linux/net/ipv4/arp.c
<<
>>
Prefs
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Removed the Ethernet assumptions in
  17 *                                      Florian's code
  18 *              Alan Cox        :       Fixed some small errors in the ARP
  19 *                                      logic
  20 *              Alan Cox        :       Allow >4K in /proc
  21 *              Alan Cox        :       Make ARP add its own protocol entry
  22 *              Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *              Stephen Henson  :       Add AX25 support to arp_get_info()
  24 *              Alan Cox        :       Drop data when a device is downed.
  25 *              Alan Cox        :       Use init_timer().
  26 *              Alan Cox        :       Double lock fixes.
  27 *              Martin Seine    :       Move the arphdr structure
  28 *                                      to if_arp.h for compatibility.
  29 *                                      with BSD based programs.
  30 *              Andrew Tridgell :       Added ARP netmask code and
  31 *                                      re-arranged proxy handling.
  32 *              Alan Cox        :       Changed to use notifiers.
  33 *              Niibe Yutaka    :       Reply for this device or proxies only.
  34 *              Alan Cox        :       Don't proxy across hardware types!
  35 *              Jonathan Naylor :       Added support for NET/ROM.
  36 *              Mike Shaver     :       RFC1122 checks.
  37 *              Jonathan Naylor :       Only lookup the hardware address for
  38 *                                      the correct hardware type.
  39 *              Germano Caronni :       Assorted subtle races.
  40 *              Craig Schlenter :       Don't modify permanent entry
  41 *                                      during arp_rcv.
  42 *              Russ Nelson     :       Tidied up a few bits.
  43 *              Alexey Kuznetsov:       Major changes to caching and behaviour,
  44 *                                      eg intelligent arp probing and
  45 *                                      generation
  46 *                                      of host down events.
  47 *              Alan Cox        :       Missing unlock in device events.
  48 *              Eckes           :       ARP ioctl control errors.
  49 *              Alexey Kuznetsov:       Arp free fix.
  50 *              Manuel Rodriguez:       Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *              Mike Shaver     :       /proc/sys/net/ipv4/arp_* support
  54 *              Mike McLagan    :       Routing by source
  55 *              Stuart Cheshire :       Metricom and grat arp fixes
  56 *                                      *** FOR 2.1 clean this up ***
  57 *              Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *              Alan Cox        :       Took the AP1000 nasty FDDI hack and
  59 *                                      folded into the mainstream FDDI code.
  60 *                                      Ack spit, Linus how did you allow that
  61 *                                      one in...
  62 *              Jes Sorensen    :       Make FDDI work again in 2.1.x and
  63 *                                      clean up the APFDDI & gen. FDDI bits.
  64 *              Alexey Kuznetsov:       new arp state machine;
  65 *                                      now it is in net/core/neighbour.c.
  66 *              Krzysztof Halasa:       Added Frame Relay ARP support.
  67 *              Arnaldo C. Melo :       convert /proc/net/arp to seq_file
  68 *              Shmulik Hen:            Split arp_send to arp_create and
  69 *                                      arp_xmit so intermediate drivers like
  70 *                                      bonding can change the skb before
  71 *                                      sending (e.g. insert 8021q tag).
  72 *              Harald Welte    :       convert to make use of jenkins hash
  73 *              Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *      Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131        .family =               AF_INET,
 132        .solicit =              arp_solicit,
 133        .error_report =         arp_error_report,
 134        .output =               neigh_resolve_output,
 135        .connected_output =     neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139        .family =               AF_INET,
 140        .solicit =              arp_solicit,
 141        .error_report =         arp_error_report,
 142        .output =               neigh_resolve_output,
 143        .connected_output =     neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147        .family =               AF_INET,
 148        .output =               neigh_direct_output,
 149        .connected_output =     neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153        .family =               AF_INET,
 154        .solicit =              arp_solicit,
 155        .error_report =         arp_error_report,
 156        .output =               neigh_compat_output,
 157        .connected_output =     neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161        .family         = AF_INET,
 162        .key_len        = 4,
 163        .hash           = arp_hash,
 164        .constructor    = arp_constructor,
 165        .proxy_redo     = parp_redo,
 166        .id             = "arp_cache",
 167        .parms          = {
 168                .tbl                    = &arp_tbl,
 169                .base_reachable_time    = 30 * HZ,
 170                .retrans_time           = 1 * HZ,
 171                .gc_staletime           = 60 * HZ,
 172                .reachable_time         = 30 * HZ,
 173                .delay_probe_time       = 5 * HZ,
 174                .queue_len_bytes        = 64*1024,
 175                .ucast_probes           = 3,
 176                .mcast_probes           = 3,
 177                .anycast_delay          = 1 * HZ,
 178                .proxy_delay            = (8 * HZ) / 10,
 179                .proxy_qlen             = 64,
 180                .locktime               = 1 * HZ,
 181        },
 182        .gc_interval    = 30 * HZ,
 183        .gc_thresh1     = 128,
 184        .gc_thresh2     = 512,
 185        .gc_thresh3     = 1024,
 186};
 187EXPORT_SYMBOL(arp_tbl);
 188
 189int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 190{
