linux/net/core/skbuff.c
<<
>>
Prefs
   1/*
   2 *      Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *      Fixes:
   8 *              Alan Cox        :       Fixed the worst of the load
   9 *                                      balancer bugs.
  10 *              Dave Platt      :       Interrupt stacking fix.
  11 *      Richard Kooijman        :       Timestamp fixes.
  12 *              Alan Cox        :       Changed buffer format.
  13 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  14 *              Linus Torvalds  :       Better skb_clone.
  15 *              Alan Cox        :       Added skb_copy.
  16 *              Alan Cox        :       Added all the changed routines Linus
  17 *                                      only put in the headers
  18 *              Ray VanTassle   :       Fixed --skb->lock in free
  19 *              Alan Cox        :       skb_copy copy arp field
  20 *              Andi Kleen      :       slabified it.
  21 *              Robert Olsson   :       Removed skb_head_pool
  22 *
  23 *      NOTE:
  24 *              The __skb_ routines should be called with interrupts
  25 *      disabled, or you better be *real* sure that the operation is atomic
  26 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *      or via disabling bottom half handlers, etc).
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *      The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/netdevice.h>
  51#ifdef CONFIG_NET_CLS_ACT
  52#include <net/pkt_sched.h>
  53#endif
  54#include <linux/string.h>
  55#include <linux/skbuff.h>
  56#include <linux/splice.h>
  57#include <linux/cache.h>
  58#include <linux/rtnetlink.h>
  59#include <linux/init.h>
  60#include <linux/scatterlist.h>
  61#include <linux/errqueue.h>
  62#include <linux/prefetch.h>
  63
  64#include <net/protocol.h>
  65#include <net/dst.h>
  66#include <net/sock.h>
  67#include <net/checksum.h>
  68#include <net/xfrm.h>
  69
  70#include <asm/uaccess.h>
  71#include <trace/events/skb.h>
  72#include <linux/highmem.h>
  73
  74struct kmem_cache *skbuff_head_cache __read_mostly;
  75static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  76
  77static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
  78                                  struct pipe_buffer *buf)
  79{
  80        put_page(buf->page);
  81}
  82
  83static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
  84                                struct pipe_buffer *buf)
  85{
  86        get_page(buf->page);
  87}
  88
  89static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
  90                               struct pipe_buffer *buf)
  91{
  92        return 1;
  93}
  94
  95
  96/* Pipe buffer operations for a socket. */
  97static const struct pipe_buf_operations sock_pipe_buf_ops = {
  98        .can_merge = 0,
  99        .map = generic_pipe_buf_map,
 100        .unmap = generic_pipe_buf_unmap,
 101        .confirm = generic_pipe_buf_confirm,
 102        .release = sock_pipe_buf_release,
 103        .steal = sock_pipe_buf_steal,
 104        .get = sock_pipe_buf_get,
 105};
 106
 107/**
 108 *      skb_panic - private function for out-of-line support
 109 *      @skb:   buffer
 110 *      @sz:    size
 111 *      @addr:  address
 112 *      @msg:   skb_over_panic or skb_under_panic
 113 *
 114 *      Out-of-line support for skb_put() and skb_push().
 115 *      Called via the wrapper skb_over_panic() or skb_under_panic().
 116 *      Keep out of line to prevent kernel bloat.
 117 *      __builtin_return_address is not used because it is not always reliable.
 118 */
 119static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 120                      const char msg[])
 121{
 122        pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 123                 msg, addr, skb->len, sz, skb->head, skb->data,
 124                 (unsigned long)skb->tail, (unsigned long)skb->end,
 125                 skb->dev ? skb->dev->name : "<NULL>");
 126        BUG();
 127}
 128
 129static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 130{
 131        skb_panic(skb, sz, addr, __func__);
 132}
 133
 134static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 135{
 136        skb_panic(skb, sz, addr, __func__);
 137}
 138
 139/*
 140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 141 * the caller if emergency pfmemalloc reserves are being used. If it is and
 142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 143 * may be used. Otherwise, the packet data may be discarded until enough
 144 * memory is free
 145 */
 146#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 147         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 148
 149static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 150                               unsigned long ip, bool *pfmemalloc)
 151{
 152        void *obj;
 153        bool ret_pfmemalloc = false;
 154
 155        /*
 156         * Try a regular allocation, when that fails and we're not entitled
 157         * to the reserves, fail.
 158         */
 159        obj = kmalloc_node_track_caller(size,
 160                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 161                                        node);
 162        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 163                goto out;
 164
 165        /* Try again but now we are using pfmemalloc reserves */
 166        ret_pfmemalloc = true;
 167        obj = kmalloc_node_track_caller(size, flags, node);
 168
 169out:
 170        if (pfmemalloc)
 171                *pfmemalloc = ret_pfmemalloc;
 172
 173        return obj;
 174}
 175
 176/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 177 *      'private' fields and also do memory statistics to find all the
 178 *      [BEEP] leaks.
 179 *
 180 */
 181
 182struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 183{
 184        struct sk_buff *skb;
 185
 186        /* Get the HEAD */
 187        skb = kmem_cache_alloc_node(skbuff_head_cache,
 188                                    gfp_mask & ~__GFP_DMA, node);
 189        if (!skb)
 190                goto out;
 191
 192        /*
 193         * Only clear those fields we need to clear, not those that we will
 194         * actually initialise below. Hence, don't put any more fields after
 195         * the tail pointer in struct sk_buff!
 196         */
 197        memset(skb, 0, offsetof(struct sk_buff, tail));
 198        skb->head = NULL;
 199        skb->truesize = sizeof(struct sk_buff);
 200        atomic_set(&skb->users, 1);
 201
 202        skb->mac_header = (typeof(skb->mac_header))~0U;
 203out:
 204        return skb;
 205}
 206
 207/**
 208 *      __alloc_skb     -       allocate a network buffer
 209 *      @size: size to allocate
 210 *      @gfp_mask: allocation mask
 211 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 212 *              instead of head cache and allocate a cloned (child) skb.
 213 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 214 *              allocations in case the data is required for writeback
 215 *      @node: numa node to allocate memory on
 216 *
 217 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 218 *      tail room of at least size bytes. The object has a reference count
 219 *      of one. The return is the buffer. On a failure the return is %NULL.
 220 *
 221 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 222 *      %GFP_ATOMIC.
 223 */
 224struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 225                            int flags, int node)
 226{
 227        struct kmem_cache *cache;
 228        struct skb_shared_info *shinfo;
 229        struct sk_buff *skb;
 230        u8 *data;
 231        bool pfmemalloc;
 232
 233        cache = (flags & SKB_ALLOC_FCLONE)
 234                ? skbuff_fclone_cache : skbuff_head_cache;
 235
 236        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 237                gfp_mask |= __GFP_MEMALLOC;
 238
 239        /* Get the HEAD */
 240        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 241        if (!skb)
 242                goto out;
 243        prefetchw(skb);
 244
 245        /* We do our best to align skb_shared_info on a separate cache
 246         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 247         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 248         * Both skb->head and skb_shared_info are cache line aligned.
 249         */
 250        size = SKB_DATA_ALIGN(size);
 251        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 252        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 253        if (!data)
 254                goto nodata;
 255        /* kmalloc(size) might give us more room than requested.
 256         * Put skb_shared_info exactly at the end of allocated zone,
 257         * to allow max possible filling before reallocation.
 258         */
 259        size = SKB_WITH_OVERHEAD(ksize(data));
 260        prefetchw(data + size);
 261
 262        /*
 263         * Only clear those fields we need to clear, not those that we will
 264         * actually initialise below. Hence, don't put any more fields after
 265         * the tail pointer in struct sk_buff!
 266         */
 267        memset(skb, 0, offsetof(struct sk_buff, tail));
 268        /* Account for allocated memory : skb + skb->head */
 269        skb->truesize = SKB_TRUESIZE(size);
 270        skb->pfmemalloc = pfmemalloc;
 271        atomic_set(&skb->users, 1);
 272        skb->head = data;
 273        skb->data = data;
 274        skb_reset_tail_pointer(skb);
 275        skb->end = skb->tail + size;
 276        skb->mac_header = (typeof(skb->mac_header))~0U;
 277        skb->transport_header = (typeof(skb->transport_header))~0U;
 278
 279        /* make sure we initialize shinfo sequentially */
 280        shinfo = skb_shinfo(skb);
 281        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 282        atomic_set(&shinfo->dataref, 1);
 283        kmemcheck_annotate_variable(shinfo->destructor_arg);
 284
 285        if (flags & SKB_ALLOC_FCLONE) {
 286                struct sk_buff *child = skb + 1;
 287                atomic_t *fclone_ref = (atomic_t *) (child + 1);
 288
 289                kmemcheck_annotate_bitfield(child, flags1);
 290                kmemcheck_annotate_bitfield(child, flags2);
 291                skb->fclone = SKB_FCLONE_ORIG;
 292                atomic_set(fclone_ref, 1);
 293
 294                child->fclone = SKB_FCLONE_UNAVAILABLE;
 295                child->pfmemalloc = pfmemalloc;
 296        }
 297out:
 298        return skb;
 299nodata:
 300        kmem_cache_free(cache, skb);
 301        skb = NULL;
 302        goto out;
 303}
 304EXPORT_SYMBOL(__alloc_skb);
 305
 306/**
 307 * build_skb - build a network buffer
 308 * @data: data buffer provided by caller
 309 * @frag_size: size of fragment, or 0 if head was kmalloced
 310 *
 311 * Allocate a new &sk_buff. Caller provides space holding head and
 312 * skb_shared_info. @data must have been allocated by kmalloc() only if
 313 * @frag_size is 0, otherwise data should come from the page allocator.
 314 * The return is the new skb buffer.
 315 * On a failure the return is %NULL, and @data is not freed.
 316 * Notes :
 317 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 318 *  Driver should add room at head (NET_SKB_PAD) and
 319 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 320 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 321 *  before giving packet to stack.
 322 *  RX rings only contains data buffers, not full skbs.
 323 */
 324struct sk_buff *build_skb(void *data, unsigned int frag_size)
 325{
 326        struct skb_shared_info *shinfo;
 327        struct sk_buff *skb;
 328        unsigned int size = frag_size ? : ksize(data);
 329
 330        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 331        if (!skb)
 332                return NULL;
 333
 334        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 335
 336        memset(skb, 0, offsetof(struct sk_buff, tail));
 337        skb->truesize = SKB_TRUESIZE(size);
 338        skb->head_frag = frag_size != 0;
 339        atomic_set(&skb->users, 1);
 340        skb->head = data;
 341        skb->data = data;
 342        skb_reset_tail_pointer(skb);
 343        skb->end = skb->tail + size;
 344        skb->mac_header = (typeof(skb->mac_header))~0U;
 345        skb->transport_header = (typeof(skb->transport_header))~0U;
 346
 347        /* make sure we initialize shinfo sequentially */
 348        shinfo = skb_shinfo(skb);
 349        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 350        atomic_set(&shinfo->dataref, 1);
 351        kmemcheck_annotate_variable(shinfo->destructor_arg);
 352
 353        return skb;
 354}
 355EXPORT_SYMBOL(build_skb);
 356
 357struct netdev_alloc_cache {
 358        struct page_frag        frag;
 359        /* we maintain a pagecount bias, so that we dont dirty cache line
 360         * containing page->_count every time we allocate a fragment.
 361         */
 362        unsigned int            pagecnt_bias;
 363};
 364static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
 365
 366static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 367{
 368        struct netdev_alloc_cache *nc;
 369        void *data = NULL;
 370        int order;
 371        unsigned long flags;
 372
 373        local_irq_save(flags);
 374        nc = &__get_cpu_var(netdev_alloc_cache);
 375        if (unlikely(!nc->frag.page)) {
 376refill:
 377                for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
 378                        gfp_t gfp = gfp_mask;
 379
 380                        if (order)
 381                                gfp |= __GFP_COMP | __GFP_NOWARN;
 382                        nc->frag.page = alloc_pages(gfp, order);
 383                        if (likely(nc->frag.page))
 384                                break;
 385                        if (--order < 0)
 386                                goto end;
 387                }
 388                nc->frag.size = PAGE_SIZE << order;
 389recycle:
 390                atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
 391                nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
 392                nc->frag.offset = 0;
 393        }
 394
 395        if (nc->frag.offset + fragsz > nc->frag.size) {
 396                /* avoid unnecessary locked operations if possible */
 397                if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
 398                    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
 399                        goto recycle;
 400                goto refill;
 401        }
 402
 403        data = page_address(nc->frag.page) + nc->frag.offset;
 404        nc->frag.offset += fragsz;
 405        nc->pagecnt_bias--;
 406end:
 407        local_irq_restore(flags);
 408        return data;
 409}
 410
 411/**
 412 * netdev_alloc_frag - allocate a page fragment
 413 * @fragsz: fragment size
 414 *
 415 * Allocates a frag from a page for receive buffer.
 416 * Uses GFP_ATOMIC allocations.
 417 */
 418void *netdev_alloc_frag(unsigned int fragsz)
 419{
 420        return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 421}
 422EXPORT_SYMBOL(netdev_alloc_frag);
 423
 424/**
 425 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 426 *      @dev: network device to receive on
 427 *      @length: length to allocate
 428 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 429 *
 430 *      Allocate a new &sk_buff and assign it a usage count of one. The
 431 *      buffer has unspecified headroom built in. Users should allocate
 432 *      the headroom they think they need without accounting for the
 433 *      built in space. The built in space is used for optimisations.
 434 *
 435 *      %NULL is returned if there is no free memory.
