discarded regardless */
2894        rb_event_discard(event);
2895
2896        cpu = smp_processor_id();
2897        cpu_buffer = buffer->buffers[cpu];
2898
2899        /*
2900         * This must only be called if the event has not been
2901         * committed yet. Thus we can assume that preemption
2902         * is still disabled.
2903         */
2904        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2905
2906        rb_decrement_entry(cpu_buffer, event);
2907        if (rb_try_to_discard(cpu_buffer, event))
2908                goto out;
2909
2910        /*
2911         * The commit is still visible by the reader, so we
2912         * must still update the timestamp.
2913         */
2914        rb_update_write_stamp(cpu_buffer, event);
2915 out:
2916        rb_end_commit(cpu_buffer);
2917
2918        trace_recursive_unlock();
2919
2920        preempt_enable_notrace();
2921
2922}
2923EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2924
2925/**
2926 * ring_buffer_write - write data to the buffer without reserving
2927 * @buffer: The ring buffer to write to.
2928 * @length: The length of the data being written (excluding the event header)
2929 * @data: The data to write to the buffer.
2930 *
2931 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2932 * one function. If you already have the data to write to the buffer, it
2933 * may be easier to simply call this function.
2934 *
2935 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2936 * and not the length of the event which would hold the header.
2937 */
2938int ring_buffer_write(struct ring_buffer *buffer,
2939                      unsigned long length,
2940                      void *data)
2941{
2942        struct ring_buffer_per_cpu *cpu_buffer;
2943        struct ring_buffer_event *event;
2944        void *body;
2945        int ret = -EBUSY;
2946        int cpu;
2947
2948        if (ring_buffer_flags != RB_BUFFERS_ON)
2949                return -EBUSY;
2950
2951        preempt_disable_notrace();
2952
2953        if (atomic_read(&buffer->record_disabled))
2954                goto out;
2955
2956        cpu = raw_smp_processor_id();
2957
2958        if (!cpumask_test_cpu(cpu, buffer->cpumask))
2959                goto out;
2960
2961        cpu_buffer = buffer->buffers[cpu];
2962
2963        if (atomic_read(&cpu_buffer->record_disabled))
2964                goto out;
2965
2966        if (length > BUF_MAX_DATA_SIZE)
2967                goto out;
2968
2969        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2970        if (!event)
2971                goto out;
2972
2973        body = rb_event_data(event);
2974
2975        memcpy(body, data, length);
2976
2977        rb_commit(cpu_buffer, event);
2978
2979        rb_wakeups(buffer, cpu_buffer);
2980
2981        ret = 0;
2982 out:
2983        preempt_enable_notrace();
2984
2985        return ret;
2986}
2987EXPORT_SYMBOL_GPL(ring_buffer_write);
2988
2989static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2990{
2991        struct buffer_page *reader = cpu_buffer->reader_page;
2992        struct buffer_page *head = rb_set_head_page(cpu_buffer);
2993        struct buffer_page *commit = cpu_buffer->commit_page;
2994
2995        /* In case of error, head will be NULL */
2996        if (unlikely(!head))
2997                return 1;
2998
2999        return reader->read == rb_page_commit(reader) &&
3000                (commit == reader ||
3001                 (commit == head &&
3002                  head->read == rb_page_commit(commit)));
3003}
3004
3005/**
3006 * ring_buffer_record_disable - stop all writes into the buffer
3007 * @buffer: The ring buffer to stop writes to.
3008 *
3009 * This prevents all writes to the buffer. Any attempt to write
3010 * to the buffer after this will fail and return NULL.
3011 *
3012 * The caller should call synchronize_sched() after this.
3013 */
3014void ring_buffer_record_disable(struct ring_buffer *buffer)
3015{
3016        atomic_inc(&buffer->record_disabled);
3017}
3018EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3019
3020/**
3021 * ring_buffer_record_enable - enable writes to the buffer
3022 * @buffer: The ring buffer to enable writes
3023 *
3024 * Note, multiple disables will need the same number of enables
3025 * to truly enable the writing (much like preempt_disable).
3026 */
3027void ring_buffer_record_enable(struct ring_buffer *buffer)
3028{
3029        atomic_dec(&buffer->record_disabled);
3030}
3031EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3032
3033/**
3034 * ring_buffer_record_off - stop all writes into the buffer
3035 * @buffer: The ring buffer to stop writes to.
3036 *
3037 * This prevents all writes to the buffer. Any attempt to write
3038 * to the buffer after this will fail and return NULL.
3039 *
3040 * This is different than ring_buffer_record_disable() as
3041 * it works like an on/off switch, where as the disable() version
3042 * must be paired with a enable().
3043 */
3044void ring_buffer_record_off(struct ring_buffer *buffer)
3045{
3046        unsigned int rd;
3047        unsigned int new_rd;
3048
3049        do {
3050                rd = atomic_read(&buffer->record_disabled);
3051                new_rd = rd | RB_BUFFER_OFF;
3052        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3053}
3054EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3055
3056/**
3057 * ring_buffer_record_on - restart writes into the buffer
3058 * @buffer: The ring buffer to start writes to.
3059 *
3060 * This enables all writes to the buffer that was disabled by
3061 * ring_buffer_record_off().
3062 *
3063 * This is different than ring_buffer_record_enable() as
3064 * it works like an on/off switch, where as the enable() version
3065 * must be paired with a disable().
3066 */
3067void ring_buffer_record_on(struct ring_buffer *buffer)
3068{
3069        unsigned int rd;
3070        unsigned int new_rd;
3071
3072        do {
3073                rd = atomic_read(&buffer->record_disabled);
3074                new_rd = rd & ~RB_BUFFER_OFF;
3075        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3076}
3077EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3078
3079/**
3080 * ring_buffer_record_is_on - return true if the ring buffer can write
3081 * @buffer: The ring buffer to see if write is enabled
3082 *
3083 * Returns true if the ring buffer is in a state that it accepts writes.
3084 */
3085int ring_buffer_record_is_on(struct ring_buffer *buffer)
3086{
3087        return !atomic_read(&buffer->record_disabled);
3088}
3089
3090/**
3091 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3092 * @buffer: The ring buffer to stop writes to.
3093 * @cpu: The CPU buffer to stop
3094 *
3095 * This prevents all writes to the buffer. Any attempt to write
3096 * to the buffer after this will fail and return NULL.
3097 *
3098 * The caller should call synchronize_sched() after this.
3099 */
3100void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3101{
3102        struct ring_buffer_per_cpu *cpu_buffer;
3103
3104        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3105                return;
3106
3107        cpu_buffer = buffer->buffers[cpu];
3108        atomic_inc(&cpu_buffer->record_disabled);
3109}
3110EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3111
3112/**
3113 * ring_buffer_record_enable_cpu - enable writes to the buffer
3114 * @buffer: The ring buffer to enable writes
3115 * @cpu: The CPU to enable.
3116 *
3117 * Note, multiple disables will need the same number of enables
3118 * to truly enable the writing (much like preempt_disable).
3119 */
3120void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3121{
3122        struct ring_buffer_per_cpu *cpu_buffer;
3123
3124        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3125                return;
3126
3127        cpu_buffer = buffer->buffers[cpu];
3128        atomic_dec(&cpu_buffer->record_disabled);
3129}
3130EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3131
3132/*
3133 * The total entries in the ring buffer is the running counter
3134 * of entries entered into the ring buffer, minus the sum of
3135 * the entries read from the ring buffer and the number of
3136 * entries that were overwritten.
3137 */
3138static inline unsigned long
3139rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3140{
3141        return local_read(&cpu_buffer->entries) -
3142                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3143}
3144
3145/**
3146 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3147 * @buffer: The ring buffer
3148 * @cpu: The per CPU buffer to read from.
