linux/net/ipv4/tcp_input.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *              Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *              Pedro Roque     :       Fast Retransmit/Recovery.
  24 *                                      Two receive queues.
  25 *                                      Retransmit queue handled by TCP.
  26 *                                      Better retransmit timer handling.
  27 *                                      New congestion avoidance.
  28 *                                      Header prediction.
  29 *                                      Variable renaming.
  30 *
  31 *              Eric            :       Fast Retransmit.
  32 *              Randy Scott     :       MSS option defines.
  33 *              Eric Schenk     :       Fixes to slow start algorithm.
  34 *              Eric Schenk     :       Yet another double ACK bug.
  35 *              Eric Schenk     :       Delayed ACK bug fixes.
  36 *              Eric Schenk     :       Floyd style fast retrans war avoidance.
  37 *              David S. Miller :       Don't allow zero congestion window.
  38 *              Eric Schenk     :       Fix retransmitter so that it sends
  39 *                                      next packet on ack of previous packet.
  40 *              Andi Kleen      :       Moved open_request checking here
  41 *                                      and process RSTs for open_requests.
  42 *              Andi Kleen      :       Better prune_queue, and other fixes.
  43 *              Andrey Savochkin:       Fix RTT measurements in the presence of
  44 *                                      timestamps.
  45 *              Andrey Savochkin:       Check sequence numbers correctly when
  46 *                                      removing SACKs due to in sequence incoming
  47 *                                      data segments.
  48 *              Andi Kleen:             Make sure we never ack data there is not
  49 *                                      enough room for. Also make this condition
  50 *                                      a fatal error if it might still happen.
  51 *              Andi Kleen:             Add tcp_measure_rcv_mss to make
  52 *                                      connections with MSS<min(MTU,ann. MSS)
  53 *                                      work without delayed acks.
  54 *              Andi Kleen:             Process packets with PSH set in the
  55 *                                      fast path.
  56 *              J Hadi Salim:           ECN support
  57 *              Andrei Gurtov,
  58 *              Pasi Sarolahti,
  59 *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
  60 *                                      engine. Lots of bugs are found.
  61 *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <net/dst.h>
  72#include <net/tcp.h>
  73#include <net/inet_common.h>
  74#include <linux/ipsec.h>
  75#include <asm/unaligned.h>
  76#include <net/netdma.h>
  77
  78int sysctl_tcp_timestamps __read_mostly = 1;
  79int sysctl_tcp_window_scaling __read_mostly = 1;
  80int sysctl_tcp_sack __read_mostly = 1;
  81int sysctl_tcp_fack __read_mostly = 1;
  82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  83EXPORT_SYMBOL(sysctl_tcp_reordering);
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 1;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88
  89/* rfc5961 challenge ack rate limiting */
  90int sysctl_tcp_challenge_ack_limit = 100;
  91
  92int sysctl_tcp_stdurg __read_mostly;
  93int sysctl_tcp_rfc1337 __read_mostly;
  94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  95int sysctl_tcp_frto __read_mostly = 2;
  96
  97int sysctl_tcp_thin_dupack __read_mostly;
  98
  99int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 100int sysctl_tcp_early_retrans __read_mostly = 3;
 101
 102#define FLAG_DATA               0x01 /* Incoming frame contained data.          */
 103#define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
 104#define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
 105#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
 106#define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
 107#define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
 108#define FLAG_ECE                0x40 /* ECE in this ACK                         */
 109#define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
 110#define FLAG_ORIG_SACK_ACKED    0x200 /* Never retransmitted data are (s)acked  */
 111#define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 112#define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
 113#define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
 114#define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
 115
 116#define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 117#define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 118#define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
 119#define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
 120
 121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 123
 124/* Adapt the MSS value used to make delayed ack decision to the
 125 * real world.
 126 */
 127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 128{
 129        struct inet_connection_sock *icsk = inet_csk(sk);
 130        const unsigned int lss = icsk->icsk_ack.last_seg_size;
 131        unsigned int len;
 132
 133        icsk->icsk_ack.last_seg_size = 0;
 134
 135        /* skb->len may jitter because of SACKs, even if peer
 136         * sends good full-sized frames.
 137         */
 138        len = skb_shinfo(skb)->gso_size ? : skb->len;
 139        if (len >= icsk->icsk_ack.rcv_mss) {
 140                icsk->icsk_ack.rcv_mss = len;
 141        } else {
 142                /* Otherwise, we make more careful check taking into account,
 143                 * that SACKs block is variable.
 144                 *
 145                 * "len" is invariant segment length, including TCP header.
 146                 */
 147                len += skb->data - skb_transport_header(skb);
 148                if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 149                    /* If PSH is not set, packet should be
 150                     * full sized, provided peer TCP is not badly broken.
 151                     * This observation (if it is correct 8)) allows
 152                     * to handle super-low mtu links fairly.
 153                     */
 154                    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 155                     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 156                        /* Subtract also invariant (if peer is RFC compliant),
 157                         * tcp header plus fixed timestamp option length.
 158                         * Resulting "len" is MSS free of SACK jitter.
 159                         */
 160                        len -= tcp_sk(sk)->tcp_header_len;
 161                        icsk->icsk_ack.last_seg_size = len;
 162                        if (len == lss) {
 163                                icsk->icsk_ack.rcv_mss = len;
 164                                return;
 165                        }
 166                }
 167                if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 168                        icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 169                icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 170        }
 171}
 172
 173static void tcp_incr_quickack(struct sock *sk)
 174{
 175        struct inet_connection_sock *icsk = inet_csk(sk);
 176        unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 177
 178        if (quickacks == 0)
 179                quickacks = 2;
 180        if (quickacks > icsk->icsk_ack.quick)
 181                icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 182}
 183
 184static void tcp_enter_quickack_mode(struct sock *sk)
 185{
 186        struct inet_connection_sock *icsk = inet_csk(sk);
 187        tcp_incr_quickack(sk);
 188        icsk->icsk_ack.pingpong = 0;
 189        icsk->icsk_ack.ato = TCP_ATO_MIN;
 190}
 191
 192/* Send ACKs quickly, if "quick" count is not exhausted
 193 * and the session is not interactive.
 194 */
 195
 196static inline bool tcp_in_quickack_mode(const struct sock *sk)
 197{
 198        const struct inet_connection_sock *icsk = inet_csk(sk);
 199
 200        return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
 201}
 202
 203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
 204{
 205        if (tp->ecn_flags & TCP_ECN_OK)
 206                tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 207}
 208
 209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 210{
 211        if (tcp_hdr(skb)->cwr)
 212                tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 213}
 214
 215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
 216{
 217        tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 218}
 219
 220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 221{
 222        if (!(tp->ecn_flags & TCP_ECN_OK))
 223                return;
 224
 225        switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 226        case INET_ECN_NOT_ECT:
 227                /* Funny extension: if ECT is not set on a segment,
 228                 * and we already seen ECT on a previous segment,
 229                 * it is probably a retransmit.
 230                 */
 231                if (tp->ecn_flags & TCP_ECN_SEEN)
 232                        tcp_enter_quickack_mode((struct sock *)tp);
 233                break;
 234        case INET_ECN_CE:
 235                if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 236                        /* Better not delay acks, sender can have a very low cwnd */
 237                        tcp_enter_quickack_mode((struct sock *)tp);
 238                        tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 239                }
 240                /* fallinto */
 241        default:
 242                tp->ecn_flags |= TCP_ECN_SEEN;
 243        }
 244}
 245
 246static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 247{
 248        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 249                tp->ecn_flags &= ~TCP_ECN_OK;
 250}
 251
 252static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 253{
 254        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 255                tp->ecn_flags &= ~TCP_ECN_OK;
 256}
 257
 258static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 259{
 260        if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 261                return true;
 262        return false;
 263}
 264
 265/* Buffer size and advertised window tuning.
 266 *
 267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 268 */
 269
 270static void tcp_fixup_sndbuf(struct sock *sk)
 271{
 272        int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
 273
 274        sndmem *= TCP_INIT_CWND;
 275        if (sk->sk_sndbuf < sndmem)
 276                sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 277}
 278
 279/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 280 *
 281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 282 * forward and advertised in receiver window (tp->rcv_wnd) and
 283 * "application buffer", required to isolate scheduling/application
 284 * latencies from network.
 285 * window_clamp is maximal advertised window. It can be less than
 286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 287 * is reserved for "application" buffer. The less window_clamp is
 288 * the smoother our behaviour from viewpoint of network, but the lower
 289 * throughput and the higher sensitivity of the connection to losses. 8)
 290 *
 291 * rcv_ssthresh is more strict window_clamp used at "slow start"
 292 * phase to predict further behaviour of this connection.
 293 * It is used for two goals:
 294 * - to enforce header prediction at sender, even when application
 295 *   requires some significant "application buffer". It is check #1.
 296 * - to prevent pruning of receive queue because of misprediction
 297 *   of receiver window. Check #2.
 298 *
 299 * The scheme does not work when sender sends good segments opening
 300 * window and then starts to feed us spaghetti. But it should work
 301 * in common situations. Otherwise, we have to rely on queue collapsing.
 302 */
 303
 304/* Slow part of check#2. */
 305static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 306{
 307        struct tcp_sock *tp = tcp_sk(sk);
 308        /* Optimize this! */
 309        int truesize = tcp_win_from_space(skb->truesize) >> 1;
 310        int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 311
 312        while (tp->rcv_ssthresh <= window) {
 313                if (truesize <= skb->len)
 314                        return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 315
 316                truesize >>= 1;
 317                window >>= 1;
 318        }
 319        return 0;
 320}
 321
 322static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 323{
 324        struct tcp_sock *tp = tcp_sk(sk);
 325
 326        /* Check #1 */
 327        if (tp->rcv_ssthresh < tp->window_clamp &&
 328            (int)tp->rcv_ssthresh < tcp_space(sk) &&
 329            !sk_under_memory_pressure(sk)) {
 330                int incr;
 331
 332                /* Check #2. Increase window, if skb with such overhead
 333                 * will fit to rcvbuf in future.
 334                 */
 335                if (tcp_win_from_space(skb->truesize) <= skb->len)
 336                        incr = 2 * tp->advmss;
 337                else
 338                        incr = __tcp_grow_window(sk, skb);
 339
 340                if (incr) {
 341                        incr = max_t(int, incr, 2 * skb->len);
 342                        tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 343                                               tp->window_clamp);
 344                        inet_csk(sk)->icsk_ack.quick |= 1;
 345                }
 346        }
 347}
 348
 349/* 3. Tuning rcvbuf, when connection enters established state. */
 350static void tcp_fixup_rcvbuf(struct sock *sk)
 351{
 352        u32 mss = tcp_sk(sk)->advmss;
 353        int rcvmem;
 354
 355        rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 356                 tcp_default_init_rwnd(mss);
 357
 358        if (sk->sk_rcvbuf < rcvmem)
 359                sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 360}
 361
 362/* 4. Try to fixup all. It is made immediately after connection enters
 363 *    established state.
 364 */
 365void tcp_init_buffer_space(struct sock *sk)
 366{
 367        struct tcp_sock *tp = tcp_sk(sk);
 368        int maxwin;
 369
 370        if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 371                tcp_fixup_rcvbuf(sk);
 372        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 373                tcp_fixup_sndbuf(sk);
 374
 375        tp->rcvq_space.space = tp->rcv_wnd;
 376
 377        maxwin = tcp_full_space(sk);
 378
 379        if (tp->window_clamp >= maxwin) {
 380                tp->window_clamp = maxwin;
 381
 382                if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 383                        tp->window_clamp = max(maxwin -
 384                                               (maxwin >> sysctl_tcp_app_win),
 385                                               4 * tp->advmss);
 386        }
 387
 388        /* Force reservation of one segment. */
 389        if (sysctl_tcp_app_win &&
 390            tp->window_clamp > 2 * tp->advmss &&
 391            tp->window_clamp + tp->advmss > maxwin)
 392                tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 393
 394        tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 395        tp->snd_cwnd_stamp = tcp_time_stamp;
 396}
 397
 398/* 5. Recalculate window clamp after socket hit its memory bounds. */
 399static void tcp_clamp_window(struct sock *sk)
 400{
 401        struct tcp_sock *tp = tcp_sk(sk);
 402        struct inet_connection_sock *icsk = inet_csk(sk);
 403
 404        icsk->icsk_ack.quick = 0;
 405
 406        if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 407            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 408            !sk_under_memory_pressure(sk) &&
 409            sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 410                sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 411                                    sysctl_tcp_rmem[2]);
 412        }
 413        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 414                tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 415}
 416
 417/* Initialize RCV_MSS value.
 418 * RCV_MSS is an our guess about MSS used by the peer.
 419 * We haven't any direct information about the MSS.
 420 * It's better to underestimate the RCV_MSS rather than overestimate.
 421 * Overestimations make us ACKing less frequently than needed.
 422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 423 */
 424void tcp_initialize_rcv_mss(struct sock *sk)
 425{
 426        const struct tcp_sock *tp = tcp_sk(sk);
 427        unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 428
 429        hint = min(hint, tp->rcv_wnd / 2);
 430        hint = min(hint, TCP_MSS_DEFAULT);
 431        hint = max(hint, TCP_MIN_MSS);
 432
 433        inet_csk(sk)->icsk_ack.rcv_mss = hint;
 434}
 435EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 436
 437/* Receiver "autotuning" code.
 438 *
 439 * The algorithm for RTT estimation w/o timestamps is based on
 440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 441 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 442 *
 443 * More detail on this code can be found at
 444 * <http://staff.psc.edu/jheffner/>,
 445 * though this reference is out of date.  A new paper
 446 * is pending.
 447 */
 448static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 449{
 450        u32 new_sample = tp->rcv_rtt_est.rtt;
 451        long m = sample;
 452
 453        if (m == 0)
 454                m = 1;
 455
 456        if (new_sample != 0) {
 457                /* If we sample in larger samples in the non-timestamp
 458                 * case, we could grossly overestimate the RTT especially
 459                 * with chatty applications or bulk transfer apps which
 460                 * are stalled on filesystem I/O.
 461                 *
 462                 * Also, since we are only going for a minimum in the
 463                 * non-timestamp case, we do not smooth things out
 464                 * else with timestamps disabled convergence takes too
 465                 * long.
 466                 */
 467                if (!win_dep) {
 468                        m -= (new_sample >> 3);
 469                        new_sample += m;
 470                } else {
 471                        m <<= 3;
 472                        if (m < new_sample)
 473                                new_sample = m;
 474                }
 475        } else {
 476                /* No previous measure. */
 477                new_sample = m << 3;
 478        }
 479
 480        if (tp->rcv_rtt_est.rtt != new_sample)
 481                tp->rcv_rtt_est.rtt = new_sample;
 482}
 483
 484static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 485{
 486        if (tp->rcv_rtt_est.time == 0)
 487                goto new_measure;
 488        if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 489                return;
 490        tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 491
 492new_measure:
 493        tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 494        tp->rcv_rtt_est.time = tcp_time_stamp;
 495}
 496
 497static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 498                                          const struct sk_buff *skb)
 499{
 500        struct tcp_sock *tp = tcp_sk(sk);
 501        if (tp->rx_opt.rcv_tsecr &&
 502            (TCP_SKB_CB(skb)->end_seq -
 503             TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 504                tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 505}
 506
 507/*
 508 * This function should be called every time data is copied to user space.
 509 * It calculates the appropriate TCP receive buffer space.
 510 */
 511void tcp_rcv_space_adjust(struct sock *sk)
 512{
 513        struct tcp_sock *tp = tcp_sk(sk);
 514        int time;
 515        int space;
 516
 517        if (tp->rcvq_space.time == 0)
 518                goto new_measure;
 519
 520        time = tcp_time_stamp - tp->rcvq_space.time;
 521        if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 522                return;
 523
 524        space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
 525
 526        space = max(tp->rcvq_space.space, space);
 527
 528        if (tp->rcvq_space.space != space) {
 529                int rcvmem;
 530
 531                tp->rcvq_space.space = space;
 532
 533                if (sysctl_tcp_moderate_rcvbuf &&
 534                    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 535                        int new_clamp = space;
 536
 537                        /* Receive space grows, normalize in order to
 538                         * take into account packet headers and sk_buff
 539                         * structure overhead.
 540                         */
 541                        space /= tp->advmss;
 542                        if (!space)
 543                                space = 1;
 544                        rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 545                        while (tcp_win_from_space(rcvmem) < tp->advmss)
 546                                rcvmem += 128;
 547                        space *= rcvmem;
 548                        space = min(space, sysctl_tcp_rmem[2]);
 549                        if (space > sk->sk_rcvbuf) {
 550                                sk->sk_rcvbuf = space;
 551
 552                                /* Make the window clamp follow along.  */
 553                                tp->window_clamp = new_clamp;
 554                        }
 555                }
 556        }
 557
 558new_measure:
 559        tp->rcvq_space.seq = tp->copied_seq;
 560        tp->rcvq_space.time = tcp_time_stamp;
 561}
 562
 563/* There is something which you must keep in mind when you analyze the
 564 * behavior of the tp->ato delayed ack timeout interval.  When a
 565 * connection starts up, we want to ack as quickly as possible.  The
 566 * problem is that "good" TCP's do slow start at the beginning of data
 567 * transmission.  The means that until we send the first few ACK's the
 568 * sender will sit on his end and only queue most of his data, because
 569 * he can only send snd_cwnd unacked packets at any given time.  For
 570 * each ACK we send, he increments snd_cwnd and transmits more of his
 571 * queue.  -DaveM
 572 */
 573static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 574{
 575        struct tcp_sock *tp = tcp_sk(sk);
 576        struct inet_connection_sock *icsk = inet_csk(sk);
 577        u32 now;
 578
 579        inet_csk_schedule_ack(sk);
 580
 581        tcp_measure_rcv_mss(sk, skb);
 582
 583        tcp_rcv_rtt_measure(tp);
 584
 585        now = tcp_time_stamp;
 586
 587        if (!icsk->icsk_ack.ato) {
 588                /* The _first_ data packet received, initialize
 589                 * delayed ACK engine.
 590                 */
 591                tcp_incr_quickack(sk);
 592                icsk->icsk_ack.ato = TCP_ATO_MIN;
 593        } else {
 594                int m = now - icsk->icsk_ack.lrcvtime;
 595
 596                if (m <= TCP_ATO_MIN / 2) {
 597                        /* The fastest case is the first. */
 598                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 599                } else if (m < icsk->icsk_ack.ato) {
 600                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 601                        if (icsk->icsk_ack.ato > icsk->icsk_rto)
 602                                icsk->icsk_ack.ato = icsk->icsk_rto;
 603                } else if (m > icsk->icsk_rto) {
 604                        /* Too long gap. Apparently sender failed to
 605                         * restart window, so that we send ACKs quickly.
 606                         */
 607                        tcp_incr_quickack(sk);
 608                        sk_mem_reclaim(sk);
 609                }
 610        }
 611        icsk->icsk_ack.lrcvtime = now;
 612
 613        TCP_ECN_check_ce(tp, skb);
 614
 615        if (skb->len >= 128)
 616                tcp_grow_window(sk, skb);
 617}
 618
 619/* Called to compute a smoothed rtt estimate. The data fed to this
 620 * routine either comes from timestamps, or from segments that were
 621 * known _not_ to have been retransmitted [see Karn/Partridge
 622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 623 * piece by Van Jacobson.
 624 * NOTE: the next three routines used to be one big routine.
 625 * To save cycles in the RFC 1323 implementation it was better to break
 626 * it up into three procedures. -- erics
 627 */
 628static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
 629{
 630        struct tcp_sock *tp = tcp_sk(sk);
 631        long m = mrtt; /* RTT */
 632
 633        /*      The following amusing code comes from Jacobson's
 634         *      article in SIGCOMM '88.  Note that rtt and mdev
 635         *      are scaled versions of rtt and mean deviation.
 636         *      This is designed to be as fast as possible
 637         *      m stands for "measurement".
 638         *
 639         *      On a 1990 paper the rto value is changed to:
 640         *      RTO = rtt + 4 * mdev
 641         *
 642         * Funny. This algorithm seems to be very broken.
 643         * These formulae increase RTO, when it should be decreased, increase
 644         * too slowly, when it should be increased quickly, decrease too quickly
 645         * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 646         * does not matter how to _calculate_ it. Seems, it was trap
 647         * that VJ failed to avoid. 8)
 648         */
 649        if (m == 0)
 650                m = 1;
 651        if (tp->srtt != 0) {
 652                m -= (tp->srtt >> 3);   /* m is now error in rtt est */
 653                tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
 654                if (m < 0) {
 655                        m = -m;         /* m is now abs(error) */
 656                        m -= (tp->mdev >> 2);   /* similar update on mdev */
 657                        /* This is similar to one of Eifel findings.
 658                         * Eifel blocks mdev updates when rtt decreases.
 659                         * This solution is a bit different: we use finer gain
 660                         * for mdev in this case (alpha*beta).
 661                         * Like Eifel it also prevents growth of rto,
 662                         * but also it limits too fast rto decreases,
 663                         * happening in pure Eifel.
 664                         */
 665                        if (m > 0)
 666                                m >>= 3;
 667                } else {
 668                        m -= (tp->mdev >> 2);   /* similar update on mdev */
 669                }
 670                tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
 671                if (tp->mdev > tp->mdev_max) {
 672                        tp->mdev_max = tp->mdev;
 673                        if (tp->mdev_max > tp->rttvar)
 674                                tp->rttvar = tp->mdev_max;
 675                }
 676                if (after(tp->snd_una, tp->rtt_seq)) {
 677                        if (tp->mdev_max < tp->rttvar)
 678                                tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
 679                        tp->rtt_seq = tp->snd_nxt;
 680                        tp->mdev_max = tcp_rto_min(sk);
 681                }
 682        } else {
 683                /* no previous measure. */
 684                tp->srtt = m << 3;      /* take the measured time to be rtt */
 685                tp->mdev = m << 1;      /* make sure rto = 3*rtt */
 686                tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 687                tp->rtt_seq = tp->snd_nxt;
 688        }
 689}
 690
 691/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 692 * routine referred to above.
 693 */
 694void tcp_set_rto(struct sock *sk)
 695{
 696        const struct tcp_sock *tp = tcp_sk(sk);
 697        /* Old crap is replaced with new one. 8)
 698         *
 699         * More seriously:
 700         * 1. If rtt variance happened to be less 50msec, it is hallucination.
 701         *    It cannot be less due to utterly erratic ACK generation made
 702         *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 703         *    to do with delayed acks, because at cwnd>2 true delack timeout
 704         *    is invisible. Actually, Linux-2.4 also generates erratic
 705         *    ACKs in some circumstances.
 706         */
 707        inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 708
 709        /* 2. Fixups made earlier cannot be right.
 710         *    If we do not estimate RTO correctly without them,
 711         *    all the algo is pure shit and should be replaced
 712         *    with correct one. It is exactly, which we pretend to do.
 713         */
 714
 715        /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 716         * guarantees that rto is higher.