 191        switch (dev->type) {
 192        case ARPHRD_ETHER:
 193        case ARPHRD_FDDI:
 194        case ARPHRD_IEEE802:
 195                ip_eth_mc_map(addr, haddr);
 196                return 0;
 197        case ARPHRD_INFINIBAND:
 198                ip_ib_mc_map(addr, dev->broadcast, haddr);
 199                return 0;
 200        case ARPHRD_IPGRE:
 201                ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 202                return 0;
 203        default:
 204                if (dir) {
 205                        memcpy(haddr, dev->broadcast, dev->addr_len);
 206                        return 0;
 207                }
 208        }
 209        return -EINVAL;
 210}
 211
 212
 213static u32 arp_hash(const void *pkey,
 214                    const struct net_device *dev,
 215                    __u32 *hash_rnd)
 216{
 217        return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 218}
 219
 220static int arp_constructor(struct neighbour *neigh)
 221{
 222        __be32 addr = *(__be32 *)neigh->primary_key;
 223        struct net_device *dev = neigh->dev;
 224        struct in_device *in_dev;
 225        struct neigh_parms *parms;
 226
 227        rcu_read_lock();
 228        in_dev = __in_dev_get_rcu(dev);
 229        if (in_dev == NULL) {
 230                rcu_read_unlock();
 231                return -EINVAL;
 232        }
 233
 234        neigh->type = inet_addr_type(dev_net(dev), addr);
 235
 236        parms = in_dev->arp_parms;
 237        __neigh_parms_put(neigh->parms);
 238        neigh->parms = neigh_parms_clone(parms);
 239        rcu_read_unlock();
 240
 241        if (!dev->header_ops) {
 242                neigh->nud_state = NUD_NOARP;
 243                neigh->ops = &arp_direct_ops;
 244                neigh->output = neigh_direct_output;
 245        } else {
 246                /* Good devices (checked by reading texts, but only Ethernet is
 247                   tested)
 248
 249                   ARPHRD_ETHER: (ethernet, apfddi)
 250                   ARPHRD_FDDI: (fddi)
 251                   ARPHRD_IEEE802: (tr)
 252                   ARPHRD_METRICOM: (strip)
 253                   ARPHRD_ARCNET:
 254                   etc. etc. etc.
 255
 256                   ARPHRD_IPDDP will also work, if author repairs it.
 257                   I did not it, because this driver does not work even
 258                   in old paradigm.
 259                 */
 260
 261#if 1
 262                /* So... these "amateur" devices are hopeless.
 263                   The only thing, that I can say now:
 264                   It is very sad that we need to keep ugly obsolete
 265                   code to make them happy.
 266
 267                   They should be moved to more reasonable state, now
 268                   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 269                   Besides that, they are sort of out of date
 270                   (a lot of redundant clones/copies, useless in 2.1),
 271                   I wonder why people believe that they work.
 272                 */
 273                switch (dev->type) {
 274                default:
 275                        break;
 276                case ARPHRD_ROSE:
 277#if IS_ENABLED(CONFIG_AX25)
 278                case ARPHRD_AX25:
 279#if IS_ENABLED(CONFIG_NETROM)
 280                case ARPHRD_NETROM:
 281#endif
 282                        neigh->ops = &arp_broken_ops;
 283                        neigh->output = neigh->ops->output;
 284                        return 0;
 285#else
 286                        break;
 287#endif
 288                }
 289#endif
 290                if (neigh->type == RTN_MULTICAST) {
 291                        neigh->nud_state = NUD_NOARP;
 292                        arp_mc_map(addr, neigh->ha, dev, 1);
 293                } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 294                        neigh->nud_state = NUD_NOARP;
 295                        memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 296                } else if (neigh->type == RTN_BROADCAST ||
 297                           (dev->flags & IFF_POINTOPOINT)) {
 298                        neigh->nud_state = NUD_NOARP;
 299                        memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 300                }
 301
 302                if (dev->header_ops->cache)
 303                        neigh->ops = &arp_hh_ops;
 304                else
 305                        neigh->ops = &arp_generic_ops;
 306
 307                if (neigh->nud_state & NUD_VALID)
 308                        neigh->output = neigh->ops->connected_output;
 309                else
 310                        neigh->output = neigh->ops->output;
 311        }
 312        return 0;
 313}
 314
 315static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 316{
 317        dst_link_failure(skb);
 318        kfree_skb(skb);
 319}
 320
 321static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 322{
 323        __be32 saddr = 0;
 324        u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 325        struct net_device *dev = neigh->dev;
 326        __be32 target = *(__be32 *)neigh->primary_key;
 327        int probes = atomic_read(&neigh->probes);
 328        struct in_device *in_dev;
 329
 330        rcu_read_lock();
 331        in_dev = __in_dev_get_rcu(dev);
 332        if (!in_dev) {
 333                rcu_read_unlock();
 334                return;
 335        }
 336        switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 337        default:
 338        case 0:         /* By default announce any local IP */
 339                if (skb && inet_addr_type(dev_net(dev),
 340                                          ip_hdr(skb)->saddr) == RTN_LOCAL)
 341                        saddr = ip_hdr(skb)->saddr;
 342                break;
 343        case 1:         /* Restrict announcements of saddr in same subnet */
 344                if (!skb)
 345                        break;
 346                saddr = ip_hdr(skb)->saddr;
 347                if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 348                        /* saddr should be known to target */
 349                        if (inet_addr_onlink(in_dev, target, saddr))
 350                                break;
 351                }
 352                saddr = 0;
 353                break;
 354        case 2:         /* Avoid secondary IPs, get a primary/preferred one */