3149 */
3150u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3151{
3152        unsigned long flags;
3153        struct ring_buffer_per_cpu *cpu_buffer;
3154        struct buffer_page *bpage;
3155        u64 ret = 0;
3156
3157        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3158                return 0;
3159
3160        cpu_buffer = buffer->buffers[cpu];
3161        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3162        /*
3163         * if the tail is on reader_page, oldest time stamp is on the reader
3164         * page
3165         */
3166        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3167                bpage = cpu_buffer->reader_page;
3168        else
3169                bpage = rb_set_head_page(cpu_buffer);
3170        if (bpage)
3171                ret = bpage->page->time_stamp;
3172        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3173
3174        return ret;
3175}
3176EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3177
3178/**
3179 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3180 * @buffer: The ring buffer
3181 * @cpu: The per CPU buffer to read from.
3182 */
3183unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3184{
3185        struct ring_buffer_per_cpu *cpu_buffer;
3186        unsigned long ret;
3187
3188        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3189                return 0;
3190
3191        cpu_buffer = buffer->buffers[cpu];
3192        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3193
3194        return ret;
3195}
3196EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3197
3198/**
3199 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3200 * @buffer: The ring buffer
3201 * @cpu: The per CPU buffer to get the entries from.
3202 */
3203unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3204{
3205        struct ring_buffer_per_cpu *cpu_buffer;
3206
3207        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3208                return 0;
3209
3210        cpu_buffer = buffer->buffers[cpu];
3211
3212        return rb_num_of_entries(cpu_buffer);
3213}
3214EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3215
3216/**
3217 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3218 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3219 * @buffer: The ring buffer
3220 * @cpu: The per CPU buffer to get the number of overruns from
3221 */
3222unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3223{
3224        struct ring_buffer_per_cpu *cpu_buffer;
3225        unsigned long ret;
3226
3227        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3228                return 0;
3229
3230        cpu_buffer = buffer->buffers[cpu];
3231        ret = local_read(&cpu_buffer->overrun);
3232
3233        return ret;
3234}
3235EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3236
3237/**
3238 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3239 * commits failing due to the buffer wrapping around while there are uncommitted
3240 * events, such as during an interrupt storm.
3241 * @buffer: The ring buffer
3242 * @cpu: The per CPU buffer to get the number of overruns from
3243 */
3244unsigned long
3245ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3246{
3247        struct ring_buffer_per_cpu *cpu_buffer;
3248        unsigned long ret;
3249
3250        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3251                return 0;
3252
3253        cpu_buffer = buffer->buffers[cpu];
3254        ret = local_read(&cpu_buffer->commit_overrun);
3255
3256        return ret;
3257}
3258EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3259
3260/**
3261 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3262 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3263 * @buffer: The ring buffer
3264 * @cpu: The per CPU buffer to get the number of overruns from
3265 */
3266unsigned long
3267ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3268{
3269        struct ring_buffer_per_cpu *cpu_buffer;
3270        unsigned long ret;
3271
3272        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3273                return 0;
3274
3275        cpu_buffer = buffer->buffers[cpu];
3276        ret = local_read(&cpu_buffer->dropped_events);
3277
3278        return ret;
3279}
3280EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3281
3282/**
3283 * ring_buffer_read_events_cpu - get the number of events successfully read
3284 * @buffer: The ring buffer
3285 * @cpu: The per CPU buffer to get the number of events read
3286 */
3287unsigned long
3288ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3289{
3290        struct ring_buffer_per_cpu *cpu_buffer;
3291
3292        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3293                return 0;
3294
3295        cpu_buffer = buffer->buffers[cpu];
3296        return cpu_buffer->read;
3297}
3298EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3299
3300/**
3301 * ring_buffer_entries - get the number of entries in a buffer
3302 * @buffer: The ring buffer
3303 *
3304 * Returns the total number of entries in the ring buffer
3305 * (all CPU entries)
3306 */
3307unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3308{
3309        struct ring_buffer_per_cpu *cpu_buffer;
3310        unsigned long entries = 0;
3311        int cpu;
3312
3313        /* if you care about this being correct, lock the buffer */
3314        for_each_buffer_cpu(buffer, cpu) {
3315                cpu_buffer = buffer->buffers[cpu];
3316                entries += rb_num_of_entries(cpu_buffer);
3317        }
3318
3319        return entries;
3320}
3321EXPORT_SYMBOL_GPL(ring_buffer_entries);
3322
3323/**
3324 * ring_buffer_overruns - get the number of overruns in buffer
3325 * @buffer: The ring buffer
3326 *
3327 * Returns the total number of overruns in the ring buffer
3328 * (all CPU entries)
3329 */
3330unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3331{
3332        struct ring_buffer_per_cpu *cpu_buffer;
3333        unsigned long overruns = 0;
3334        int cpu;
3335
3336        /* if you care about this being correct, lock the buffer */
3337        for_each_buffer_cpu(buffer, cpu) {
3338                cpu_buffer = buffer->buffers[cpu];
3339                overruns += local_read(&cpu_buffer->overrun);
3340        }
3341
3342        return overruns;
3343}
3344EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3345
3346static void rb_iter_reset(struct ring_buffer_iter *iter)
3347{
3348        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3349
3350        /* Iterator usage is expected to have record disabled */
3351        if (list_empty(&cpu_buffer->reader_page->list)) {
3352                iter->head_page = rb_set_head_page(cpu_buffer);
3353                if (unlikely(!iter->head_page))
3354                        return;
3355                iter->head = iter->head_page->read;
3356        } else {
3357                iter->head_page = cpu_buffer->reader_page;
3358                iter->head = cpu_buffer->reader_page->read;
3359        }
3360        if (iter->head)
3361                iter->read_stamp = cpu_buffer->read_stamp;
3362        else
3363                iter->read_stamp = iter->head_page->page->time_stamp;
3364        iter->cache_reader_page = cpu_buffer->reader_page;
3365        iter->cache_read = cpu_buffer->read;
3366}
3367
3368/**
3369 * ring_buffer_iter_reset - reset an iterator
3370 * @iter: The iterator to reset
3371 *
3372 * Resets the iterator, so that it will start from the beginning
3373 * again.
3374 */
3375void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3376{
3377        struct ring_buffer_per_cpu *cpu_buffer;
3378        unsigned long flags;
3379
3380        if (!iter)
3381                return;
3382
3383        cpu_buffer = iter->cpu_buffer;
3384
3385        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3386        rb_iter_reset(iter);
3387        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3388}
3389EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3390
3391/**
3392 * ring_buffer_iter_empty - check if an iterator has no more to read
3393 * @iter: The iterator to check
3394 */
3395int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3396{
3397        struct ring_buffer_per_cpu *cpu_buffer;
3398
3399        cpu_buffer = iter->cpu_buffer;
3400
3401        return iter->head_page == cpu_buffer->commit_page &&
3402                iter->head == rb_commit_index(cpu_buffer);
3403}
3404EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3405
3406static void
3407rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3408                     struct ring_buffer_event *event)
3409{
3410        u64 delta;
3411
3412        switch (event->type_len) {
3413        case RINGBUF_TYPE_PADDING:
3414                return;
3415
3416        case RINGBUF_TYPE_TIME_EXTEND:
3417                delta = event->array[0];
3418                delta <<= TS_SHIFT;
3419                delta += event->time_delta;
3420                cpu_buffer->read_stamp += delta;
3421                return;
3422
3423        case RINGBUF_TYPE_TIME_STAMP:
3424                /* FIXME: not implemented */
3425                return;
3426
3427        case RINGBUF_TYPE_DATA:
3428                cpu_buffer->read_stamp += event->time_delta;
3429                return;
3430
3431        default:
3432                BUG();
3433        }
3434        return;
3435}
3436
3437static void
3438rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3439                          struct ring_buffer_event *event)
3440{
3441        u64 delta;
3442
3443        switch (event->type_len) {
3444        case RINGBUF_TYPE_PADDING:
3445                return;
3446
3447        case RINGBUF_TYPE_TIME_EXTEND:
3448                delta = event->array[0];
3449                delta <<= TS_SHIFT;
3450                delta += event->time_delta;
3451                iter->read_stamp += delta;
3452                return;
3453
3454        case RINGBUF_TYPE_TIME_STAMP:
3455                /* FIXME: not implemented */
3456                return;
3457
3458        case RINGBUF_TYPE_DATA:
3459                iter->read_stamp += event->time_delta;
3460                return;
3461
3462        default:
3463                BUG();
3464        }
3465        return;
3466}
3467
3468static struct buffer_page *
3469rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3470{
3471        struct buffer_page *reader = NULL;
3472        unsigned long overwrite;
3473        unsigned long flags;
3474        int nr_loops = 0;
3475        int ret;
3476
3477        local_irq_save(flags);
3478        arch_spin_lock(&cpu_buffer->lock);
3479
3480 again:
3481        /*
3482         * This should normally only loop twice. But because the
3483         * start of the reader inserts an empty page, it causes
3484         * a case where we will loop three times. There should be no
3485         * reason to loop four times (that I know of).
