linux/net/ceph/messenger.c
<<
>>
Prefs
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
   9#include <linux/slab.h>
  10#include <linux/socket.h>
  11#include <linux/string.h>
  12#ifdef  CONFIG_BLOCK
  13#include <linux/bio.h>
  14#endif  /* CONFIG_BLOCK */
  15#include <linux/dns_resolver.h>
  16#include <net/tcp.h>
  17
  18#include <linux/ceph/libceph.h>
  19#include <linux/ceph/messenger.h>
  20#include <linux/ceph/decode.h>
  21#include <linux/ceph/pagelist.h>
  22#include <linux/export.h>
  23
  24#define list_entry_next(pos, member)                                    \
  25        list_entry(pos->member.next, typeof(*pos), member)
  26
  27/*
  28 * Ceph uses the messenger to exchange ceph_msg messages with other
  29 * hosts in the system.  The messenger provides ordered and reliable
  30 * delivery.  We tolerate TCP disconnects by reconnecting (with
  31 * exponential backoff) in the case of a fault (disconnection, bad
  32 * crc, protocol error).  Acks allow sent messages to be discarded by
  33 * the sender.
  34 */
  35
  36/*
  37 * We track the state of the socket on a given connection using
  38 * values defined below.  The transition to a new socket state is
  39 * handled by a function which verifies we aren't coming from an
  40 * unexpected state.
  41 *
  42 *      --------
  43 *      | NEW* |  transient initial state
  44 *      --------
  45 *          | con_sock_state_init()
  46 *          v
  47 *      ----------
  48 *      | CLOSED |  initialized, but no socket (and no
  49 *      ----------  TCP connection)
  50 *       ^      \
  51 *       |       \ con_sock_state_connecting()
  52 *       |        ----------------------
  53 *       |                              \
  54 *       + con_sock_state_closed()       \
  55 *       |+---------------------------    \
  56 *       | \                          \    \
  57 *       |  -----------                \    \
  58 *       |  | CLOSING |  socket event;  \    \
  59 *       |  -----------  await close     \    \
  60 *       |       ^                        \   |
  61 *       |       |                         \  |
  62 *       |       + con_sock_state_closing() \ |
  63 *       |      / \                         | |
  64 *       |     /   ---------------          | |
  65 *       |    /                   \         v v
  66 *       |   /                    --------------
  67 *       |  /    -----------------| CONNECTING |  socket created, TCP
  68 *       |  |   /                 --------------  connect initiated
  69 *       |  |   | con_sock_state_connected()
  70 *       |  |   v
  71 *      -------------
  72 *      | CONNECTED |  TCP connection established
  73 *      -------------
  74 *
  75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  76 */
  77
  78#define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
  79#define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
  80#define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
  81#define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
  82#define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
  83
  84/*
  85 * connection states
  86 */
  87#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  88#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  89#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  90#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  91#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  92#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  93
  94/*
  95 * ceph_connection flag bits
  96 */
  97#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  98                                       * messages on errors */
  99#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 100#define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
 101#define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
 102#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 103
 104static bool con_flag_valid(unsigned long con_flag)
 105{
 106        switch (con_flag) {
 107        case CON_FLAG_LOSSYTX:
 108        case CON_FLAG_KEEPALIVE_PENDING:
 109        case CON_FLAG_WRITE_PENDING:
 110        case CON_FLAG_SOCK_CLOSED:
 111        case CON_FLAG_BACKOFF:
 112                return true;
 113        default:
 114                return false;
 115        }
 116}
 117
 118static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 119{
 120        BUG_ON(!con_flag_valid(con_flag));
 121
 122        clear_bit(con_flag, &con->flags);
 123}
 124
 125static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 126{
 127        BUG_ON(!con_flag_valid(con_flag));
 128
 129        set_bit(con_flag, &con->flags);
 130}
 131
 132static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 133{
 134        BUG_ON(!con_flag_valid(con_flag));
 135
 136        return test_bit(con_flag, &con->flags);
 137}
 138
 139static bool con_flag_test_and_clear(struct ceph_connection *con,
 140                                        unsigned long con_flag)
 141{
 142        BUG_ON(!con_flag_valid(con_flag));
 143
 144        return test_and_clear_bit(con_flag, &con->flags);
 145}
 146
 147static bool con_flag_test_and_set(struct ceph_connection *con,
 148                                        unsigned long con_flag)
 149{
 150        BUG_ON(!con_flag_valid(con_flag));
 151
 152        return test_and_set_bit(con_flag, &con->flags);
 153}
 154
 155/* Slab caches for frequently-allocated structures */
 156
 157static struct kmem_cache        *ceph_msg_cache;
 158static struct kmem_cache        *ceph_msg_data_cache;
 159
 160/* static tag bytes (protocol control messages) */
 161static char tag_msg = CEPH_MSGR_TAG_MSG;
 162static char tag_ack = CEPH_MSGR_TAG_ACK;
 163static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 164
 165#ifdef CONFIG_LOCKDEP
 166static struct lock_class_key socket_class;
 167#endif
 168
 169/*
 170 * When skipping (ignoring) a block of input we read it into a "skip
 171 * buffer," which is this many bytes in size.
 172 */
 173#define SKIP_BUF_SIZE   1024
 174
 175static void queue_con(struct ceph_connection *con);
 176static void con_work(struct work_struct *);
 177static void con_fault(struct ceph_connection *con);
 178
 179/*
 180 * Nicely render a sockaddr as a string.  An array of formatted
 181 * strings is used, to approximate reentrancy.
 182 */
 183#define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
 184#define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
 185#define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
 186#define MAX_ADDR_STR_LEN        64      /* 54 is enough */
 187
 188static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 189static atomic_t addr_str_seq = ATOMIC_INIT(0);
 190
 191static struct page *zero_page;          /* used in certain error cases */
 192
 193const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 194{
 195        int i;
 196        char *s;
 197        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 198        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 199
 200        i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 201        s = addr_str[i];
 202
 203        switch (ss->ss_family) {
 204        case AF_INET:
 205                snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 206                         ntohs(in4->sin_port));
 207                break;
 208
 209        case AF_INET6:
 210                snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 211                         ntohs(in6->sin6_port));
 212                break;
 213
 214        default:
 215                snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 216                         ss->ss_family);
 217        }
 218
 219        return s;
 220}
 221EXPORT_SYMBOL(ceph_pr_addr);
 222
 223static void encode_my_addr(struct ceph_messenger *msgr)
 224{
 225        memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 226        ceph_encode_addr(&msgr->my_enc_addr);
 227}
 228
 229/*
 230 * work queue for all reading and writing to/from the socket.
 231 */
 232static struct workqueue_struct *ceph_msgr_wq;
 233
 234static int ceph_msgr_slab_init(void)
 235{
 236        BUG_ON(ceph_msg_cache);
 237        ceph_msg_cache = kmem_cache_create("ceph_msg",
 238                                        sizeof (struct ceph_msg),
 239                                        __alignof__(struct ceph_msg), 0, NULL);
 240
 241        if (!ceph_msg_cache)
 242                return -ENOMEM;
 243
 244        BUG_ON(ceph_msg_data_cache);
 245        ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
 246                                        sizeof (struct ceph_msg_data),
 247                                        __alignof__(struct ceph_msg_data),
 248                                        0, NULL);
 249        if (ceph_msg_data_cache)
 250                return 0;
 251
 252        kmem_cache_destroy(ceph_msg_cache);
 253        ceph_msg_cache = NULL;
 254
 255        return -ENOMEM;
 256}
 257
 258static void ceph_msgr_slab_exit(void)
 259{
 260        BUG_ON(!ceph_msg_data_cache);
 261        kmem_cache_destroy(ceph_msg_data_cache);
 262        ceph_msg_data_cache = NULL;
 263
 264        BUG_ON(!ceph_msg_cache);
 265        kmem_cache_destroy(ceph_msg_cache);
 266        ceph_msg_cache = NULL;
 267}
 268
 269static void _ceph_msgr_exit(void)
 270{
 271        if (ceph_msgr_wq) {
 272                destroy_workqueue(ceph_msgr_wq);
 273                ceph_msgr_wq = NULL;
 274        }
 275
 276        ceph_msgr_slab_exit();
 277
 278        BUG_ON(zero_page == NULL);
 279        kunmap(zero_page);
 280        page_cache_release(zero_page);
 281        zero_page = NULL;
 282}
 283
 284int ceph_msgr_init(void)
 285{
 286        BUG_ON(zero_page != NULL);
 287        zero_page = ZERO_PAGE(0);
 288        page_cache_get(zero_page);
 289
 290        if (ceph_msgr_slab_init())
 291                return -ENOMEM;
 292
 293        ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
 294        if (ceph_msgr_wq)
 295                return 0;
 296
 297        pr_err("msgr_init failed to create workqueue\n");
 298        _ceph_msgr_exit();
 299
 300        return -ENOMEM;
 301}
 302EXPORT_SYMBOL(ceph_msgr_init);
 303
 304void ceph_msgr_exit(void)
 305{
 306        BUG_ON(ceph_msgr_wq == NULL);
 307
 308        _ceph_msgr_exit();
 309}
 310EXPORT_SYMBOL(ceph_msgr_exit);
 311
 312void ceph_msgr_flush(void)
 313{
 314        flush_workqueue(ceph_msgr_wq);
 315}
 316EXPORT_SYMBOL(ceph_msgr_flush);
 317
 318/* Connection socket state transition functions */
 319
 320static void con_sock_state_init(struct ceph_connection *con)
 321{
 322        int old_state;
 323
 324        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 325        if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 326                printk("%s: unexpected old state %d\n", __func__, old_state);
 327        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 328             CON_SOCK_STATE_CLOSED);
 329}
 330
 331static void con_sock_state_connecting(struct ceph_connection *con)
 332{
 333        int old_state;
 334
 335        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 336        if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 337                printk("%s: unexpected old state %d\n", __func__, old_state);
 338        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 339             CON_SOCK_STATE_CONNECTING);
 340}
 341
 342static void con_sock_state_connected(struct ceph_connection *con)
 343{
 344        int old_state;
 345
 346        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 347        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 348                printk("%s: unexpected old state %d\n", __func__, old_state);
 349        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 350             CON_SOCK_STATE_CONNECTED);
 351}
 352
 353static void con_sock_state_closing(struct ceph_connection *con)
 354{
 355        int old_state;
 356
 357        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 358        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 359                        old_state != CON_SOCK_STATE_CONNECTED &&
 360                        old_state != CON_SOCK_STATE_CLOSING))
 361                printk("%s: unexpected old state %d\n", __func__, old_state);
 362        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 363             CON_SOCK_STATE_CLOSING);
 364}
 365
 366static void con_sock_state_closed(struct ceph_connection *con)
 367{
 368        int old_state;
 369
 370        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 371        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 372                    old_state != CON_SOCK_STATE_CLOSING &&
 373                    old_state != CON_SOCK_STATE_CONNECTING &&
 374                    old_state != CON_SOCK_STATE_CLOSED))
 375                printk("%s: unexpected old state %d\n", __func__, old_state);
 376        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 377             CON_SOCK_STATE_CLOSED);
 378}
 379
 380/*
 381 * socket callback functions
 382 */
 383
 384/* data available on socket, or listen socket received a connect */
 385static void ceph_sock_data_ready(struct sock *sk, int count_unused)
 386{
 387        struct ceph_connection *con = sk->sk_user_data;
 388        if (atomic_read(&con->msgr->stopping)) {
 389                return;
 390        }
 391
 392        if (sk->sk_state != TCP_CLOSE_WAIT) {
 393                dout("%s on %p state = %lu, queueing work\n", __func__,
 394                     con, con->state);
 395                queue_con(con);
 396        }
 397}
 398
 399/* socket has buffer space for writing */
 400static void ceph_sock_write_space(struct sock *sk)
 401{
 402        struct ceph_connection *con = sk->sk_user_data;
 403
 404        /* only queue to workqueue if there is data we want to write,
 405         * and there is sufficient space in the socket buffer to accept
 406         * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 407         * doesn't get called again until try_write() fills the socket
 408         * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 409         * and net/core/stream.c:sk_stream_write_space().