 355                break;
 356        }
 357        rcu_read_unlock();
 358
 359        if (!saddr)
 360                saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 361
 362        probes -= neigh->parms->ucast_probes;
 363        if (probes < 0) {
 364                if (!(neigh->nud_state & NUD_VALID))
 365                        pr_debug("trying to ucast probe in NUD_INVALID\n");
 366                neigh_ha_snapshot(dst_ha, neigh, dev);
 367                dst_hw = dst_ha;
 368        } else {
 369                probes -= neigh->parms->app_probes;
 370                if (probes < 0) {
 371#ifdef CONFIG_ARPD
 372                        neigh_app_ns(neigh);
 373#endif
 374                        return;
 375                }
 376        }
 377
 378        arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379                 dst_hw, dev->dev_addr, NULL);
 380}
 381
 382static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 383{
 384        int scope;
 385
 386        switch (IN_DEV_ARP_IGNORE(in_dev)) {
 387        case 0: /* Reply, the tip is already validated */
 388                return 0;
 389        case 1: /* Reply only if tip is configured on the incoming interface */
 390                sip = 0;
 391                scope = RT_SCOPE_HOST;
 392                break;
 393        case 2: /*
 394                 * Reply only if tip is configured on the incoming interface
 395                 * and is in same subnet as sip
 396                 */
 397                scope = RT_SCOPE_HOST;
 398                break;
 399        case 3: /* Do not reply for scope host addresses */
 400                sip = 0;
 401                scope = RT_SCOPE_LINK;
 402                break;
 403        case 4: /* Reserved */
 404        case 5:
 405        case 6:
 406        case 7:
 407                return 0;
 408        case 8: /* Do not reply */
 409                return 1;
 410        default:
 411                return 0;
 412        }
 413        return !inet_confirm_addr(in_dev, sip, tip, scope);
 414}
 415
 416static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 417{
 418        struct rtable *rt;
 419        int flag = 0;
 420        /*unsigned long now; */
 421        struct net *net = dev_net(dev);
 422
 423        rt = ip_route_output(net, sip, tip, 0, 0);
 424        if (IS_ERR(rt))
 425                return 1;
 426        if (rt->dst.dev != dev) {
 427                NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 428                flag = 1;
 429        }
 430        ip_rt_put(rt);
 431        return flag;
 432}
 433
 434/* OBSOLETE FUNCTIONS */
 435
 436/*
 437 *      Find an arp mapping in the cache. If not found, post a request.
 438 *
 439 *      It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 440 *      even if it exists. It is supposed that skb->dev was mangled
 441 *      by a virtual device (eql, shaper). Nobody but broken devices
 442 *      is allowed to use this function, it is scheduled to be removed. --ANK
 443 */
 444
 445static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 446                              __be32 paddr, struct net_device *dev)
 447{
 448        switch (addr_hint) {
 449        case RTN_LOCAL:
 450                pr_debug("arp called for own IP address\n");
 451                memcpy(haddr, dev->dev_addr, dev->addr_len);
 452                return 1;
 453        case RTN_MULTICAST:
 454                arp_mc_map(paddr, haddr, dev, 1);
 455                return 1;
 456        case RTN_BROADCAST:
 457                memcpy(haddr, dev->broadcast, dev->addr_len);
 458                return 1;
 459        }
 460        return 0;
 461}
 462
 463
 464int arp_find(unsigned char *haddr, struct sk_buff *skb)
 465{
 466        struct net_device *dev = skb->dev;
 467        __be32 paddr;
 468        struct neighbour *n;
 469
 470        if (!skb_dst(skb)) {
 471                pr_debug("arp_find is called with dst==NULL\n");
 472                kfree_skb(skb);
 473                return 1;
 474        }
 475
 476        paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
 477        if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 478                               paddr, dev))
 479                return 0;
 480
 481        n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 482
 483        if (n) {
 484                n->used = jiffies;
 485                if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 486                        neigh_ha_snapshot(haddr, n, dev);
 487                        neigh_release(n);
 488                        return 0;
 489                }
 490                neigh_release(n);
 491        } else
 492                kfree_skb(skb);
 493        return 1;
 494}
 495EXPORT_SYMBOL(arp_find);
 496
 497/* END OF OBSOLETE FUNCTIONS */
 498
 499/*
 500 * Check if we can use proxy ARP for this path
 501 */
 502static inline int arp_fwd_proxy(struct in_device *in_dev,
 503                                struct net_device *dev, struct rtable *rt)
 504{
 505        struct in_device *out_dev;
 506        int imi, omi = -1;
 507
 508        if (rt->dst.dev == dev)
 509                return 0;
 510
 511        if (!IN_DEV_PROXY_ARP(in_dev))
 512                return 0;
 513        imi = IN_DEV_MEDIUM_ID(in_dev);
 514        if (imi == 0)
 515                return 1;
 516        if (imi == -1)
 517                return 0;
 518
 519        /* place to check for proxy_arp for routes */
 520
 521        out_dev = __in_dev_get_rcu(rt->dst.dev);
 522        if (out_dev)
 523                omi = IN_DEV_MEDIUM_ID(out_dev);
 524
 525        return omi != imi && omi != -1;
 526}
 527
 528/*
 529 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 530 *
 531 * RFC3069 supports proxy arp replies back to the same interface.  This
 532 * is done to support (ethernet) switch features, like RFC 3069, where
 533 * the individual ports are not allowed to communicate with each
 534 * other, BUT they are allowed to talk to the upstream router.  As
 535 * described in RFC 3069, it is possible to allow these hosts to
 536 * communicate through the upstream router, by proxy_arp'ing.
 537 *
 538 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 539 *
 540 *  This technology is known by different names:
 541 *    In RFC 3069 it is called VLAN Aggregation.
 542 *    Cisco and Allied Telesyn call it Private VLAN.