 436 */
 437struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
 438                                   unsigned int length, gfp_t gfp_mask)
 439{
 440        struct sk_buff *skb = NULL;
 441        unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
 442                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 443
 444        if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
 445                void *data;
 446
 447                if (sk_memalloc_socks())
 448                        gfp_mask |= __GFP_MEMALLOC;
 449
 450                data = __netdev_alloc_frag(fragsz, gfp_mask);
 451
 452                if (likely(data)) {
 453                        skb = build_skb(data, fragsz);
 454                        if (unlikely(!skb))
 455                                put_page(virt_to_head_page(data));
 456                }
 457        } else {
 458                skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
 459                                  SKB_ALLOC_RX, NUMA_NO_NODE);
 460        }
 461        if (likely(skb)) {
 462                skb_reserve(skb, NET_SKB_PAD);
 463                skb->dev = dev;
 464        }
 465        return skb;
 466}
 467EXPORT_SYMBOL(__netdev_alloc_skb);
 468
 469void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 470                     int size, unsigned int truesize)
 471{
 472        skb_fill_page_desc(skb, i, page, off, size);
 473        skb->len += size;
 474        skb->data_len += size;
 475        skb->truesize += truesize;
 476}
 477EXPORT_SYMBOL(skb_add_rx_frag);
 478
 479static void skb_drop_list(struct sk_buff **listp)
 480{
 481        kfree_skb_list(*listp);
 482        *listp = NULL;
 483}
 484
 485static inline void skb_drop_fraglist(struct sk_buff *skb)
 486{
 487        skb_drop_list(&skb_shinfo(skb)->frag_list);
 488}
 489
 490static void skb_clone_fraglist(struct sk_buff *skb)
 491{
 492        struct sk_buff *list;
 493
 494        skb_walk_frags(skb, list)
 495                skb_get(list);
 496}
 497
 498static void skb_free_head(struct sk_buff *skb)
 499{
 500        if (skb->head_frag)
 501                put_page(virt_to_head_page(skb->head));
 502        else
 503                kfree(skb->head);
 504}
 505
 506static void skb_release_data(struct sk_buff *skb)
 507{
 508        if (!skb->cloned ||
 509            !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 510                               &skb_shinfo(skb)->dataref)) {
 511                if (skb_shinfo(skb)->nr_frags) {
 512                        int i;
 513                        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 514                                skb_frag_unref(skb, i);
 515                }
 516
 517                /*
 518                 * If skb buf is from userspace, we need to notify the caller
 519                 * the lower device DMA has done;
 520                 */
 521                if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 522                        struct ubuf_info *uarg;
 523
 524                        uarg = skb_shinfo(skb)->destructor_arg;
 525                        if (uarg->callback)
 526                                uarg->callback(uarg, true);
 527                }
 528
 529                if (skb_has_frag_list(skb))
 530                        skb_drop_fraglist(skb);
 531
 532                skb_free_head(skb);
 533        }
 534}
 535
 536/*
 537 *      Free an skbuff by memory without cleaning the state.
 538 */
 539static void kfree_skbmem(struct sk_buff *skb)
 540{
 541        struct sk_buff *other;
 542        atomic_t *fclone_ref;
 543
 544        switch (skb->fclone) {
 545        case SKB_FCLONE_UNAVAILABLE:
 546                kmem_cache_free(skbuff_head_cache, skb);
 547                break;
 548
 549        case SKB_FCLONE_ORIG:
 550                fclone_ref = (atomic_t *) (skb + 2);
 551                if (atomic_dec_and_test(fclone_ref))
 552                        kmem_cache_free(skbuff_fclone_cache, skb);
 553                break;
 554
 555        case SKB_FCLONE_CLONE:
 556                fclone_ref = (atomic_t *) (skb + 1);
 557                other = skb - 1;
 558
 559                /* The clone portion is available for
 560                 * fast-cloning again.
 561                 */
 562                skb->fclone = SKB_FCLONE_UNAVAILABLE;
 563
 564                if (atomic_dec_and_test(fclone_ref))
 565                        kmem_cache_free(skbuff_fclone_cache, other);
 566                break;
 567        }
 568}
 569
 570static void skb_release_head_state(struct sk_buff *skb)
 571{
 572        skb_dst_drop(skb);
 573#ifdef CONFIG_XFRM
 574        secpath_put(skb->sp);
 575#endif
 576        if (skb->destructor) {
 577                WARN_ON(in_irq());
 578                skb->destructor(skb);
 579        }
 580#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 581        nf_conntrack_put(skb->nfct);
 582#endif
 583#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
 584        nf_conntrack_put_reasm(skb->nfct_reasm);
 585#endif
 586#ifdef CONFIG_BRIDGE_NETFILTER
 587        nf_bridge_put(skb->nf_bridge);
 588#endif
 589/* XXX: IS this still necessary? - JHS */
 590#ifdef CONFIG_NET_SCHED
 591        skb->tc_index = 0;
 592#ifdef CONFIG_NET_CLS_ACT
 593        skb->tc_verd = 0;
 594#endif
 595#endif
 596}
 597
 598/* Free everything but the sk_buff shell. */
 599static void skb_release_all(struct sk_buff *skb)
 600{
 601        skb_release_head_state(skb);
 602        if (likely(skb->head))
 603                skb_release_data(skb);
 604}
 605
 606/**
 607 *      __kfree_skb - private function
 608 *      @skb: buffer
 609 *
 610 *      Free an sk_buff. Release anything attached to the buffer.
 611 *      Clean the state. This is an internal helper function. Users should
 612 *      always call kfree_skb
 613 */
 614
 615void __kfree_skb(struct sk_buff *skb)
 616{
 617        skb_release_all(skb);
 618        kfree_skbmem(skb);
 619}
 620EXPORT_SYMBOL(__kfree_skb);
 621
 622/**
 623 *      kfree_skb - free an sk_buff
 624 *      @skb: buffer to free
 625 *
 626 *      Drop a reference to the buffer and free it if the usage count has
 627 *      hit zero.
 628 */
 629void kfree_skb(struct sk_buff *skb)
 630{
 631        if (unlikely(!skb))
 632                return;
 633        if (likely(atomic_read(&skb->users) == 1))
 634                smp_rmb();
 635        else if (likely(!atomic_dec_and_test(&skb->users)))
 636                return;
 637        trace_kfree_skb(skb, __builtin_return_address(0));
 638        __kfree_skb(skb);
 639}
 640EXPORT_SYMBOL(kfree_skb);
 641
 642void kfree_skb_list(struct sk_buff *segs)
 643{
 644        while (segs) {
 645                struct sk_buff *next = segs->next;
 646
 647                kfree_skb(segs);
 648                segs = next;
 649        }
 650}
 651EXPORT_SYMBOL(kfree_skb_list);
 652
 653/**
 654 *      skb_tx_error - report an sk_buff xmit error
 655 *      @skb: buffer that triggered an error
 656 *
 657 *      Report xmit error if a device callback is tracking this skb.
 658 *      skb must be freed afterwards.
 659 */
 660void skb_tx_error(struct sk_buff *skb)
 661{
 662        if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 663                struct ubuf_info *uarg;
 664
 665                uarg = skb_shinfo(skb)->destructor_arg;
 666                if (uarg->callback)
 667                        uarg->callback(uarg, false);
 668                skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 669        }
 670}
 671EXPORT_SYMBOL(skb_tx_error);
 672
 673/**
 674 *      consume_skb - free an skbuff
 675 *      @skb: buffer to free
 676 *
 677 *      Drop a ref to the buffer and free it if the usage count has hit zero
 678 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 679 *      is being dropped after a failure and notes that
 680 */
 681void consume_skb(struct sk_buff *skb)
 682{
 683        if (unlikely(!skb))
 684                return;
 685        if (likely(atomic_read(&skb->users) == 1))
 686                smp_rmb();
 687        else if (likely(!atomic_dec_and_test(&skb->users)))
 688                return;
 689        trace_consume_skb(skb);
 690        __kfree_skb(skb);
 691}
 692EXPORT_SYMBOL(consume_skb);
 693
 694static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 695{
 696        new->tstamp             = old->tstamp;
 697        new->dev                = old->dev;
 698        new->transport_header   = old->transport_header;
 699        new->network_header     = old->network_header;
 700        new->mac_header         = old->mac_header;
 701        new->inner_protocol     = old->inner_protocol;
 702        new->inner_transport_header = old->inner_transport_header;
 703        new->inner_network_header = old->inner_network_header;
 704        new->inner_mac_header = old->inner_mac_header;
 705        skb_dst_copy(new, old);
 706        new->rxhash             = old->rxhash;
 707        new->ooo_okay           = old->ooo_okay;
 708        new->l4_rxhash          = old->l4_rxhash;
 709        new->no_fcs             = old->no_fcs;
 710        new->encapsulation      = old->encapsulation;
 711#ifdef CONFIG_XFRM
 712        new->sp                 = secpath_get(old->sp);
 713#endif
 714        memcpy(new->cb, old->cb, sizeof(old->cb));
 715        new->csum               = old->csum;
 716        new->local_df           = old->local_df;
 717        new->pkt_type           = old->pkt_type;
 718        new->ip_summed          = old->ip_summed;
 719        skb_copy_queue_mapping(new, old);
 720        new->priority           = old->priority;
 721#if IS_ENABLED(CONFIG_IP_VS)
 722        new->ipvs_property      = old->ipvs_property;
 723#endif
 724        new->pfmemalloc         = old->pfmemalloc;
 725        new->protocol           = old->protocol;
 726        new->mark               = old->mark;
 727        new->skb_iif            = old->skb_iif;
 728        __nf_copy(new, old);
 729#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
 730        new->nf_trace           = old->nf_trace;
 731#endif
 732#ifdef CONFIG_NET_SCHED
 733        new->tc_index           = old->tc_index;
 734#ifdef CONFIG_NET_CLS_ACT
 735        new->tc_verd            = old->tc_verd;
 736#endif
 737#endif
 738        new->vlan_proto         = old->vlan_proto;
 739        new->vlan_tci           = old->vlan_tci;
 740
 741        skb_copy_secmark(new, old);
 742
 743#ifdef CONFIG_NET_RX_BUSY_POLL
 744        new->napi_id    = old->napi_id;
 745#endif
 746}
 747
 748/*
 749 * You should not add any new code to this function.  Add it to
 750 * __copy_skb_header above instead.
 751 */
 752static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 753{
 754#define C(x) n->x = skb->x
 755
 756        n->next = n->prev = NULL;
 757        n->sk = NULL;
 758        __copy_skb_header(n, skb);
 759
 760        C(len);
 761        C(data_len);
 762        C(mac_len);
 763        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 764        n->cloned = 1;
 765        n->nohdr = 0;
 766        n->destructor = NULL;
 767        C(tail);
 768        C(end);
 769        C(head);
 770        C(head_frag);
 771        C(data);
 772        C(truesize);
 773        atomic_set(&n->users, 1);
 774
 775        atomic_inc(&(skb_shinfo(skb)->dataref));
 776        skb->cloned = 1;
 777
 778        return n;
 779#undef C
 780}
 781
 782/**
 783 *      skb_morph       -       morph one skb into another
 784 *      @dst: the skb to receive the contents
 785 *      @src: the skb to supply the contents
 786 *
 787 *      This is identical to skb_clone except that the target skb is
 788 *      supplied by the user.
 789 *
 790 *      The target skb is returned upon exit.
 791 */
 792struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 793{
 794        skb_release_all(dst);
 795        return __skb_clone(dst, src);
 796}
 797EXPORT_SYMBOL_GPL(skb_morph);
 798
 799/**
 800 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
 801 *      @skb: the skb to modify
 802 *      @gfp_mask: allocation priority
 803 *
 804 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
 805 *      It will copy all frags into kernel and drop the reference
 806 *      to userspace pages.
 807 *
 808 *      If this function is called from an interrupt gfp_mask() must be
 809 *      %GFP_ATOMIC.
 810 *
 811 *      Returns 0 on success or a negative error code on failure
 812 *      to allocate kernel memory to copy to.
 813 */
 814int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 815{
 816        int i;
 817        int num_frags = skb_shinfo(skb)->nr_frags;
 818        struct page *page, *head = NULL;
 819        struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 820
 821        for (i = 0; i < num_frags; i++) {
 822                u8 *vaddr;
 823                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 824
 825                page = alloc_page(gfp_mask);
 826                if (!page) {
 827                        while (head) {
 828                                struct page *next = (struct page *)page_private(head);
 829                                put_page(head);
 830                                head = next;
 831                        }
 832                        return -ENOMEM;
 833                }
 834                vaddr = kmap_atomic(skb_frag_page(f));
 835                memcpy(page_address(page),
 836                       vaddr + f->page_offset, skb_frag_size(f));
 837                kunmap_atomic(vaddr);
 838                set_page_private(page, (unsigned long)head);
 839                head = page;
 840        }
 841
 842        /* skb frags release userspace buffers */
 843        for (i = 0; i < num_frags; i++)
 844                skb_frag_unref(skb, i);
 845
 846        uarg->callback(uarg, false);
 847
 848        /* skb frags point to kernel buffers */
 849        for (i = num_frags - 1; i >= 0; i--) {
 850                __skb_fill_page_desc(skb, i, head, 0,
 851                                     skb_shinfo(skb)->frags[i].size);
 852                head = (struct page *)page_private(head);
 853        }
 854
 855        skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 856        return 0;
 857}
 858EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 859
 860/**
 861 *      skb_clone       -       duplicate an sk_buff
 862 *      @skb: buffer to clone
 863 *      @gfp_mask: allocation priority
 864 *
 865 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
 866 *      copies share the same packet data but not structure. The new
 867 *      buffer has a reference count of 1. If the allocation fails the
 868 *      function returns %NULL otherwise the new buffer is returned.
 869 *
 870 *      If this function is called from an interrupt gfp_mask() must be
 871 *      %GFP_ATOMIC.