 717         */
 718        tcp_bound_rto(sk);
 719}
 720
 721__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 722{
 723        __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 724
 725        if (!cwnd)
 726                cwnd = TCP_INIT_CWND;
 727        return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 728}
 729
 730/*
 731 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 732 * disables it when reordering is detected
 733 */
 734void tcp_disable_fack(struct tcp_sock *tp)
 735{
 736        /* RFC3517 uses different metric in lost marker => reset on change */
 737        if (tcp_is_fack(tp))
 738                tp->lost_skb_hint = NULL;
 739        tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 740}
 741
 742/* Take a notice that peer is sending D-SACKs */
 743static void tcp_dsack_seen(struct tcp_sock *tp)
 744{
 745        tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 746}
 747
 748static void tcp_update_reordering(struct sock *sk, const int metric,
 749                                  const int ts)
 750{
 751        struct tcp_sock *tp = tcp_sk(sk);
 752        if (metric > tp->reordering) {
 753                int mib_idx;
 754
 755                tp->reordering = min(TCP_MAX_REORDERING, metric);
 756
 757                /* This exciting event is worth to be remembered. 8) */
 758                if (ts)
 759                        mib_idx = LINUX_MIB_TCPTSREORDER;
 760                else if (tcp_is_reno(tp))
 761                        mib_idx = LINUX_MIB_TCPRENOREORDER;
 762                else if (tcp_is_fack(tp))
 763                        mib_idx = LINUX_MIB_TCPFACKREORDER;
 764                else
 765                        mib_idx = LINUX_MIB_TCPSACKREORDER;
 766
 767                NET_INC_STATS_BH(sock_net(sk), mib_idx);
 768#if FASTRETRANS_DEBUG > 1
 769                pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 770                         tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 771                         tp->reordering,
 772                         tp->fackets_out,
 773                         tp->sacked_out,
 774                         tp->undo_marker ? tp->undo_retrans : 0);
 775#endif
 776                tcp_disable_fack(tp);
 777        }
 778
 779        if (metric > 0)
 780                tcp_disable_early_retrans(tp);
 781}
 782
 783/* This must be called before lost_out is incremented */
 784static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 785{
 786        if ((tp->retransmit_skb_hint == NULL) ||
 787            before(TCP_SKB_CB(skb)->seq,
 788                   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 789                tp->retransmit_skb_hint = skb;
 790
 791        if (!tp->lost_out ||
 792            after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 793                tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 794}
 795
 796static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 797{
 798        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 799                tcp_verify_retransmit_hint(tp, skb);
 800
 801                tp->lost_out += tcp_skb_pcount(skb);
 802                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 803        }
 804}
 805
 806static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
 807                                            struct sk_buff *skb)
 808{
 809        tcp_verify_retransmit_hint(tp, skb);
 810
 811        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 812                tp->lost_out += tcp_skb_pcount(skb);
 813                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 814        }
 815}
 816
 817/* This procedure tags the retransmission queue when SACKs arrive.
 818 *
 819 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 820 * Packets in queue with these bits set are counted in variables
 821 * sacked_out, retrans_out and lost_out, correspondingly.
 822 *
 823 * Valid combinations are:
 824 * Tag  InFlight        Description
 825 * 0    1               - orig segment is in flight.
 826 * S    0               - nothing flies, orig reached receiver.
 827 * L    0               - nothing flies, orig lost by net.
 828 * R    2               - both orig and retransmit are in flight.
 829 * L|R  1               - orig is lost, retransmit is in flight.
 830 * S|R  1               - orig reached receiver, retrans is still in flight.
 831 * (L|S|R is logically valid, it could occur when L|R is sacked,
 832 *  but it is equivalent to plain S and code short-curcuits it to S.
 833 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 834 *
 835 * These 6 states form finite state machine, controlled by the following events:
 836 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 837 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 838 * 3. Loss detection event of two flavors:
 839 *      A. Scoreboard estimator decided the packet is lost.
 840 *         A'. Reno "three dupacks" marks head of queue lost.
 841 *         A''. Its FACK modification, head until snd.fack is lost.
 842 *      B. SACK arrives sacking SND.NXT at the moment, when the
 843 *         segment was retransmitted.
 844 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 845 *
 846 * It is pleasant to note, that state diagram turns out to be commutative,
 847 * so that we are allowed not to be bothered by order of our actions,
 848 * when multiple events arrive simultaneously. (see the function below).
 849 *
 850 * Reordering detection.
 851 * --------------------
 852 * Reordering metric is maximal distance, which a packet can be displaced
 853 * in packet stream. With SACKs we can estimate it:
 854 *
 855 * 1. SACK fills old hole and the corresponding segment was not
 856 *    ever retransmitted -> reordering. Alas, we cannot use it
 857 *    when segment was retransmitted.
 858 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 859 *    for retransmitted and already SACKed segment -> reordering..
 860 * Both of these heuristics are not used in Loss state, when we cannot
 861 * account for retransmits accurately.
 862 *
 863 * SACK block validation.
 864 * ----------------------
 865 *
 866 * SACK block range validation checks that the received SACK block fits to
 867 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 868 * Note that SND.UNA is not included to the range though being valid because
 869 * it means that the receiver is rather inconsistent with itself reporting
 870 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 871 * perfectly valid, however, in light of RFC2018 which explicitly states
 872 * that "SACK block MUST reflect the newest segment.  Even if the newest
 873 * segment is going to be discarded ...", not that it looks very clever
 874 * in case of head skb. Due to potentional receiver driven attacks, we
 875 * choose to avoid immediate execution of a walk in write queue due to
 876 * reneging and defer head skb's loss recovery to standard loss recovery
 877 * procedure that will eventually trigger (nothing forbids us doing this).
 878 *
 879 * Implements also blockage to start_seq wrap-around. Problem lies in the
 880 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 881 * there's no guarantee that it will be before snd_nxt (n). The problem
 882 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 883 * wrap (s_w):
 884 *
 885 *         <- outs wnd ->                          <- wrapzone ->
 886 *         u     e      n                         u_w   e_w  s n_w
 887 *         |     |      |                          |     |   |  |
 888 * |<------------+------+----- TCP seqno space --------------+---------->|
 889 * ...-- <2^31 ->|                                           |<--------...
 890 * ...---- >2^31 ------>|                                    |<--------...
 891 *
 892 * Current code wouldn't be vulnerable but it's better still to discard such
 893 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 894 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
 895 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
 896 * equal to the ideal case (infinite seqno space without wrap caused issues).
 897 *
 898 * With D-SACK the lower bound is extended to cover sequence space below
 899 * SND.UNA down to undo_marker, which is the last point of interest. Yet
 900 * again, D-SACK block must not to go across snd_una (for the same reason as
 901 * for the normal SACK blocks, explained above). But there all simplicity
 902 * ends, TCP might receive valid D-SACKs below that. As long as they reside
 903 * fully below undo_marker they do not affect behavior in anyway and can
 904 * therefore be safely ignored. In rare cases (which are more or less
 905 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
 906 * fragmentation and packet reordering past skb's retransmission. To consider
 907 * them correctly, the acceptable range must be extended even more though
 908 * the exact amount is rather hard to quantify. However, tp->max_window can
 909 * be used as an exaggerated estimate.
 910 */
 911static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
 912                                   u32 start_seq, u32 end_seq)
 913{
 914        /* Too far in future, or reversed (interpretation is ambiguous) */
 915        if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
 916                return false;
 917
 918        /* Nasty start_seq wrap-around check (see comments above) */
 919        if (!before(start_seq, tp->snd_nxt))
 920                return false;
 921
 922        /* In outstanding window? ...This is valid exit for D-SACKs too.
 923         * start_seq == snd_una is non-sensical (see comments above)
 924         */
 925        if (after(start_seq, tp->snd_una))
 926                return true;
 927
 928        if (!is_dsack || !tp->undo_marker)
 929                return false;
 930
 931        /* ...Then it's D-SACK, and must reside below snd_una completely */
 932        if (after(end_seq, tp->snd_una))
 933                return false;
 934
 935        if (!before(start_seq, tp->undo_marker))
 936                return true;
 937
 938        /* Too old */
 939        if (!after(end_seq, tp->undo_marker))
 940                return false;
 941
 942        /* Undo_marker boundary crossing (overestimates a lot). Known already:
 943         *   start_seq < undo_marker and end_seq >= undo_marker.
 944         */
 945        return !before(start_seq, end_seq - tp->max_window);
 946}
 947
 948/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
 949 * Event "B". Later note: FACK people cheated me again 8), we have to account
 950 * for reordering! Ugly, but should help.
 951 *
 952 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
 953 * less than what is now known to be received by the other end (derived from
 954 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
 955 * retransmitted skbs to avoid some costly processing per ACKs.
 956 */
 957static void tcp_mark_lost_retrans(struct sock *sk)
 958{
 959        const struct inet_connection_sock *icsk = inet_csk(sk);
 960        struct tcp_sock *tp = tcp_sk(sk);
 961        struct sk_buff *skb;
 962        int cnt = 0;
 963        u32 new_low_seq = tp->snd_nxt;
 964        u32 received_upto = tcp_highest_sack_seq(tp);
 965
 966        if (!tcp_is_fack(tp) || !tp->retrans_out ||
 967            !after(received_upto, tp->lost_retrans_low) ||
 968            icsk->icsk_ca_state != TCP_CA_Recovery)
 969                return;
 970
 971        tcp_for_write_queue(skb, sk) {
 972                u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
 973
 974                if (skb == tcp_send_head(sk))
 975                        break;
 976                if (cnt == tp->retrans_out)
 977                        break;
 978                if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
 979                        continue;
 980
 981                if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
 982                        continue;
 983
 984                /* TODO: We would like to get rid of tcp_is_fack(tp) only
 985                 * constraint here (see above) but figuring out that at
 986                 * least tp->reordering SACK blocks reside between ack_seq
 987                 * and received_upto is not easy task to do cheaply with
 988                 * the available datastructures.
 989                 *
 990                 * Whether FACK should check here for tp->reordering segs
 991                 * in-between one could argue for either way (it would be
 992                 * rather simple to implement as we could count fack_count
 993                 * during the walk and do tp->fackets_out - fack_count).
 994                 */
 995                if (after(received_upto, ack_seq)) {
 996                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
 997                        tp->retrans_out -= tcp_skb_pcount(skb);
 998
 999                        tcp_skb_mark_lost_uncond_verify(tp, skb);
1000                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1001                } else {
1002                        if (before(ack_seq, new_low_seq))
1003                                new_low_seq = ack_seq;
1004                        cnt += tcp_skb_pcount(skb);
1005                }
1006        }
1007
1008        if (tp->retrans_out)
1009                tp->lost_retrans_low = new_low_seq;
1010}
1011
1012static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1013                            struct tcp_sack_block_wire *sp, int num_sacks,
1014                            u32 prior_snd_una)
1015{
1016        struct tcp_sock *tp = tcp_sk(sk);
1017        u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1018        u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1019        bool dup_sack = false;
1020
1021        if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1022                dup_sack = true;
1023                tcp_dsack_seen(tp);
1024                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1025        } else if (num_sacks > 1) {
1026                u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1027                u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1028
1029                if (!after(end_seq_0, end_seq_1) &&
1030                    !before(start_seq_0, start_seq_1)) {
1031                        dup_sack = true;
1032                        tcp_dsack_seen(tp);
1033                        NET_INC_STATS_BH(sock_net(sk),
1034                                        LINUX_MIB_TCPDSACKOFORECV);
1035                }
1036        }
1037
1038        /* D-SACK for already forgotten data... Do dumb counting. */
1039        if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1040            !after(end_seq_0, prior_snd_una) &&
1041            after(end_seq_0, tp->undo_marker))
1042                tp->undo_retrans--;
1043
1044        return dup_sack;
1045}
1046
1047struct tcp_sacktag_state {
1048        int reord;
1049        int fack_count;
1050        int flag;
1051};
1052
1053/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1054 * the incoming SACK may not exactly match but we can find smaller MSS
1055 * aligned portion of it that matches. Therefore we might need to fragment
1056 * which may fail and creates some hassle (caller must handle error case
1057 * returns).
1058 *
1059 * FIXME: this could be merged to shift decision code
1060 */
1061static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1062                                  u32 start_seq, u32 end_seq)
1063{
1064        int err;
1065        bool in_sack;
1066        unsigned int pkt_len;
1067        unsigned int mss;
1068
1069        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1070                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1071
1072        if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1073            after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1074                mss = tcp_skb_mss(skb);
1075                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1076
1077                if (!in_sack) {
1078                        pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1079                        if (pkt_len < mss)
1080                                pkt_len = mss;
1081                } else {
1082                        pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1083                        if (pkt_len < mss)
1084                                return -EINVAL;
1085                }
1086
1087                /* Round if necessary so that SACKs cover only full MSSes
1088                 * and/or the remaining small portion (if present)
1089                 */
1090                if (pkt_len > mss) {
1091                        unsigned int new_len = (pkt_len / mss) * mss;
1092                        if (!in_sack && new_len < pkt_len) {
1093                                new_len += mss;
1094                                if (new_len > skb->len)
1095                                        return 0;
1096                        }
1097                        pkt_len = new_len;
1098                }
1099                err = tcp_fragment(sk, skb, pkt_len, mss);
1100                if (err < 0)
1101                        return err;
1102        }
1103
1104        return in_sack;
1105}
1106
1107/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1108static u8 tcp_sacktag_one(struct sock *sk,
1109                          struct tcp_sacktag_state *state, u8 sacked,
1110                          u32 start_seq, u32 end_seq,
1111                          bool dup_sack, int pcount)
1112{
1113        struct tcp_sock *tp = tcp_sk(sk);
1114        int fack_count = state->fack_count;
1115
1116        /* Account D-SACK for retransmitted packet. */
1117        if (dup_sack && (sacked & TCPCB_RETRANS)) {
1118                if (tp->undo_marker && tp->undo_retrans &&
1119                    after(end_seq, tp->undo_marker))
1120                        tp->undo_retrans--;
1121                if (sacked & TCPCB_SACKED_ACKED)
1122                        state->reord = min(fack_count, state->reord);
1123        }
1124
1125        /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1126        if (!after(end_seq, tp->snd_una))
1127                return sacked;
1128
1129        if (!(sacked & TCPCB_SACKED_ACKED)) {
1130                if (sacked & TCPCB_SACKED_RETRANS) {
1131                        /* If the segment is not tagged as lost,
1132                         * we do not clear RETRANS, believing
1133                         * that retransmission is still in flight.
1134                         */
1135                        if (sacked & TCPCB_LOST) {
1136                                sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1137                                tp->lost_out -= pcount;
1138                                tp->retrans_out -= pcount;
1139                        }
1140                } else {
1141                        if (!(sacked & TCPCB_RETRANS)) {
1142                                /* New sack for not retransmitted frame,
1143                                 * which was in hole. It is reordering.
1144                                 */
1145                                if (before(start_seq,
1146                                           tcp_highest_sack_seq(tp)))
1147                                        state->reord = min(fack_count,
1148                                                           state->reord);
1149                                if (!after(end_seq, tp->high_seq))
1150                                        state->flag |= FLAG_ORIG_SACK_ACKED;
1151                        }
1152
1153                        if (sacked & TCPCB_LOST) {
1154                                sacked &= ~TCPCB_LOST;
1155                                tp->lost_out -= pcount;
1156                        }
1157                }
1158
1159                sacked |= TCPCB_SACKED_ACKED;
1160                state->flag |= FLAG_DATA_SACKED;
1161                tp->sacked_out += pcount;
1162
1163                fack_count += pcount;
1164
1165                /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1166                if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1167                    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1168                        tp->lost_cnt_hint += pcount;
1169
1170                if (fack_count > tp->fackets_out)
1171                        tp->fackets_out = fack_count;
1172        }
1173
1174        /* D-SACK. We can detect redundant retransmission in S|R and plain R
1175         * frames and clear it. undo_retrans is decreased above, L|R frames
1176         * are accounted above as well.
1177         */
1178        if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1179                sacked &= ~TCPCB_SACKED_RETRANS;
1180                tp->retrans_out -= pcount;
1181        }
1182
1183        return sacked;
1184}
1185
1186/* Shift newly-SACKed bytes from this skb to the immediately previous
1187 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1188 */
1189static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1190                            struct tcp_sacktag_state *state,
1191                            unsigned int pcount, int shifted, int mss,
1192                            bool dup_sack)
1193{
1194        struct tcp_sock *tp = tcp_sk(sk);
1195        struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1196        u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1197        u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1198
1199        BUG_ON(!pcount);
1200
1201        /* Adjust counters and hints for the newly sacked sequence
1202         * range but discard the return value since prev is already
1203         * marked. We must tag the range first because the seq
1204         * advancement below implicitly advances
1205         * tcp_highest_sack_seq() when skb is highest_sack.
1206         */
1207        tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1208                        start_seq, end_seq, dup_sack, pcount);
1209
1210        if (skb == tp->lost_skb_hint)
1211                tp->lost_cnt_hint += pcount;
1212
1213        TCP_SKB_CB(prev)->end_seq += shifted;
1214        TCP_SKB_CB(skb)->seq += shifted;
1215
1216        skb_shinfo(prev)->gso_segs += pcount;
1217        BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1218        skb_shinfo(skb)->gso_segs -= pcount;
1219
1220        /* When we're adding to gso_segs == 1, gso_size will be zero,
1221         * in theory this shouldn't be necessary but as long as DSACK
1222         * code can come after this skb later on it's better to keep
1223         * setting gso_size to something.
1224         */
1225        if (!skb_shinfo(prev)->gso_size) {
1226                skb_shinfo(prev)->gso_size = mss;
1227                skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1228        }
1229
1230        /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1231        if (skb_shinfo(skb)->gso_segs <= 1) {
1232                skb_shinfo(skb)->gso_size = 0;
1233                skb_shinfo(skb)->gso_type = 0;
1234        }
1235
1236        /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1237        TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1238
1239        if (skb->len > 0) {
1240                BUG_ON(!tcp_skb_pcount(skb));
1241                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1242                return false;
1243        }
1244
1245        /* Whole SKB was eaten :-) */
1246
1247        if (skb == tp->retransmit_skb_hint)
1248                tp->retransmit_skb_hint = prev;
1249        if (skb == tp->lost_skb_hint) {
1250                tp->lost_skb_hint = prev;
1251                tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1252        }
1253
1254        TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1255        if (skb == tcp_highest_sack(sk))
1256                tcp_advance_highest_sack(sk, skb);
1257
1258        tcp_unlink_write_queue(skb, sk);
1259        sk_wmem_free_skb(sk, skb);
1260
1261        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1262
1263        return true;
1264}
1265
1266/* I wish gso_size would have a bit more sane initialization than
1267 * something-or-zero which complicates things
1268 */
1269static int tcp_skb_seglen(const struct sk_buff *skb)
1270{
1271        return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1272}
1273
1274/* Shifting pages past head area doesn't work */
1275static int skb_can_shift(const struct sk_buff *skb)
1276{
1277        return !skb_headlen(skb) && skb_is_nonlinear(skb);
1278}
1279
1280/* Try collapsing SACK blocks spanning across multiple skbs to a single
1281 * skb.
1282 */
1283static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1284                                          struct tcp_sacktag_state *state,
1285                                          u32 start_seq, u32 end_seq,
1286                                          bool dup_sack)
1287{
1288        struct tcp_sock *tp = tcp_sk(sk);
1289        struct sk_buff *prev;
1290        int mss;
1291        int pcount = 0;
1292        int len;
1293        int in_sack;
1294
1295        if (!sk_can_gso(sk))
1296                goto fallback;
1297
1298        /* Normally R but no L won't result in plain S */
1299        if (!dup_sack &&
1300            (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1301                goto fallback;
1302        if (!skb_can_shift(skb))
1303                goto fallback;
1304        /* This frame is about to be dropped (was ACKed). */
1305        if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1306                goto fallback;
1307
1308        /* Can only happen with delayed DSACK + discard craziness */
1309        if (unlikely(skb == tcp_write_queue_head(sk)))
1310                goto fallback;
1311        prev = tcp_write_queue_prev(sk, skb);
1312
1313        if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1314                goto fallback;
1315
1316        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1317                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1318
1319        if (in_sack) {
1320                len = skb->len;
1321                pcount = tcp_skb_pcount(skb);
1322                mss = tcp_skb_seglen(skb);
1323
1324                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1325                 * drop this restriction as unnecessary
1326                 */
1327                if (mss != tcp_skb_seglen(prev))
1328                        goto fallback;
1329        } else {
1330                if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1331                        goto noop;
1332                /* CHECKME: This is non-MSS split case only?, this will
1333                 * cause skipped skbs due to advancing loop btw, original
1334                 * has that feature too
1335                 */
1336                if (tcp_skb_pcount(skb) <= 1)
1337                        goto noop;
1338
1339                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1340                if (!in_sack) {
1341                        /* TODO: head merge to next could be attempted here
1342                         * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1343                         * though it might not be worth of the additional hassle
1344                         *
1345                         * ...we can probably just fallback to what was done
1346                         * previously. We could try merging non-SACKed ones
1347                         * as well but it probably isn't going to buy off
1348                         * because later SACKs might again split them, and
1349                         * it would make skb timestamp tracking considerably
1350                         * harder problem.
1351                         */
1352                        goto fallback;
1353                }
1354
1355                len = end_seq - TCP_SKB_CB(skb)->seq;
1356                BUG_ON(len < 0);
1357                BUG_ON(len > skb->len);
1358
1359                /* MSS boundaries should be honoured or else pcount will
1360                 * severely break even though it makes things bit trickier.
1361                 * Optimize common case to avoid most of the divides
1362                 */
1363                mss = tcp_skb_mss(skb);
1364
1365                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1366                 * drop this restriction as unnecessary
1367                 */
1368                if (mss != tcp_skb_seglen(prev))
1369                        goto fallback;
1370
1371                if (len == mss) {
1372                        pcount = 1;
1373                } else if (len < mss) {
1374                        goto noop;
1375                } else {
1376                        pcount = len / mss;
1377                        len = pcount * mss;
1378                }
1379        }
1380
1381        /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1382        if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1383                goto fallback;
1384
1385        if (!skb_shift(prev, skb, len))
1386                goto fallback;
1387        if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1388                goto out;
1389
1390        /* Hole filled allows collapsing with the next as well, this is very
1391         * useful when hole on every nth skb pattern happens
1392         */
1393        if (prev == tcp_write_queue_tail(sk))
1394                goto out;
1395        skb = tcp_write_queue_next(sk, prev);
1396
1397        if (!skb_can_shift(skb) ||
1398            (skb == tcp_send_head(sk)) ||
1399            ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1400            (mss != tcp_skb_seglen(skb)))
1401                goto out;
1402
1403        len = skb->len;
1404        if (skb_shift(prev, skb, len)) {
1405                pcount += tcp_skb_pcount(skb);
1406                tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1407        }
1408
1409out:
1410        state->fack_count += pcount;
1411        return prev;
1412
1413noop:
1414        return skb;
1415
1416fallback:
1417        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1418        return NULL;
1419}
1420
1421static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1422                                        struct tcp_sack_block *next_dup,
1423                                        struct tcp_sacktag_state *state,
1424                                        u32 start_seq, u32 end_seq,
1425                                        bool dup_sack_in)
1426{
1427        struct tcp_sock *tp = tcp_sk(sk);
1428        struct sk_buff *tmp;
1429
1430        tcp_for_write_queue_from(skb, sk) {
1431                int in_sack = 0;
1432                bool dup_sack = dup_sack_in;
1433
1434                if (skb == tcp_send_head(sk))
1435                        break;
1436
1437                /* queue is in-order => we can short-circuit the walk early */
1438                if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1439                        break;
1440
1441                if ((next_dup != NULL) &&
1442                    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1443                        in_sack = tcp_match_skb_to_sack(sk, skb,
1444                                                        next_dup->start_seq,
1445                                                        next_dup->end_seq);
1446                        if (in_sack > 0)
1447                                dup_sack = true;
1448                }
1449
1450                /* skb reference here is a bit tricky to get right, since
1451                 * shifting can eat and free both this skb and the next,
1452                 * so not even _safe variant of the loop is enough.