 543 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 544 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 545 *
 546 */
 547static inline int arp_fwd_pvlan(struct in_device *in_dev,
 548                                struct net_device *dev, struct rtable *rt,
 549                                __be32 sip, __be32 tip)
 550{
 551        /* Private VLAN is only concerned about the same ethernet segment */
 552        if (rt->dst.dev != dev)
 553                return 0;
 554
 555        /* Don't reply on self probes (often done by windowz boxes)*/
 556        if (sip == tip)
 557                return 0;
 558
 559        if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 560                return 1;
 561        else
 562                return 0;
 563}
 564
 565/*
 566 *      Interface to link layer: send routine and receive handler.
 567 */
 568
 569/*
 570 *      Create an arp packet. If (dest_hw == NULL), we create a broadcast
 571 *      message.
 572 */
 573struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 574                           struct net_device *dev, __be32 src_ip,
 575                           const unsigned char *dest_hw,
 576                           const unsigned char *src_hw,
 577                           const unsigned char *target_hw)
 578{
 579        struct sk_buff *skb;
 580        struct arphdr *arp;
 581        unsigned char *arp_ptr;
 582        int hlen = LL_RESERVED_SPACE(dev);
 583        int tlen = dev->needed_tailroom;
 584
 585        /*
 586         *      Allocate a buffer
 587         */
 588
 589        skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 590        if (skb == NULL)
 591                return NULL;
 592
 593        skb_reserve(skb, hlen);
 594        skb_reset_network_header(skb);
 595        arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 596        skb->dev = dev;
 597        skb->protocol = htons(ETH_P_ARP);
 598        if (src_hw == NULL)
 599                src_hw = dev->dev_addr;
 600        if (dest_hw == NULL)
 601                dest_hw = dev->broadcast;
 602
 603        /*
 604         *      Fill the device header for the ARP frame
 605         */
 606        if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 607                goto out;
 608
 609        /*
 610         * Fill out the arp protocol part.
 611         *
 612         * The arp hardware type should match the device type, except for FDDI,
 613         * which (according to RFC 1390) should always equal 1 (Ethernet).
 614         */
 615        /*
 616         *      Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 617         *      DIX code for the protocol. Make these device structure fields.
 618         */
 619        switch (dev->type) {
 620        default:
 621                arp->ar_hrd = htons(dev->type);
 622                arp->ar_pro = htons(ETH_P_IP);
 623                break;
 624
 625#if IS_ENABLED(CONFIG_AX25)
 626        case ARPHRD_AX25:
 627                arp->ar_hrd = htons(ARPHRD_AX25);
 628                arp->ar_pro = htons(AX25_P_IP);
 629                break;
 630
 631#if IS_ENABLED(CONFIG_NETROM)
 632        case ARPHRD_NETROM:
 633                arp->ar_hrd = htons(ARPHRD_NETROM);
 634                arp->ar_pro = htons(AX25_P_IP);
 635                break;
 636#endif
 637#endif
 638
 639#if IS_ENABLED(CONFIG_FDDI)
 640        case ARPHRD_FDDI:
 641                arp->ar_hrd = htons(ARPHRD_ETHER);
 642                arp->ar_pro = htons(ETH_P_IP);
 643                break;
 644#endif
 645        }
 646
 647        arp->ar_hln = dev->addr_len;
 648        arp->ar_pln = 4;
 649        arp->ar_op = htons(type);
 650
 651        arp_ptr = (unsigned char *)(arp + 1);
 652
 653        memcpy(arp_ptr, src_hw, dev->addr_len);
 654        arp_ptr += dev->addr_len;
 655        memcpy(arp_ptr, &src_ip, 4);
 656        arp_ptr += 4;
 657
 658        switch (dev->type) {
 659#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 660        case ARPHRD_IEEE1394:
 661                break;
 662#endif
 663        default:
 664                if (target_hw != NULL)
 665                        memcpy(arp_ptr, target_hw, dev->addr_len);
 666                else
 667                        memset(arp_ptr, 0, dev->addr_len);
 668                arp_ptr += dev->addr_len;
 669        }
 670        memcpy(arp_ptr, &dest_ip, 4);
 671
 672        return skb;
 673
 674out:
 675        kfree_skb(skb);
 676        return NULL;
 677}
 678EXPORT_SYMBOL(arp_create);
 679
 680/*
 681 *      Send an arp packet.
 682 */
 683void arp_xmit(struct sk_buff *skb)
 684{
 685        /* Send it off, maybe filter it using firewalling first.  */
 686        NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 687}
 688EXPORT_SYMBOL(arp_xmit);
 689
 690/*
 691 *      Create and send an arp packet.
 692 */
 693void arp_send(int type, int ptype, __be32 dest_ip,
 694              struct net_device *dev, __be32 src_ip,
 695              const unsigned char *dest_hw, const unsigned char *src_hw,
 696              const unsigned char *target_hw)
 697{
 698        struct sk_buff *skb;
 699
 700        /*
 701         *      No arp on this interface.
 702         */
 703
 704        if (dev->flags&IFF_NOARP)
 705                return;
 706
 707        skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 708                         dest_hw, src_hw, target_hw);
 709        if (skb == NULL)
 710                return;
 711
 712        arp_xmit(skb);
 713}
 714EXPORT_SYMBOL(arp_send);
 715
 716/*
 717 *      Process an arp request.