 872 */
 873
 874struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
 875{
 876        struct sk_buff *n;
 877
 878        if (skb_orphan_frags(skb, gfp_mask))
 879                return NULL;
 880
 881        n = skb + 1;
 882        if (skb->fclone == SKB_FCLONE_ORIG &&
 883            n->fclone == SKB_FCLONE_UNAVAILABLE) {
 884                atomic_t *fclone_ref = (atomic_t *) (n + 1);
 885                n->fclone = SKB_FCLONE_CLONE;
 886                atomic_inc(fclone_ref);
 887        } else {
 888                if (skb_pfmemalloc(skb))
 889                        gfp_mask |= __GFP_MEMALLOC;
 890
 891                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
 892                if (!n)
 893                        return NULL;
 894
 895                kmemcheck_annotate_bitfield(n, flags1);
 896                kmemcheck_annotate_bitfield(n, flags2);
 897                n->fclone = SKB_FCLONE_UNAVAILABLE;
 898        }
 899
 900        return __skb_clone(n, skb);
 901}
 902EXPORT_SYMBOL(skb_clone);
 903
 904static void skb_headers_offset_update(struct sk_buff *skb, int off)
 905{
 906        /* {transport,network,mac}_header and tail are relative to skb->head */
 907        skb->transport_header += off;
 908        skb->network_header   += off;
 909        if (skb_mac_header_was_set(skb))
 910                skb->mac_header += off;
 911        skb->inner_transport_header += off;
 912        skb->inner_network_header += off;
 913        skb->inner_mac_header += off;
 914}
 915
 916static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 917{
 918        __copy_skb_header(new, old);
 919
 920        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
 921        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
 922        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
 923}
 924
 925static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
 926{
 927        if (skb_pfmemalloc(skb))
 928                return SKB_ALLOC_RX;
 929        return 0;
 930}
 931
 932/**
 933 *      skb_copy        -       create private copy of an sk_buff
 934 *      @skb: buffer to copy
 935 *      @gfp_mask: allocation priority
 936 *
 937 *      Make a copy of both an &sk_buff and its data. This is used when the
 938 *      caller wishes to modify the data and needs a private copy of the
 939 *      data to alter. Returns %NULL on failure or the pointer to the buffer
 940 *      on success. The returned buffer has a reference count of 1.
 941 *
 942 *      As by-product this function converts non-linear &sk_buff to linear
 943 *      one, so that &sk_buff becomes completely private and caller is allowed
 944 *      to modify all the data of returned buffer. This means that this
 945 *      function is not recommended for use in circumstances when only
 946 *      header is going to be modified. Use pskb_copy() instead.
 947 */
 948
 949struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
 950{
 951        int headerlen = skb_headroom(skb);
 952        unsigned int size = skb_end_offset(skb) + skb->data_len;
 953        struct sk_buff *n = __alloc_skb(size, gfp_mask,
 954                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
 955
 956        if (!n)
 957                return NULL;
 958
 959        /* Set the data pointer */
 960        skb_reserve(n, headerlen);
 961        /* Set the tail pointer and length */
 962        skb_put(n, skb->len);
 963
 964        if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
 965                BUG();
 966
 967        copy_skb_header(n, skb);
 968        return n;
 969}
 970EXPORT_SYMBOL(skb_copy);
 971
 972/**
 973 *      __pskb_copy     -       create copy of an sk_buff with private head.
 974 *      @skb: buffer to copy
 975 *      @headroom: headroom of new skb
 976 *      @gfp_mask: allocation priority
 977 *
 978 *      Make a copy of both an &sk_buff and part of its data, located
 979 *      in header. Fragmented data remain shared. This is used when
 980 *      the caller wishes to modify only header of &sk_buff and needs
 981 *      private copy of the header to alter. Returns %NULL on failure
 982 *      or the pointer to the buffer on success.
 983 *      The returned buffer has a reference count of 1.
 984 */
 985
 986struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
 987{
 988        unsigned int size = skb_headlen(skb) + headroom;
 989        struct sk_buff *n = __alloc_skb(size, gfp_mask,
 990                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
 991
 992        if (!n)
 993                goto out;
 994
 995        /* Set the data pointer */
 996        skb_reserve(n, headroom);
 997        /* Set the tail pointer and length */
 998        skb_put(n, skb_headlen(skb));
 999        /* Copy the bytes */
1000        skb_copy_from_linear_data(skb, n->data, n->len);
1001
1002        n->truesize += skb->data_len;
1003        n->data_len  = skb->data_len;
1004        n->len       = skb->len;
1005
1006        if (skb_shinfo(skb)->nr_frags) {
1007                int i;
1008
1009                if (skb_orphan_frags(skb, gfp_mask)) {
1010                        kfree_skb(n);
1011                        n = NULL;
1012                        goto out;
1013                }
1014                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1015                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1016                        skb_frag_ref(skb, i);
1017                }
1018                skb_shinfo(n)->nr_frags = i;
1019        }
1020
1021        if (skb_has_frag_list(skb)) {
1022                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1023                skb_clone_fraglist(n);
1024        }
1025
1026        copy_skb_header(n, skb);
1027out:
1028        return n;
1029}
1030EXPORT_SYMBOL(__pskb_copy);
1031
1032/**
1033 *      pskb_expand_head - reallocate header of &sk_buff
1034 *      @skb: buffer to reallocate
1035 *      @nhead: room to add at head
1036 *      @ntail: room to add at tail
1037 *      @gfp_mask: allocation priority
1038 *
1039 *      Expands (or creates identical copy, if &nhead and &ntail are zero)
1040 *      header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1041 *      reference count of 1. Returns zero in the case of success or error,
1042 *      if expansion failed. In the last case, &sk_buff is not changed.
1043 *
1044 *      All the pointers pointing into skb header may change and must be
1045 *      reloaded after call to this function.
1046 */
1047
1048int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1049                     gfp_t gfp_mask)
1050{
1051        int i;
1052        u8 *data;
1053        int size = nhead + skb_end_offset(skb) + ntail;
1054        long off;
1055
1056        BUG_ON(nhead < 0);
1057
1058        if (skb_shared(skb))
1059                BUG();
1060
1061        size = SKB_DATA_ALIGN(size);
1062
1063        if (skb_pfmemalloc(skb))
1064                gfp_mask |= __GFP_MEMALLOC;
1065        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1066                               gfp_mask, NUMA_NO_NODE, NULL);
1067        if (!data)
1068                goto nodata;
1069        size = SKB_WITH_OVERHEAD(ksize(data));
1070
1071        /* Copy only real data... and, alas, header. This should be
1072         * optimized for the cases when header is void.
1073         */
1074        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1075
1076        memcpy((struct skb_shared_info *)(data + size),
1077               skb_shinfo(skb),
1078               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1079
1080        /*
1081         * if shinfo is shared we must drop the old head gracefully, but if it
1082         * is not we can just drop the old head and let the existing refcount
1083         * be since all we did is relocate the values
1084         */
1085        if (skb_cloned(skb)) {
1086                /* copy this zero copy skb frags */
1087                if (skb_orphan_frags(skb, gfp_mask))
1088                        goto nofrags;
1089                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1090                        skb_frag_ref(skb, i);
1091
1092                if (skb_has_frag_list(skb))
1093                        skb_clone_fraglist(skb);
1094
1095                skb_release_data(skb);
1096        } else {
1097                skb_free_head(skb);
1098        }
1099        off = (data + nhead) - skb->head;
1100
1101        skb->head     = data;
1102        skb->head_frag = 0;
1103        skb->data    += off;
1104#ifdef NET_SKBUFF_DATA_USES_OFFSET
1105        skb->end      = size;
1106        off           = nhead;
1107#else
1108        skb->end      = skb->head + size;
1109#endif
1110        skb->tail             += off;
1111        skb_headers_offset_update(skb, nhead);
1112        /* Only adjust this if it actually is csum_start rather than csum */
1113        if (skb->ip_summed == CHECKSUM_PARTIAL)
1114                skb->csum_start += nhead;
1115        skb->cloned   = 0;
1116        skb->hdr_len  = 0;
1117        skb->nohdr    = 0;
1118        atomic_set(&skb_shinfo(skb)->dataref, 1);
1119        return 0;
1120
1121nofrags:
1122        kfree(data);
1123nodata:
1124        return -ENOMEM;
1125}
1126EXPORT_SYMBOL(pskb_expand_head);
1127
1128/* Make private copy of skb with writable head and some headroom */
1129
1130struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1131{
1132        struct sk_buff *skb2;
1133        int delta = headroom - skb_headroom(skb);
1134
1135        if (delta <= 0)
1136                skb2 = pskb_copy(skb, GFP_ATOMIC);
1137        else {
1138                skb2 = skb_clone(skb, GFP_ATOMIC);
1139                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1140                                             GFP_ATOMIC)) {
1141                        kfree_skb(skb2);
1142                        skb2 = NULL;
1143                }
1144        }
1145        return skb2;
1146}
1147EXPORT_SYMBOL(skb_realloc_headroom);
1148
1149/**
1150 *      skb_copy_expand -       copy and expand sk_buff
1151 *      @skb: buffer to copy
1152 *      @newheadroom: new free bytes at head
1153 *      @newtailroom: new free bytes at tail
1154 *      @gfp_mask: allocation priority
1155 *
1156 *      Make a copy of both an &sk_buff and its data and while doing so
1157 *      allocate additional space.
1158 *
1159 *      This is used when the caller wishes to modify the data and needs a
1160 *      private copy of the data to alter as well as more space for new fields.
1161 *      Returns %NULL on failure or the pointer to the buffer
1162 *      on success. The returned buffer has a reference count of 1.
1163 *
1164 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1165 *      is called from an interrupt.
1166 */
1167struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1168                                int newheadroom, int newtailroom,
1169                                gfp_t gfp_mask)
1170{
1171        /*
1172         *      Allocate the copy buffer
1173         */
1174        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1175                                        gfp_mask, skb_alloc_rx_flag(skb),
1176                                        NUMA_NO_NODE);
1177        int oldheadroom = skb_headroom(skb);
1178        int head_copy_len, head_copy_off;
1179        int off;
1180
1181        if (!n)
1182                return NULL;
1183
1184        skb_reserve(n, newheadroom);
1185
1186        /* Set the tail pointer and length */
1187        skb_put(n, skb->len);
1188
1189        head_copy_len = oldheadroom;
1190        head_copy_off = 0;
1191        if (newheadroom <= head_copy_len)
1192                head_copy_len = newheadroom;
1193        else
1194                head_copy_off = newheadroom - head_copy_len;
1195
1196        /* Copy the linear header and data. */
1197        if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1198                          skb->len + head_copy_len))
1199                BUG();
1200
1201        copy_skb_header(n, skb);
1202
1203        off                  = newheadroom - oldheadroom;
1204        if (n->ip_summed == CHECKSUM_PARTIAL)
1205                n->csum_start += off;
1206
1207        skb_headers_offset_update(n, off);
1208
1209        return n;
1210}
1211EXPORT_SYMBOL(skb_copy_expand);
1212
1213/**
1214 *      skb_pad                 -       zero pad the tail of an skb
1215 *      @skb: buffer to pad
1216 *      @pad: space to pad
1217 *
1218 *      Ensure that a buffer is followed by a padding area that is zero
1219 *      filled. Used by network drivers which may DMA or transfer data
1220 *      beyond the buffer end onto the wire.
1221 *
1222 *      May return error in out of memory cases. The skb is freed on error.
1223 */
1224
1225int skb_pad(struct sk_buff *skb, int pad)
1226{
1227        int err;
1228        int ntail;
1229
1230        /* If the skbuff is non linear tailroom is always zero.. */
1231        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1232                memset(skb->data+skb->len, 0, pad);
1233                return 0;
1234        }
1235
1236        ntail = skb->data_len + pad - (skb->end - skb->tail);
1237        if (likely(skb_cloned(skb) || ntail > 0)) {
1238                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1239                if (unlikely(err))
1240                        goto free_skb;
1241        }
1242
1243        /* FIXME: The use of this function with non-linear skb's really needs
1244         * to be audited.
1245         */
1246        err = skb_linearize(skb);
1247        if (unlikely(err))
1248                goto free_skb;
1249
1250        memset(skb->data + skb->len, 0, pad);
1251        return 0;
1252
1253free_skb:
1254        kfree_skb(skb);
1255        return err;
1256}
1257EXPORT_SYMBOL(skb_pad);
1258
1259/**
1260 *      skb_put - add data to a buffer
1261 *      @skb: buffer to use
1262 *      @len: amount of data to add
1263 *
1264 *      This function extends the used data area of the buffer. If this would
1265 *      exceed the total buffer size the kernel will panic. A pointer to the
1266 *      first byte of the extra data is returned.
1267 */
1268unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1269{
1270        unsigned char *tmp = skb_tail_pointer(skb);
1271        SKB_LINEAR_ASSERT(skb);
1272        skb->tail += len;
1273        skb->len  += len;
1274        if (unlikely(skb->tail > skb->end))
1275                skb_over_panic(skb, len, __builtin_return_address(0));
1276        return tmp;
1277}
1278EXPORT_SYMBOL(skb_put);
1279
1280/**
1281 *      skb_push - add data to the start of a buffer
1282 *      @skb: buffer to use
1283 *      @len: amount of data to add
1284 *
1285 *      This function extends the used data area of the buffer at the buffer
1286 *      start. If this would exceed the total buffer headroom the kernel will
1287 *      panic. A pointer to the first byte of the extra data is returned.
