linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/init.h>
  76#include <linux/poll.h>
  77#include <linux/cache.h>
  78#include <linux/module.h>
  79#include <linux/highmem.h>
  80#include <linux/mount.h>
  81#include <linux/security.h>
  82#include <linux/syscalls.h>
  83#include <linux/compat.h>
  84#include <linux/kmod.h>
  85#include <linux/audit.h>
  86#include <linux/wireless.h>
  87#include <linux/nsproxy.h>
  88#include <linux/magic.h>
  89#include <linux/slab.h>
  90#include <linux/xattr.h>
  91
  92#include <asm/uaccess.h>
  93#include <asm/unistd.h>
  94
  95#include <net/compat.h>
  96#include <net/wext.h>
  97#include <net/cls_cgroup.h>
  98
  99#include <net/sock.h>
 100#include <linux/netfilter.h>
 101
 102#include <linux/if_tun.h>
 103#include <linux/ipv6_route.h>
 104#include <linux/route.h>
 105#include <linux/sockios.h>
 106#include <linux/atalk.h>
 107#include <net/busy_poll.h>
 108
 109#ifdef CONFIG_NET_RX_BUSY_POLL
 110unsigned int sysctl_net_busy_read __read_mostly;
 111unsigned int sysctl_net_busy_poll __read_mostly;
 112#endif
 113
 114static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 115static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 116                         unsigned long nr_segs, loff_t pos);
 117static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 118                          unsigned long nr_segs, loff_t pos);
 119static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 120
 121static int sock_close(struct inode *inode, struct file *file);
 122static unsigned int sock_poll(struct file *file,
 123                              struct poll_table_struct *wait);
 124static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 125#ifdef CONFIG_COMPAT
 126static long compat_sock_ioctl(struct file *file,
 127                              unsigned int cmd, unsigned long arg);
 128#endif
 129static int sock_fasync(int fd, struct file *filp, int on);
 130static ssize_t sock_sendpage(struct file *file, struct page *page,
 131                             int offset, size_t size, loff_t *ppos, int more);
 132static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 133                                struct pipe_inode_info *pipe, size_t len,
 134                                unsigned int flags);
 135
 136/*
 137 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 138 *      in the operation structures but are done directly via the socketcall() multiplexor.
 139 */
 140
 141static const struct file_operations socket_file_ops = {
 142        .owner =        THIS_MODULE,
 143        .llseek =       no_llseek,
 144        .aio_read =     sock_aio_read,
 145        .aio_write =    sock_aio_write,
 146        .poll =         sock_poll,
 147        .unlocked_ioctl = sock_ioctl,
 148#ifdef CONFIG_COMPAT
 149        .compat_ioctl = compat_sock_ioctl,
 150#endif
 151        .mmap =         sock_mmap,
 152        .open =         sock_no_open,   /* special open code to disallow open via /proc */
 153        .release =      sock_close,
 154        .fasync =       sock_fasync,
 155        .sendpage =     sock_sendpage,
 156        .splice_write = generic_splice_sendpage,
 157        .splice_read =  sock_splice_read,
 158};
 159
 160/*
 161 *      The protocol list. Each protocol is registered in here.
 162 */
 163
 164static DEFINE_SPINLOCK(net_family_lock);
 165static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 166
 167/*
 168 *      Statistics counters of the socket lists
 169 */
 170
 171static DEFINE_PER_CPU(int, sockets_in_use);
 172
 173/*
 174 * Support routines.
 175 * Move socket addresses back and forth across the kernel/user
 176 * divide and look after the messy bits.
 177 */
 178
 179/**
 180 *      move_addr_to_kernel     -       copy a socket address into kernel space
 181 *      @uaddr: Address in user space
 182 *      @kaddr: Address in kernel space
 183 *      @ulen: Length in user space
 184 *
 185 *      The address is copied into kernel space. If the provided address is
 186 *      too long an error code of -EINVAL is returned. If the copy gives
 187 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 188 */
 189
 190int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 191{
 192        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 193                return -EINVAL;
 194        if (ulen == 0)
 195                return 0;
 196        if (copy_from_user(kaddr, uaddr, ulen))
 197                return -EFAULT;
 198        return audit_sockaddr(ulen, kaddr);
 199}
 200
 201/**
 202 *      move_addr_to_user       -       copy an address to user space
 203 *      @kaddr: kernel space address
 204 *      @klen: length of address in kernel
 205 *      @uaddr: user space address
 206 *      @ulen: pointer to user length field
 207 *
 208 *      The value pointed to by ulen on entry is the buffer length available.
 209 *      This is overwritten with the buffer space used. -EINVAL is returned
 210 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 211 *      is returned if either the buffer or the length field are not
 212 *      accessible.
 213 *      After copying the data up to the limit the user specifies, the true
 214 *      length of the data is written over the length limit the user
 215 *      specified. Zero is returned for a success.
 216 */
 217
 218static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 219                             void __user *uaddr, int __user *ulen)
 220{
 221        int err;
 222        int len;
 223
 224        err = get_user(len, ulen);
 225        if (err)
 226                return err;
 227        if (len > klen)
 228                len = klen;
 229        if (len < 0 || len > sizeof(struct sockaddr_storage))
 230                return -EINVAL;
 231        if (len) {
 232                if (audit_sockaddr(klen, kaddr))
 233                        return -ENOMEM;
 234                if (copy_to_user(uaddr, kaddr, len))
 235                        return -EFAULT;
 236        }
 237        /*
 238         *      "fromlen shall refer to the value before truncation.."
 239         *                      1003.1g
 240         */
 241        return __put_user(klen, ulen);
 242}
 243
 244static struct kmem_cache *sock_inode_cachep __read_mostly;
 245
 246static struct inode *sock_alloc_inode(struct super_block *sb)
 247{
 248        struct socket_alloc *ei;
 249        struct socket_wq *wq;
 250
 251        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 252        if (!ei)
 253                return NULL;
 254        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 255        if (!wq) {
 256                kmem_cache_free(sock_inode_cachep, ei);
 257                return NULL;
 258        }
 259        init_waitqueue_head(&wq->wait);
 260        wq->fasync_list = NULL;
 261        RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263        ei->socket.state = SS_UNCONNECTED;
 264        ei->socket.flags = 0;
 265        ei->socket.ops = NULL;
 266        ei->socket.sk = NULL;
 267        ei->socket.file = NULL;
 268
 269        return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274        struct socket_alloc *ei;
 275        struct socket_wq *wq;
 276
 277        ei = container_of(inode, struct socket_alloc, vfs_inode);
 278        wq = rcu_dereference_protected(ei->socket.wq, 1);
 279        kfree_rcu(wq, rcu);
 280        kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285        struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287        inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293                                              sizeof(struct socket_alloc),
 294                                              0,
 295                                              (SLAB_HWCACHE_ALIGN |
 296                                               SLAB_RECLAIM_ACCOUNT |
 297                                               SLAB_MEM_SPREAD),
 298                                              init_once);
 299        if (sock_inode_cachep == NULL)
 300                return -ENOMEM;
 301        return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305        .alloc_inode    = sock_alloc_inode,
 306        .destroy_inode  = sock_destroy_inode,
 307        .statfs         = simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316                                dentry->d_inode->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320        .d_dname  = sockfs_dname,
 321};
 322
 323static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 324                         int flags, const char *dev_name, void *data)
 325{
 326        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 327                &sockfs_dentry_operations, SOCKFS_MAGIC);
 328}
 329
 330static struct vfsmount *sock_mnt __read_mostly;
 331
 332static struct file_system_type sock_fs_type = {
 333        .name =         "sockfs",
 334        .mount =        sockfs_mount,
 335        .kill_sb =      kill_anon_super,
 336};
 337
 338/*
 339 *      Obtains the first available file descriptor and sets it up for use.
 340 *
 341 *      These functions create file structures and maps them to fd space
 342 *      of the current process. On success it returns file descriptor
 343 *      and file struct implicitly stored in sock->file.
 344 *      Note that another thread may close file descriptor before we return
 345 *      from this function. We use the fact that now we do not refer
 346 *      to socket after mapping. If one day we will need it, this
 347 *      function will increment ref. count on file by 1.
 348 *
 349 *      In any case returned fd MAY BE not valid!
 350 *      This race condition is unavoidable
 351 *      with shared fd spaces, we cannot solve it inside kernel,
 352 *      but we take care of internal coherence yet.
 353 */
 354
 355struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 356{
 357        struct qstr name = { .name = "" };
 358        struct path path;
 359        struct file *file;
 360
 361        if (dname) {
 362                name.name = dname;
 363                name.len = strlen(name.name);
 364        } else if (sock->sk) {
 365                name.name = sock->sk->sk_prot_creator->name;
 366                name.len = strlen(name.name);
 367        }
 368        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 369        if (unlikely(!path.dentry))
 370                return ERR_PTR(-ENOMEM);
 371        path.mnt = mntget(sock_mnt);
 372
 373        d_instantiate(path.dentry, SOCK_INODE(sock));
 374        SOCK_INODE(sock)->i_fop = &socket_file_ops;
 375
 376        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 377                  &socket_file_ops);
 378        if (unlikely(IS_ERR(file))) {
 379                /* drop dentry, keep inode */
 380                ihold(path.dentry->d_inode);
 381                path_put(&path);
 382                return file;
 383        }
 384
 385        sock->file = file;
 386        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 387        file->private_data = sock;
 388        return file;
 389}
 390EXPORT_SYMBOL(sock_alloc_file);
 391
 392static int sock_map_fd(struct socket *sock, int flags)
 393{
 394        struct file *newfile;
 395        int fd = get_unused_fd_flags(flags);
 396        if (unlikely(fd < 0))
 397                return fd;
 398
 399        newfile = sock_alloc_file(sock, flags, NULL);
 400        if (likely(!IS_ERR(newfile))) {
 401                fd_install(fd, newfile);
 402                return fd;
 403        }
 404
 405        put_unused_fd(fd);
 406        return PTR_ERR(newfile);
 407}
 408
 409struct socket *sock_from_file(struct file *file, int *err)
 410{
 411        if (file->f_op == &socket_file_ops)
 412                return file->private_data;      /* set in sock_map_fd */
 413
 414        *err = -ENOTSOCK;
 415        return NULL;
 416}
 417EXPORT_SYMBOL(sock_from_file);
 418
 419/**
 420 *      sockfd_lookup - Go from a file number to its socket slot
 421 *      @fd: file handle
 422 *      @err: pointer to an error code return
 423 *
 424 *      The file handle passed in is locked and the socket it is bound
 425 *      too is returned. If an error occurs the err pointer is overwritten
 426 *      with a negative errno code and NULL is returned. The function checks
 427 *      for both invalid handles and passing a handle which is not a socket.
 428 *
 429 *      On a success the socket object pointer is returned.
 430 */
 431
 432struct socket *sockfd_lookup(int fd, int *err)
 433{
 434        struct file *file;
 435        struct socket *sock;
 436
 437        file = fget(fd);
 438        if (!file) {
 439                *err = -EBADF;
 440                return NULL;
 441        }
 442
 443        sock = sock_from_file(file, err);
 444        if (!sock)
 445                fput(file);
 446        return sock;
 447}
 448EXPORT_SYMBOL(sockfd_lookup);
 449
 450static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 451{
 452        struct file *file;
 453        struct socket *sock;
 454
 455        *err = -EBADF;
 456        file = fget_light(fd, fput_needed);
 457        if (file) {
 458                sock = sock_from_file(file, err);
 459                if (sock)
 460                        return sock;
 461                fput_light(file, *fput_needed);
 462        }
 463        return NULL;
 464}
 465
 466#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 467#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 468#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 469static ssize_t sockfs_getxattr(struct dentry *dentry,
 470                               const char *name, void *value, size_t size)
 471{
 472        const char *proto_name;
 473        size_t proto_size;
 474        int error;
 475
 476        error = -ENODATA;
 477        if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 478                proto_name = dentry->d_name.name;
 479                proto_size = strlen(proto_name);
 480
 481                if (value) {
 482                        error = -ERANGE;
 483                        if (proto_size + 1 > size)
 484                                goto out;
 485
 486                        strncpy(value, proto_name, proto_size + 1);
 487                }
 488                error = proto_size + 1;
 489        }
 490
 491out:
 492        return error;
 493}
 494
 495static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 496                                size_t size)
 497{
 498        ssize_t len;
 499        ssize_t used = 0;
 500
 501        len = security_inode_listsecurity(dentry->d_inode, buffer, size);
 502        if (len < 0)
 503                return len;
 504        used += len;
 505        if (buffer) {
 506                if (size < used)
 507                        return -ERANGE;
 508                buffer += len;
 509        }
 510
 511        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 512        used += len;
 513        if (buffer) {
 514                if (size < used)
 515                        return -ERANGE;
 516                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 517                buffer += len;
 518        }
 519
 520        return used;
 521}
 522
 523static const struct inode_operations sockfs_inode_ops = {
 524        .getxattr = sockfs_getxattr,
 525        .listxattr = sockfs_listxattr,
 526};
 527
 528/**
 529 *      sock_alloc      -       allocate a socket
 530 *
 531 *      Allocate a new inode and socket object. The two are bound together
 532 *      and initialised. The socket is then returned. If we are out of inodes
 533 *      NULL is returned.
