linux/net/ipv4/ipmr.c
<<
>>
Prefs
   1/*
   2 *      IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *        Linux Consultancy and Custom Driver Development
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 *
  12 *      Fixes:
  13 *      Michael Chastain        :       Incorrect size of copying.
  14 *      Alan Cox                :       Added the cache manager code
  15 *      Alan Cox                :       Fixed the clone/copy bug and device race.
  16 *      Mike McLagan            :       Routing by source
  17 *      Malcolm Beattie         :       Buffer handling fixes.
  18 *      Alexey Kuznetsov        :       Double buffer free and other fixes.
  19 *      SVR Anand               :       Fixed several multicast bugs and problems.
  20 *      Alexey Kuznetsov        :       Status, optimisations and more.
  21 *      Brad Parker             :       Better behaviour on mrouted upcall
  22 *                                      overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
  25 *                                      Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ip_tunnels.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68#include <linux/netconf.h>
  69
  70#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  71#define CONFIG_IP_PIMSM 1
  72#endif
  73
  74struct mr_table {
  75        struct list_head        list;
  76#ifdef CONFIG_NET_NS
  77        struct net              *net;
  78#endif
  79        u32                     id;
  80        struct sock __rcu       *mroute_sk;
  81        struct timer_list       ipmr_expire_timer;
  82        struct list_head        mfc_unres_queue;
  83        struct list_head        mfc_cache_array[MFC_LINES];
  84        struct vif_device       vif_table[MAXVIFS];
  85        int                     maxvif;
  86        atomic_t                cache_resolve_queue_len;
  87        bool                    mroute_do_assert;
  88        bool                    mroute_do_pim;
  89#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  90        int                     mroute_reg_vif_num;
  91#endif
  92};
  93
  94struct ipmr_rule {
  95        struct fib_rule         common;
  96};
  97
  98struct ipmr_result {
  99        struct mr_table         *mrt;
 100};
 101
 102/* Big lock, protecting vif table, mrt cache and mroute socket state.
 103 * Note that the changes are semaphored via rtnl_lock.
 104 */
 105
 106static DEFINE_RWLOCK(mrt_lock);
 107
 108/*
 109 *      Multicast router control variables
 110 */
 111
 112#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 113
 114/* Special spinlock for queue of unresolved entries */
 115static DEFINE_SPINLOCK(mfc_unres_lock);
 116
 117/* We return to original Alan's scheme. Hash table of resolved
 118 * entries is changed only in process context and protected
 119 * with weak lock mrt_lock. Queue of unresolved entries is protected
 120 * with strong spinlock mfc_unres_lock.
 121 *
 122 * In this case data path is free of exclusive locks at all.
 123 */
 124
 125static struct kmem_cache *mrt_cachep __read_mostly;
 126
 127static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 128static void ipmr_free_table(struct mr_table *mrt);
 129
 130static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 131                         struct sk_buff *skb, struct mfc_cache *cache,
 132                         int local);
 133static int ipmr_cache_report(struct mr_table *mrt,
 134                             struct sk_buff *pkt, vifi_t vifi, int assert);
 135static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 136                              struct mfc_cache *c, struct rtmsg *rtm);
 137static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 138                                 int cmd);
 139static void mroute_clean_tables(struct mr_table *mrt);
 140static void ipmr_expire_process(unsigned long arg);
 141
 142#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 143#define ipmr_for_each_table(mrt, net) \
 144        list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 145
 146static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 147{
 148        struct mr_table *mrt;
 149
 150        ipmr_for_each_table(mrt, net) {
 151                if (mrt->id == id)
 152                        return mrt;
 153        }
 154        return NULL;
 155}
 156
 157static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 158                           struct mr_table **mrt)
 159{
 160        struct ipmr_result res;
 161        struct fib_lookup_arg arg = { .result = &res, };
 162        int err;
 163
 164        err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 165                               flowi4_to_flowi(flp4), 0, &arg);
 166        if (err < 0)
 167                return err;
 168        *mrt = res.mrt;
 169        return 0;
 170}
 171
 172static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 173                            int flags, struct fib_lookup_arg *arg)
 174{
 175        struct ipmr_result *res = arg->result;
 176        struct mr_table *mrt;
 177
 178        switch (rule->action) {
 179        case FR_ACT_TO_TBL:
 180                break;
 181        case FR_ACT_UNREACHABLE:
 182                return -ENETUNREACH;
 183        case FR_ACT_PROHIBIT:
 184                return -EACCES;
 185        case FR_ACT_BLACKHOLE:
 186        default:
 187                return -EINVAL;
 188        }
 189
 190        mrt = ipmr_get_table(rule->fr_net, rule->table);
 191        if (mrt == NULL)
 192                return -EAGAIN;
 193        res->mrt = mrt;
 194        return 0;
 195}
 196
 197static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 198{
 199        return 1;
 200}
 201
 202static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 203        FRA_GENERIC_POLICY,
 204};
 205
 206static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 207                               struct fib_rule_hdr *frh, struct nlattr **tb)
 208{
 209        return 0;
 210}
 211
 212static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 213                             struct nlattr **tb)
 214{
 215        return 1;
 216}
 217
 218static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 219                          struct fib_rule_hdr *frh)
 220{
 221        frh->dst_len = 0;
 222        frh->src_len = 0;
 223        frh->tos     = 0;
 224        return 0;
 225}
 226
 227static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 228        .family         = RTNL_FAMILY_IPMR,
 229        .rule_size      = sizeof(struct ipmr_rule),
 230        .addr_size      = sizeof(u32),
 231        .action         = ipmr_rule_action,
 232        .match          = ipmr_rule_match,
 233        .configure      = ipmr_rule_configure,
 234        .compare        = ipmr_rule_compare,
 235        .default_pref   = fib_default_rule_pref,
 236        .fill           = ipmr_rule_fill,
 237        .nlgroup        = RTNLGRP_IPV4_RULE,
 238        .policy         = ipmr_rule_policy,
 239        .owner          = THIS_MODULE,
 240};
 241
 242static int __net_init ipmr_rules_init(struct net *net)
 243{
 244        struct fib_rules_ops *ops;
 245        struct mr_table *mrt;
 246        int err;
 247
 248        ops = fib_rules_register(&ipmr_rules_ops_template, net);
 249        if (IS_ERR(ops))
 250                return PTR_ERR(ops);
 251
 252        INIT_LIST_HEAD(&net->ipv4.mr_tables);
 253
 254        mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 255        if (mrt == NULL) {
 256                err = -ENOMEM;
 257                goto err1;
 258        }
 259
 260        err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 261        if (err < 0)
 262                goto err2;
 263
 264        net->ipv4.mr_rules_ops = ops;
 265        return 0;
 266
 267err2:
 268        kfree(mrt);
 269err1:
 270        fib_rules_unregister(ops);
 271        return err;
 272}
 273
 274static void __net_exit ipmr_rules_exit(struct net *net)
 275{
 276        struct mr_table *mrt, *next;
 277
 278        list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 279                list_del(&mrt->list);
 280                ipmr_free_table(mrt);
 281        }
 282        fib_rules_unregister(net->ipv4.mr_rules_ops);
 283}
 284#else
 285#define ipmr_for_each_table(mrt, net) \
 286        for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 287
 288static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 289{
 290        return net->ipv4.mrt;
 291}
 292
 293static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 294                           struct mr_table **mrt)
 295{
 296        *mrt = net->ipv4.mrt;
 297        return 0;
 298}
 299
 300static int __net_init ipmr_rules_init(struct net *net)
 301{
 302        net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 303        return net->ipv4.mrt ? 0 : -ENOMEM;
 304}
 305
 306static void __net_exit ipmr_rules_exit(struct net *net)
 307{
 308        ipmr_free_table(net->ipv4.mrt);
 309}
 310#endif
 311
 312static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 313{
 314        struct mr_table *mrt;
 315        unsigned int i;
 316
 317        mrt = ipmr_get_table(net, id);
 318        if (mrt != NULL)
 319                return mrt;
 320
 321        mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 322        if (mrt == NULL)
 323                return NULL;
 324        write_pnet(&mrt->net, net);
 325        mrt->id = id;
 326
 327        /* Forwarding cache */
 328        for (i = 0; i < MFC_LINES; i++)
 329                INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 330
 331        INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 332
 333        setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 334                    (unsigned long)mrt);
 335
 336#ifdef CONFIG_IP_PIMSM
 337        mrt->mroute_reg_vif_num = -1;
 338#endif
 339#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 340        list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 341#endif
 342        return mrt;
 343}
 344
 345static void ipmr_free_table(struct mr_table *mrt)
 346{
 347        del_timer_sync(&mrt->ipmr_expire_timer);
 348        mroute_clean_tables(mrt);
 349        kfree(mrt);
 350}
 351
 352/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 353
 354static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 355{
 356        struct net *net = dev_net(dev);
 357
 358        dev_close(dev);
 359
 360        dev = __dev_get_by_name(net, "tunl0");
 361        if (dev) {
 362                const struct net_device_ops *ops = dev->netdev_ops;
 363                struct ifreq ifr;
 364                struct ip_tunnel_parm p;
 365
 366                memset(&p, 0, sizeof(p));
 367                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 368                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 369                p.iph.version = 4;
 370                p.iph.ihl = 5;
 371                p.iph.protocol = IPPROTO_IPIP;
 372                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 373                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 374
 375                if (ops->ndo_do_ioctl) {
 376                        mm_segment_t oldfs = get_fs();
 377
 378                        set_fs(KERNEL_DS);
 379                        ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 380                        set_fs(oldfs);
 381                }
 382        }
 383}
 384
 385static
 386struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 387{
 388        struct net_device  *dev;
 389
 390        dev = __dev_get_by_name(net, "tunl0");
 391
 392        if (dev) {
 393                const struct net_device_ops *ops = dev->netdev_ops;
 394                int err;
 395                struct ifreq ifr;
 396                struct ip_tunnel_parm p;
 397                struct in_device  *in_dev;
 398
 399                memset(&p, 0, sizeof(p));
 400                p.iph.daddr = v->vifc_rmt_addr.s_addr;
 401                p.iph.saddr = v->vifc_lcl_addr.s_addr;
 402                p.iph.version = 4;
 403                p.iph.ihl = 5;
 404                p.iph.protocol = IPPROTO_IPIP;
 405                sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 406                ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 407
 408                if (ops->ndo_do_ioctl) {
 409                        mm_segment_t oldfs = get_fs();
 410
 411                        set_fs(KERNEL_DS);
 412                        err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 413                        set_fs(oldfs);
 414                } else {
 415                        err = -EOPNOTSUPP;
 416                }
 417                dev = NULL;
 418
 419                if (err == 0 &&
 420                    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 421                        dev->flags |= IFF_MULTICAST;
 422
 423                        in_dev = __in_dev_get_rtnl(dev);
 424                        if (in_dev == NULL)
 425                                goto failure;
 426