1288 */
1289unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1290{
1291        skb->data -= len;
1292        skb->len  += len;
1293        if (unlikely(skb->data<skb->head))
1294                skb_under_panic(skb, len, __builtin_return_address(0));
1295        return skb->data;
1296}
1297EXPORT_SYMBOL(skb_push);
1298
1299/**
1300 *      skb_pull - remove data from the start of a buffer
1301 *      @skb: buffer to use
1302 *      @len: amount of data to remove
1303 *
1304 *      This function removes data from the start of a buffer, returning
1305 *      the memory to the headroom. A pointer to the next data in the buffer
1306 *      is returned. Once the data has been pulled future pushes will overwrite
1307 *      the old data.
1308 */
1309unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1310{
1311        return skb_pull_inline(skb, len);
1312}
1313EXPORT_SYMBOL(skb_pull);
1314
1315/**
1316 *      skb_trim - remove end from a buffer
1317 *      @skb: buffer to alter
1318 *      @len: new length
1319 *
1320 *      Cut the length of a buffer down by removing data from the tail. If
1321 *      the buffer is already under the length specified it is not modified.
1322 *      The skb must be linear.
1323 */
1324void skb_trim(struct sk_buff *skb, unsigned int len)
1325{
1326        if (skb->len > len)
1327                __skb_trim(skb, len);
1328}
1329EXPORT_SYMBOL(skb_trim);
1330
1331/* Trims skb to length len. It can change skb pointers.
1332 */
1333
1334int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1335{
1336        struct sk_buff **fragp;
1337        struct sk_buff *frag;
1338        int offset = skb_headlen(skb);
1339        int nfrags = skb_shinfo(skb)->nr_frags;
1340        int i;
1341        int err;
1342
1343        if (skb_cloned(skb) &&
1344            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1345                return err;
1346
1347        i = 0;
1348        if (offset >= len)
1349                goto drop_pages;
1350
1351        for (; i < nfrags; i++) {
1352                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1353
1354                if (end < len) {
1355                        offset = end;
1356                        continue;
1357                }
1358
1359                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1360
1361drop_pages:
1362                skb_shinfo(skb)->nr_frags = i;
1363
1364                for (; i < nfrags; i++)
1365                        skb_frag_unref(skb, i);
1366
1367                if (skb_has_frag_list(skb))
1368                        skb_drop_fraglist(skb);
1369                goto done;
1370        }
1371
1372        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1373             fragp = &frag->next) {
1374                int end = offset + frag->len;
1375
1376                if (skb_shared(frag)) {
1377                        struct sk_buff *nfrag;
1378
1379                        nfrag = skb_clone(frag, GFP_ATOMIC);
1380                        if (unlikely(!nfrag))
1381                                return -ENOMEM;
1382
1383                        nfrag->next = frag->next;
1384                        consume_skb(frag);
1385                        frag = nfrag;
1386                        *fragp = frag;
1387                }
1388
1389                if (end < len) {
1390                        offset = end;
1391                        continue;
1392                }
1393
1394                if (end > len &&
1395                    unlikely((err = pskb_trim(frag, len - offset))))
1396                        return err;
1397
1398                if (frag->next)
1399                        skb_drop_list(&frag->next);
1400                break;
1401        }
1402
1403done:
1404        if (len > skb_headlen(skb)) {
1405                skb->data_len -= skb->len - len;
1406                skb->len       = len;
1407        } else {
1408                skb->len       = len;
1409                skb->data_len  = 0;
1410                skb_set_tail_pointer(skb, len);
1411        }
1412
1413        return 0;
1414}
1415EXPORT_SYMBOL(___pskb_trim);
1416
1417/**
1418 *      __pskb_pull_tail - advance tail of skb header
1419 *      @skb: buffer to reallocate
1420 *      @delta: number of bytes to advance tail
1421 *
1422 *      The function makes a sense only on a fragmented &sk_buff,
1423 *      it expands header moving its tail forward and copying necessary
1424 *      data from fragmented part.
1425 *
1426 *      &sk_buff MUST have reference count of 1.
1427 *
1428 *      Returns %NULL (and &sk_buff does not change) if pull failed
1429 *      or value of new tail of skb in the case of success.
1430 *
1431 *      All the pointers pointing into skb header may change and must be
1432 *      reloaded after call to this function.
1433 */
1434
1435/* Moves tail of skb head forward, copying data from fragmented part,
1436 * when it is necessary.
1437 * 1. It may fail due to malloc failure.
1438 * 2. It may change skb pointers.
1439 *
1440 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1441 */
1442unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1443{
1444        /* If skb has not enough free space at tail, get new one
1445         * plus 128 bytes for future expansions. If we have enough
1446         * room at tail, reallocate without expansion only if skb is cloned.
1447         */
1448        int i, k, eat = (skb->tail + delta) - skb->end;
1449
1450        if (eat > 0 || skb_cloned(skb)) {
1451                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1452                                     GFP_ATOMIC))
1453                        return NULL;
1454        }
1455
1456        if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1457                BUG();
1458
1459        /* Optimization: no fragments, no reasons to preestimate
1460         * size of pulled pages. Superb.
1461         */
1462        if (!skb_has_frag_list(skb))
1463                goto pull_pages;
1464
1465        /* Estimate size of pulled pages. */
1466        eat = delta;
1467        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1468                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1469
1470                if (size >= eat)
1471                        goto pull_pages;
1472                eat -= size;
1473        }
1474
1475        /* If we need update frag list, we are in troubles.
1476         * Certainly, it possible to add an offset to skb data,
1477         * but taking into account that pulling is expected to
1478         * be very rare operation, it is worth to fight against
1479         * further bloating skb head and crucify ourselves here instead.
1480         * Pure masohism, indeed. 8)8)
1481         */
1482        if (eat) {
1483                struct sk_buff *list = skb_shinfo(skb)->frag_list;
1484                struct sk_buff *clone = NULL;
1485                struct sk_buff *insp = NULL;
1486
1487                do {
1488                        BUG_ON(!list);
1489
1490                        if (list->len <= eat) {
1491                                /* Eaten as whole. */
1492                                eat -= list->len;
1493                                list = list->next;
1494                                insp = list;
1495                        } else {
1496                                /* Eaten partially. */
1497
1498                                if (skb_shared(list)) {
1499                                        /* Sucks! We need to fork list. :-( */
1500                                        clone = skb_clone(list, GFP_ATOMIC);
1501                                        if (!clone)
1502                                                return NULL;
1503                                        insp = list->next;
1504                                        list = clone;
1505                                } else {
1506                                        /* This may be pulled without
1507                                         * problems. */
1508                                        insp = list;
1509                                }
1510                                if (!pskb_pull(list, eat)) {
1511                                        kfree_skb(clone);
1512                                        return NULL;
1513                                }
1514                                break;
1515                        }
1516                } while (eat);
1517
1518                /* Free pulled out fragments. */
1519                while ((list = skb_shinfo(skb)->frag_list) != insp) {
1520                        skb_shinfo(skb)->frag_list = list->next;
1521                        kfree_skb(list);
1522                }
1523                /* And insert new clone at head. */
1524                if (clone) {
1525                        clone->next = list;
1526                        skb_shinfo(skb)->frag_list = clone;
1527                }
1528        }
1529        /* Success! Now we may commit changes to skb data. */
1530
1531pull_pages:
1532        eat = delta;
1533        k = 0;
1534        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1535                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1536
1537                if (size <= eat) {
1538                        skb_frag_unref(skb, i);
1539                        eat -= size;
1540                } else {
1541                        skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1542                        if (eat) {
1543                                skb_shinfo(skb)->frags[k].page_offset += eat;
1544                                skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1545                                eat = 0;
1546                        }
1547                        k++;
1548                }
1549        }
1550        skb_shinfo(skb)->nr_frags = k;
1551
1552        skb->tail     += delta;
1553        skb->data_len -= delta;
1554
1555        return skb_tail_pointer(skb);
1556}
1557EXPORT_SYMBOL(__pskb_pull_tail);
1558
1559/**
1560 *      skb_copy_bits - copy bits from skb to kernel buffer
1561 *      @skb: source skb
1562 *      @offset: offset in source
1563 *      @to: destination buffer
1564 *      @len: number of bytes to copy
1565 *
1566 *      Copy the specified number of bytes from the source skb to the
1567 *      destination buffer.
1568 *
1569 *      CAUTION ! :
1570 *              If its prototype is ever changed,
1571 *              check arch/{*}/net/{*}.S files,
1572 *              since it is called from BPF assembly code.
1573 */
1574int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1575{
1576        int start = skb_headlen(skb);
1577        struct sk_buff *frag_iter;
1578        int i, copy;
1579
1580        if (offset > (int)skb->len - len)
1581                goto fault;
1582
1583        /* Copy header. */
1584        if ((copy = start - offset) > 0) {
1585                if (copy > len)
1586                        copy = len;
1587                skb_copy_from_linear_data_offset(skb, offset, to, copy);
1588                if ((len -= copy) == 0)
1589                        return 0;
1590                offset += copy;
1591                to     += copy;
1592        }
1593
1594        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1595                int end;
1596                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1597
1598                WARN_ON(start > offset + len);
1599
1600                end = start + skb_frag_size(f);
1601                if ((copy = end - offset) > 0) {
1602                        u8 *vaddr;
1603
1604                        if (copy > len)
1605                                copy = len;
1606
1607                        vaddr = kmap_atomic(skb_frag_page(f));
1608                        memcpy(to,
1609                               vaddr + f->page_offset + offset - start,
1610                               copy);
1611                        kunmap_atomic(vaddr);
1612
1613                        if ((len -= copy) == 0)
1614                                return 0;
1615                        offset += copy;
1616                        to     += copy;
1617                }
1618                start = end;
1619        }
1620
1621        skb_walk_frags(skb, frag_iter) {
1622                int end;
1623
1624                WARN_ON(start > offset + len);
1625
1626                end = start + frag_iter->len;
1627                if ((copy = end - offset) > 0) {
1628                        if (copy > len)
1629                                copy = len;
1630                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
1631                                goto fault;
1632                        if ((len -= copy) == 0)
1633                                return 0;
1634                        offset += copy;
1635                        to     += copy;
1636                }
1637                start = end;
1638        }
1639
1640        if (!len)
1641                return 0;
1642
1643fault:
1644        return -EFAULT;
1645}
1646EXPORT_SYMBOL(skb_copy_bits);
1647
1648/*
1649 * Callback from splice_to_pipe(), if we need to release some pages
1650 * at the end of the spd in case we error'ed out in filling the pipe.
1651 */
1652static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1653{
1654        put_page(spd->pages[i]);
1655}
1656
1657static struct page *linear_to_page(struct page *page, unsigned int *len,
1658                                   unsigned int *offset,
1659                                   struct sock *sk)
1660{
1661        struct page_frag *pfrag = sk_page_frag(sk);
1662
1663        if (!sk_page_frag_refill(sk, pfrag))
1664                return NULL;
1665
1666        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1667
1668        memcpy(page_address(pfrag->page) + pfrag->offset,
1669               page_address(page) + *offset, *len);
1670        *offset = pfrag->offset;
1671        pfrag->offset += *len;
1672
1673        return pfrag->page;
1674}
1675
1676static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1677                             struct page *page,
1678                             unsigned int offset)
1679{
1680        return  spd->nr_pages &&
1681                spd->pages[spd->nr_pages - 1] == page &&
1682                (spd->partial[spd->nr_pages - 1].offset +
1683                 spd->partial[spd->nr_pages - 1].len == offset);
1684}
1685
1686/*
1687 * Fill page/offset/length into spd, if it can hold more pages.
1688 */
1689static bool spd_fill_page(struct splice_pipe_desc *spd,
1690                          struct pipe_inode_info *pipe, struct page *page,
1691                          unsigned int *len, unsigned int offset,
1692                          bool linear,
1693                          struct sock *sk)
1694{
1695        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1696                return true;
1697
1698        if (linear) {
1699                page = linear_to_page(page, len, &offset, sk);
1700                if (!page)
1701                        return true;
1702        }
1703        if (spd_can_coalesce(spd, page, offset)) {
1704                spd->partial[spd->nr_pages - 1].len += *len;
1705                return false;
1706        }
1707        get_page(page);
1708        spd->pages[spd->nr_pages] = page;
1709        spd->partial[spd->nr_pages].len = *len;
1710        spd->partial[spd->nr_pages].offset = offset;
1711        spd->nr_pages++;
1712
1713        return false;
1714}
1715
1716static bool __splice_segment(struct page *page, unsigned int poff,
1717                             unsigned int plen, unsigned int *off,
1718                             unsigned int *len,
1719                             struct splice_pipe_desc *spd, bool linear,
1720                             struct sock *sk,
1721                             struct pipe_inode_info *pipe)
1722{
1723        if (!*len)
1724                return true;
1725
1726        /* skip this segment if already processed */
1727        if (*off >= plen) {
1728                *off -= plen;
1729                return false;
1730        }
1731
1732        /* ignore any bits we already processed */
1733        poff += *off;
1734        plen -= *off;
1735        *off = 0;
1736
1737        do {
1738                unsigned int flen = min(*len, plen);
1739
1740                if (spd_fill_page(spd, pipe, page, &flen, poff,
1741                                  linear, sk))
1742                        return true;
1743                poff += flen;
1744                plen -= flen;
1745                *len -= flen;
1746        } while (*len && plen);
1747
1748        return false;
1749}
1750
1751/*
1752 * Map linear and fragment data from the skb to spd. It reports true if the
1753 * pipe is full or if we already spliced the requested length.
1754 */
1755static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1756                              unsigned int *offset, unsigned int *len,
1757                              struct splice_pipe_desc *spd, struct sock *sk)
1758{
1759        int seg;
1760
1761        /* map the linear part :
1762         * If skb->head_frag is set, this 'linear' part is backed by a
1763         * fragment, and if the head is not shared with any clones then
1764         * we can avoid a copy since we own the head portion of this page.