1453                 */
1454                if (in_sack <= 0) {
1455                        tmp = tcp_shift_skb_data(sk, skb, state,
1456                                                 start_seq, end_seq, dup_sack);
1457                        if (tmp != NULL) {
1458                                if (tmp != skb) {
1459                                        skb = tmp;
1460                                        continue;
1461                                }
1462
1463                                in_sack = 0;
1464                        } else {
1465                                in_sack = tcp_match_skb_to_sack(sk, skb,
1466                                                                start_seq,
1467                                                                end_seq);
1468                        }
1469                }
1470
1471                if (unlikely(in_sack < 0))
1472                        break;
1473
1474                if (in_sack) {
1475                        TCP_SKB_CB(skb)->sacked =
1476                                tcp_sacktag_one(sk,
1477                                                state,
1478                                                TCP_SKB_CB(skb)->sacked,
1479                                                TCP_SKB_CB(skb)->seq,
1480                                                TCP_SKB_CB(skb)->end_seq,
1481                                                dup_sack,
1482                                                tcp_skb_pcount(skb));
1483
1484                        if (!before(TCP_SKB_CB(skb)->seq,
1485                                    tcp_highest_sack_seq(tp)))
1486                                tcp_advance_highest_sack(sk, skb);
1487                }
1488
1489                state->fack_count += tcp_skb_pcount(skb);
1490        }
1491        return skb;
1492}
1493
1494/* Avoid all extra work that is being done by sacktag while walking in
1495 * a normal way
1496 */
1497static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1498                                        struct tcp_sacktag_state *state,
1499                                        u32 skip_to_seq)
1500{
1501        tcp_for_write_queue_from(skb, sk) {
1502                if (skb == tcp_send_head(sk))
1503                        break;
1504
1505                if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1506                        break;
1507
1508                state->fack_count += tcp_skb_pcount(skb);
1509        }
1510        return skb;
1511}
1512
1513static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1514                                                struct sock *sk,
1515                                                struct tcp_sack_block *next_dup,
1516                                                struct tcp_sacktag_state *state,
1517                                                u32 skip_to_seq)
1518{
1519        if (next_dup == NULL)
1520                return skb;
1521
1522        if (before(next_dup->start_seq, skip_to_seq)) {
1523                skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1524                skb = tcp_sacktag_walk(skb, sk, NULL, state,
1525                                       next_dup->start_seq, next_dup->end_seq,
1526                                       1);
1527        }
1528
1529        return skb;
1530}
1531
1532static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1533{
1534        return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1535}
1536
1537static int
1538tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1539                        u32 prior_snd_una)
1540{
1541        struct tcp_sock *tp = tcp_sk(sk);
1542        const unsigned char *ptr = (skb_transport_header(ack_skb) +
1543                                    TCP_SKB_CB(ack_skb)->sacked);
1544        struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1545        struct tcp_sack_block sp[TCP_NUM_SACKS];
1546        struct tcp_sack_block *cache;
1547        struct tcp_sacktag_state state;
1548        struct sk_buff *skb;
1549        int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1550        int used_sacks;
1551        bool found_dup_sack = false;
1552        int i, j;
1553        int first_sack_index;
1554
1555        state.flag = 0;
1556        state.reord = tp->packets_out;
1557
1558        if (!tp->sacked_out) {
1559                if (WARN_ON(tp->fackets_out))
1560                        tp->fackets_out = 0;
1561                tcp_highest_sack_reset(sk);
1562        }
1563
1564        found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1565                                         num_sacks, prior_snd_una);
1566        if (found_dup_sack)
1567                state.flag |= FLAG_DSACKING_ACK;
1568
1569        /* Eliminate too old ACKs, but take into
1570         * account more or less fresh ones, they can
1571         * contain valid SACK info.
1572         */
1573        if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1574                return 0;
1575
1576        if (!tp->packets_out)
1577                goto out;
1578
1579        used_sacks = 0;
1580        first_sack_index = 0;
1581        for (i = 0; i < num_sacks; i++) {
1582                bool dup_sack = !i && found_dup_sack;
1583
1584                sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1585                sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1586
1587                if (!tcp_is_sackblock_valid(tp, dup_sack,
1588                                            sp[used_sacks].start_seq,
1589                                            sp[used_sacks].end_seq)) {
1590                        int mib_idx;
1591
1592                        if (dup_sack) {
1593                                if (!tp->undo_marker)
1594                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1595                                else
1596                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1597                        } else {
1598                                /* Don't count olds caused by ACK reordering */
1599                                if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1600                                    !after(sp[used_sacks].end_seq, tp->snd_una))
1601                                        continue;
1602                                mib_idx = LINUX_MIB_TCPSACKDISCARD;
1603                        }
1604
1605                        NET_INC_STATS_BH(sock_net(sk), mib_idx);
1606                        if (i == 0)
1607                                first_sack_index = -1;
1608                        continue;
1609                }
1610
1611                /* Ignore very old stuff early */
1612                if (!after(sp[used_sacks].end_seq, prior_snd_una))
1613                        continue;
1614
1615                used_sacks++;
1616        }
1617
1618        /* order SACK blocks to allow in order walk of the retrans queue */
1619        for (i = used_sacks - 1; i > 0; i--) {
1620                for (j = 0; j < i; j++) {
1621                        if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1622                                swap(sp[j], sp[j + 1]);
1623
1624                                /* Track where the first SACK block goes to */
1625                                if (j == first_sack_index)
1626                                        first_sack_index = j + 1;
1627                        }
1628                }
1629        }
1630
1631        skb = tcp_write_queue_head(sk);
1632        state.fack_count = 0;
1633        i = 0;
1634
1635        if (!tp->sacked_out) {
1636                /* It's already past, so skip checking against it */
1637                cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1638        } else {
1639                cache = tp->recv_sack_cache;
1640                /* Skip empty blocks in at head of the cache */
1641                while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1642                       !cache->end_seq)
1643                        cache++;
1644        }
1645
1646        while (i < used_sacks) {
1647                u32 start_seq = sp[i].start_seq;
1648                u32 end_seq = sp[i].end_seq;
1649                bool dup_sack = (found_dup_sack && (i == first_sack_index));
1650                struct tcp_sack_block *next_dup = NULL;
1651
1652                if (found_dup_sack && ((i + 1) == first_sack_index))
1653                        next_dup = &sp[i + 1];
1654
1655                /* Skip too early cached blocks */
1656                while (tcp_sack_cache_ok(tp, cache) &&
1657                       !before(start_seq, cache->end_seq))
1658                        cache++;
1659
1660                /* Can skip some work by looking recv_sack_cache? */
1661                if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1662                    after(end_seq, cache->start_seq)) {
1663
1664                        /* Head todo? */
1665                        if (before(start_seq, cache->start_seq)) {
1666                                skb = tcp_sacktag_skip(skb, sk, &state,
1667                                                       start_seq);
1668                                skb = tcp_sacktag_walk(skb, sk, next_dup,
1669                                                       &state,
1670                                                       start_seq,
1671                                                       cache->start_seq,
1672                                                       dup_sack);
1673                        }
1674
1675                        /* Rest of the block already fully processed? */
1676                        if (!after(end_seq, cache->end_seq))
1677                                goto advance_sp;
1678
1679                        skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1680                                                       &state,
1681                                                       cache->end_seq);
1682
1683                        /* ...tail remains todo... */
1684                        if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1685                                /* ...but better entrypoint exists! */
1686                                skb = tcp_highest_sack(sk);
1687                                if (skb == NULL)
1688                                        break;
1689                                state.fack_count = tp->fackets_out;
1690                                cache++;
1691                                goto walk;
1692                        }
1693
1694                        skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1695                        /* Check overlap against next cached too (past this one already) */
1696                        cache++;
1697                        continue;
1698                }
1699
1700                if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1701                        skb = tcp_highest_sack(sk);
1702                        if (skb == NULL)
1703                                break;
1704                        state.fack_count = tp->fackets_out;
1705                }
1706                skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1707
1708walk:
1709                skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1710                                       start_seq, end_seq, dup_sack);
1711
1712advance_sp:
1713                i++;
1714        }
1715
1716        /* Clear the head of the cache sack blocks so we can skip it next time */
1717        for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1718                tp->recv_sack_cache[i].start_seq = 0;
1719                tp->recv_sack_cache[i].end_seq = 0;
1720        }
1721        for (j = 0; j < used_sacks; j++)
1722                tp->recv_sack_cache[i++] = sp[j];
1723
1724        tcp_mark_lost_retrans(sk);
1725
1726        tcp_verify_left_out(tp);
1727
1728        if ((state.reord < tp->fackets_out) &&
1729            ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1730                tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1731
1732out:
1733
1734#if FASTRETRANS_DEBUG > 0
1735        WARN_ON((int)tp->sacked_out < 0);
1736        WARN_ON((int)tp->lost_out < 0);
1737        WARN_ON((int)tp->retrans_out < 0);
1738        WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1739#endif
1740        return state.flag;
1741}
1742
1743/* Limits sacked_out so that sum with lost_out isn't ever larger than
1744 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1745 */
1746static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1747{
1748        u32 holes;
1749
1750        holes = max(tp->lost_out, 1U);
1751        holes = min(holes, tp->packets_out);
1752
1753        if ((tp->sacked_out + holes) > tp->packets_out) {
1754                tp->sacked_out = tp->packets_out - holes;
1755                return true;
1756        }
1757        return false;
1758}
1759
1760/* If we receive more dupacks than we expected counting segments
1761 * in assumption of absent reordering, interpret this as reordering.
1762 * The only another reason could be bug in receiver TCP.
1763 */
1764static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1765{
1766        struct tcp_sock *tp = tcp_sk(sk);
1767        if (tcp_limit_reno_sacked(tp))
1768                tcp_update_reordering(sk, tp->packets_out + addend, 0);
1769}
1770
1771/* Emulate SACKs for SACKless connection: account for a new dupack. */
1772
1773static void tcp_add_reno_sack(struct sock *sk)
1774{
1775        struct tcp_sock *tp = tcp_sk(sk);
1776        tp->sacked_out++;
1777        tcp_check_reno_reordering(sk, 0);
1778        tcp_verify_left_out(tp);
1779}
1780
1781/* Account for ACK, ACKing some data in Reno Recovery phase. */
1782
1783static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1784{
1785        struct tcp_sock *tp = tcp_sk(sk);
1786
1787        if (acked > 0) {
1788                /* One ACK acked hole. The rest eat duplicate ACKs. */
1789                if (acked - 1 >= tp->sacked_out)
1790                        tp->sacked_out = 0;
1791                else
1792                        tp->sacked_out -= acked - 1;
1793        }
1794        tcp_check_reno_reordering(sk, acked);
1795        tcp_verify_left_out(tp);
1796}
1797
1798static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1799{
1800        tp->sacked_out = 0;
1801}
1802
1803static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1804{
1805        tp->retrans_out = 0;
1806        tp->lost_out = 0;
1807
1808        tp->undo_marker = 0;
1809        tp->undo_retrans = 0;
1810}
1811
1812void tcp_clear_retrans(struct tcp_sock *tp)
1813{
1814        tcp_clear_retrans_partial(tp);
1815
1816        tp->fackets_out = 0;
1817        tp->sacked_out = 0;
1818}
1819
1820/* Enter Loss state. If "how" is not zero, forget all SACK information
1821 * and reset tags completely, otherwise preserve SACKs. If receiver
1822 * dropped its ofo queue, we will know this due to reneging detection.
1823 */
1824void tcp_enter_loss(struct sock *sk, int how)
1825{
1826        const struct inet_connection_sock *icsk = inet_csk(sk);
1827        struct tcp_sock *tp = tcp_sk(sk);
1828        struct sk_buff *skb;
1829        bool new_recovery = false;
1830
1831        /* Reduce ssthresh if it has not yet been made inside this window. */
1832        if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1833            !after(tp->high_seq, tp->snd_una) ||
1834            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1835                new_recovery = true;
1836                tp->prior_ssthresh = tcp_current_ssthresh(sk);
1837                tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1838                tcp_ca_event(sk, CA_EVENT_LOSS);
1839        }
1840        tp->snd_cwnd       = 1;
1841        tp->snd_cwnd_cnt   = 0;
1842        tp->snd_cwnd_stamp = tcp_time_stamp;
1843
1844        tcp_clear_retrans_partial(tp);
1845
1846        if (tcp_is_reno(tp))
1847                tcp_reset_reno_sack(tp);
1848
1849        tp->undo_marker = tp->snd_una;
1850        if (how) {
1851                tp->sacked_out = 0;
1852                tp->fackets_out = 0;
1853        }
1854        tcp_clear_all_retrans_hints(tp);
1855
1856        tcp_for_write_queue(skb, sk) {
1857                if (skb == tcp_send_head(sk))
1858                        break;
1859
1860                if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1861                        tp->undo_marker = 0;
1862                TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1863                if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1864                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1865                        TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1866                        tp->lost_out += tcp_skb_pcount(skb);
1867                        tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1868                }
1869        }
1870        tcp_verify_left_out(tp);
1871
1872        tp->reordering = min_t(unsigned int, tp->reordering,
1873                               sysctl_tcp_reordering);
1874        tcp_set_ca_state(sk, TCP_CA_Loss);
1875        tp->high_seq = tp->snd_nxt;
1876        TCP_ECN_queue_cwr(tp);
1877
1878        /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1879         * loss recovery is underway except recurring timeout(s) on
1880         * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1881         */
1882        tp->frto = sysctl_tcp_frto &&
1883                   (new_recovery || icsk->icsk_retransmits) &&
1884                   !inet_csk(sk)->icsk_mtup.probe_size;
1885}
1886
1887/* If ACK arrived pointing to a remembered SACK, it means that our
1888 * remembered SACKs do not reflect real state of receiver i.e.
1889 * receiver _host_ is heavily congested (or buggy).
1890 *
1891 * Do processing similar to RTO timeout.
1892 */
1893static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1894{
1895        if (flag & FLAG_SACK_RENEGING) {
1896                struct inet_connection_sock *icsk = inet_csk(sk);
1897                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1898
1899                tcp_enter_loss(sk, 1);
1900                icsk->icsk_retransmits++;
1901                tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1902                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1903                                          icsk->icsk_rto, TCP_RTO_MAX);
1904                return true;
1905        }
1906        return false;
1907}
1908
1909static inline int tcp_fackets_out(const struct tcp_sock *tp)
1910{
1911        return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1912}
1913
1914/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1915 * counter when SACK is enabled (without SACK, sacked_out is used for
1916 * that purpose).
1917 *
1918 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1919 * segments up to the highest received SACK block so far and holes in
1920 * between them.
1921 *
1922 * With reordering, holes may still be in flight, so RFC3517 recovery
1923 * uses pure sacked_out (total number of SACKed segments) even though
1924 * it violates the RFC that uses duplicate ACKs, often these are equal
1925 * but when e.g. out-of-window ACKs or packet duplication occurs,
1926 * they differ. Since neither occurs due to loss, TCP should really
1927 * ignore them.
1928 */
1929static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1930{
1931        return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1932}
1933
1934static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1935{
1936        struct tcp_sock *tp = tcp_sk(sk);
1937        unsigned long delay;
1938
1939        /* Delay early retransmit and entering fast recovery for
1940         * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1941         * available, or RTO is scheduled to fire first.
1942         */
1943        if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1944            (flag & FLAG_ECE) || !tp->srtt)
1945                return false;
1946
1947        delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1948        if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1949                return false;
1950
1951        inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1952                                  TCP_RTO_MAX);
1953        return true;
1954}
1955
1956/* Linux NewReno/SACK/FACK/ECN state machine.
1957 * --------------------------------------
1958 *
1959 * "Open"       Normal state, no dubious events, fast path.
1960 * "Disorder"   In all the respects it is "Open",
1961 *              but requires a bit more attention. It is entered when
1962 *              we see some SACKs or dupacks. It is split of "Open"
1963 *              mainly to move some processing from fast path to slow one.
1964 * "CWR"        CWND was reduced due to some Congestion Notification event.
1965 *              It can be ECN, ICMP source quench, local device congestion.
1966 * "Recovery"   CWND was reduced, we are fast-retransmitting.
1967 * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
1968 *
1969 * tcp_fastretrans_alert() is entered:
1970 * - each incoming ACK, if state is not "Open"
1971 * - when arrived ACK is unusual, namely:
1972 *      * SACK
1973 *      * Duplicate ACK.
1974 *      * ECN ECE.
1975 *
1976 * Counting packets in flight is pretty simple.
1977 *
1978 *      in_flight = packets_out - left_out + retrans_out
1979 *
1980 *      packets_out is SND.NXT-SND.UNA counted in packets.
1981 *
1982 *      retrans_out is number of retransmitted segments.
1983 *
1984 *      left_out is number of segments left network, but not ACKed yet.
1985 *
1986 *              left_out = sacked_out + lost_out
1987 *
1988 *     sacked_out: Packets, which arrived to receiver out of order
1989 *                 and hence not ACKed. With SACKs this number is simply
1990 *                 amount of SACKed data. Even without SACKs
1991 *                 it is easy to give pretty reliable estimate of this number,
1992 *                 counting duplicate ACKs.
1993 *
1994 *       lost_out: Packets lost by network. TCP has no explicit
1995 *                 "loss notification" feedback from network (for now).
1996 *                 It means that this number can be only _guessed_.
1997 *                 Actually, it is the heuristics to predict lossage that
1998 *                 distinguishes different algorithms.
1999 *
2000 *      F.e. after RTO, when all the queue is considered as lost,
2001 *      lost_out = packets_out and in_flight = retrans_out.
2002 *
2003 *              Essentially, we have now two algorithms counting
2004 *              lost packets.
2005 *
2006 *              FACK: It is the simplest heuristics. As soon as we decided
2007 *              that something is lost, we decide that _all_ not SACKed
2008 *              packets until the most forward SACK are lost. I.e.
2009 *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2010 *              It is absolutely correct estimate, if network does not reorder
2011 *              packets. And it loses any connection to reality when reordering
2012 *              takes place. We use FACK by default until reordering
2013 *              is suspected on the path to this destination.
2014 *
2015 *              NewReno: when Recovery is entered, we assume that one segment
2016 *              is lost (classic Reno). While we are in Recovery and
2017 *              a partial ACK arrives, we assume that one more packet
2018 *              is lost (NewReno). This heuristics are the same in NewReno
2019 *              and SACK.
2020 *
2021 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2022 *  deflation etc. CWND is real congestion window, never inflated, changes
2023 *  only according to classic VJ rules.
2024 *
2025 * Really tricky (and requiring careful tuning) part of algorithm
2026 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2027 * The first determines the moment _when_ we should reduce CWND and,
2028 * hence, slow down forward transmission. In fact, it determines the moment
2029 * when we decide that hole is caused by loss, rather than by a reorder.
2030 *
2031 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2032 * holes, caused by lost packets.
2033 *
2034 * And the most logically complicated part of algorithm is undo
2035 * heuristics. We detect false retransmits due to both too early
2036 * fast retransmit (reordering) and underestimated RTO, analyzing
2037 * timestamps and D-SACKs. When we detect that some segments were
2038 * retransmitted by mistake and CWND reduction was wrong, we undo
2039 * window reduction and abort recovery phase. This logic is hidden
2040 * inside several functions named tcp_try_undo_<something>.
2041 */
2042
2043/* This function decides, when we should leave Disordered state
2044 * and enter Recovery phase, reducing congestion window.
2045 *
2046 * Main question: may we further continue forward transmission
2047 * with the same cwnd?
2048 */
2049static bool tcp_time_to_recover(struct sock *sk, int flag)
2050{
2051        struct tcp_sock *tp = tcp_sk(sk);
2052        __u32 packets_out;
2053
2054        /* Trick#1: The loss is proven. */
2055        if (tp->lost_out)
2056                return true;
2057
2058        /* Not-A-Trick#2 : Classic rule... */
2059        if (tcp_dupack_heuristics(tp) > tp->reordering)
2060                return true;
2061
2062        /* Trick#4: It is still not OK... But will it be useful to delay
2063         * recovery more?
2064         */
2065        packets_out = tp->packets_out;
2066        if (packets_out <= tp->reordering &&
2067            tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2068            !tcp_may_send_now(sk)) {
2069                /* We have nothing to send. This connection is limited
2070                 * either by receiver window or by application.
2071                 */
2072                return true;
2073        }
2074
2075        /* If a thin stream is detected, retransmit after first
2076         * received dupack. Employ only if SACK is supported in order
2077         * to avoid possible corner-case series of spurious retransmissions
2078         * Use only if there are no unsent data.
2079         */
2080        if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2081            tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2082            tcp_is_sack(tp) && !tcp_send_head(sk))
2083                return true;
2084
2085        /* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2086         * retransmissions due to small network reorderings, we implement
2087         * Mitigation A.3 in the RFC and delay the retransmission for a short
2088         * interval if appropriate.
2089         */
2090        if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2091            (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2092            !tcp_may_send_now(sk))
2093                return !tcp_pause_early_retransmit(sk, flag);
2094
2095        return false;
2096}
2097
2098/* Detect loss in event "A" above by marking head of queue up as lost.
2099 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2100 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2101 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2102 * the maximum SACKed segments to pass before reaching this limit.
2103 */
2104static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2105{
2106        struct tcp_sock *tp = tcp_sk(sk);
2107        struct sk_buff *skb;
2108        int cnt, oldcnt;
2109        int err;
2110        unsigned int mss;
2111        /* Use SACK to deduce losses of new sequences sent during recovery */
2112        const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2113
2114        WARN_ON(packets > tp->packets_out);
2115        if (tp->lost_skb_hint) {
2116                skb = tp->lost_skb_hint;
2117                cnt = tp->lost_cnt_hint;
2118                /* Head already handled? */
2119                if (mark_head && skb != tcp_write_queue_head(sk))
2120                        return;
2121        } else {
2122                skb = tcp_write_queue_head(sk);
2123                cnt = 0;
2124        }
2125
2126        tcp_for_write_queue_from(skb, sk) {
2127                if (skb == tcp_send_head(sk))
2128                        break;
2129                /* TODO: do this better */
2130                /* this is not the most efficient way to do this... */
2131                tp->lost_skb_hint = skb;
2132                tp->lost_cnt_hint = cnt;
2133
2134                if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2135                        break;
2136
2137                oldcnt = cnt;
2138                if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2139                    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2140                        cnt += tcp_skb_pcount(skb);
2141
2142                if (cnt > packets) {
2143                        if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2144                            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2145                            (oldcnt >= packets))
2146                                break;
2147
2148                        mss = skb_shinfo(skb)->gso_size;
2149                        err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2150                        if (err < 0)
2151                                break;
2152                        cnt = packets;
2153                }
2154
2155                tcp_skb_mark_lost(tp, skb);
2156
2157                if (mark_head)
2158                        break;
2159        }
2160        tcp_verify_left_out(tp);
2161}
2162
2163/* Account newly detected lost packet(s) */
2164
2165static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2166{
2167        struct tcp_sock *tp = tcp_sk(sk);
2168
2169        if (tcp_is_reno(tp)) {
2170                tcp_mark_head_lost(sk, 1, 1);
2171        } else if (tcp_is_fack(tp)) {
2172                int lost = tp->fackets_out - tp->reordering;
2173                if (lost <= 0)
2174                        lost = 1;
2175                tcp_mark_head_lost(sk, lost, 0);
2176        } else {
2177                int sacked_upto = tp->sacked_out - tp->reordering;
2178                if (sacked_upto >= 0)
2179                        tcp_mark_head_lost(sk, sacked_upto, 0);
2180                else if (fast_rexmit)
2181                        tcp_mark_head_lost(sk, 1, 1);
2182        }
2183}
2184
2185/* CWND moderation, preventing bursts due to too big ACKs
2186 * in dubious situations.