 718 */
 719
 720static int arp_process(struct sk_buff *skb)
 721{
 722        struct net_device *dev = skb->dev;
 723        struct in_device *in_dev = __in_dev_get_rcu(dev);
 724        struct arphdr *arp;
 725        unsigned char *arp_ptr;
 726        struct rtable *rt;
 727        unsigned char *sha;
 728        __be32 sip, tip;
 729        u16 dev_type = dev->type;
 730        int addr_type;
 731        struct neighbour *n;
 732        struct net *net = dev_net(dev);
 733
 734        /* arp_rcv below verifies the ARP header and verifies the device
 735         * is ARP'able.
 736         */
 737
 738        if (in_dev == NULL)
 739                goto out;
 740
 741        arp = arp_hdr(skb);
 742
 743        switch (dev_type) {
 744        default:
 745                if (arp->ar_pro != htons(ETH_P_IP) ||
 746                    htons(dev_type) != arp->ar_hrd)
 747                        goto out;
 748                break;
 749        case ARPHRD_ETHER:
 750        case ARPHRD_FDDI:
 751        case ARPHRD_IEEE802:
 752                /*
 753                 * ETHERNET, and Fibre Channel (which are IEEE 802
 754                 * devices, according to RFC 2625) devices will accept ARP
 755                 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 756                 * This is the case also of FDDI, where the RFC 1390 says that
 757                 * FDDI devices should accept ARP hardware of (1) Ethernet,
 758                 * however, to be more robust, we'll accept both 1 (Ethernet)
 759                 * or 6 (IEEE 802.2)
 760                 */
 761                if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 762                     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 763                    arp->ar_pro != htons(ETH_P_IP))
 764                        goto out;
 765                break;
 766        case ARPHRD_AX25:
 767                if (arp->ar_pro != htons(AX25_P_IP) ||
 768                    arp->ar_hrd != htons(ARPHRD_AX25))
 769                        goto out;
 770                break;
 771        case ARPHRD_NETROM:
 772                if (arp->ar_pro != htons(AX25_P_IP) ||
 773                    arp->ar_hrd != htons(ARPHRD_NETROM))
 774                        goto out;
 775                break;
 776        }
 777
 778        /* Understand only these message types */
 779
 780        if (arp->ar_op != htons(ARPOP_REPLY) &&
 781            arp->ar_op != htons(ARPOP_REQUEST))
 782                goto out;
 783
 784/*
 785 *      Extract fields
 786 */
 787        arp_ptr = (unsigned char *)(arp + 1);
 788        sha     = arp_ptr;
 789        arp_ptr += dev->addr_len;
 790        memcpy(&sip, arp_ptr, 4);
 791        arp_ptr += 4;
 792        switch (dev_type) {
 793#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 794        case ARPHRD_IEEE1394:
 795                break;
 796#endif
 797        default:
 798                arp_ptr += dev->addr_len;
 799        }
 800        memcpy(&tip, arp_ptr, 4);
 801/*
 802 *      Check for bad requests for 127.x.x.x and requests for multicast
 803 *      addresses.  If this is one such, delete it.
 804 */
 805        if (ipv4_is_multicast(tip) ||
 806            (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 807                goto out;
 808
 809/*
 810 *     Special case: We must set Frame Relay source Q.922 address
 811 */
 812        if (dev_type == ARPHRD_DLCI)
 813                sha = dev->broadcast;
 814
 815/*
 816 *  Process entry.  The idea here is we want to send a reply if it is a
 817 *  request for us or if it is a request for someone else that we hold
 818 *  a proxy for.  We want to add an entry to our cache if it is a reply
 819 *  to us or if it is a request for our address.
 820 *  (The assumption for this last is that if someone is requesting our
 821 *  address, they are probably intending to talk to us, so it saves time
 822 *  if we cache their address.  Their address is also probably not in
 823 *  our cache, since ours is not in their cache.)
 824 *
 825 *  Putting this another way, we only care about replies if they are to
 826 *  us, in which case we add them to the cache.  For requests, we care
 827 *  about those for us and those for our proxies.  We reply to both,
 828 *  and in the case of requests for us we add the requester to the arp
 829 *  cache.
 830 */
 831
 832        /* Special case: IPv4 duplicate address detection packet (RFC2131) */
 833        if (sip == 0) {
 834                if (arp->ar_op == htons(ARPOP_REQUEST) &&
 835                    inet_addr_type(net, tip) == RTN_LOCAL &&
 836                    !arp_ignore(in_dev, sip, tip))
 837                        arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 838                                 dev->dev_addr, sha);
 839                goto out;
 840        }
 841
 842        if (arp->ar_op == htons(ARPOP_REQUEST) &&
 843            ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 844
 845                rt = skb_rtable(skb);
 846                addr_type = rt->rt_type;
 847
 848                if (addr_type == RTN_LOCAL) {
 849                        int dont_send;
 850
 851                        dont_send = arp_ignore(in_dev, sip, tip);
 852                        if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 853                                dont_send = arp_filter(sip, tip, dev);
 854                        if (!dont_send) {
 855                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 856                                if (n) {
 857                                        arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 858                                                 dev, tip, sha, dev->dev_addr,
 859                                                 sha);
 860                                        neigh_release(n);
 861                                }
 862                        }
 863                        goto out;
 864                } else if (IN_DEV_FORWARD(in_dev)) {
 865                        if (addr_type == RTN_UNICAST  &&
 866                            (arp_fwd_proxy(in_dev, dev, rt) ||
 867                             arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 868                             (rt->dst.dev != dev &&
 869                              pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 870                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 871                                if (n)
 872                                        neigh_release(n);
 873
 874                                if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 875                                    skb->pkt_type == PACKET_HOST ||
 876                                    in_dev->arp_parms->proxy_delay == 0) {
 877                                        arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 878                                                 dev, tip, sha, dev->dev_addr,
 879                                                 sha);
 880                                } else {
 881                                        pneigh_enqueue(&arp_tbl,
 882                                                       in_dev->arp_parms, skb);
 883                                        return 0;
 884                                }
 885                                goto out;
 886                        }
 887                }
 888        }
 889
 890        /* Update our ARP tables */
 891
 892        n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 893
 894        if (IN_DEV_ARP_ACCEPT(in_dev)) {
 895                /* Unsolicited ARP is not accepted by default.