1765         */
1766        if (__splice_segment(virt_to_page(skb->data),
1767                             (unsigned long) skb->data & (PAGE_SIZE - 1),
1768                             skb_headlen(skb),
1769                             offset, len, spd,
1770                             skb_head_is_locked(skb),
1771                             sk, pipe))
1772                return true;
1773
1774        /*
1775         * then map the fragments
1776         */
1777        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1778                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1779
1780                if (__splice_segment(skb_frag_page(f),
1781                                     f->page_offset, skb_frag_size(f),
1782                                     offset, len, spd, false, sk, pipe))
1783                        return true;
1784        }
1785
1786        return false;
1787}
1788
1789/*
1790 * Map data from the skb to a pipe. Should handle both the linear part,
1791 * the fragments, and the frag list. It does NOT handle frag lists within
1792 * the frag list, if such a thing exists. We'd probably need to recurse to
1793 * handle that cleanly.
1794 */
1795int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1796                    struct pipe_inode_info *pipe, unsigned int tlen,
1797                    unsigned int flags)
1798{
1799        struct partial_page partial[MAX_SKB_FRAGS];
1800        struct page *pages[MAX_SKB_FRAGS];
1801        struct splice_pipe_desc spd = {
1802                .pages = pages,
1803                .partial = partial,
1804                .nr_pages_max = MAX_SKB_FRAGS,
1805                .flags = flags,
1806                .ops = &sock_pipe_buf_ops,
1807                .spd_release = sock_spd_release,
1808        };
1809        struct sk_buff *frag_iter;
1810        struct sock *sk = skb->sk;
1811        int ret = 0;
1812
1813        /*
1814         * __skb_splice_bits() only fails if the output has no room left,
1815         * so no point in going over the frag_list for the error case.
1816         */
1817        if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1818                goto done;
1819        else if (!tlen)
1820                goto done;
1821
1822        /*
1823         * now see if we have a frag_list to map
1824         */
1825        skb_walk_frags(skb, frag_iter) {
1826                if (!tlen)
1827                        break;
1828                if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1829                        break;
1830        }
1831
1832done:
1833        if (spd.nr_pages) {
1834                /*
1835                 * Drop the socket lock, otherwise we have reverse
1836                 * locking dependencies between sk_lock and i_mutex
1837                 * here as compared to sendfile(). We enter here
1838                 * with the socket lock held, and splice_to_pipe() will
1839                 * grab the pipe inode lock. For sendfile() emulation,
1840                 * we call into ->sendpage() with the i_mutex lock held
1841                 * and networking will grab the socket lock.
1842                 */
1843                release_sock(sk);
1844                ret = splice_to_pipe(pipe, &spd);
1845                lock_sock(sk);
1846        }
1847
1848        return ret;
1849}
1850
1851/**
1852 *      skb_store_bits - store bits from kernel buffer to skb
1853 *      @skb: destination buffer
1854 *      @offset: offset in destination
1855 *      @from: source buffer
1856 *      @len: number of bytes to copy
1857 *
1858 *      Copy the specified number of bytes from the source buffer to the
1859 *      destination skb.  This function handles all the messy bits of
1860 *      traversing fragment lists and such.
1861 */
1862
1863int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1864{
1865        int start = skb_headlen(skb);
1866        struct sk_buff *frag_iter;
1867        int i, copy;
1868
1869        if (offset > (int)skb->len - len)
1870                goto fault;
1871
1872        if ((copy = start - offset) > 0) {
1873                if (copy > len)
1874                        copy = len;
1875                skb_copy_to_linear_data_offset(skb, offset, from, copy);
1876                if ((len -= copy) == 0)
1877                        return 0;
1878                offset += copy;
1879                from += copy;
1880        }
1881
1882        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1883                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1884                int end;
1885
1886                WARN_ON(start > offset + len);
1887
1888                end = start + skb_frag_size(frag);
1889                if ((copy = end - offset) > 0) {
1890                        u8 *vaddr;
1891
1892                        if (copy > len)
1893                                copy = len;
1894
1895                        vaddr = kmap_atomic(skb_frag_page(frag));
1896                        memcpy(vaddr + frag->page_offset + offset - start,
1897                               from, copy);
1898                        kunmap_atomic(vaddr);
1899
1900                        if ((len -= copy) == 0)
1901                                return 0;
1902                        offset += copy;
1903                        from += copy;
1904                }
1905                start = end;
1906        }
1907
1908        skb_walk_frags(skb, frag_iter) {
1909                int end;
1910
1911                WARN_ON(start > offset + len);
1912
1913                end = start + frag_iter->len;
1914                if ((copy = end - offset) > 0) {
1915                        if (copy > len)
1916                                copy = len;
1917                        if (skb_store_bits(frag_iter, offset - start,
1918                                           from, copy))
1919                                goto fault;
1920                        if ((len -= copy) == 0)
1921                                return 0;
1922                        offset += copy;
1923                        from += copy;
1924                }
1925                start = end;
1926        }
1927        if (!len)
1928                return 0;
1929
1930fault:
1931        return -EFAULT;
1932}
1933EXPORT_SYMBOL(skb_store_bits);
1934
1935/* Checksum skb data. */
1936
1937__wsum skb_checksum(const struct sk_buff *skb, int offset,
1938                          int len, __wsum csum)
1939{
1940        int start = skb_headlen(skb);
1941        int i, copy = start - offset;
1942        struct sk_buff *frag_iter;
1943        int pos = 0;
1944
1945        /* Checksum header. */
1946        if (copy > 0) {
1947                if (copy > len)
1948                        copy = len;
1949                csum = csum_partial(skb->data + offset, copy, csum);
1950                if ((len -= copy) == 0)
1951                        return csum;
1952                offset += copy;
1953                pos     = copy;
1954        }
1955
1956        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1957                int end;
1958                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1959
1960                WARN_ON(start > offset + len);
1961
1962                end = start + skb_frag_size(frag);
1963                if ((copy = end - offset) > 0) {
1964                        __wsum csum2;
1965                        u8 *vaddr;
1966
1967                        if (copy > len)
1968                                copy = len;
1969                        vaddr = kmap_atomic(skb_frag_page(frag));
1970                        csum2 = csum_partial(vaddr + frag->page_offset +
1971                                             offset - start, copy, 0);
1972                        kunmap_atomic(vaddr);
1973                        csum = csum_block_add(csum, csum2, pos);
1974                        if (!(len -= copy))
1975                                return csum;
1976                        offset += copy;
1977                        pos    += copy;
1978                }
1979                start = end;
1980        }
1981
1982        skb_walk_frags(skb, frag_iter) {
1983                int end;
1984
1985                WARN_ON(start > offset + len);
1986
1987                end = start + frag_iter->len;
1988                if ((copy = end - offset) > 0) {
1989                        __wsum csum2;
1990                        if (copy > len)
1991                                copy = len;
1992                        csum2 = skb_checksum(frag_iter, offset - start,
1993                                             copy, 0);
1994                        csum = csum_block_add(csum, csum2, pos);
1995                        if ((len -= copy) == 0)
1996                                return csum;
1997                        offset += copy;
1998                        pos    += copy;
1999                }
2000                start = end;
2001        }
2002        BUG_ON(len);
2003
2004        return csum;
2005}
2006EXPORT_SYMBOL(skb_checksum);
2007
2008/* Both of above in one bottle. */
2009
2010__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2011                                    u8 *to, int len, __wsum csum)
2012{
2013        int start = skb_headlen(skb);
2014        int i, copy = start - offset;
2015        struct sk_buff *frag_iter;
2016        int pos = 0;
2017
2018        /* Copy header. */
2019        if (copy > 0) {
2020                if (copy > len)
2021                        copy = len;
2022                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2023                                                 copy, csum);
2024                if ((len -= copy) == 0)
2025                        return csum;
2026                offset += copy;
2027                to     += copy;
2028                pos     = copy;
2029        }
2030
2031        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2032                int end;
2033
2034                WARN_ON(start > offset + len);
2035
2036                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2037                if ((copy = end - offset) > 0) {
2038                        __wsum csum2;
2039                        u8 *vaddr;
2040                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2041
2042                        if (copy > len)
2043                                copy = len;
2044                        vaddr = kmap_atomic(skb_frag_page(frag));
2045                        csum2 = csum_partial_copy_nocheck(vaddr +
2046                                                          frag->page_offset +
2047                                                          offset - start, to,
2048                                                          copy, 0);
2049                        kunmap_atomic(vaddr);
2050                        csum = csum_block_add(csum, csum2, pos);
2051                        if (!(len -= copy))
2052                                return csum;
2053                        offset += copy;
2054                        to     += copy;
2055                        pos    += copy;
2056                }
2057                start = end;
2058        }
2059
2060        skb_walk_frags(skb, frag_iter) {
2061                __wsum csum2;
2062                int end;
2063
2064                WARN_ON(start > offset + len);
2065
2066                end = start + frag_iter->len;
2067                if ((copy = end - offset) > 0) {
2068                        if (copy > len)
2069                                copy = len;
2070                        csum2 = skb_copy_and_csum_bits(frag_iter,
2071                                                       offset - start,
2072                                                       to, copy, 0);
2073                        csum = csum_block_add(csum, csum2, pos);
2074                        if ((len -= copy) == 0)
2075                                return csum;
2076                        offset += copy;
2077                        to     += copy;
2078                        pos    += copy;
2079                }
2080                start = end;
2081        }
2082        BUG_ON(len);
2083        return csum;
2084}
2085EXPORT_SYMBOL(skb_copy_and_csum_bits);
2086
2087void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2088{
2089        __wsum csum;
2090        long csstart;
2091
2092        if (skb->ip_summed == CHECKSUM_PARTIAL)
2093                csstart = skb_checksum_start_offset(skb);
2094        else
2095                csstart = skb_headlen(skb);
2096
2097        BUG_ON(csstart > skb_headlen(skb));
2098
2099        skb_copy_from_linear_data(skb, to, csstart);
2100
2101        csum = 0;
2102        if (csstart != skb->len)
2103                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2104                                              skb->len - csstart, 0);
2105
2106        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2107                long csstuff = csstart + skb->csum_offset;
2108
2109                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2110        }
2111}
2112EXPORT_SYMBOL(skb_copy_and_csum_dev);
2113
2114/**
2115 *      skb_dequeue - remove from the head of the queue
2116 *      @list: list to dequeue from
2117 *
2118 *      Remove the head of the list. The list lock is taken so the function
2119 *      may be used safely with other locking list functions. The head item is
2120 *      returned or %NULL if the list is empty.
2121 */
2122
2123struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2124{
2125        unsigned long flags;
2126        struct sk_buff *result;
2127
2128        spin_lock_irqsave(&list->lock, flags);
2129        result = __skb_dequeue(list);
2130        spin_unlock_irqrestore(&list->lock, flags);
2131        return result;
2132}
2133EXPORT_SYMBOL(skb_dequeue);
2134
2135/**
2136 *      skb_dequeue_tail - remove from the tail of the queue
2137 *      @list: list to dequeue from
2138 *
2139 *      Remove the tail of the list. The list lock is taken so the function
2140 *      may be used safely with other locking list functions. The tail item is
2141 *      returned or %NULL if the list is empty.
2142 */
2143struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2144{
2145        unsigned long flags;
2146        struct sk_buff *result;
2147
2148        spin_lock_irqsave(&list->lock, flags);
2149        result = __skb_dequeue_tail(list);
2150        spin_unlock_irqrestore(&list->lock, flags);
2151        return result;
2152}
2153EXPORT_SYMBOL(skb_dequeue_tail);
2154
2155/**
2156 *      skb_queue_purge - empty a list
2157 *      @list: list to empty
2158 *
2159 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2160 *      the list and one reference dropped. This function takes the list
2161 *      lock and is atomic with respect to other list locking functions.
2162 */
2163void skb_queue_purge(struct sk_buff_head *list)
2164{
2165        struct sk_buff *skb;
2166        while ((skb = skb_dequeue(list)) != NULL)
2167                kfree_skb(skb);
2168}
2169EXPORT_SYMBOL(skb_queue_purge);
2170
2171/**
2172 *      skb_queue_head - queue a buffer at the list head
2173 *      @list: list to use
2174 *      @newsk: buffer to queue
2175 *
2176 *      Queue a buffer at the start of the list. This function takes the
2177 *      list lock and can be used safely with other locking &sk_buff functions
2178 *      safely.
2179 *
2180 *      A buffer cannot be placed on two lists at the same time.
2181 */
2182void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2183{
2184        unsigned long flags;
2185
2186        spin_lock_irqsave(&list->lock, flags);
2187        __skb_queue_head(list, newsk);
2188        spin_unlock_irqrestore(&list->lock, flags);
2189}
2190EXPORT_SYMBOL(skb_queue_head);
2191
2192/**
2193 *      skb_queue_tail - queue a buffer at the list tail
2194 *      @list: list to use
2195 *      @newsk: buffer to queue
2196 *
2197 *      Queue a buffer at the tail of the list. This function takes the
2198 *      list lock and can be used safely with other locking &sk_buff functions
2199 *      safely.
2200 *
2201 *      A buffer cannot be placed on two lists at the same time.
2202 */
2203void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2204{
2205        unsigned long flags;
2206
2207        spin_lock_irqsave(&list->lock, flags);
2208        __skb_queue_tail(list, newsk);
2209        spin_unlock_irqrestore(&list->lock, flags);
2210}
2211EXPORT_SYMBOL(skb_queue_tail);
2212
2213/**
2214 *      skb_unlink      -       remove a buffer from a list
2215 *      @skb: buffer to remove
2216 *      @list: list to use
2217 *
2218 *      Remove a packet from a list. The list locks are taken and this
2219 *      function is atomic with respect to other list locked calls
2220 *
2221 *      You must know what list the SKB is on.