2187 */
2188static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2189{
2190        tp->snd_cwnd = min(tp->snd_cwnd,
2191                           tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2192        tp->snd_cwnd_stamp = tcp_time_stamp;
2193}
2194
2195/* Nothing was retransmitted or returned timestamp is less
2196 * than timestamp of the first retransmission.
2197 */
2198static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2199{
2200        return !tp->retrans_stamp ||
2201                (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2202                 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2203}
2204
2205/* Undo procedures. */
2206
2207#if FASTRETRANS_DEBUG > 1
2208static void DBGUNDO(struct sock *sk, const char *msg)
2209{
2210        struct tcp_sock *tp = tcp_sk(sk);
2211        struct inet_sock *inet = inet_sk(sk);
2212
2213        if (sk->sk_family == AF_INET) {
2214                pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2215                         msg,
2216                         &inet->inet_daddr, ntohs(inet->inet_dport),
2217                         tp->snd_cwnd, tcp_left_out(tp),
2218                         tp->snd_ssthresh, tp->prior_ssthresh,
2219                         tp->packets_out);
2220        }
2221#if IS_ENABLED(CONFIG_IPV6)
2222        else if (sk->sk_family == AF_INET6) {
2223                struct ipv6_pinfo *np = inet6_sk(sk);
2224                pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2225                         msg,
2226                         &np->daddr, ntohs(inet->inet_dport),
2227                         tp->snd_cwnd, tcp_left_out(tp),
2228                         tp->snd_ssthresh, tp->prior_ssthresh,
2229                         tp->packets_out);
2230        }
2231#endif
2232}
2233#else
2234#define DBGUNDO(x...) do { } while (0)
2235#endif
2236
2237static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2238{
2239        struct tcp_sock *tp = tcp_sk(sk);
2240
2241        if (unmark_loss) {
2242                struct sk_buff *skb;
2243
2244                tcp_for_write_queue(skb, sk) {
2245                        if (skb == tcp_send_head(sk))
2246                                break;
2247                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2248                }
2249                tp->lost_out = 0;
2250                tcp_clear_all_retrans_hints(tp);
2251        }
2252
2253        if (tp->prior_ssthresh) {
2254                const struct inet_connection_sock *icsk = inet_csk(sk);
2255
2256                if (icsk->icsk_ca_ops->undo_cwnd)
2257                        tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2258                else
2259                        tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2260
2261                if (tp->prior_ssthresh > tp->snd_ssthresh) {
2262                        tp->snd_ssthresh = tp->prior_ssthresh;
2263                        TCP_ECN_withdraw_cwr(tp);
2264                }
2265        } else {
2266                tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2267        }
2268        tp->snd_cwnd_stamp = tcp_time_stamp;
2269        tp->undo_marker = 0;
2270}
2271
2272static inline bool tcp_may_undo(const struct tcp_sock *tp)
2273{
2274        return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2275}
2276
2277/* People celebrate: "We love our President!" */
2278static bool tcp_try_undo_recovery(struct sock *sk)
2279{
2280        struct tcp_sock *tp = tcp_sk(sk);
2281
2282        if (tcp_may_undo(tp)) {
2283                int mib_idx;
2284
2285                /* Happy end! We did not retransmit anything
2286                 * or our original transmission succeeded.
2287                 */
2288                DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2289                tcp_undo_cwnd_reduction(sk, false);
2290                if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2291                        mib_idx = LINUX_MIB_TCPLOSSUNDO;
2292                else
2293                        mib_idx = LINUX_MIB_TCPFULLUNDO;
2294
2295                NET_INC_STATS_BH(sock_net(sk), mib_idx);
2296        }
2297        if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2298                /* Hold old state until something *above* high_seq
2299                 * is ACKed. For Reno it is MUST to prevent false
2300                 * fast retransmits (RFC2582). SACK TCP is safe. */
2301                tcp_moderate_cwnd(tp);
2302                return true;
2303        }
2304        tcp_set_ca_state(sk, TCP_CA_Open);
2305        return false;
2306}
2307
2308/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2309static bool tcp_try_undo_dsack(struct sock *sk)
2310{
2311        struct tcp_sock *tp = tcp_sk(sk);
2312
2313        if (tp->undo_marker && !tp->undo_retrans) {
2314                DBGUNDO(sk, "D-SACK");
2315                tcp_undo_cwnd_reduction(sk, false);
2316                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2317                return true;
2318        }
2319        return false;
2320}
2321
2322/* We can clear retrans_stamp when there are no retransmissions in the
2323 * window. It would seem that it is trivially available for us in
2324 * tp->retrans_out, however, that kind of assumptions doesn't consider
2325 * what will happen if errors occur when sending retransmission for the
2326 * second time. ...It could the that such segment has only
2327 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2328 * the head skb is enough except for some reneging corner cases that
2329 * are not worth the effort.
2330 *
2331 * Main reason for all this complexity is the fact that connection dying
2332 * time now depends on the validity of the retrans_stamp, in particular,
2333 * that successive retransmissions of a segment must not advance
2334 * retrans_stamp under any conditions.
2335 */
2336static bool tcp_any_retrans_done(const struct sock *sk)
2337{
2338        const struct tcp_sock *tp = tcp_sk(sk);
2339        struct sk_buff *skb;
2340
2341        if (tp->retrans_out)
2342                return true;
2343
2344        skb = tcp_write_queue_head(sk);
2345        if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2346                return true;
2347
2348        return false;
2349}
2350
2351/* Undo during loss recovery after partial ACK or using F-RTO. */
2352static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2353{
2354        struct tcp_sock *tp = tcp_sk(sk);
2355
2356        if (frto_undo || tcp_may_undo(tp)) {
2357                tcp_undo_cwnd_reduction(sk, true);
2358
2359                DBGUNDO(sk, "partial loss");
2360                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2361                if (frto_undo)
2362                        NET_INC_STATS_BH(sock_net(sk),
2363                                         LINUX_MIB_TCPSPURIOUSRTOS);
2364                inet_csk(sk)->icsk_retransmits = 0;
2365                if (frto_undo || tcp_is_sack(tp))
2366                        tcp_set_ca_state(sk, TCP_CA_Open);
2367                return true;
2368        }
2369        return false;
2370}
2371
2372/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2373 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2374 * It computes the number of packets to send (sndcnt) based on packets newly
2375 * delivered:
2376 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2377 *      cwnd reductions across a full RTT.
2378 *   2) If packets in flight is lower than ssthresh (such as due to excess
2379 *      losses and/or application stalls), do not perform any further cwnd
2380 *      reductions, but instead slow start up to ssthresh.
2381 */
2382static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2383{
2384        struct tcp_sock *tp = tcp_sk(sk);
2385
2386        tp->high_seq = tp->snd_nxt;
2387        tp->tlp_high_seq = 0;
2388        tp->snd_cwnd_cnt = 0;
2389        tp->prior_cwnd = tp->snd_cwnd;
2390        tp->prr_delivered = 0;
2391        tp->prr_out = 0;
2392        if (set_ssthresh)
2393                tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2394        TCP_ECN_queue_cwr(tp);
2395}
2396
2397static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2398                               int fast_rexmit)
2399{
2400        struct tcp_sock *tp = tcp_sk(sk);
2401        int sndcnt = 0;
2402        int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2403        int newly_acked_sacked = prior_unsacked -
2404                                 (tp->packets_out - tp->sacked_out);
2405
2406        tp->prr_delivered += newly_acked_sacked;
2407        if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2408                u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2409                               tp->prior_cwnd - 1;
2410                sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2411        } else {
2412                sndcnt = min_t(int, delta,
2413                               max_t(int, tp->prr_delivered - tp->prr_out,
2414                                     newly_acked_sacked) + 1);
2415        }
2416
2417        sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2418        tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2419}
2420
2421static inline void tcp_end_cwnd_reduction(struct sock *sk)
2422{
2423        struct tcp_sock *tp = tcp_sk(sk);
2424
2425        /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2426        if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2427            (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2428                tp->snd_cwnd = tp->snd_ssthresh;
2429                tp->snd_cwnd_stamp = tcp_time_stamp;
2430        }
2431        tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2432}
2433
2434/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2435void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2436{
2437        struct tcp_sock *tp = tcp_sk(sk);
2438
2439        tp->prior_ssthresh = 0;
2440        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2441                tp->undo_marker = 0;
2442                tcp_init_cwnd_reduction(sk, set_ssthresh);
2443                tcp_set_ca_state(sk, TCP_CA_CWR);
2444        }
2445}
2446
2447static void tcp_try_keep_open(struct sock *sk)
2448{
2449        struct tcp_sock *tp = tcp_sk(sk);
2450        int state = TCP_CA_Open;
2451
2452        if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2453                state = TCP_CA_Disorder;
2454
2455        if (inet_csk(sk)->icsk_ca_state != state) {
2456                tcp_set_ca_state(sk, state);
2457                tp->high_seq = tp->snd_nxt;
2458        }
2459}
2460
2461static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2462{
2463        struct tcp_sock *tp = tcp_sk(sk);
2464
2465        tcp_verify_left_out(tp);
2466
2467        if (!tcp_any_retrans_done(sk))
2468                tp->retrans_stamp = 0;
2469
2470        if (flag & FLAG_ECE)
2471                tcp_enter_cwr(sk, 1);
2472
2473        if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2474                tcp_try_keep_open(sk);
2475                if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2476                        tcp_moderate_cwnd(tp);
2477        } else {
2478                tcp_cwnd_reduction(sk, prior_unsacked, 0);
2479        }
2480}
2481
2482static void tcp_mtup_probe_failed(struct sock *sk)
2483{
2484        struct inet_connection_sock *icsk = inet_csk(sk);
2485
2486        icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2487        icsk->icsk_mtup.probe_size = 0;
2488}
2489
2490static void tcp_mtup_probe_success(struct sock *sk)
2491{
2492        struct tcp_sock *tp = tcp_sk(sk);
2493        struct inet_connection_sock *icsk = inet_csk(sk);
2494
2495        /* FIXME: breaks with very large cwnd */
2496        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2497        tp->snd_cwnd = tp->snd_cwnd *
2498                       tcp_mss_to_mtu(sk, tp->mss_cache) /
2499                       icsk->icsk_mtup.probe_size;
2500        tp->snd_cwnd_cnt = 0;
2501        tp->snd_cwnd_stamp = tcp_time_stamp;
2502        tp->snd_ssthresh = tcp_current_ssthresh(sk);
2503
2504        icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2505        icsk->icsk_mtup.probe_size = 0;
2506        tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2507}
2508
2509/* Do a simple retransmit without using the backoff mechanisms in
2510 * tcp_timer. This is used for path mtu discovery.
2511 * The socket is already locked here.
2512 */
2513void tcp_simple_retransmit(struct sock *sk)
2514{
2515        const struct inet_connection_sock *icsk = inet_csk(sk);
2516        struct tcp_sock *tp = tcp_sk(sk);
2517        struct sk_buff *skb;
2518        unsigned int mss = tcp_current_mss(sk);
2519        u32 prior_lost = tp->lost_out;
2520
2521        tcp_for_write_queue(skb, sk) {
2522                if (skb == tcp_send_head(sk))
2523                        break;
2524                if (tcp_skb_seglen(skb) > mss &&
2525                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2526                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2527                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2528                                tp->retrans_out -= tcp_skb_pcount(skb);
2529                        }
2530                        tcp_skb_mark_lost_uncond_verify(tp, skb);
2531                }
2532        }
2533
2534        tcp_clear_retrans_hints_partial(tp);
2535
2536        if (prior_lost == tp->lost_out)
2537                return;
2538
2539        if (tcp_is_reno(tp))
2540                tcp_limit_reno_sacked(tp);
2541
2542        tcp_verify_left_out(tp);
2543
2544        /* Don't muck with the congestion window here.
2545         * Reason is that we do not increase amount of _data_
2546         * in network, but units changed and effective
2547         * cwnd/ssthresh really reduced now.
2548         */
2549        if (icsk->icsk_ca_state != TCP_CA_Loss) {
2550                tp->high_seq = tp->snd_nxt;
2551                tp->snd_ssthresh = tcp_current_ssthresh(sk);
2552                tp->prior_ssthresh = 0;
2553                tp->undo_marker = 0;
2554                tcp_set_ca_state(sk, TCP_CA_Loss);
2555        }
2556        tcp_xmit_retransmit_queue(sk);
2557}
2558EXPORT_SYMBOL(tcp_simple_retransmit);
2559
2560static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2561{
2562        struct tcp_sock *tp = tcp_sk(sk);
2563        int mib_idx;
2564
2565        if (tcp_is_reno(tp))
2566                mib_idx = LINUX_MIB_TCPRENORECOVERY;
2567        else
2568                mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2569
2570        NET_INC_STATS_BH(sock_net(sk), mib_idx);
2571
2572        tp->prior_ssthresh = 0;
2573        tp->undo_marker = tp->snd_una;
2574        tp->undo_retrans = tp->retrans_out;
2575
2576        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2577                if (!ece_ack)
2578                        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2579                tcp_init_cwnd_reduction(sk, true);
2580        }
2581        tcp_set_ca_state(sk, TCP_CA_Recovery);
2582}
2583
2584/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2585 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2586 */
2587static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2588{
2589        struct inet_connection_sock *icsk = inet_csk(sk);
2590        struct tcp_sock *tp = tcp_sk(sk);
2591        bool recovered = !before(tp->snd_una, tp->high_seq);
2592
2593        if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2594                if (flag & FLAG_ORIG_SACK_ACKED) {
2595                        /* Step 3.b. A timeout is spurious if not all data are
2596                         * lost, i.e., never-retransmitted data are (s)acked.
2597                         */
2598                        tcp_try_undo_loss(sk, true);
2599                        return;
2600                }
2601                if (after(tp->snd_nxt, tp->high_seq) &&
2602                    (flag & FLAG_DATA_SACKED || is_dupack)) {
2603                        tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2604                } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2605                        tp->high_seq = tp->snd_nxt;
2606                        __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2607                                                  TCP_NAGLE_OFF);
2608                        if (after(tp->snd_nxt, tp->high_seq))
2609                                return; /* Step 2.b */
2610                        tp->frto = 0;
2611                }
2612        }
2613
2614        if (recovered) {
2615                /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2616                icsk->icsk_retransmits = 0;
2617                tcp_try_undo_recovery(sk);
2618                return;
2619        }
2620        if (flag & FLAG_DATA_ACKED)
2621                icsk->icsk_retransmits = 0;
2622        if (tcp_is_reno(tp)) {
2623                /* A Reno DUPACK means new data in F-RTO step 2.b above are
2624                 * delivered. Lower inflight to clock out (re)tranmissions.
2625                 */
2626                if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2627                        tcp_add_reno_sack(sk);
2628                else if (flag & FLAG_SND_UNA_ADVANCED)
2629                        tcp_reset_reno_sack(tp);
2630        }
2631        if (tcp_try_undo_loss(sk, false))
2632                return;
2633        tcp_xmit_retransmit_queue(sk);
2634}
2635
2636/* Undo during fast recovery after partial ACK. */
2637static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2638                                 const int prior_unsacked)
2639{
2640        struct tcp_sock *tp = tcp_sk(sk);
2641
2642        if (tp->undo_marker && tcp_packet_delayed(tp)) {
2643                /* Plain luck! Hole if filled with delayed
2644                 * packet, rather than with a retransmit.
2645                 */
2646                tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2647
2648                /* We are getting evidence that the reordering degree is higher
2649                 * than we realized. If there are no retransmits out then we
2650                 * can undo. Otherwise we clock out new packets but do not
2651                 * mark more packets lost or retransmit more.
2652                 */
2653                if (tp->retrans_out) {
2654                        tcp_cwnd_reduction(sk, prior_unsacked, 0);
2655                        return true;
2656                }
2657
2658                if (!tcp_any_retrans_done(sk))
2659                        tp->retrans_stamp = 0;
2660
2661                DBGUNDO(sk, "partial recovery");
2662                tcp_undo_cwnd_reduction(sk, true);
2663                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2664                tcp_try_keep_open(sk);
2665                return true;
2666        }
2667        return false;
2668}
2669
2670/* Process an event, which can update packets-in-flight not trivially.
2671 * Main goal of this function is to calculate new estimate for left_out,
2672 * taking into account both packets sitting in receiver's buffer and
2673 * packets lost by network.
2674 *
2675 * Besides that it does CWND reduction, when packet loss is detected
2676 * and changes state of machine.
2677 *
2678 * It does _not_ decide what to send, it is made in function
2679 * tcp_xmit_retransmit_queue().
2680 */
2681static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2682                                  const int prior_unsacked,
2683                                  bool is_dupack, int flag)
2684{
2685        struct inet_connection_sock *icsk = inet_csk(sk);
2686        struct tcp_sock *tp = tcp_sk(sk);
2687        bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2688                                    (tcp_fackets_out(tp) > tp->reordering));
2689        int fast_rexmit = 0;
2690
2691        if (WARN_ON(!tp->packets_out && tp->sacked_out))
2692                tp->sacked_out = 0;
2693        if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2694                tp->fackets_out = 0;
2695
2696        /* Now state machine starts.
2697         * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2698        if (flag & FLAG_ECE)
2699                tp->prior_ssthresh = 0;
2700
2701        /* B. In all the states check for reneging SACKs. */
2702        if (tcp_check_sack_reneging(sk, flag))
2703                return;
2704
2705        /* C. Check consistency of the current state. */
2706        tcp_verify_left_out(tp);
2707
2708        /* D. Check state exit conditions. State can be terminated
2709         *    when high_seq is ACKed. */
2710        if (icsk->icsk_ca_state == TCP_CA_Open) {
2711                WARN_ON(tp->retrans_out != 0);
2712                tp->retrans_stamp = 0;
2713        } else if (!before(tp->snd_una, tp->high_seq)) {
2714                switch (icsk->icsk_ca_state) {
2715                case TCP_CA_CWR:
2716                        /* CWR is to be held something *above* high_seq
2717                         * is ACKed for CWR bit to reach receiver. */
2718                        if (tp->snd_una != tp->high_seq) {
2719                                tcp_end_cwnd_reduction(sk);
2720                                tcp_set_ca_state(sk, TCP_CA_Open);
2721                        }
2722                        break;
2723
2724                case TCP_CA_Recovery:
2725                        if (tcp_is_reno(tp))
2726                                tcp_reset_reno_sack(tp);
2727                        if (tcp_try_undo_recovery(sk))
2728                                return;
2729                        tcp_end_cwnd_reduction(sk);
2730                        break;
2731                }
2732        }
2733
2734        /* E. Process state. */
2735        switch (icsk->icsk_ca_state) {
2736        case TCP_CA_Recovery:
2737                if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2738                        if (tcp_is_reno(tp) && is_dupack)
2739                                tcp_add_reno_sack(sk);
2740                } else {
2741                        if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2742                                return;
2743                        /* Partial ACK arrived. Force fast retransmit. */
2744                        do_lost = tcp_is_reno(tp) ||
2745                                  tcp_fackets_out(tp) > tp->reordering;
2746                }
2747                if (tcp_try_undo_dsack(sk)) {
2748                        tcp_try_keep_open(sk);
2749                        return;
2750                }
2751                break;
2752        case TCP_CA_Loss:
2753                tcp_process_loss(sk, flag, is_dupack);
2754                if (icsk->icsk_ca_state != TCP_CA_Open)
2755                        return;
2756                /* Fall through to processing in Open state. */
2757        default:
2758                if (tcp_is_reno(tp)) {
2759                        if (flag & FLAG_SND_UNA_ADVANCED)
2760                                tcp_reset_reno_sack(tp);
2761                        if (is_dupack)
2762                                tcp_add_reno_sack(sk);
2763                }
2764
2765                if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2766                        tcp_try_undo_dsack(sk);
2767
2768                if (!tcp_time_to_recover(sk, flag)) {
2769                        tcp_try_to_open(sk, flag, prior_unsacked);
2770                        return;
2771                }
2772
2773                /* MTU probe failure: don't reduce cwnd */
2774                if (icsk->icsk_ca_state < TCP_CA_CWR &&
2775                    icsk->icsk_mtup.probe_size &&
2776                    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2777                        tcp_mtup_probe_failed(sk);
2778                        /* Restores the reduction we did in tcp_mtup_probe() */
2779                        tp->snd_cwnd++;
2780                        tcp_simple_retransmit(sk);
2781                        return;
2782                }
2783
2784                /* Otherwise enter Recovery state */
2785                tcp_enter_recovery(sk, (flag & FLAG_ECE));
2786                fast_rexmit = 1;
2787        }
2788
2789        if (do_lost)
2790                tcp_update_scoreboard(sk, fast_rexmit);
2791        tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2792        tcp_xmit_retransmit_queue(sk);
2793}
2794
2795void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2796{
2797        tcp_rtt_estimator(sk, seq_rtt);
2798        tcp_set_rto(sk);
2799        inet_csk(sk)->icsk_backoff = 0;
2800}
2801EXPORT_SYMBOL(tcp_valid_rtt_meas);
2802
2803/* Read draft-ietf-tcplw-high-performance before mucking
2804 * with this code. (Supersedes RFC1323)
2805 */
2806static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2807{
2808        /* RTTM Rule: A TSecr value received in a segment is used to
2809         * update the averaged RTT measurement only if the segment
2810         * acknowledges some new data, i.e., only if it advances the
2811         * left edge of the send window.
2812         *
2813         * See draft-ietf-tcplw-high-performance-00, section 3.3.
2814         * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2815         *
2816         * Changed: reset backoff as soon as we see the first valid sample.
2817         * If we do not, we get strongly overestimated rto. With timestamps
2818         * samples are accepted even from very old segments: f.e., when rtt=1
2819         * increases to 8, we retransmit 5 times and after 8 seconds delayed
2820         * answer arrives rto becomes 120 seconds! If at least one of segments
2821         * in window is lost... Voila.                          --ANK (010210)
2822         */
2823        struct tcp_sock *tp = tcp_sk(sk);
2824
2825        tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2826}
2827
2828static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2829{
2830        /* We don't have a timestamp. Can only use
2831         * packets that are not retransmitted to determine
2832         * rtt estimates. Also, we must not reset the
2833         * backoff for rto until we get a non-retransmitted
2834         * packet. This allows us to deal with a situation
2835         * where the network delay has increased suddenly.