 410         */
 411        if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 412                if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
 413                        dout("%s %p queueing write work\n", __func__, con);
 414                        clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 415                        queue_con(con);
 416                }
 417        } else {
 418                dout("%s %p nothing to write\n", __func__, con);
 419        }
 420}
 421
 422/* socket's state has changed */
 423static void ceph_sock_state_change(struct sock *sk)
 424{
 425        struct ceph_connection *con = sk->sk_user_data;
 426
 427        dout("%s %p state = %lu sk_state = %u\n", __func__,
 428             con, con->state, sk->sk_state);
 429
 430        switch (sk->sk_state) {
 431        case TCP_CLOSE:
 432                dout("%s TCP_CLOSE\n", __func__);
 433        case TCP_CLOSE_WAIT:
 434                dout("%s TCP_CLOSE_WAIT\n", __func__);
 435                con_sock_state_closing(con);
 436                con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 437                queue_con(con);
 438                break;
 439        case TCP_ESTABLISHED:
 440                dout("%s TCP_ESTABLISHED\n", __func__);
 441                con_sock_state_connected(con);
 442                queue_con(con);
 443                break;
 444        default:        /* Everything else is uninteresting */
 445                break;
 446        }
 447}
 448
 449/*
 450 * set up socket callbacks
 451 */
 452static void set_sock_callbacks(struct socket *sock,
 453                               struct ceph_connection *con)
 454{
 455        struct sock *sk = sock->sk;
 456        sk->sk_user_data = con;
 457        sk->sk_data_ready = ceph_sock_data_ready;
 458        sk->sk_write_space = ceph_sock_write_space;
 459        sk->sk_state_change = ceph_sock_state_change;
 460}
 461
 462
 463/*
 464 * socket helpers
 465 */
 466
 467/*
 468 * initiate connection to a remote socket.
 469 */
 470static int ceph_tcp_connect(struct ceph_connection *con)
 471{
 472        struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 473        struct socket *sock;
 474        int ret;
 475
 476        BUG_ON(con->sock);
 477        ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
 478                               IPPROTO_TCP, &sock);
 479        if (ret)
 480                return ret;
 481        sock->sk->sk_allocation = GFP_NOFS;
 482
 483#ifdef CONFIG_LOCKDEP
 484        lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 485#endif
 486
 487        set_sock_callbacks(sock, con);
 488
 489        dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 490
 491        con_sock_state_connecting(con);
 492        ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 493                                 O_NONBLOCK);
 494        if (ret == -EINPROGRESS) {
 495                dout("connect %s EINPROGRESS sk_state = %u\n",
 496                     ceph_pr_addr(&con->peer_addr.in_addr),
 497                     sock->sk->sk_state);
 498        } else if (ret < 0) {
 499                pr_err("connect %s error %d\n",
 500                       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 501                sock_release(sock);
 502                con->error_msg = "connect error";
 503
 504                return ret;
 505        }
 506        con->sock = sock;
 507        return 0;
 508}
 509
 510static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 511{
 512        struct kvec iov = {buf, len};
 513        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 514        int r;
 515
 516        r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 517        if (r == -EAGAIN)
 518                r = 0;
 519        return r;
 520}
 521
 522static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 523                     int page_offset, size_t length)
 524{
 525        void *kaddr;
 526        int ret;
 527
 528        BUG_ON(page_offset + length > PAGE_SIZE);
 529
 530        kaddr = kmap(page);
 531        BUG_ON(!kaddr);
 532        ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
 533        kunmap(page);
 534
 535        return ret;
 536}
 537
 538/*
 539 * write something.  @more is true if caller will be sending more data
 540 * shortly.
 541 */
 542static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 543                     size_t kvlen, size_t len, int more)
 544{
 545        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 546        int r;
 547
 548        if (more)
 549                msg.msg_flags |= MSG_MORE;
 550        else
 551                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 552
 553        r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 554        if (r == -EAGAIN)
 555                r = 0;
 556        return r;
 557}
 558
 559static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 560                     int offset, size_t size, bool more)
 561{
 562        int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 563        int ret;
 564
 565        ret = kernel_sendpage(sock, page, offset, size, flags);
 566        if (ret == -EAGAIN)
 567                ret = 0;
 568
 569        return ret;
 570}
 571
 572
 573/*
 574 * Shutdown/close the socket for the given connection.
 575 */
 576static int con_close_socket(struct ceph_connection *con)
 577{
 578        int rc = 0;
 579
 580        dout("con_close_socket on %p sock %p\n", con, con->sock);
 581        if (con->sock) {
 582                rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 583                sock_release(con->sock);
 584                con->sock = NULL;
 585        }
 586
 587        /*
 588         * Forcibly clear the SOCK_CLOSED flag.  It gets set
 589         * independent of the connection mutex, and we could have
 590         * received a socket close event before we had the chance to
 591         * shut the socket down.
 592         */
 593        con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 594
 595        con_sock_state_closed(con);
 596        return rc;
 597}
 598
 599/*
 600 * Reset a connection.  Discard all incoming and outgoing messages
 601 * and clear *_seq state.
 602 */
 603static void ceph_msg_remove(struct ceph_msg *msg)
 604{
 605        list_del_init(&msg->list_head);
 606        BUG_ON(msg->con == NULL);
 607        msg->con->ops->put(msg->con);
 608        msg->con = NULL;
 609
 610        ceph_msg_put(msg);
 611}
 612static void ceph_msg_remove_list(struct list_head *head)
 613{
 614        while (!list_empty(head)) {
 615                struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 616                                                        list_head);
 617                ceph_msg_remove(msg);
 618        }
 619}
 620
 621static void reset_connection(struct ceph_connection *con)
 622{
 623        /* reset connection, out_queue, msg_ and connect_seq */
 624        /* discard existing out_queue and msg_seq */
 625        dout("reset_connection %p\n", con);
 626        ceph_msg_remove_list(&con->out_queue);
 627        ceph_msg_remove_list(&con->out_sent);
 628
 629        if (con->in_msg) {
 630                BUG_ON(con->in_msg->con != con);
 631                con->in_msg->con = NULL;
 632                ceph_msg_put(con->in_msg);
 633                con->in_msg = NULL;
 634                con->ops->put(con);
 635        }
 636
 637        con->connect_seq = 0;
 638        con->out_seq = 0;
 639        if (con->out_msg) {
 640                ceph_msg_put(con->out_msg);
 641                con->out_msg = NULL;
 642        }
 643        con->in_seq = 0;
 644        con->in_seq_acked = 0;
 645}
 646
 647/*
 648 * mark a peer down.  drop any open connections.
 649 */
 650void ceph_con_close(struct ceph_connection *con)
 651{
 652        mutex_lock(&con->mutex);
 653        dout("con_close %p peer %s\n", con,
 654             ceph_pr_addr(&con->peer_addr.in_addr));
 655        con->state = CON_STATE_CLOSED;
 656
 657        con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
 658        con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 659        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 660        con_flag_clear(con, CON_FLAG_BACKOFF);
 661
 662        reset_connection(con);
 663        con->peer_global_seq = 0;
 664        cancel_delayed_work(&con->work);
 665        con_close_socket(con);
 666        mutex_unlock(&con->mutex);
 667}
 668EXPORT_SYMBOL(ceph_con_close);
 669
 670/*
 671 * Reopen a closed connection, with a new peer address.
 672 */
 673void ceph_con_open(struct ceph_connection *con,
 674                   __u8 entity_type, __u64 entity_num,
 675                   struct ceph_entity_addr *addr)
 676{
 677        mutex_lock(&con->mutex);
 678        dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 679
 680        WARN_ON(con->state != CON_STATE_CLOSED);
 681        con->state = CON_STATE_PREOPEN;
 682
 683        con->peer_name.type = (__u8) entity_type;
 684        con->peer_name.num = cpu_to_le64(entity_num);
 685
 686        memcpy(&con->peer_addr, addr, sizeof(*addr));
 687        con->delay = 0;      /* reset backoff memory */
 688        mutex_unlock(&con->mutex);
 689        queue_con(con);
 690}
 691EXPORT_SYMBOL(ceph_con_open);
 692
 693/*
 694 * return true if this connection ever successfully opened
 695 */
 696bool ceph_con_opened(struct ceph_connection *con)
 697{
 698        return con->connect_seq > 0;
 699}
 700
 701/*
 702 * initialize a new connection.
 703 */
 704void ceph_con_init(struct ceph_connection *con, void *private,
 705        const struct ceph_connection_operations *ops,
 706        struct ceph_messenger *msgr)
 707{
 708        dout("con_init %p\n", con);
 709        memset(con, 0, sizeof(*con));
 710        con->private = private;
 711        con->ops = ops;
 712        con->msgr = msgr;
 713
 714        con_sock_state_init(con);
 715
 716        mutex_init(&con->mutex);
 717        INIT_LIST_HEAD(&con->out_queue);
 718        INIT_LIST_HEAD(&con->out_sent);
 719        INIT_DELAYED_WORK(&con->work, con_work);
 720
 721        con->state = CON_STATE_CLOSED;
 722}
 723EXPORT_SYMBOL(ceph_con_init);
 724
 725
 726/*
 727 * We maintain a global counter to order connection attempts.  Get
 728 * a unique seq greater than @gt.
 729 */
 730static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 731{
 732        u32 ret;
 733
 734        spin_lock(&msgr->global_seq_lock);
 735        if (msgr->global_seq < gt)
 736                msgr->global_seq = gt;
 737        ret = ++msgr->global_seq;
 738        spin_unlock(&msgr->global_seq_lock);
 739        return ret;
 740}
 741
 742static void con_out_kvec_reset(struct ceph_connection *con)
 743{
 744        con->out_kvec_left = 0;
 745        con->out_kvec_bytes = 0;
 746        con->out_kvec_cur = &con->out_kvec[0];
 747}
 748
 749static void con_out_kvec_add(struct ceph_connection *con,
 750                                size_t size, void *data)
 751{
 752        int index;
 753
 754        index = con->out_kvec_left;
 755        BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 756
 757        con->out_kvec[index].iov_len = size;
 758        con->out_kvec[index].iov_base = data;
 759        con->out_kvec_left++;
 760        con->out_kvec_bytes += size;
 761}
 762
 763#ifdef CONFIG_BLOCK
 764
 765/*
 766 * For a bio data item, a piece is whatever remains of the next
 767 * entry in the current bio iovec, or the first entry in the next
 768 * bio in the list.
 769 */
 770static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 771                                        size_t length)
 772{
 773        struct ceph_msg_data *data = cursor->data;
 774        struct bio *bio;
 775
 776        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 777
 778        bio = data->bio;
 779        BUG_ON(!bio);
 780        BUG_ON(!bio->bi_vcnt);
 781
 782        cursor->resid = min(length, data->bio_length);
 783        cursor->bio = bio;
 784        cursor->vector_index = 0;
 785        cursor->vector_offset = 0;
 786        cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
 787}
 788
 789static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 790                                                size_t *page_offset,
 791                                                size_t *length)
 792{
 793        struct ceph_msg_data *data = cursor->data;
 794        struct bio *bio;
 795        struct bio_vec *bio_vec;
 796        unsigned int index;
 797
 798        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 799
 800        bio = cursor->bio;
 801        BUG_ON(!bio);
 802
 803        index = cursor->vector_index;
 804        BUG_ON(index >= (unsigned int) bio->bi_vcnt);
 805
 806        bio_vec = &bio->bi_io_vec[index];
 807        BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
 808        *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
 809        BUG_ON(*page_offset >= PAGE_SIZE);
 810        if (cursor->last_piece) /* pagelist offset is always 0 */
 811                *length = cursor->resid;
 812        else
 813                *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
 814        BUG_ON(*length > cursor->resid);
 815        BUG_ON(*page_offset + *length > PAGE_SIZE);
 816
 817        return bio_vec->bv_page;
 818}
 819
 820static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 821                                        size_t bytes)
 822{
 823        struct bio *bio;
 824        struct bio_vec *bio_vec;
 825        unsigned int index;
 826
 827        BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
 828
 829        bio = cursor->bio;
 830        BUG_ON(!bio);
 831
 832        index = cursor->vector_index;
 833        BUG_ON(index >= (unsigned int) bio->bi_vcnt);
 834        bio_vec = &bio->bi_io_vec[index];
 835
 836        /* Advance the cursor offset */
 837
 838        BUG_ON(cursor->resid < bytes);
 839        cursor->resid -= bytes;
 840        cursor->vector_offset += bytes;
 841        if (cursor->vector_offset < bio_vec->bv_len)
 842                return false;   /* more bytes to process in this segment */
 843        BUG_ON(cursor->vector_offset != bio_vec->bv_len);
 844
 845        /* Move on to the next segment, and possibly the next bio */
 846
 847        if (++index == (unsigned int) bio->bi_vcnt) {
 848                bio = bio->bi_next;
 849                index = 0;
 850        }
 851        cursor->bio = bio;
 852        cursor->vector_index = index;
 853        cursor->vector_offset = 0;
 854
 855        if (!cursor->last_piece) {
 856                BUG_ON(!cursor->resid);
 857                BUG_ON(!bio);
 858                /* A short read is OK, so use <= rather than == */
 859                if (cursor->resid <= bio->bi_io_vec[index].bv_len)
 860                        cursor->last_piece = true;
 861        }
 862
 863        return true;
 864}
 865#endif /* CONFIG_BLOCK */
 866
 867/*
 868 * For a page array, a piece comes from the first page in the array
 869 * that has not already been fully consumed.