 534 */
 535
 536static struct socket *sock_alloc(void)
 537{
 538        struct inode *inode;
 539        struct socket *sock;
 540
 541        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 542        if (!inode)
 543                return NULL;
 544
 545        sock = SOCKET_I(inode);
 546
 547        kmemcheck_annotate_bitfield(sock, type);
 548        inode->i_ino = get_next_ino();
 549        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 550        inode->i_uid = current_fsuid();
 551        inode->i_gid = current_fsgid();
 552        inode->i_op = &sockfs_inode_ops;
 553
 554        this_cpu_add(sockets_in_use, 1);
 555        return sock;
 556}
 557
 558/*
 559 *      In theory you can't get an open on this inode, but /proc provides
 560 *      a back door. Remember to keep it shut otherwise you'll let the
 561 *      creepy crawlies in.
 562 */
 563
 564static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 565{
 566        return -ENXIO;
 567}
 568
 569const struct file_operations bad_sock_fops = {
 570        .owner = THIS_MODULE,
 571        .open = sock_no_open,
 572        .llseek = noop_llseek,
 573};
 574
 575/**
 576 *      sock_release    -       close a socket
 577 *      @sock: socket to close
 578 *
 579 *      The socket is released from the protocol stack if it has a release
 580 *      callback, and the inode is then released if the socket is bound to
 581 *      an inode not a file.
 582 */
 583
 584void sock_release(struct socket *sock)
 585{
 586        if (sock->ops) {
 587                struct module *owner = sock->ops->owner;
 588
 589                sock->ops->release(sock);
 590                sock->ops = NULL;
 591                module_put(owner);
 592        }
 593
 594        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 595                printk(KERN_ERR "sock_release: fasync list not empty!\n");
 596
 597        if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 598                return;
 599
 600        this_cpu_sub(sockets_in_use, 1);
 601        if (!sock->file) {
 602                iput(SOCK_INODE(sock));
 603                return;
 604        }
 605        sock->file = NULL;
 606}
 607EXPORT_SYMBOL(sock_release);
 608
 609void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 610{
 611        *tx_flags = 0;
 612        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 613                *tx_flags |= SKBTX_HW_TSTAMP;
 614        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 615                *tx_flags |= SKBTX_SW_TSTAMP;
 616        if (sock_flag(sk, SOCK_WIFI_STATUS))
 617                *tx_flags |= SKBTX_WIFI_STATUS;
 618}
 619EXPORT_SYMBOL(sock_tx_timestamp);
 620
 621static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 622                                       struct msghdr *msg, size_t size)
 623{
 624        struct sock_iocb *si = kiocb_to_siocb(iocb);
 625
 626        si->sock = sock;
 627        si->scm = NULL;
 628        si->msg = msg;
 629        si->size = size;
 630
 631        return sock->ops->sendmsg(iocb, sock, msg, size);
 632}
 633
 634static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 635                                 struct msghdr *msg, size_t size)
 636{
 637        int err = security_socket_sendmsg(sock, msg, size);
 638
 639        return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 640}
 641
 642int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 643{
 644        struct kiocb iocb;
 645        struct sock_iocb siocb;
 646        int ret;
 647
 648        init_sync_kiocb(&iocb, NULL);
 649        iocb.private = &siocb;
 650        ret = __sock_sendmsg(&iocb, sock, msg, size);
 651        if (-EIOCBQUEUED == ret)
 652                ret = wait_on_sync_kiocb(&iocb);
 653        return ret;
 654}
 655EXPORT_SYMBOL(sock_sendmsg);
 656
 657static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 658{
 659        struct kiocb iocb;
 660        struct sock_iocb siocb;
 661        int ret;
 662
 663        init_sync_kiocb(&iocb, NULL);
 664        iocb.private = &siocb;
 665        ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 666        if (-EIOCBQUEUED == ret)
 667                ret = wait_on_sync_kiocb(&iocb);
 668        return ret;
 669}
 670
 671int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 672                   struct kvec *vec, size_t num, size_t size)
 673{
 674        mm_segment_t oldfs = get_fs();
 675        int result;
 676
 677        set_fs(KERNEL_DS);
 678        /*
 679         * the following is safe, since for compiler definitions of kvec and
 680         * iovec are identical, yielding the same in-core layout and alignment
 681         */
 682        msg->msg_iov = (struct iovec *)vec;
 683        msg->msg_iovlen = num;
 684        result = sock_sendmsg(sock, msg, size);
 685        set_fs(oldfs);
 686        return result;
 687}
 688EXPORT_SYMBOL(kernel_sendmsg);
 689
 690/*
 691 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 692 */
 693void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 694        struct sk_buff *skb)
 695{
 696        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 697        struct timespec ts[3];
 698        int empty = 1;
 699        struct skb_shared_hwtstamps *shhwtstamps =
 700                skb_hwtstamps(skb);
 701
 702        /* Race occurred between timestamp enabling and packet
 703           receiving.  Fill in the current time for now. */
 704        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 705                __net_timestamp(skb);
 706
 707        if (need_software_tstamp) {
 708                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 709                        struct timeval tv;
 710                        skb_get_timestamp(skb, &tv);
 711                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 712                                 sizeof(tv), &tv);
 713                } else {
 714                        skb_get_timestampns(skb, &ts[0]);
 715                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 716                                 sizeof(ts[0]), &ts[0]);
 717                }
 718        }
 719
 720
 721        memset(ts, 0, sizeof(ts));
 722        if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
 723            ktime_to_timespec_cond(skb->tstamp, ts + 0))
 724                empty = 0;
 725        if (shhwtstamps) {
 726                if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 727                    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
 728                        empty = 0;
 729                if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 730                    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
 731                        empty = 0;
 732        }
 733        if (!empty)
 734                put_cmsg(msg, SOL_SOCKET,
 735                         SCM_TIMESTAMPING, sizeof(ts), &ts);
 736}
 737EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 738
 739void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 740        struct sk_buff *skb)
 741{
 742        int ack;
 743
 744        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 745                return;
 746        if (!skb->wifi_acked_valid)
 747                return;
 748
 749        ack = skb->wifi_acked;
 750
 751        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 752}
 753EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 754
 755static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 756                                   struct sk_buff *skb)
 757{
 758        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 759                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 760                        sizeof(__u32), &skb->dropcount);
 761}
 762
 763void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 764        struct sk_buff *skb)
 765{
 766        sock_recv_timestamp(msg, sk, skb);
 767        sock_recv_drops(msg, sk, skb);
 768}
 769EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 770
 771static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 772                                       struct msghdr *msg, size_t size, int flags)
 773{
 774        struct sock_iocb *si = kiocb_to_siocb(iocb);
 775
 776        si->sock = sock;
 777        si->scm = NULL;
 778        si->msg = msg;
 779        si->size = size;
 780        si->flags = flags;
 781
 782        return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 783}
 784
 785static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 786                                 struct msghdr *msg, size_t size, int flags)
 787{
 788        int err = security_socket_recvmsg(sock, msg, size, flags);
 789
 790        return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 791}
 792
 793int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 794                 size_t size, int flags)
 795{
 796        struct kiocb iocb;
 797        struct sock_iocb siocb;
 798        int ret;
 799
 800        init_sync_kiocb(&iocb, NULL);
 801        iocb.private = &siocb;
 802        ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 803        if (-EIOCBQUEUED == ret)
 804                ret = wait_on_sync_kiocb(&iocb);
 805        return ret;
 806}
 807EXPORT_SYMBOL(sock_recvmsg);
 808
 809static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 810                              size_t size, int flags)
 811{
 812        struct kiocb iocb;
 813        struct sock_iocb siocb;
 814        int ret;
 815
 816        init_sync_kiocb(&iocb, NULL);
 817        iocb.private = &siocb;
 818        ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 819        if (-EIOCBQUEUED == ret)
 820                ret = wait_on_sync_kiocb(&iocb);
 821        return ret;
 822}
 823
 824/**
 825 * kernel_recvmsg - Receive a message from a socket (kernel space)
 826 * @sock:       The socket to receive the message from
 827 * @msg:        Received message
 828 * @vec:        Input s/g array for message data
 829 * @num:        Size of input s/g array
 830 * @size:       Number of bytes to read
 831 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 832 *
 833 * On return the msg structure contains the scatter/gather array passed in the
 834 * vec argument. The array is modified so that it consists of the unfilled
 835 * portion of the original array.
 836 *
 837 * The returned value is the total number of bytes received, or an error.
 838 */
 839int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 840                   struct kvec *vec, size_t num, size_t size, int flags)
 841{
 842        mm_segment_t oldfs = get_fs();
 843        int result;
 844
 845        set_fs(KERNEL_DS);
 846        /*
 847         * the following is safe, since for compiler definitions of kvec and
 848         * iovec are identical, yielding the same in-core layout and alignment
 849         */
 850        msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 851        result = sock_recvmsg(sock, msg, size, flags);
 852        set_fs(oldfs);
 853        return result;
 854}
 855EXPORT_SYMBOL(kernel_recvmsg);
 856
 857static void sock_aio_dtor(struct kiocb *iocb)
 858{
 859        kfree(iocb->private);
 860}
 861
 862static ssize_t sock_sendpage(struct file *file, struct page *page,
 863                             int offset, size_t size, loff_t *ppos, int more)
 864{
 865        struct socket *sock;
 866        int flags;
 867
 868        sock = file->private_data;
 869
 870        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 871        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 872        flags |= more;
 873
 874        return kernel_sendpage(sock, page, offset, size, flags);
 875}
 876
 877static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 878                                struct pipe_inode_info *pipe, size_t len,
 879                                unsigned int flags)
 880{
 881        struct socket *sock = file->private_data;
 882
 883        if (unlikely(!sock->ops->splice_read))
 884                return -EINVAL;
 885
 886        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 887}
 888
 889static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 890                                         struct sock_iocb *siocb)
 891{
 892        if (!is_sync_kiocb(iocb)) {
 893                siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 894                if (!siocb)
 895                        return NULL;
 896                iocb->ki_dtor = sock_aio_dtor;
 897        }
 898
 899        siocb->kiocb = iocb;
 900        iocb->private = siocb;
 901        return siocb;
 902}
 903
 904static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 905                struct file *file, const struct iovec *iov,
 906                unsigned long nr_segs)
 907{
 908        struct socket *sock = file->private_data;
 909        size_t size = 0;
 910        int i;
 911
 912        for (i = 0; i < nr_segs; i++)
 913                size += iov[i].iov_len;
 914
 915        msg->msg_name = NULL;
 916        msg->msg_namelen = 0;
 917        msg->msg_control = NULL;
 918        msg->msg_controllen = 0;
 919        msg->msg_iov = (struct iovec *)iov;
 920        msg->msg_iovlen = nr_segs;
 921        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 922
 923        return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 924}
 925
 926static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 927                                unsigned long nr_segs, loff_t pos)
 928{
 929        struct sock_iocb siocb, *x;
 930
 931        if (pos != 0)
 932                return -ESPIPE;
 933
 934        if (iocb->ki_left == 0) /* Match SYS5 behaviour */
 935                return 0;
 936
 937
 938        x = alloc_sock_iocb(iocb, &siocb);
 939        if (!x)
 940                return -ENOMEM;
 941        return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 942}
 943
 944static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 945                        struct file *file, const struct iovec *iov,
 946                        unsigned long nr_segs)
 947{
 948        struct socket *sock = file->private_data;
 949        size_t size = 0;
 950        int i;
 951
 952        for (i = 0; i < nr_segs; i++)
 953                size += iov[i].iov_len;
 954
 955        msg->msg_name = NULL;
 956        msg->msg_namelen = 0;
 957        msg->msg_control = NULL;
 958        msg->msg_controllen = 0;
 959        msg->msg_iov = (struct iovec *)iov;
 960        msg->msg_iovlen = nr_segs;
 961        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 962        if (sock->type == SOCK_SEQPACKET)
 963                msg->msg_flags |= MSG_EOR;
 964
 965        return __sock_sendmsg(iocb, sock, msg, size);
 966}
 967
 968static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 969                          unsigned long nr_segs, loff_t pos)
 970{
 971        struct sock_iocb siocb, *x;
 972
 973        if (pos != 0)
 974                return -ESPIPE;
 975
 976        x = alloc_sock_iocb(iocb, &siocb);
 977        if (!x)
 978                return -ENOMEM;
 979
 980        return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 981}
 982
 983/*
 984 * Atomic setting of ioctl hooks to avoid race
 985 * with module unload.