2836         * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2837         */
2838
2839        if (flag & FLAG_RETRANS_DATA_ACKED)
2840                return;
2841
2842        tcp_valid_rtt_meas(sk, seq_rtt);
2843}
2844
2845static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2846                                      const s32 seq_rtt)
2847{
2848        const struct tcp_sock *tp = tcp_sk(sk);
2849        /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2850        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2851                tcp_ack_saw_tstamp(sk, flag);
2852        else if (seq_rtt >= 0)
2853                tcp_ack_no_tstamp(sk, seq_rtt, flag);
2854}
2855
2856static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2857{
2858        const struct inet_connection_sock *icsk = inet_csk(sk);
2859        icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2860        tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2861}
2862
2863/* Restart timer after forward progress on connection.
2864 * RFC2988 recommends to restart timer to now+rto.
2865 */
2866void tcp_rearm_rto(struct sock *sk)
2867{
2868        const struct inet_connection_sock *icsk = inet_csk(sk);
2869        struct tcp_sock *tp = tcp_sk(sk);
2870
2871        /* If the retrans timer is currently being used by Fast Open
2872         * for SYN-ACK retrans purpose, stay put.
2873         */
2874        if (tp->fastopen_rsk)
2875                return;
2876
2877        if (!tp->packets_out) {
2878                inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2879        } else {
2880                u32 rto = inet_csk(sk)->icsk_rto;
2881                /* Offset the time elapsed after installing regular RTO */
2882                if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2883                    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2884                        struct sk_buff *skb = tcp_write_queue_head(sk);
2885                        const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2886                        s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2887                        /* delta may not be positive if the socket is locked
2888                         * when the retrans timer fires and is rescheduled.
2889                         */
2890                        if (delta > 0)
2891                                rto = delta;
2892                }
2893                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2894                                          TCP_RTO_MAX);
2895        }
2896}
2897
2898/* This function is called when the delayed ER timer fires. TCP enters
2899 * fast recovery and performs fast-retransmit.
2900 */
2901void tcp_resume_early_retransmit(struct sock *sk)
2902{
2903        struct tcp_sock *tp = tcp_sk(sk);
2904
2905        tcp_rearm_rto(sk);
2906
2907        /* Stop if ER is disabled after the delayed ER timer is scheduled */
2908        if (!tp->do_early_retrans)
2909                return;
2910
2911        tcp_enter_recovery(sk, false);
2912        tcp_update_scoreboard(sk, 1);
2913        tcp_xmit_retransmit_queue(sk);
2914}
2915
2916/* If we get here, the whole TSO packet has not been acked. */
2917static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2918{
2919        struct tcp_sock *tp = tcp_sk(sk);
2920        u32 packets_acked;
2921
2922        BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2923
2924        packets_acked = tcp_skb_pcount(skb);
2925        if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2926                return 0;
2927        packets_acked -= tcp_skb_pcount(skb);
2928
2929        if (packets_acked) {
2930                BUG_ON(tcp_skb_pcount(skb) == 0);
2931                BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2932        }
2933
2934        return packets_acked;
2935}
2936
2937/* Remove acknowledged frames from the retransmission queue. If our packet
2938 * is before the ack sequence we can discard it as it's confirmed to have
2939 * arrived at the other end.
2940 */
2941static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2942                               u32 prior_snd_una)
2943{
2944        struct tcp_sock *tp = tcp_sk(sk);
2945        const struct inet_connection_sock *icsk = inet_csk(sk);
2946        struct sk_buff *skb;
2947        u32 now = tcp_time_stamp;
2948        int fully_acked = true;
2949        int flag = 0;
2950        u32 pkts_acked = 0;
2951        u32 reord = tp->packets_out;
2952        u32 prior_sacked = tp->sacked_out;
2953        s32 seq_rtt = -1;
2954        s32 ca_seq_rtt = -1;
2955        ktime_t last_ackt = net_invalid_timestamp();
2956
2957        while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2958                struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2959                u32 acked_pcount;
2960                u8 sacked = scb->sacked;
2961
2962                /* Determine how many packets and what bytes were acked, tso and else */
2963                if (after(scb->end_seq, tp->snd_una)) {
2964                        if (tcp_skb_pcount(skb) == 1 ||
2965                            !after(tp->snd_una, scb->seq))
2966                                break;
2967
2968                        acked_pcount = tcp_tso_acked(sk, skb);
2969                        if (!acked_pcount)
2970                                break;
2971
2972                        fully_acked = false;
2973                } else {
2974                        acked_pcount = tcp_skb_pcount(skb);
2975                }
2976
2977                if (sacked & TCPCB_RETRANS) {
2978                        if (sacked & TCPCB_SACKED_RETRANS)
2979                                tp->retrans_out -= acked_pcount;
2980                        flag |= FLAG_RETRANS_DATA_ACKED;
2981                        ca_seq_rtt = -1;
2982                        seq_rtt = -1;
2983                } else {
2984                        ca_seq_rtt = now - scb->when;
2985                        last_ackt = skb->tstamp;
2986                        if (seq_rtt < 0) {
2987                                seq_rtt = ca_seq_rtt;
2988                        }
2989                        if (!(sacked & TCPCB_SACKED_ACKED))
2990                                reord = min(pkts_acked, reord);
2991                        if (!after(scb->end_seq, tp->high_seq))
2992                                flag |= FLAG_ORIG_SACK_ACKED;
2993                }
2994
2995                if (sacked & TCPCB_SACKED_ACKED)
2996                        tp->sacked_out -= acked_pcount;
2997                if (sacked & TCPCB_LOST)
2998                        tp->lost_out -= acked_pcount;
2999
3000                tp->packets_out -= acked_pcount;
3001                pkts_acked += acked_pcount;
3002
3003                /* Initial outgoing SYN's get put onto the write_queue
3004                 * just like anything else we transmit.  It is not
3005                 * true data, and if we misinform our callers that
3006                 * this ACK acks real data, we will erroneously exit
3007                 * connection startup slow start one packet too
3008                 * quickly.  This is severely frowned upon behavior.
3009                 */
3010                if (!(scb->tcp_flags & TCPHDR_SYN)) {
3011                        flag |= FLAG_DATA_ACKED;
3012                } else {
3013                        flag |= FLAG_SYN_ACKED;
3014                        tp->retrans_stamp = 0;
3015                }
3016
3017                if (!fully_acked)
3018                        break;
3019
3020                tcp_unlink_write_queue(skb, sk);
3021                sk_wmem_free_skb(sk, skb);
3022                if (skb == tp->retransmit_skb_hint)
3023                        tp->retransmit_skb_hint = NULL;
3024                if (skb == tp->lost_skb_hint)
3025                        tp->lost_skb_hint = NULL;
3026        }
3027
3028        if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3029                tp->snd_up = tp->snd_una;
3030
3031        if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3032                flag |= FLAG_SACK_RENEGING;
3033
3034        if (flag & FLAG_ACKED) {
3035                const struct tcp_congestion_ops *ca_ops
3036                        = inet_csk(sk)->icsk_ca_ops;
3037
3038                if (unlikely(icsk->icsk_mtup.probe_size &&
3039                             !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3040                        tcp_mtup_probe_success(sk);
3041                }
3042
3043                tcp_ack_update_rtt(sk, flag, seq_rtt);
3044                tcp_rearm_rto(sk);
3045
3046                if (tcp_is_reno(tp)) {
3047                        tcp_remove_reno_sacks(sk, pkts_acked);
3048                } else {
3049                        int delta;
3050
3051                        /* Non-retransmitted hole got filled? That's reordering */
3052                        if (reord < prior_fackets)
3053                                tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3054
3055                        delta = tcp_is_fack(tp) ? pkts_acked :
3056                                                  prior_sacked - tp->sacked_out;
3057                        tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3058                }
3059
3060                tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3061
3062                if (ca_ops->pkts_acked) {
3063                        s32 rtt_us = -1;
3064
3065                        /* Is the ACK triggering packet unambiguous? */
3066                        if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3067                                /* High resolution needed and available? */
3068                                if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3069                                    !ktime_equal(last_ackt,
3070                                                 net_invalid_timestamp()))
3071                                        rtt_us = ktime_us_delta(ktime_get_real(),
3072                                                                last_ackt);
3073                                else if (ca_seq_rtt >= 0)
3074                                        rtt_us = jiffies_to_usecs(ca_seq_rtt);
3075                        }
3076
3077                        ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3078                }
3079        }
3080
3081#if FASTRETRANS_DEBUG > 0
3082        WARN_ON((int)tp->sacked_out < 0);
3083        WARN_ON((int)tp->lost_out < 0);
3084        WARN_ON((int)tp->retrans_out < 0);
3085        if (!tp->packets_out && tcp_is_sack(tp)) {
3086                icsk = inet_csk(sk);
3087                if (tp->lost_out) {
3088                        pr_debug("Leak l=%u %d\n",
3089                                 tp->lost_out, icsk->icsk_ca_state);
3090                        tp->lost_out = 0;
3091                }
3092                if (tp->sacked_out) {
3093                        pr_debug("Leak s=%u %d\n",
3094                                 tp->sacked_out, icsk->icsk_ca_state);
3095                        tp->sacked_out = 0;
3096                }
3097                if (tp->retrans_out) {
3098                        pr_debug("Leak r=%u %d\n",
3099                                 tp->retrans_out, icsk->icsk_ca_state);
3100                        tp->retrans_out = 0;
3101                }
3102        }
3103#endif
3104        return flag;
3105}
3106
3107static void tcp_ack_probe(struct sock *sk)
3108{
3109        const struct tcp_sock *tp = tcp_sk(sk);
3110        struct inet_connection_sock *icsk = inet_csk(sk);
3111
3112        /* Was it a usable window open? */
3113
3114        if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3115                icsk->icsk_backoff = 0;
3116                inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3117                /* Socket must be waked up by subsequent tcp_data_snd_check().
3118                 * This function is not for random using!
3119                 */
3120        } else {
3121                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3122                                          min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3123                                          TCP_RTO_MAX);
3124        }
3125}
3126
3127static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3128{
3129        return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3130                inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3131}
3132
3133static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3134{
3135        const struct tcp_sock *tp = tcp_sk(sk);
3136        return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3137                !tcp_in_cwnd_reduction(sk);
3138}
3139
3140/* Check that window update is acceptable.
3141 * The function assumes that snd_una<=ack<=snd_next.
3142 */
3143static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3144                                        const u32 ack, const u32 ack_seq,
3145                                        const u32 nwin)
3146{
3147        return  after(ack, tp->snd_una) ||
3148                after(ack_seq, tp->snd_wl1) ||
3149                (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3150}
3151
3152/* Update our send window.
3153 *
3154 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3155 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3156 */
3157static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3158                                 u32 ack_seq)
3159{
3160        struct tcp_sock *tp = tcp_sk(sk);
3161        int flag = 0;
3162        u32 nwin = ntohs(tcp_hdr(skb)->window);
3163
3164        if (likely(!tcp_hdr(skb)->syn))
3165                nwin <<= tp->rx_opt.snd_wscale;
3166
3167        if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3168                flag |= FLAG_WIN_UPDATE;
3169                tcp_update_wl(tp, ack_seq);
3170
3171                if (tp->snd_wnd != nwin) {
3172                        tp->snd_wnd = nwin;
3173
3174                        /* Note, it is the only place, where
3175                         * fast path is recovered for sending TCP.
3176                         */
3177                        tp->pred_flags = 0;
3178                        tcp_fast_path_check(sk);
3179
3180                        if (nwin > tp->max_window) {
3181                                tp->max_window = nwin;
3182                                tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3183                        }
3184                }
3185        }
3186
3187        tp->snd_una = ack;
3188
3189        return flag;
3190}
3191
3192/* RFC 5961 7 [ACK Throttling] */
3193static void tcp_send_challenge_ack(struct sock *sk)
3194{
3195        /* unprotected vars, we dont care of overwrites */
3196        static u32 challenge_timestamp;
3197        static unsigned int challenge_count;
3198        u32 now = jiffies / HZ;
3199
3200        if (now != challenge_timestamp) {
3201                challenge_timestamp = now;
3202                challenge_count = 0;
3203        }
3204        if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3205                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3206                tcp_send_ack(sk);
3207        }
3208}
3209
3210static void tcp_store_ts_recent(struct tcp_sock *tp)
3211{
3212        tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3213        tp->rx_opt.ts_recent_stamp = get_seconds();
3214}
3215
3216static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3217{
3218        if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3219                /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3220                 * extra check below makes sure this can only happen
3221                 * for pure ACK frames.  -DaveM
3222                 *
3223                 * Not only, also it occurs for expired timestamps.
3224                 */
3225
3226                if (tcp_paws_check(&tp->rx_opt, 0))
3227                        tcp_store_ts_recent(tp);
3228        }
3229}
3230
3231/* This routine deals with acks during a TLP episode.
3232 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3233 */
3234static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3235{
3236        struct tcp_sock *tp = tcp_sk(sk);
3237        bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3238                             !(flag & (FLAG_SND_UNA_ADVANCED |
3239                                       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3240
3241        /* Mark the end of TLP episode on receiving TLP dupack or when
3242         * ack is after tlp_high_seq.
3243         */
3244        if (is_tlp_dupack) {
3245                tp->tlp_high_seq = 0;
3246                return;
3247        }
3248
3249        if (after(ack, tp->tlp_high_seq)) {
3250                tp->tlp_high_seq = 0;
3251                /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3252                if (!(flag & FLAG_DSACKING_ACK)) {
3253                        tcp_init_cwnd_reduction(sk, true);
3254                        tcp_set_ca_state(sk, TCP_CA_CWR);
3255                        tcp_end_cwnd_reduction(sk);
3256                        tcp_set_ca_state(sk, TCP_CA_Open);
3257                        NET_INC_STATS_BH(sock_net(sk),
3258                                         LINUX_MIB_TCPLOSSPROBERECOVERY);
3259                }
3260        }
3261}
3262
3263/* This routine deals with incoming acks, but not outgoing ones. */
3264static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3265{
3266        struct inet_connection_sock *icsk = inet_csk(sk);
3267        struct tcp_sock *tp = tcp_sk(sk);
3268        u32 prior_snd_una = tp->snd_una;
3269        u32 ack_seq = TCP_SKB_CB(skb)->seq;
3270        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3271        bool is_dupack = false;
3272        u32 prior_in_flight;
3273        u32 prior_fackets;
3274        int prior_packets = tp->packets_out;
3275        const int prior_unsacked = tp->packets_out - tp->sacked_out;
3276        int acked = 0; /* Number of packets newly acked */
3277
3278        /* If the ack is older than previous acks
3279         * then we can probably ignore it.
3280         */
3281        if (before(ack, prior_snd_una)) {
3282                /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3283                if (before(ack, prior_snd_una - tp->max_window)) {
3284                        tcp_send_challenge_ack(sk);
3285                        return -1;
3286                }
3287                goto old_ack;
3288        }
3289
3290        /* If the ack includes data we haven't sent yet, discard
3291         * this segment (RFC793 Section 3.9).
3292         */
3293        if (after(ack, tp->snd_nxt))
3294                goto invalid_ack;
3295
3296        if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3297            icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3298                tcp_rearm_rto(sk);
3299
3300        if (after(ack, prior_snd_una))
3301                flag |= FLAG_SND_UNA_ADVANCED;
3302
3303        prior_fackets = tp->fackets_out;
3304        prior_in_flight = tcp_packets_in_flight(tp);
3305
3306        /* ts_recent update must be made after we are sure that the packet
3307         * is in window.
3308         */
3309        if (flag & FLAG_UPDATE_TS_RECENT)
3310                tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3311
3312        if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3313                /* Window is constant, pure forward advance.
3314                 * No more checks are required.
3315                 * Note, we use the fact that SND.UNA>=SND.WL2.
3316                 */
3317                tcp_update_wl(tp, ack_seq);
3318                tp->snd_una = ack;
3319                flag |= FLAG_WIN_UPDATE;
3320
3321                tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3322
3323                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3324        } else {
3325                if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3326                        flag |= FLAG_DATA;
3327                else
3328                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3329
3330                flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3331
3332                if (TCP_SKB_CB(skb)->sacked)
3333                        flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3334
3335                if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3336                        flag |= FLAG_ECE;
3337
3338                tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3339        }
3340
3341        /* We passed data and got it acked, remove any soft error
3342         * log. Something worked...
3343         */
3344        sk->sk_err_soft = 0;
3345        icsk->icsk_probes_out = 0;
3346        tp->rcv_tstamp = tcp_time_stamp;
3347        if (!prior_packets)
3348                goto no_queue;
3349
3350        /* See if we can take anything off of the retransmit queue. */
3351        acked = tp->packets_out;
3352        flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3353        acked -= tp->packets_out;
3354
3355        if (tcp_ack_is_dubious(sk, flag)) {
3356                /* Advance CWND, if state allows this. */
3357                if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3358                        tcp_cong_avoid(sk, ack, prior_in_flight);
3359                is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3360                tcp_fastretrans_alert(sk, acked, prior_unsacked,
3361                                      is_dupack, flag);
3362        } else {
3363                if (flag & FLAG_DATA_ACKED)
3364                        tcp_cong_avoid(sk, ack, prior_in_flight);
3365        }
3366
3367        if (tp->tlp_high_seq)
3368                tcp_process_tlp_ack(sk, ack, flag);
3369
3370        if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3371                struct dst_entry *dst = __sk_dst_get(sk);
3372                if (dst)
3373                        dst_confirm(dst);
3374        }
3375
3376        if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3377                tcp_schedule_loss_probe(sk);
3378        return 1;
3379
3380no_queue:
3381        /* If data was DSACKed, see if we can undo a cwnd reduction. */
3382        if (flag & FLAG_DSACKING_ACK)
3383                tcp_fastretrans_alert(sk, acked, prior_unsacked,
3384                                      is_dupack, flag);
3385        /* If this ack opens up a zero window, clear backoff.  It was
3386         * being used to time the probes, and is probably far higher than
3387         * it needs to be for normal retransmission.
3388         */
3389        if (tcp_send_head(sk))
3390                tcp_ack_probe(sk);
3391
3392        if (tp->tlp_high_seq)
3393                tcp_process_tlp_ack(sk, ack, flag);
3394        return 1;
3395
3396invalid_ack:
3397        SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3398        return -1;
3399
3400old_ack:
3401        /* If data was SACKed, tag it and see if we should send more data.
3402         * If data was DSACKed, see if we can undo a cwnd reduction.
3403         */
3404        if (TCP_SKB_CB(skb)->sacked) {
3405                flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3406                tcp_fastretrans_alert(sk, acked, prior_unsacked,
3407                                      is_dupack, flag);
3408        }
3409
3410        SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3411        return 0;
3412}
3413
3414/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3415 * But, this can also be called on packets in the established flow when
3416 * the fast version below fails.
3417 */
3418void tcp_parse_options(const struct sk_buff *skb,
3419                       struct tcp_options_received *opt_rx, int estab,
3420                       struct tcp_fastopen_cookie *foc)
3421{
3422        const unsigned char *ptr;
3423        const struct tcphdr *th = tcp_hdr(skb);
3424        int length = (th->doff * 4) - sizeof(struct tcphdr);
3425
3426        ptr = (const unsigned char *)(th + 1);
3427        opt_rx->saw_tstamp = 0;
3428
3429        while (length > 0) {
3430                int opcode = *ptr++;
3431                int opsize;
3432
3433                switch (opcode) {
3434                case TCPOPT_EOL:
3435                        return;
3436                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3437                        length--;
3438                        continue;
3439                default:
3440                        opsize = *ptr++;
3441                        if (opsize < 2) /* "silly options" */
3442                                return;
3443                        if (opsize > length)
3444                                return; /* don't parse partial options */
3445                        switch (opcode) {
3446                        case TCPOPT_MSS:
3447                                if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3448                                        u16 in_mss = get_unaligned_be16(ptr);
3449                                        if (in_mss) {
3450                                                if (opt_rx->user_mss &&
3451                                                    opt_rx->user_mss < in_mss)
3452                                                        in_mss = opt_rx->user_mss;
3453                                                opt_rx->mss_clamp = in_mss;
3454                                        }
3455                                }
3456                                break;
3457                        case TCPOPT_WINDOW:
3458                                if (opsize == TCPOLEN_WINDOW && th->syn &&
3459                                    !estab && sysctl_tcp_window_scaling) {
3460                                        __u8 snd_wscale = *(__u8 *)ptr;
3461                                        opt_rx->wscale_ok = 1;
3462                                        if (snd_wscale > 14) {
3463                                                net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3464                                                                     __func__,
3465                                                                     snd_wscale);
3466                                                snd_wscale = 14;
3467                                        }
3468                                        opt_rx->snd_wscale = snd_wscale;
3469                                }
3470                                break;
3471                        case TCPOPT_TIMESTAMP:
3472                                if ((opsize == TCPOLEN_TIMESTAMP) &&
3473                                    ((estab && opt_rx->tstamp_ok) ||
3474                                     (!estab && sysctl_tcp_timestamps))) {
3475                                        opt_rx->saw_tstamp = 1;
3476                                        opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3477                                        opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3478                                }
3479                                break;
3480                        case TCPOPT_SACK_PERM:
3481                                if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3482                                    !estab && sysctl_tcp_sack) {
3483                                        opt_rx->sack_ok = TCP_SACK_SEEN;
3484                                        tcp_sack_reset(opt_rx);
3485                                }
3486                                break;
3487
3488                        case TCPOPT_SACK:
3489                                if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3490                                   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3491                                   opt_rx->sack_ok) {
3492                                        TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3493                                }
3494                                break;
3495#ifdef CONFIG_TCP_MD5SIG
3496                        case TCPOPT_MD5SIG:
3497                                /*
3498                                 * The MD5 Hash has already been
3499                                 * checked (see tcp_v{4,6}_do_rcv()).
3500                                 */
3501                                break;
3502#endif
3503                        case TCPOPT_EXP:
3504                                /* Fast Open option shares code 254 using a
3505                                 * 16 bits magic number. It's valid only in
3506                                 * SYN or SYN-ACK with an even size.
3507                                 */
3508                                if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3509                                    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3510                                    foc == NULL || !th->syn || (opsize & 1))
3511                                        break;
3512                                foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3513                                if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3514                                    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3515                                        memcpy(foc->val, ptr + 2, foc->len);
3516                                else if (foc->len != 0)
3517                                        foc->len = -1;
3518                                break;
3519
3520                        }
3521                        ptr += opsize-2;
3522                        length -= opsize;
3523                }
3524        }
3525}
3526EXPORT_SYMBOL(tcp_parse_options);
3527
3528static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3529{
3530        const __be32 *ptr = (const __be32 *)(th + 1);
3531
3532        if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3533                          | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3534                tp->rx_opt.saw_tstamp = 1;
3535                ++ptr;
3536                tp->rx_opt.rcv_tsval = ntohl(*ptr);
3537                ++ptr;
3538                if (*ptr)
3539                        tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3540                else
3541                        tp->rx_opt.rcv_tsecr = 0;
3542                return true;
3543        }
3544        return false;
3545}
3546
3547/* Fast parse options. This hopes to only see timestamps.
3548 * If it is wrong it falls back on tcp_parse_options().