 870 */
 871static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 872                                        size_t length)
 873{
 874        struct ceph_msg_data *data = cursor->data;
 875        int page_count;
 876
 877        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 878
 879        BUG_ON(!data->pages);
 880        BUG_ON(!data->length);
 881
 882        cursor->resid = min(length, data->length);
 883        page_count = calc_pages_for(data->alignment, (u64)data->length);
 884        cursor->page_offset = data->alignment & ~PAGE_MASK;
 885        cursor->page_index = 0;
 886        BUG_ON(page_count > (int)USHRT_MAX);
 887        cursor->page_count = (unsigned short)page_count;
 888        BUG_ON(length > SIZE_MAX - cursor->page_offset);
 889        cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
 890}
 891
 892static struct page *
 893ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 894                                        size_t *page_offset, size_t *length)
 895{
 896        struct ceph_msg_data *data = cursor->data;
 897
 898        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 899
 900        BUG_ON(cursor->page_index >= cursor->page_count);
 901        BUG_ON(cursor->page_offset >= PAGE_SIZE);
 902
 903        *page_offset = cursor->page_offset;
 904        if (cursor->last_piece)
 905                *length = cursor->resid;
 906        else
 907                *length = PAGE_SIZE - *page_offset;
 908
 909        return data->pages[cursor->page_index];
 910}
 911
 912static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 913                                                size_t bytes)
 914{
 915        BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 916
 917        BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 918
 919        /* Advance the cursor page offset */
 920
 921        cursor->resid -= bytes;
 922        cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 923        if (!bytes || cursor->page_offset)
 924                return false;   /* more bytes to process in the current page */
 925
 926        /* Move on to the next page; offset is already at 0 */
 927
 928        BUG_ON(cursor->page_index >= cursor->page_count);
 929        cursor->page_index++;
 930        cursor->last_piece = cursor->resid <= PAGE_SIZE;
 931
 932        return true;
 933}
 934
 935/*
 936 * For a pagelist, a piece is whatever remains to be consumed in the
 937 * first page in the list, or the front of the next page.
 938 */
 939static void
 940ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 941                                        size_t length)
 942{
 943        struct ceph_msg_data *data = cursor->data;
 944        struct ceph_pagelist *pagelist;
 945        struct page *page;
 946
 947        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 948
 949        pagelist = data->pagelist;
 950        BUG_ON(!pagelist);
 951
 952        if (!length)
 953                return;         /* pagelist can be assigned but empty */
 954
 955        BUG_ON(list_empty(&pagelist->head));
 956        page = list_first_entry(&pagelist->head, struct page, lru);
 957
 958        cursor->resid = min(length, pagelist->length);
 959        cursor->page = page;
 960        cursor->offset = 0;
 961        cursor->last_piece = cursor->resid <= PAGE_SIZE;
 962}
 963
 964static struct page *
 965ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
 966                                size_t *page_offset, size_t *length)
 967{
 968        struct ceph_msg_data *data = cursor->data;
 969        struct ceph_pagelist *pagelist;
 970
 971        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 972
 973        pagelist = data->pagelist;
 974        BUG_ON(!pagelist);
 975
 976        BUG_ON(!cursor->page);
 977        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
 978
 979        /* offset of first page in pagelist is always 0 */
 980        *page_offset = cursor->offset & ~PAGE_MASK;
 981        if (cursor->last_piece)
 982                *length = cursor->resid;
 983        else
 984                *length = PAGE_SIZE - *page_offset;
 985
 986        return cursor->page;
 987}
 988
 989static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
 990                                                size_t bytes)
 991{
 992        struct ceph_msg_data *data = cursor->data;
 993        struct ceph_pagelist *pagelist;
 994
 995        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 996
 997        pagelist = data->pagelist;
 998        BUG_ON(!pagelist);
 999
1000        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1001        BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1002
1003        /* Advance the cursor offset */
1004
1005        cursor->resid -= bytes;
1006        cursor->offset += bytes;
1007        /* offset of first page in pagelist is always 0 */
1008        if (!bytes || cursor->offset & ~PAGE_MASK)
1009                return false;   /* more bytes to process in the current page */
1010
1011        /* Move on to the next page */
1012
1013        BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1014        cursor->page = list_entry_next(cursor->page, lru);
1015        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1016
1017        return true;
1018}
1019
1020/*
1021 * Message data is handled (sent or received) in pieces, where each
1022 * piece resides on a single page.  The network layer might not
1023 * consume an entire piece at once.  A data item's cursor keeps
1024 * track of which piece is next to process and how much remains to
1025 * be processed in that piece.  It also tracks whether the current
1026 * piece is the last one in the data item.
1027 */
1028static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1029{
1030        size_t length = cursor->total_resid;
1031
1032        switch (cursor->data->type) {
1033        case CEPH_MSG_DATA_PAGELIST:
1034                ceph_msg_data_pagelist_cursor_init(cursor, length);
1035                break;
1036        case CEPH_MSG_DATA_PAGES:
1037                ceph_msg_data_pages_cursor_init(cursor, length);
1038                break;
1039#ifdef CONFIG_BLOCK
1040        case CEPH_MSG_DATA_BIO:
1041                ceph_msg_data_bio_cursor_init(cursor, length);
1042                break;
1043#endif /* CONFIG_BLOCK */
1044        case CEPH_MSG_DATA_NONE:
1045        default:
1046                /* BUG(); */
1047                break;
1048        }
1049        cursor->need_crc = true;
1050}
1051
1052static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1053{
1054        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1055        struct ceph_msg_data *data;
1056
1057        BUG_ON(!length);
1058        BUG_ON(length > msg->data_length);
1059        BUG_ON(list_empty(&msg->data));
1060
1061        cursor->data_head = &msg->data;
1062        cursor->total_resid = length;
1063        data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1064        cursor->data = data;
1065
1066        __ceph_msg_data_cursor_init(cursor);
1067}
1068
1069/*
1070 * Return the page containing the next piece to process for a given
1071 * data item, and supply the page offset and length of that piece.
1072 * Indicate whether this is the last piece in this data item.
1073 */
1074static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1075                                        size_t *page_offset, size_t *length,
1076                                        bool *last_piece)
1077{
1078        struct page *page;
1079
1080        switch (cursor->data->type) {
1081        case CEPH_MSG_DATA_PAGELIST:
1082                page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1083                break;
1084        case CEPH_MSG_DATA_PAGES:
1085                page = ceph_msg_data_pages_next(cursor, page_offset, length);
1086                break;
1087#ifdef CONFIG_BLOCK
1088        case CEPH_MSG_DATA_BIO:
1089                page = ceph_msg_data_bio_next(cursor, page_offset, length);
1090                break;
1091#endif /* CONFIG_BLOCK */
1092        case CEPH_MSG_DATA_NONE:
1093        default:
1094                page = NULL;
1095                break;
1096        }
1097        BUG_ON(!page);
1098        BUG_ON(*page_offset + *length > PAGE_SIZE);
1099        BUG_ON(!*length);
1100        if (last_piece)
1101                *last_piece = cursor->last_piece;
1102
1103        return page;
1104}
1105
1106/*
1107 * Returns true if the result moves the cursor on to the next piece
1108 * of the data item.
1109 */
1110static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1111                                size_t bytes)
1112{
1113        bool new_piece;
1114
1115        BUG_ON(bytes > cursor->resid);
1116        switch (cursor->data->type) {
1117        case CEPH_MSG_DATA_PAGELIST:
1118                new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1119                break;
1120        case CEPH_MSG_DATA_PAGES:
1121                new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1122                break;
1123#ifdef CONFIG_BLOCK
1124        case CEPH_MSG_DATA_BIO:
1125                new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1126                break;
1127#endif /* CONFIG_BLOCK */
1128        case CEPH_MSG_DATA_NONE:
1129        default:
1130                BUG();
1131                break;
1132        }
1133        cursor->total_resid -= bytes;
1134
1135        if (!cursor->resid && cursor->total_resid) {
1136                WARN_ON(!cursor->last_piece);
1137                BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1138                cursor->data = list_entry_next(cursor->data, links);
1139                __ceph_msg_data_cursor_init(cursor);
1140                new_piece = true;
1141        }
1142        cursor->need_crc = new_piece;
1143
1144        return new_piece;
1145}
1146
1147static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1148{
1149        BUG_ON(!msg);
1150        BUG_ON(!data_len);
1151
1152        /* Initialize data cursor */
1153
1154        ceph_msg_data_cursor_init(msg, (size_t)data_len);
1155}
1156
1157/*
1158 * Prepare footer for currently outgoing message, and finish things
1159 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1160 */
1161static void prepare_write_message_footer(struct ceph_connection *con)
1162{
1163        struct ceph_msg *m = con->out_msg;
1164        int v = con->out_kvec_left;
1165
1166        m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1167
1168        dout("prepare_write_message_footer %p\n", con);
1169        con->out_kvec_is_msg = true;
1170        con->out_kvec[v].iov_base = &m->footer;
1171        con->out_kvec[v].iov_len = sizeof(m->footer);
1172        con->out_kvec_bytes += sizeof(m->footer);
1173        con->out_kvec_left++;
1174        con->out_more = m->more_to_follow;
1175        con->out_msg_done = true;
1176}
1177
1178/*
1179 * Prepare headers for the next outgoing message.
1180 */
1181static void prepare_write_message(struct ceph_connection *con)
1182{
1183        struct ceph_msg *m;
1184        u32 crc;
1185
1186        con_out_kvec_reset(con);
1187        con->out_kvec_is_msg = true;
1188        con->out_msg_done = false;
1189
1190        /* Sneak an ack in there first?  If we can get it into the same
1191         * TCP packet that's a good thing. */
1192        if (con->in_seq > con->in_seq_acked) {
1193                con->in_seq_acked = con->in_seq;
1194                con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1195                con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1196                con_out_kvec_add(con, sizeof (con->out_temp_ack),
1197                        &con->out_temp_ack);
1198        }
1199
1200        BUG_ON(list_empty(&con->out_queue));
1201        m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1202        con->out_msg = m;
1203        BUG_ON(m->con != con);
1204
1205        /* put message on sent list */
1206        ceph_msg_get(m);
1207        list_move_tail(&m->list_head, &con->out_sent);
1208
1209        /*
1210         * only assign outgoing seq # if we haven't sent this message
1211         * yet.  if it is requeued, resend with it's original seq.
1212         */
1213        if (m->needs_out_seq) {
1214                m->hdr.seq = cpu_to_le64(++con->out_seq);
1215                m->needs_out_seq = false;
1216        }
1217        WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1218
1219        dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1220             m, con->out_seq, le16_to_cpu(m->hdr.type),
1221             le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1222             m->data_length);
1223        BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1224
1225        /* tag + hdr + front + middle */
1226        con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1227        con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1228        con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1229
1230        if (m->middle)
1231                con_out_kvec_add(con, m->middle->vec.iov_len,
1232                        m->middle->vec.iov_base);
1233
1234        /* fill in crc (except data pages), footer */
1235        crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1236        con->out_msg->hdr.crc = cpu_to_le32(crc);
1237        con->out_msg->footer.flags = 0;
1238
1239        crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1240        con->out_msg->footer.front_crc = cpu_to_le32(crc);
1241        if (m->middle) {
1242                crc = crc32c(0, m->middle->vec.iov_base,
1243                                m->middle->vec.iov_len);
1244                con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1245        } else
1246                con->out_msg->footer.middle_crc = 0;
1247        dout("%s front_crc %u middle_crc %u\n", __func__,
1248             le32_to_cpu(con->out_msg->footer.front_crc),
1249             le32_to_cpu(con->out_msg->footer.middle_crc));
1250
1251        /* is there a data payload? */
1252        con->out_msg->footer.data_crc = 0;
1253        if (m->data_length) {
1254                prepare_message_data(con->out_msg, m->data_length);
1255                con->out_more = 1;  /* data + footer will follow */
1256        } else {
1257                /* no, queue up footer too and be done */
1258                prepare_write_message_footer(con);
1259        }
1260
1261        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1262}
1263
1264/*
1265 * Prepare an ack.