3486         */
3487        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3488                reader = NULL;
3489                goto out;
3490        }
3491
3492        reader = cpu_buffer->reader_page;
3493
3494        /* If there's more to read, return this page */
3495        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3496                goto out;
3497
3498        /* Never should we have an index greater than the size */
3499        if (RB_WARN_ON(cpu_buffer,
3500                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3501                goto out;
3502
3503        /* check if we caught up to the tail */
3504        reader = NULL;
3505        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3506                goto out;
3507
3508        /* Don't bother swapping if the ring buffer is empty */
3509        if (rb_num_of_entries(cpu_buffer) == 0)
3510                goto out;
3511
3512        /*
3513         * Reset the reader page to size zero.
3514         */
3515        local_set(&cpu_buffer->reader_page->write, 0);
3516        local_set(&cpu_buffer->reader_page->entries, 0);
3517        local_set(&cpu_buffer->reader_page->page->commit, 0);
3518        cpu_buffer->reader_page->real_end = 0;
3519
3520 spin:
3521        /*
3522         * Splice the empty reader page into the list around the head.
3523         */
3524        reader = rb_set_head_page(cpu_buffer);
3525        if (!reader)
3526                goto out;
3527        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3528        cpu_buffer->reader_page->list.prev = reader->list.prev;
3529
3530        /*
3531         * cpu_buffer->pages just needs to point to the buffer, it
3532         *  has no specific buffer page to point to. Lets move it out
3533         *  of our way so we don't accidentally swap it.
3534         */
3535        cpu_buffer->pages = reader->list.prev;
3536
3537        /* The reader page will be pointing to the new head */
3538        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3539
3540        /*
3541         * We want to make sure we read the overruns after we set up our
3542         * pointers to the next object. The writer side does a
3543         * cmpxchg to cross pages which acts as the mb on the writer
3544         * side. Note, the reader will constantly fail the swap
3545         * while the writer is updating the pointers, so this
3546         * guarantees that the overwrite recorded here is the one we
3547         * want to compare with the last_overrun.
3548         */
3549        smp_mb();
3550        overwrite = local_read(&(cpu_buffer->overrun));
3551
3552        /*
3553         * Here's the tricky part.
3554         *
3555         * We need to move the pointer past the header page.
3556         * But we can only do that if a writer is not currently
3557         * moving it. The page before the header page has the
3558         * flag bit '1' set if it is pointing to the page we want.
3559         * but if the writer is in the process of moving it
3560         * than it will be '2' or already moved '0'.
3561         */
3562
3563        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3564
3565        /*
3566         * If we did not convert it, then we must try again.
3567         */
3568        if (!ret)
3569                goto spin;
3570
3571        /*
3572         * Yeah! We succeeded in replacing the page.
3573         *
3574         * Now make the new head point back to the reader page.
3575         */
3576        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3577        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3578
3579        /* Finally update the reader page to the new head */
3580        cpu_buffer->reader_page = reader;
3581        rb_reset_reader_page(cpu_buffer);
3582
3583        if (overwrite != cpu_buffer->last_overrun) {
3584                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3585                cpu_buffer->last_overrun = overwrite;
3586        }
3587
3588        goto again;
3589
3590 out:
3591        arch_spin_unlock(&cpu_buffer->lock);
3592        local_irq_restore(flags);
3593
3594        return reader;
3595}
3596
3597static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3598{
3599        struct ring_buffer_event *event;
3600        struct buffer_page *reader;
3601        unsigned length;
3602
3603        reader = rb_get_reader_page(cpu_buffer);
3604
3605        /* This function should not be called when buffer is empty */
3606        if (RB_WARN_ON(cpu_buffer, !reader))
3607                return;
3608
3609        event = rb_reader_event(cpu_buffer);
3610
3611        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3612                cpu_buffer->read++;
3613
3614        rb_update_read_stamp(cpu_buffer, event);
3615
3616        length = rb_event_length(event);
3617        cpu_buffer->reader_page->read += length;
3618}
3619
3620static void rb_advance_iter(struct ring_buffer_iter *iter)
3621{
3622        struct ring_buffer_per_cpu *cpu_buffer;
3623        struct ring_buffer_event *event;
3624        unsigned length;
3625
3626        cpu_buffer = iter->cpu_buffer;
3627
3628        /*
3629         * Check if we are at the end of the buffer.
3630         */
3631        if (iter->head >= rb_page_size(iter->head_page)) {
3632                /* discarded commits can make the page empty */
3633                if (iter->head_page == cpu_buffer->commit_page)
3634                        return;
3635                rb_inc_iter(iter);
3636                return;
3637        }
3638
3639        event = rb_iter_head_event(iter);
3640
3641        length = rb_event_length(event);
3642
3643        /*
3644         * This should not be called to advance the header if we are
3645         * at the tail of the buffer.
3646         */
3647        if (RB_WARN_ON(cpu_buffer,
3648                       (iter->head_page == cpu_buffer->commit_page) &&
3649                       (iter->head + length > rb_commit_index(cpu_buffer))))
3650                return;
3651
3652        rb_update_iter_read_stamp(iter, event);
3653
3654        iter->head += length;
3655
3656        /* check for end of page padding */
3657        if ((iter->head >= rb_page_size(iter->head_page)) &&
3658            (iter->head_page != cpu_buffer->commit_page))
3659                rb_inc_iter(iter);
3660}
3661
3662static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3663{
3664        return cpu_buffer->lost_events;
3665}
3666
3667static struct ring_buffer_event *
3668rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3669               unsigned long *lost_events)
3670{
3671        struct ring_buffer_event *event;
3672        struct buffer_page *reader;
3673        int nr_loops = 0;
3674
3675 again:
3676        /*
3677         * We repeat when a time extend is encountered.
3678         * Since the time extend is always attached to a data event,
3679         * we should never loop more than once.
3680         * (We never hit the following condition more than twice).
3681         */
3682        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3683                return NULL;
3684
3685        reader = rb_get_reader_page(cpu_buffer);
3686        if (!reader)
3687                return NULL;
3688
3689        event = rb_reader_event(cpu_buffer);
3690
3691        switch (event->type_len) {
3692        case RINGBUF_TYPE_PADDING:
3693                if (rb_null_event(event))
3694                        RB_WARN_ON(cpu_buffer, 1);
3695                /*
3696                 * Because the writer could be discarding every
3697                 * event it creates (which would probably be bad)
3698                 * if we were to go back to "again" then we may never
3699                 * catch up, and will trigger the warn on, or lock
3700                 * the box. Return the padding, and we will release
3701                 * the current locks, and try again.