 427                        ipv4_devconf_setall(in_dev);
 428                        IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 429
 430                        if (dev_open(dev))
 431                                goto failure;
 432                        dev_hold(dev);
 433                }
 434        }
 435        return dev;
 436
 437failure:
 438        /* allow the register to be completed before unregistering. */
 439        rtnl_unlock();
 440        rtnl_lock();
 441
 442        unregister_netdevice(dev);
 443        return NULL;
 444}
 445
 446#ifdef CONFIG_IP_PIMSM
 447
 448static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 449{
 450        struct net *net = dev_net(dev);
 451        struct mr_table *mrt;
 452        struct flowi4 fl4 = {
 453                .flowi4_oif     = dev->ifindex,
 454                .flowi4_iif     = skb->skb_iif,
 455                .flowi4_mark    = skb->mark,
 456        };
 457        int err;
 458
 459        err = ipmr_fib_lookup(net, &fl4, &mrt);
 460        if (err < 0) {
 461                kfree_skb(skb);
 462                return err;
 463        }
 464
 465        read_lock(&mrt_lock);
 466        dev->stats.tx_bytes += skb->len;
 467        dev->stats.tx_packets++;
 468        ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 469        read_unlock(&mrt_lock);
 470        kfree_skb(skb);
 471        return NETDEV_TX_OK;
 472}
 473
 474static const struct net_device_ops reg_vif_netdev_ops = {
 475        .ndo_start_xmit = reg_vif_xmit,
 476};
 477
 478static void reg_vif_setup(struct net_device *dev)
 479{
 480        dev->type               = ARPHRD_PIMREG;
 481        dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 482        dev->flags              = IFF_NOARP;
 483        dev->netdev_ops         = &reg_vif_netdev_ops,
 484        dev->destructor         = free_netdev;
 485        dev->features           |= NETIF_F_NETNS_LOCAL;
 486}
 487
 488static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 489{
 490        struct net_device *dev;
 491        struct in_device *in_dev;
 492        char name[IFNAMSIZ];
 493
 494        if (mrt->id == RT_TABLE_DEFAULT)
 495                sprintf(name, "pimreg");
 496        else
 497                sprintf(name, "pimreg%u", mrt->id);
 498
 499        dev = alloc_netdev(0, name, reg_vif_setup);
 500
 501        if (dev == NULL)
 502                return NULL;
 503
 504        dev_net_set(dev, net);
 505
 506        if (register_netdevice(dev)) {
 507                free_netdev(dev);
 508                return NULL;
 509        }
 510        dev->iflink = 0;
 511
 512        rcu_read_lock();
 513        in_dev = __in_dev_get_rcu(dev);
 514        if (!in_dev) {
 515                rcu_read_unlock();
 516                goto failure;
 517        }
 518
 519        ipv4_devconf_setall(in_dev);
 520        IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 521        rcu_read_unlock();
 522
 523        if (dev_open(dev))
 524                goto failure;
 525
 526        dev_hold(dev);
 527
 528        return dev;
 529
 530failure:
 531        /* allow the register to be completed before unregistering. */
 532        rtnl_unlock();
 533        rtnl_lock();
 534
 535        unregister_netdevice(dev);
 536        return NULL;
 537}
 538#endif
 539
 540/**
 541 *      vif_delete - Delete a VIF entry
 542 *      @notify: Set to 1, if the caller is a notifier_call
 543 */
 544
 545static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 546                      struct list_head *head)
 547{
 548        struct vif_device *v;
 549        struct net_device *dev;
 550        struct in_device *in_dev;
 551
 552        if (vifi < 0 || vifi >= mrt->maxvif)
 553                return -EADDRNOTAVAIL;
 554
 555        v = &mrt->vif_table[vifi];
 556
 557        write_lock_bh(&mrt_lock);
 558        dev = v->dev;
 559        v->dev = NULL;
 560
 561        if (!dev) {
 562                write_unlock_bh(&mrt_lock);
 563                return -EADDRNOTAVAIL;
 564        }
 565
 566#ifdef CONFIG_IP_PIMSM
 567        if (vifi == mrt->mroute_reg_vif_num)
 568                mrt->mroute_reg_vif_num = -1;
 569#endif
 570
 571        if (vifi + 1 == mrt->maxvif) {
 572                int tmp;
 573
 574                for (tmp = vifi - 1; tmp >= 0; tmp--) {
 575                        if (VIF_EXISTS(mrt, tmp))
 576                                break;
 577                }
 578                mrt->maxvif = tmp+1;
 579        }
 580
 581        write_unlock_bh(&mrt_lock);
 582
 583        dev_set_allmulti(dev, -1);
 584
 585        in_dev = __in_dev_get_rtnl(dev);
 586        if (in_dev) {
 587                IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 588                inet_netconf_notify_devconf(dev_net(dev),
 589                                            NETCONFA_MC_FORWARDING,
 590                                            dev->ifindex, &in_dev->cnf);
 591                ip_rt_multicast_event(in_dev);
 592        }
 593
 594        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 595                unregister_netdevice_queue(dev, head);
 596
 597        dev_put(dev);
 598        return 0;
 599}
 600
 601static void ipmr_cache_free_rcu(struct rcu_head *head)
 602{
 603        struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 604
 605        kmem_cache_free(mrt_cachep, c);
 606}
 607
 608static inline void ipmr_cache_free(struct mfc_cache *c)
 609{
 610        call_rcu(&c->rcu, ipmr_cache_free_rcu);
 611}
 612
 613/* Destroy an unresolved cache entry, killing queued skbs
 614 * and reporting error to netlink readers.
 615 */
 616
 617static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 618{
 619        struct net *net = read_pnet(&mrt->net);
 620        struct sk_buff *skb;
 621        struct nlmsgerr *e;
 622
 623        atomic_dec(&mrt->cache_resolve_queue_len);
 624
 625        while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 626                if (ip_hdr(skb)->version == 0) {
 627                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 628                        nlh->nlmsg_type = NLMSG_ERROR;
 629                        nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 630                        skb_trim(skb, nlh->nlmsg_len);
 631                        e = nlmsg_data(nlh);
 632                        e->error = -ETIMEDOUT;
 633                        memset(&e->msg, 0, sizeof(e->msg));
 634
 635                        rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 636                } else {
 637                        kfree_skb(skb);
 638                }
 639        }
 640
 641        ipmr_cache_free(c);
 642}
 643
 644
 645/* Timer process for the unresolved queue. */
 646
 647static void ipmr_expire_process(unsigned long arg)
 648{
 649        struct mr_table *mrt = (struct mr_table *)arg;
 650        unsigned long now;
 651        unsigned long expires;
 652        struct mfc_cache *c, *next;
 653
 654        if (!spin_trylock(&mfc_unres_lock)) {
 655                mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 656                return;
 657        }
 658
 659        if (list_empty(&mrt->mfc_unres_queue))
 660                goto out;
 661
 662        now = jiffies;
 663        expires = 10*HZ;
 664
 665        list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 666                if (time_after(c->mfc_un.unres.expires, now)) {
 667                        unsigned long interval = c->mfc_un.unres.expires - now;
 668                        if (interval < expires)
 669                                expires = interval;
 670                        continue;
 671                }
 672
 673                list_del(&c->list);
 674                mroute_netlink_event(mrt, c, RTM_DELROUTE);
 675                ipmr_destroy_unres(mrt, c);
 676        }
 677
 678        if (!list_empty(&mrt->mfc_unres_queue))
 679                mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 680
 681out:
 682        spin_unlock(&mfc_unres_lock);
 683}
 684
 685/* Fill oifs list. It is called under write locked mrt_lock. */
 686
 687static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 688                                   unsigned char *ttls)
 689{
 690        int vifi;
 691
 692        cache->mfc_un.res.minvif = MAXVIFS;
 693        cache->mfc_un.res.maxvif = 0;
 694        memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 695
 696        for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 697                if (VIF_EXISTS(mrt, vifi) &&
 698                    ttls[vifi] && ttls[vifi] < 255) {
 699                        cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 700                        if (cache->mfc_un.res.minvif > vifi)
 701                                cache->mfc_un.res.minvif = vifi;
 702                        if (cache->mfc_un.res.maxvif <= vifi)
 703                                cache->mfc_un.res.maxvif = vifi + 1;
 704                }
 705        }
 706}
 707
 708static int vif_add(struct net *net, struct mr_table *mrt,
 709                   struct vifctl *vifc, int mrtsock)
 710{
 711        int vifi = vifc->vifc_vifi;
 712        struct vif_device *v = &mrt->vif_table[vifi];
 713        struct net_device *dev;
 714        struct in_device *in_dev;
 715        int err;
 716
 717        /* Is vif busy ? */
 718        if (VIF_EXISTS(mrt, vifi))
 719                return -EADDRINUSE;
 720
 721        switch (vifc->vifc_flags) {
 722#ifdef CONFIG_IP_PIMSM
 723        case VIFF_REGISTER:
 724                /*
 725                 * Special Purpose VIF in PIM
 726                 * All the packets will be sent to the daemon
 727                 */
 728                if (mrt->mroute_reg_vif_num >= 0)
 729                        return -EADDRINUSE;
 730                dev = ipmr_reg_vif(net, mrt);
 731                if (!dev)
 732                        return -ENOBUFS;
 733                err = dev_set_allmulti(dev, 1);
 734                if (err) {
 735                        unregister_netdevice(dev);
 736                        dev_put(dev);
 737                        return err;
 738                }
 739                break;
 740#endif
 741        case VIFF_TUNNEL:
 742                dev = ipmr_new_tunnel(net, vifc);
 743                if (!dev)
 744                        return -ENOBUFS;
 745                err = dev_set_allmulti(dev, 1);
 746                if (err) {
 747                        ipmr_del_tunnel(dev, vifc);
 748                        dev_put(dev);
 749                        return err;
 750                }
 751                break;
 752
 753        case VIFF_USE_IFINDEX:
 754        case 0:
 755                if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 756                        dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 757                        if (dev && __in_dev_get_rtnl(dev) == NULL) {
 758                                dev_put(dev);
 759                                return -EADDRNOTAVAIL;
 760                        }
 761                } else {
 762                        dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 763                }
 764                if (!dev)
 765                        return -EADDRNOTAVAIL;
 766                err = dev_set_allmulti(dev, 1);
 767                if (err) {
 768                        dev_put(dev);
 769                        return err;
 770                }
 771                break;
 772        default:
 773                return -EINVAL;
 774        }
 775
 776        in_dev = __in_dev_get_rtnl(dev);
 777        if (!in_dev) {
 778                dev_put(dev);
 779                return -EADDRNOTAVAIL;
 780        }
 781        IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 782        inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
 783                                    &in_dev->cnf);
 784        ip_rt_multicast_event(in_dev);
 785
 786        /* Fill in the VIF structures */
 787
 788        v->rate_limit = vifc->vifc_rate_limit;
 789        v->local = vifc->vifc_lcl_addr.s_addr;
 790        v->remote = vifc->vifc_rmt_addr.s_addr;
 791        v->flags = vifc->vifc_flags;
 792        if (!mrtsock)
 793                v->flags |= VIFF_STATIC;
 794        v->threshold = vifc->vifc_threshold;
 795        v->bytes_in = 0;
 796        v->bytes_out = 0;
 797        v->pkt_in = 0;
 798        v->pkt_out = 0;
 799        v->link = dev->ifindex;
 800        if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 801                v->link = dev->iflink;
 802
 803        /* And finish update writing critical data */
 804        write_lock_bh(&mrt_lock);
 805        v->dev = dev;
 806#ifdef CONFIG_IP_PIMSM
 807        if (v->flags & VIFF_REGISTER)
 808                mrt->mroute_reg_vif_num = vifi;
 809#endif
 810        if (vifi+1 > mrt->maxvif)
 811                mrt->maxvif = vifi+1;
 812        write_unlock_bh(&mrt_lock);
 813        return 0;
 814}
 815
 816/* called with rcu_read_lock() */
 817static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 818                                         __be32 origin,