1266 */
1267static void prepare_write_ack(struct ceph_connection *con)
1268{
1269        dout("prepare_write_ack %p %llu -> %llu\n", con,
1270             con->in_seq_acked, con->in_seq);
1271        con->in_seq_acked = con->in_seq;
1272
1273        con_out_kvec_reset(con);
1274
1275        con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1276
1277        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1278        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1279                                &con->out_temp_ack);
1280
1281        con->out_more = 1;  /* more will follow.. eventually.. */
1282        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1283}
1284
1285/*
1286 * Prepare to share the seq during handshake
1287 */
1288static void prepare_write_seq(struct ceph_connection *con)
1289{
1290        dout("prepare_write_seq %p %llu -> %llu\n", con,
1291             con->in_seq_acked, con->in_seq);
1292        con->in_seq_acked = con->in_seq;
1293
1294        con_out_kvec_reset(con);
1295
1296        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1297        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1298                         &con->out_temp_ack);
1299
1300        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1301}
1302
1303/*
1304 * Prepare to write keepalive byte.
1305 */
1306static void prepare_write_keepalive(struct ceph_connection *con)
1307{
1308        dout("prepare_write_keepalive %p\n", con);
1309        con_out_kvec_reset(con);
1310        con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1311        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1312}
1313
1314/*
1315 * Connection negotiation.
1316 */
1317
1318static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1319                                                int *auth_proto)
1320{
1321        struct ceph_auth_handshake *auth;
1322
1323        if (!con->ops->get_authorizer) {
1324                con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1325                con->out_connect.authorizer_len = 0;
1326                return NULL;
1327        }
1328
1329        /* Can't hold the mutex while getting authorizer */
1330        mutex_unlock(&con->mutex);
1331        auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1332        mutex_lock(&con->mutex);
1333
1334        if (IS_ERR(auth))
1335                return auth;
1336        if (con->state != CON_STATE_NEGOTIATING)
1337                return ERR_PTR(-EAGAIN);
1338
1339        con->auth_reply_buf = auth->authorizer_reply_buf;
1340        con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1341        return auth;
1342}
1343
1344/*
1345 * We connected to a peer and are saying hello.
1346 */
1347static void prepare_write_banner(struct ceph_connection *con)
1348{
1349        con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1350        con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1351                                        &con->msgr->my_enc_addr);
1352
1353        con->out_more = 0;
1354        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1355}
1356
1357static int prepare_write_connect(struct ceph_connection *con)
1358{
1359        unsigned int global_seq = get_global_seq(con->msgr, 0);
1360        int proto;
1361        int auth_proto;
1362        struct ceph_auth_handshake *auth;
1363
1364        switch (con->peer_name.type) {
1365        case CEPH_ENTITY_TYPE_MON:
1366                proto = CEPH_MONC_PROTOCOL;
1367                break;
1368        case CEPH_ENTITY_TYPE_OSD:
1369                proto = CEPH_OSDC_PROTOCOL;
1370                break;
1371        case CEPH_ENTITY_TYPE_MDS:
1372                proto = CEPH_MDSC_PROTOCOL;
1373                break;
1374        default:
1375                BUG();
1376        }
1377
1378        dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1379             con->connect_seq, global_seq, proto);
1380
1381        con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1382        con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1383        con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1384        con->out_connect.global_seq = cpu_to_le32(global_seq);
1385        con->out_connect.protocol_version = cpu_to_le32(proto);
1386        con->out_connect.flags = 0;
1387
1388        auth_proto = CEPH_AUTH_UNKNOWN;
1389        auth = get_connect_authorizer(con, &auth_proto);
1390        if (IS_ERR(auth))
1391                return PTR_ERR(auth);
1392
1393        con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1394        con->out_connect.authorizer_len = auth ?
1395                cpu_to_le32(auth->authorizer_buf_len) : 0;
1396
1397        con_out_kvec_add(con, sizeof (con->out_connect),
1398                                        &con->out_connect);
1399        if (auth && auth->authorizer_buf_len)
1400                con_out_kvec_add(con, auth->authorizer_buf_len,
1401                                        auth->authorizer_buf);
1402
1403        con->out_more = 0;
1404        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1405
1406        return 0;
1407}
1408
1409/*
1410 * write as much of pending kvecs to the socket as we can.
1411 *  1 -> done
1412 *  0 -> socket full, but more to do
1413 * <0 -> error
1414 */
1415static int write_partial_kvec(struct ceph_connection *con)
1416{
1417        int ret;
1418
1419        dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1420        while (con->out_kvec_bytes > 0) {
1421                ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1422                                       con->out_kvec_left, con->out_kvec_bytes,
1423                                       con->out_more);
1424                if (ret <= 0)
1425                        goto out;
1426                con->out_kvec_bytes -= ret;
1427                if (con->out_kvec_bytes == 0)
1428                        break;            /* done */
1429
1430                /* account for full iov entries consumed */
1431                while (ret >= con->out_kvec_cur->iov_len) {
1432                        BUG_ON(!con->out_kvec_left);
1433                        ret -= con->out_kvec_cur->iov_len;
1434                        con->out_kvec_cur++;
1435                        con->out_kvec_left--;
1436                }
1437                /* and for a partially-consumed entry */
1438                if (ret) {
1439                        con->out_kvec_cur->iov_len -= ret;
1440                        con->out_kvec_cur->iov_base += ret;
1441                }
1442        }
1443        con->out_kvec_left = 0;
1444        con->out_kvec_is_msg = false;
1445        ret = 1;
1446out:
1447        dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1448             con->out_kvec_bytes, con->out_kvec_left, ret);
1449        return ret;  /* done! */
1450}
1451
1452static u32 ceph_crc32c_page(u32 crc, struct page *page,
1453                                unsigned int page_offset,
1454                                unsigned int length)
1455{
1456        char *kaddr;
1457
1458        kaddr = kmap(page);
1459        BUG_ON(kaddr == NULL);
1460        crc = crc32c(crc, kaddr + page_offset, length);
1461        kunmap(page);
1462
1463        return crc;
1464}
1465/*
1466 * Write as much message data payload as we can.  If we finish, queue
1467 * up the footer.
1468 *  1 -> done, footer is now queued in out_kvec[].
1469 *  0 -> socket full, but more to do
1470 * <0 -> error
1471 */
1472static int write_partial_message_data(struct ceph_connection *con)
1473{
1474        struct ceph_msg *msg = con->out_msg;
1475        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1476        bool do_datacrc = !con->msgr->nocrc;
1477        u32 crc;
1478
1479        dout("%s %p msg %p\n", __func__, con, msg);
1480
1481        if (list_empty(&msg->data))
1482                return -EINVAL;
1483
1484        /*
1485         * Iterate through each page that contains data to be
1486         * written, and send as much as possible for each.
1487         *
1488         * If we are calculating the data crc (the default), we will
1489         * need to map the page.  If we have no pages, they have
1490         * been revoked, so use the zero page.
1491         */
1492        crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1493        while (cursor->resid) {
1494                struct page *page;
1495                size_t page_offset;
1496                size_t length;
1497                bool last_piece;
1498                bool need_crc;
1499                int ret;
1500
1501                page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1502                                                        &last_piece);
1503                ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1504                                      length, last_piece);
1505                if (ret <= 0) {
1506                        if (do_datacrc)
1507                                msg->footer.data_crc = cpu_to_le32(crc);
1508
1509                        return ret;
1510                }
1511                if (do_datacrc && cursor->need_crc)
1512                        crc = ceph_crc32c_page(crc, page, page_offset, length);
1513                need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1514        }
1515
1516        dout("%s %p msg %p done\n", __func__, con, msg);
1517
1518        /* prepare and queue up footer, too */
1519        if (do_datacrc)
1520                msg->footer.data_crc = cpu_to_le32(crc);
1521        else
1522                msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1523        con_out_kvec_reset(con);
1524        prepare_write_message_footer(con);
1525
1526        return 1;       /* must return > 0 to indicate success */
1527}
1528
1529/*
1530 * write some zeros
1531 */
1532static int write_partial_skip(struct ceph_connection *con)
1533{
1534        int ret;
1535
1536        while (con->out_skip > 0) {
1537                size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1538
1539                ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1540                if (ret <= 0)
1541                        goto out;
1542                con->out_skip -= ret;
1543        }
1544        ret = 1;
1545out:
1546        return ret;
1547}
1548
1549/*
1550 * Prepare to read connection handshake, or an ack.
1551 */
1552static void prepare_read_banner(struct ceph_connection *con)
1553{
1554        dout("prepare_read_banner %p\n", con);
1555        con->in_base_pos = 0;
1556}
1557
1558static void prepare_read_connect(struct ceph_connection *con)
1559{
1560        dout("prepare_read_connect %p\n", con);
1561        con->in_base_pos = 0;
1562}
1563
1564static void prepare_read_ack(struct ceph_connection *con)
1565{
1566        dout("prepare_read_ack %p\n", con);
1567        con->in_base_pos = 0;
1568}
1569
1570static void prepare_read_seq(struct ceph_connection *con)
1571{
1572        dout("prepare_read_seq %p\n", con);
1573        con->in_base_pos = 0;
1574        con->in_tag = CEPH_MSGR_TAG_SEQ;
1575}
1576
1577static void prepare_read_tag(struct ceph_connection *con)
1578{
1579        dout("prepare_read_tag %p\n", con);
1580        con->in_base_pos = 0;
1581        con->in_tag = CEPH_MSGR_TAG_READY;
1582}
1583
1584/*
1585 * Prepare to read a message.
1586 */
1587static int prepare_read_message(struct ceph_connection *con)
1588{
1589        dout("prepare_read_message %p\n", con);
1590        BUG_ON(con->in_msg != NULL);
1591        con->in_base_pos = 0;
1592        con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1593        return 0;
1594}
1595
1596
1597static int read_partial(struct ceph_connection *con,
1598                        int end, int size, void *object)
1599{
1600        while (con->in_base_pos < end) {
1601                int left = end - con->in_base_pos;
1602                int have = size - left;
1603                int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1604                if (ret <= 0)
1605                        return ret;
1606                con->in_base_pos += ret;
1607        }
1608        return 1;
1609}
1610
1611
1612/*
1613 * Read all or part of the connect-side handshake on a new connection
1614 */
1615static int read_partial_banner(struct ceph_connection *con)
1616{
1617        int size;
1618        int end;
1619        int ret;
1620
1621        dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1622
1623        /* peer's banner */
1624        size = strlen(CEPH_BANNER);
1625        end = size;
1626        ret = read_partial(con, end, size, con->in_banner);
1627        if (ret <= 0)
1628                goto out;
1629
1630        size = sizeof (con->actual_peer_addr);
1631        end += size;
1632        ret = read_partial(con, end, size, &con->actual_peer_addr);
1633        if (ret <= 0)
1634                goto out;
1635
1636        size = sizeof (con->peer_addr_for_me);
1637        end += size;
1638        ret = read_partial(con, end, size, &con->peer_addr_for_me);
1639        if (ret <= 0)
1640                goto out;
1641
1642out:
1643        return ret;
1644}
1645
1646static int read_partial_connect(struct ceph_connection *con)
1647{
1648        int size;
1649        int end;
1650        int ret;
1651
1652        dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1653
1654        size = sizeof (con->in_reply);
1655        end = size;
1656        ret = read_partial(con, end, size, &con->in_reply);
1657        if (ret <= 0)
1658                goto out;
1659
1660        size = le32_to_cpu(con->in_reply.authorizer_len);
1661        end += size;
1662        ret = read_partial(con, end, size, con->auth_reply_buf);
1663        if (ret <= 0)
1664                goto out;
1665
1666        dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1667             con, (int)con->in_reply.tag,
1668             le32_to_cpu(con->in_reply.connect_seq),
1669             le32_to_cpu(con->in_reply.global_seq));
1670out:
1671        return ret;
1672
1673}
1674
1675/*
1676 * Verify the hello banner looks okay.
1677 */
1678static int verify_hello(struct ceph_connection *con)
1679{
1680        if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1681                pr_err("connect to %s got bad banner\n",
1682                       ceph_pr_addr(&con->peer_addr.in_addr));
1683                con->error_msg = "protocol error, bad banner";
1684                return -1;
1685        }
1686        return 0;
1687}
1688
1689static bool addr_is_blank(struct sockaddr_storage *ss)
1690{
1691        switch (ss->ss_family) {
1692        case AF_INET:
1693                return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1694        case AF_INET6:
1695                return
1696                     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1697                     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1698                     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1699                     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1700        }
1701        return false;
1702}
1703
1704static int addr_port(struct sockaddr_storage *ss)
1705{
1706        switch (ss->ss_family) {
1707        case AF_INET:
1708                return ntohs(((struct sockaddr_in *)ss)->sin_port);
1709        case AF_INET6:
1710                return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1711        }
1712        return 0;
1713}
1714
1715static void addr_set_port(struct sockaddr_storage *ss, int p)
1716{
1717        switch (ss->ss_family) {
1718        case AF_INET:
1719                ((struct sockaddr_in *)ss)->sin_port = htons(p);
1720                break;
1721        case AF_INET6:
1722                ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1723                break;
1724        }
1725}
1726
1727/*
1728 * Unlike other *_pton function semantics, zero indicates success.