3702                 */
3703                return event;
3704
3705        case RINGBUF_TYPE_TIME_EXTEND:
3706                /* Internal data, OK to advance */
3707                rb_advance_reader(cpu_buffer);
3708                goto again;
3709
3710        case RINGBUF_TYPE_TIME_STAMP:
3711                /* FIXME: not implemented */
3712                rb_advance_reader(cpu_buffer);
3713                goto again;
3714
3715        case RINGBUF_TYPE_DATA:
3716                if (ts) {
3717                        *ts = cpu_buffer->read_stamp + event->time_delta;
3718                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3719                                                         cpu_buffer->cpu, ts);
3720                }
3721                if (lost_events)
3722                        *lost_events = rb_lost_events(cpu_buffer);
3723                return event;
3724
3725        default:
3726                BUG();
3727        }
3728
3729        return NULL;
3730}
3731EXPORT_SYMBOL_GPL(ring_buffer_peek);
3732
3733static struct ring_buffer_event *
3734rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3735{
3736        struct ring_buffer *buffer;
3737        struct ring_buffer_per_cpu *cpu_buffer;
3738        struct ring_buffer_event *event;
3739        int nr_loops = 0;
3740
3741        cpu_buffer = iter->cpu_buffer;
3742        buffer = cpu_buffer->buffer;
3743
3744        /*
3745         * Check if someone performed a consuming read to
3746         * the buffer. A consuming read invalidates the iterator
3747         * and we need to reset the iterator in this case.
3748         */
3749        if (unlikely(iter->cache_read != cpu_buffer->read ||
3750                     iter->cache_reader_page != cpu_buffer->reader_page))
3751                rb_iter_reset(iter);
3752
3753 again:
3754        if (ring_buffer_iter_empty(iter))
3755                return NULL;
3756
3757        /*
3758         * We repeat when a time extend is encountered.
3759         * Since the time extend is always attached to a data event,
3760         * we should never loop more than once.
3761         * (We never hit the following condition more than twice).
3762         */
3763        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3764                return NULL;
3765
3766        if (rb_per_cpu_empty(cpu_buffer))
3767                return NULL;
3768
3769        if (iter->head >= local_read(&iter->head_page->page->commit)) {
3770                rb_inc_iter(iter);
3771                goto again;
3772        }
3773
3774        event = rb_iter_head_event(iter);
3775
3776        switch (event->type_len) {
3777        case RINGBUF_TYPE_PADDING:
3778                if (rb_null_event(event)) {
3779                        rb_inc_iter(iter);
3780                        goto again;
3781                }
3782                rb_advance_iter(iter);
3783                return event;
3784
3785        case RINGBUF_TYPE_TIME_EXTEND:
3786                /* Internal data, OK to advance */
3787                rb_advance_iter(iter);
3788                goto again;
3789
3790        case RINGBUF_TYPE_TIME_STAMP:
3791                /* FIXME: not implemented */
3792                rb_advance_iter(iter);
3793                goto again;
3794
3795        case RINGBUF_TYPE_DATA:
3796                if (ts) {
3797                        *ts = iter->read_stamp + event->time_delta;
3798                        ring_buffer_normalize_time_stamp(buffer,
3799                                                         cpu_buffer->cpu, ts);
3800                }
3801                return event;
3802
3803        default:
3804                BUG();
3805        }
3806
3807        return NULL;
3808}
3809EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3810
3811static inline int rb_ok_to_lock(void)
3812{
3813        /*
3814         * If an NMI die dumps out the content of the ring buffer
3815         * do not grab locks. We also permanently disable the ring
3816         * buffer too. A one time deal is all you get from reading
3817         * the ring buffer from an NMI.
3818         */
3819        if (likely(!in_nmi()))
3820                return 1;
3821
3822        tracing_off_permanent();
3823        return 0;
3824}
3825
3826/**
3827 * ring_buffer_peek - peek at the next event to be read
3828 * @buffer: The ring buffer to read
3829 * @cpu: The cpu to peak at
3830 * @ts: The timestamp counter of this event.
3831 * @lost_events: a variable to store if events were lost (may be NULL)
3832 *
3833 * This will return the event that will be read next, but does
3834 * not consume the data.
3835 */
3836struct ring_buffer_event *
3837ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3838                 unsigned long *lost_events)
3839{
3840        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3841        struct ring_buffer_event *event;
3842        unsigned long flags;
3843        int dolock;
3844
3845        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3846                return NULL;
3847
3848        dolock = rb_ok_to_lock();
3849 again:
3850        local_irq_save(flags);
3851        if (dolock)
3852                raw_spin_lock(&cpu_buffer->reader_lock);
3853        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3854        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3855                rb_advance_reader(cpu_buffer);
3856        if (dolock)
3857                raw_spin_unlock(&cpu_buffer->reader_lock);
3858        local_irq_restore(flags);
3859
3860        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3861                goto again;
3862
3863        return event;
3864}
3865
3866/**
3867 * ring_buffer_iter_peek - peek at the next event to be read
3868 * @iter: The ring buffer iterator
3869 * @ts: The timestamp counter of this event.
3870 *
3871 * This will return the event that will be read next, but does
3872 * not increment the iterator.
3873 */
3874struct ring_buffer_event *
3875ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3876{
3877        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3878        struct ring_buffer_event *event;
3879        unsigned long flags;
3880
3881 again:
3882        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3883        event = rb_iter_peek(iter, ts);
3884        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3885
3886        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3887                goto again;
3888
3889        return event;
3890}
3891
3892/**
3893 * ring_buffer_consume - return an event and consume it
3894 * @buffer: The ring buffer to get the next event from
3895 * @cpu: the cpu to read the buffer from
3896 * @ts: a variable to store the timestamp (may be NULL)
3897 * @lost_events: a variable to store if events were lost (may be NULL)
3898 *
3899 * Returns the next event in the ring buffer, and that event is consumed.
3900 * Meaning, that sequential reads will keep returning a different event,
3901 * and eventually empty the ring buffer if the producer is slower.
3902 */
3903struct ring_buffer_event *
3904ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3905                    unsigned long *lost_events)
3906{
3907        struct ring_buffer_per_cpu *cpu_buffer;
3908        struct ring_buffer_event *event = NULL;
3909        unsigned long flags;
3910        int dolock;
3911
3912        dolock = rb_ok_to_lock();
3913
3914 again:
3915        /* might be called in atomic */
3916        preempt_disable();
3917
3918        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3919                goto out;
3920
3921        cpu_buffer = buffer->buffers[cpu];
3922        local_irq_save(flags);
3923        if (dolock)
3924                raw_spin_lock(&cpu_buffer->reader_lock);
3925
3926        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3927        if (event) {
3928                cpu_buffer->lost_events = 0;
3929                rb_advance_reader(cpu_buffer);
3930        }
3931
3932        if (dolock)
3933                raw_spin_unlock(&cpu_buffer->reader_lock);
3934        local_irq_restore(flags);
3935
3936 out:
3937        preempt_enable();
3938
3939        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3940                goto again;
3941
3942        return event;
3943}
3944EXPORT_SYMBOL_GPL(ring_buffer_consume);
3945
3946/**
3947 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3948 * @buffer: The ring buffer to read from
3949 * @cpu: The cpu buffer to iterate over
3950 *
3951 * This performs the initial preparations necessary to iterate
3952 * through the buffer.  Memory is allocated, buffer recording
3953 * is disabled, and the iterator pointer is returned to the caller.
3954 *
3955 * Disabling buffer recordng prevents the reading from being
3956 * corrupted. This is not a consuming read, so a producer is not
3957 * expected.
3958 *
3959 * After a sequence of ring_buffer_read_prepare calls, the user is
3960 * expected to make at least one call to ring_buffer_read_prepare_sync.
3961 * Afterwards, ring_buffer_read_start is invoked to get things going
3962 * for real.
3963 *
3964 * This overall must be paired with ring_buffer_read_finish.