 819                                         __be32 mcastgrp)
 820{
 821        int line = MFC_HASH(mcastgrp, origin);
 822        struct mfc_cache *c;
 823
 824        list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 825                if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 826                        return c;
 827        }
 828        return NULL;
 829}
 830
 831/* Look for a (*,*,oif) entry */
 832static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
 833                                                    int vifi)
 834{
 835        int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
 836        struct mfc_cache *c;
 837
 838        list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 839                if (c->mfc_origin == htonl(INADDR_ANY) &&
 840                    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
 841                    c->mfc_un.res.ttls[vifi] < 255)
 842                        return c;
 843
 844        return NULL;
 845}
 846
 847/* Look for a (*,G) entry */
 848static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 849                                             __be32 mcastgrp, int vifi)
 850{
 851        int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
 852        struct mfc_cache *c, *proxy;
 853
 854        if (mcastgrp == htonl(INADDR_ANY))
 855                goto skip;
 856
 857        list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 858                if (c->mfc_origin == htonl(INADDR_ANY) &&
 859                    c->mfc_mcastgrp == mcastgrp) {
 860                        if (c->mfc_un.res.ttls[vifi] < 255)
 861                                return c;
 862
 863                        /* It's ok if the vifi is part of the static tree */
 864                        proxy = ipmr_cache_find_any_parent(mrt,
 865                                                           c->mfc_parent);
 866                        if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
 867                                return c;
 868                }
 869
 870skip:
 871        return ipmr_cache_find_any_parent(mrt, vifi);
 872}
 873
 874/*
 875 *      Allocate a multicast cache entry
 876 */
 877static struct mfc_cache *ipmr_cache_alloc(void)
 878{
 879        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 880
 881        if (c)
 882                c->mfc_un.res.minvif = MAXVIFS;
 883        return c;
 884}
 885
 886static struct mfc_cache *ipmr_cache_alloc_unres(void)
 887{
 888        struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 889
 890        if (c) {
 891                skb_queue_head_init(&c->mfc_un.unres.unresolved);
 892                c->mfc_un.unres.expires = jiffies + 10*HZ;
 893        }
 894        return c;
 895}
 896
 897/*
 898 *      A cache entry has gone into a resolved state from queued
 899 */
 900
 901static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 902                               struct mfc_cache *uc, struct mfc_cache *c)
 903{
 904        struct sk_buff *skb;
 905        struct nlmsgerr *e;
 906
 907        /* Play the pending entries through our router */
 908
 909        while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 910                if (ip_hdr(skb)->version == 0) {
 911                        struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 912
 913                        if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
 914                                nlh->nlmsg_len = skb_tail_pointer(skb) -
 915                                                 (u8 *)nlh;
 916                        } else {
 917                                nlh->nlmsg_type = NLMSG_ERROR;
 918                                nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 919                                skb_trim(skb, nlh->nlmsg_len);
 920                                e = nlmsg_data(nlh);
 921                                e->error = -EMSGSIZE;
 922                                memset(&e->msg, 0, sizeof(e->msg));
 923                        }
 924
 925                        rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 926                } else {
 927                        ip_mr_forward(net, mrt, skb, c, 0);
 928                }
 929        }
 930}
 931
 932/*
 933 *      Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 934 *      expects the following bizarre scheme.
 935 *
 936 *      Called under mrt_lock.
 937 */
 938
 939static int ipmr_cache_report(struct mr_table *mrt,
 940                             struct sk_buff *pkt, vifi_t vifi, int assert)
 941{
 942        struct sk_buff *skb;
 943        const int ihl = ip_hdrlen(pkt);
 944        struct igmphdr *igmp;
 945        struct igmpmsg *msg;
 946        struct sock *mroute_sk;
 947        int ret;
 948
 949#ifdef CONFIG_IP_PIMSM
 950        if (assert == IGMPMSG_WHOLEPKT)
 951                skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 952        else
 953#endif
 954                skb = alloc_skb(128, GFP_ATOMIC);
 955
 956        if (!skb)
 957                return -ENOBUFS;
 958
 959#ifdef CONFIG_IP_PIMSM
 960        if (assert == IGMPMSG_WHOLEPKT) {
 961                /* Ugly, but we have no choice with this interface.
 962                 * Duplicate old header, fix ihl, length etc.
 963                 * And all this only to mangle msg->im_msgtype and
 964                 * to set msg->im_mbz to "mbz" :-)
 965                 */
 966                skb_push(skb, sizeof(struct iphdr));
 967                skb_reset_network_header(skb);
 968                skb_reset_transport_header(skb);
 969                msg = (struct igmpmsg *)skb_network_header(skb);
 970                memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 971                msg->im_msgtype = IGMPMSG_WHOLEPKT;
 972                msg->im_mbz = 0;
 973                msg->im_vif = mrt->mroute_reg_vif_num;
 974                ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 975                ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 976                                             sizeof(struct iphdr));
 977        } else
 978#endif
 979        {
 980
 981        /* Copy the IP header */
 982
 983        skb_set_network_header(skb, skb->len);
 984        skb_put(skb, ihl);
 985        skb_copy_to_linear_data(skb, pkt->data, ihl);
 986        ip_hdr(skb)->protocol = 0;      /* Flag to the kernel this is a route add */
 987        msg = (struct igmpmsg *)skb_network_header(skb);
 988        msg->im_vif = vifi;
 989        skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 990
 991        /* Add our header */
 992
 993        igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 994        igmp->type      =
 995        msg->im_msgtype = assert;
 996        igmp->code      = 0;
 997        ip_hdr(skb)->tot_len = htons(skb->len);         /* Fix the length */
 998        skb->transport_header = skb->network_header;
 999        }
1000
1001        rcu_read_lock();
1002        mroute_sk = rcu_dereference(mrt->mroute_sk);
1003        if (mroute_sk == NULL) {
1004                rcu_read_unlock();
1005                kfree_skb(skb);
1006                return -EINVAL;
1007        }
1008
1009        /* Deliver to mrouted */
1010
1011        ret = sock_queue_rcv_skb(mroute_sk, skb);
1012        rcu_read_unlock();
1013        if (ret < 0) {
1014                net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1015                kfree_skb(skb);
1016        }
1017
1018        return ret;
1019}
1020
1021/*
1022 *      Queue a packet for resolution. It gets locked cache entry!
1023 */
1024
1025static int
1026ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1027{
1028        bool found = false;
1029        int err;
1030        struct mfc_cache *c;
1031        const struct iphdr *iph = ip_hdr(skb);
1032
1033        spin_lock_bh(&mfc_unres_lock);
1034        list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1035                if (c->mfc_mcastgrp == iph->daddr &&
1036                    c->mfc_origin == iph->saddr) {
1037                        found = true;
1038                        break;
1039                }
1040        }
1041
1042        if (!found) {
1043                /* Create a new entry if allowable */
1044
1045                if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1046                    (c = ipmr_cache_alloc_unres()) == NULL) {
1047                        spin_unlock_bh(&mfc_unres_lock);
1048
1049                        kfree_skb(skb);
1050                        return -ENOBUFS;
1051                }
1052
1053                /* Fill in the new cache entry */
1054
1055                c->mfc_parent   = -1;
1056                c->mfc_origin   = iph->saddr;
1057                c->mfc_mcastgrp = iph->daddr;
1058
1059                /* Reflect first query at mrouted. */
1060
1061                err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1062                if (err < 0) {
1063                        /* If the report failed throw the cache entry
1064                           out - Brad Parker
1065                         */
1066                        spin_unlock_bh(&mfc_unres_lock);
1067
1068                        ipmr_cache_free(c);
1069                        kfree_skb(skb);
1070                        return err;
1071                }
1072
1073                atomic_inc(&mrt->cache_resolve_queue_len);
1074                list_add(&c->list, &mrt->mfc_unres_queue);
1075                mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1076
1077                if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1078                        mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1079        }
1080
1081        /* See if we can append the packet */
1082
1083        if (c->mfc_un.unres.unresolved.qlen > 3) {
1084                kfree_skb(skb);
1085                err = -ENOBUFS;
1086        } else {
1087                skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1088                err = 0;
1089        }
1090
1091        spin_unlock_bh(&mfc_unres_lock);
1092        return err;
1093}
1094
1095/*
1096 *      MFC cache manipulation by user space mroute daemon
1097 */
1098
1099static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1100{
1101        int line;
1102        struct mfc_cache *c, *next;
1103
1104        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1105
1106        list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1107                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1108                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1109                    (parent == -1 || parent == c->mfc_parent)) {
1110                        list_del_rcu(&c->list);
1111                        mroute_netlink_event(mrt, c, RTM_DELROUTE);
1112                        ipmr_cache_free(c);
1113                        return 0;
1114                }
1115        }
1116        return -ENOENT;
1117}
1118
1119static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1120                        struct mfcctl *mfc, int mrtsock, int parent)
1121{
1122        bool found = false;
1123        int line;
1124        struct mfc_cache *uc, *c;
1125
1126        if (mfc->mfcc_parent >= MAXVIFS)
1127                return -ENFILE;
1128
1129        line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1130
1131        list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1132                if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1133                    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1134                    (parent == -1 || parent == c->mfc_parent)) {
1135                        found = true;
1136                        break;
1137                }
1138        }
1139
1140        if (found) {
1141                write_lock_bh(&mrt_lock);
1142                c->mfc_parent = mfc->mfcc_parent;
1143                ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1144                if (!mrtsock)
1145                        c->mfc_flags |= MFC_STATIC;
1146                write_unlock_bh(&mrt_lock);
1147                mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1148                return 0;
1149        }
1150
1151        if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1152            !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1153                return -EINVAL;
1154
1155        c = ipmr_cache_alloc();
1156        if (c == NULL)
1157                return -ENOMEM;
1158
1159        c->mfc_origin = mfc->mfcc_origin.s_addr;
1160        c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1161        c->mfc_parent = mfc->mfcc_parent;
1162        ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1163        if (!mrtsock)
1164                c->mfc_flags |= MFC_STATIC;
1165
1166        list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1167
1168        /*
1169         *      Check to see if we resolved a queued list. If so we
1170         *      need to send on the frames and tidy up.