1729 */
1730static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1731                char delim, const char **ipend)
1732{
1733        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1734        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1735
1736        memset(ss, 0, sizeof(*ss));
1737
1738        if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1739                ss->ss_family = AF_INET;
1740                return 0;
1741        }
1742
1743        if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1744                ss->ss_family = AF_INET6;
1745                return 0;
1746        }
1747
1748        return -EINVAL;
1749}
1750
1751/*
1752 * Extract hostname string and resolve using kernel DNS facility.
1753 */
1754#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1755static int ceph_dns_resolve_name(const char *name, size_t namelen,
1756                struct sockaddr_storage *ss, char delim, const char **ipend)
1757{
1758        const char *end, *delim_p;
1759        char *colon_p, *ip_addr = NULL;
1760        int ip_len, ret;
1761
1762        /*
1763         * The end of the hostname occurs immediately preceding the delimiter or
1764         * the port marker (':') where the delimiter takes precedence.
1765         */
1766        delim_p = memchr(name, delim, namelen);
1767        colon_p = memchr(name, ':', namelen);
1768
1769        if (delim_p && colon_p)
1770                end = delim_p < colon_p ? delim_p : colon_p;
1771        else if (!delim_p && colon_p)
1772                end = colon_p;
1773        else {
1774                end = delim_p;
1775                if (!end) /* case: hostname:/ */
1776                        end = name + namelen;
1777        }
1778
1779        if (end <= name)
1780                return -EINVAL;
1781
1782        /* do dns_resolve upcall */
1783        ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1784        if (ip_len > 0)
1785                ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1786        else
1787                ret = -ESRCH;
1788
1789        kfree(ip_addr);
1790
1791        *ipend = end;
1792
1793        pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1794                        ret, ret ? "failed" : ceph_pr_addr(ss));
1795
1796        return ret;
1797}
1798#else
1799static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1800                struct sockaddr_storage *ss, char delim, const char **ipend)
1801{
1802        return -EINVAL;
1803}
1804#endif
1805
1806/*
1807 * Parse a server name (IP or hostname). If a valid IP address is not found
1808 * then try to extract a hostname to resolve using userspace DNS upcall.
1809 */
1810static int ceph_parse_server_name(const char *name, size_t namelen,
1811                        struct sockaddr_storage *ss, char delim, const char **ipend)
1812{
1813        int ret;
1814
1815        ret = ceph_pton(name, namelen, ss, delim, ipend);
1816        if (ret)
1817                ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1818
1819        return ret;
1820}
1821
1822/*
1823 * Parse an ip[:port] list into an addr array.  Use the default
1824 * monitor port if a port isn't specified.
1825 */
1826int ceph_parse_ips(const char *c, const char *end,
1827                   struct ceph_entity_addr *addr,
1828                   int max_count, int *count)
1829{
1830        int i, ret = -EINVAL;
1831        const char *p = c;
1832
1833        dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1834        for (i = 0; i < max_count; i++) {
1835                const char *ipend;
1836                struct sockaddr_storage *ss = &addr[i].in_addr;
1837                int port;
1838                char delim = ',';
1839
1840                if (*p == '[') {
1841                        delim = ']';
1842                        p++;
1843                }
1844
1845                ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1846                if (ret)
1847                        goto bad;
1848                ret = -EINVAL;
1849
1850                p = ipend;
1851
1852                if (delim == ']') {
1853                        if (*p != ']') {
1854                                dout("missing matching ']'\n");
1855                                goto bad;
1856                        }
1857                        p++;
1858                }
1859
1860                /* port? */
1861                if (p < end && *p == ':') {
1862                        port = 0;
1863                        p++;
1864                        while (p < end && *p >= '0' && *p <= '9') {
1865                                port = (port * 10) + (*p - '0');
1866                                p++;
1867                        }
1868                        if (port > 65535 || port == 0)
1869                                goto bad;
1870                } else {
1871                        port = CEPH_MON_PORT;
1872                }
1873
1874                addr_set_port(ss, port);
1875
1876                dout("parse_ips got %s\n", ceph_pr_addr(ss));
1877
1878                if (p == end)
1879                        break;
1880                if (*p != ',')
1881                        goto bad;
1882                p++;
1883        }
1884
1885        if (p != end)
1886                goto bad;
1887
1888        if (count)
1889                *count = i + 1;
1890        return 0;
1891
1892bad:
1893        pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1894        return ret;
1895}
1896EXPORT_SYMBOL(ceph_parse_ips);
1897
1898static int process_banner(struct ceph_connection *con)
1899{
1900        dout("process_banner on %p\n", con);
1901
1902        if (verify_hello(con) < 0)
1903                return -1;
1904
1905        ceph_decode_addr(&con->actual_peer_addr);
1906        ceph_decode_addr(&con->peer_addr_for_me);
1907
1908        /*
1909         * Make sure the other end is who we wanted.  note that the other
1910         * end may not yet know their ip address, so if it's 0.0.0.0, give
1911         * them the benefit of the doubt.
1912         */
1913        if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1914                   sizeof(con->peer_addr)) != 0 &&
1915            !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1916              con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1917                pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1918                           ceph_pr_addr(&con->peer_addr.in_addr),
1919                           (int)le32_to_cpu(con->peer_addr.nonce),
1920                           ceph_pr_addr(&con->actual_peer_addr.in_addr),
1921                           (int)le32_to_cpu(con->actual_peer_addr.nonce));
1922                con->error_msg = "wrong peer at address";
1923                return -1;
1924        }
1925
1926        /*
1927         * did we learn our address?
1928         */
1929        if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1930                int port = addr_port(&con->msgr->inst.addr.in_addr);
1931
1932                memcpy(&con->msgr->inst.addr.in_addr,
1933                       &con->peer_addr_for_me.in_addr,
1934                       sizeof(con->peer_addr_for_me.in_addr));
1935                addr_set_port(&con->msgr->inst.addr.in_addr, port);
1936                encode_my_addr(con->msgr);
1937                dout("process_banner learned my addr is %s\n",
1938                     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1939        }
1940
1941        return 0;
1942}
1943
1944static int process_connect(struct ceph_connection *con)
1945{
1946        u64 sup_feat = con->msgr->supported_features;
1947        u64 req_feat = con->msgr->required_features;
1948        u64 server_feat = le64_to_cpu(con->in_reply.features);
1949        int ret;
1950
1951        dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1952
1953        switch (con->in_reply.tag) {
1954        case CEPH_MSGR_TAG_FEATURES:
1955                pr_err("%s%lld %s feature set mismatch,"
1956                       " my %llx < server's %llx, missing %llx\n",
1957                       ENTITY_NAME(con->peer_name),
1958                       ceph_pr_addr(&con->peer_addr.in_addr),
1959                       sup_feat, server_feat, server_feat & ~sup_feat);
1960                con->error_msg = "missing required protocol features";
1961                reset_connection(con);
1962                return -1;
1963
1964        case CEPH_MSGR_TAG_BADPROTOVER:
1965                pr_err("%s%lld %s protocol version mismatch,"
1966                       " my %d != server's %d\n",
1967                       ENTITY_NAME(con->peer_name),
1968                       ceph_pr_addr(&con->peer_addr.in_addr),
1969                       le32_to_cpu(con->out_connect.protocol_version),
1970                       le32_to_cpu(con->in_reply.protocol_version));
1971                con->error_msg = "protocol version mismatch";
1972                reset_connection(con);
1973                return -1;
1974
1975        case CEPH_MSGR_TAG_BADAUTHORIZER:
1976                con->auth_retry++;
1977                dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1978                     con->auth_retry);
1979                if (con->auth_retry == 2) {
1980                        con->error_msg = "connect authorization failure";
1981                        return -1;
1982                }
1983                con_out_kvec_reset(con);
1984                ret = prepare_write_connect(con);
1985                if (ret < 0)
1986                        return ret;
1987                prepare_read_connect(con);
1988                break;
1989
1990        case CEPH_MSGR_TAG_RESETSESSION:
1991                /*
1992                 * If we connected with a large connect_seq but the peer
1993                 * has no record of a session with us (no connection, or
1994                 * connect_seq == 0), they will send RESETSESION to indicate
1995                 * that they must have reset their session, and may have
1996                 * dropped messages.
1997                 */
1998                dout("process_connect got RESET peer seq %u\n",
1999                     le32_to_cpu(con->in_reply.connect_seq));
2000                pr_err("%s%lld %s connection reset\n",
2001                       ENTITY_NAME(con->peer_name),
2002                       ceph_pr_addr(&con->peer_addr.in_addr));
2003                reset_connection(con);
2004                con_out_kvec_reset(con);
2005                ret = prepare_write_connect(con);
2006                if (ret < 0)
2007                        return ret;
2008                prepare_read_connect(con);
2009
2010                /* Tell ceph about it. */
2011                mutex_unlock(&con->mutex);
2012                pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2013                if (con->ops->peer_reset)
2014                        con->ops->peer_reset(con);
2015                mutex_lock(&con->mutex);
2016                if (con->state != CON_STATE_NEGOTIATING)
2017                        return -EAGAIN;
2018                break;
2019
2020        case CEPH_MSGR_TAG_RETRY_SESSION:
2021                /*
2022                 * If we sent a smaller connect_seq than the peer has, try
2023                 * again with a larger value.
2024                 */
2025                dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2026                     le32_to_cpu(con->out_connect.connect_seq),
2027                     le32_to_cpu(con->in_reply.connect_seq));
2028                con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2029                con_out_kvec_reset(con);
2030                ret = prepare_write_connect(con);
2031                if (ret < 0)
2032                        return ret;
2033                prepare_read_connect(con);
2034                break;
2035
2036        case CEPH_MSGR_TAG_RETRY_GLOBAL:
2037                /*
2038                 * If we sent a smaller global_seq than the peer has, try
2039                 * again with a larger value.
2040                 */
2041                dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2042                     con->peer_global_seq,
2043                     le32_to_cpu(con->in_reply.global_seq));
2044                get_global_seq(con->msgr,
2045                               le32_to_cpu(con->in_reply.global_seq));
2046                con_out_kvec_reset(con);
2047                ret = prepare_write_connect(con);
2048                if (ret < 0)
2049                        return ret;
2050                prepare_read_connect(con);
2051                break;
2052
2053        case CEPH_MSGR_TAG_SEQ:
2054        case CEPH_MSGR_TAG_READY:
2055                if (req_feat & ~server_feat) {
2056                        pr_err("%s%lld %s protocol feature mismatch,"
2057                               " my required %llx > server's %llx, need %llx\n",
2058                               ENTITY_NAME(con->peer_name),
2059                               ceph_pr_addr(&con->peer_addr.in_addr),
2060                               req_feat, server_feat, req_feat & ~server_feat);
2061                        con->error_msg = "missing required protocol features";
2062                        reset_connection(con);
2063                        return -1;
2064                }
2065
2066                WARN_ON(con->state != CON_STATE_NEGOTIATING);
2067                con->state = CON_STATE_OPEN;
2068                con->auth_retry = 0;    /* we authenticated; clear flag */
2069                con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2070                con->connect_seq++;
2071                con->peer_features = server_feat;
2072                dout("process_connect got READY gseq %d cseq %d (%d)\n",
2073                     con->peer_global_seq,
2074                     le32_to_cpu(con->in_reply.connect_seq),
2075                     con->connect_seq);
2076                WARN_ON(con->connect_seq !=
2077                        le32_to_cpu(con->in_reply.connect_seq));
2078
2079                if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2080                        con_flag_set(con, CON_FLAG_LOSSYTX);
2081
2082                con->delay = 0;      /* reset backoff memory */
2083
2084                if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2085                        prepare_write_seq(con);
2086                        prepare_read_seq(con);
2087                } else {
2088                        prepare_read_tag(con);
2089                }
2090                break;
2091
2092        case CEPH_MSGR_TAG_WAIT:
2093                /*
2094                 * If there is a connection race (we are opening
2095                 * connections to each other), one of us may just have
2096                 * to WAIT.  This shouldn't happen if we are the
2097                 * client.