 896                   It is possible, that this option should be enabled for some
 897                   devices (strip is candidate)
 898                 */
 899                if (n == NULL &&
 900                    (arp->ar_op == htons(ARPOP_REPLY) ||
 901                     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 902                    inet_addr_type(net, sip) == RTN_UNICAST)
 903                        n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 904        }
 905
 906        if (n) {
 907                int state = NUD_REACHABLE;
 908                int override;
 909
 910                /* If several different ARP replies follows back-to-back,
 911                   use the FIRST one. It is possible, if several proxy
 912                   agents are active. Taking the first reply prevents
 913                   arp trashing and chooses the fastest router.
 914                 */
 915                override = time_after(jiffies, n->updated + n->parms->locktime);
 916
 917                /* Broadcast replies and request packets
 918                   do not assert neighbour reachability.
 919                 */
 920                if (arp->ar_op != htons(ARPOP_REPLY) ||
 921                    skb->pkt_type != PACKET_HOST)
 922                        state = NUD_STALE;
 923                neigh_update(n, sha, state,
 924                             override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 925                neigh_release(n);
 926        }
 927
 928out:
 929        consume_skb(skb);
 930        return 0;
 931}
 932
 933static void parp_redo(struct sk_buff *skb)
 934{
 935        arp_process(skb);
 936}
 937
 938
 939/*
 940 *      Receive an arp request from the device layer.
 941 */
 942
 943static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 944                   struct packet_type *pt, struct net_device *orig_dev)
 945{
 946        const struct arphdr *arp;
 947
 948        if (dev->flags & IFF_NOARP ||
 949            skb->pkt_type == PACKET_OTHERHOST ||
 950            skb->pkt_type == PACKET_LOOPBACK)
 951                goto freeskb;
 952
 953        skb = skb_share_check(skb, GFP_ATOMIC);
 954        if (!skb)
 955                goto out_of_mem;
 956
 957        /* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 958        if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 959                goto freeskb;
 960
 961        arp = arp_hdr(skb);
 962        if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 963                goto freeskb;
 964
 965        memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967        return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 968
 969freeskb:
 970        kfree_skb(skb);
 971out_of_mem:
 972        return 0;
 973}
 974
 975/*
 976 *      User level interface (ioctl)
 977 */
 978
 979/*
 980 *      Set (create) an ARP cache entry.
 981 */
 982
 983static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 984{
 985        if (dev == NULL) {
 986                IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 987                return 0;
 988        }
 989        if (__in_dev_get_rtnl(dev)) {
 990                IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 991                return 0;
 992        }
 993        return -ENXIO;
 994}
 995
 996static int arp_req_set_public(struct net *net, struct arpreq *r,
 997                struct net_device *dev)
 998{
 999        __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001
1002        if (mask && mask != htonl(0xFFFFFFFF))
1003                return -EINVAL;
1004        if (!dev && (r->arp_flags & ATF_COM)) {
1005                dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006                                      r->arp_ha.sa_data);
1007                if (!dev)
1008                        return -ENODEV;
1009        }
1010        if (mask) {
1011                if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012                        return -ENOBUFS;
1013                return 0;
1014        }
1015
1016        return arp_req_set_proxy(net, dev, 1);
1017}
1018
1019static int arp_req_set(struct net *net, struct arpreq *r,
1020                       struct net_device *dev)
1021{
1022        __be32 ip;
1023        struct neighbour *neigh;
1024        int err;
1025
1026        if (r->arp_flags & ATF_PUBL)
1027                return arp_req_set_public(net, r, dev);
1028
1029        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030        if (r->arp_flags & ATF_PERM)
1031                r->arp_flags |= ATF_COM;
1032        if (dev == NULL) {
1033                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034
1035                if (IS_ERR(rt))
1036                        return PTR_ERR(rt);
1037                dev = rt->dst.dev;
1038                ip_rt_put(rt);
1039                if (!dev)
1040                        return -EINVAL;
1041        }
1042        switch (dev->type) {
1043#if IS_ENABLED(CONFIG_FDDI)
1044        case ARPHRD_FDDI:
1045                /*
1046                 * According to RFC 1390, FDDI devices should accept ARP
1047                 * hardware types of 1 (Ethernet).  However, to be more
1048                 * robust, we'll accept hardware types of either 1 (Ethernet)
1049                 * or 6 (IEEE 802.2).
1050                 */
1051                if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052                    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053                    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054                        return -EINVAL;
1055                break;
1056#endif
1057        default:
1058                if (r->arp_ha.sa_family != dev->type)
1059                        return -EINVAL;
1060                break;
1061        }
1062
1063        neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064        err = PTR_ERR(neigh);
1065        if (!IS_ERR(neigh)) {
1066                unsigned int state = NUD_STALE;
1067                if (r->arp_flags & ATF_PERM)
1068                        state = NUD_PERMANENT;
1069                err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070                                   r->arp_ha.sa_data : NULL, state,
1071                                   NEIGH_UPDATE_F_OVERRIDE |
1072                                   NEIGH_UPDATE_F_ADMIN);
1073                neigh_release(neigh);
1074        }
1075        return err;
1076}
1077
1078static unsigned int arp_state_to_flags(struct neighbour *neigh)
1079{
1080        if (neigh->nud_state&NUD_PERMANENT)
1081                return ATF_PERM | ATF_COM;
1082        else if (neigh->nud_state&NUD_VALID)
1083                return ATF_COM;
1084        else
1085                return 0;
1086}
1087
1088/*
1089 *      Get an ARP cache entry.