1171         */
1172        found = false;
1173        spin_lock_bh(&mfc_unres_lock);
1174        list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1175                if (uc->mfc_origin == c->mfc_origin &&
1176                    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1177                        list_del(&uc->list);
1178                        atomic_dec(&mrt->cache_resolve_queue_len);
1179                        found = true;
1180                        break;
1181                }
1182        }
1183        if (list_empty(&mrt->mfc_unres_queue))
1184                del_timer(&mrt->ipmr_expire_timer);
1185        spin_unlock_bh(&mfc_unres_lock);
1186
1187        if (found) {
1188                ipmr_cache_resolve(net, mrt, uc, c);
1189                ipmr_cache_free(uc);
1190        }
1191        mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1192        return 0;
1193}
1194
1195/*
1196 *      Close the multicast socket, and clear the vif tables etc
1197 */
1198
1199static void mroute_clean_tables(struct mr_table *mrt)
1200{
1201        int i;
1202        LIST_HEAD(list);
1203        struct mfc_cache *c, *next;
1204
1205        /* Shut down all active vif entries */
1206
1207        for (i = 0; i < mrt->maxvif; i++) {
1208                if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1209                        vif_delete(mrt, i, 0, &list);
1210        }
1211        unregister_netdevice_many(&list);
1212
1213        /* Wipe the cache */
1214
1215        for (i = 0; i < MFC_LINES; i++) {
1216                list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1217                        if (c->mfc_flags & MFC_STATIC)
1218                                continue;
1219                        list_del_rcu(&c->list);
1220                        mroute_netlink_event(mrt, c, RTM_DELROUTE);
1221                        ipmr_cache_free(c);
1222                }
1223        }
1224
1225        if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1226                spin_lock_bh(&mfc_unres_lock);
1227                list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1228                        list_del(&c->list);
1229                        mroute_netlink_event(mrt, c, RTM_DELROUTE);
1230                        ipmr_destroy_unres(mrt, c);
1231                }
1232                spin_unlock_bh(&mfc_unres_lock);
1233        }
1234}
1235
1236/* called from ip_ra_control(), before an RCU grace period,
1237 * we dont need to call synchronize_rcu() here
1238 */
1239static void mrtsock_destruct(struct sock *sk)
1240{
1241        struct net *net = sock_net(sk);
1242        struct mr_table *mrt;
1243
1244        rtnl_lock();
1245        ipmr_for_each_table(mrt, net) {
1246                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1247                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1248                        inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1249                                                    NETCONFA_IFINDEX_ALL,
1250                                                    net->ipv4.devconf_all);
1251                        RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1252                        mroute_clean_tables(mrt);
1253                }
1254        }
1255        rtnl_unlock();
1256}
1257
1258/*
1259 *      Socket options and virtual interface manipulation. The whole
1260 *      virtual interface system is a complete heap, but unfortunately
1261 *      that's how BSD mrouted happens to think. Maybe one day with a proper
1262 *      MOSPF/PIM router set up we can clean this up.
1263 */
1264
1265int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1266{
1267        int ret, parent = 0;
1268        struct vifctl vif;
1269        struct mfcctl mfc;
1270        struct net *net = sock_net(sk);
1271        struct mr_table *mrt;
1272
1273        if (sk->sk_type != SOCK_RAW ||
1274            inet_sk(sk)->inet_num != IPPROTO_IGMP)
1275                return -EOPNOTSUPP;
1276
1277        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1278        if (mrt == NULL)
1279                return -ENOENT;
1280
1281        if (optname != MRT_INIT) {
1282                if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1283                    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1284                        return -EACCES;
1285        }
1286
1287        switch (optname) {
1288        case MRT_INIT:
1289                if (optlen != sizeof(int))
1290                        return -EINVAL;
1291
1292                rtnl_lock();
1293                if (rtnl_dereference(mrt->mroute_sk)) {
1294                        rtnl_unlock();
1295                        return -EADDRINUSE;
1296                }
1297
1298                ret = ip_ra_control(sk, 1, mrtsock_destruct);
1299                if (ret == 0) {
1300                        rcu_assign_pointer(mrt->mroute_sk, sk);
1301                        IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1302                        inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1303                                                    NETCONFA_IFINDEX_ALL,
1304                                                    net->ipv4.devconf_all);
1305                }
1306                rtnl_unlock();
1307                return ret;
1308        case MRT_DONE:
1309                if (sk != rcu_access_pointer(mrt->mroute_sk))
1310                        return -EACCES;
1311                return ip_ra_control(sk, 0, NULL);
1312        case MRT_ADD_VIF:
1313        case MRT_DEL_VIF:
1314                if (optlen != sizeof(vif))
1315                        return -EINVAL;
1316                if (copy_from_user(&vif, optval, sizeof(vif)))
1317                        return -EFAULT;
1318                if (vif.vifc_vifi >= MAXVIFS)
1319                        return -ENFILE;
1320                rtnl_lock();
1321                if (optname == MRT_ADD_VIF) {
1322                        ret = vif_add(net, mrt, &vif,
1323                                      sk == rtnl_dereference(mrt->mroute_sk));
1324                } else {
1325                        ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1326                }
1327                rtnl_unlock();
1328                return ret;
1329
1330                /*
1331                 *      Manipulate the forwarding caches. These live
1332                 *      in a sort of kernel/user symbiosis.
1333                 */
1334        case MRT_ADD_MFC:
1335        case MRT_DEL_MFC:
1336                parent = -1;
1337        case MRT_ADD_MFC_PROXY:
1338        case MRT_DEL_MFC_PROXY:
1339                if (optlen != sizeof(mfc))
1340                        return -EINVAL;
1341                if (copy_from_user(&mfc, optval, sizeof(mfc)))
1342                        return -EFAULT;
1343                if (parent == 0)
1344                        parent = mfc.mfcc_parent;
1345                rtnl_lock();
1346                if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1347                        ret = ipmr_mfc_delete(mrt, &mfc, parent);
1348                else
1349                        ret = ipmr_mfc_add(net, mrt, &mfc,
1350                                           sk == rtnl_dereference(mrt->mroute_sk),
1351                                           parent);
1352                rtnl_unlock();
1353                return ret;
1354                /*
1355                 *      Control PIM assert.
1356                 */
1357        case MRT_ASSERT:
1358        {
1359                int v;
1360                if (optlen != sizeof(v))
1361                        return -EINVAL;
1362                if (get_user(v, (int __user *)optval))
1363                        return -EFAULT;
1364                mrt->mroute_do_assert = v;
1365                return 0;
1366        }
1367#ifdef CONFIG_IP_PIMSM
1368        case MRT_PIM:
1369        {
1370                int v;
1371
1372                if (optlen != sizeof(v))
1373                        return -EINVAL;
1374                if (get_user(v, (int __user *)optval))
1375                        return -EFAULT;
1376                v = !!v;
1377
1378                rtnl_lock();
1379                ret = 0;
1380                if (v != mrt->mroute_do_pim) {
1381                        mrt->mroute_do_pim = v;
1382                        mrt->mroute_do_assert = v;
1383                }
1384                rtnl_unlock();
1385                return ret;
1386        }
1387#endif
1388#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1389        case MRT_TABLE:
1390        {
1391                u32 v;
1392
1393                if (optlen != sizeof(u32))
1394                        return -EINVAL;
1395                if (get_user(v, (u32 __user *)optval))
1396                        return -EFAULT;
1397
1398                /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1399                if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1400                        return -EINVAL;
1401
1402                rtnl_lock();
1403                ret = 0;
1404                if (sk == rtnl_dereference(mrt->mroute_sk)) {
1405                        ret = -EBUSY;
1406                } else {
1407                        if (!ipmr_new_table(net, v))
1408                                ret = -ENOMEM;
1409                        else
1410                                raw_sk(sk)->ipmr_table = v;
1411                }
1412                rtnl_unlock();
1413                return ret;
1414        }
1415#endif
1416        /*
1417         *      Spurious command, or MRT_VERSION which you cannot
1418         *      set.
1419         */
1420        default:
1421                return -ENOPROTOOPT;
1422        }
1423}
1424
1425/*
1426 *      Getsock opt support for the multicast routing system.
1427 */
1428
1429int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1430{
1431        int olr;
1432        int val;
1433        struct net *net = sock_net(sk);
1434        struct mr_table *mrt;
1435
1436        if (sk->sk_type != SOCK_RAW ||
1437            inet_sk(sk)->inet_num != IPPROTO_IGMP)
1438                return -EOPNOTSUPP;
1439
1440        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1441        if (mrt == NULL)
1442                return -ENOENT;
1443
1444        if (optname != MRT_VERSION &&
1445#ifdef CONFIG_IP_PIMSM
1446           optname != MRT_PIM &&
1447#endif
1448           optname != MRT_ASSERT)
1449                return -ENOPROTOOPT;
1450
1451        if (get_user(olr, optlen))
1452                return -EFAULT;
1453
1454        olr = min_t(unsigned int, olr, sizeof(int));
1455        if (olr < 0)
1456                return -EINVAL;
1457
1458        if (put_user(olr, optlen))
1459                return -EFAULT;
1460        if (optname == MRT_VERSION)
1461                val = 0x0305;
1462#ifdef CONFIG_IP_PIMSM
1463        else if (optname == MRT_PIM)
1464                val = mrt->mroute_do_pim;
1465#endif
1466        else
1467                val = mrt->mroute_do_assert;
1468        if (copy_to_user(optval, &val, olr))
1469                return -EFAULT;
1470        return 0;
1471}
1472
1473/*
1474 *      The IP multicast ioctl support routines.