 986 */
 987
 988static DEFINE_MUTEX(br_ioctl_mutex);
 989static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 990
 991void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 992{
 993        mutex_lock(&br_ioctl_mutex);
 994        br_ioctl_hook = hook;
 995        mutex_unlock(&br_ioctl_mutex);
 996}
 997EXPORT_SYMBOL(brioctl_set);
 998
 999static DEFINE_MUTEX(vlan_ioctl_mutex);
1000static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1001
1002void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1003{
1004        mutex_lock(&vlan_ioctl_mutex);
1005        vlan_ioctl_hook = hook;
1006        mutex_unlock(&vlan_ioctl_mutex);
1007}
1008EXPORT_SYMBOL(vlan_ioctl_set);
1009
1010static DEFINE_MUTEX(dlci_ioctl_mutex);
1011static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1012
1013void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1014{
1015        mutex_lock(&dlci_ioctl_mutex);
1016        dlci_ioctl_hook = hook;
1017        mutex_unlock(&dlci_ioctl_mutex);
1018}
1019EXPORT_SYMBOL(dlci_ioctl_set);
1020
1021static long sock_do_ioctl(struct net *net, struct socket *sock,
1022                                 unsigned int cmd, unsigned long arg)
1023{
1024        int err;
1025        void __user *argp = (void __user *)arg;
1026
1027        err = sock->ops->ioctl(sock, cmd, arg);
1028
1029        /*
1030         * If this ioctl is unknown try to hand it down
1031         * to the NIC driver.
1032         */
1033        if (err == -ENOIOCTLCMD)
1034                err = dev_ioctl(net, cmd, argp);
1035
1036        return err;
1037}
1038
1039/*
1040 *      With an ioctl, arg may well be a user mode pointer, but we don't know
1041 *      what to do with it - that's up to the protocol still.
1042 */
1043
1044static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1045{
1046        struct socket *sock;
1047        struct sock *sk;
1048        void __user *argp = (void __user *)arg;
1049        int pid, err;
1050        struct net *net;
1051
1052        sock = file->private_data;
1053        sk = sock->sk;
1054        net = sock_net(sk);
1055        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1056                err = dev_ioctl(net, cmd, argp);
1057        } else
1058#ifdef CONFIG_WEXT_CORE
1059        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1060                err = dev_ioctl(net, cmd, argp);
1061        } else
1062#endif
1063                switch (cmd) {
1064                case FIOSETOWN:
1065                case SIOCSPGRP:
1066                        err = -EFAULT;
1067                        if (get_user(pid, (int __user *)argp))
1068                                break;
1069                        err = f_setown(sock->file, pid, 1);
1070                        break;
1071                case FIOGETOWN:
1072                case SIOCGPGRP:
1073                        err = put_user(f_getown(sock->file),
1074                                       (int __user *)argp);
1075                        break;
1076                case SIOCGIFBR:
1077                case SIOCSIFBR:
1078                case SIOCBRADDBR:
1079                case SIOCBRDELBR:
1080                        err = -ENOPKG;
1081                        if (!br_ioctl_hook)
1082                                request_module("bridge");
1083
1084                        mutex_lock(&br_ioctl_mutex);
1085                        if (br_ioctl_hook)
1086                                err = br_ioctl_hook(net, cmd, argp);
1087                        mutex_unlock(&br_ioctl_mutex);
1088                        break;
1089                case SIOCGIFVLAN:
1090                case SIOCSIFVLAN:
1091                        err = -ENOPKG;
1092                        if (!vlan_ioctl_hook)
1093                                request_module("8021q");
1094
1095                        mutex_lock(&vlan_ioctl_mutex);
1096                        if (vlan_ioctl_hook)
1097                                err = vlan_ioctl_hook(net, argp);
1098                        mutex_unlock(&vlan_ioctl_mutex);
1099                        break;
1100                case SIOCADDDLCI:
1101                case SIOCDELDLCI:
1102                        err = -ENOPKG;
1103                        if (!dlci_ioctl_hook)
1104                                request_module("dlci");
1105
1106                        mutex_lock(&dlci_ioctl_mutex);
1107                        if (dlci_ioctl_hook)
1108                                err = dlci_ioctl_hook(cmd, argp);
1109                        mutex_unlock(&dlci_ioctl_mutex);
1110                        break;
1111                default:
1112                        err = sock_do_ioctl(net, sock, cmd, arg);
1113                        break;
1114                }
1115        return err;
1116}
1117
1118int sock_create_lite(int family, int type, int protocol, struct socket **res)
1119{
1120        int err;
1121        struct socket *sock = NULL;
1122
1123        err = security_socket_create(family, type, protocol, 1);
1124        if (err)
1125                goto out;
1126
1127        sock = sock_alloc();
1128        if (!sock) {
1129                err = -ENOMEM;
1130                goto out;
1131        }
1132
1133        sock->type = type;
1134        err = security_socket_post_create(sock, family, type, protocol, 1);
1135        if (err)
1136                goto out_release;
1137
1138out:
1139        *res = sock;
1140        return err;
1141out_release:
1142        sock_release(sock);
1143        sock = NULL;
1144        goto out;
1145}
1146EXPORT_SYMBOL(sock_create_lite);
1147
1148/* No kernel lock held - perfect */
1149static unsigned int sock_poll(struct file *file, poll_table *wait)
1150{
1151        unsigned int busy_flag = 0;
1152        struct socket *sock;
1153
1154        /*
1155         *      We can't return errors to poll, so it's either yes or no.
1156         */
1157        sock = file->private_data;
1158
1159        if (sk_can_busy_loop(sock->sk)) {
1160                /* this socket can poll_ll so tell the system call */
1161                busy_flag = POLL_BUSY_LOOP;
1162
1163                /* once, only if requested by syscall */
1164                if (wait && (wait->_key & POLL_BUSY_LOOP))
1165                        sk_busy_loop(sock->sk, 1);
1166        }
1167
1168        return busy_flag | sock->ops->poll(file, sock, wait);
1169}
1170
1171static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1172{
1173        struct socket *sock = file->private_data;
1174
1175        return sock->ops->mmap(file, sock, vma);
1176}
1177
1178static int sock_close(struct inode *inode, struct file *filp)
1179{
1180        sock_release(SOCKET_I(inode));
1181        return 0;
1182}
1183
1184/*
1185 *      Update the socket async list
1186 *
1187 *      Fasync_list locking strategy.
1188 *
1189 *      1. fasync_list is modified only under process context socket lock
1190 *         i.e. under semaphore.
1191 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1192 *         or under socket lock
1193 */
1194
1195static int sock_fasync(int fd, struct file *filp, int on)
1196{
1197        struct socket *sock = filp->private_data;
1198        struct sock *sk = sock->sk;
1199        struct socket_wq *wq;
1200
1201        if (sk == NULL)
1202                return -EINVAL;
1203
1204        lock_sock(sk);
1205        wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1206        fasync_helper(fd, filp, on, &wq->fasync_list);
1207
1208        if (!wq->fasync_list)
1209                sock_reset_flag(sk, SOCK_FASYNC);
1210        else
1211                sock_set_flag(sk, SOCK_FASYNC);
1212
1213        release_sock(sk);
1214        return 0;
1215}
1216
1217/* This function may be called only under socket lock or callback_lock or rcu_lock */
1218
1219int sock_wake_async(struct socket *sock, int how, int band)
1220{
1221        struct socket_wq *wq;
1222
1223        if (!sock)
1224                return -1;
1225        rcu_read_lock();
1226        wq = rcu_dereference(sock->wq);
1227        if (!wq || !wq->fasync_list) {
1228                rcu_read_unlock();
1229                return -1;
1230        }
1231        switch (how) {
1232        case SOCK_WAKE_WAITD:
1233                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1234                        break;
1235                goto call_kill;
1236        case SOCK_WAKE_SPACE:
1237                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1238                        break;
1239                /* fall through */
1240        case SOCK_WAKE_IO:
1241call_kill:
1242                kill_fasync(&wq->fasync_list, SIGIO, band);
1243                break;
1244        case SOCK_WAKE_URG:
1245                kill_fasync(&wq->fasync_list, SIGURG, band);
1246        }
1247        rcu_read_unlock();
1248        return 0;
1249}
1250EXPORT_SYMBOL(sock_wake_async);
1251
1252int __sock_create(struct net *net, int family, int type, int protocol,
1253                         struct socket **res, int kern)
1254{
1255        int err;
1256        struct socket *sock;
1257        const struct net_proto_family *pf;
1258
1259        /*
1260         *      Check protocol is in range
1261         */
1262        if (family < 0 || family >= NPROTO)
1263                return -EAFNOSUPPORT;
1264        if (type < 0 || type >= SOCK_MAX)
1265                return -EINVAL;
1266
1267        /* Compatibility.
1268
1269           This uglymoron is moved from INET layer to here to avoid
1270           deadlock in module load.
1271         */
1272        if (family == PF_INET && type == SOCK_PACKET) {
1273                static int warned;
1274                if (!warned) {
1275                        warned = 1;
1276                        printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1277                               current->comm);
1278                }
1279                family = PF_PACKET;
1280        }
1281
1282        err = security_socket_create(family, type, protocol, kern);
1283        if (err)
1284                return err;
1285
1286        /*
1287         *      Allocate the socket and allow the family to set things up. if
1288         *      the protocol is 0, the family is instructed to select an appropriate
1289         *      default.
1290         */
1291        sock = sock_alloc();
1292        if (!sock) {
1293                net_warn_ratelimited("socket: no more sockets\n");
1294                return -ENFILE; /* Not exactly a match, but its the
1295                                   closest posix thing */
1296        }
1297
1298        sock->type = type;
1299
1300#ifdef CONFIG_MODULES
1301        /* Attempt to load a protocol module if the find failed.
1302         *
1303         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1304         * requested real, full-featured networking support upon configuration.
1305         * Otherwise module support will break!
1306         */
1307        if (rcu_access_pointer(net_families[family]) == NULL)
1308                request_module("net-pf-%d", family);
1309#endif
1310
1311        rcu_read_lock();
1312        pf = rcu_dereference(net_families[family]);
1313        err = -EAFNOSUPPORT;
1314        if (!pf)
1315                goto out_release;
1316
1317        /*
1318         * We will call the ->create function, that possibly is in a loadable
1319         * module, so we have to bump that loadable module refcnt first.