3965 */
3966struct ring_buffer_iter *
3967ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3968{
3969        struct ring_buffer_per_cpu *cpu_buffer;
3970        struct ring_buffer_iter *iter;
3971
3972        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3973                return NULL;
3974
3975        iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3976        if (!iter)
3977                return NULL;
3978
3979        cpu_buffer = buffer->buffers[cpu];
3980
3981        iter->cpu_buffer = cpu_buffer;
3982
3983        atomic_inc(&buffer->resize_disabled);
3984        atomic_inc(&cpu_buffer->record_disabled);
3985
3986        return iter;
3987}
3988EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3989
3990/**
3991 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3992 *
3993 * All previously invoked ring_buffer_read_prepare calls to prepare
3994 * iterators will be synchronized.  Afterwards, read_buffer_read_start
3995 * calls on those iterators are allowed.
3996 */
3997void
3998ring_buffer_read_prepare_sync(void)
3999{
4000        synchronize_sched();
4001}
4002EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4003
4004/**
4005 * ring_buffer_read_start - start a non consuming read of the buffer
4006 * @iter: The iterator returned by ring_buffer_read_prepare
4007 *
4008 * This finalizes the startup of an iteration through the buffer.
4009 * The iterator comes from a call to ring_buffer_read_prepare and
4010 * an intervening ring_buffer_read_prepare_sync must have been
4011 * performed.
4012 *
4013 * Must be paired with ring_buffer_read_finish.
4014 */
4015void
4016ring_buffer_read_start(struct ring_buffer_iter *iter)
4017{
4018        struct ring_buffer_per_cpu *cpu_buffer;
4019        unsigned long flags;
4020
4021        if (!iter)
4022                return;
4023
4024        cpu_buffer = iter->cpu_buffer;
4025
4026        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4027        arch_spin_lock(&cpu_buffer->lock);
4028        rb_iter_reset(iter);
4029        arch_spin_unlock(&cpu_buffer->lock);
4030        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4031}
4032EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4033
4034/**
4035 * ring_buffer_read_finish - finish reading the iterator of the buffer
4036 * @iter: The iterator retrieved by ring_buffer_start
4037 *
4038 * This re-enables the recording to the buffer, and frees the
4039 * iterator.
4040 */
4041void
4042ring_buffer_read_finish(struct ring_buffer_iter *iter)
4043{
4044        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4045        unsigned long flags;
4046
4047        /*
4048         * Ring buffer is disabled from recording, here's a good place
4049         * to check the integrity of the ring buffer.
4050         * Must prevent readers from trying to read, as the check
4051         * clears the HEAD page and readers require it.
4052         */
4053        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4054        rb_check_pages(cpu_buffer);
4055        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4056
4057        atomic_dec(&cpu_buffer->record_disabled);
4058        atomic_dec(&cpu_buffer->buffer->resize_disabled);
4059        kfree(iter);
4060}
4061EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4062
4063/**
4064 * ring_buffer_read - read the next item in the ring buffer by the iterator
4065 * @iter: The ring buffer iterator
4066 * @ts: The time stamp of the event read.
4067 *
4068 * This reads the next event in the ring buffer and increments the iterator.
4069 */
4070struct ring_buffer_event *
4071ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4072{
4073        struct ring_buffer_event *event;
4074        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4075        unsigned long flags;
4076
4077        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4078 again:
4079        event = rb_iter_peek(iter, ts);
4080        if (!event)
4081                goto out;
4082
4083        if (event->type_len == RINGBUF_TYPE_PADDING)
4084                goto again;
4085
4086        rb_advance_iter(iter);
4087 out:
4088        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4089
4090        return event;
4091}
4092EXPORT_SYMBOL_GPL(ring_buffer_read);
4093
4094/**
4095 * ring_buffer_size - return the size of the ring buffer (in bytes)
4096 * @buffer: The ring buffer.
4097 */
4098unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4099{
4100        /*
4101         * Earlier, this method returned
4102         *      BUF_PAGE_SIZE * buffer->nr_pages
4103         * Since the nr_pages field is now removed, we have converted this to
4104         * return the per cpu buffer value.
4105         */
4106        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4107                return 0;
4108
4109        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4110}
4111EXPORT_SYMBOL_GPL(ring_buffer_size);
4112
4113static void
4114rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4115{
4116        rb_head_page_deactivate(cpu_buffer);
4117
4118        cpu_buffer->head_page
4119                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4120        local_set(&cpu_buffer->head_page->write, 0);
4121        local_set(&cpu_buffer->head_page->entries, 0);
4122        local_set(&cpu_buffer->head_page->page->commit, 0);
4123
4124        cpu_buffer->head_page->read = 0;
4125
4126        cpu_buffer->tail_page = cpu_buffer->head_page;
4127        cpu_buffer->commit_page = cpu_buffer->head_page;
4128
4129        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4130        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4131        local_set(&cpu_buffer->reader_page->write, 0);
4132        local_set(&cpu_buffer->reader_page->entries, 0);
4133        local_set(&cpu_buffer->reader_page->page->commit, 0);
4134        cpu_buffer->reader_page->read = 0;
4135
4136        local_set(&cpu_buffer->entries_bytes, 0);
4137        local_set(&cpu_buffer->overrun, 0);
4138        local_set(&cpu_buffer->commit_overrun, 0);
4139        local_set(&cpu_buffer->dropped_events, 0);
4140        local_set(&cpu_buffer->entries, 0);
4141        local_set(&cpu_buffer->committing, 0);
4142        local_set(&cpu_buffer->commits, 0);
4143        cpu_buffer->read = 0;
4144        cpu_buffer->read_bytes = 0;
4145
4146        cpu_buffer->write_stamp = 0;
4147        cpu_buffer->read_stamp = 0;
4148
4149        cpu_buffer->lost_events = 0;
4150        cpu_buffer->last_overrun = 0;
4151
4152        rb_head_page_activate(cpu_buffer);
4153}
4154
4155/**
4156 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4157 * @buffer: The ring buffer to reset a per cpu buffer of
4158 * @cpu: The CPU buffer to be reset
4159 */
4160void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4161{
4162        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4163        unsigned long flags;
4164
4165        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4166                return;
4167
4168        atomic_inc(&buffer->resize_disabled);
4169        atomic_inc(&cpu_buffer->record_disabled);
4170
4171        /* Make sure all commits have finished */
4172        synchronize_sched();
4173
4174        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4175
4176        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4177                goto out;
4178
4179        arch_spin_lock(&cpu_buffer->lock);
4180
4181        rb_reset_cpu(cpu_buffer);
4182
4183        arch_spin_unlock(&cpu_buffer->lock);
4184
4185 out:
4186        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4187
4188        atomic_dec(&cpu_buffer->record_disabled);
4189        atomic_dec(&buffer->resize_disabled);
4190}
4191EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4192
4193/**
4194 * ring_buffer_reset - reset a ring buffer
4195 * @buffer: The ring buffer to reset all cpu buffers
4196 */
4197void ring_buffer_reset(struct ring_buffer *buffer)
4198{
4199        int cpu;
4200
4201        for_each_buffer_cpu(buffer, cpu)
4202                ring_buffer_reset_cpu(buffer, cpu);
4203}
4204EXPORT_SYMBOL_GPL(ring_buffer_reset);
4205
4206/**
4207 * rind_buffer_empty - is the ring buffer empty?