3549 */
3550static bool tcp_fast_parse_options(const struct sk_buff *skb,
3551                                   const struct tcphdr *th, struct tcp_sock *tp)
3552{
3553        /* In the spirit of fast parsing, compare doff directly to constant
3554         * values.  Because equality is used, short doff can be ignored here.
3555         */
3556        if (th->doff == (sizeof(*th) / 4)) {
3557                tp->rx_opt.saw_tstamp = 0;
3558                return false;
3559        } else if (tp->rx_opt.tstamp_ok &&
3560                   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3561                if (tcp_parse_aligned_timestamp(tp, th))
3562                        return true;
3563        }
3564
3565        tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3566        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3567                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3568
3569        return true;
3570}
3571
3572#ifdef CONFIG_TCP_MD5SIG
3573/*
3574 * Parse MD5 Signature option
3575 */
3576const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3577{
3578        int length = (th->doff << 2) - sizeof(*th);
3579        const u8 *ptr = (const u8 *)(th + 1);
3580
3581        /* If the TCP option is too short, we can short cut */
3582        if (length < TCPOLEN_MD5SIG)
3583                return NULL;
3584
3585        while (length > 0) {
3586                int opcode = *ptr++;
3587                int opsize;
3588
3589                switch(opcode) {
3590                case TCPOPT_EOL:
3591                        return NULL;
3592                case TCPOPT_NOP:
3593                        length--;
3594                        continue;
3595                default:
3596                        opsize = *ptr++;
3597                        if (opsize < 2 || opsize > length)
3598                                return NULL;
3599                        if (opcode == TCPOPT_MD5SIG)
3600                                return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3601                }
3602                ptr += opsize - 2;
3603                length -= opsize;
3604        }
3605        return NULL;
3606}
3607EXPORT_SYMBOL(tcp_parse_md5sig_option);
3608#endif
3609
3610/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3611 *
3612 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3613 * it can pass through stack. So, the following predicate verifies that
3614 * this segment is not used for anything but congestion avoidance or
3615 * fast retransmit. Moreover, we even are able to eliminate most of such
3616 * second order effects, if we apply some small "replay" window (~RTO)
3617 * to timestamp space.
3618 *
3619 * All these measures still do not guarantee that we reject wrapped ACKs
3620 * on networks with high bandwidth, when sequence space is recycled fastly,
3621 * but it guarantees that such events will be very rare and do not affect
3622 * connection seriously. This doesn't look nice, but alas, PAWS is really
3623 * buggy extension.
3624 *
3625 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3626 * states that events when retransmit arrives after original data are rare.
3627 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3628 * the biggest problem on large power networks even with minor reordering.
3629 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3630 * up to bandwidth of 18Gigabit/sec. 8) ]
3631 */
3632
3633static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3634{
3635        const struct tcp_sock *tp = tcp_sk(sk);
3636        const struct tcphdr *th = tcp_hdr(skb);
3637        u32 seq = TCP_SKB_CB(skb)->seq;
3638        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3639
3640        return (/* 1. Pure ACK with correct sequence number. */
3641                (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3642
3643                /* 2. ... and duplicate ACK. */
3644                ack == tp->snd_una &&
3645
3646                /* 3. ... and does not update window. */
3647                !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3648
3649                /* 4. ... and sits in replay window. */
3650                (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3651}
3652
3653static inline bool tcp_paws_discard(const struct sock *sk,
3654                                   const struct sk_buff *skb)
3655{
3656        const struct tcp_sock *tp = tcp_sk(sk);
3657
3658        return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3659               !tcp_disordered_ack(sk, skb);
3660}
3661
3662/* Check segment sequence number for validity.
3663 *
3664 * Segment controls are considered valid, if the segment
3665 * fits to the window after truncation to the window. Acceptability
3666 * of data (and SYN, FIN, of course) is checked separately.
3667 * See tcp_data_queue(), for example.
3668 *
3669 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3670 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3671 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3672 * (borrowed from freebsd)
3673 */
3674
3675static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3676{
3677        return  !before(end_seq, tp->rcv_wup) &&
3678                !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3679}
3680
3681/* When we get a reset we do this. */
3682void tcp_reset(struct sock *sk)
3683{
3684        /* We want the right error as BSD sees it (and indeed as we do). */
3685        switch (sk->sk_state) {
3686        case TCP_SYN_SENT:
3687                sk->sk_err = ECONNREFUSED;
3688                break;
3689        case TCP_CLOSE_WAIT:
3690                sk->sk_err = EPIPE;
3691                break;
3692        case TCP_CLOSE:
3693                return;
3694        default:
3695                sk->sk_err = ECONNRESET;
3696        }
3697        /* This barrier is coupled with smp_rmb() in tcp_poll() */
3698        smp_wmb();
3699
3700        if (!sock_flag(sk, SOCK_DEAD))
3701                sk->sk_error_report(sk);
3702
3703        tcp_done(sk);
3704}
3705
3706/*
3707 *      Process the FIN bit. This now behaves as it is supposed to work
3708 *      and the FIN takes effect when it is validly part of sequence
3709 *      space. Not before when we get holes.
3710 *
3711 *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3712 *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3713 *      TIME-WAIT)
3714 *
3715 *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3716 *      close and we go into CLOSING (and later onto TIME-WAIT)
3717 *
3718 *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3719 */
3720static void tcp_fin(struct sock *sk)
3721{
3722        struct tcp_sock *tp = tcp_sk(sk);
3723        const struct dst_entry *dst;
3724
3725        inet_csk_schedule_ack(sk);
3726
3727        sk->sk_shutdown |= RCV_SHUTDOWN;
3728        sock_set_flag(sk, SOCK_DONE);
3729
3730        switch (sk->sk_state) {
3731        case TCP_SYN_RECV:
3732        case TCP_ESTABLISHED:
3733                /* Move to CLOSE_WAIT */
3734                tcp_set_state(sk, TCP_CLOSE_WAIT);
3735                dst = __sk_dst_get(sk);
3736                if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3737                        inet_csk(sk)->icsk_ack.pingpong = 1;
3738                break;
3739
3740        case TCP_CLOSE_WAIT:
3741        case TCP_CLOSING:
3742                /* Received a retransmission of the FIN, do
3743                 * nothing.
3744                 */
3745                break;
3746        case TCP_LAST_ACK:
3747                /* RFC793: Remain in the LAST-ACK state. */
3748                break;
3749
3750        case TCP_FIN_WAIT1:
3751                /* This case occurs when a simultaneous close
3752                 * happens, we must ack the received FIN and
3753                 * enter the CLOSING state.
3754                 */
3755                tcp_send_ack(sk);
3756                tcp_set_state(sk, TCP_CLOSING);
3757                break;
3758        case TCP_FIN_WAIT2:
3759                /* Received a FIN -- send ACK and enter TIME_WAIT. */
3760                tcp_send_ack(sk);
3761                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3762                break;
3763        default:
3764                /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3765                 * cases we should never reach this piece of code.
3766                 */
3767                pr_err("%s: Impossible, sk->sk_state=%d\n",
3768                       __func__, sk->sk_state);
3769                break;
3770        }
3771
3772        /* It _is_ possible, that we have something out-of-order _after_ FIN.
3773         * Probably, we should reset in this case. For now drop them.
3774         */
3775        __skb_queue_purge(&tp->out_of_order_queue);
3776        if (tcp_is_sack(tp))
3777                tcp_sack_reset(&tp->rx_opt);
3778        sk_mem_reclaim(sk);
3779
3780        if (!sock_flag(sk, SOCK_DEAD)) {
3781                sk->sk_state_change(sk);
3782
3783                /* Do not send POLL_HUP for half duplex close. */
3784                if (sk->sk_shutdown == SHUTDOWN_MASK ||
3785                    sk->sk_state == TCP_CLOSE)
3786                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3787                else
3788                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3789        }
3790}
3791
3792static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3793                                  u32 end_seq)
3794{
3795        if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3796                if (before(seq, sp->start_seq))
3797                        sp->start_seq = seq;
3798                if (after(end_seq, sp->end_seq))
3799                        sp->end_seq = end_seq;
3800                return true;
3801        }
3802        return false;
3803}
3804
3805static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3806{
3807        struct tcp_sock *tp = tcp_sk(sk);
3808
3809        if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3810                int mib_idx;
3811
3812                if (before(seq, tp->rcv_nxt))
3813                        mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3814                else
3815                        mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3816
3817                NET_INC_STATS_BH(sock_net(sk), mib_idx);
3818
3819                tp->rx_opt.dsack = 1;
3820                tp->duplicate_sack[0].start_seq = seq;
3821                tp->duplicate_sack[0].end_seq = end_seq;
3822        }
3823}
3824
3825static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3826{
3827        struct tcp_sock *tp = tcp_sk(sk);
3828
3829        if (!tp->rx_opt.dsack)
3830                tcp_dsack_set(sk, seq, end_seq);
3831        else
3832                tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3833}
3834
3835static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3836{
3837        struct tcp_sock *tp = tcp_sk(sk);
3838
3839        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3840            before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3841                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3842                tcp_enter_quickack_mode(sk);
3843
3844                if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3845                        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3846
3847                        if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3848                                end_seq = tp->rcv_nxt;
3849                        tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3850                }
3851        }
3852
3853        tcp_send_ack(sk);
3854}
3855
3856/* These routines update the SACK block as out-of-order packets arrive or
3857 * in-order packets close up the sequence space.
3858 */
3859static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3860{
3861        int this_sack;
3862        struct tcp_sack_block *sp = &tp->selective_acks[0];
3863        struct tcp_sack_block *swalk = sp + 1;
3864
3865        /* See if the recent change to the first SACK eats into
3866         * or hits the sequence space of other SACK blocks, if so coalesce.
3867         */
3868        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3869                if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3870                        int i;
3871
3872                        /* Zap SWALK, by moving every further SACK up by one slot.
3873                         * Decrease num_sacks.
3874                         */
3875                        tp->rx_opt.num_sacks--;
3876                        for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3877                                sp[i] = sp[i + 1];
3878                        continue;
3879                }
3880                this_sack++, swalk++;
3881        }
3882}
3883
3884static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3885{
3886        struct tcp_sock *tp = tcp_sk(sk);
3887        struct tcp_sack_block *sp = &tp->selective_acks[0];
3888        int cur_sacks = tp->rx_opt.num_sacks;
3889        int this_sack;
3890
3891        if (!cur_sacks)
3892                goto new_sack;
3893
3894        for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3895                if (tcp_sack_extend(sp, seq, end_seq)) {
3896                        /* Rotate this_sack to the first one. */
3897                        for (; this_sack > 0; this_sack--, sp--)
3898                                swap(*sp, *(sp - 1));
3899                        if (cur_sacks > 1)
3900                                tcp_sack_maybe_coalesce(tp);
3901                        return;
3902                }
3903        }
3904
3905        /* Could not find an adjacent existing SACK, build a new one,
3906         * put it at the front, and shift everyone else down.  We
3907         * always know there is at least one SACK present already here.
3908         *
3909         * If the sack array is full, forget about the last one.
3910         */
3911        if (this_sack >= TCP_NUM_SACKS) {
3912                this_sack--;
3913                tp->rx_opt.num_sacks--;
3914                sp--;
3915        }
3916        for (; this_sack > 0; this_sack--, sp--)
3917                *sp = *(sp - 1);
3918
3919new_sack:
3920        /* Build the new head SACK, and we're done. */
3921        sp->start_seq = seq;
3922        sp->end_seq = end_seq;
3923        tp->rx_opt.num_sacks++;
3924}
3925
3926/* RCV.NXT advances, some SACKs should be eaten. */
3927
3928static void tcp_sack_remove(struct tcp_sock *tp)
3929{
3930        struct tcp_sack_block *sp = &tp->selective_acks[0];
3931        int num_sacks = tp->rx_opt.num_sacks;
3932        int this_sack;
3933
3934        /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3935        if (skb_queue_empty(&tp->out_of_order_queue)) {
3936                tp->rx_opt.num_sacks = 0;
3937                return;
3938        }
3939
3940        for (this_sack = 0; this_sack < num_sacks;) {
3941                /* Check if the start of the sack is covered by RCV.NXT. */
3942                if (!before(tp->rcv_nxt, sp->start_seq)) {
3943                        int i;
3944
3945                        /* RCV.NXT must cover all the block! */
3946                        WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3947
3948                        /* Zap this SACK, by moving forward any other SACKS. */
3949                        for (i=this_sack+1; i < num_sacks; i++)
3950                                tp->selective_acks[i-1] = tp->selective_acks[i];
3951                        num_sacks--;
3952                        continue;
3953                }
3954                this_sack++;
3955                sp++;
3956        }
3957        tp->rx_opt.num_sacks = num_sacks;
3958}
3959
3960/* This one checks to see if we can put data from the
3961 * out_of_order queue into the receive_queue.
3962 */
3963static void tcp_ofo_queue(struct sock *sk)
3964{
3965        struct tcp_sock *tp = tcp_sk(sk);
3966        __u32 dsack_high = tp->rcv_nxt;
3967        struct sk_buff *skb;
3968
3969        while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3970                if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3971                        break;
3972
3973                if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3974                        __u32 dsack = dsack_high;
3975                        if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3976                                dsack_high = TCP_SKB_CB(skb)->end_seq;
3977                        tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3978                }
3979
3980                if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3981                        SOCK_DEBUG(sk, "ofo packet was already received\n");
3982                        __skb_unlink(skb, &tp->out_of_order_queue);
3983                        __kfree_skb(skb);
3984                        continue;
3985                }
3986                SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3987                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3988                           TCP_SKB_CB(skb)->end_seq);
3989
3990                __skb_unlink(skb, &tp->out_of_order_queue);
3991                __skb_queue_tail(&sk->sk_receive_queue, skb);
3992                tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3993                if (tcp_hdr(skb)->fin)
3994                        tcp_fin(sk);
3995        }
3996}
3997
3998static bool tcp_prune_ofo_queue(struct sock *sk);
3999static int tcp_prune_queue(struct sock *sk);
4000
4001static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4002                                 unsigned int size)
4003{
4004        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4005            !sk_rmem_schedule(sk, skb, size)) {
4006
4007                if (tcp_prune_queue(sk) < 0)
4008                        return -1;
4009
4010                if (!sk_rmem_schedule(sk, skb, size)) {
4011                        if (!tcp_prune_ofo_queue(sk))
4012                                return -1;
4013
4014                        if (!sk_rmem_schedule(sk, skb, size))
4015                                return -1;
4016                }
4017        }
4018        return 0;
4019}
4020
4021/**
4022 * tcp_try_coalesce - try to merge skb to prior one
4023 * @sk: socket
4024 * @to: prior buffer
4025 * @from: buffer to add in queue
4026 * @fragstolen: pointer to boolean
4027 *
4028 * Before queueing skb @from after @to, try to merge them
4029 * to reduce overall memory use and queue lengths, if cost is small.
4030 * Packets in ofo or receive queues can stay a long time.
4031 * Better try to coalesce them right now to avoid future collapses.
4032 * Returns true if caller should free @from instead of queueing it
4033 */
4034static bool tcp_try_coalesce(struct sock *sk,
4035                             struct sk_buff *to,
4036                             struct sk_buff *from,
4037                             bool *fragstolen)
4038{
4039        int delta;
4040
4041        *fragstolen = false;
4042
4043        if (tcp_hdr(from)->fin)
4044                return false;
4045
4046        /* Its possible this segment overlaps with prior segment in queue */
4047        if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4048                return false;
4049
4050        if (!skb_try_coalesce(to, from, fragstolen, &delta))
4051                return false;
4052
4053        atomic_add(delta, &sk->sk_rmem_alloc);
4054        sk_mem_charge(sk, delta);
4055        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4056        TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4057        TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4058        return true;
4059}
4060
4061static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4062{
4063        struct tcp_sock *tp = tcp_sk(sk);
4064        struct sk_buff *skb1;
4065        u32 seq, end_seq;
4066
4067        TCP_ECN_check_ce(tp, skb);
4068
4069        if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4070                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4071                __kfree_skb(skb);
4072                return;
4073        }
4074
4075        /* Disable header prediction. */
4076        tp->pred_flags = 0;
4077        inet_csk_schedule_ack(sk);
4078
4079        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4080        SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4081                   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4082
4083        skb1 = skb_peek_tail(&tp->out_of_order_queue);
4084        if (!skb1) {
4085                /* Initial out of order segment, build 1 SACK. */
4086                if (tcp_is_sack(tp)) {
4087                        tp->rx_opt.num_sacks = 1;
4088                        tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4089                        tp->selective_acks[0].end_seq =
4090                                                TCP_SKB_CB(skb)->end_seq;
4091                }
4092                __skb_queue_head(&tp->out_of_order_queue, skb);
4093                goto end;
4094        }
4095
4096        seq = TCP_SKB_CB(skb)->seq;
4097        end_seq = TCP_SKB_CB(skb)->end_seq;
4098
4099        if (seq == TCP_SKB_CB(skb1)->end_seq) {
4100                bool fragstolen;
4101
4102                if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4103                        __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4104                } else {
4105                        kfree_skb_partial(skb, fragstolen);
4106                        skb = NULL;
4107                }
4108
4109                if (!tp->rx_opt.num_sacks ||
4110                    tp->selective_acks[0].end_seq != seq)
4111                        goto add_sack;
4112
4113                /* Common case: data arrive in order after hole. */
4114                tp->selective_acks[0].end_seq = end_seq;
4115                goto end;
4116        }
4117
4118        /* Find place to insert this segment. */
4119        while (1) {
4120                if (!after(TCP_SKB_CB(skb1)->seq, seq))
4121                        break;
4122                if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4123                        skb1 = NULL;
4124                        break;
4125                }
4126                skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4127        }
4128
4129        /* Do skb overlap to previous one? */
4130        if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4131                if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4132                        /* All the bits are present. Drop. */
4133                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4134                        __kfree_skb(skb);
4135                        skb = NULL;
4136                        tcp_dsack_set(sk, seq, end_seq);
4137                        goto add_sack;
4138                }
4139                if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4140                        /* Partial overlap. */
4141                        tcp_dsack_set(sk, seq,
4142                                      TCP_SKB_CB(skb1)->end_seq);
4143                } else {
4144                        if (skb_queue_is_first(&tp->out_of_order_queue,
4145                                               skb1))
4146                                skb1 = NULL;
4147                        else
4148                                skb1 = skb_queue_prev(
4149                                        &tp->out_of_order_queue,
4150                                        skb1);
4151                }
4152        }
4153        if (!skb1)
4154                __skb_queue_head(&tp->out_of_order_queue, skb);
4155        else
4156                __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4157
4158        /* And clean segments covered by new one as whole. */
4159        while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4160                skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4161
4162                if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4163                        break;
4164                if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4165                        tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4166                                         end_seq);
4167                        break;
4168                }
4169                __skb_unlink(skb1, &tp->out_of_order_queue);
4170                tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4171                                 TCP_SKB_CB(skb1)->end_seq);
4172                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4173                __kfree_skb(skb1);
4174        }
4175
4176add_sack:
4177        if (tcp_is_sack(tp))
4178                tcp_sack_new_ofo_skb(sk, seq, end_seq);
4179end:
4180        if (skb)
4181                skb_set_owner_r(skb, sk);
4182}
4183
4184static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4185                  bool *fragstolen)
4186{
4187        int eaten;
4188        struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4189
4190        __skb_pull(skb, hdrlen);
4191        eaten = (tail &&
4192                 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4193        tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4194        if (!eaten) {
4195                __skb_queue_tail(&sk->sk_receive_queue, skb);
4196                skb_set_owner_r(skb, sk);
4197        }
4198        return eaten;
4199}
4200
4201int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4202{
4203        struct sk_buff *skb = NULL;
4204        struct tcphdr *th;
4205        bool fragstolen;
4206
4207        if (size == 0)
4208                return 0;
4209
4210        skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4211        if (!skb)
4212                goto err;
4213
4214        if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4215                goto err_free;
4216
4217        th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4218        skb_reset_transport_header(skb);
4219        memset(th, 0, sizeof(*th));
4220
4221        if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4222                goto err_free;
4223
4224        TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4225        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4226        TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4227
4228        if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4229                WARN_ON_ONCE(fragstolen); /* should not happen */
4230                __kfree_skb(skb);
4231        }
4232        return size;
4233
4234err_free:
4235        kfree_skb(skb);
4236err:
4237        return -ENOMEM;
4238}
4239
4240static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4241{
4242        const struct tcphdr *th = tcp_hdr(skb);
4243        struct tcp_sock *tp = tcp_sk(sk);
4244        int eaten = -1;
4245        bool fragstolen = false;
4246
4247        if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4248                goto drop;
4249
4250        skb_dst_drop(skb);
4251        __skb_pull(skb, th->doff * 4);
4252
4253        TCP_ECN_accept_cwr(tp, skb);
4254
4255        tp->rx_opt.dsack = 0;
4256
4257        /*  Queue data for delivery to the user.
4258         *  Packets in sequence go to the receive queue.
4259         *  Out of sequence packets to the out_of_order_queue.
4260         */
4261        if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4262                if (tcp_receive_window(tp) == 0)
4263                        goto out_of_window;
4264
4265                /* Ok. In sequence. In window. */
4266                if (tp->ucopy.task == current &&
4267                    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4268                    sock_owned_by_user(sk) && !tp->urg_data) {
4269                        int chunk = min_t(unsigned int, skb->len,
4270                                          tp->ucopy.len);
4271
4272                        __set_current_state(TASK_RUNNING);
4273
4274                        local_bh_enable();
4275                        if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4276                                tp->ucopy.len -= chunk;
4277                                tp->copied_seq += chunk;
4278                                eaten = (chunk == skb->len);
4279                                tcp_rcv_space_adjust(sk);
4280                        }
4281                        local_bh_disable();
4282                }
4283
4284                if (eaten <= 0) {
4285queue_and_out:
4286                        if (eaten < 0 &&
4287                            tcp_try_rmem_schedule(sk, skb, skb->truesize))
4288                                goto drop;
4289
4290                        eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4291                }
4292                tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4293                if (skb->len)
4294                        tcp_event_data_recv(sk, skb);
4295                if (th->fin)
4296                        tcp_fin(sk);
4297
4298                if (!skb_queue_empty(&tp->out_of_order_queue)) {
4299                        tcp_ofo_queue(sk);
4300
4301                        /* RFC2581. 4.2. SHOULD send immediate ACK, when
4302                         * gap in queue is filled.
4303                         */
4304                        if (skb_queue_empty(&tp->out_of_order_queue))
4305                                inet_csk(sk)->icsk_ack.pingpong = 0;
4306                }
4307
4308                if (tp->rx_opt.num_sacks)
4309                        tcp_sack_remove(tp);
4310
4311                tcp_fast_path_check(sk);
4312
4313                if (eaten > 0)
4314                        kfree_skb_partial(skb, fragstolen);
4315                if (!sock_flag(sk, SOCK_DEAD))
4316                        sk->sk_data_ready(sk, 0);
4317                return;
4318        }
4319
4320        if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4321                /* A retransmit, 2nd most common case.  Force an immediate ack. */
4322                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4323                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4324
4325out_of_window:
4326                tcp_enter_quickack_mode(sk);
4327                inet_csk_schedule_ack(sk);
4328drop:
4329                __kfree_skb(skb);
4330                return;
4331        }
4332
4333        /* Out of window. F.e. zero window probe. */
4334        if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4335                goto out_of_window;
4336
4337        tcp_enter_quickack_mode(sk);
4338
4339        if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4340                /* Partial packet, seq < rcv_next < end_seq */
4341                SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4342                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4343                           TCP_SKB_CB(skb)->end_seq);
4344
4345                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4346
4347                /* If window is closed, drop tail of packet. But after
4348                 * remembering D-SACK for its head made in previous line.