1475 */
1476
1477int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1478{
1479        struct sioc_sg_req sr;
1480        struct sioc_vif_req vr;
1481        struct vif_device *vif;
1482        struct mfc_cache *c;
1483        struct net *net = sock_net(sk);
1484        struct mr_table *mrt;
1485
1486        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1487        if (mrt == NULL)
1488                return -ENOENT;
1489
1490        switch (cmd) {
1491        case SIOCGETVIFCNT:
1492                if (copy_from_user(&vr, arg, sizeof(vr)))
1493                        return -EFAULT;
1494                if (vr.vifi >= mrt->maxvif)
1495                        return -EINVAL;
1496                read_lock(&mrt_lock);
1497                vif = &mrt->vif_table[vr.vifi];
1498                if (VIF_EXISTS(mrt, vr.vifi)) {
1499                        vr.icount = vif->pkt_in;
1500                        vr.ocount = vif->pkt_out;
1501                        vr.ibytes = vif->bytes_in;
1502                        vr.obytes = vif->bytes_out;
1503                        read_unlock(&mrt_lock);
1504
1505                        if (copy_to_user(arg, &vr, sizeof(vr)))
1506                                return -EFAULT;
1507                        return 0;
1508                }
1509                read_unlock(&mrt_lock);
1510                return -EADDRNOTAVAIL;
1511        case SIOCGETSGCNT:
1512                if (copy_from_user(&sr, arg, sizeof(sr)))
1513                        return -EFAULT;
1514
1515                rcu_read_lock();
1516                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1517                if (c) {
1518                        sr.pktcnt = c->mfc_un.res.pkt;
1519                        sr.bytecnt = c->mfc_un.res.bytes;
1520                        sr.wrong_if = c->mfc_un.res.wrong_if;
1521                        rcu_read_unlock();
1522
1523                        if (copy_to_user(arg, &sr, sizeof(sr)))
1524                                return -EFAULT;
1525                        return 0;
1526                }
1527                rcu_read_unlock();
1528                return -EADDRNOTAVAIL;
1529        default:
1530                return -ENOIOCTLCMD;
1531        }
1532}
1533
1534#ifdef CONFIG_COMPAT
1535struct compat_sioc_sg_req {
1536        struct in_addr src;
1537        struct in_addr grp;
1538        compat_ulong_t pktcnt;
1539        compat_ulong_t bytecnt;
1540        compat_ulong_t wrong_if;
1541};
1542
1543struct compat_sioc_vif_req {
1544        vifi_t  vifi;           /* Which iface */
1545        compat_ulong_t icount;
1546        compat_ulong_t ocount;
1547        compat_ulong_t ibytes;
1548        compat_ulong_t obytes;
1549};
1550
1551int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1552{
1553        struct compat_sioc_sg_req sr;
1554        struct compat_sioc_vif_req vr;
1555        struct vif_device *vif;
1556        struct mfc_cache *c;
1557        struct net *net = sock_net(sk);
1558        struct mr_table *mrt;
1559
1560        mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1561        if (mrt == NULL)
1562                return -ENOENT;
1563
1564        switch (cmd) {
1565        case SIOCGETVIFCNT:
1566                if (copy_from_user(&vr, arg, sizeof(vr)))
1567                        return -EFAULT;
1568                if (vr.vifi >= mrt->maxvif)
1569                        return -EINVAL;
1570                read_lock(&mrt_lock);
1571                vif = &mrt->vif_table[vr.vifi];
1572                if (VIF_EXISTS(mrt, vr.vifi)) {
1573                        vr.icount = vif->pkt_in;
1574                        vr.ocount = vif->pkt_out;
1575                        vr.ibytes = vif->bytes_in;
1576                        vr.obytes = vif->bytes_out;
1577                        read_unlock(&mrt_lock);
1578
1579                        if (copy_to_user(arg, &vr, sizeof(vr)))
1580                                return -EFAULT;
1581                        return 0;
1582                }
1583                read_unlock(&mrt_lock);
1584                return -EADDRNOTAVAIL;
1585        case SIOCGETSGCNT:
1586                if (copy_from_user(&sr, arg, sizeof(sr)))
1587                        return -EFAULT;
1588
1589                rcu_read_lock();
1590                c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1591                if (c) {
1592                        sr.pktcnt = c->mfc_un.res.pkt;
1593                        sr.bytecnt = c->mfc_un.res.bytes;
1594                        sr.wrong_if = c->mfc_un.res.wrong_if;
1595                        rcu_read_unlock();
1596
1597                        if (copy_to_user(arg, &sr, sizeof(sr)))
1598                                return -EFAULT;
1599                        return 0;
1600                }
1601                rcu_read_unlock();
1602                return -EADDRNOTAVAIL;
1603        default:
1604                return -ENOIOCTLCMD;
1605        }
1606}
1607#endif
1608
1609
1610static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1611{
1612        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1613        struct net *net = dev_net(dev);
1614        struct mr_table *mrt;
1615        struct vif_device *v;
1616        int ct;
1617
1618        if (event != NETDEV_UNREGISTER)
1619                return NOTIFY_DONE;
1620
1621        ipmr_for_each_table(mrt, net) {
1622                v = &mrt->vif_table[0];
1623                for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1624                        if (v->dev == dev)
1625                                vif_delete(mrt, ct, 1, NULL);
1626                }
1627        }
1628        return NOTIFY_DONE;
1629}
1630
1631
1632static struct notifier_block ip_mr_notifier = {
1633        .notifier_call = ipmr_device_event,
1634};
1635
1636/*
1637 *      Encapsulate a packet by attaching a valid IPIP header to it.
1638 *      This avoids tunnel drivers and other mess and gives us the speed so
1639 *      important for multicast video.
1640 */
1641
1642static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1643{
1644        struct iphdr *iph;
1645        const struct iphdr *old_iph = ip_hdr(skb);
1646
1647        skb_push(skb, sizeof(struct iphdr));
1648        skb->transport_header = skb->network_header;
1649        skb_reset_network_header(skb);
1650        iph = ip_hdr(skb);
1651
1652        iph->version    =       4;
1653        iph->tos        =       old_iph->tos;
1654        iph->ttl        =       old_iph->ttl;
1655        iph->frag_off   =       0;
1656        iph->daddr      =       daddr;
1657        iph->saddr      =       saddr;
1658        iph->protocol   =       IPPROTO_IPIP;
1659        iph->ihl        =       5;
1660        iph->tot_len    =       htons(skb->len);
1661        ip_select_ident(iph, skb_dst(skb), NULL);
1662        ip_send_check(iph);
1663
1664        memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1665        nf_reset(skb);
1666}
1667
1668static inline int ipmr_forward_finish(struct sk_buff *skb)
1669{
1670        struct ip_options *opt = &(IPCB(skb)->opt);
1671
1672        IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1673        IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1674
1675        if (unlikely(opt->optlen))
1676                ip_forward_options(skb);
1677
1678        return dst_output(skb);
1679}
1680
1681/*
1682 *      Processing handlers for ipmr_forward
1683 */
1684
1685static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1686                            struct sk_buff *skb, struct mfc_cache *c, int vifi)
1687{
1688        const struct iphdr *iph = ip_hdr(skb);
1689        struct vif_device *vif = &mrt->vif_table[vifi];
1690        struct net_device *dev;
1691        struct rtable *rt;
1692        struct flowi4 fl4;
1693        int    encap = 0;
1694
1695        if (vif->dev == NULL)
1696                goto out_free;
1697
1698#ifdef CONFIG_IP_PIMSM
1699        if (vif->flags & VIFF_REGISTER) {
1700                vif->pkt_out++;
1701                vif->bytes_out += skb->len;
1702                vif->dev->stats.tx_bytes += skb->len;
1703                vif->dev->stats.tx_packets++;
1704                ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1705                goto out_free;
1706        }
1707#endif
1708
1709        if (vif->flags & VIFF_TUNNEL) {
1710                rt = ip_route_output_ports(net, &fl4, NULL,
1711                                           vif->remote, vif->local,
1712                                           0, 0,
1713                                           IPPROTO_IPIP,
1714                                           RT_TOS(iph->tos), vif->link);
1715                if (IS_ERR(rt))
1716                        goto out_free;
1717                encap = sizeof(struct iphdr);
1718        } else {
1719                rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1720                                           0, 0,
1721                                           IPPROTO_IPIP,
1722                                           RT_TOS(iph->tos), vif->link);
1723                if (IS_ERR(rt))
1724                        goto out_free;
1725        }
1726
1727        dev = rt->dst.dev;
1728
1729        if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1730                /* Do not fragment multicasts. Alas, IPv4 does not
1731                 * allow to send ICMP, so that packets will disappear
1732                 * to blackhole.
1733                 */
1734
1735                IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1736                ip_rt_put(rt);
1737                goto out_free;
1738        }
1739
1740        encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1741
1742        if (skb_cow(skb, encap)) {
1743                ip_rt_put(rt);
1744                goto out_free;
1745        }
1746
1747        vif->pkt_out++;
1748        vif->bytes_out += skb->len;
1749
1750        skb_dst_drop(skb);
1751        skb_dst_set(skb, &rt->dst);
1752        ip_decrease_ttl(ip_hdr(skb));
1753
1754        /* FIXME: forward and output firewalls used to be called here.
1755         * What do we do with netfilter? -- RR
1756         */
1757        if (vif->flags & VIFF_TUNNEL) {
1758                ip_encap(skb, vif->local, vif->remote);
1759                /* FIXME: extra output firewall step used to be here. --RR */
1760                vif->dev->stats.tx_packets++;
1761                vif->dev->stats.tx_bytes += skb->len;
1762        }
1763
1764        IPCB(skb)->flags |= IPSKB_FORWARDED;
1765
1766        /*
1767         * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1768         * not only before forwarding, but after forwarding on all output
1769         * interfaces. It is clear, if mrouter runs a multicasting
1770         * program, it should receive packets not depending to what interface
1771         * program is joined.