2222 */
2223void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2224{
2225        unsigned long flags;
2226
2227        spin_lock_irqsave(&list->lock, flags);
2228        __skb_unlink(skb, list);
2229        spin_unlock_irqrestore(&list->lock, flags);
2230}
2231EXPORT_SYMBOL(skb_unlink);
2232
2233/**
2234 *      skb_append      -       append a buffer
2235 *      @old: buffer to insert after
2236 *      @newsk: buffer to insert
2237 *      @list: list to use
2238 *
2239 *      Place a packet after a given packet in a list. The list locks are taken
2240 *      and this function is atomic with respect to other list locked calls.
2241 *      A buffer cannot be placed on two lists at the same time.
2242 */
2243void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2244{
2245        unsigned long flags;
2246
2247        spin_lock_irqsave(&list->lock, flags);
2248        __skb_queue_after(list, old, newsk);
2249        spin_unlock_irqrestore(&list->lock, flags);
2250}
2251EXPORT_SYMBOL(skb_append);
2252
2253/**
2254 *      skb_insert      -       insert a buffer
2255 *      @old: buffer to insert before
2256 *      @newsk: buffer to insert
2257 *      @list: list to use
2258 *
2259 *      Place a packet before a given packet in a list. The list locks are
2260 *      taken and this function is atomic with respect to other list locked
2261 *      calls.
2262 *
2263 *      A buffer cannot be placed on two lists at the same time.
2264 */
2265void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2266{
2267        unsigned long flags;
2268
2269        spin_lock_irqsave(&list->lock, flags);
2270        __skb_insert(newsk, old->prev, old, list);
2271        spin_unlock_irqrestore(&list->lock, flags);
2272}
2273EXPORT_SYMBOL(skb_insert);
2274
2275static inline void skb_split_inside_header(struct sk_buff *skb,
2276                                           struct sk_buff* skb1,
2277                                           const u32 len, const int pos)
2278{
2279        int i;
2280
2281        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2282                                         pos - len);
2283        /* And move data appendix as is. */
2284        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2285                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2286
2287        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2288        skb_shinfo(skb)->nr_frags  = 0;
2289        skb1->data_len             = skb->data_len;
2290        skb1->len                  += skb1->data_len;
2291        skb->data_len              = 0;
2292        skb->len                   = len;
2293        skb_set_tail_pointer(skb, len);
2294}
2295
2296static inline void skb_split_no_header(struct sk_buff *skb,
2297                                       struct sk_buff* skb1,
2298                                       const u32 len, int pos)
2299{
2300        int i, k = 0;
2301        const int nfrags = skb_shinfo(skb)->nr_frags;
2302
2303        skb_shinfo(skb)->nr_frags = 0;
2304        skb1->len                 = skb1->data_len = skb->len - len;
2305        skb->len                  = len;
2306        skb->data_len             = len - pos;
2307
2308        for (i = 0; i < nfrags; i++) {
2309                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2310
2311                if (pos + size > len) {
2312                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2313
2314                        if (pos < len) {
2315                                /* Split frag.
2316                                 * We have two variants in this case:
2317                                 * 1. Move all the frag to the second
2318                                 *    part, if it is possible. F.e.
2319                                 *    this approach is mandatory for TUX,
2320                                 *    where splitting is expensive.
2321                                 * 2. Split is accurately. We make this.
2322                                 */
2323                                skb_frag_ref(skb, i);
2324                                skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2325                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2326                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2327                                skb_shinfo(skb)->nr_frags++;
2328                        }
2329                        k++;
2330                } else
2331                        skb_shinfo(skb)->nr_frags++;
2332                pos += size;
2333        }
2334        skb_shinfo(skb1)->nr_frags = k;
2335}
2336
2337/**
2338 * skb_split - Split fragmented skb to two parts at length len.
2339 * @skb: the buffer to split
2340 * @skb1: the buffer to receive the second part
2341 * @len: new length for skb
2342 */
2343void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2344{
2345        int pos = skb_headlen(skb);
2346
2347        skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2348        if (len < pos)  /* Split line is inside header. */
2349                skb_split_inside_header(skb, skb1, len, pos);
2350        else            /* Second chunk has no header, nothing to copy. */
2351                skb_split_no_header(skb, skb1, len, pos);
2352}
2353EXPORT_SYMBOL(skb_split);
2354
2355/* Shifting from/to a cloned skb is a no-go.
2356 *
2357 * Caller cannot keep skb_shinfo related pointers past calling here!
2358 */
2359static int skb_prepare_for_shift(struct sk_buff *skb)
2360{
2361        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2362}
2363
2364/**
2365 * skb_shift - Shifts paged data partially from skb to another
2366 * @tgt: buffer into which tail data gets added
2367 * @skb: buffer from which the paged data comes from
2368 * @shiftlen: shift up to this many bytes
2369 *
2370 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2371 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2372 * It's up to caller to free skb if everything was shifted.
2373 *
2374 * If @tgt runs out of frags, the whole operation is aborted.
2375 *
2376 * Skb cannot include anything else but paged data while tgt is allowed
2377 * to have non-paged data as well.
2378 *
2379 * TODO: full sized shift could be optimized but that would need
2380 * specialized skb free'er to handle frags without up-to-date nr_frags.
2381 */
2382int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2383{
2384        int from, to, merge, todo;
2385        struct skb_frag_struct *fragfrom, *fragto;
2386
2387        BUG_ON(shiftlen > skb->len);
2388        BUG_ON(skb_headlen(skb));       /* Would corrupt stream */
2389
2390        todo = shiftlen;
2391        from = 0;
2392        to = skb_shinfo(tgt)->nr_frags;
2393        fragfrom = &skb_shinfo(skb)->frags[from];
2394
2395        /* Actual merge is delayed until the point when we know we can
2396         * commit all, so that we don't have to undo partial changes
2397         */
2398        if (!to ||
2399            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2400                              fragfrom->page_offset)) {
2401                merge = -1;
2402        } else {
2403                merge = to - 1;
2404
2405                todo -= skb_frag_size(fragfrom);
2406                if (todo < 0) {
2407                        if (skb_prepare_for_shift(skb) ||
2408                            skb_prepare_for_shift(tgt))
2409                                return 0;
2410
2411                        /* All previous frag pointers might be stale! */
2412                        fragfrom = &skb_shinfo(skb)->frags[from];
2413                        fragto = &skb_shinfo(tgt)->frags[merge];
2414
2415                        skb_frag_size_add(fragto, shiftlen);
2416                        skb_frag_size_sub(fragfrom, shiftlen);
2417                        fragfrom->page_offset += shiftlen;
2418
2419                        goto onlymerged;
2420                }
2421
2422                from++;
2423        }
2424
2425        /* Skip full, not-fitting skb to avoid expensive operations */
2426        if ((shiftlen == skb->len) &&
2427            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2428                return 0;
2429
2430        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2431                return 0;
2432
2433        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2434                if (to == MAX_SKB_FRAGS)
2435                        return 0;
2436
2437                fragfrom = &skb_shinfo(skb)->frags[from];
2438                fragto = &skb_shinfo(tgt)->frags[to];
2439
2440                if (todo >= skb_frag_size(fragfrom)) {
2441                        *fragto = *fragfrom;
2442                        todo -= skb_frag_size(fragfrom);
2443                        from++;
2444                        to++;
2445
2446                } else {
2447                        __skb_frag_ref(fragfrom);
2448                        fragto->page = fragfrom->page;
2449                        fragto->page_offset = fragfrom->page_offset;
2450                        skb_frag_size_set(fragto, todo);
2451
2452                        fragfrom->page_offset += todo;
2453                        skb_frag_size_sub(fragfrom, todo);
2454                        todo = 0;
2455
2456                        to++;
2457                        break;
2458                }
2459        }
2460
2461        /* Ready to "commit" this state change to tgt */
2462        skb_shinfo(tgt)->nr_frags = to;
2463
2464        if (merge >= 0) {
2465                fragfrom = &skb_shinfo(skb)->frags[0];
2466                fragto = &skb_shinfo(tgt)->frags[merge];
2467
2468                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2469                __skb_frag_unref(fragfrom);
2470        }
2471
2472        /* Reposition in the original skb */
2473        to = 0;
2474        while (from < skb_shinfo(skb)->nr_frags)
2475                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2476        skb_shinfo(skb)->nr_frags = to;
2477
2478        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2479
2480onlymerged:
2481        /* Most likely the tgt won't ever need its checksum anymore, skb on
2482         * the other hand might need it if it needs to be resent
2483         */
2484        tgt->ip_summed = CHECKSUM_PARTIAL;
2485        skb->ip_summed = CHECKSUM_PARTIAL;
2486
2487        /* Yak, is it really working this way? Some helper please? */
2488        skb->len -= shiftlen;
2489        skb->data_len -= shiftlen;
2490        skb->truesize -= shiftlen;
2491        tgt->len += shiftlen;
2492        tgt->data_len += shiftlen;
2493        tgt->truesize += shiftlen;
2494
2495        return shiftlen;
2496}
2497
2498/**
2499 * skb_prepare_seq_read - Prepare a sequential read of skb data
2500 * @skb: the buffer to read
2501 * @from: lower offset of data to be read
2502 * @to: upper offset of data to be read
2503 * @st: state variable
2504 *
2505 * Initializes the specified state variable. Must be called before
2506 * invoking skb_seq_read() for the first time.
2507 */
2508void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2509                          unsigned int to, struct skb_seq_state *st)
2510{
2511        st->lower_offset = from;
2512        st->upper_offset = to;
2513        st->root_skb = st->cur_skb = skb;
2514        st->frag_idx = st->stepped_offset = 0;
2515        st->frag_data = NULL;
2516}
2517EXPORT_SYMBOL(skb_prepare_seq_read);
2518
2519/**
2520 * skb_seq_read - Sequentially read skb data
2521 * @consumed: number of bytes consumed by the caller so far
2522 * @data: destination pointer for data to be returned
2523 * @st: state variable
2524 *
2525 * Reads a block of skb data at &consumed relative to the
2526 * lower offset specified to skb_prepare_seq_read(). Assigns
2527 * the head of the data block to &data and returns the length
2528 * of the block or 0 if the end of the skb data or the upper
2529 * offset has been reached.
2530 *
2531 * The caller is not required to consume all of the data
2532 * returned, i.e. &consumed is typically set to the number
2533 * of bytes already consumed and the next call to
2534 * skb_seq_read() will return the remaining part of the block.
2535 *
2536 * Note 1: The size of each block of data returned can be arbitrary,
2537 *       this limitation is the cost for zerocopy seqeuental
2538 *       reads of potentially non linear data.
2539 *
2540 * Note 2: Fragment lists within fragments are not implemented
2541 *       at the moment, state->root_skb could be replaced with
2542 *       a stack for this purpose.
2543 */
2544unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2545                          struct skb_seq_state *st)
2546{
2547        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2548        skb_frag_t *frag;
2549
2550        if (unlikely(abs_offset >= st->upper_offset)) {
2551                if (st->frag_data) {
2552                        kunmap_atomic(st->frag_data);
2553                        st->frag_data = NULL;
2554                }
2555                return 0;
2556        }
2557
2558next_skb:
2559        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2560
2561        if (abs_offset < block_limit && !st->frag_data) {
2562                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2563                return block_limit - abs_offset;
2564        }
2565
2566        if (st->frag_idx == 0 && !st->frag_data)
2567                st->stepped_offset += skb_headlen(st->cur_skb);
2568
2569        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2570                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2571                block_limit = skb_frag_size(frag) + st->stepped_offset;
2572
2573                if (abs_offset < block_limit) {
2574                        if (!st->frag_data)
2575                                st->frag_data = kmap_atomic(skb_frag_page(frag));
2576
2577                        *data = (u8 *) st->frag_data + frag->page_offset +
2578                                (abs_offset - st->stepped_offset);
2579
2580                        return block_limit - abs_offset;
2581                }
2582
2583                if (st->frag_data) {
2584                        kunmap_atomic(st->frag_data);
2585                        st->frag_data = NULL;
2586                }
2587
2588                st->frag_idx++;
2589                st->stepped_offset += skb_frag_size(frag);
2590        }
2591
2592        if (st->frag_data) {
2593                kunmap_atomic(st->frag_data);
2594                st->frag_data = NULL;
2595        }
2596
2597        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2598                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2599                st->frag_idx = 0;
2600                goto next_skb;
2601        } else if (st->cur_skb->next) {
2602                st->cur_skb = st->cur_skb->next;
2603                st->frag_idx = 0;
2604                goto next_skb;
2605        }
2606
2607        return 0;
2608}
2609EXPORT_SYMBOL(skb_seq_read);
2610
2611/**
2612 * skb_abort_seq_read - Abort a sequential read of skb data
2613 * @st: state variable
2614 *
2615 * Must be called if skb_seq_read() was not called until it
2616 * returned 0.
2617 */
2618void skb_abort_seq_read(struct skb_seq_state *st)
2619{
2620        if (st->frag_data)
2621                kunmap_atomic(st->frag_data);
2622}
2623EXPORT_SYMBOL(skb_abort_seq_read);
2624
2625#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
2626
2627static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2628                                          struct ts_config *conf,
2629                                          struct ts_state *state)
2630{
2631        return skb_seq_read(offset, text, TS_SKB_CB(state));
2632}
2633
2634static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2635{
2636        skb_abort_seq_read(TS_SKB_CB(state));
2637}
2638
2639/**
2640 * skb_find_text - Find a text pattern in skb data
2641 * @skb: the buffer to look in
2642 * @from: search offset
2643 * @to: search limit
2644 * @config: textsearch configuration
2645 * @state: uninitialized textsearch state variable
2646 *
2647 * Finds a pattern in the skb data according to the specified
2648 * textsearch configuration. Use textsearch_next() to retrieve
2649 * subsequent occurrences of the pattern. Returns the offset
2650 * to the first occurrence or UINT_MAX if no match was found.