4349                 */
4350                if (!tcp_receive_window(tp))
4351                        goto out_of_window;
4352                goto queue_and_out;
4353        }
4354
4355        tcp_data_queue_ofo(sk, skb);
4356}
4357
4358static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4359                                        struct sk_buff_head *list)
4360{
4361        struct sk_buff *next = NULL;
4362
4363        if (!skb_queue_is_last(list, skb))
4364                next = skb_queue_next(list, skb);
4365
4366        __skb_unlink(skb, list);
4367        __kfree_skb(skb);
4368        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4369
4370        return next;
4371}
4372
4373/* Collapse contiguous sequence of skbs head..tail with
4374 * sequence numbers start..end.
4375 *
4376 * If tail is NULL, this means until the end of the list.
4377 *
4378 * Segments with FIN/SYN are not collapsed (only because this
4379 * simplifies code)
4380 */
4381static void
4382tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4383             struct sk_buff *head, struct sk_buff *tail,
4384             u32 start, u32 end)
4385{
4386        struct sk_buff *skb, *n;
4387        bool end_of_skbs;
4388
4389        /* First, check that queue is collapsible and find
4390         * the point where collapsing can be useful. */
4391        skb = head;
4392restart:
4393        end_of_skbs = true;
4394        skb_queue_walk_from_safe(list, skb, n) {
4395                if (skb == tail)
4396                        break;
4397                /* No new bits? It is possible on ofo queue. */
4398                if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4399                        skb = tcp_collapse_one(sk, skb, list);
4400                        if (!skb)
4401                                break;
4402                        goto restart;
4403                }
4404
4405                /* The first skb to collapse is:
4406                 * - not SYN/FIN and
4407                 * - bloated or contains data before "start" or
4408                 *   overlaps to the next one.
4409                 */
4410                if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4411                    (tcp_win_from_space(skb->truesize) > skb->len ||
4412                     before(TCP_SKB_CB(skb)->seq, start))) {
4413                        end_of_skbs = false;
4414                        break;
4415                }
4416
4417                if (!skb_queue_is_last(list, skb)) {
4418                        struct sk_buff *next = skb_queue_next(list, skb);
4419                        if (next != tail &&
4420                            TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4421                                end_of_skbs = false;
4422                                break;
4423                        }
4424                }
4425
4426                /* Decided to skip this, advance start seq. */
4427                start = TCP_SKB_CB(skb)->end_seq;
4428        }
4429        if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4430                return;
4431
4432        while (before(start, end)) {
4433                struct sk_buff *nskb;
4434                unsigned int header = skb_headroom(skb);
4435                int copy = SKB_MAX_ORDER(header, 0);
4436
4437                /* Too big header? This can happen with IPv6. */
4438                if (copy < 0)
4439                        return;
4440                if (end - start < copy)
4441                        copy = end - start;
4442                nskb = alloc_skb(copy + header, GFP_ATOMIC);
4443                if (!nskb)
4444                        return;
4445
4446                skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4447                skb_set_network_header(nskb, (skb_network_header(skb) -
4448                                              skb->head));
4449                skb_set_transport_header(nskb, (skb_transport_header(skb) -
4450                                                skb->head));
4451                skb_reserve(nskb, header);
4452                memcpy(nskb->head, skb->head, header);
4453                memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4454                TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4455                __skb_queue_before(list, skb, nskb);
4456                skb_set_owner_r(nskb, sk);
4457
4458                /* Copy data, releasing collapsed skbs. */
4459                while (copy > 0) {
4460                        int offset = start - TCP_SKB_CB(skb)->seq;
4461                        int size = TCP_SKB_CB(skb)->end_seq - start;
4462
4463                        BUG_ON(offset < 0);
4464                        if (size > 0) {
4465                                size = min(copy, size);
4466                                if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4467                                        BUG();
4468                                TCP_SKB_CB(nskb)->end_seq += size;
4469                                copy -= size;
4470                                start += size;
4471                        }
4472                        if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4473                                skb = tcp_collapse_one(sk, skb, list);
4474                                if (!skb ||
4475                                    skb == tail ||
4476                                    tcp_hdr(skb)->syn ||
4477                                    tcp_hdr(skb)->fin)
4478                                        return;
4479                        }
4480                }
4481        }
4482}
4483
4484/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4485 * and tcp_collapse() them until all the queue is collapsed.
4486 */
4487static void tcp_collapse_ofo_queue(struct sock *sk)
4488{
4489        struct tcp_sock *tp = tcp_sk(sk);
4490        struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4491        struct sk_buff *head;
4492        u32 start, end;
4493
4494        if (skb == NULL)
4495                return;
4496
4497        start = TCP_SKB_CB(skb)->seq;
4498        end = TCP_SKB_CB(skb)->end_seq;
4499        head = skb;
4500
4501        for (;;) {
4502                struct sk_buff *next = NULL;
4503
4504                if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4505                        next = skb_queue_next(&tp->out_of_order_queue, skb);
4506                skb = next;
4507
4508                /* Segment is terminated when we see gap or when
4509                 * we are at the end of all the queue. */
4510                if (!skb ||
4511                    after(TCP_SKB_CB(skb)->seq, end) ||
4512                    before(TCP_SKB_CB(skb)->end_seq, start)) {
4513                        tcp_collapse(sk, &tp->out_of_order_queue,
4514                                     head, skb, start, end);
4515                        head = skb;
4516                        if (!skb)
4517                                break;
4518                        /* Start new segment */
4519                        start = TCP_SKB_CB(skb)->seq;
4520                        end = TCP_SKB_CB(skb)->end_seq;
4521                } else {
4522                        if (before(TCP_SKB_CB(skb)->seq, start))
4523                                start = TCP_SKB_CB(skb)->seq;
4524                        if (after(TCP_SKB_CB(skb)->end_seq, end))
4525                                end = TCP_SKB_CB(skb)->end_seq;
4526                }
4527        }
4528}
4529
4530/*
4531 * Purge the out-of-order queue.
4532 * Return true if queue was pruned.
4533 */
4534static bool tcp_prune_ofo_queue(struct sock *sk)
4535{
4536        struct tcp_sock *tp = tcp_sk(sk);
4537        bool res = false;
4538
4539        if (!skb_queue_empty(&tp->out_of_order_queue)) {
4540                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4541                __skb_queue_purge(&tp->out_of_order_queue);
4542
4543                /* Reset SACK state.  A conforming SACK implementation will
4544                 * do the same at a timeout based retransmit.  When a connection
4545                 * is in a sad state like this, we care only about integrity
4546                 * of the connection not performance.
4547                 */
4548                if (tp->rx_opt.sack_ok)
4549                        tcp_sack_reset(&tp->rx_opt);
4550                sk_mem_reclaim(sk);
4551                res = true;
4552        }
4553        return res;
4554}
4555
4556/* Reduce allocated memory if we can, trying to get
4557 * the socket within its memory limits again.
4558 *
4559 * Return less than zero if we should start dropping frames
4560 * until the socket owning process reads some of the data
4561 * to stabilize the situation.
4562 */
4563static int tcp_prune_queue(struct sock *sk)
4564{
4565        struct tcp_sock *tp = tcp_sk(sk);
4566
4567        SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4568
4569        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4570
4571        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4572                tcp_clamp_window(sk);
4573        else if (sk_under_memory_pressure(sk))
4574                tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4575
4576        tcp_collapse_ofo_queue(sk);
4577        if (!skb_queue_empty(&sk->sk_receive_queue))
4578                tcp_collapse(sk, &sk->sk_receive_queue,
4579                             skb_peek(&sk->sk_receive_queue),
4580                             NULL,
4581                             tp->copied_seq, tp->rcv_nxt);
4582        sk_mem_reclaim(sk);
4583
4584        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4585                return 0;
4586
4587        /* Collapsing did not help, destructive actions follow.
4588         * This must not ever occur. */
4589
4590        tcp_prune_ofo_queue(sk);
4591
4592        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4593                return 0;
4594
4595        /* If we are really being abused, tell the caller to silently
4596         * drop receive data on the floor.  It will get retransmitted
4597         * and hopefully then we'll have sufficient space.
4598         */
4599        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4600
4601        /* Massive buffer overcommit. */
4602        tp->pred_flags = 0;
4603        return -1;
4604}
4605
4606/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4607 * As additional protections, we do not touch cwnd in retransmission phases,
4608 * and if application hit its sndbuf limit recently.
4609 */
4610void tcp_cwnd_application_limited(struct sock *sk)
4611{
4612        struct tcp_sock *tp = tcp_sk(sk);
4613
4614        if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4615            sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4616                /* Limited by application or receiver window. */
4617                u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4618                u32 win_used = max(tp->snd_cwnd_used, init_win);
4619                if (win_used < tp->snd_cwnd) {
4620                        tp->snd_ssthresh = tcp_current_ssthresh(sk);
4621                        tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4622                }
4623                tp->snd_cwnd_used = 0;
4624        }
4625        tp->snd_cwnd_stamp = tcp_time_stamp;
4626}
4627
4628static bool tcp_should_expand_sndbuf(const struct sock *sk)
4629{
4630        const struct tcp_sock *tp = tcp_sk(sk);
4631
4632        /* If the user specified a specific send buffer setting, do
4633         * not modify it.
4634         */
4635        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4636                return false;
4637
4638        /* If we are under global TCP memory pressure, do not expand.  */
4639        if (sk_under_memory_pressure(sk))
4640                return false;
4641
4642        /* If we are under soft global TCP memory pressure, do not expand.  */
4643        if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4644                return false;
4645
4646        /* If we filled the congestion window, do not expand.  */
4647        if (tp->packets_out >= tp->snd_cwnd)
4648                return false;
4649
4650        return true;
4651}
4652
4653/* When incoming ACK allowed to free some skb from write_queue,
4654 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4655 * on the exit from tcp input handler.
4656 *
4657 * PROBLEM: sndbuf expansion does not work well with largesend.
4658 */
4659static void tcp_new_space(struct sock *sk)
4660{
4661        struct tcp_sock *tp = tcp_sk(sk);
4662
4663        if (tcp_should_expand_sndbuf(sk)) {
4664                int sndmem = SKB_TRUESIZE(max_t(u32,
4665                                                tp->rx_opt.mss_clamp,
4666                                                tp->mss_cache) +
4667                                          MAX_TCP_HEADER);
4668                int demanded = max_t(unsigned int, tp->snd_cwnd,
4669                                     tp->reordering + 1);
4670                sndmem *= 2 * demanded;
4671                if (sndmem > sk->sk_sndbuf)
4672                        sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4673                tp->snd_cwnd_stamp = tcp_time_stamp;
4674        }
4675
4676        sk->sk_write_space(sk);
4677}
4678
4679static void tcp_check_space(struct sock *sk)
4680{
4681        if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4682                sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4683                if (sk->sk_socket &&
4684                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4685                        tcp_new_space(sk);
4686        }
4687}
4688
4689static inline void tcp_data_snd_check(struct sock *sk)
4690{
4691        tcp_push_pending_frames(sk);
4692        tcp_check_space(sk);
4693}
4694
4695/*
4696 * Check if sending an ack is needed.
4697 */
4698static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4699{
4700        struct tcp_sock *tp = tcp_sk(sk);
4701
4702            /* More than one full frame received... */
4703        if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4704             /* ... and right edge of window advances far enough.
4705              * (tcp_recvmsg() will send ACK otherwise). Or...
4706              */
4707             __tcp_select_window(sk) >= tp->rcv_wnd) ||
4708            /* We ACK each frame or... */
4709            tcp_in_quickack_mode(sk) ||
4710            /* We have out of order data. */
4711            (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4712                /* Then ack it now */
4713                tcp_send_ack(sk);
4714        } else {
4715                /* Else, send delayed ack. */
4716                tcp_send_delayed_ack(sk);
4717        }
4718}
4719
4720static inline void tcp_ack_snd_check(struct sock *sk)
4721{
4722        if (!inet_csk_ack_scheduled(sk)) {
4723                /* We sent a data segment already. */
4724                return;
4725        }
4726        __tcp_ack_snd_check(sk, 1);
4727}
4728
4729/*
4730 *      This routine is only called when we have urgent data
4731 *      signaled. Its the 'slow' part of tcp_urg. It could be
4732 *      moved inline now as tcp_urg is only called from one
4733 *      place. We handle URGent data wrong. We have to - as
4734 *      BSD still doesn't use the correction from RFC961.
4735 *      For 1003.1g we should support a new option TCP_STDURG to permit
4736 *      either form (or just set the sysctl tcp_stdurg).
4737 */
4738
4739static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4740{
4741        struct tcp_sock *tp = tcp_sk(sk);
4742        u32 ptr = ntohs(th->urg_ptr);
4743
4744        if (ptr && !sysctl_tcp_stdurg)
4745                ptr--;
4746        ptr += ntohl(th->seq);
4747
4748        /* Ignore urgent data that we've already seen and read. */
4749        if (after(tp->copied_seq, ptr))
4750                return;
4751
4752        /* Do not replay urg ptr.
4753         *
4754         * NOTE: interesting situation not covered by specs.
4755         * Misbehaving sender may send urg ptr, pointing to segment,
4756         * which we already have in ofo queue. We are not able to fetch
4757         * such data and will stay in TCP_URG_NOTYET until will be eaten
4758         * by recvmsg(). Seems, we are not obliged to handle such wicked
4759         * situations. But it is worth to think about possibility of some
4760         * DoSes using some hypothetical application level deadlock.
4761         */
4762        if (before(ptr, tp->rcv_nxt))
4763                return;
4764
4765        /* Do we already have a newer (or duplicate) urgent pointer? */
4766        if (tp->urg_data && !after(ptr, tp->urg_seq))
4767                return;
4768
4769        /* Tell the world about our new urgent pointer. */
4770        sk_send_sigurg(sk);
4771
4772        /* We may be adding urgent data when the last byte read was
4773         * urgent. To do this requires some care. We cannot just ignore
4774         * tp->copied_seq since we would read the last urgent byte again
4775         * as data, nor can we alter copied_seq until this data arrives
4776         * or we break the semantics of SIOCATMARK (and thus sockatmark())
4777         *
4778         * NOTE. Double Dutch. Rendering to plain English: author of comment
4779         * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4780         * and expect that both A and B disappear from stream. This is _wrong_.
4781         * Though this happens in BSD with high probability, this is occasional.
4782         * Any application relying on this is buggy. Note also, that fix "works"
4783         * only in this artificial test. Insert some normal data between A and B and we will
4784         * decline of BSD again. Verdict: it is better to remove to trap
4785         * buggy users.
4786         */
4787        if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4788            !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4789                struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4790                tp->copied_seq++;
4791                if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4792                        __skb_unlink(skb, &sk->sk_receive_queue);
4793                        __kfree_skb(skb);
4794                }
4795        }
4796
4797        tp->urg_data = TCP_URG_NOTYET;
4798        tp->urg_seq = ptr;
4799
4800        /* Disable header prediction. */
4801        tp->pred_flags = 0;
4802}
4803
4804/* This is the 'fast' part of urgent handling. */
4805static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4806{
4807        struct tcp_sock *tp = tcp_sk(sk);
4808
4809        /* Check if we get a new urgent pointer - normally not. */
4810        if (th->urg)
4811                tcp_check_urg(sk, th);
4812
4813        /* Do we wait for any urgent data? - normally not... */
4814        if (tp->urg_data == TCP_URG_NOTYET) {
4815                u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4816                          th->syn;
4817
4818                /* Is the urgent pointer pointing into this packet? */
4819                if (ptr < skb->len) {
4820                        u8 tmp;
4821                        if (skb_copy_bits(skb, ptr, &tmp, 1))
4822                                BUG();
4823                        tp->urg_data = TCP_URG_VALID | tmp;
4824                        if (!sock_flag(sk, SOCK_DEAD))
4825                                sk->sk_data_ready(sk, 0);
4826                }
4827        }
4828}
4829
4830static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4831{
4832        struct tcp_sock *tp = tcp_sk(sk);
4833        int chunk = skb->len - hlen;
4834        int err;
4835
4836        local_bh_enable();
4837        if (skb_csum_unnecessary(skb))
4838                err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4839        else
4840                err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4841                                                       tp->ucopy.iov);
4842
4843        if (!err) {
4844                tp->ucopy.len -= chunk;
4845                tp->copied_seq += chunk;
4846                tcp_rcv_space_adjust(sk);
4847        }
4848
4849        local_bh_disable();
4850        return err;
4851}
4852
4853static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4854                                            struct sk_buff *skb)
4855{
4856        __sum16 result;
4857
4858        if (sock_owned_by_user(sk)) {
4859                local_bh_enable();
4860                result = __tcp_checksum_complete(skb);
4861                local_bh_disable();
4862        } else {
4863                result = __tcp_checksum_complete(skb);
4864        }
4865        return result;
4866}
4867
4868static inline bool tcp_checksum_complete_user(struct sock *sk,
4869                                             struct sk_buff *skb)
4870{
4871        return !skb_csum_unnecessary(skb) &&
4872               __tcp_checksum_complete_user(sk, skb);
4873}
4874
4875#ifdef CONFIG_NET_DMA
4876static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4877                                  int hlen)
4878{
4879        struct tcp_sock *tp = tcp_sk(sk);
4880        int chunk = skb->len - hlen;
4881        int dma_cookie;
4882        bool copied_early = false;
4883
4884        if (tp->ucopy.wakeup)
4885                return false;
4886
4887        if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4888                tp->ucopy.dma_chan = net_dma_find_channel();
4889
4890        if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4891
4892                dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4893                                                         skb, hlen,
4894                                                         tp->ucopy.iov, chunk,
4895                                                         tp->ucopy.pinned_list);
4896
4897                if (dma_cookie < 0)
4898                        goto out;
4899
4900                tp->ucopy.dma_cookie = dma_cookie;
4901                copied_early = true;
4902
4903                tp->ucopy.len -= chunk;
4904                tp->copied_seq += chunk;
4905                tcp_rcv_space_adjust(sk);
4906
4907                if ((tp->ucopy.len == 0) ||
4908                    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4909                    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4910                        tp->ucopy.wakeup = 1;
4911                        sk->sk_data_ready(sk, 0);
4912                }
4913        } else if (chunk > 0) {
4914                tp->ucopy.wakeup = 1;
4915                sk->sk_data_ready(sk, 0);
4916        }
4917out:
4918        return copied_early;
4919}
4920#endif /* CONFIG_NET_DMA */
4921
4922/* Does PAWS and seqno based validation of an incoming segment, flags will
4923 * play significant role here.
4924 */
4925static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4926                                  const struct tcphdr *th, int syn_inerr)
4927{
4928        struct tcp_sock *tp = tcp_sk(sk);
4929
4930        /* RFC1323: H1. Apply PAWS check first. */
4931        if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4932            tcp_paws_discard(sk, skb)) {
4933                if (!th->rst) {
4934                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4935                        tcp_send_dupack(sk, skb);
4936                        goto discard;
4937                }
4938                /* Reset is accepted even if it did not pass PAWS. */
4939        }
4940
4941        /* Step 1: check sequence number */
4942        if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4943                /* RFC793, page 37: "In all states except SYN-SENT, all reset
4944                 * (RST) segments are validated by checking their SEQ-fields."
4945                 * And page 69: "If an incoming segment is not acceptable,
4946                 * an acknowledgment should be sent in reply (unless the RST
4947                 * bit is set, if so drop the segment and return)".
4948                 */
4949                if (!th->rst) {
4950                        if (th->syn)
4951                                goto syn_challenge;
4952                        tcp_send_dupack(sk, skb);
4953                }
4954                goto discard;
4955        }
4956
4957        /* Step 2: check RST bit */
4958        if (th->rst) {
4959                /* RFC 5961 3.2 :
4960                 * If sequence number exactly matches RCV.NXT, then
4961                 *     RESET the connection
4962                 * else
4963                 *     Send a challenge ACK
4964                 */
4965                if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
4966                        tcp_reset(sk);
4967                else
4968                        tcp_send_challenge_ack(sk);
4969                goto discard;
4970        }
4971
4972        /* step 3: check security and precedence [ignored] */
4973
4974        /* step 4: Check for a SYN
4975         * RFC 5691 4.2 : Send a challenge ack
4976         */
4977        if (th->syn) {
4978syn_challenge:
4979                if (syn_inerr)
4980                        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4981                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
4982                tcp_send_challenge_ack(sk);
4983                goto discard;
4984        }
4985
4986        return true;
4987
4988discard:
4989        __kfree_skb(skb);
4990        return false;
4991}
4992
4993/*
4994 *      TCP receive function for the ESTABLISHED state.
4995 *
4996 *      It is split into a fast path and a slow path. The fast path is
4997 *      disabled when:
4998 *      - A zero window was announced from us - zero window probing
4999 *        is only handled properly in the slow path.
5000 *      - Out of order segments arrived.
5001 *      - Urgent data is expected.
5002 *      - There is no buffer space left
5003 *      - Unexpected TCP flags/window values/header lengths are received
5004 *        (detected by checking the TCP header against pred_flags)
5005 *      - Data is sent in both directions. Fast path only supports pure senders
5006 *        or pure receivers (this means either the sequence number or the ack
5007 *        value must stay constant)
5008 *      - Unexpected TCP option.
5009 *
5010 *      When these conditions are not satisfied it drops into a standard
5011 *      receive procedure patterned after RFC793 to handle all cases.
5012 *      The first three cases are guaranteed by proper pred_flags setting,
5013 *      the rest is checked inline. Fast processing is turned on in
5014 *      tcp_data_queue when everything is OK.
5015 */
5016int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5017                        const struct tcphdr *th, unsigned int len)
5018{
5019        struct tcp_sock *tp = tcp_sk(sk);
5020
5021        if (unlikely(sk->sk_rx_dst == NULL))
5022                inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5023        /*
5024         *      Header prediction.
5025         *      The code loosely follows the one in the famous
5026         *      "30 instruction TCP receive" Van Jacobson mail.
5027         *
5028         *      Van's trick is to deposit buffers into socket queue
5029         *      on a device interrupt, to call tcp_recv function
5030         *      on the receive process context and checksum and copy
5031         *      the buffer to user space. smart...
5032         *
5033         *      Our current scheme is not silly either but we take the
5034         *      extra cost of the net_bh soft interrupt processing...
5035         *      We do checksum and copy also but from device to kernel.
5036         */
5037
5038        tp->rx_opt.saw_tstamp = 0;
5039
5040        /*      pred_flags is 0xS?10 << 16 + snd_wnd
5041         *      if header_prediction is to be made
5042         *      'S' will always be tp->tcp_header_len >> 2
5043         *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5044         *  turn it off (when there are holes in the receive
5045         *       space for instance)
5046         *      PSH flag is ignored.
5047         */
5048
5049        if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5050            TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5051            !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5052                int tcp_header_len = tp->tcp_header_len;
5053
5054                /* Timestamp header prediction: tcp_header_len
5055                 * is automatically equal to th->doff*4 due to pred_flags
5056                 * match.