1772         * If we will not make it, the program will have to join on all
1773         * interfaces. On the other hand, multihoming host (or router, but
1774         * not mrouter) cannot join to more than one interface - it will
1775         * result in receiving multiple packets.
1776         */
1777        NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1778                ipmr_forward_finish);
1779        return;
1780
1781out_free:
1782        kfree_skb(skb);
1783}
1784
1785static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1786{
1787        int ct;
1788
1789        for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1790                if (mrt->vif_table[ct].dev == dev)
1791                        break;
1792        }
1793        return ct;
1794}
1795
1796/* "local" means that we should preserve one skb (for local delivery) */
1797
1798static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1799                         struct sk_buff *skb, struct mfc_cache *cache,
1800                         int local)
1801{
1802        int psend = -1;
1803        int vif, ct;
1804        int true_vifi = ipmr_find_vif(mrt, skb->dev);
1805
1806        vif = cache->mfc_parent;
1807        cache->mfc_un.res.pkt++;
1808        cache->mfc_un.res.bytes += skb->len;
1809
1810        if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1811                struct mfc_cache *cache_proxy;
1812
1813                /* For an (*,G) entry, we only check that the incomming
1814                 * interface is part of the static tree.
1815                 */
1816                cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1817                if (cache_proxy &&
1818                    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1819                        goto forward;
1820        }
1821
1822        /*
1823         * Wrong interface: drop packet and (maybe) send PIM assert.
1824         */
1825        if (mrt->vif_table[vif].dev != skb->dev) {
1826                if (rt_is_output_route(skb_rtable(skb))) {
1827                        /* It is our own packet, looped back.
1828                         * Very complicated situation...
1829                         *
1830                         * The best workaround until routing daemons will be
1831                         * fixed is not to redistribute packet, if it was
1832                         * send through wrong interface. It means, that
1833                         * multicast applications WILL NOT work for
1834                         * (S,G), which have default multicast route pointing
1835                         * to wrong oif. In any case, it is not a good
1836                         * idea to use multicasting applications on router.
1837                         */
1838                        goto dont_forward;
1839                }
1840
1841                cache->mfc_un.res.wrong_if++;
1842
1843                if (true_vifi >= 0 && mrt->mroute_do_assert &&
1844                    /* pimsm uses asserts, when switching from RPT to SPT,
1845                     * so that we cannot check that packet arrived on an oif.
1846                     * It is bad, but otherwise we would need to move pretty
1847                     * large chunk of pimd to kernel. Ough... --ANK
1848                     */
1849                    (mrt->mroute_do_pim ||
1850                     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1851                    time_after(jiffies,
1852                               cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1853                        cache->mfc_un.res.last_assert = jiffies;
1854                        ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1855                }
1856                goto dont_forward;
1857        }
1858
1859forward:
1860        mrt->vif_table[vif].pkt_in++;
1861        mrt->vif_table[vif].bytes_in += skb->len;
1862
1863        /*
1864         *      Forward the frame
1865         */
1866        if (cache->mfc_origin == htonl(INADDR_ANY) &&
1867            cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1868                if (true_vifi >= 0 &&
1869                    true_vifi != cache->mfc_parent &&
1870                    ip_hdr(skb)->ttl >
1871                                cache->mfc_un.res.ttls[cache->mfc_parent]) {
1872                        /* It's an (*,*) entry and the packet is not coming from
1873                         * the upstream: forward the packet to the upstream
1874                         * only.
1875                         */
1876                        psend = cache->mfc_parent;
1877                        goto last_forward;
1878                }
1879                goto dont_forward;
1880        }
1881        for (ct = cache->mfc_un.res.maxvif - 1;
1882             ct >= cache->mfc_un.res.minvif; ct--) {
1883                /* For (*,G) entry, don't forward to the incoming interface */
1884                if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1885                     ct != true_vifi) &&
1886                    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1887                        if (psend != -1) {
1888                                struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1889
1890                                if (skb2)
1891                                        ipmr_queue_xmit(net, mrt, skb2, cache,
1892                                                        psend);
1893                        }
1894                        psend = ct;
1895                }
1896        }
1897last_forward:
1898        if (psend != -1) {
1899                if (local) {
1900                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1901
1902                        if (skb2)
1903                                ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1904                } else {
1905                        ipmr_queue_xmit(net, mrt, skb, cache, psend);
1906                        return 0;
1907                }
1908        }
1909
1910dont_forward:
1911        if (!local)
1912                kfree_skb(skb);
1913        return 0;
1914}
1915
1916static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1917{
1918        struct rtable *rt = skb_rtable(skb);
1919        struct iphdr *iph = ip_hdr(skb);
1920        struct flowi4 fl4 = {
1921                .daddr = iph->daddr,
1922                .saddr = iph->saddr,
1923                .flowi4_tos = RT_TOS(iph->tos),
1924                .flowi4_oif = (rt_is_output_route(rt) ?
1925                               skb->dev->ifindex : 0),
1926                .flowi4_iif = (rt_is_output_route(rt) ?
1927                               LOOPBACK_IFINDEX :
1928                               skb->dev->ifindex),
1929                .flowi4_mark = skb->mark,
1930        };
1931        struct mr_table *mrt;
1932        int err;
1933
1934        err = ipmr_fib_lookup(net, &fl4, &mrt);
1935        if (err)
1936                return ERR_PTR(err);
1937        return mrt;
1938}
1939
1940/*
1941 *      Multicast packets for forwarding arrive here
1942 *      Called with rcu_read_lock();
1943 */
1944
1945int ip_mr_input(struct sk_buff *skb)
1946{
1947        struct mfc_cache *cache;
1948        struct net *net = dev_net(skb->dev);
1949        int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1950        struct mr_table *mrt;
1951
1952        /* Packet is looped back after forward, it should not be
1953         * forwarded second time, but still can be delivered locally.
1954         */
1955        if (IPCB(skb)->flags & IPSKB_FORWARDED)
1956                goto dont_forward;
1957
1958        mrt = ipmr_rt_fib_lookup(net, skb);
1959        if (IS_ERR(mrt)) {
1960                kfree_skb(skb);
1961                return PTR_ERR(mrt);
1962        }
1963        if (!local) {
1964                if (IPCB(skb)->opt.router_alert) {
1965                        if (ip_call_ra_chain(skb))
1966                                return 0;
1967                } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1968                        /* IGMPv1 (and broken IGMPv2 implementations sort of
1969                         * Cisco IOS <= 11.2(8)) do not put router alert
1970                         * option to IGMP packets destined to routable
1971                         * groups. It is very bad, because it means
1972                         * that we can forward NO IGMP messages.
1973                         */
1974                        struct sock *mroute_sk;
1975
1976                        mroute_sk = rcu_dereference(mrt->mroute_sk);
1977                        if (mroute_sk) {
1978                                nf_reset(skb);
1979                                raw_rcv(mroute_sk, skb);
1980                                return 0;
1981                        }
1982                    }
1983        }
1984
1985        /* already under rcu_read_lock() */
1986        cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1987        if (cache == NULL) {
1988                int vif = ipmr_find_vif(mrt, skb->dev);
1989
1990                if (vif >= 0)
1991                        cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1992                                                    vif);
1993        }
1994
1995        /*
1996         *      No usable cache entry
1997         */
1998        if (cache == NULL) {
1999                int vif;
2000
2001                if (local) {
2002                        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2003                        ip_local_deliver(skb);
2004                        if (skb2 == NULL)
2005                                return -ENOBUFS;
2006                        skb = skb2;
2007                }
2008
2009                read_lock(&mrt_lock);
2010                vif = ipmr_find_vif(mrt, skb->dev);
2011                if (vif >= 0) {
2012                        int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2013                        read_unlock(&mrt_lock);
2014
2015                        return err2;
2016                }
2017                read_unlock(&mrt_lock);
2018                kfree_skb(skb);
2019                return -ENODEV;
2020        }
2021
2022        read_lock(&mrt_lock);
2023        ip_mr_forward(net, mrt, skb, cache, local);
2024        read_unlock(&mrt_lock);
2025
2026        if (local)
2027                return ip_local_deliver(skb);
2028
2029        return 0;
2030
2031dont_forward:
2032        if (local)
2033                return ip_local_deliver(skb);
2034        kfree_skb(skb);
2035        return 0;
2036}
2037
2038#ifdef CONFIG_IP_PIMSM
2039/* called with rcu_read_lock() */
2040static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2041                     unsigned int pimlen)
2042{
2043        struct net_device *reg_dev = NULL;
2044        struct iphdr *encap;
2045
2046        encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2047        /*
2048         * Check that:
2049         * a. packet is really sent to a multicast group
2050         * b. packet is not a NULL-REGISTER
2051         * c. packet is not truncated
2052         */
2053        if (!ipv4_is_multicast(encap->daddr) ||
2054            encap->tot_len == 0 ||
2055            ntohs(encap->tot_len) + pimlen > skb->len)
2056                return 1;
2057
2058        read_lock(&mrt_lock);
2059        if (mrt->mroute_reg_vif_num >= 0)
2060                reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2061        read_unlock(&mrt_lock);
2062
2063        if (reg_dev == NULL)
2064                return 1;
2065
2066        skb->mac_header = skb->network_header;
2067        skb_pull(skb, (u8 *)encap - skb->data);
2068        skb_reset_network_header(skb);
2069        skb->protocol = htons(ETH_P_IP);
2070        skb->ip_summed = CHECKSUM_NONE;
2071        skb->pkt_type = PACKET_HOST;
2072
2073        skb_tunnel_rx(skb, reg_dev);
2074
2075        netif_rx(skb);
2076
2077        return NET_RX_SUCCESS;
2078}
2079#endif
2080
2081#ifdef CONFIG_IP_PIMSM_V1
2082/*
2083 * Handle IGMP messages of PIMv1
2084 */
2085