4208 * @buffer: The ring buffer to test
4209 */
4210int ring_buffer_empty(struct ring_buffer *buffer)
4211{
4212        struct ring_buffer_per_cpu *cpu_buffer;
4213        unsigned long flags;
4214        int dolock;
4215        int cpu;
4216        int ret;
4217
4218        dolock = rb_ok_to_lock();
4219
4220        /* yes this is racy, but if you don't like the race, lock the buffer */
4221        for_each_buffer_cpu(buffer, cpu) {
4222                cpu_buffer = buffer->buffers[cpu];
4223                local_irq_save(flags);
4224                if (dolock)
4225                        raw_spin_lock(&cpu_buffer->reader_lock);
4226                ret = rb_per_cpu_empty(cpu_buffer);
4227                if (dolock)
4228                        raw_spin_unlock(&cpu_buffer->reader_lock);
4229                local_irq_restore(flags);
4230
4231                if (!ret)
4232                        return 0;
4233        }
4234
4235        return 1;
4236}
4237EXPORT_SYMBOL_GPL(ring_buffer_empty);
4238
4239/**
4240 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4241 * @buffer: The ring buffer
4242 * @cpu: The CPU buffer to test
4243 */
4244int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4245{
4246        struct ring_buffer_per_cpu *cpu_buffer;
4247        unsigned long flags;
4248        int dolock;
4249        int ret;
4250
4251        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4252                return 1;
4253
4254        dolock = rb_ok_to_lock();
4255
4256        cpu_buffer = buffer->buffers[cpu];
4257        local_irq_save(flags);
4258        if (dolock)
4259                raw_spin_lock(&cpu_buffer->reader_lock);
4260        ret = rb_per_cpu_empty(cpu_buffer);
4261        if (dolock)
4262                raw_spin_unlock(&cpu_buffer->reader_lock);
4263        local_irq_restore(flags);
4264
4265        return ret;
4266}
4267EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4268
4269#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4270/**
4271 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4272 * @buffer_a: One buffer to swap with
4273 * @buffer_b: The other buffer to swap with
4274 *
4275 * This function is useful for tracers that want to take a "snapshot"
4276 * of a CPU buffer and has another back up buffer lying around.
4277 * it is expected that the tracer handles the cpu buffer not being
4278 * used at the moment.
4279 */
4280int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4281                         struct ring_buffer *buffer_b, int cpu)
4282{
4283        struct ring_buffer_per_cpu *cpu_buffer_a;
4284        struct ring_buffer_per_cpu *cpu_buffer_b;
4285        int ret = -EINVAL;
4286
4287        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4288            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4289                goto out;
4290
4291        cpu_buffer_a = buffer_a->buffers[cpu];
4292        cpu_buffer_b = buffer_b->buffers[cpu];
4293
4294        /* At least make sure the two buffers are somewhat the same */
4295        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4296                goto out;
4297
4298        ret = -EAGAIN;
4299
4300        if (ring_buffer_flags != RB_BUFFERS_ON)
4301                goto out;
4302
4303        if (atomic_read(&buffer_a->record_disabled))
4304                goto out;
4305
4306        if (atomic_read(&buffer_b->record_disabled))
4307                goto out;
4308
4309        if (atomic_read(&cpu_buffer_a->record_disabled))
4310                goto out;
4311
4312        if (atomic_read(&cpu_buffer_b->record_disabled))
4313                goto out;
4314
4315        /*
4316         * We can't do a synchronize_sched here because this
4317         * function can be called in atomic context.
4318         * Normally this will be called from the same CPU as cpu.
4319         * If not it's up to the caller to protect this.
4320         */
4321        atomic_inc(&cpu_buffer_a->record_disabled);
4322        atomic_inc(&cpu_buffer_b->record_disabled);
4323
4324        ret = -EBUSY;
4325        if (local_read(&cpu_buffer_a->committing))
4326                goto out_dec;
4327        if (local_read(&cpu_buffer_b->committing))
4328                goto out_dec;
4329
4330        buffer_a->buffers[cpu] = cpu_buffer_b;
4331        buffer_b->buffers[cpu] = cpu_buffer_a;
4332
4333        cpu_buffer_b->buffer = buffer_a;
4334        cpu_buffer_a->buffer = buffer_b;
4335
4336        ret = 0;
4337
4338out_dec:
4339        atomic_dec(&cpu_buffer_a->record_disabled);
4340        atomic_dec(&cpu_buffer_b->record_disabled);
4341out:
4342        return ret;
4343}
4344EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4345#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4346
4347/**
4348 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4349 * @buffer: the buffer to allocate for.
4350 * @cpu: the cpu buffer to allocate.
4351 *
4352 * This function is used in conjunction with ring_buffer_read_page.
4353 * When reading a full page from the ring buffer, these functions
4354 * can be used to speed up the process. The calling function should
4355 * allocate a few pages first with this function. Then when it
4356 * needs to get pages from the ring buffer, it passes the result
4357 * of this function into ring_buffer_read_page, which will swap
4358 * the page that was allocated, with the read page of the buffer.
4359 *
4360 * Returns:
4361 *  The page allocated, or NULL on error.
4362 */
4363void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4364{
4365        struct buffer_data_page *bpage;
4366        struct page *page;
4367
4368        page = alloc_pages_node(cpu_to_node(cpu),
4369                                GFP_KERNEL | __GFP_NORETRY, 0);
4370        if (!page)
4371                return NULL;
4372
4373        bpage = page_address(page);
4374
4375        rb_init_page(bpage);
4376
4377        return bpage;
4378}
4379EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4380
4381/**
4382 * ring_buffer_free_read_page - free an allocated read page
4383 * @buffer: the buffer the page was allocate for
4384 * @data: the page to free
4385 *
4386 * Free a page allocated from ring_buffer_alloc_read_page.
4387 */
4388void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4389{
4390        free_page((unsigned long)data);
4391}
4392EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4393
4394/**
4395 * ring_buffer_read_page - extract a page from the ring buffer
4396 * @buffer: buffer to extract from
4397 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4398 * @len: amount to extract
4399 * @cpu: the cpu of the buffer to extract
4400 * @full: should the extraction only happen when the page is full.
4401 *
4402 * This function will pull out a page from the ring buffer and consume it.
4403 * @data_page must be the address of the variable that was returned
4404 * from ring_buffer_alloc_read_page. This is because the page might be used
4405 * to swap with a page in the ring buffer.
4406 *
4407 * for example:
4408 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4409 *      if (!rpage)
4410 *              return error;
4411 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4412 *      if (ret >= 0)
4413 *              process_page(rpage, ret);
4414 *
4415 * When @full is set, the function will not return true unless
4416 * the writer is off the reader page.
4417 *
4418 * Note: it is up to the calling functions to handle sleeps and wakeups.
4419 *  The ring buffer can be used anywhere in the kernel and can not
4420 *  blindly call wake_up. The layer that uses the ring buffer must be
4421 *  responsible for that.
4422 *
4423 * Returns:
4424 *  >=0 if data has been transferred, returns the offset of consumed data.
4425 *  <0 if no data has been transferred.
4426 */
4427int ring_buffer_read_page(struct ring_buffer *buffer,
4428                          void **data_page, size_t len, int cpu, int full)
4429{
4430        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4431        struct ring_buffer_event *event;
4432        struct buffer_data_page *bpage;
4433        struct buffer_page *reader;
4434        unsigned long missed_events;
4435        unsigned long flags;
4436        unsigned int commit;
4437        unsigned int read;
4438        u64 save_timestamp;
4439        int ret = -1;
4440
4441        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4442                goto out;
4443
4444        /*
4445         * If len is not big enough to hold the page header, then
4446         * we can not copy anything.
4447         */
4448        if (len <= BUF_PAGE_HDR_SIZE)
4449                goto out;
4450
4451        len -= BUF_PAGE_HDR_SIZE;
4452
4453        if (!data_page)
4454                goto out;
4455
4456        bpage = *data_page;
4457        if (!bpage)
4458                goto out;
4459
4460        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4461
4462        reader = rb_get_reader_page(cpu_buffer);
4463        if (!reader)
4464                goto out_unlock;
4465
4466        event = rb_reader_event(cpu_buffer);
4467
4468        read = reader->read;
4469        commit = rb_page_commit(reader);
4470
4471        /* Check if any events were dropped */
4472        missed_events = cpu_buffer->lost_events;
4473
4474        /*
4475         * If this page has been partially read or
4476         * if len is not big enough to read the rest of the page or
4477         * a writer is still on the page, then
4478         * we must copy the data from the page to the buffer.