1320         */
1321        if (!try_module_get(pf->owner))
1322                goto out_release;
1323
1324        /* Now protected by module ref count */
1325        rcu_read_unlock();
1326
1327        err = pf->create(net, sock, protocol, kern);
1328        if (err < 0)
1329                goto out_module_put;
1330
1331        /*
1332         * Now to bump the refcnt of the [loadable] module that owns this
1333         * socket at sock_release time we decrement its refcnt.
1334         */
1335        if (!try_module_get(sock->ops->owner))
1336                goto out_module_busy;
1337
1338        /*
1339         * Now that we're done with the ->create function, the [loadable]
1340         * module can have its refcnt decremented
1341         */
1342        module_put(pf->owner);
1343        err = security_socket_post_create(sock, family, type, protocol, kern);
1344        if (err)
1345                goto out_sock_release;
1346        *res = sock;
1347
1348        return 0;
1349
1350out_module_busy:
1351        err = -EAFNOSUPPORT;
1352out_module_put:
1353        sock->ops = NULL;
1354        module_put(pf->owner);
1355out_sock_release:
1356        sock_release(sock);
1357        return err;
1358
1359out_release:
1360        rcu_read_unlock();
1361        goto out_sock_release;
1362}
1363EXPORT_SYMBOL(__sock_create);
1364
1365int sock_create(int family, int type, int protocol, struct socket **res)
1366{
1367        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1368}
1369EXPORT_SYMBOL(sock_create);
1370
1371int sock_create_kern(int family, int type, int protocol, struct socket **res)
1372{
1373        return __sock_create(&init_net, family, type, protocol, res, 1);
1374}
1375EXPORT_SYMBOL(sock_create_kern);
1376
1377SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1378{
1379        int retval;
1380        struct socket *sock;
1381        int flags;
1382
1383        /* Check the SOCK_* constants for consistency.  */
1384        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1385        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1386        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1387        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1388
1389        flags = type & ~SOCK_TYPE_MASK;
1390        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1391                return -EINVAL;
1392        type &= SOCK_TYPE_MASK;
1393
1394        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1395                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1396
1397        retval = sock_create(family, type, protocol, &sock);
1398        if (retval < 0)
1399                goto out;
1400
1401        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1402        if (retval < 0)
1403                goto out_release;
1404
1405out:
1406        /* It may be already another descriptor 8) Not kernel problem. */
1407        return retval;
1408
1409out_release:
1410        sock_release(sock);
1411        return retval;
1412}
1413
1414/*
1415 *      Create a pair of connected sockets.
1416 */
1417
1418SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1419                int __user *, usockvec)
1420{
1421        struct socket *sock1, *sock2;
1422        int fd1, fd2, err;
1423        struct file *newfile1, *newfile2;
1424        int flags;
1425
1426        flags = type & ~SOCK_TYPE_MASK;
1427        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1428                return -EINVAL;
1429        type &= SOCK_TYPE_MASK;
1430
1431        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1432                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1433
1434        /*
1435         * Obtain the first socket and check if the underlying protocol
1436         * supports the socketpair call.
1437         */
1438
1439        err = sock_create(family, type, protocol, &sock1);
1440        if (err < 0)
1441                goto out;
1442
1443        err = sock_create(family, type, protocol, &sock2);
1444        if (err < 0)
1445                goto out_release_1;
1446
1447        err = sock1->ops->socketpair(sock1, sock2);
1448        if (err < 0)
1449                goto out_release_both;
1450
1451        fd1 = get_unused_fd_flags(flags);
1452        if (unlikely(fd1 < 0)) {
1453                err = fd1;
1454                goto out_release_both;
1455        }
1456        fd2 = get_unused_fd_flags(flags);
1457        if (unlikely(fd2 < 0)) {
1458                err = fd2;
1459                put_unused_fd(fd1);
1460                goto out_release_both;
1461        }
1462
1463        newfile1 = sock_alloc_file(sock1, flags, NULL);
1464        if (unlikely(IS_ERR(newfile1))) {
1465                err = PTR_ERR(newfile1);
1466                put_unused_fd(fd1);
1467                put_unused_fd(fd2);
1468                goto out_release_both;
1469        }
1470
1471        newfile2 = sock_alloc_file(sock2, flags, NULL);
1472        if (IS_ERR(newfile2)) {
1473                err = PTR_ERR(newfile2);
1474                fput(newfile1);
1475                put_unused_fd(fd1);
1476                put_unused_fd(fd2);
1477                sock_release(sock2);
1478                goto out;
1479        }
1480
1481        audit_fd_pair(fd1, fd2);
1482        fd_install(fd1, newfile1);
1483        fd_install(fd2, newfile2);
1484        /* fd1 and fd2 may be already another descriptors.
1485         * Not kernel problem.
1486         */
1487
1488        err = put_user(fd1, &usockvec[0]);
1489        if (!err)
1490                err = put_user(fd2, &usockvec[1]);
1491        if (!err)
1492                return 0;
1493
1494        sys_close(fd2);
1495        sys_close(fd1);
1496        return err;
1497
1498out_release_both:
1499        sock_release(sock2);
1500out_release_1:
1501        sock_release(sock1);
1502out:
1503        return err;
1504}
1505
1506/*
1507 *      Bind a name to a socket. Nothing much to do here since it's
1508 *      the protocol's responsibility to handle the local address.
1509 *
1510 *      We move the socket address to kernel space before we call
1511 *      the protocol layer (having also checked the address is ok).
1512 */
1513
1514SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1515{
1516        struct socket *sock;
1517        struct sockaddr_storage address;
1518        int err, fput_needed;
1519
1520        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1521        if (sock) {
1522                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1523                if (err >= 0) {
1524                        err = security_socket_bind(sock,
1525                                                   (struct sockaddr *)&address,
1526                                                   addrlen);
1527                        if (!err)
1528                                err = sock->ops->bind(sock,
1529                                                      (struct sockaddr *)
1530                                                      &address, addrlen);
1531                }
1532                fput_light(sock->file, fput_needed);
1533        }
1534        return err;
1535}
1536
1537/*
1538 *      Perform a listen. Basically, we allow the protocol to do anything
1539 *      necessary for a listen, and if that works, we mark the socket as
1540 *      ready for listening.
1541 */
1542
1543SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1544{
1545        struct socket *sock;
1546        int err, fput_needed;
1547        int somaxconn;
1548
1549        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1550        if (sock) {
1551                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1552                if ((unsigned int)backlog > somaxconn)
1553                        backlog = somaxconn;
1554
1555                err = security_socket_listen(sock, backlog);
1556                if (!err)
1557                        err = sock->ops->listen(sock, backlog);
1558
1559                fput_light(sock->file, fput_needed);
1560        }
1561        return err;
1562}
1563
1564/*
1565 *      For accept, we attempt to create a new socket, set up the link
1566 *      with the client, wake up the client, then return the new
1567 *      connected fd. We collect the address of the connector in kernel
1568 *      space and move it to user at the very end. This is unclean because
1569 *      we open the socket then return an error.
1570 *
1571 *      1003.1g adds the ability to recvmsg() to query connection pending
1572 *      status to recvmsg. We need to add that support in a way thats
1573 *      clean when we restucture accept also.
1574 */
1575
1576SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1577                int __user *, upeer_addrlen, int, flags)
1578{
1579        struct socket *sock, *newsock;
1580        struct file *newfile;
1581        int err, len, newfd, fput_needed;
1582        struct sockaddr_storage address;
1583
1584        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1585                return -EINVAL;
1586
1587        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1588                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1589
1590        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1591        if (!sock)
1592                goto out;
1593
1594        err = -ENFILE;
1595        newsock = sock_alloc();
1596        if (!newsock)
1597                goto out_put;
1598
1599        newsock->type = sock->type;
1600        newsock->ops = sock->ops;
1601
1602        /*
1603         * We don't need try_module_get here, as the listening socket (sock)
1604         * has the protocol module (sock->ops->owner) held.
1605         */
1606        __module_get(newsock->ops->owner);
1607
1608        newfd = get_unused_fd_flags(flags);
1609        if (unlikely(newfd < 0)) {
1610                err = newfd;
1611                sock_release(newsock);
1612                goto out_put;
1613        }
1614        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1615        if (unlikely(IS_ERR(newfile))) {
1616                err = PTR_ERR(newfile);
1617                put_unused_fd(newfd);
1618                sock_release(newsock);
1619                goto out_put;
1620        }
1621
1622        err = security_socket_accept(sock, newsock);
1623        if (err)
1624                goto out_fd;
1625
1626        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1627        if (err < 0)
1628                goto out_fd;
1629
1630        if (upeer_sockaddr) {
1631                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1632                                          &len, 2) < 0) {
1633                        err = -ECONNABORTED;
1634                        goto out_fd;
1635                }
1636                err = move_addr_to_user(&address,
1637                                        len, upeer_sockaddr, upeer_addrlen);
1638                if (err < 0)
1639                        goto out_fd;
1640        }
1641
1642        /* File flags are not inherited via accept() unlike another OSes. */
1643
1644        fd_install(newfd, newfile);
1645        err = newfd;
1646
1647out_put:
1648        fput_light(sock->file, fput_needed);
1649out:
1650        return err;
1651out_fd:
1652        fput(newfile);
1653        put_unused_fd(newfd);
1654        goto out_put;
1655}
1656
1657SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1658                int __user *, upeer_addrlen)
1659{
1660        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1661}
1662
1663/*
1664 *      Attempt to connect to a socket with the server address.  The address
1665 *      is in user space so we verify it is OK and move it to kernel space.
1666 *
1667 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1668 *      break bindings
1669 *
1670 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1671 *      other SEQPACKET protocols that take time to connect() as it doesn't
1672 *      include the -EINPROGRESS status for such sockets.
1673 */
1674
1675SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1676                int, addrlen)
1677{
1678        struct socket *sock;
1679        struct sockaddr_storage address;
1680        int err, fput_needed;
1681
1682        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683        if (!sock)
1684                goto out;
1685        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1686        if (err < 0)
1687                goto out_put;
1688
1689        err =
1690            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1691        if (err)
1692                goto out_put;
1693
1694        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1695                                 sock->file->f_flags);
1696out_put:
1697        fput_light(sock->file, fput_needed);
1698out:
1699        return err;
1700}
1701
1702/*
1703 *      Get the local address ('name') of a socket object. Move the obtained
1704 *      name to user space.
1705 */
1706
1707SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1708                int __user *, usockaddr_len)
1709{
1710        struct socket *sock;
1711        struct sockaddr_storage address;
1712        int len, err, fput_needed;
1713
1714        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1715        if (!sock)
1716                goto out;
1717
1718        err = security_socket_getsockname(sock);
1719        if (err)
1720                goto out_put;
1721
1722        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1723        if (err)
1724                goto out_put;
1725        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1726
1727out_put:
1728        fput_light(sock->file, fput_needed);
1729out:
1730        return err;
1731}
1732
1733/*
1734 *      Get the remote address ('name') of a socket object. Move the obtained
1735 *      name to user space.
1736 */
1737
1738SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1739                int __user *, usockaddr_len)
1740{
1741        struct socket *sock;
1742        struct sockaddr_storage address;
1743        int len, err, fput_needed;
1744
1745        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746        if (sock != NULL) {
1747                err = security_socket_getpeername(sock);
1748                if (err) {
1749                        fput_light(sock->file, fput_needed);
1750                        return err;
1751                }
1752
1753                err =
1754                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1755                                       1);
1756                if (!err)
1757                        err = move_addr_to_user(&address, len, usockaddr,
1758                                                usockaddr_len);
1759                fput_light(sock->file, fput_needed);
1760        }
1761        return err;
1762}
1763
1764/*
1765 *      Send a datagram to a given address. We move the address into kernel
1766 *      space and check the user space data area is readable before invoking
1767 *      the protocol.