2086int pim_rcv_v1(struct sk_buff *skb)
2087{
2088        struct igmphdr *pim;
2089        struct net *net = dev_net(skb->dev);
2090        struct mr_table *mrt;
2091
2092        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2093                goto drop;
2094
2095        pim = igmp_hdr(skb);
2096
2097        mrt = ipmr_rt_fib_lookup(net, skb);
2098        if (IS_ERR(mrt))
2099                goto drop;
2100        if (!mrt->mroute_do_pim ||
2101            pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2102                goto drop;
2103
2104        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2105drop:
2106                kfree_skb(skb);
2107        }
2108        return 0;
2109}
2110#endif
2111
2112#ifdef CONFIG_IP_PIMSM_V2
2113static int pim_rcv(struct sk_buff *skb)
2114{
2115        struct pimreghdr *pim;
2116        struct net *net = dev_net(skb->dev);
2117        struct mr_table *mrt;
2118
2119        if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2120                goto drop;
2121
2122        pim = (struct pimreghdr *)skb_transport_header(skb);
2123        if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2124            (pim->flags & PIM_NULL_REGISTER) ||
2125            (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2126             csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2127                goto drop;
2128
2129        mrt = ipmr_rt_fib_lookup(net, skb);
2130        if (IS_ERR(mrt))
2131                goto drop;
2132        if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2133drop:
2134                kfree_skb(skb);
2135        }
2136        return 0;
2137}
2138#endif
2139
2140static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2141                              struct mfc_cache *c, struct rtmsg *rtm)
2142{
2143        int ct;
2144        struct rtnexthop *nhp;
2145        struct nlattr *mp_attr;
2146        struct rta_mfc_stats mfcs;
2147
2148        /* If cache is unresolved, don't try to parse IIF and OIF */
2149        if (c->mfc_parent >= MAXVIFS)
2150                return -ENOENT;
2151
2152        if (VIF_EXISTS(mrt, c->mfc_parent) &&
2153            nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2154                return -EMSGSIZE;
2155
2156        if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2157                return -EMSGSIZE;
2158
2159        for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2160                if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2161                        if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2162                                nla_nest_cancel(skb, mp_attr);
2163                                return -EMSGSIZE;
2164                        }
2165
2166                        nhp->rtnh_flags = 0;
2167                        nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2168                        nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2169                        nhp->rtnh_len = sizeof(*nhp);
2170                }
2171        }
2172
2173        nla_nest_end(skb, mp_attr);
2174
2175        mfcs.mfcs_packets = c->mfc_un.res.pkt;
2176        mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2177        mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2178        if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2179                return -EMSGSIZE;
2180
2181        rtm->rtm_type = RTN_MULTICAST;
2182        return 1;
2183}
2184
2185int ipmr_get_route(struct net *net, struct sk_buff *skb,
2186                   __be32 saddr, __be32 daddr,
2187                   struct rtmsg *rtm, int nowait)
2188{
2189        struct mfc_cache *cache;
2190        struct mr_table *mrt;
2191        int err;
2192
2193        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2194        if (mrt == NULL)
2195                return -ENOENT;
2196
2197        rcu_read_lock();
2198        cache = ipmr_cache_find(mrt, saddr, daddr);
2199        if (cache == NULL && skb->dev) {
2200                int vif = ipmr_find_vif(mrt, skb->dev);
2201
2202                if (vif >= 0)
2203                        cache = ipmr_cache_find_any(mrt, daddr, vif);
2204        }
2205        if (cache == NULL) {
2206                struct sk_buff *skb2;
2207                struct iphdr *iph;
2208                struct net_device *dev;
2209                int vif = -1;
2210
2211                if (nowait) {
2212                        rcu_read_unlock();
2213                        return -EAGAIN;
2214                }
2215
2216                dev = skb->dev;
2217                read_lock(&mrt_lock);
2218                if (dev)
2219                        vif = ipmr_find_vif(mrt, dev);
2220                if (vif < 0) {
2221                        read_unlock(&mrt_lock);
2222                        rcu_read_unlock();
2223                        return -ENODEV;
2224                }
2225                skb2 = skb_clone(skb, GFP_ATOMIC);
2226                if (!skb2) {
2227                        read_unlock(&mrt_lock);
2228                        rcu_read_unlock();
2229                        return -ENOMEM;
2230                }
2231
2232                skb_push(skb2, sizeof(struct iphdr));
2233                skb_reset_network_header(skb2);
2234                iph = ip_hdr(skb2);
2235                iph->ihl = sizeof(struct iphdr) >> 2;
2236                iph->saddr = saddr;
2237                iph->daddr = daddr;
2238                iph->version = 0;
2239                err = ipmr_cache_unresolved(mrt, vif, skb2);
2240                read_unlock(&mrt_lock);
2241                rcu_read_unlock();
2242                return err;
2243        }
2244
2245        read_lock(&mrt_lock);
2246        if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2247                cache->mfc_flags |= MFC_NOTIFY;
2248        err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2249        read_unlock(&mrt_lock);
2250        rcu_read_unlock();
2251        return err;
2252}
2253
2254static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2255                            u32 portid, u32 seq, struct mfc_cache *c, int cmd)
2256{
2257        struct nlmsghdr *nlh;
2258        struct rtmsg *rtm;
2259        int err;
2260
2261        nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), NLM_F_MULTI);
2262        if (nlh == NULL)
2263                return -EMSGSIZE;
2264
2265        rtm = nlmsg_data(nlh);
2266        rtm->rtm_family   = RTNL_FAMILY_IPMR;
2267        rtm->rtm_dst_len  = 32;
2268        rtm->rtm_src_len  = 32;
2269        rtm->rtm_tos      = 0;
2270        rtm->rtm_table    = mrt->id;
2271        if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2272                goto nla_put_failure;
2273        rtm->rtm_type     = RTN_MULTICAST;
2274        rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2275        if (c->mfc_flags & MFC_STATIC)
2276                rtm->rtm_protocol = RTPROT_STATIC;
2277        else
2278                rtm->rtm_protocol = RTPROT_MROUTED;
2279        rtm->rtm_flags    = 0;
2280
2281        if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2282            nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2283                goto nla_put_failure;
2284        err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2285        /* do not break the dump if cache is unresolved */
2286        if (err < 0 && err != -ENOENT)
2287                goto nla_put_failure;
2288
2289        return nlmsg_end(skb, nlh);
2290
2291nla_put_failure:
2292        nlmsg_cancel(skb, nlh);
2293        return -EMSGSIZE;
2294}
2295
2296static size_t mroute_msgsize(bool unresolved, int maxvif)
2297{
2298        size_t len =
2299                NLMSG_ALIGN(sizeof(struct rtmsg))
2300                + nla_total_size(4)     /* RTA_TABLE */
2301                + nla_total_size(4)     /* RTA_SRC */
2302                + nla_total_size(4)     /* RTA_DST */
2303                ;
2304
2305        if (!unresolved)
2306                len = len
2307                      + nla_total_size(4)       /* RTA_IIF */
2308                      + nla_total_size(0)       /* RTA_MULTIPATH */
2309                      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2310                                                /* RTA_MFC_STATS */
2311                      + nla_total_size(sizeof(struct rta_mfc_stats))
2312                ;
2313
2314        return len;
2315}
2316
2317static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2318                                 int cmd)
2319{
2320        struct net *net = read_pnet(&mrt->net);
2321        struct sk_buff *skb;
2322        int err = -ENOBUFS;
2323
2324        skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2325                        GFP_ATOMIC);
2326        if (skb == NULL)
2327                goto errout;
2328
2329        err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd);
2330        if (err < 0)
2331                goto errout;
2332
2333        rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2334        return;
2335
2336errout:
2337        kfree_skb(skb);
2338        if (err < 0)
2339                rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2340}
2341
2342static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2343{
2344        struct net *net = sock_net(skb->sk);
2345        struct mr_table *mrt;
2346        struct mfc_cache *mfc;
2347        unsigned int t = 0, s_t;
2348        unsigned int h = 0, s_h;
2349        unsigned int e = 0, s_e;
2350
2351        s_t = cb->args[0];
2352        s_h = cb->args[1];
2353        s_e = cb->args[2];
2354
2355        rcu_read_lock();
2356        ipmr_for_each_table(mrt, net) {
2357                if (t < s_t)
2358                        goto next_table;
2359                if (t > s_t)
2360                        s_h = 0;
2361                for (h = s_h; h < MFC_LINES; h++) {
2362                        list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2363                                if (e < s_e)
2364                                        goto next_entry;
2365                                if (ipmr_fill_mroute(mrt, skb,
2366                                                     NETLINK_CB(cb->skb).portid,
2367                                                     cb->nlh->nlmsg_seq,
2368                                                     mfc, RTM_NEWROUTE) < 0)
2369                                        goto done;
2370next_entry:
2371                                e++;
2372                        }
2373                        e = s_e = 0;
2374                }
2375                spin_lock_bh(&mfc_unres_lock);
2376                list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2377                        if (e < s_e)
2378                                goto next_entry2;
2379                        if (ipmr_fill_mroute(mrt, skb,
2380                                             NETLINK_CB(cb->skb).portid,
2381                                             cb->nlh->nlmsg_seq,
2382                                             mfc, RTM_NEWROUTE) < 0) {
2383                                spin_unlock_bh(&mfc_unres_lock);
2384                                goto done;
2385                        }
2386next_entry2:
2387                        e++;
2388                }
2389                spin_unlock_bh(&mfc_unres_lock);
2390                e = s_e = 0;
2391                s_h = 0;
2392next_table:
2393                t++;
2394        }
2395done:
2396        rcu_read_unlock();
2397
2398        cb->args[2] = e;
2399        cb->args[1] = h;
2400        cb->args[0] = t;
2401
2402        return skb->len;
2403}
2404
2405#ifdef CONFIG_PROC_FS
2406/*
2407 *      The /proc interfaces to multicast routing :
2408 *      /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2409 */
2410struct ipmr_vif_iter {
2411        struct seq_net_private p;
2412        struct mr_table *mrt;
2413        int ct;
2414};
2415
2416static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2417                                           struct ipmr_vif_iter *iter,