2098                 */
2099                pr_err("process_connect got WAIT as client\n");
2100                con->error_msg = "protocol error, got WAIT as client";
2101                return -1;
2102
2103        default:
2104                pr_err("connect protocol error, will retry\n");
2105                con->error_msg = "protocol error, garbage tag during connect";
2106                return -1;
2107        }
2108        return 0;
2109}
2110
2111
2112/*
2113 * read (part of) an ack
2114 */
2115static int read_partial_ack(struct ceph_connection *con)
2116{
2117        int size = sizeof (con->in_temp_ack);
2118        int end = size;
2119
2120        return read_partial(con, end, size, &con->in_temp_ack);
2121}
2122
2123/*
2124 * We can finally discard anything that's been acked.
2125 */
2126static void process_ack(struct ceph_connection *con)
2127{
2128        struct ceph_msg *m;
2129        u64 ack = le64_to_cpu(con->in_temp_ack);
2130        u64 seq;
2131
2132        while (!list_empty(&con->out_sent)) {
2133                m = list_first_entry(&con->out_sent, struct ceph_msg,
2134                                     list_head);
2135                seq = le64_to_cpu(m->hdr.seq);
2136                if (seq > ack)
2137                        break;
2138                dout("got ack for seq %llu type %d at %p\n", seq,
2139                     le16_to_cpu(m->hdr.type), m);
2140                m->ack_stamp = jiffies;
2141                ceph_msg_remove(m);
2142        }
2143        prepare_read_tag(con);
2144}
2145
2146
2147static int read_partial_message_section(struct ceph_connection *con,
2148                                        struct kvec *section,
2149                                        unsigned int sec_len, u32 *crc)
2150{
2151        int ret, left;
2152
2153        BUG_ON(!section);
2154
2155        while (section->iov_len < sec_len) {
2156                BUG_ON(section->iov_base == NULL);
2157                left = sec_len - section->iov_len;
2158                ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2159                                       section->iov_len, left);
2160                if (ret <= 0)
2161                        return ret;
2162                section->iov_len += ret;
2163        }
2164        if (section->iov_len == sec_len)
2165                *crc = crc32c(0, section->iov_base, section->iov_len);
2166
2167        return 1;
2168}
2169
2170static int read_partial_msg_data(struct ceph_connection *con)
2171{
2172        struct ceph_msg *msg = con->in_msg;
2173        struct ceph_msg_data_cursor *cursor = &msg->cursor;
2174        const bool do_datacrc = !con->msgr->nocrc;
2175        struct page *page;
2176        size_t page_offset;
2177        size_t length;
2178        u32 crc = 0;
2179        int ret;
2180
2181        BUG_ON(!msg);
2182        if (list_empty(&msg->data))
2183                return -EIO;
2184
2185        if (do_datacrc)
2186                crc = con->in_data_crc;
2187        while (cursor->resid) {
2188                page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2189                                                        NULL);
2190                ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2191                if (ret <= 0) {
2192                        if (do_datacrc)
2193                                con->in_data_crc = crc;
2194
2195                        return ret;
2196                }
2197
2198                if (do_datacrc)
2199                        crc = ceph_crc32c_page(crc, page, page_offset, ret);
2200                (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2201        }
2202        if (do_datacrc)
2203                con->in_data_crc = crc;
2204
2205        return 1;       /* must return > 0 to indicate success */
2206}
2207
2208/*
2209 * read (part of) a message.
2210 */
2211static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2212
2213static int read_partial_message(struct ceph_connection *con)
2214{
2215        struct ceph_msg *m = con->in_msg;
2216        int size;
2217        int end;
2218        int ret;
2219        unsigned int front_len, middle_len, data_len;
2220        bool do_datacrc = !con->msgr->nocrc;
2221        u64 seq;
2222        u32 crc;
2223
2224        dout("read_partial_message con %p msg %p\n", con, m);
2225
2226        /* header */
2227        size = sizeof (con->in_hdr);
2228        end = size;
2229        ret = read_partial(con, end, size, &con->in_hdr);
2230        if (ret <= 0)
2231                return ret;
2232
2233        crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2234        if (cpu_to_le32(crc) != con->in_hdr.crc) {
2235                pr_err("read_partial_message bad hdr "
2236                       " crc %u != expected %u\n",
2237                       crc, con->in_hdr.crc);
2238                return -EBADMSG;
2239        }
2240
2241        front_len = le32_to_cpu(con->in_hdr.front_len);
2242        if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2243                return -EIO;
2244        middle_len = le32_to_cpu(con->in_hdr.middle_len);
2245        if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2246                return -EIO;
2247        data_len = le32_to_cpu(con->in_hdr.data_len);
2248        if (data_len > CEPH_MSG_MAX_DATA_LEN)
2249                return -EIO;
2250
2251        /* verify seq# */
2252        seq = le64_to_cpu(con->in_hdr.seq);
2253        if ((s64)seq - (s64)con->in_seq < 1) {
2254                pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2255                        ENTITY_NAME(con->peer_name),
2256                        ceph_pr_addr(&con->peer_addr.in_addr),
2257                        seq, con->in_seq + 1);
2258                con->in_base_pos = -front_len - middle_len - data_len -
2259                        sizeof(m->footer);
2260                con->in_tag = CEPH_MSGR_TAG_READY;
2261                return 0;
2262        } else if ((s64)seq - (s64)con->in_seq > 1) {
2263                pr_err("read_partial_message bad seq %lld expected %lld\n",
2264                       seq, con->in_seq + 1);
2265                con->error_msg = "bad message sequence # for incoming message";
2266                return -EBADMSG;
2267        }
2268
2269        /* allocate message? */
2270        if (!con->in_msg) {
2271                int skip = 0;
2272
2273                dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2274                     front_len, data_len);
2275                ret = ceph_con_in_msg_alloc(con, &skip);
2276                if (ret < 0)
2277                        return ret;
2278
2279                BUG_ON(!con->in_msg ^ skip);
2280                if (con->in_msg && data_len > con->in_msg->data_length) {
2281                        pr_warning("%s skipping long message (%u > %zd)\n",
2282                                __func__, data_len, con->in_msg->data_length);
2283                        ceph_msg_put(con->in_msg);
2284                        con->in_msg = NULL;
2285                        skip = 1;
2286                }
2287                if (skip) {
2288                        /* skip this message */
2289                        dout("alloc_msg said skip message\n");
2290                        con->in_base_pos = -front_len - middle_len - data_len -
2291                                sizeof(m->footer);
2292                        con->in_tag = CEPH_MSGR_TAG_READY;
2293                        con->in_seq++;
2294                        return 0;
2295                }
2296
2297                BUG_ON(!con->in_msg);
2298                BUG_ON(con->in_msg->con != con);
2299                m = con->in_msg;
2300                m->front.iov_len = 0;    /* haven't read it yet */
2301                if (m->middle)
2302                        m->middle->vec.iov_len = 0;
2303
2304                /* prepare for data payload, if any */
2305
2306                if (data_len)
2307                        prepare_message_data(con->in_msg, data_len);
2308        }
2309
2310        /* front */
2311        ret = read_partial_message_section(con, &m->front, front_len,
2312                                           &con->in_front_crc);
2313        if (ret <= 0)
2314                return ret;
2315
2316        /* middle */
2317        if (m->middle) {
2318                ret = read_partial_message_section(con, &m->middle->vec,
2319                                                   middle_len,
2320                                                   &con->in_middle_crc);
2321                if (ret <= 0)
2322                        return ret;
2323        }
2324
2325        /* (page) data */
2326        if (data_len) {
2327                ret = read_partial_msg_data(con);
2328                if (ret <= 0)
2329                        return ret;
2330        }
2331
2332        /* footer */
2333        size = sizeof (m->footer);
2334        end += size;
2335        ret = read_partial(con, end, size, &m->footer);
2336        if (ret <= 0)
2337                return ret;
2338
2339        dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2340             m, front_len, m->footer.front_crc, middle_len,
2341             m->footer.middle_crc, data_len, m->footer.data_crc);
2342
2343        /* crc ok? */
2344        if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2345                pr_err("read_partial_message %p front crc %u != exp. %u\n",
2346                       m, con->in_front_crc, m->footer.front_crc);
2347                return -EBADMSG;
2348        }
2349        if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2350                pr_err("read_partial_message %p middle crc %u != exp %u\n",
2351                       m, con->in_middle_crc, m->footer.middle_crc);
2352                return -EBADMSG;
2353        }
2354        if (do_datacrc &&
2355            (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2356            con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2357                pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2358                       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2359                return -EBADMSG;
2360        }
2361
2362        return 1; /* done! */
2363}
2364
2365/*
2366 * Process message.  This happens in the worker thread.  The callback should
2367 * be careful not to do anything that waits on other incoming messages or it
2368 * may deadlock.
2369 */
2370static void process_message(struct ceph_connection *con)
2371{
2372        struct ceph_msg *msg;
2373
2374        BUG_ON(con->in_msg->con != con);
2375        con->in_msg->con = NULL;
2376        msg = con->in_msg;
2377        con->in_msg = NULL;
2378        con->ops->put(con);
2379
2380        /* if first message, set peer_name */
2381        if (con->peer_name.type == 0)
2382                con->peer_name = msg->hdr.src;
2383
2384        con->in_seq++;
2385        mutex_unlock(&con->mutex);
2386
2387        dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2388             msg, le64_to_cpu(msg->hdr.seq),
2389             ENTITY_NAME(msg->hdr.src),
2390             le16_to_cpu(msg->hdr.type),
2391             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2392             le32_to_cpu(msg->hdr.front_len),
2393             le32_to_cpu(msg->hdr.data_len),
2394             con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2395        con->ops->dispatch(con, msg);
2396
2397        mutex_lock(&con->mutex);
2398}
2399
2400
2401/*
2402 * Write something to the socket.  Called in a worker thread when the
2403 * socket appears to be writeable and we have something ready to send.
2404 */
2405static int try_write(struct ceph_connection *con)
2406{
2407        int ret = 1;
2408
2409        dout("try_write start %p state %lu\n", con, con->state);
2410
2411more:
2412        dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2413
2414        /* open the socket first? */
2415        if (con->state == CON_STATE_PREOPEN) {
2416                BUG_ON(con->sock);
2417                con->state = CON_STATE_CONNECTING;
2418
2419                con_out_kvec_reset(con);
2420                prepare_write_banner(con);
2421                prepare_read_banner(con);
2422
2423                BUG_ON(con->in_msg);
2424                con->in_tag = CEPH_MSGR_TAG_READY;
2425                dout("try_write initiating connect on %p new state %lu\n",
2426                     con, con->state);
2427                ret = ceph_tcp_connect(con);
2428                if (ret < 0) {
2429                        con->error_msg = "connect error";
2430                        goto out;
2431                }
2432        }
2433
2434more_kvec:
2435        /* kvec data queued? */
2436        if (con->out_skip) {
2437                ret = write_partial_skip(con);
2438                if (ret <= 0)
2439                        goto out;
2440        }
2441        if (con->out_kvec_left) {
2442                ret = write_partial_kvec(con);
2443                if (ret <= 0)
2444                        goto out;
2445        }
2446
2447        /* msg pages? */
2448        if (con->out_msg) {
2449                if (con->out_msg_done) {
2450                        ceph_msg_put(con->out_msg);
2451                        con->out_msg = NULL;   /* we're done with this one */
2452                        goto do_next;
2453                }
2454
2455                ret = write_partial_message_data(con);
2456                if (ret == 1)
2457                        goto more_kvec;  /* we need to send the footer, too! */
2458                if (ret == 0)
2459                        goto out;
2460                if (ret < 0) {
2461                        dout("try_write write_partial_message_data err %d\n",
2462                             ret);
2463                        goto out;
2464                }
2465        }
2466
2467do_next:
2468        if (con->state == CON_STATE_OPEN) {
2469                /* is anything else pending? */
2470                if (!list_empty(&con->out_queue)) {
2471                        prepare_write_message(con);
2472                        goto more;
2473                }
2474                if (con->in_seq > con->in_seq_acked) {
2475                        prepare_write_ack(con);
2476                        goto more;
2477                }
2478                if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2479                        prepare_write_keepalive(con);
2480                        goto more;
2481                }
2482        }
2483
2484        /* Nothing to do! */
2485        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2486        dout("try_write nothing else to write.\n");
2487        ret = 0;
2488out:
2489        dout("try_write done on %p ret %d\n", con, ret);
2490        return ret;
2491}
2492
2493
2494
2495/*
2496 * Read what we can from the socket.