1768 */
1769
1770SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1771                unsigned int, flags, struct sockaddr __user *, addr,
1772                int, addr_len)
1773{
1774        struct socket *sock;
1775        struct sockaddr_storage address;
1776        int err;
1777        struct msghdr msg;
1778        struct iovec iov;
1779        int fput_needed;
1780
1781        if (len > INT_MAX)
1782                len = INT_MAX;
1783        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784        if (!sock)
1785                goto out;
1786
1787        iov.iov_base = buff;
1788        iov.iov_len = len;
1789        msg.msg_name = NULL;
1790        msg.msg_iov = &iov;
1791        msg.msg_iovlen = 1;
1792        msg.msg_control = NULL;
1793        msg.msg_controllen = 0;
1794        msg.msg_namelen = 0;
1795        if (addr) {
1796                err = move_addr_to_kernel(addr, addr_len, &address);
1797                if (err < 0)
1798                        goto out_put;
1799                msg.msg_name = (struct sockaddr *)&address;
1800                msg.msg_namelen = addr_len;
1801        }
1802        if (sock->file->f_flags & O_NONBLOCK)
1803                flags |= MSG_DONTWAIT;
1804        msg.msg_flags = flags;
1805        err = sock_sendmsg(sock, &msg, len);
1806
1807out_put:
1808        fput_light(sock->file, fput_needed);
1809out:
1810        return err;
1811}
1812
1813/*
1814 *      Send a datagram down a socket.
1815 */
1816
1817SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1818                unsigned int, flags)
1819{
1820        return sys_sendto(fd, buff, len, flags, NULL, 0);
1821}
1822
1823/*
1824 *      Receive a frame from the socket and optionally record the address of the
1825 *      sender. We verify the buffers are writable and if needed move the
1826 *      sender address from kernel to user space.
1827 */
1828
1829SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1830                unsigned int, flags, struct sockaddr __user *, addr,
1831                int __user *, addr_len)
1832{
1833        struct socket *sock;
1834        struct iovec iov;
1835        struct msghdr msg;
1836        struct sockaddr_storage address;
1837        int err, err2;
1838        int fput_needed;
1839
1840        if (size > INT_MAX)
1841                size = INT_MAX;
1842        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1843        if (!sock)
1844                goto out;
1845
1846        msg.msg_control = NULL;
1847        msg.msg_controllen = 0;
1848        msg.msg_iovlen = 1;
1849        msg.msg_iov = &iov;
1850        iov.iov_len = size;
1851        iov.iov_base = ubuf;
1852        msg.msg_name = (struct sockaddr *)&address;
1853        msg.msg_namelen = sizeof(address);
1854        if (sock->file->f_flags & O_NONBLOCK)
1855                flags |= MSG_DONTWAIT;
1856        err = sock_recvmsg(sock, &msg, size, flags);
1857
1858        if (err >= 0 && addr != NULL) {
1859                err2 = move_addr_to_user(&address,
1860                                         msg.msg_namelen, addr, addr_len);
1861                if (err2 < 0)
1862                        err = err2;
1863        }
1864
1865        fput_light(sock->file, fput_needed);
1866out:
1867        return err;
1868}
1869
1870/*
1871 *      Receive a datagram from a socket.
1872 */
1873
1874asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1875                         unsigned int flags)
1876{
1877        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1878}
1879
1880/*
1881 *      Set a socket option. Because we don't know the option lengths we have
1882 *      to pass the user mode parameter for the protocols to sort out.
1883 */
1884
1885SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1886                char __user *, optval, int, optlen)
1887{
1888        int err, fput_needed;
1889        struct socket *sock;
1890
1891        if (optlen < 0)
1892                return -EINVAL;
1893
1894        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1895        if (sock != NULL) {
1896                err = security_socket_setsockopt(sock, level, optname);
1897                if (err)
1898                        goto out_put;
1899
1900                if (level == SOL_SOCKET)
1901                        err =
1902                            sock_setsockopt(sock, level, optname, optval,
1903                                            optlen);
1904                else
1905                        err =
1906                            sock->ops->setsockopt(sock, level, optname, optval,
1907                                                  optlen);
1908out_put:
1909                fput_light(sock->file, fput_needed);
1910        }
1911        return err;
1912}
1913
1914/*
1915 *      Get a socket option. Because we don't know the option lengths we have
1916 *      to pass a user mode parameter for the protocols to sort out.
1917 */
1918
1919SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1920                char __user *, optval, int __user *, optlen)
1921{
1922        int err, fput_needed;
1923        struct socket *sock;
1924
1925        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1926        if (sock != NULL) {
1927                err = security_socket_getsockopt(sock, level, optname);
1928                if (err)
1929                        goto out_put;
1930
1931                if (level == SOL_SOCKET)
1932                        err =
1933                            sock_getsockopt(sock, level, optname, optval,
1934                                            optlen);
1935                else
1936                        err =
1937                            sock->ops->getsockopt(sock, level, optname, optval,
1938                                                  optlen);
1939out_put:
1940                fput_light(sock->file, fput_needed);
1941        }
1942        return err;
1943}
1944
1945/*
1946 *      Shutdown a socket.
1947 */
1948
1949SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1950{
1951        int err, fput_needed;
1952        struct socket *sock;
1953
1954        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1955        if (sock != NULL) {
1956                err = security_socket_shutdown(sock, how);
1957                if (!err)
1958                        err = sock->ops->shutdown(sock, how);
1959                fput_light(sock->file, fput_needed);
1960        }
1961        return err;
1962}
1963
1964/* A couple of helpful macros for getting the address of the 32/64 bit
1965 * fields which are the same type (int / unsigned) on our platforms.
1966 */
1967#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1968#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1969#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1970
1971struct used_address {
1972        struct sockaddr_storage name;
1973        unsigned int name_len;
1974};
1975
1976static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1977                         struct msghdr *msg_sys, unsigned int flags,
1978                         struct used_address *used_address)
1979{
1980        struct compat_msghdr __user *msg_compat =
1981            (struct compat_msghdr __user *)msg;
1982        struct sockaddr_storage address;
1983        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1984        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1985            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1986        /* 20 is size of ipv6_pktinfo */
1987        unsigned char *ctl_buf = ctl;
1988        int err, ctl_len, total_len;
1989
1990        err = -EFAULT;
1991        if (MSG_CMSG_COMPAT & flags) {
1992                if (get_compat_msghdr(msg_sys, msg_compat))
1993                        return -EFAULT;
1994        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1995                return -EFAULT;
1996
1997        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1998                err = -EMSGSIZE;
1999                if (msg_sys->msg_iovlen > UIO_MAXIOV)
2000                        goto out;
2001                err = -ENOMEM;
2002                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2003                              GFP_KERNEL);
2004                if (!iov)
2005                        goto out;
2006        }
2007
2008        /* This will also move the address data into kernel space */
2009        if (MSG_CMSG_COMPAT & flags) {
2010                err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2011        } else
2012                err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2013        if (err < 0)
2014                goto out_freeiov;
2015        total_len = err;
2016
2017        err = -ENOBUFS;
2018
2019        if (msg_sys->msg_controllen > INT_MAX)
2020                goto out_freeiov;
2021        ctl_len = msg_sys->msg_controllen;
2022        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2023                err =
2024                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2025                                                     sizeof(ctl));
2026                if (err)
2027                        goto out_freeiov;
2028                ctl_buf = msg_sys->msg_control;
2029                ctl_len = msg_sys->msg_controllen;
2030        } else if (ctl_len) {
2031                if (ctl_len > sizeof(ctl)) {
2032                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2033                        if (ctl_buf == NULL)
2034                                goto out_freeiov;
2035                }
2036                err = -EFAULT;
2037                /*
2038                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2039                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2040                 * checking falls down on this.
2041                 */
2042                if (copy_from_user(ctl_buf,
2043                                   (void __user __force *)msg_sys->msg_control,
2044                                   ctl_len))
2045                        goto out_freectl;
2046                msg_sys->msg_control = ctl_buf;
2047        }
2048        msg_sys->msg_flags = flags;
2049
2050        if (sock->file->f_flags & O_NONBLOCK)
2051                msg_sys->msg_flags |= MSG_DONTWAIT;
2052        /*
2053         * If this is sendmmsg() and current destination address is same as
2054         * previously succeeded address, omit asking LSM's decision.
2055         * used_address->name_len is initialized to UINT_MAX so that the first
2056         * destination address never matches.
2057         */
2058        if (used_address && msg_sys->msg_name &&
2059            used_address->name_len == msg_sys->msg_namelen &&
2060            !memcmp(&used_address->name, msg_sys->msg_name,
2061                    used_address->name_len)) {
2062                err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2063                goto out_freectl;
2064        }
2065        err = sock_sendmsg(sock, msg_sys, total_len);
2066        /*
2067         * If this is sendmmsg() and sending to current destination address was
2068         * successful, remember it.
2069         */
2070        if (used_address && err >= 0) {
2071                used_address->name_len = msg_sys->msg_namelen;
2072                if (msg_sys->msg_name)
2073                        memcpy(&used_address->name, msg_sys->msg_name,
2074                               used_address->name_len);
2075        }
2076
2077out_freectl:
2078        if (ctl_buf != ctl)
2079                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2080out_freeiov:
2081        if (iov != iovstack)
2082                kfree(iov);
2083out:
2084        return err;
2085}
2086
2087/*
2088 *      BSD sendmsg interface
2089 */
2090
2091long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2092{
2093        int fput_needed, err;
2094        struct msghdr msg_sys;
2095        struct socket *sock;
2096
2097        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2098        if (!sock)
2099                goto out;
2100
2101        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2102
2103        fput_light(sock->file, fput_needed);
2104out:
2105        return err;
2106}
2107
2108SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2109{
2110        if (flags & MSG_CMSG_COMPAT)
2111                return -EINVAL;
2112        return __sys_sendmsg(fd, msg, flags);
2113}
2114
2115/*
2116 *      Linux sendmmsg interface
2117 */
2118
2119int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2120                   unsigned int flags)
2121{
2122        int fput_needed, err, datagrams;
2123        struct socket *sock;
2124        struct mmsghdr __user *entry;
2125        struct compat_mmsghdr __user *compat_entry;
2126        struct msghdr msg_sys;
2127        struct used_address used_address;
2128
2129        if (vlen > UIO_MAXIOV)
2130                vlen = UIO_MAXIOV;
2131
2132        datagrams = 0;
2133
2134        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2135        if (!sock)
2136                return err;
2137
2138        used_address.name_len = UINT_MAX;
2139        entry = mmsg;
2140        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2141        err = 0;
2142
2143        while (datagrams < vlen) {
2144                if (MSG_CMSG_COMPAT & flags) {
2145                        err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2146                                             &msg_sys, flags, &used_address);
2147                        if (err < 0)
2148                                break;
2149                        err = __put_user(err, &compat_entry->msg_len);
2150                        ++compat_entry;
2151                } else {
2152                        err = ___sys_sendmsg(sock,
2153                                             (struct msghdr __user *)entry,
2154                                             &msg_sys, flags, &used_address);
2155                        if (err < 0)
2156                                break;
2157                        err = put_user(err, &entry->msg_len);
2158                        ++entry;
2159                }
2160
2161                if (err)
2162                        break;
2163                ++datagrams;
2164        }
2165
2166        fput_light(sock->file, fput_needed);
2167
2168        /* We only return an error if no datagrams were able to be sent */
2169        if (datagrams != 0)
2170                return datagrams;
2171
2172        return err;
2173}
2174
2175SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2176                unsigned int, vlen, unsigned int, flags)
2177{
2178        if (flags & MSG_CMSG_COMPAT)
2179                return -EINVAL;
2180        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2181}
2182
2183static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2184                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2185{
2186        struct compat_msghdr __user *msg_compat =
2187            (struct compat_msghdr __user *)msg;
2188        struct iovec iovstack[UIO_FASTIOV];
2189        struct iovec *iov = iovstack;
2190        unsigned long cmsg_ptr;
2191        int err, total_len, len;
2192
2193        /* kernel mode address */
2194        struct sockaddr_storage addr;
2195
2196        /* user mode address pointers */
2197        struct sockaddr __user *uaddr;
2198        int __user *uaddr_len;
2199
2200        if (MSG_CMSG_COMPAT & flags) {
2201                if (get_compat_msghdr(msg_sys, msg_compat))
2202                        return -EFAULT;
2203        } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2204                return -EFAULT;
2205
2206        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2207                err = -EMSGSIZE;
2208                if (msg_sys->msg_iovlen > UIO_MAXIOV)
2209                        goto out;
2210                err = -ENOMEM;
2211                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2212                              GFP_KERNEL);
2213                if (!iov)
2214                        goto out;
2215        }
2216
2217        /*
2218         *      Save the user-mode address (verify_iovec will change the
2219         *      kernel msghdr to use the kernel address space)
2220         */
2221
2222        uaddr = (__force void __user *)msg_sys->msg_name;
2223        uaddr_len = COMPAT_NAMELEN(msg);
2224        if (MSG_CMSG_COMPAT & flags) {
2225                err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2226        } else
2227                err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2228        if (err < 0)
2229                goto out_freeiov;
2230        total_len = err;
2231
2232        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2233        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2234
2235        if (sock->file->f_flags & O_NONBLOCK)
2236                flags |= MSG_DONTWAIT;
2237        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2238                                                          total_len, flags);
2239        if (err < 0)
2240                goto out_freeiov;
2241        len = err;
2242
2243        if (uaddr != NULL) {
2244                err = move_addr_to_user(&addr,
2245                                        msg_sys->msg_namelen, uaddr,
2246                                        uaddr_len);
2247                if (err < 0)
2248                        goto out_freeiov;
2249        }
2250        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2251                         COMPAT_FLAGS(msg));
2252        if (err)
2253                goto out_freeiov;
2254        if (MSG_CMSG_COMPAT & flags)
2255                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2256                                 &msg_compat->msg_controllen);
2257        else
2258                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2259                                 &msg->msg_controllen);
2260        if (err)
2261                goto out_freeiov;
2262        err = len;
2263
2264out_freeiov:
2265        if (iov != iovstack)
2266                kfree(iov);
2267out:
2268        return err;
2269}
2270
2271/*
2272 *      BSD recvmsg interface
2273 */
2274
2275long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2276{
2277        int fput_needed, err;
2278        struct msghdr msg_sys;
2279        struct socket *sock;
2280
2281        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2282        if (!sock)
2283                goto out;
2284
2285        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2286
2287        fput_light(sock->file, fput_needed);
2288out:
2289        return err;
2290}
2291
2292SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2293                unsigned int, flags)
2294{
2295        if (flags & MSG_CMSG_COMPAT)
2296                return -EINVAL;
2297        return __sys_recvmsg(fd, msg, flags);
2298}
2299
2300/*
2301 *     Linux recvmmsg interface
2302 */
2303
2304int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2305                   unsigned int flags, struct timespec *timeout)
2306{
2307        int fput_needed, err, datagrams;
2308        struct socket *sock;
2309        struct mmsghdr __user *entry;
2310        struct compat_mmsghdr __user *compat_entry;
2311        struct msghdr msg_sys;
2312        struct timespec end_time;
2313
2314        if (timeout &&
2315            poll_select_set_timeout(&end_time, timeout->tv_sec,
2316                                    timeout->tv_nsec))
2317                return -EINVAL;
2318
2319        datagrams = 0;
2320
2321        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2322        if (!sock)
2323                return err;
2324
2325        err = sock_error(sock->sk);
2326        if (err)
2327                goto out_put;
2328
2329        entry = mmsg;
2330        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2331
2332        while (datagrams < vlen) {
2333                /*
2334                 * No need to ask LSM for more than the first datagram.