2418                                           loff_t pos)
2419{
2420        struct mr_table *mrt = iter->mrt;
2421
2422        for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2423                if (!VIF_EXISTS(mrt, iter->ct))
2424                        continue;
2425                if (pos-- == 0)
2426                        return &mrt->vif_table[iter->ct];
2427        }
2428        return NULL;
2429}
2430
2431static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2432        __acquires(mrt_lock)
2433{
2434        struct ipmr_vif_iter *iter = seq->private;
2435        struct net *net = seq_file_net(seq);
2436        struct mr_table *mrt;
2437
2438        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2439        if (mrt == NULL)
2440                return ERR_PTR(-ENOENT);
2441
2442        iter->mrt = mrt;
2443
2444        read_lock(&mrt_lock);
2445        return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2446                : SEQ_START_TOKEN;
2447}
2448
2449static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450{
2451        struct ipmr_vif_iter *iter = seq->private;
2452        struct net *net = seq_file_net(seq);
2453        struct mr_table *mrt = iter->mrt;
2454
2455        ++*pos;
2456        if (v == SEQ_START_TOKEN)
2457                return ipmr_vif_seq_idx(net, iter, 0);
2458
2459        while (++iter->ct < mrt->maxvif) {
2460                if (!VIF_EXISTS(mrt, iter->ct))
2461                        continue;
2462                return &mrt->vif_table[iter->ct];
2463        }
2464        return NULL;
2465}
2466
2467static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2468        __releases(mrt_lock)
2469{
2470        read_unlock(&mrt_lock);
2471}
2472
2473static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2474{
2475        struct ipmr_vif_iter *iter = seq->private;
2476        struct mr_table *mrt = iter->mrt;
2477
2478        if (v == SEQ_START_TOKEN) {
2479                seq_puts(seq,
2480                         "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2481        } else {
2482                const struct vif_device *vif = v;
2483                const char *name =  vif->dev ? vif->dev->name : "none";
2484
2485                seq_printf(seq,
2486                           "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2487                           vif - mrt->vif_table,
2488                           name, vif->bytes_in, vif->pkt_in,
2489                           vif->bytes_out, vif->pkt_out,
2490                           vif->flags, vif->local, vif->remote);
2491        }
2492        return 0;
2493}
2494
2495static const struct seq_operations ipmr_vif_seq_ops = {
2496        .start = ipmr_vif_seq_start,
2497        .next  = ipmr_vif_seq_next,
2498        .stop  = ipmr_vif_seq_stop,
2499        .show  = ipmr_vif_seq_show,
2500};
2501
2502static int ipmr_vif_open(struct inode *inode, struct file *file)
2503{
2504        return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2505                            sizeof(struct ipmr_vif_iter));
2506}
2507
2508static const struct file_operations ipmr_vif_fops = {
2509        .owner   = THIS_MODULE,
2510        .open    = ipmr_vif_open,
2511        .read    = seq_read,
2512        .llseek  = seq_lseek,
2513        .release = seq_release_net,
2514};
2515
2516struct ipmr_mfc_iter {
2517        struct seq_net_private p;
2518        struct mr_table *mrt;
2519        struct list_head *cache;
2520        int ct;
2521};
2522
2523
2524static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2525                                          struct ipmr_mfc_iter *it, loff_t pos)
2526{
2527        struct mr_table *mrt = it->mrt;
2528        struct mfc_cache *mfc;
2529
2530        rcu_read_lock();
2531        for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2532                it->cache = &mrt->mfc_cache_array[it->ct];
2533                list_for_each_entry_rcu(mfc, it->cache, list)
2534                        if (pos-- == 0)
2535                                return mfc;
2536        }
2537        rcu_read_unlock();
2538
2539        spin_lock_bh(&mfc_unres_lock);
2540        it->cache = &mrt->mfc_unres_queue;
2541        list_for_each_entry(mfc, it->cache, list)
2542                if (pos-- == 0)
2543                        return mfc;
2544        spin_unlock_bh(&mfc_unres_lock);
2545
2546        it->cache = NULL;
2547        return NULL;
2548}
2549
2550
2551static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2552{
2553        struct ipmr_mfc_iter *it = seq->private;
2554        struct net *net = seq_file_net(seq);
2555        struct mr_table *mrt;
2556
2557        mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2558        if (mrt == NULL)
2559                return ERR_PTR(-ENOENT);
2560
2561        it->mrt = mrt;
2562        it->cache = NULL;
2563        it->ct = 0;
2564        return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2565                : SEQ_START_TOKEN;
2566}
2567
2568static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2569{
2570        struct mfc_cache *mfc = v;
2571        struct ipmr_mfc_iter *it = seq->private;
2572        struct net *net = seq_file_net(seq);
2573        struct mr_table *mrt = it->mrt;
2574
2575        ++*pos;
2576
2577        if (v == SEQ_START_TOKEN)
2578                return ipmr_mfc_seq_idx(net, seq->private, 0);
2579
2580        if (mfc->list.next != it->cache)
2581                return list_entry(mfc->list.next, struct mfc_cache, list);
2582
2583        if (it->cache == &mrt->mfc_unres_queue)
2584                goto end_of_list;
2585
2586        BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2587
2588        while (++it->ct < MFC_LINES) {
2589                it->cache = &mrt->mfc_cache_array[it->ct];
2590                if (list_empty(it->cache))
2591                        continue;
2592                return list_first_entry(it->cache, struct mfc_cache, list);
2593        }
2594
2595        /* exhausted cache_array, show unresolved */
2596        rcu_read_unlock();
2597        it->cache = &mrt->mfc_unres_queue;
2598        it->ct = 0;
2599
2600        spin_lock_bh(&mfc_unres_lock);
2601        if (!list_empty(it->cache))
2602                return list_first_entry(it->cache, struct mfc_cache, list);
2603
2604end_of_list:
2605        spin_unlock_bh(&mfc_unres_lock);
2606        it->cache = NULL;
2607
2608        return NULL;
2609}
2610
2611static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2612{
2613        struct ipmr_mfc_iter *it = seq->private;
2614        struct mr_table *mrt = it->mrt;
2615
2616        if (it->cache == &mrt->mfc_unres_queue)
2617                spin_unlock_bh(&mfc_unres_lock);
2618        else if (it->cache == &mrt->mfc_cache_array[it->ct])
2619                rcu_read_unlock();
2620}
2621
2622static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2623{
2624        int n;
2625
2626        if (v == SEQ_START_TOKEN) {
2627                seq_puts(seq,
2628                 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2629        } else {
2630                const struct mfc_cache *mfc = v;
2631                const struct ipmr_mfc_iter *it = seq->private;
2632                const struct mr_table *mrt = it->mrt;
2633
2634                seq_printf(seq, "%08X %08X %-3hd",
2635                           (__force u32) mfc->mfc_mcastgrp,
2636                           (__force u32) mfc->mfc_origin,
2637                           mfc->mfc_parent);
2638
2639                if (it->cache != &mrt->mfc_unres_queue) {
2640                        seq_printf(seq, " %8lu %8lu %8lu",
2641                                   mfc->mfc_un.res.pkt,
2642                                   mfc->mfc_un.res.bytes,
2643                                   mfc->mfc_un.res.wrong_if);
2644                        for (n = mfc->mfc_un.res.minvif;
2645                             n < mfc->mfc_un.res.maxvif; n++) {
2646                                if (VIF_EXISTS(mrt, n) &&
2647                                    mfc->mfc_un.res.ttls[n] < 255)
2648                                        seq_printf(seq,
2649                                           " %2d:%-3d",
2650                                           n, mfc->mfc_un.res.ttls[n]);
2651                        }
2652                } else {
2653                        /* unresolved mfc_caches don't contain
2654                         * pkt, bytes and wrong_if values
2655                         */
2656                        seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2657                }
2658                seq_putc(seq, '\n');
2659        }
2660        return 0;
2661}
2662
2663static const struct seq_operations ipmr_mfc_seq_ops = {
2664        .start = ipmr_mfc_seq_start,
2665        .next  = ipmr_mfc_seq_next,
2666        .stop  = ipmr_mfc_seq_stop,
2667        .show  = ipmr_mfc_seq_show,
2668};
2669
2670static int ipmr_mfc_open(struct inode *inode, struct file *file)
2671{
2672        return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2673                            sizeof(struct ipmr_mfc_iter));
2674}
2675
2676static const struct file_operations ipmr_mfc_fops = {
2677        .owner   = THIS_MODULE,
2678        .open    = ipmr_mfc_open,
2679        .read    = seq_read,
2680        .llseek  = seq_lseek,
2681        .release = seq_release_net,
2682};
2683#endif
2684
2685#ifdef CONFIG_IP_PIMSM_V2
2686static const struct net_protocol pim_protocol = {
2687        .handler        =       pim_rcv,
2688        .netns_ok       =       1,
2689};
2690#endif
2691
2692
2693/*
2694 *      Setup for IP multicast routing
2695 */
2696static int __net_init ipmr_net_init(struct net *net)
2697{
2698        int err;
2699
2700        err = ipmr_rules_init(net);
2701        if (err < 0)
2702                goto fail;
2703
2704#ifdef CONFIG_PROC_FS
2705        err = -ENOMEM;
2706        if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2707                goto proc_vif_fail;
2708        if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2709                goto proc_cache_fail;
2710#endif
2711        return 0;
2712
2713#ifdef CONFIG_PROC_FS
2714proc_cache_fail:
2715        remove_proc_entry("ip_mr_vif", net->proc_net);
2716proc_vif_fail:
2717        ipmr_rules_exit(net);
2718#endif
2719fail:
2720        return err;
2721}
2722
2723static void __net_exit ipmr_net_exit(struct net *net)
2724{
2725#ifdef CONFIG_PROC_FS
2726        remove_proc_entry("ip_mr_cache", net->proc_net);
2727        remove_proc_entry("ip_mr_vif", net->proc_net);
2728#endif
2729        ipmr_rules_exit(net);
2730}
2731
2732static struct pernet_operations ipmr_net_ops = {
2733        .init = ipmr_net_init,
2734        .exit = ipmr_net_exit,
2735};
2736
2737int __init ip_mr_init(void)
2738{
2739        int err;
2740
2741        mrt_cachep = kmem_cache_create("ip_mrt_cache",
2742                                       sizeof(struct mfc_cache),
2743                                       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2744                                       NULL);
2745        if (!mrt_cachep)
2746                return -ENOMEM;
2747
2748        err = register_pernet_subsys(&ipmr_net_ops);
2749        if (err)
2750                goto reg_pernet_fail;
2751
2752        err = register_netdevice_notifier(&ip_mr_notifier);
2753        if (err)
2754                goto reg_notif_fail;
2755#ifdef CONFIG_IP_PIMSM_V2
2756        if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2757                pr_err("%s: can't add PIM protocol\n", __func__);
2758                err = -EAGAIN;
2759                goto add_proto_fail;
2760        }
2761#endif
2762        rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2763                      NULL, ipmr_rtm_dumproute, NULL);
2764        return 0;
2765
2766#ifdef CONFIG_IP_PIMSM_V2
2767add_proto_fail:
2768        unregister_netdevice_notifier(&ip_mr_notifier);
2769#endif
2770reg_notif_fail:
2771        unregister_pernet_subsys(&ipmr_net_ops);
2772reg_pernet_fail:
2773        kmem_cache_destroy(mrt_cachep);
2774        return err;
2775}
2776