2497 */
2498static int try_read(struct ceph_connection *con)
2499{
2500        int ret = -1;
2501
2502more:
2503        dout("try_read start on %p state %lu\n", con, con->state);
2504        if (con->state != CON_STATE_CONNECTING &&
2505            con->state != CON_STATE_NEGOTIATING &&
2506            con->state != CON_STATE_OPEN)
2507                return 0;
2508
2509        BUG_ON(!con->sock);
2510
2511        dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2512             con->in_base_pos);
2513
2514        if (con->state == CON_STATE_CONNECTING) {
2515                dout("try_read connecting\n");
2516                ret = read_partial_banner(con);
2517                if (ret <= 0)
2518                        goto out;
2519                ret = process_banner(con);
2520                if (ret < 0)
2521                        goto out;
2522
2523                con->state = CON_STATE_NEGOTIATING;
2524
2525                /*
2526                 * Received banner is good, exchange connection info.
2527                 * Do not reset out_kvec, as sending our banner raced
2528                 * with receiving peer banner after connect completed.
2529                 */
2530                ret = prepare_write_connect(con);
2531                if (ret < 0)
2532                        goto out;
2533                prepare_read_connect(con);
2534
2535                /* Send connection info before awaiting response */
2536                goto out;
2537        }
2538
2539        if (con->state == CON_STATE_NEGOTIATING) {
2540                dout("try_read negotiating\n");
2541                ret = read_partial_connect(con);
2542                if (ret <= 0)
2543                        goto out;
2544                ret = process_connect(con);
2545                if (ret < 0)
2546                        goto out;
2547                goto more;
2548        }
2549
2550        WARN_ON(con->state != CON_STATE_OPEN);
2551
2552        if (con->in_base_pos < 0) {
2553                /*
2554                 * skipping + discarding content.
2555                 *
2556                 * FIXME: there must be a better way to do this!
2557                 */
2558                static char buf[SKIP_BUF_SIZE];
2559                int skip = min((int) sizeof (buf), -con->in_base_pos);
2560
2561                dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2562                ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2563                if (ret <= 0)
2564                        goto out;
2565                con->in_base_pos += ret;
2566                if (con->in_base_pos)
2567                        goto more;
2568        }
2569        if (con->in_tag == CEPH_MSGR_TAG_READY) {
2570                /*
2571                 * what's next?
2572                 */
2573                ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2574                if (ret <= 0)
2575                        goto out;
2576                dout("try_read got tag %d\n", (int)con->in_tag);
2577                switch (con->in_tag) {
2578                case CEPH_MSGR_TAG_MSG:
2579                        prepare_read_message(con);
2580                        break;
2581                case CEPH_MSGR_TAG_ACK:
2582                        prepare_read_ack(con);
2583                        break;
2584                case CEPH_MSGR_TAG_CLOSE:
2585                        con_close_socket(con);
2586                        con->state = CON_STATE_CLOSED;
2587                        goto out;
2588                default:
2589                        goto bad_tag;
2590                }
2591        }
2592        if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2593                ret = read_partial_message(con);
2594                if (ret <= 0) {
2595                        switch (ret) {
2596                        case -EBADMSG:
2597                                con->error_msg = "bad crc";
2598                                ret = -EIO;
2599                                break;
2600                        case -EIO:
2601                                con->error_msg = "io error";
2602                                break;
2603                        }
2604                        goto out;
2605                }
2606                if (con->in_tag == CEPH_MSGR_TAG_READY)
2607                        goto more;
2608                process_message(con);
2609                if (con->state == CON_STATE_OPEN)
2610                        prepare_read_tag(con);
2611                goto more;
2612        }
2613        if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2614            con->in_tag == CEPH_MSGR_TAG_SEQ) {
2615                /*
2616                 * the final handshake seq exchange is semantically
2617                 * equivalent to an ACK
2618                 */
2619                ret = read_partial_ack(con);
2620                if (ret <= 0)
2621                        goto out;
2622                process_ack(con);
2623                goto more;
2624        }
2625
2626out:
2627        dout("try_read done on %p ret %d\n", con, ret);
2628        return ret;
2629
2630bad_tag:
2631        pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2632        con->error_msg = "protocol error, garbage tag";
2633        ret = -1;
2634        goto out;
2635}
2636
2637
2638/*
2639 * Atomically queue work on a connection after the specified delay.
2640 * Bump @con reference to avoid races with connection teardown.
2641 * Returns 0 if work was queued, or an error code otherwise.
2642 */
2643static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2644{
2645        if (!con->ops->get(con)) {
2646                dout("%s %p ref count 0\n", __func__, con);
2647
2648                return -ENOENT;
2649        }
2650
2651        if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2652                dout("%s %p - already queued\n", __func__, con);
2653                con->ops->put(con);
2654
2655                return -EBUSY;
2656        }
2657
2658        dout("%s %p %lu\n", __func__, con, delay);
2659
2660        return 0;
2661}
2662
2663static void queue_con(struct ceph_connection *con)
2664{
2665        (void) queue_con_delay(con, 0);
2666}
2667
2668static bool con_sock_closed(struct ceph_connection *con)
2669{
2670        if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2671                return false;
2672
2673#define CASE(x)                                                         \
2674        case CON_STATE_ ## x:                                           \
2675                con->error_msg = "socket closed (con state " #x ")";    \
2676                break;
2677
2678        switch (con->state) {
2679        CASE(CLOSED);
2680        CASE(PREOPEN);
2681        CASE(CONNECTING);
2682        CASE(NEGOTIATING);
2683        CASE(OPEN);
2684        CASE(STANDBY);
2685        default:
2686                pr_warning("%s con %p unrecognized state %lu\n",
2687                        __func__, con, con->state);
2688                con->error_msg = "unrecognized con state";
2689                BUG();
2690                break;
2691        }
2692#undef CASE
2693
2694        return true;
2695}
2696
2697static bool con_backoff(struct ceph_connection *con)
2698{
2699        int ret;
2700
2701        if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2702                return false;
2703
2704        ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2705        if (ret) {
2706                dout("%s: con %p FAILED to back off %lu\n", __func__,
2707                        con, con->delay);
2708                BUG_ON(ret == -ENOENT);
2709                con_flag_set(con, CON_FLAG_BACKOFF);
2710        }
2711
2712        return true;
2713}
2714
2715/* Finish fault handling; con->mutex must *not* be held here */
2716
2717static void con_fault_finish(struct ceph_connection *con)
2718{
2719        /*
2720         * in case we faulted due to authentication, invalidate our
2721         * current tickets so that we can get new ones.
2722         */
2723        if (con->auth_retry && con->ops->invalidate_authorizer) {
2724                dout("calling invalidate_authorizer()\n");
2725                con->ops->invalidate_authorizer(con);
2726        }
2727
2728        if (con->ops->fault)
2729                con->ops->fault(con);
2730}
2731
2732/*
2733 * Do some work on a connection.  Drop a connection ref when we're done.
2734 */
2735static void con_work(struct work_struct *work)
2736{
2737        struct ceph_connection *con = container_of(work, struct ceph_connection,
2738                                                   work.work);
2739        bool fault;
2740
2741        mutex_lock(&con->mutex);
2742        while (true) {
2743                int ret;
2744
2745                if ((fault = con_sock_closed(con))) {
2746                        dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2747                        break;
2748                }
2749                if (con_backoff(con)) {
2750                        dout("%s: con %p BACKOFF\n", __func__, con);
2751                        break;
2752                }
2753                if (con->state == CON_STATE_STANDBY) {
2754                        dout("%s: con %p STANDBY\n", __func__, con);
2755                        break;
2756                }
2757                if (con->state == CON_STATE_CLOSED) {
2758                        dout("%s: con %p CLOSED\n", __func__, con);
2759                        BUG_ON(con->sock);
2760                        break;
2761                }
2762                if (con->state == CON_STATE_PREOPEN) {
2763                        dout("%s: con %p PREOPEN\n", __func__, con);
2764                        BUG_ON(con->sock);
2765                }
2766
2767                ret = try_read(con);
2768                if (ret < 0) {
2769                        if (ret == -EAGAIN)
2770                                continue;
2771                        con->error_msg = "socket error on read";
2772                        fault = true;
2773                        break;
2774                }
2775
2776                ret = try_write(con);
2777                if (ret < 0) {
2778                        if (ret == -EAGAIN)
2779                                continue;
2780                        con->error_msg = "socket error on write";
2781                        fault = true;
2782                }
2783
2784                break;  /* If we make it to here, we're done */
2785        }
2786        if (fault)
2787                con_fault(con);
2788        mutex_unlock(&con->mutex);
2789
2790        if (fault)
2791                con_fault_finish(con);
2792
2793        con->ops->put(con);
2794}
2795
2796/*
2797 * Generic error/fault handler.  A retry mechanism is used with
2798 * exponential backoff
2799 */
2800static void con_fault(struct ceph_connection *con)
2801{
2802        pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2803               ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2804        dout("fault %p state %lu to peer %s\n",
2805             con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2806
2807        WARN_ON(con->state != CON_STATE_CONNECTING &&
2808               con->state != CON_STATE_NEGOTIATING &&
2809               con->state != CON_STATE_OPEN);
2810
2811        con_close_socket(con);
2812
2813        if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2814                dout("fault on LOSSYTX channel, marking CLOSED\n");
2815                con->state = CON_STATE_CLOSED;
2816                return;
2817        }
2818
2819        if (con->in_msg) {
2820                BUG_ON(con->in_msg->con != con);
2821                con->in_msg->con = NULL;
2822                ceph_msg_put(con->in_msg);
2823                con->in_msg = NULL;
2824                con->ops->put(con);
2825        }
2826
2827        /* Requeue anything that hasn't been acked */
2828        list_splice_init(&con->out_sent, &con->out_queue);
2829
2830        /* If there are no messages queued or keepalive pending, place
2831         * the connection in a STANDBY state */
2832        if (list_empty(&con->out_queue) &&
2833            !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2834                dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2835                con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2836                con->state = CON_STATE_STANDBY;
2837        } else {
2838                /* retry after a delay. */
2839                con->state = CON_STATE_PREOPEN;
2840                if (con->delay == 0)
2841                        con->delay = BASE_DELAY_INTERVAL;
2842                else if (con->delay < MAX_DELAY_INTERVAL)
2843                        con->delay *= 2;
2844                con_flag_set(con, CON_FLAG_BACKOFF);
2845                queue_con(con);
2846        }
2847}
2848
2849
2850
2851/*
2852 * initialize a new messenger instance
2853 */
2854void ceph_messenger_init(struct ceph_messenger *msgr,
2855                        struct ceph_entity_addr *myaddr,
2856                        u32 supported_features,
2857                        u32 required_features,
2858                        bool nocrc)
2859{
2860        msgr->supported_features = supported_features;
2861        msgr->required_features = required_features;
2862
2863        spin_lock_init(&msgr->global_seq_lock);
2864
2865        if (myaddr)
2866                msgr->inst.addr = *myaddr;
2867
2868        /* select a random nonce */
2869        msgr->inst.addr.type = 0;
2870        get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2871        encode_my_addr(msgr);
2872        msgr->nocrc = nocrc;
2873
2874        atomic_set(&msgr->stopping, 0);
2875
2876        dout("%s %p\n", __func__, msgr);
2877}
2878EXPORT_SYMBOL(ceph_messenger_init);
2879
2880static void clear_standby(struct ceph_connection *con)
2881{
2882        /* come back from STANDBY? */
2883        if (con->state == CON_STATE_STANDBY) {
2884                dout("clear_standby %p and ++connect_seq\n", con);
2885                con->state = CON_STATE_PREOPEN;
2886                con->connect_seq++;
2887                WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2888                WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2889        }
2890}
2891
2892/*
2893 * Queue up an outgoing message on the given connection.