2651 */
2652unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2653                           unsigned int to, struct ts_config *config,
2654                           struct ts_state *state)
2655{
2656        unsigned int ret;
2657
2658        config->get_next_block = skb_ts_get_next_block;
2659        config->finish = skb_ts_finish;
2660
2661        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2662
2663        ret = textsearch_find(config, state);
2664        return (ret <= to - from ? ret : UINT_MAX);
2665}
2666EXPORT_SYMBOL(skb_find_text);
2667
2668/**
2669 * skb_append_datato_frags - append the user data to a skb
2670 * @sk: sock  structure
2671 * @skb: skb structure to be appened with user data.
2672 * @getfrag: call back function to be used for getting the user data
2673 * @from: pointer to user message iov
2674 * @length: length of the iov message
2675 *
2676 * Description: This procedure append the user data in the fragment part
2677 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2678 */
2679int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2680                        int (*getfrag)(void *from, char *to, int offset,
2681                                        int len, int odd, struct sk_buff *skb),
2682                        void *from, int length)
2683{
2684        int frg_cnt = skb_shinfo(skb)->nr_frags;
2685        int copy;
2686        int offset = 0;
2687        int ret;
2688        struct page_frag *pfrag = &current->task_frag;
2689
2690        do {
2691                /* Return error if we don't have space for new frag */
2692                if (frg_cnt >= MAX_SKB_FRAGS)
2693                        return -EMSGSIZE;
2694
2695                if (!sk_page_frag_refill(sk, pfrag))
2696                        return -ENOMEM;
2697
2698                /* copy the user data to page */
2699                copy = min_t(int, length, pfrag->size - pfrag->offset);
2700
2701                ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2702                              offset, copy, 0, skb);
2703                if (ret < 0)
2704                        return -EFAULT;
2705
2706                /* copy was successful so update the size parameters */
2707                skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2708                                   copy);
2709                frg_cnt++;
2710                pfrag->offset += copy;
2711                get_page(pfrag->page);
2712
2713                skb->truesize += copy;
2714                atomic_add(copy, &sk->sk_wmem_alloc);
2715                skb->len += copy;
2716                skb->data_len += copy;
2717                offset += copy;
2718                length -= copy;
2719
2720        } while (length > 0);
2721
2722        return 0;
2723}
2724EXPORT_SYMBOL(skb_append_datato_frags);
2725
2726/**
2727 *      skb_pull_rcsum - pull skb and update receive checksum
2728 *      @skb: buffer to update
2729 *      @len: length of data pulled
2730 *
2731 *      This function performs an skb_pull on the packet and updates
2732 *      the CHECKSUM_COMPLETE checksum.  It should be used on
2733 *      receive path processing instead of skb_pull unless you know
2734 *      that the checksum difference is zero (e.g., a valid IP header)
2735 *      or you are setting ip_summed to CHECKSUM_NONE.
2736 */
2737unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2738{
2739        BUG_ON(len > skb->len);
2740        skb->len -= len;
2741        BUG_ON(skb->len < skb->data_len);
2742        skb_postpull_rcsum(skb, skb->data, len);
2743        return skb->data += len;
2744}
2745EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2746
2747/**
2748 *      skb_segment - Perform protocol segmentation on skb.
2749 *      @skb: buffer to segment
2750 *      @features: features for the output path (see dev->features)
2751 *
2752 *      This function performs segmentation on the given skb.  It returns
2753 *      a pointer to the first in a list of new skbs for the segments.
2754 *      In case of error it returns ERR_PTR(err).
2755 */
2756struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2757{
2758        struct sk_buff *segs = NULL;
2759        struct sk_buff *tail = NULL;
2760        struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2761        unsigned int mss = skb_shinfo(skb)->gso_size;
2762        unsigned int doffset = skb->data - skb_mac_header(skb);
2763        unsigned int offset = doffset;
2764        unsigned int tnl_hlen = skb_tnl_header_len(skb);
2765        unsigned int headroom;
2766        unsigned int len;
2767        __be16 proto;
2768        bool csum;
2769        int sg = !!(features & NETIF_F_SG);
2770        int nfrags = skb_shinfo(skb)->nr_frags;
2771        int err = -ENOMEM;
2772        int i = 0;
2773        int pos;
2774
2775        proto = skb_network_protocol(skb);
2776        if (unlikely(!proto))
2777                return ERR_PTR(-EINVAL);
2778
2779        csum = !!can_checksum_protocol(features, proto);
2780        __skb_push(skb, doffset);
2781        headroom = skb_headroom(skb);
2782        pos = skb_headlen(skb);
2783
2784        do {
2785                struct sk_buff *nskb;
2786                skb_frag_t *frag;
2787                int hsize;
2788                int size;
2789
2790                len = skb->len - offset;
2791                if (len > mss)
2792                        len = mss;
2793
2794                hsize = skb_headlen(skb) - offset;
2795                if (hsize < 0)
2796                        hsize = 0;
2797                if (hsize > len || !sg)
2798                        hsize = len;
2799
2800                if (!hsize && i >= nfrags) {
2801                        BUG_ON(fskb->len != len);
2802
2803                        pos += len;
2804                        nskb = skb_clone(fskb, GFP_ATOMIC);
2805                        fskb = fskb->next;
2806
2807                        if (unlikely(!nskb))
2808                                goto err;
2809
2810                        hsize = skb_end_offset(nskb);
2811                        if (skb_cow_head(nskb, doffset + headroom)) {
2812                                kfree_skb(nskb);
2813                                goto err;
2814                        }
2815
2816                        nskb->truesize += skb_end_offset(nskb) - hsize;
2817                        skb_release_head_state(nskb);
2818                        __skb_push(nskb, doffset);
2819                } else {
2820                        nskb = __alloc_skb(hsize + doffset + headroom,
2821                                           GFP_ATOMIC, skb_alloc_rx_flag(skb),
2822                                           NUMA_NO_NODE);
2823
2824                        if (unlikely(!nskb))
2825                                goto err;
2826
2827                        skb_reserve(nskb, headroom);
2828                        __skb_put(nskb, doffset);
2829                }
2830
2831                if (segs)
2832                        tail->next = nskb;
2833                else
2834                        segs = nskb;
2835                tail = nskb;
2836
2837                __copy_skb_header(nskb, skb);
2838                nskb->mac_len = skb->mac_len;
2839
2840                /* nskb and skb might have different headroom */
2841                if (nskb->ip_summed == CHECKSUM_PARTIAL)
2842                        nskb->csum_start += skb_headroom(nskb) - headroom;
2843
2844                skb_reset_mac_header(nskb);
2845                skb_set_network_header(nskb, skb->mac_len);
2846                nskb->transport_header = (nskb->network_header +
2847                                          skb_network_header_len(skb));
2848
2849                skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2850                                                 nskb->data - tnl_hlen,
2851                                                 doffset + tnl_hlen);
2852
2853                if (fskb != skb_shinfo(skb)->frag_list)
2854                        goto perform_csum_check;
2855
2856                if (!sg) {
2857                        nskb->ip_summed = CHECKSUM_NONE;
2858                        nskb->csum = skb_copy_and_csum_bits(skb, offset,
2859                                                            skb_put(nskb, len),
2860                                                            len, 0);
2861                        continue;
2862                }
2863
2864                frag = skb_shinfo(nskb)->frags;
2865
2866                skb_copy_from_linear_data_offset(skb, offset,
2867                                                 skb_put(nskb, hsize), hsize);
2868
2869                skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2870
2871                while (pos < offset + len && i < nfrags) {
2872                        *frag = skb_shinfo(skb)->frags[i];
2873                        __skb_frag_ref(frag);
2874                        size = skb_frag_size(frag);
2875
2876                        if (pos < offset) {
2877                                frag->page_offset += offset - pos;
2878                                skb_frag_size_sub(frag, offset - pos);
2879                        }
2880
2881                        skb_shinfo(nskb)->nr_frags++;
2882
2883                        if (pos + size <= offset + len) {
2884                                i++;
2885                                pos += size;
2886                        } else {
2887                                skb_frag_size_sub(frag, pos + size - (offset + len));
2888                                goto skip_fraglist;
2889                        }
2890
2891                        frag++;
2892                }
2893
2894                if (pos < offset + len) {
2895                        struct sk_buff *fskb2 = fskb;
2896
2897                        BUG_ON(pos + fskb->len != offset + len);
2898
2899                        pos += fskb->len;
2900                        fskb = fskb->next;
2901
2902                        if (fskb2->next) {
2903                                fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2904                                if (!fskb2)
2905                                        goto err;
2906                        } else
2907                                skb_get(fskb2);
2908
2909                        SKB_FRAG_ASSERT(nskb);
2910                        skb_shinfo(nskb)->frag_list = fskb2;
2911                }
2912
2913skip_fraglist:
2914                nskb->data_len = len - hsize;
2915                nskb->len += nskb->data_len;
2916                nskb->truesize += nskb->data_len;
2917
2918perform_csum_check:
2919                if (!csum) {
2920                        nskb->csum = skb_checksum(nskb, doffset,
2921                                                  nskb->len - doffset, 0);
2922                        nskb->ip_summed = CHECKSUM_NONE;
2923                }
2924        } while ((offset += len) < skb->len);
2925
2926        return segs;
2927
2928err:
2929        while ((skb = segs)) {
2930                segs = skb->next;
2931                kfree_skb(skb);
2932        }
2933        return ERR_PTR(err);
2934}
2935EXPORT_SYMBOL_GPL(skb_segment);
2936
2937int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2938{
2939        struct sk_buff *p = *head;
2940        struct sk_buff *nskb;
2941        struct skb_shared_info *skbinfo = skb_shinfo(skb);
2942        struct skb_shared_info *pinfo = skb_shinfo(p);
2943        unsigned int headroom;
2944        unsigned int len = skb_gro_len(skb);
2945        unsigned int offset = skb_gro_offset(skb);
2946        unsigned int headlen = skb_headlen(skb);
2947        unsigned int delta_truesize;
2948
2949        if (p->len + len >= 65536)
2950                return -E2BIG;
2951
2952        if (pinfo->frag_list)
2953                goto merge;
2954        else if (headlen <= offset) {
2955                skb_frag_t *frag;
2956                skb_frag_t *frag2;
2957                int i = skbinfo->nr_frags;
2958                int nr_frags = pinfo->nr_frags + i;
2959
2960                offset -= headlen;
2961
2962                if (nr_frags > MAX_SKB_FRAGS)
2963                        return -E2BIG;
2964
2965                pinfo->nr_frags = nr_frags;
2966                skbinfo->nr_frags = 0;
2967
2968                frag = pinfo->frags + nr_frags;
2969                frag2 = skbinfo->frags + i;
2970                do {
2971                        *--frag = *--frag2;
2972                } while (--i);
2973
2974                frag->page_offset += offset;
2975                skb_frag_size_sub(frag, offset);
2976
2977                /* all fragments truesize : remove (head size + sk_buff) */
2978                delta_truesize = skb->truesize -
2979                                 SKB_TRUESIZE(skb_end_offset(skb));
2980
2981                skb->truesize -= skb->data_len;
2982                skb->len -= skb->data_len;
2983                skb->data_len = 0;
2984
2985                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2986                goto done;
2987        } else if (skb->head_frag) {
2988                int nr_frags = pinfo->nr_frags;
2989                skb_frag_t *frag = pinfo->frags + nr_frags;
2990                struct page *page = virt_to_head_page(skb->head);
2991                unsigned int first_size = headlen - offset;
2992                unsigned int first_offset;
2993
2994                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2995                        return -E2BIG;
2996
2997                first_offset = skb->data -
2998                               (unsigned char *)page_address(page) +
2999                               offset;
3000
3001                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3002
3003                frag->page.p      = page;
3004                frag->page_offset = first_offset;
3005                skb_frag_size_set(frag, first_size);
3006
3007                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3008                /* We dont need to clear skbinfo->nr_frags here */
3009
3010                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3011                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3012                goto done;
3013        } else if (skb_gro_len(p) != pinfo->gso_size)
3014                return -E2BIG;
3015
3016        headroom = skb_headroom(p);
3017        nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3018        if (unlikely(!nskb))
3019                return -ENOMEM;
3020
3021        __copy_skb_header(nskb, p);
3022        nskb->mac_len = p->mac_len;
3023
3024        skb_reserve(nskb, headroom);
3025        __skb_put(nskb, skb_gro_offset(p));
3026
3027        skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3028        skb_set_network_header(nskb, skb_network_offset(p));
3029        skb_set_transport_header(nskb, skb_transport_offset(p));
3030
3031        __skb_pull(p, skb_gro_offset(p));
3032        memcpy(skb_mac_header(nskb), skb_mac_header(p),
3033               p->data - skb_mac_header(p));
3034
3035        skb_shinfo(nskb)->frag_list = p;
3036        skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3037        pinfo->gso_size = 0;
3038        skb_header_release(p);
3039        NAPI_GRO_CB(nskb)->last = p;
3040
3041        nskb->data_len += p->len;
3042        nskb->truesize += p->truesize;
3043        nskb->len += p->len;
3044
3045        *head = nskb;
3046        nskb->next = p->next;
3047        p->next = NULL;
3048
3049        p = nskb;
3050
3051merge:
3052        delta_truesize = skb->truesize;
3053        if (offset > headlen) {
3054                unsigned int eat = offset - headlen;
3055
3056                skbinfo->frags[0].page_offset += eat;
3057                skb_frag_size_sub(&skbinfo->frags[0], eat);
3058                skb->data_len -= eat;
3059                skb->len -= eat;
3060                offset = headlen;
3061        }
3062
3063        __skb_pull(skb, offset);
3064
3065        NAPI_GRO_CB(p)->last->next = skb;
3066        NAPI_GRO_CB(p)->last = skb;
3067        skb_header_release(skb);
3068
3069done:
3070        NAPI_GRO_CB(p)->count++;
3071        p->data_len += len;
3072        p->truesize += delta_truesize;
3073        p->len += len;
3074
3075        NAPI_GRO_CB(skb)->same_flow = 1;
3076        return 0;
3077}
3078EXPORT_SYMBOL_GPL(skb_gro_receive);
3079
3080void __init skb_init(void)
3081{
3082        skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3083                                              sizeof(struct sk_buff),
3084                                              0,
3085                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3086                                              NULL);
3087        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3088                                                (2*sizeof(struct sk_buff)) +
3089                                                sizeof(atomic_t),
3090                                                0,
3091                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3092                                                NULL);
3093}
3094
3095/**
3096 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3097 *      @skb: Socket buffer containing the buffers to be mapped
3098 *      @sg: The scatter-gather list to map into
3099 *      @offset: The offset into the buffer's contents to start mapping
3100 *      @len: Length of buffer space to be mapped
3101 *
3102 *      Fill the specified scatter-gather list with mappings/pointers into a
3103 *      region of the buffer space attached to a socket buffer.