1090 */
1091
1092static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093{
1094        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095        struct neighbour *neigh;
1096        int err = -ENXIO;
1097
1098        neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099        if (neigh) {
1100                read_lock_bh(&neigh->lock);
1101                memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102                r->arp_flags = arp_state_to_flags(neigh);
1103                read_unlock_bh(&neigh->lock);
1104                r->arp_ha.sa_family = dev->type;
1105                strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106                neigh_release(neigh);
1107                err = 0;
1108        }
1109        return err;
1110}
1111
1112int arp_invalidate(struct net_device *dev, __be32 ip)
1113{
1114        struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115        int err = -ENXIO;
1116
1117        if (neigh) {
1118                if (neigh->nud_state & ~NUD_NOARP)
1119                        err = neigh_update(neigh, NULL, NUD_FAILED,
1120                                           NEIGH_UPDATE_F_OVERRIDE|
1121                                           NEIGH_UPDATE_F_ADMIN);
1122                neigh_release(neigh);
1123        }
1124
1125        return err;
1126}
1127EXPORT_SYMBOL(arp_invalidate);
1128
1129static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130                struct net_device *dev)
1131{
1132        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134
1135        if (mask == htonl(0xFFFFFFFF))
1136                return pneigh_delete(&arp_tbl, net, &ip, dev);
1137
1138        if (mask)
1139                return -EINVAL;
1140
1141        return arp_req_set_proxy(net, dev, 0);
1142}
1143
1144static int arp_req_delete(struct net *net, struct arpreq *r,
1145                          struct net_device *dev)
1146{
1147        __be32 ip;
1148
1149        if (r->arp_flags & ATF_PUBL)
1150                return arp_req_delete_public(net, r, dev);
1151
1152        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153        if (dev == NULL) {
1154                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155                if (IS_ERR(rt))
1156                        return PTR_ERR(rt);
1157                dev = rt->dst.dev;
1158                ip_rt_put(rt);
1159                if (!dev)
1160                        return -EINVAL;
1161        }
1162        return arp_invalidate(dev, ip);
1163}
1164
1165/*
1166 *      Handle an ARP layer I/O control request.
1167 */
1168
1169int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170{
1171        int err;
1172        struct arpreq r;
1173        struct net_device *dev = NULL;
1174
1175        switch (cmd) {
1176        case SIOCDARP:
1177        case SIOCSARP:
1178                if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1179                        return -EPERM;
1180        case SIOCGARP:
1181                err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182                if (err)
1183                        return -EFAULT;
1184                break;
1185        default:
1186                return -EINVAL;
1187        }
1188
1189        if (r.arp_pa.sa_family != AF_INET)
1190                return -EPFNOSUPPORT;
1191
1192        if (!(r.arp_flags & ATF_PUBL) &&
1193            (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194                return -EINVAL;
1195        if (!(r.arp_flags & ATF_NETMASK))
1196                ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197                                                           htonl(0xFFFFFFFFUL);
1198        rtnl_lock();
1199        if (r.arp_dev[0]) {
1200                err = -ENODEV;
1201                dev = __dev_get_by_name(net, r.arp_dev);
1202                if (dev == NULL)
1203                        goto out;
1204
1205                /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206                if (!r.arp_ha.sa_family)
1207                        r.arp_ha.sa_family = dev->type;
1208                err = -EINVAL;
1209                if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210                        goto out;
1211        } else if (cmd == SIOCGARP) {
1212                err = -ENODEV;
1213                goto out;
1214        }
1215
1216        switch (cmd) {
1217        case SIOCDARP:
1218                err = arp_req_delete(net, &r, dev);
1219                break;
1220        case SIOCSARP:
1221                err = arp_req_set(net, &r, dev);
1222                break;
1223        case SIOCGARP:
1224                err = arp_req_get(&r, dev);
1225                break;
1226        }
1227out:
1228        rtnl_unlock();
1229        if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230                err = -EFAULT;
1231        return err;
1232}
1233
1234static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235                            void *ptr)
1236{
1237        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1238        struct netdev_notifier_change_info *change_info;
1239
1240        switch (event) {
1241        case NETDEV_CHANGEADDR:
1242                neigh_changeaddr(&arp_tbl, dev);
1243                rt_cache_flush(dev_net(dev));
1244                break;
1245        case NETDEV_CHANGE:
1246                change_info = ptr;
1247                if (change_info->flags_changed & IFF_NOARP)
1248                        neigh_changeaddr(&arp_tbl, dev);
1249                break;
1250        default:
1251                break;
1252        }
1253
1254        return NOTIFY_DONE;
1255}
1256
1257static struct notifier_block arp_netdev_notifier = {
1258        .notifier_call = arp_netdev_event,
1259};
1260
1261/* Note, that it is not on notifier chain.
1262   It is necessary, that this routine was called after route cache will be
1263   flushed.
1264 */
1265void arp_ifdown(struct net_device *dev)
1266{
1267        neigh_ifdown(&arp_tbl, dev);
1268}
1269
1270
1271/*
1272 *      Called once on startup.