2894 */
2895void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2896{
2897        /* set src+dst */
2898        msg->hdr.src = con->msgr->inst.name;
2899        BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2900        msg->needs_out_seq = true;
2901
2902        mutex_lock(&con->mutex);
2903
2904        if (con->state == CON_STATE_CLOSED) {
2905                dout("con_send %p closed, dropping %p\n", con, msg);
2906                ceph_msg_put(msg);
2907                mutex_unlock(&con->mutex);
2908                return;
2909        }
2910
2911        BUG_ON(msg->con != NULL);
2912        msg->con = con->ops->get(con);
2913        BUG_ON(msg->con == NULL);
2914
2915        BUG_ON(!list_empty(&msg->list_head));
2916        list_add_tail(&msg->list_head, &con->out_queue);
2917        dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2918             ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2919             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2920             le32_to_cpu(msg->hdr.front_len),
2921             le32_to_cpu(msg->hdr.middle_len),
2922             le32_to_cpu(msg->hdr.data_len));
2923
2924        clear_standby(con);
2925        mutex_unlock(&con->mutex);
2926
2927        /* if there wasn't anything waiting to send before, queue
2928         * new work */
2929        if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2930                queue_con(con);
2931}
2932EXPORT_SYMBOL(ceph_con_send);
2933
2934/*
2935 * Revoke a message that was previously queued for send
2936 */
2937void ceph_msg_revoke(struct ceph_msg *msg)
2938{
2939        struct ceph_connection *con = msg->con;
2940
2941        if (!con)
2942                return;         /* Message not in our possession */
2943
2944        mutex_lock(&con->mutex);
2945        if (!list_empty(&msg->list_head)) {
2946                dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2947                list_del_init(&msg->list_head);
2948                BUG_ON(msg->con == NULL);
2949                msg->con->ops->put(msg->con);
2950                msg->con = NULL;
2951                msg->hdr.seq = 0;
2952
2953                ceph_msg_put(msg);
2954        }
2955        if (con->out_msg == msg) {
2956                dout("%s %p msg %p - was sending\n", __func__, con, msg);
2957                con->out_msg = NULL;
2958                if (con->out_kvec_is_msg) {
2959                        con->out_skip = con->out_kvec_bytes;
2960                        con->out_kvec_is_msg = false;
2961                }
2962                msg->hdr.seq = 0;
2963
2964                ceph_msg_put(msg);
2965        }
2966        mutex_unlock(&con->mutex);
2967}
2968
2969/*
2970 * Revoke a message that we may be reading data into
2971 */
2972void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2973{
2974        struct ceph_connection *con;
2975
2976        BUG_ON(msg == NULL);
2977        if (!msg->con) {
2978                dout("%s msg %p null con\n", __func__, msg);
2979
2980                return;         /* Message not in our possession */
2981        }
2982
2983        con = msg->con;
2984        mutex_lock(&con->mutex);
2985        if (con->in_msg == msg) {
2986                unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2987                unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2988                unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2989
2990                /* skip rest of message */
2991                dout("%s %p msg %p revoked\n", __func__, con, msg);
2992                con->in_base_pos = con->in_base_pos -
2993                                sizeof(struct ceph_msg_header) -
2994                                front_len -
2995                                middle_len -
2996                                data_len -
2997                                sizeof(struct ceph_msg_footer);
2998                ceph_msg_put(con->in_msg);
2999                con->in_msg = NULL;
3000                con->in_tag = CEPH_MSGR_TAG_READY;
3001                con->in_seq++;
3002        } else {
3003                dout("%s %p in_msg %p msg %p no-op\n",
3004                     __func__, con, con->in_msg, msg);
3005        }
3006        mutex_unlock(&con->mutex);
3007}
3008
3009/*
3010 * Queue a keepalive byte to ensure the tcp connection is alive.
3011 */
3012void ceph_con_keepalive(struct ceph_connection *con)
3013{
3014        dout("con_keepalive %p\n", con);
3015        mutex_lock(&con->mutex);
3016        clear_standby(con);
3017        mutex_unlock(&con->mutex);
3018        if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3019            con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3020                queue_con(con);
3021}
3022EXPORT_SYMBOL(ceph_con_keepalive);
3023
3024static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3025{
3026        struct ceph_msg_data *data;
3027
3028        if (WARN_ON(!ceph_msg_data_type_valid(type)))
3029                return NULL;
3030
3031        data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3032        if (data)
3033                data->type = type;
3034        INIT_LIST_HEAD(&data->links);
3035
3036        return data;
3037}
3038
3039static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3040{
3041        if (!data)
3042                return;
3043
3044        WARN_ON(!list_empty(&data->links));
3045        if (data->type == CEPH_MSG_DATA_PAGELIST) {
3046                ceph_pagelist_release(data->pagelist);
3047                kfree(data->pagelist);
3048        }
3049        kmem_cache_free(ceph_msg_data_cache, data);
3050}
3051
3052void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3053                size_t length, size_t alignment)
3054{
3055        struct ceph_msg_data *data;
3056
3057        BUG_ON(!pages);
3058        BUG_ON(!length);
3059
3060        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3061        BUG_ON(!data);
3062        data->pages = pages;
3063        data->length = length;
3064        data->alignment = alignment & ~PAGE_MASK;
3065
3066        list_add_tail(&data->links, &msg->data);
3067        msg->data_length += length;
3068}
3069EXPORT_SYMBOL(ceph_msg_data_add_pages);
3070
3071void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3072                                struct ceph_pagelist *pagelist)
3073{
3074        struct ceph_msg_data *data;
3075
3076        BUG_ON(!pagelist);
3077        BUG_ON(!pagelist->length);
3078
3079        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3080        BUG_ON(!data);
3081        data->pagelist = pagelist;
3082
3083        list_add_tail(&data->links, &msg->data);
3084        msg->data_length += pagelist->length;
3085}
3086EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3087
3088#ifdef  CONFIG_BLOCK
3089void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3090                size_t length)
3091{
3092        struct ceph_msg_data *data;
3093
3094        BUG_ON(!bio);
3095
3096        data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3097        BUG_ON(!data);
3098        data->bio = bio;
3099        data->bio_length = length;
3100
3101        list_add_tail(&data->links, &msg->data);
3102        msg->data_length += length;
3103}
3104EXPORT_SYMBOL(ceph_msg_data_add_bio);
3105#endif  /* CONFIG_BLOCK */
3106
3107/*
3108 * construct a new message with given type, size
3109 * the new msg has a ref count of 1.
3110 */
3111struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3112                              bool can_fail)
3113{
3114        struct ceph_msg *m;
3115
3116        m = kmem_cache_zalloc(ceph_msg_cache, flags);
3117        if (m == NULL)
3118                goto out;
3119
3120        m->hdr.type = cpu_to_le16(type);
3121        m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3122        m->hdr.front_len = cpu_to_le32(front_len);
3123
3124        INIT_LIST_HEAD(&m->list_head);
3125        kref_init(&m->kref);
3126        INIT_LIST_HEAD(&m->data);
3127
3128        /* front */
3129        m->front_max = front_len;
3130        if (front_len) {
3131                if (front_len > PAGE_CACHE_SIZE) {
3132                        m->front.iov_base = __vmalloc(front_len, flags,
3133                                                      PAGE_KERNEL);
3134                        m->front_is_vmalloc = true;
3135                } else {
3136                        m->front.iov_base = kmalloc(front_len, flags);
3137                }
3138                if (m->front.iov_base == NULL) {
3139                        dout("ceph_msg_new can't allocate %d bytes\n",
3140                             front_len);
3141                        goto out2;
3142                }
3143        } else {
3144                m->front.iov_base = NULL;
3145        }
3146        m->front.iov_len = front_len;
3147
3148        dout("ceph_msg_new %p front %d\n", m, front_len);
3149        return m;
3150
3151out2:
3152        ceph_msg_put(m);
3153out:
3154        if (!can_fail) {
3155                pr_err("msg_new can't create type %d front %d\n", type,
3156                       front_len);
3157                WARN_ON(1);
3158        } else {
3159                dout("msg_new can't create type %d front %d\n", type,
3160                     front_len);
3161        }
3162        return NULL;
3163}
3164EXPORT_SYMBOL(ceph_msg_new);
3165
3166/*
3167 * Allocate "middle" portion of a message, if it is needed and wasn't
3168 * allocated by alloc_msg.  This allows us to read a small fixed-size
3169 * per-type header in the front and then gracefully fail (i.e.,
3170 * propagate the error to the caller based on info in the front) when
3171 * the middle is too large.
3172 */
3173static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3174{
3175        int type = le16_to_cpu(msg->hdr.type);
3176        int middle_len = le32_to_cpu(msg->hdr.middle_len);
3177
3178        dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3179             ceph_msg_type_name(type), middle_len);
3180        BUG_ON(!middle_len);
3181        BUG_ON(msg->middle);
3182
3183        msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3184        if (!msg->middle)
3185                return -ENOMEM;
3186        return 0;
3187}
3188
3189/*
3190 * Allocate a message for receiving an incoming message on a
3191 * connection, and save the result in con->in_msg.  Uses the
3192 * connection's private alloc_msg op if available.
3193 *
3194 * Returns 0 on success, or a negative error code.
3195 *
3196 * On success, if we set *skip = 1:
3197 *  - the next message should be skipped and ignored.
3198 *  - con->in_msg == NULL
3199 * or if we set *skip = 0:
3200 *  - con->in_msg is non-null.
3201 * On error (ENOMEM, EAGAIN, ...),
3202 *  - con->in_msg == NULL
3203 */
3204static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3205{
3206        struct ceph_msg_header *hdr = &con->in_hdr;
3207        int middle_len = le32_to_cpu(hdr->middle_len);
3208        struct ceph_msg *msg;
3209        int ret = 0;
3210
3211        BUG_ON(con->in_msg != NULL);
3212        BUG_ON(!con->ops->alloc_msg);
3213
3214        mutex_unlock(&con->mutex);
3215        msg = con->ops->alloc_msg(con, hdr, skip);
3216        mutex_lock(&con->mutex);
3217        if (con->state != CON_STATE_OPEN) {
3218                if (msg)
3219                        ceph_msg_put(msg);
3220                return -EAGAIN;
3221        }
3222        if (msg) {
3223                BUG_ON(*skip);
3224                con->in_msg = msg;
3225                con->in_msg->con = con->ops->get(con);
3226                BUG_ON(con->in_msg->con == NULL);
3227        } else {
3228                /*
3229                 * Null message pointer means either we should skip
3230                 * this message or we couldn't allocate memory.  The
3231                 * former is not an error.
3232                 */
3233                if (*skip)
3234                        return 0;
3235                con->error_msg = "error allocating memory for incoming message";
3236
3237                return -ENOMEM;
3238        }
3239        memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3240
3241        if (middle_len && !con->in_msg->middle) {
3242                ret = ceph_alloc_middle(con, con->in_msg);
3243                if (ret < 0) {
3244                        ceph_msg_put(con->in_msg);
3245                        con->in_msg = NULL;
3246                }
3247        }
3248
3249        return ret;
3250}
3251
3252
3253/*
3254 * Free a generically kmalloc'd message.
3255 */
3256void ceph_msg_kfree(struct ceph_msg *m)
3257{
3258        dout("msg_kfree %p\n", m);
3259        if (m->front_is_vmalloc)
3260                vfree(m->front.iov_base);
3261        else
3262                kfree(m->front.iov_base);
3263        kmem_cache_free(ceph_msg_cache, m);
3264}
3265
3266/*
3267 * Drop a msg ref.  Destroy as needed.
3268 */
3269void ceph_msg_last_put(struct kref *kref)
3270{
3271        struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3272        LIST_HEAD(data);
3273        struct list_head *links;
3274        struct list_head *next;
3275
3276        dout("ceph_msg_put last one on %p\n", m);
3277        WARN_ON(!list_empty(&m->list_head));
3278
3279        /* drop middle, data, if any */
3280        if (m->middle) {
3281                ceph_buffer_put(m->middle);
3282                m->middle = NULL;
3283        }
3284
3285        list_splice_init(&m->data, &data);
3286        list_for_each_safe(links, next, &data) {
3287                struct ceph_msg_data *data;
3288
3289                data = list_entry(links, struct ceph_msg_data, links);
3290                list_del_init(links);
3291                ceph_msg_data_destroy(data);
3292        }
3293        m->data_length = 0;
3294
3295        if (m->pool)
3296                ceph_msgpool_put(m->pool, m);
3297        else
3298                ceph_msg_kfree(m);
3299}
3300EXPORT_SYMBOL(ceph_msg_last_put);
3301
3302void ceph_msg_dump(struct ceph_msg *msg)
3303{
3304        pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3305                 msg->front_max, msg->data_length);
3306        print_hex_dump(KERN_DEBUG, "header: ",
3307                       DUMP_PREFIX_OFFSET, 16, 1,
3308                       &msg->hdr, sizeof(msg->hdr), true);
3309        print_hex_dump(KERN_DEBUG, " front: ",
3310                       DUMP_PREFIX_OFFSET, 16, 1,
3311                       msg->front.iov_base, msg->front.iov_len, true);
3312        if (msg->middle)
3313                print_hex_dump(KERN_DEBUG, "middle: ",
3314                               DUMP_PREFIX_OFFSET, 16, 1,
3315                               msg->middle->vec.iov_base,
3316                               msg->middle->vec.iov_len, true);
3317        print_hex_dump(KERN_DEBUG, "footer: ",
3318                       DUMP_PREFIX_OFFSET, 16, 1,
3319                       &msg->footer, sizeof(msg->footer), true);
3320}
3321EXPORT_SYMBOL(ceph_msg_dump);
3322