3104 */
3105static int
3106__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3107{
3108        int start = skb_headlen(skb);
3109        int i, copy = start - offset;
3110        struct sk_buff *frag_iter;
3111        int elt = 0;
3112
3113        if (copy > 0) {
3114                if (copy > len)
3115                        copy = len;
3116                sg_set_buf(sg, skb->data + offset, copy);
3117                elt++;
3118                if ((len -= copy) == 0)
3119                        return elt;
3120                offset += copy;
3121        }
3122
3123        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3124                int end;
3125
3126                WARN_ON(start > offset + len);
3127
3128                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3129                if ((copy = end - offset) > 0) {
3130                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3131
3132                        if (copy > len)
3133                                copy = len;
3134                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3135                                        frag->page_offset+offset-start);
3136                        elt++;
3137                        if (!(len -= copy))
3138                                return elt;
3139                        offset += copy;
3140                }
3141                start = end;
3142        }
3143
3144        skb_walk_frags(skb, frag_iter) {
3145                int end;
3146
3147                WARN_ON(start > offset + len);
3148
3149                end = start + frag_iter->len;
3150                if ((copy = end - offset) > 0) {
3151                        if (copy > len)
3152                                copy = len;
3153                        elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3154                                              copy);
3155                        if ((len -= copy) == 0)
3156                                return elt;
3157                        offset += copy;
3158                }
3159                start = end;
3160        }
3161        BUG_ON(len);
3162        return elt;
3163}
3164
3165int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3166{
3167        int nsg = __skb_to_sgvec(skb, sg, offset, len);
3168
3169        sg_mark_end(&sg[nsg - 1]);
3170
3171        return nsg;
3172}
3173EXPORT_SYMBOL_GPL(skb_to_sgvec);
3174
3175/**
3176 *      skb_cow_data - Check that a socket buffer's data buffers are writable
3177 *      @skb: The socket buffer to check.
3178 *      @tailbits: Amount of trailing space to be added
3179 *      @trailer: Returned pointer to the skb where the @tailbits space begins
3180 *
3181 *      Make sure that the data buffers attached to a socket buffer are
3182 *      writable. If they are not, private copies are made of the data buffers
3183 *      and the socket buffer is set to use these instead.
3184 *
3185 *      If @tailbits is given, make sure that there is space to write @tailbits
3186 *      bytes of data beyond current end of socket buffer.  @trailer will be
3187 *      set to point to the skb in which this space begins.
3188 *
3189 *      The number of scatterlist elements required to completely map the
3190 *      COW'd and extended socket buffer will be returned.
3191 */
3192int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3193{
3194        int copyflag;
3195        int elt;
3196        struct sk_buff *skb1, **skb_p;
3197
3198        /* If skb is cloned or its head is paged, reallocate
3199         * head pulling out all the pages (pages are considered not writable
3200         * at the moment even if they are anonymous).
3201         */
3202        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3203            __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3204                return -ENOMEM;
3205
3206        /* Easy case. Most of packets will go this way. */
3207        if (!skb_has_frag_list(skb)) {
3208                /* A little of trouble, not enough of space for trailer.
3209                 * This should not happen, when stack is tuned to generate
3210                 * good frames. OK, on miss we reallocate and reserve even more
3211                 * space, 128 bytes is fair. */
3212
3213                if (skb_tailroom(skb) < tailbits &&
3214                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3215                        return -ENOMEM;
3216
3217                /* Voila! */
3218                *trailer = skb;
3219                return 1;
3220        }
3221
3222        /* Misery. We are in troubles, going to mincer fragments... */
3223
3224        elt = 1;
3225        skb_p = &skb_shinfo(skb)->frag_list;
3226        copyflag = 0;
3227
3228        while ((skb1 = *skb_p) != NULL) {
3229                int ntail = 0;
3230
3231                /* The fragment is partially pulled by someone,
3232                 * this can happen on input. Copy it and everything
3233                 * after it. */
3234
3235                if (skb_shared(skb1))
3236                        copyflag = 1;
3237
3238                /* If the skb is the last, worry about trailer. */
3239
3240                if (skb1->next == NULL && tailbits) {
3241                        if (skb_shinfo(skb1)->nr_frags ||
3242                            skb_has_frag_list(skb1) ||
3243                            skb_tailroom(skb1) < tailbits)
3244                                ntail = tailbits + 128;
3245                }
3246
3247                if (copyflag ||
3248                    skb_cloned(skb1) ||
3249                    ntail ||
3250                    skb_shinfo(skb1)->nr_frags ||
3251                    skb_has_frag_list(skb1)) {
3252                        struct sk_buff *skb2;
3253
3254                        /* Fuck, we are miserable poor guys... */
3255                        if (ntail == 0)
3256                                skb2 = skb_copy(skb1, GFP_ATOMIC);
3257                        else
3258                                skb2 = skb_copy_expand(skb1,
3259                                                       skb_headroom(skb1),
3260                                                       ntail,
3261                                                       GFP_ATOMIC);
3262                        if (unlikely(skb2 == NULL))
3263                                return -ENOMEM;
3264
3265                        if (skb1->sk)
3266                                skb_set_owner_w(skb2, skb1->sk);
3267
3268                        /* Looking around. Are we still alive?
3269                         * OK, link new skb, drop old one */
3270
3271                        skb2->next = skb1->next;
3272                        *skb_p = skb2;
3273                        kfree_skb(skb1);
3274                        skb1 = skb2;
3275                }
3276                elt++;
3277                *trailer = skb1;
3278                skb_p = &skb1->next;
3279        }
3280
3281        return elt;
3282}
3283EXPORT_SYMBOL_GPL(skb_cow_data);
3284
3285static void sock_rmem_free(struct sk_buff *skb)
3286{
3287        struct sock *sk = skb->sk;
3288
3289        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3290}
3291
3292/*
3293 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3294 */
3295int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3296{
3297        int len = skb->len;
3298
3299        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3300            (unsigned int)sk->sk_rcvbuf)
3301                return -ENOMEM;
3302
3303        skb_orphan(skb);
3304        skb->sk = sk;
3305        skb->destructor = sock_rmem_free;
3306        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3307
3308        /* before exiting rcu section, make sure dst is refcounted */
3309        skb_dst_force(skb);
3310
3311        skb_queue_tail(&sk->sk_error_queue, skb);
3312        if (!sock_flag(sk, SOCK_DEAD))
3313                sk->sk_data_ready(sk, len);
3314        return 0;
3315}
3316EXPORT_SYMBOL(sock_queue_err_skb);
3317
3318void skb_tstamp_tx(struct sk_buff *orig_skb,
3319                struct skb_shared_hwtstamps *hwtstamps)
3320{
3321        struct sock *sk = orig_skb->sk;
3322        struct sock_exterr_skb *serr;
3323        struct sk_buff *skb;
3324        int err;
3325
3326        if (!sk)
3327                return;
3328
3329        if (hwtstamps) {
3330                *skb_hwtstamps(orig_skb) =
3331                        *hwtstamps;
3332        } else {
3333                /*
3334                 * no hardware time stamps available,
3335                 * so keep the shared tx_flags and only
3336                 * store software time stamp
3337                 */
3338                orig_skb->tstamp = ktime_get_real();
3339        }
3340
3341        skb = skb_clone(orig_skb, GFP_ATOMIC);
3342        if (!skb)
3343                return;
3344
3345        serr = SKB_EXT_ERR(skb);
3346        memset(serr, 0, sizeof(*serr));
3347        serr->ee.ee_errno = ENOMSG;
3348        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3349
3350        err = sock_queue_err_skb(sk, skb);
3351
3352        if (err)
3353                kfree_skb(skb);
3354}
3355EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3356
3357void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3358{
3359        struct sock *sk = skb->sk;
3360        struct sock_exterr_skb *serr;
3361        int err;
3362
3363        skb->wifi_acked_valid = 1;
3364        skb->wifi_acked = acked;
3365
3366        serr = SKB_EXT_ERR(skb);
3367        memset(serr, 0, sizeof(*serr));
3368        serr->ee.ee_errno = ENOMSG;
3369        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3370
3371        err = sock_queue_err_skb(sk, skb);
3372        if (err)
3373                kfree_skb(skb);
3374}
3375EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3376
3377
3378/**
3379 * skb_partial_csum_set - set up and verify partial csum values for packet
3380 * @skb: the skb to set
3381 * @start: the number of bytes after skb->data to start checksumming.
3382 * @off: the offset from start to place the checksum.
3383 *
3384 * For untrusted partially-checksummed packets, we need to make sure the values
3385 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3386 *
3387 * This function checks and sets those values and skb->ip_summed: if this
3388 * returns false you should drop the packet.
3389 */
3390bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3391{
3392        if (unlikely(start > skb_headlen(skb)) ||
3393            unlikely((int)start + off > skb_headlen(skb) - 2)) {
3394                net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3395                                     start, off, skb_headlen(skb));
3396                return false;
3397        }
3398        skb->ip_summed = CHECKSUM_PARTIAL;
3399        skb->csum_start = skb_headroom(skb) + start;
3400        skb->csum_offset = off;
3401        skb_set_transport_header(skb, start);
3402        return true;
3403}
3404EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3405
3406void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3407{
3408        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3409                             skb->dev->name);
3410}
3411EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3412
3413void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3414{
3415        if (head_stolen) {
3416                skb_release_head_state(skb);
3417                kmem_cache_free(skbuff_head_cache, skb);
3418        } else {
3419                __kfree_skb(skb);
3420        }
3421}
3422EXPORT_SYMBOL(kfree_skb_partial);
3423
3424/**
3425 * skb_try_coalesce - try to merge skb to prior one
3426 * @to: prior buffer
3427 * @from: buffer to add
3428 * @fragstolen: pointer to boolean
3429 * @delta_truesize: how much more was allocated than was requested
3430 */
3431bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3432                      bool *fragstolen, int *delta_truesize)
3433{
3434        int i, delta, len = from->len;
3435
3436        *fragstolen = false;
3437
3438        if (skb_cloned(to))
3439                return false;
3440
3441        if (len <= skb_tailroom(to)) {
3442                BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3443                *delta_truesize = 0;
3444                return true;
3445        }
3446
3447        if (skb_has_frag_list(to) || skb_has_frag_list(from))
3448                return false;
3449
3450        if (skb_headlen(from) != 0) {
3451                struct page *page;
3452                unsigned int offset;
3453
3454                if (skb_shinfo(to)->nr_frags +
3455                    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3456                        return false;
3457
3458                if (skb_head_is_locked(from))
3459                        return false;
3460
3461                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3462
3463                page = virt_to_head_page(from->head);
3464                offset = from->data - (unsigned char *)page_address(page);
3465
3466                skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3467                                   page, offset, skb_headlen(from));
3468                *fragstolen = true;
3469        } else {
3470                if (skb_shinfo(to)->nr_frags +
3471                    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3472                        return false;
3473
3474                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3475        }
3476
3477        WARN_ON_ONCE(delta < len);
3478
3479        memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3480               skb_shinfo(from)->frags,
3481               skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3482        skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3483
3484        if (!skb_cloned(from))
3485                skb_shinfo(from)->nr_frags = 0;
3486
3487        /* if the skb is not cloned this does nothing
3488         * since we set nr_frags to 0.
3489         */
3490        for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3491                skb_frag_ref(from, i);
3492
3493        to->truesize += delta;
3494        to->len += len;
3495        to->data_len += len;
3496
3497        *delta_truesize = delta;
3498        return true;
3499}
3500EXPORT_SYMBOL(skb_try_coalesce);
3501
3502/**
3503 * skb_scrub_packet - scrub an skb before sending it to another netns
3504 *
3505 * @skb: buffer to clean
3506 *
3507 * skb_scrub_packet can be used to clean an skb before injecting it in
3508 * another namespace. We have to clear all information in the skb that
3509 * could impact namespace isolation.
3510 */
3511void skb_scrub_packet(struct sk_buff *skb)
3512{
3513        skb_orphan(skb);
3514        skb->tstamp.tv64 = 0;
3515        skb->pkt_type = PACKET_HOST;
3516        skb->skb_iif = 0;
3517        skb_dst_drop(skb);
3518        skb->mark = 0;
3519        secpath_reset(skb);
3520        nf_reset(skb);
3521        nf_reset_trace(skb);
3522}
3523EXPORT_SYMBOL_GPL(skb_scrub_packet);
3524