4479         * Otherwise, we can simply swap the page with the one passed in.
4480         */
4481        if (read || (len < (commit - read)) ||
4482            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4483                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4484                unsigned int rpos = read;
4485                unsigned int pos = 0;
4486                unsigned int size;
4487
4488                if (full)
4489                        goto out_unlock;
4490
4491                if (len > (commit - read))
4492                        len = (commit - read);
4493
4494                /* Always keep the time extend and data together */
4495                size = rb_event_ts_length(event);
4496
4497                if (len < size)
4498                        goto out_unlock;
4499
4500                /* save the current timestamp, since the user will need it */
4501                save_timestamp = cpu_buffer->read_stamp;
4502
4503                /* Need to copy one event at a time */
4504                do {
4505                        /* We need the size of one event, because
4506                         * rb_advance_reader only advances by one event,
4507                         * whereas rb_event_ts_length may include the size of
4508                         * one or two events.
4509                         * We have already ensured there's enough space if this
4510                         * is a time extend. */
4511                        size = rb_event_length(event);
4512                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4513
4514                        len -= size;
4515
4516                        rb_advance_reader(cpu_buffer);
4517                        rpos = reader->read;
4518                        pos += size;
4519
4520                        if (rpos >= commit)
4521                                break;
4522
4523                        event = rb_reader_event(cpu_buffer);
4524                        /* Always keep the time extend and data together */
4525                        size = rb_event_ts_length(event);
4526                } while (len >= size);
4527
4528                /* update bpage */
4529                local_set(&bpage->commit, pos);
4530                bpage->time_stamp = save_timestamp;
4531
4532                /* we copied everything to the beginning */
4533                read = 0;
4534        } else {
4535                /* update the entry counter */
4536                cpu_buffer->read += rb_page_entries(reader);
4537                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4538
4539                /* swap the pages */
4540                rb_init_page(bpage);
4541                bpage = reader->page;
4542                reader->page = *data_page;
4543                local_set(&reader->write, 0);
4544                local_set(&reader->entries, 0);
4545                reader->read = 0;
4546                *data_page = bpage;
4547
4548                /*
4549                 * Use the real_end for the data size,
4550                 * This gives us a chance to store the lost events
4551                 * on the page.
4552                 */
4553                if (reader->real_end)
4554                        local_set(&bpage->commit, reader->real_end);
4555        }
4556        ret = read;
4557
4558        cpu_buffer->lost_events = 0;
4559
4560        commit = local_read(&bpage->commit);
4561        /*
4562         * Set a flag in the commit field if we lost events
4563         */
4564        if (missed_events) {
4565                /* If there is room at the end of the page to save the
4566                 * missed events, then record it there.
4567                 */
4568                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4569                        memcpy(&bpage->data[commit], &missed_events,
4570                               sizeof(missed_events));
4571                        local_add(RB_MISSED_STORED, &bpage->commit);
4572                        commit += sizeof(missed_events);
4573                }
4574                local_add(RB_MISSED_EVENTS, &bpage->commit);
4575        }
4576
4577        /*
4578         * This page may be off to user land. Zero it out here.
4579         */
4580        if (commit < BUF_PAGE_SIZE)
4581                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4582
4583 out_unlock:
4584        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4585
4586 out:
4587        return ret;
4588}
4589EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4590
4591#ifdef CONFIG_HOTPLUG_CPU
4592static int rb_cpu_notify(struct notifier_block *self,
4593                         unsigned long action, void *hcpu)
4594{
4595        struct ring_buffer *buffer =
4596                container_of(self, struct ring_buffer, cpu_notify);
4597        long cpu = (long)hcpu;
4598        int cpu_i, nr_pages_same;
4599        unsigned int nr_pages;
4600
4601        switch (action) {
4602        case CPU_UP_PREPARE:
4603        case CPU_UP_PREPARE_FROZEN:
4604                if (cpumask_test_cpu(cpu, buffer->cpumask))
4605                        return NOTIFY_OK;
4606
4607                nr_pages = 0;
4608                nr_pages_same = 1;
4609                /* check if all cpu sizes are same */
4610                for_each_buffer_cpu(buffer, cpu_i) {
4611                        /* fill in the size from first enabled cpu */
4612                        if (nr_pages == 0)
4613                                nr_pages = buffer->buffers[cpu_i]->nr_pages;
4614                        if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4615                                nr_pages_same = 0;
4616                                break;
4617                        }
4618                }
4619                /* allocate minimum pages, user can later expand it */
4620                if (!nr_pages_same)
4621                        nr_pages = 2;
4622                buffer->buffers[cpu] =
4623                        rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4624                if (!buffer->buffers[cpu]) {
4625                        WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4626                             cpu);
4627                        return NOTIFY_OK;
4628                }
4629                smp_wmb();
4630                cpumask_set_cpu(cpu, buffer->cpumask);
4631                break;
4632        case CPU_DOWN_PREPARE:
4633        case CPU_DOWN_PREPARE_FROZEN:
4634                /*
4635                 * Do nothing.
4636                 *  If we were to free the buffer, then the user would
4637                 *  lose any trace that was in the buffer.
4638                 */
4639                break;
4640        default:
4641                break;
4642        }
4643        return NOTIFY_OK;
4644}
4645#endif
4646
4647#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4648/*
4649 * This is a basic integrity check of the ring buffer.
4650 * Late in the boot cycle this test will run when configured in.
4651 * It will kick off a thread per CPU that will go into a loop
4652 * writing to the per cpu ring buffer various sizes of data.
4653 * Some of the data will be large items, some small.
4654 *
4655 * Another thread is created that goes into a spin, sending out
4656 * IPIs to the other CPUs to also write into the ring buffer.
4657 * this is to test the nesting ability of the buffer.
4658 *
4659 * Basic stats are recorded and reported. If something in the
4660 * ring buffer should happen that's not expected, a big warning
4661 * is displayed and all ring buffers are disabled.