2335                 */
2336                if (MSG_CMSG_COMPAT & flags) {
2337                        err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2338                                             &msg_sys, flags & ~MSG_WAITFORONE,
2339                                             datagrams);
2340                        if (err < 0)
2341                                break;
2342                        err = __put_user(err, &compat_entry->msg_len);
2343                        ++compat_entry;
2344                } else {
2345                        err = ___sys_recvmsg(sock,
2346                                             (struct msghdr __user *)entry,
2347                                             &msg_sys, flags & ~MSG_WAITFORONE,
2348                                             datagrams);
2349                        if (err < 0)
2350                                break;
2351                        err = put_user(err, &entry->msg_len);
2352                        ++entry;
2353                }
2354
2355                if (err)
2356                        break;
2357                ++datagrams;
2358
2359                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2360                if (flags & MSG_WAITFORONE)
2361                        flags |= MSG_DONTWAIT;
2362
2363                if (timeout) {
2364                        ktime_get_ts(timeout);
2365                        *timeout = timespec_sub(end_time, *timeout);
2366                        if (timeout->tv_sec < 0) {
2367                                timeout->tv_sec = timeout->tv_nsec = 0;
2368                                break;
2369                        }
2370
2371                        /* Timeout, return less than vlen datagrams */
2372                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2373                                break;
2374                }
2375
2376                /* Out of band data, return right away */
2377                if (msg_sys.msg_flags & MSG_OOB)
2378                        break;
2379        }
2380
2381out_put:
2382        fput_light(sock->file, fput_needed);
2383
2384        if (err == 0)
2385                return datagrams;
2386
2387        if (datagrams != 0) {
2388                /*
2389                 * We may return less entries than requested (vlen) if the
2390                 * sock is non block and there aren't enough datagrams...
2391                 */
2392                if (err != -EAGAIN) {
2393                        /*
2394                         * ... or  if recvmsg returns an error after we
2395                         * received some datagrams, where we record the
2396                         * error to return on the next call or if the
2397                         * app asks about it using getsockopt(SO_ERROR).
2398                         */
2399                        sock->sk->sk_err = -err;
2400                }
2401
2402                return datagrams;
2403        }
2404
2405        return err;
2406}
2407
2408SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2409                unsigned int, vlen, unsigned int, flags,
2410                struct timespec __user *, timeout)
2411{
2412        int datagrams;
2413        struct timespec timeout_sys;
2414
2415        if (flags & MSG_CMSG_COMPAT)
2416                return -EINVAL;
2417
2418        if (!timeout)
2419                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2420
2421        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2422                return -EFAULT;
2423
2424        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2425
2426        if (datagrams > 0 &&
2427            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2428                datagrams = -EFAULT;
2429
2430        return datagrams;
2431}
2432
2433#ifdef __ARCH_WANT_SYS_SOCKETCALL
2434/* Argument list sizes for sys_socketcall */
2435#define AL(x) ((x) * sizeof(unsigned long))
2436static const unsigned char nargs[21] = {
2437        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2438        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2439        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2440        AL(4), AL(5), AL(4)
2441};
2442
2443#undef AL
2444
2445/*
2446 *      System call vectors.
2447 *
2448 *      Argument checking cleaned up. Saved 20% in size.
2449 *  This function doesn't need to set the kernel lock because
2450 *  it is set by the callees.
2451 */
2452
2453SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2454{
2455        unsigned long a[AUDITSC_ARGS];
2456        unsigned long a0, a1;
2457        int err;
2458        unsigned int len;
2459
2460        if (call < 1 || call > SYS_SENDMMSG)
2461                return -EINVAL;
2462
2463        len = nargs[call];
2464        if (len > sizeof(a))
2465                return -EINVAL;
2466
2467        /* copy_from_user should be SMP safe. */
2468        if (copy_from_user(a, args, len))
2469                return -EFAULT;
2470
2471        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2472        if (err)
2473                return err;
2474
2475        a0 = a[0];
2476        a1 = a[1];
2477
2478        switch (call) {
2479        case SYS_SOCKET:
2480                err = sys_socket(a0, a1, a[2]);
2481                break;
2482        case SYS_BIND:
2483                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2484                break;
2485        case SYS_CONNECT:
2486                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2487                break;
2488        case SYS_LISTEN:
2489                err = sys_listen(a0, a1);
2490                break;
2491        case SYS_ACCEPT:
2492                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2493                                  (int __user *)a[2], 0);
2494                break;
2495        case SYS_GETSOCKNAME:
2496                err =
2497                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2498                                    (int __user *)a[2]);
2499                break;
2500        case SYS_GETPEERNAME:
2501                err =
2502                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2503                                    (int __user *)a[2]);
2504                break;
2505        case SYS_SOCKETPAIR:
2506                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2507                break;
2508        case SYS_SEND:
2509                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2510                break;
2511        case SYS_SENDTO:
2512                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2513                                 (struct sockaddr __user *)a[4], a[5]);
2514                break;
2515        case SYS_RECV:
2516                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2517                break;
2518        case SYS_RECVFROM:
2519                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2520                                   (struct sockaddr __user *)a[4],
2521                                   (int __user *)a[5]);
2522                break;
2523        case SYS_SHUTDOWN:
2524                err = sys_shutdown(a0, a1);
2525                break;
2526        case SYS_SETSOCKOPT:
2527                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2528                break;
2529        case SYS_GETSOCKOPT:
2530                err =
2531                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2532                                   (int __user *)a[4]);
2533                break;
2534        case SYS_SENDMSG:
2535                err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2536                break;
2537        case SYS_SENDMMSG:
2538                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2539                break;
2540        case SYS_RECVMSG:
2541                err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2542                break;
2543        case SYS_RECVMMSG:
2544                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2545                                   (struct timespec __user *)a[4]);
2546                break;
2547        case SYS_ACCEPT4:
2548                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2549                                  (int __user *)a[2], a[3]);
2550                break;
2551        default:
2552                err = -EINVAL;
2553                break;
2554        }
2555        return err;
2556}
2557
2558#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2559
2560/**
2561 *      sock_register - add a socket protocol handler
2562 *      @ops: description of protocol
2563 *
2564 *      This function is called by a protocol handler that wants to
2565 *      advertise its address family, and have it linked into the
2566 *      socket interface. The value ops->family coresponds to the
2567 *      socket system call protocol family.
2568 */
2569int sock_register(const struct net_proto_family *ops)
2570{
2571        int err;
2572
2573        if (ops->family >= NPROTO) {
2574                printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2575                       NPROTO);
2576                return -ENOBUFS;
2577        }
2578
2579        spin_lock(&net_family_lock);
2580        if (rcu_dereference_protected(net_families[ops->family],
2581                                      lockdep_is_held(&net_family_lock)))
2582                err = -EEXIST;
2583        else {
2584                rcu_assign_pointer(net_families[ops->family], ops);
2585                err = 0;
2586        }
2587        spin_unlock(&net_family_lock);
2588
2589        printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2590        return err;
2591}
2592EXPORT_SYMBOL(sock_register);
2593
2594/**
2595 *      sock_unregister - remove a protocol handler
2596 *      @family: protocol family to remove
2597 *
2598 *      This function is called by a protocol handler that wants to
2599 *      remove its address family, and have it unlinked from the
2600 *      new socket creation.
2601 *
2602 *      If protocol handler is a module, then it can use module reference
2603 *      counts to protect against new references. If protocol handler is not
2604 *      a module then it needs to provide its own protection in
2605 *      the ops->create routine.
2606 */
2607void sock_unregister(int family)
2608{
2609        BUG_ON(family < 0 || family >= NPROTO);
2610
2611        spin_lock(&net_family_lock);
2612        RCU_INIT_POINTER(net_families[family], NULL);
2613        spin_unlock(&net_family_lock);
2614
2615        synchronize_rcu();
2616
2617        printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2618}
2619EXPORT_SYMBOL(sock_unregister);
2620
2621static int __init sock_init(void)
2622{
2623        int err;
2624        /*
2625         *      Initialize the network sysctl infrastructure.
2626         */
2627        err = net_sysctl_init();
2628        if (err)
2629                goto out;
2630
2631        /*
2632         *      Initialize skbuff SLAB cache
2633         */
2634        skb_init();
2635
2636        /*
2637         *      Initialize the protocols module.
2638         */
2639
2640        init_inodecache();
2641
2642        err = register_filesystem(&sock_fs_type);
2643        if (err)
2644                goto out_fs;
2645        sock_mnt = kern_mount(&sock_fs_type);
2646        if (IS_ERR(sock_mnt)) {
2647                err = PTR_ERR(sock_mnt);
2648                goto out_mount;
2649        }
2650
2651        /* The real protocol initialization is performed in later initcalls.