5057                 */
5058
5059                /* Check timestamp */
5060                if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5061                        /* No? Slow path! */
5062                        if (!tcp_parse_aligned_timestamp(tp, th))
5063                                goto slow_path;
5064
5065                        /* If PAWS failed, check it more carefully in slow path */
5066                        if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5067                                goto slow_path;
5068
5069                        /* DO NOT update ts_recent here, if checksum fails
5070                         * and timestamp was corrupted part, it will result
5071                         * in a hung connection since we will drop all
5072                         * future packets due to the PAWS test.
5073                         */
5074                }
5075
5076                if (len <= tcp_header_len) {
5077                        /* Bulk data transfer: sender */
5078                        if (len == tcp_header_len) {
5079                                /* Predicted packet is in window by definition.
5080                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5081                                 * Hence, check seq<=rcv_wup reduces to:
5082                                 */
5083                                if (tcp_header_len ==
5084                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5085                                    tp->rcv_nxt == tp->rcv_wup)
5086                                        tcp_store_ts_recent(tp);
5087
5088                                /* We know that such packets are checksummed
5089                                 * on entry.
5090                                 */
5091                                tcp_ack(sk, skb, 0);
5092                                __kfree_skb(skb);
5093                                tcp_data_snd_check(sk);
5094                                return 0;
5095                        } else { /* Header too small */
5096                                TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5097                                goto discard;
5098                        }
5099                } else {
5100                        int eaten = 0;
5101                        int copied_early = 0;
5102                        bool fragstolen = false;
5103
5104                        if (tp->copied_seq == tp->rcv_nxt &&
5105                            len - tcp_header_len <= tp->ucopy.len) {
5106#ifdef CONFIG_NET_DMA
5107                                if (tp->ucopy.task == current &&
5108                                    sock_owned_by_user(sk) &&
5109                                    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5110                                        copied_early = 1;
5111                                        eaten = 1;
5112                                }
5113#endif
5114                                if (tp->ucopy.task == current &&
5115                                    sock_owned_by_user(sk) && !copied_early) {
5116                                        __set_current_state(TASK_RUNNING);
5117
5118                                        if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5119                                                eaten = 1;
5120                                }
5121                                if (eaten) {
5122                                        /* Predicted packet is in window by definition.
5123                                         * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5124                                         * Hence, check seq<=rcv_wup reduces to:
5125                                         */
5126                                        if (tcp_header_len ==
5127                                            (sizeof(struct tcphdr) +
5128                                             TCPOLEN_TSTAMP_ALIGNED) &&
5129                                            tp->rcv_nxt == tp->rcv_wup)
5130                                                tcp_store_ts_recent(tp);
5131
5132                                        tcp_rcv_rtt_measure_ts(sk, skb);
5133
5134                                        __skb_pull(skb, tcp_header_len);
5135                                        tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5136                                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5137                                }
5138                                if (copied_early)
5139                                        tcp_cleanup_rbuf(sk, skb->len);
5140                        }
5141                        if (!eaten) {
5142                                if (tcp_checksum_complete_user(sk, skb))
5143                                        goto csum_error;
5144
5145                                if ((int)skb->truesize > sk->sk_forward_alloc)
5146                                        goto step5;
5147
5148                                /* Predicted packet is in window by definition.
5149                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5150                                 * Hence, check seq<=rcv_wup reduces to:
5151                                 */
5152                                if (tcp_header_len ==
5153                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5154                                    tp->rcv_nxt == tp->rcv_wup)
5155                                        tcp_store_ts_recent(tp);
5156
5157                                tcp_rcv_rtt_measure_ts(sk, skb);
5158
5159                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5160
5161                                /* Bulk data transfer: receiver */
5162                                eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5163                                                      &fragstolen);
5164                        }
5165
5166                        tcp_event_data_recv(sk, skb);
5167
5168                        if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5169                                /* Well, only one small jumplet in fast path... */
5170                                tcp_ack(sk, skb, FLAG_DATA);
5171                                tcp_data_snd_check(sk);
5172                                if (!inet_csk_ack_scheduled(sk))
5173                                        goto no_ack;
5174                        }
5175
5176                        if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5177                                __tcp_ack_snd_check(sk, 0);
5178no_ack:
5179#ifdef CONFIG_NET_DMA
5180                        if (copied_early)
5181                                __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5182                        else
5183#endif
5184                        if (eaten)
5185                                kfree_skb_partial(skb, fragstolen);
5186                        sk->sk_data_ready(sk, 0);
5187                        return 0;
5188                }
5189        }
5190
5191slow_path:
5192        if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5193                goto csum_error;
5194
5195        if (!th->ack && !th->rst)
5196                goto discard;
5197
5198        /*
5199         *      Standard slow path.
5200         */
5201
5202        if (!tcp_validate_incoming(sk, skb, th, 1))
5203                return 0;
5204
5205step5:
5206        if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5207                goto discard;
5208
5209        tcp_rcv_rtt_measure_ts(sk, skb);
5210
5211        /* Process urgent data. */
5212        tcp_urg(sk, skb, th);
5213
5214        /* step 7: process the segment text */
5215        tcp_data_queue(sk, skb);
5216
5217        tcp_data_snd_check(sk);
5218        tcp_ack_snd_check(sk);
5219        return 0;
5220
5221csum_error:
5222        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5223        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5224
5225discard:
5226        __kfree_skb(skb);
5227        return 0;
5228}
5229EXPORT_SYMBOL(tcp_rcv_established);
5230
5231void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5232{
5233        struct tcp_sock *tp = tcp_sk(sk);
5234        struct inet_connection_sock *icsk = inet_csk(sk);
5235
5236        tcp_set_state(sk, TCP_ESTABLISHED);
5237
5238        if (skb != NULL) {
5239                icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5240                security_inet_conn_established(sk, skb);
5241        }
5242
5243        /* Make sure socket is routed, for correct metrics.  */
5244        icsk->icsk_af_ops->rebuild_header(sk);
5245
5246        tcp_init_metrics(sk);
5247
5248        tcp_init_congestion_control(sk);
5249
5250        /* Prevent spurious tcp_cwnd_restart() on first data
5251         * packet.
5252         */
5253        tp->lsndtime = tcp_time_stamp;
5254
5255        tcp_init_buffer_space(sk);
5256
5257        if (sock_flag(sk, SOCK_KEEPOPEN))
5258                inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5259
5260        if (!tp->rx_opt.snd_wscale)
5261                __tcp_fast_path_on(tp, tp->snd_wnd);
5262        else
5263                tp->pred_flags = 0;
5264
5265        if (!sock_flag(sk, SOCK_DEAD)) {
5266                sk->sk_state_change(sk);
5267                sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5268        }
5269}
5270
5271static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5272                                    struct tcp_fastopen_cookie *cookie)
5273{
5274        struct tcp_sock *tp = tcp_sk(sk);
5275        struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5276        u16 mss = tp->rx_opt.mss_clamp;
5277        bool syn_drop;
5278
5279        if (mss == tp->rx_opt.user_mss) {
5280                struct tcp_options_received opt;
5281
5282                /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5283                tcp_clear_options(&opt);
5284                opt.user_mss = opt.mss_clamp = 0;
5285                tcp_parse_options(synack, &opt, 0, NULL);
5286                mss = opt.mss_clamp;
5287        }
5288
5289        if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5290                cookie->len = -1;
5291
5292        /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5293         * the remote receives only the retransmitted (regular) SYNs: either
5294         * the original SYN-data or the corresponding SYN-ACK is lost.
5295         */
5296        syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5297
5298        tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5299
5300        if (data) { /* Retransmit unacked data in SYN */
5301                tcp_for_write_queue_from(data, sk) {
5302                        if (data == tcp_send_head(sk) ||
5303                            __tcp_retransmit_skb(sk, data))
5304                                break;
5305                }
5306                tcp_rearm_rto(sk);
5307                return true;
5308        }
5309        tp->syn_data_acked = tp->syn_data;
5310        return false;
5311}
5312
5313static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5314                                         const struct tcphdr *th, unsigned int len)
5315{
5316        struct inet_connection_sock *icsk = inet_csk(sk);
5317        struct tcp_sock *tp = tcp_sk(sk);
5318        struct tcp_fastopen_cookie foc = { .len = -1 };
5319        int saved_clamp = tp->rx_opt.mss_clamp;
5320
5321        tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5322        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5323                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5324
5325        if (th->ack) {
5326                /* rfc793:
5327                 * "If the state is SYN-SENT then
5328                 *    first check the ACK bit
5329                 *      If the ACK bit is set
5330                 *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5331                 *        a reset (unless the RST bit is set, if so drop
5332                 *        the segment and return)"
5333                 */
5334                if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5335                    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5336                        goto reset_and_undo;
5337
5338                if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5339                    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5340                             tcp_time_stamp)) {
5341                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5342                        goto reset_and_undo;
5343                }
5344
5345                /* Now ACK is acceptable.
5346                 *
5347                 * "If the RST bit is set
5348                 *    If the ACK was acceptable then signal the user "error:
5349                 *    connection reset", drop the segment, enter CLOSED state,
5350                 *    delete TCB, and return."
5351                 */
5352
5353                if (th->rst) {
5354                        tcp_reset(sk);
5355                        goto discard;
5356                }
5357
5358                /* rfc793:
5359                 *   "fifth, if neither of the SYN or RST bits is set then
5360                 *    drop the segment and return."
5361                 *
5362                 *    See note below!
5363                 *                                        --ANK(990513)
5364                 */
5365                if (!th->syn)
5366                        goto discard_and_undo;
5367
5368                /* rfc793:
5369                 *   "If the SYN bit is on ...
5370                 *    are acceptable then ...
5371                 *    (our SYN has been ACKed), change the connection
5372                 *    state to ESTABLISHED..."
5373                 */
5374
5375                TCP_ECN_rcv_synack(tp, th);
5376
5377                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5378                tcp_ack(sk, skb, FLAG_SLOWPATH);
5379
5380                /* Ok.. it's good. Set up sequence numbers and
5381                 * move to established.
5382                 */
5383                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5384                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5385
5386                /* RFC1323: The window in SYN & SYN/ACK segments is
5387                 * never scaled.
5388                 */
5389                tp->snd_wnd = ntohs(th->window);
5390
5391                if (!tp->rx_opt.wscale_ok) {
5392                        tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5393                        tp->window_clamp = min(tp->window_clamp, 65535U);
5394                }
5395
5396                if (tp->rx_opt.saw_tstamp) {
5397                        tp->rx_opt.tstamp_ok       = 1;
5398                        tp->tcp_header_len =
5399                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5400                        tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5401                        tcp_store_ts_recent(tp);
5402                } else {
5403                        tp->tcp_header_len = sizeof(struct tcphdr);
5404                }
5405
5406                if (tcp_is_sack(tp) && sysctl_tcp_fack)
5407                        tcp_enable_fack(tp);
5408
5409                tcp_mtup_init(sk);
5410                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5411                tcp_initialize_rcv_mss(sk);
5412
5413                /* Remember, tcp_poll() does not lock socket!
5414                 * Change state from SYN-SENT only after copied_seq
5415                 * is initialized. */
5416                tp->copied_seq = tp->rcv_nxt;
5417
5418                smp_mb();
5419
5420                tcp_finish_connect(sk, skb);
5421
5422                if ((tp->syn_fastopen || tp->syn_data) &&
5423                    tcp_rcv_fastopen_synack(sk, skb, &foc))
5424                        return -1;
5425
5426                if (sk->sk_write_pending ||
5427                    icsk->icsk_accept_queue.rskq_defer_accept ||
5428                    icsk->icsk_ack.pingpong) {
5429                        /* Save one ACK. Data will be ready after
5430                         * several ticks, if write_pending is set.
5431                         *
5432                         * It may be deleted, but with this feature tcpdumps
5433                         * look so _wonderfully_ clever, that I was not able
5434                         * to stand against the temptation 8)     --ANK
5435                         */
5436                        inet_csk_schedule_ack(sk);
5437                        icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5438                        tcp_enter_quickack_mode(sk);
5439                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5440                                                  TCP_DELACK_MAX, TCP_RTO_MAX);
5441
5442discard:
5443                        __kfree_skb(skb);
5444                        return 0;
5445                } else {
5446                        tcp_send_ack(sk);
5447                }
5448                return -1;
5449        }
5450
5451        /* No ACK in the segment */
5452
5453        if (th->rst) {
5454                /* rfc793:
5455                 * "If the RST bit is set
5456                 *
5457                 *      Otherwise (no ACK) drop the segment and return."
5458                 */
5459
5460                goto discard_and_undo;
5461        }
5462
5463        /* PAWS check. */
5464        if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5465            tcp_paws_reject(&tp->rx_opt, 0))
5466                goto discard_and_undo;
5467
5468        if (th->syn) {
5469                /* We see SYN without ACK. It is attempt of
5470                 * simultaneous connect with crossed SYNs.
5471                 * Particularly, it can be connect to self.
5472                 */
5473                tcp_set_state(sk, TCP_SYN_RECV);
5474
5475                if (tp->rx_opt.saw_tstamp) {
5476                        tp->rx_opt.tstamp_ok = 1;
5477                        tcp_store_ts_recent(tp);
5478                        tp->tcp_header_len =
5479                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5480                } else {
5481                        tp->tcp_header_len = sizeof(struct tcphdr);
5482                }
5483
5484                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5485                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5486
5487                /* RFC1323: The window in SYN & SYN/ACK segments is
5488                 * never scaled.
5489                 */
5490                tp->snd_wnd    = ntohs(th->window);
5491                tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5492                tp->max_window = tp->snd_wnd;
5493
5494                TCP_ECN_rcv_syn(tp, th);
5495
5496                tcp_mtup_init(sk);
5497                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5498                tcp_initialize_rcv_mss(sk);
5499
5500                tcp_send_synack(sk);
5501#if 0
5502                /* Note, we could accept data and URG from this segment.
5503                 * There are no obstacles to make this (except that we must
5504                 * either change tcp_recvmsg() to prevent it from returning data
5505                 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5506                 *
5507                 * However, if we ignore data in ACKless segments sometimes,
5508                 * we have no reasons to accept it sometimes.
5509                 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5510                 * is not flawless. So, discard packet for sanity.
5511                 * Uncomment this return to process the data.
5512                 */
5513                return -1;
5514#else
5515                goto discard;
5516#endif
5517        }
5518        /* "fifth, if neither of the SYN or RST bits is set then
5519         * drop the segment and return."
5520         */
5521
5522discard_and_undo:
5523        tcp_clear_options(&tp->rx_opt);
5524        tp->rx_opt.mss_clamp = saved_clamp;
5525        goto discard;
5526
5527reset_and_undo:
5528        tcp_clear_options(&tp->rx_opt);
5529        tp->rx_opt.mss_clamp = saved_clamp;
5530        return 1;
5531}
5532
5533/*
5534 *      This function implements the receiving procedure of RFC 793 for
5535 *      all states except ESTABLISHED and TIME_WAIT.
5536 *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5537 *      address independent.
5538 */
5539
5540int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5541                          const struct tcphdr *th, unsigned int len)
5542{
5543        struct tcp_sock *tp = tcp_sk(sk);
5544        struct inet_connection_sock *icsk = inet_csk(sk);
5545        struct request_sock *req;
5546        int queued = 0;
5547        bool acceptable;
5548
5549        tp->rx_opt.saw_tstamp = 0;
5550
5551        switch (sk->sk_state) {
5552        case TCP_CLOSE:
5553                goto discard;
5554
5555        case TCP_LISTEN:
5556                if (th->ack)
5557                        return 1;
5558
5559                if (th->rst)
5560                        goto discard;
5561
5562                if (th->syn) {
5563                        if (th->fin)
5564                                goto discard;
5565                        if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5566                                return 1;
5567
5568                        /* Now we have several options: In theory there is
5569                         * nothing else in the frame. KA9Q has an option to
5570                         * send data with the syn, BSD accepts data with the
5571                         * syn up to the [to be] advertised window and
5572                         * Solaris 2.1 gives you a protocol error. For now
5573                         * we just ignore it, that fits the spec precisely
5574                         * and avoids incompatibilities. It would be nice in
5575                         * future to drop through and process the data.
5576                         *
5577                         * Now that TTCP is starting to be used we ought to
5578                         * queue this data.
5579                         * But, this leaves one open to an easy denial of
5580                         * service attack, and SYN cookies can't defend
5581                         * against this problem. So, we drop the data
5582                         * in the interest of security over speed unless
5583                         * it's still in use.
5584                         */
5585                        kfree_skb(skb);
5586                        return 0;
5587                }
5588                goto discard;
5589
5590        case TCP_SYN_SENT:
5591                queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5592                if (queued >= 0)
5593                        return queued;
5594
5595                /* Do step6 onward by hand. */
5596                tcp_urg(sk, skb, th);
5597                __kfree_skb(skb);
5598                tcp_data_snd_check(sk);
5599                return 0;
5600        }
5601
5602        req = tp->fastopen_rsk;
5603        if (req != NULL) {
5604                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5605                    sk->sk_state != TCP_FIN_WAIT1);
5606
5607                if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5608                        goto discard;
5609        }
5610
5611        if (!th->ack && !th->rst)
5612                goto discard;
5613
5614        if (!tcp_validate_incoming(sk, skb, th, 0))
5615                return 0;
5616
5617        /* step 5: check the ACK field */
5618        acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5619                                      FLAG_UPDATE_TS_RECENT) > 0;
5620
5621        switch (sk->sk_state) {
5622        case TCP_SYN_RECV:
5623                if (!acceptable)
5624                        return 1;
5625
5626                /* Once we leave TCP_SYN_RECV, we no longer need req
5627                 * so release it.
5628                 */
5629                if (req) {
5630                        tcp_synack_rtt_meas(sk, req);
5631                        tp->total_retrans = req->num_retrans;
5632
5633                        reqsk_fastopen_remove(sk, req, false);
5634                } else {
5635                        /* Make sure socket is routed, for correct metrics. */
5636                        icsk->icsk_af_ops->rebuild_header(sk);
5637                        tcp_init_congestion_control(sk);
5638
5639                        tcp_mtup_init(sk);
5640                        tcp_init_buffer_space(sk);
5641                        tp->copied_seq = tp->rcv_nxt;
5642                }
5643                smp_mb();
5644                tcp_set_state(sk, TCP_ESTABLISHED);
5645                sk->sk_state_change(sk);
5646
5647                /* Note, that this wakeup is only for marginal crossed SYN case.
5648                 * Passively open sockets are not waked up, because
5649                 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5650                 */
5651                if (sk->sk_socket)
5652                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5653
5654                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5655                tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5656                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5657
5658                if (tp->rx_opt.tstamp_ok)
5659                        tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5660
5661                if (req) {
5662                        /* Re-arm the timer because data may have been sent out.
5663                         * This is similar to the regular data transmission case
5664                         * when new data has just been ack'ed.
5665                         *
5666                         * (TFO) - we could try to be more aggressive and
5667                         * retransmitting any data sooner based on when they
5668                         * are sent out.
5669                         */
5670                        tcp_rearm_rto(sk);
5671                } else
5672                        tcp_init_metrics(sk);
5673
5674                /* Prevent spurious tcp_cwnd_restart() on first data packet */
5675                tp->lsndtime = tcp_time_stamp;
5676
5677                tcp_initialize_rcv_mss(sk);
5678                tcp_fast_path_on(tp);
5679                break;
5680
5681        case TCP_FIN_WAIT1: {
5682                struct dst_entry *dst;
5683                int tmo;
5684
5685                /* If we enter the TCP_FIN_WAIT1 state and we are a
5686                 * Fast Open socket and this is the first acceptable
5687                 * ACK we have received, this would have acknowledged
5688                 * our SYNACK so stop the SYNACK timer.
5689                 */
5690                if (req != NULL) {
5691                        /* Return RST if ack_seq is invalid.
5692                         * Note that RFC793 only says to generate a
5693                         * DUPACK for it but for TCP Fast Open it seems
5694                         * better to treat this case like TCP_SYN_RECV
5695                         * above.
5696                         */
5697                        if (!acceptable)
5698                                return 1;
5699                        /* We no longer need the request sock. */
5700                        reqsk_fastopen_remove(sk, req, false);
5701                        tcp_rearm_rto(sk);
5702                }
5703                if (tp->snd_una != tp->write_seq)
5704                        break;
5705
5706                tcp_set_state(sk, TCP_FIN_WAIT2);
5707                sk->sk_shutdown |= SEND_SHUTDOWN;
5708
5709                dst = __sk_dst_get(sk);
5710                if (dst)
5711                        dst_confirm(dst);
5712
5713                if (!sock_flag(sk, SOCK_DEAD)) {
5714                        /* Wake up lingering close() */
5715                        sk->sk_state_change(sk);
5716                        break;
5717                }
5718
5719                if (tp->linger2 < 0 ||
5720                    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5721                     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5722                        tcp_done(sk);
5723                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5724                        return 1;
5725                }
5726
5727                tmo = tcp_fin_time(sk);
5728                if (tmo > TCP_TIMEWAIT_LEN) {
5729                        inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5730                } else if (th->fin || sock_owned_by_user(sk)) {
5731                        /* Bad case. We could lose such FIN otherwise.
5732                         * It is not a big problem, but it looks confusing
5733                         * and not so rare event. We still can lose it now,
5734                         * if it spins in bh_lock_sock(), but it is really
5735                         * marginal case.
5736                         */
5737                        inet_csk_reset_keepalive_timer(sk, tmo);
5738                } else {
5739                        tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5740                        goto discard;
5741                }
5742                break;
5743        }
5744
5745        case TCP_CLOSING:
5746                if (tp->snd_una == tp->write_seq) {
5747                        tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5748                        goto discard;
5749                }
5750                break;
5751
5752        case TCP_LAST_ACK:
5753                if (tp->snd_una == tp->write_seq) {
5754                        tcp_update_metrics(sk);
5755                        tcp_done(sk);
5756                        goto discard;
5757                }
5758                break;
5759        }
5760
5761        /* step 6: check the URG bit */
5762        tcp_urg(sk, skb, th);
5763
5764        /* step 7: process the segment text */
5765        switch (sk->sk_state) {
5766        case TCP_CLOSE_WAIT:
5767        case TCP_CLOSING:
5768        case TCP_LAST_ACK:
5769                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5770                        break;
5771        case TCP_FIN_WAIT1:
5772        case TCP_FIN_WAIT2:
5773                /* RFC 793 says to queue data in these states,
5774                 * RFC 1122 says we MUST send a reset.
5775                 * BSD 4.4 also does reset.
5776                 */
5777                if (sk->sk_shutdown & RCV_SHUTDOWN) {
5778                        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5779                            after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5780                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5781                                tcp_reset(sk);
5782                                return 1;
5783                        }
5784                }
5785                /* Fall through */
5786        case TCP_ESTABLISHED:
5787                tcp_data_queue(sk, skb);
5788                queued = 1;
5789                break;
5790        }
5791
5792        /* tcp_data could move socket to TIME-WAIT */
5793        if (sk->sk_state != TCP_CLOSE) {
5794                tcp_data_snd_check(sk);
5795                tcp_ack_snd_check(sk);
5796        }
5797
5798        if (!queued) {
5799discard:
5800                __kfree_skb(skb);
5801        }
5802        return 0;
5803}
5804EXPORT_SYMBOL(tcp_rcv_state_process);
5805