4662 */
4663static struct task_struct *rb_threads[NR_CPUS] __initdata;
4664
4665struct rb_test_data {
4666        struct ring_buffer      *buffer;
4667        unsigned long           events;
4668        unsigned long           bytes_written;
4669        unsigned long           bytes_alloc;
4670        unsigned long           bytes_dropped;
4671        unsigned long           events_nested;
4672        unsigned long           bytes_written_nested;
4673        unsigned long           bytes_alloc_nested;
4674        unsigned long           bytes_dropped_nested;
4675        int                     min_size_nested;
4676        int                     max_size_nested;
4677        int                     max_size;
4678        int                     min_size;
4679        int                     cpu;
4680        int                     cnt;
4681};
4682
4683static struct rb_test_data rb_data[NR_CPUS] __initdata;
4684
4685/* 1 meg per cpu */
4686#define RB_TEST_BUFFER_SIZE     1048576
4687
4688static char rb_string[] __initdata =
4689        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4690        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4691        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4692
4693static bool rb_test_started __initdata;
4694
4695struct rb_item {
4696        int size;
4697        char str[];
4698};
4699
4700static __init int rb_write_something(struct rb_test_data *data, bool nested)
4701{
4702        struct ring_buffer_event *event;
4703        struct rb_item *item;
4704        bool started;
4705        int event_len;
4706        int size;
4707        int len;
4708        int cnt;
4709
4710        /* Have nested writes different that what is written */
4711        cnt = data->cnt + (nested ? 27 : 0);
4712
4713        /* Multiply cnt by ~e, to make some unique increment */
4714        size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4715
4716        len = size + sizeof(struct rb_item);
4717
4718        started = rb_test_started;
4719        /* read rb_test_started before checking buffer enabled */
4720        smp_rmb();
4721
4722        event = ring_buffer_lock_reserve(data->buffer, len);
4723        if (!event) {
4724                /* Ignore dropped events before test starts. */
4725                if (started) {
4726                        if (nested)
4727                                data->bytes_dropped += len;
4728                        else
4729                                data->bytes_dropped_nested += len;
4730                }
4731                return len;
4732        }
4733
4734        event_len = ring_buffer_event_length(event);
4735
4736        if (RB_WARN_ON(data->buffer, event_len < len))
4737                goto out;
4738
4739        item = ring_buffer_event_data(event);
4740        item->size = size;
4741        memcpy(item->str, rb_string, size);
4742
4743        if (nested) {
4744                data->bytes_alloc_nested += event_len;
4745                data->bytes_written_nested += len;
4746                data->events_nested++;
4747                if (!data->min_size_nested || len < data->min_size_nested)
4748                        data->min_size_nested = len;
4749                if (len > data->max_size_nested)
4750                        data->max_size_nested = len;
4751        } else {
4752                data->bytes_alloc += event_len;
4753                data->bytes_written += len;
4754                data->events++;
4755                if (!data->min_size || len < data->min_size)
4756                        data->max_size = len;
4757                if (len > data->max_size)
4758                        data->max_size = len;
4759        }
4760
4761 out:
4762        ring_buffer_unlock_commit(data->buffer, event);
4763
4764        return 0;
4765}
4766
4767static __init int rb_test(void *arg)
4768{
4769        struct rb_test_data *data = arg;
4770
4771        while (!kthread_should_stop()) {
4772                rb_write_something(data, false);
4773                data->cnt++;
4774
4775                set_current_state(TASK_INTERRUPTIBLE);
4776                /* Now sleep between a min of 100-300us and a max of 1ms */
4777                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4778        }
4779
4780        return 0;
4781}
4782
4783static __init void rb_ipi(void *ignore)
4784{
4785        struct rb_test_data *data;
4786        int cpu = smp_processor_id();
4787
4788        data = &rb_data[cpu];
4789        rb_write_something(data, true);
4790}
4791
4792static __init int rb_hammer_test(void *arg)
4793{
4794        while (!kthread_should_stop()) {
4795
4796                /* Send an IPI to all cpus to write data! */
4797                smp_call_function(rb_ipi, NULL, 1);
4798                /* No sleep, but for non preempt, let others run */
4799                schedule();
4800        }
4801
4802        return 0;
4803}
4804
4805static __init int test_ringbuffer(void)
4806{
4807        struct task_struct *rb_hammer;
4808        struct ring_buffer *buffer;
4809        int cpu;
4810        int ret = 0;
4811
4812        pr_info("Running ring buffer tests...\n");
4813
4814        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4815        if (WARN_ON(!buffer))
4816                return 0;
4817
4818        /* Disable buffer so that threads can't write to it yet */
4819        ring_buffer_record_off(buffer);
4820
4821        for_each_online_cpu(cpu) {
4822                rb_data[cpu].buffer = buffer;
4823                rb_data[cpu].cpu = cpu;
4824                rb_data[cpu].cnt = cpu;
4825                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4826                                                 "rbtester/%d", cpu);
4827                if (WARN_ON(!rb_threads[cpu])) {
4828                        pr_cont("FAILED\n");
4829                        ret = -1;
4830                        goto out_free;
4831                }
4832
4833                kthread_bind(rb_threads[cpu], cpu);
4834                wake_up_process(rb_threads[cpu]);
4835        }
4836
4837        /* Now create the rb hammer! */
4838        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4839        if (WARN_ON(!rb_hammer)) {
4840                pr_cont("FAILED\n");
4841                ret = -1;
4842                goto out_free;
4843        }
4844
4845        ring_buffer_record_on(buffer);
4846        /*
4847         * Show buffer is enabled before setting rb_test_started.
4848         * Yes there's a small race window where events could be
4849         * dropped and the thread wont catch it. But when a ring
4850         * buffer gets enabled, there will always be some kind of
4851         * delay before other CPUs see it. Thus, we don't care about
4852         * those dropped events. We care about events dropped after
4853         * the threads see that the buffer is active.
4854         */
4855        smp_wmb();
4856        rb_test_started = true;
4857
4858        set_current_state(TASK_INTERRUPTIBLE);
4859        /* Just run for 10 seconds */;
4860        schedule_timeout(10 * HZ);
4861
4862        kthread_stop(rb_hammer);
4863
4864 out_free:
4865        for_each_online_cpu(cpu) {
4866                if (!rb_threads[cpu])
4867                        break;
4868                kthread_stop(rb_threads[cpu]);
4869        }
4870        if (ret) {
4871                ring_buffer_free(buffer);
4872                return ret;
4873        }
4874
4875        /* Report! */
4876        pr_info("finished\n");
4877        for_each_online_cpu(cpu) {
4878                struct ring_buffer_event *event;
4879                struct rb_test_data *data = &rb_data[cpu];
4880                struct rb_item *item;
4881                unsigned long total_events;
4882                unsigned long total_dropped;
4883                unsigned long total_written;
4884                unsigned long total_alloc;
4885                unsigned long total_read = 0;
4886                unsigned long total_size = 0;
4887                unsigned long total_len = 0;
4888                unsigned long total_lost = 0;
4889                unsigned long lost;
4890                int big_event_size;
4891                int small_event_size;
4892
4893                ret = -1;
4894
4895                total_events = data->events + data->events_nested;
4896                total_written = data->bytes_written + data->bytes_written_nested;
4897                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4898                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4899
4900                big_event_size = data->max_size + data->max_size_nested;
4901                small_event_size = data->min_size + data->min_size_nested;
4902
4903                pr_info("CPU %d:\n", cpu);
4904                pr_info("              events:    %ld\n", total_events);
4905                pr_info("       dropped bytes:    %ld\n", total_dropped);
4906                pr_info("       alloced bytes:    %ld\n", total_alloc);
4907                pr_info("       written bytes:    %ld\n", total_written);
4908                pr_info("       biggest event:    %d\n", big_event_size);
4909                pr_info("      smallest event:    %d\n", small_event_size);
4910
4911                if (RB_WARN_ON(buffer, total_dropped))
4912                        break;
4913
4914                ret = 0;
4915
4916                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4917                        total_lost += lost;
4918                        item = ring_buffer_event_data(event);
4919                        total_len += ring_buffer_event_length(event);
4920                        total_size += item->size + sizeof(struct rb_item);
4921                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4922                                pr_info("FAILED!\n");
4923                                pr_info("buffer had: %.*s\n", item->size, item->str);
4924                                pr_info("expected:   %.*s\n", item->size, rb_string);
4925                                RB_WARN_ON(buffer, 1);
4926                                ret = -1;
4927                                break;
4928                        }
4929                        total_read++;
4930                }
4931                if (ret)
4932                        break;
4933
4934                ret = -1;
4935
4936                pr_info("         read events:   %ld\n", total_read);
4937                pr_info("         lost events:   %ld\n", total_lost);
4938                pr_info("        total events:   %ld\n", total_lost + total_read);
4939                pr_info("  recorded len bytes:   %ld\n", total_len);
4940                pr_info(" recorded size bytes:   %ld\n", total_size);
4941                if (total_lost)
4942                        pr_info(" With dropped events, record len and size may not match\n"
4943                                " alloced and written from above\n");
4944                if (!total_lost) {
4945                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
4946                                       total_size != total_written))
4947                                break;
4948                }
4949                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4950                        break;
4951
4952                ret = 0;
4953        }
4954        if (!ret)
4955                pr_info("Ring buffer PASSED!\n");
4956
4957        ring_buffer_free(buffer);
4958        return 0;
4959}
4960
4961late_initcall(test_ringbuffer);
4962#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4963