2652         */
2653
2654#ifdef CONFIG_NETFILTER
2655        err = netfilter_init();
2656        if (err)
2657                goto out;
2658#endif
2659
2660#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2661        skb_timestamping_init();
2662#endif
2663
2664out:
2665        return err;
2666
2667out_mount:
2668        unregister_filesystem(&sock_fs_type);
2669out_fs:
2670        goto out;
2671}
2672
2673core_initcall(sock_init);       /* early initcall */
2674
2675#ifdef CONFIG_PROC_FS
2676void socket_seq_show(struct seq_file *seq)
2677{
2678        int cpu;
2679        int counter = 0;
2680
2681        for_each_possible_cpu(cpu)
2682            counter += per_cpu(sockets_in_use, cpu);
2683
2684        /* It can be negative, by the way. 8) */
2685        if (counter < 0)
2686                counter = 0;
2687
2688        seq_printf(seq, "sockets: used %d\n", counter);
2689}
2690#endif                          /* CONFIG_PROC_FS */
2691
2692#ifdef CONFIG_COMPAT
2693static int do_siocgstamp(struct net *net, struct socket *sock,
2694                         unsigned int cmd, void __user *up)
2695{
2696        mm_segment_t old_fs = get_fs();
2697        struct timeval ktv;
2698        int err;
2699
2700        set_fs(KERNEL_DS);
2701        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2702        set_fs(old_fs);
2703        if (!err)
2704                err = compat_put_timeval(&ktv, up);
2705
2706        return err;
2707}
2708
2709static int do_siocgstampns(struct net *net, struct socket *sock,
2710                           unsigned int cmd, void __user *up)
2711{
2712        mm_segment_t old_fs = get_fs();
2713        struct timespec kts;
2714        int err;
2715
2716        set_fs(KERNEL_DS);
2717        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2718        set_fs(old_fs);
2719        if (!err)
2720                err = compat_put_timespec(&kts, up);
2721
2722        return err;
2723}
2724
2725static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2726{
2727        struct ifreq __user *uifr;
2728        int err;
2729
2730        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2731        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2732                return -EFAULT;
2733
2734        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2735        if (err)
2736                return err;
2737
2738        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2739                return -EFAULT;
2740
2741        return 0;
2742}
2743
2744static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2745{
2746        struct compat_ifconf ifc32;
2747        struct ifconf ifc;
2748        struct ifconf __user *uifc;
2749        struct compat_ifreq __user *ifr32;
2750        struct ifreq __user *ifr;
2751        unsigned int i, j;
2752        int err;
2753
2754        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2755                return -EFAULT;
2756
2757        memset(&ifc, 0, sizeof(ifc));
2758        if (ifc32.ifcbuf == 0) {
2759                ifc32.ifc_len = 0;
2760                ifc.ifc_len = 0;
2761                ifc.ifc_req = NULL;
2762                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2763        } else {
2764                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2765                        sizeof(struct ifreq);
2766                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2767                ifc.ifc_len = len;
2768                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2769                ifr32 = compat_ptr(ifc32.ifcbuf);
2770                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2771                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2772                                return -EFAULT;
2773                        ifr++;
2774                        ifr32++;
2775                }
2776        }
2777        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2778                return -EFAULT;
2779
2780        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2781        if (err)
2782                return err;
2783
2784        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2785                return -EFAULT;
2786
2787        ifr = ifc.ifc_req;
2788        ifr32 = compat_ptr(ifc32.ifcbuf);
2789        for (i = 0, j = 0;
2790             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2791             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2792                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2793                        return -EFAULT;
2794                ifr32++;
2795                ifr++;
2796        }
2797
2798        if (ifc32.ifcbuf == 0) {
2799                /* Translate from 64-bit structure multiple to
2800                 * a 32-bit one.
2801                 */
2802                i = ifc.ifc_len;
2803                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2804                ifc32.ifc_len = i;
2805        } else {
2806                ifc32.ifc_len = i;
2807        }
2808        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2809                return -EFAULT;
2810
2811        return 0;
2812}
2813
2814static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2815{
2816        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2817        bool convert_in = false, convert_out = false;
2818        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2819        struct ethtool_rxnfc __user *rxnfc;
2820        struct ifreq __user *ifr;
2821        u32 rule_cnt = 0, actual_rule_cnt;
2822        u32 ethcmd;
2823        u32 data;
2824        int ret;
2825
2826        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2827                return -EFAULT;
2828
2829        compat_rxnfc = compat_ptr(data);
2830
2831        if (get_user(ethcmd, &compat_rxnfc->cmd))
2832                return -EFAULT;
2833
2834        /* Most ethtool structures are defined without padding.
2835         * Unfortunately struct ethtool_rxnfc is an exception.
2836         */
2837        switch (ethcmd) {
2838        default:
2839                break;
2840        case ETHTOOL_GRXCLSRLALL:
2841                /* Buffer size is variable */
2842                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2843                        return -EFAULT;
2844                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2845                        return -ENOMEM;
2846                buf_size += rule_cnt * sizeof(u32);
2847                /* fall through */
2848        case ETHTOOL_GRXRINGS:
2849        case ETHTOOL_GRXCLSRLCNT:
2850        case ETHTOOL_GRXCLSRULE:
2851        case ETHTOOL_SRXCLSRLINS:
2852                convert_out = true;
2853                /* fall through */
2854        case ETHTOOL_SRXCLSRLDEL:
2855                buf_size += sizeof(struct ethtool_rxnfc);
2856                convert_in = true;
2857                break;
2858        }
2859
2860        ifr = compat_alloc_user_space(buf_size);
2861        rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2862
2863        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2864                return -EFAULT;
2865
2866        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2867                     &ifr->ifr_ifru.ifru_data))
2868                return -EFAULT;
2869
2870        if (convert_in) {
2871                /* We expect there to be holes between fs.m_ext and
2872                 * fs.ring_cookie and at the end of fs, but nowhere else.
2873                 */
2874                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2875                             sizeof(compat_rxnfc->fs.m_ext) !=
2876                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2877                             sizeof(rxnfc->fs.m_ext));
2878                BUILD_BUG_ON(
2879                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2880                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2881                        offsetof(struct ethtool_rxnfc, fs.location) -
2882                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2883
2884                if (copy_in_user(rxnfc, compat_rxnfc,
2885                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2886                                 (void __user *)rxnfc) ||
2887                    copy_in_user(&rxnfc->fs.ring_cookie,
2888                                 &compat_rxnfc->fs.ring_cookie,
2889                                 (void __user *)(&rxnfc->fs.location + 1) -
2890                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2891                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2892                                 sizeof(rxnfc->rule_cnt)))
2893                        return -EFAULT;
2894        }
2895
2896        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2897        if (ret)
2898                return ret;
2899
2900        if (convert_out) {
2901                if (copy_in_user(compat_rxnfc, rxnfc,
2902                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2903                                 (const void __user *)rxnfc) ||
2904                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2905                                 &rxnfc->fs.ring_cookie,
2906                                 (const void __user *)(&rxnfc->fs.location + 1) -
2907                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2908                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2909                                 sizeof(rxnfc->rule_cnt)))
2910                        return -EFAULT;
2911
2912                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2913                        /* As an optimisation, we only copy the actual
2914                         * number of rules that the underlying
2915                         * function returned.  Since Mallory might
2916                         * change the rule count in user memory, we
2917                         * check that it is less than the rule count
2918                         * originally given (as the user buffer size),
2919                         * which has been range-checked.
2920                         */
2921                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2922                                return -EFAULT;
2923                        if (actual_rule_cnt < rule_cnt)
2924                                rule_cnt = actual_rule_cnt;
2925                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2926                                         &rxnfc->rule_locs[0],
2927                                         rule_cnt * sizeof(u32)))
2928                                return -EFAULT;
2929                }
2930        }
2931
2932        return 0;
2933}
2934
2935static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2936{
2937        void __user *uptr;
2938        compat_uptr_t uptr32;
2939        struct ifreq __user *uifr;
2940
2941        uifr = compat_alloc_user_space(sizeof(*uifr));
2942        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2943                return -EFAULT;
2944
2945        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2946                return -EFAULT;
2947
2948        uptr = compat_ptr(uptr32);
2949
2950        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2951                return -EFAULT;
2952
2953        return dev_ioctl(net, SIOCWANDEV, uifr);
2954}
2955
2956static int bond_ioctl(struct net *net, unsigned int cmd,
2957                         struct compat_ifreq __user *ifr32)
2958{
2959        struct ifreq kifr;
2960        struct ifreq __user *uifr;
2961        mm_segment_t old_fs;
2962        int err;
2963        u32 data;
2964        void __user *datap;
2965
2966        switch (cmd) {
2967        case SIOCBONDENSLAVE:
2968        case SIOCBONDRELEASE:
2969        case SIOCBONDSETHWADDR:
2970        case SIOCBONDCHANGEACTIVE:
2971                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2972                        return -EFAULT;
2973
2974                old_fs = get_fs();
2975                set_fs(KERNEL_DS);
2976                err = dev_ioctl(net, cmd,
2977                                (struct ifreq __user __force *) &kifr);
2978                set_fs(old_fs);
2979
2980                return err;
2981        case SIOCBONDSLAVEINFOQUERY:
2982        case SIOCBONDINFOQUERY:
2983                uifr = compat_alloc_user_space(sizeof(*uifr));
2984                if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2985                        return -EFAULT;
2986
2987                if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2988                        return -EFAULT;
2989
2990                datap = compat_ptr(data);
2991                if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2992                        return -EFAULT;
2993
2994                return dev_ioctl(net, cmd, uifr);
2995        default:
2996                return -ENOIOCTLCMD;
2997        }
2998}
2999
3000static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
3001                                 struct compat_ifreq __user *u_ifreq32)
3002{
3003        struct ifreq __user *u_ifreq64;
3004        char tmp_buf[IFNAMSIZ];
3005        void __user *data64;
3006        u32 data32;
3007
3008        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3009                           IFNAMSIZ))
3010                return -EFAULT;
3011        if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3012                return -EFAULT;
3013        data64 = compat_ptr(data32);
3014
3015        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3016
3017        /* Don't check these user accesses, just let that get trapped
3018         * in the ioctl handler instead.