1273 */
1274
1275static struct packet_type arp_packet_type __read_mostly = {
1276        .type = cpu_to_be16(ETH_P_ARP),
1277        .func = arp_rcv,
1278};
1279
1280static int arp_proc_init(void);
1281
1282void __init arp_init(void)
1283{
1284        neigh_table_init(&arp_tbl);
1285
1286        dev_add_pack(&arp_packet_type);
1287        arp_proc_init();
1288#ifdef CONFIG_SYSCTL
1289        neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1290#endif
1291        register_netdevice_notifier(&arp_netdev_notifier);
1292}
1293
1294#ifdef CONFIG_PROC_FS
1295#if IS_ENABLED(CONFIG_AX25)
1296
1297/* ------------------------------------------------------------------------ */
1298/*
1299 *      ax25 -> ASCII conversion
1300 */
1301static char *ax2asc2(ax25_address *a, char *buf)
1302{
1303        char c, *s;
1304        int n;
1305
1306        for (n = 0, s = buf; n < 6; n++) {
1307                c = (a->ax25_call[n] >> 1) & 0x7F;
1308
1309                if (c != ' ')
1310                        *s++ = c;
1311        }
1312
1313        *s++ = '-';
1314        n = (a->ax25_call[6] >> 1) & 0x0F;
1315        if (n > 9) {
1316                *s++ = '1';
1317                n -= 10;
1318        }
1319
1320        *s++ = n + '0';
1321        *s++ = '\0';
1322
1323        if (*buf == '\0' || *buf == '-')
1324                return "*";
1325
1326        return buf;
1327}
1328#endif /* CONFIG_AX25 */
1329
1330#define HBUFFERLEN 30
1331
1332static void arp_format_neigh_entry(struct seq_file *seq,
1333                                   struct neighbour *n)
1334{
1335        char hbuffer[HBUFFERLEN];
1336        int k, j;
1337        char tbuf[16];
1338        struct net_device *dev = n->dev;
1339        int hatype = dev->type;
1340
1341        read_lock(&n->lock);
1342        /* Convert hardware address to XX:XX:XX:XX ... form. */
1343#if IS_ENABLED(CONFIG_AX25)
1344        if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1345                ax2asc2((ax25_address *)n->ha, hbuffer);
1346        else {
1347#endif
1348        for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1349                hbuffer[k++] = hex_asc_hi(n->ha[j]);
1350                hbuffer[k++] = hex_asc_lo(n->ha[j]);
1351                hbuffer[k++] = ':';
1352        }
1353        if (k != 0)
1354                --k;
1355        hbuffer[k] = 0;
1356#if IS_ENABLED(CONFIG_AX25)
1357        }
1358#endif
1359        sprintf(tbuf, "%pI4", n->primary_key);
1360        seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1361                   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1362        read_unlock(&n->lock);
1363}
1364
1365static void arp_format_pneigh_entry(struct seq_file *seq,
1366                                    struct pneigh_entry *n)
1367{
1368        struct net_device *dev = n->dev;
1369        int hatype = dev ? dev->type : 0;
1370        char tbuf[16];
1371
1372        sprintf(tbuf, "%pI4", n->key);
1373        seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1374                   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1375                   dev ? dev->name : "*");
1376}
1377
1378static int arp_seq_show(struct seq_file *seq, void *v)
1379{
1380        if (v == SEQ_START_TOKEN) {
1381                seq_puts(seq, "IP address       HW type     Flags       "
1382                              "HW address            Mask     Device\n");
1383        } else {
1384                struct neigh_seq_state *state = seq->private;
1385
1386                if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1387                        arp_format_pneigh_entry(seq, v);
1388                else
1389                        arp_format_neigh_entry(seq, v);
1390        }
1391
1392        return 0;
1393}
1394
1395static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1396{
1397        /* Don't want to confuse "arp -a" w/ magic entries,
1398         * so we tell the generic iterator to skip NUD_NOARP.
1399         */
1400        return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1401}
1402
1403/* ------------------------------------------------------------------------ */
1404
1405static const struct seq_operations arp_seq_ops = {
1406        .start  = arp_seq_start,
1407        .next   = neigh_seq_next,
1408        .stop   = neigh_seq_stop,
1409        .show   = arp_seq_show,
1410};
1411
1412static int arp_seq_open(struct inode *inode, struct file *file)
1413{
1414        return seq_open_net(inode, file, &arp_seq_ops,
1415                            sizeof(struct neigh_seq_state));
1416}
1417
1418static const struct file_operations arp_seq_fops = {
1419        .owner          = THIS_MODULE,
1420        .open           = arp_seq_open,
1421        .read           = seq_read,
1422        .llseek         = seq_lseek,
1423        .release        = seq_release_net,
1424};
1425
1426
1427static int __net_init arp_net_init(struct net *net)
1428{
1429        if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1430                return -ENOMEM;
1431        return 0;
1432}
1433
1434static void __net_exit arp_net_exit(struct net *net)
1435{
1436        remove_proc_entry("arp", net->proc_net);
1437}
1438
1439static struct pernet_operations arp_net_ops = {
1440        .init = arp_net_init,
1441        .exit = arp_net_exit,
1442};
1443
1444static int __init arp_proc_init(void)
1445{
1446        return register_pernet_subsys(&arp_net_ops);
1447}
1448
1449#else /* CONFIG_PROC_FS */
1450
1451static int __init arp_proc_init(void)
1452{
1453        return 0;
1454}
1455
1456#endif /* CONFIG_PROC_FS */
1457