3019         */
3020        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3021                         IFNAMSIZ))
3022                return -EFAULT;
3023        if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3024                return -EFAULT;
3025
3026        return dev_ioctl(net, cmd, u_ifreq64);
3027}
3028
3029static int dev_ifsioc(struct net *net, struct socket *sock,
3030                         unsigned int cmd, struct compat_ifreq __user *uifr32)
3031{
3032        struct ifreq __user *uifr;
3033        int err;
3034
3035        uifr = compat_alloc_user_space(sizeof(*uifr));
3036        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3037                return -EFAULT;
3038
3039        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3040
3041        if (!err) {
3042                switch (cmd) {
3043                case SIOCGIFFLAGS:
3044                case SIOCGIFMETRIC:
3045                case SIOCGIFMTU:
3046                case SIOCGIFMEM:
3047                case SIOCGIFHWADDR:
3048                case SIOCGIFINDEX:
3049                case SIOCGIFADDR:
3050                case SIOCGIFBRDADDR:
3051                case SIOCGIFDSTADDR:
3052                case SIOCGIFNETMASK:
3053                case SIOCGIFPFLAGS:
3054                case SIOCGIFTXQLEN:
3055                case SIOCGMIIPHY:
3056                case SIOCGMIIREG:
3057                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3058                                err = -EFAULT;
3059                        break;
3060                }
3061        }
3062        return err;
3063}
3064
3065static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3066                        struct compat_ifreq __user *uifr32)
3067{
3068        struct ifreq ifr;
3069        struct compat_ifmap __user *uifmap32;
3070        mm_segment_t old_fs;
3071        int err;
3072
3073        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3074        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3075        err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3076        err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3077        err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3078        err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3079        err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3080        err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3081        if (err)
3082                return -EFAULT;
3083
3084        old_fs = get_fs();
3085        set_fs(KERNEL_DS);
3086        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3087        set_fs(old_fs);
3088
3089        if (cmd == SIOCGIFMAP && !err) {
3090                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3091                err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3092                err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3093                err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3094                err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3095                err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3096                err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3097                if (err)
3098                        err = -EFAULT;
3099        }
3100        return err;
3101}
3102
3103static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3104{
3105        void __user *uptr;
3106        compat_uptr_t uptr32;
3107        struct ifreq __user *uifr;
3108
3109        uifr = compat_alloc_user_space(sizeof(*uifr));
3110        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3111                return -EFAULT;
3112
3113        if (get_user(uptr32, &uifr32->ifr_data))
3114                return -EFAULT;
3115
3116        uptr = compat_ptr(uptr32);
3117
3118        if (put_user(uptr, &uifr->ifr_data))
3119                return -EFAULT;
3120
3121        return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3122}
3123
3124struct rtentry32 {
3125        u32             rt_pad1;
3126        struct sockaddr rt_dst;         /* target address               */
3127        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3128        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3129        unsigned short  rt_flags;
3130        short           rt_pad2;
3131        u32             rt_pad3;
3132        unsigned char   rt_tos;
3133        unsigned char   rt_class;
3134        short           rt_pad4;
3135        short           rt_metric;      /* +1 for binary compatibility! */
3136        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3137        u32             rt_mtu;         /* per route MTU/Window         */
3138        u32             rt_window;      /* Window clamping              */
3139        unsigned short  rt_irtt;        /* Initial RTT                  */
3140};
3141
3142struct in6_rtmsg32 {
3143        struct in6_addr         rtmsg_dst;
3144        struct in6_addr         rtmsg_src;
3145        struct in6_addr         rtmsg_gateway;
3146        u32                     rtmsg_type;
3147        u16                     rtmsg_dst_len;
3148        u16                     rtmsg_src_len;
3149        u32                     rtmsg_metric;
3150        u32                     rtmsg_info;
3151        u32                     rtmsg_flags;
3152        s32                     rtmsg_ifindex;
3153};
3154
3155static int routing_ioctl(struct net *net, struct socket *sock,
3156                         unsigned int cmd, void __user *argp)
3157{
3158        int ret;
3159        void *r = NULL;
3160        struct in6_rtmsg r6;
3161        struct rtentry r4;
3162        char devname[16];
3163        u32 rtdev;
3164        mm_segment_t old_fs = get_fs();
3165
3166        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3167                struct in6_rtmsg32 __user *ur6 = argp;
3168                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3169                        3 * sizeof(struct in6_addr));
3170                ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3171                ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3172                ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3173                ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3174                ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3175                ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3176                ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3177
3178                r = (void *) &r6;
3179        } else { /* ipv4 */
3180                struct rtentry32 __user *ur4 = argp;
3181                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3182                                        3 * sizeof(struct sockaddr));
3183                ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3184                ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3185                ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3186                ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3187                ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3188                ret |= __get_user(rtdev, &(ur4->rt_dev));
3189                if (rtdev) {
3190                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3191                        r4.rt_dev = (char __user __force *)devname;
3192                        devname[15] = 0;
3193                } else
3194                        r4.rt_dev = NULL;
3195
3196                r = (void *) &r4;
3197        }
3198
3199        if (ret) {
3200                ret = -EFAULT;
3201                goto out;
3202        }
3203
3204        set_fs(KERNEL_DS);
3205        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3206        set_fs(old_fs);
3207
3208out:
3209        return ret;
3210}
3211
3212/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3213 * for some operations; this forces use of the newer bridge-utils that
3214 * use compatible ioctls
3215 */
3216static int old_bridge_ioctl(compat_ulong_t __user *argp)
3217{
3218        compat_ulong_t tmp;
3219
3220        if (get_user(tmp, argp))
3221                return -EFAULT;
3222        if (tmp == BRCTL_GET_VERSION)
3223                return BRCTL_VERSION + 1;
3224        return -EINVAL;
3225}
3226
3227static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3228                         unsigned int cmd, unsigned long arg)
3229{
3230        void __user *argp = compat_ptr(arg);
3231        struct sock *sk = sock->sk;
3232        struct net *net = sock_net(sk);
3233
3234        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3235                return siocdevprivate_ioctl(net, cmd, argp);
3236
3237        switch (cmd) {
3238        case SIOCSIFBR:
3239        case SIOCGIFBR:
3240                return old_bridge_ioctl(argp);
3241        case SIOCGIFNAME:
3242                return dev_ifname32(net, argp);
3243        case SIOCGIFCONF:
3244                return dev_ifconf(net, argp);
3245        case SIOCETHTOOL:
3246                return ethtool_ioctl(net, argp);
3247        case SIOCWANDEV:
3248                return compat_siocwandev(net, argp);
3249        case SIOCGIFMAP:
3250        case SIOCSIFMAP:
3251                return compat_sioc_ifmap(net, cmd, argp);
3252        case SIOCBONDENSLAVE:
3253        case SIOCBONDRELEASE:
3254        case SIOCBONDSETHWADDR:
3255        case SIOCBONDSLAVEINFOQUERY:
3256        case SIOCBONDINFOQUERY:
3257        case SIOCBONDCHANGEACTIVE:
3258                return bond_ioctl(net, cmd, argp);
3259        case SIOCADDRT:
3260        case SIOCDELRT:
3261                return routing_ioctl(net, sock, cmd, argp);
3262        case SIOCGSTAMP:
3263                return do_siocgstamp(net, sock, cmd, argp);
3264        case SIOCGSTAMPNS:
3265                return do_siocgstampns(net, sock, cmd, argp);
3266        case SIOCSHWTSTAMP:
3267                return compat_siocshwtstamp(net, argp);
3268
3269        case FIOSETOWN:
3270        case SIOCSPGRP:
3271        case FIOGETOWN:
3272        case SIOCGPGRP:
3273        case SIOCBRADDBR:
3274        case SIOCBRDELBR:
3275        case SIOCGIFVLAN:
3276        case SIOCSIFVLAN:
3277        case SIOCADDDLCI:
3278        case SIOCDELDLCI:
3279                return sock_ioctl(file, cmd, arg);
3280
3281        case SIOCGIFFLAGS:
3282        case SIOCSIFFLAGS:
3283        case SIOCGIFMETRIC:
3284        case SIOCSIFMETRIC:
3285        case SIOCGIFMTU:
3286        case SIOCSIFMTU:
3287        case SIOCGIFMEM:
3288        case SIOCSIFMEM:
3289        case SIOCGIFHWADDR:
3290        case SIOCSIFHWADDR:
3291        case SIOCADDMULTI:
3292        case SIOCDELMULTI:
3293        case SIOCGIFINDEX:
3294        case SIOCGIFADDR:
3295        case SIOCSIFADDR:
3296        case SIOCSIFHWBROADCAST:
3297        case SIOCDIFADDR:
3298        case SIOCGIFBRDADDR:
3299        case SIOCSIFBRDADDR:
3300        case SIOCGIFDSTADDR:
3301        case SIOCSIFDSTADDR:
3302        case SIOCGIFNETMASK:
3303        case SIOCSIFNETMASK:
3304        case SIOCSIFPFLAGS:
3305        case SIOCGIFPFLAGS:
3306        case SIOCGIFTXQLEN:
3307        case SIOCSIFTXQLEN:
3308        case SIOCBRADDIF:
3309        case SIOCBRDELIF:
3310        case SIOCSIFNAME:
3311        case SIOCGMIIPHY:
3312        case SIOCGMIIREG:
3313        case SIOCSMIIREG:
3314                return dev_ifsioc(net, sock, cmd, argp);
3315
3316        case SIOCSARP:
3317        case SIOCGARP:
3318        case SIOCDARP:
3319        case SIOCATMARK:
3320                return sock_do_ioctl(net, sock, cmd, arg);
3321        }
3322
3323        return -ENOIOCTLCMD;
3324}
3325
3326static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3327                              unsigned long arg)
3328{
3329        struct socket *sock = file->private_data;
3330        int ret = -ENOIOCTLCMD;
3331        struct sock *sk;
3332        struct net *net;
3333
3334        sk = sock->sk;
3335        net = sock_net(sk);
3336
3337        if (sock->ops->compat_ioctl)
3338                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3339
3340        if (ret == -ENOIOCTLCMD &&
3341            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3342                ret = compat_wext_handle_ioctl(net, cmd, arg);
3343
3344        if (ret == -ENOIOCTLCMD)
3345                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3346
3347        return ret;
3348}
3349#endif
3350
3351int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3352{
3353        return sock->ops->bind(sock, addr, addrlen);
3354}
3355EXPORT_SYMBOL(kernel_bind);
3356
3357int kernel_listen(struct socket *sock, int backlog)
3358{
3359        return sock->ops->listen(sock, backlog);
3360}
3361EXPORT_SYMBOL(kernel_listen);
3362
3363int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3364{
3365        struct sock *sk = sock->sk;
3366        int err;
3367
3368        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3369                               newsock);
3370        if (err < 0)
3371                goto done;
3372
3373        err = sock->ops->accept(sock, *newsock, flags);
3374        if (err < 0) {
3375                sock_release(*newsock);
3376                *newsock = NULL;
3377                goto done;
3378        }
3379
3380        (*newsock)->ops = sock->ops;
3381        __module_get((*newsock)->ops->owner);
3382
3383done:
3384        return err;
3385}
3386EXPORT_SYMBOL(kernel_accept);
3387
3388int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3389                   int flags)
3390{
3391        return sock->ops->connect(sock, addr, addrlen, flags);
3392}
3393EXPORT_SYMBOL(kernel_connect);
3394
3395int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3396                         int *addrlen)
3397{
3398        return sock->ops->getname(sock, addr, addrlen, 0);
3399}
3400EXPORT_SYMBOL(kernel_getsockname);
3401
3402int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3403                         int *addrlen)
3404{
3405        return sock->ops->getname(sock, addr, addrlen, 1);
3406}
3407EXPORT_SYMBOL(kernel_getpeername);
3408
3409int kernel_getsockopt(struct socket *sock, int level, int optname,
3410                        char *optval, int *optlen)
3411{
3412        mm_segment_t oldfs = get_fs();
3413        char __user *uoptval;
3414        int __user *uoptlen;
3415        int err;
3416
3417        uoptval = (char __user __force *) optval;
3418        uoptlen = (int __user __force *) optlen;
3419
3420        set_fs(KERNEL_DS);
3421        if (level == SOL_SOCKET)
3422                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3423        else
3424                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3425                                            uoptlen);
3426        set_fs(oldfs);
3427        return err;
3428}
3429EXPORT_SYMBOL(kernel_getsockopt);
3430
3431int kernel_setsockopt(struct socket *sock, int level, int optname,
3432                        char *optval, unsigned int optlen)
3433{
3434        mm_segment_t oldfs = get_fs();
3435        char __user *uoptval;
3436        int err;
3437
3438        uoptval = (char __user __force *) optval;
3439
3440        set_fs(KERNEL_DS);
3441        if (level == SOL_SOCKET)
3442                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3443        else
3444                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3445                                            optlen);
3446        set_fs(oldfs);
3447        return err;
3448}
3449EXPORT_SYMBOL(kernel_setsockopt);
3450
3451int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3452                    size_t size, int flags)
3453{
3454        if (sock->ops->sendpage)
3455                return sock->ops->sendpage(sock, page, offset, size, flags);
3456
3457        return sock_no_sendpage(sock, page, offset, size, flags);
3458}
3459EXPORT_SYMBOL(kernel_sendpage);
3460
3461int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3462{
3463        mm_segment_t oldfs = get_fs();
3464        int err;
3465
3466        set_fs(KERNEL_DS);
3467        err = sock->ops->ioctl(sock, cmd, arg);
3468        set_fs(oldfs);
3469
3470        return err;
3471}
3472EXPORT_SYMBOL(kernel_sock_ioctl);
3473
3474int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3475{
3476        return sock->ops->shutdown(sock, how);
3477}
3478EXPORT_SYMBOL(kernel_sock_shutdown);
3479