linux/security/keys/encrypted-keys/encrypted.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2010 IBM Corporation
   3 * Copyright (C) 2010 Politecnico di Torino, Italy
   4 *                    TORSEC group -- http://security.polito.it
   5 *
   6 * Authors:
   7 * Mimi Zohar <zohar@us.ibm.com>
   8 * Roberto Sassu <roberto.sassu@polito.it>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation, version 2 of the License.
  13 *
  14 * See Documentation/security/keys-trusted-encrypted.txt
  15 */
  16
  17#include <linux/uaccess.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/slab.h>
  21#include <linux/parser.h>
  22#include <linux/string.h>
  23#include <linux/err.h>
  24#include <keys/user-type.h>
  25#include <keys/trusted-type.h>
  26#include <keys/encrypted-type.h>
  27#include <linux/key-type.h>
  28#include <linux/random.h>
  29#include <linux/rcupdate.h>
  30#include <linux/scatterlist.h>
  31#include <linux/crypto.h>
  32#include <linux/ctype.h>
  33#include <crypto/hash.h>
  34#include <crypto/sha.h>
  35#include <crypto/aes.h>
  36
  37#include "encrypted.h"
  38#include "ecryptfs_format.h"
  39
  40static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  41static const char KEY_USER_PREFIX[] = "user:";
  42static const char hash_alg[] = "sha256";
  43static const char hmac_alg[] = "hmac(sha256)";
  44static const char blkcipher_alg[] = "cbc(aes)";
  45static const char key_format_default[] = "default";
  46static const char key_format_ecryptfs[] = "ecryptfs";
  47static unsigned int ivsize;
  48static int blksize;
  49
  50#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  51#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  52#define KEY_ECRYPTFS_DESC_LEN 16
  53#define HASH_SIZE SHA256_DIGEST_SIZE
  54#define MAX_DATA_SIZE 4096
  55#define MIN_DATA_SIZE  20
  56
  57struct sdesc {
  58        struct shash_desc shash;
  59        char ctx[];
  60};
  61
  62static struct crypto_shash *hashalg;
  63static struct crypto_shash *hmacalg;
  64
  65enum {
  66        Opt_err = -1, Opt_new, Opt_load, Opt_update
  67};
  68
  69enum {
  70        Opt_error = -1, Opt_default, Opt_ecryptfs
  71};
  72
  73static const match_table_t key_format_tokens = {
  74        {Opt_default, "default"},
  75        {Opt_ecryptfs, "ecryptfs"},
  76        {Opt_error, NULL}
  77};
  78
  79static const match_table_t key_tokens = {
  80        {Opt_new, "new"},
  81        {Opt_load, "load"},
  82        {Opt_update, "update"},
  83        {Opt_err, NULL}
  84};
  85
  86static int aes_get_sizes(void)
  87{
  88        struct crypto_blkcipher *tfm;
  89
  90        tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  91        if (IS_ERR(tfm)) {
  92                pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  93                       PTR_ERR(tfm));
  94                return PTR_ERR(tfm);
  95        }
  96        ivsize = crypto_blkcipher_ivsize(tfm);
  97        blksize = crypto_blkcipher_blocksize(tfm);
  98        crypto_free_blkcipher(tfm);
  99        return 0;
 100}
 101
 102/*
 103 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
 104 *
 105 * The description of a encrypted key with format 'ecryptfs' must contain
 106 * exactly 16 hexadecimal characters.
 107 *
 108 */
 109static int valid_ecryptfs_desc(const char *ecryptfs_desc)
 110{
 111        int i;
 112
 113        if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
 114                pr_err("encrypted_key: key description must be %d hexadecimal "
 115                       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
 116                return -EINVAL;
 117        }
 118
 119        for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
 120                if (!isxdigit(ecryptfs_desc[i])) {
 121                        pr_err("encrypted_key: key description must contain "
 122                               "only hexadecimal characters\n");
 123                        return -EINVAL;
 124                }
 125        }
 126
 127        return 0;
 128}
 129
 130/*
 131 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
 132 *
 133 * key-type:= "trusted:" | "user:"
 134 * desc:= master-key description
 135 *
 136 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
 137 * only the master key description is permitted to change, not the key-type.
 138 * The key-type remains constant.
 139 *
 140 * On success returns 0, otherwise -EINVAL.
 141 */
 142static int valid_master_desc(const char *new_desc, const char *orig_desc)
 143{
 144        if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
 145                if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
 146                        goto out;
 147                if (orig_desc)
 148                        if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
 149                                goto out;
 150        } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
 151                if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
 152                        goto out;
 153                if (orig_desc)
 154                        if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
 155                                goto out;
 156        } else
 157                goto out;
 158        return 0;
 159out:
 160        return -EINVAL;
 161}
 162
 163/*
 164 * datablob_parse - parse the keyctl data
 165 *
 166 * datablob format:
 167 * new [<format>] <master-key name> <decrypted data length>
 168 * load [<format>] <master-key name> <decrypted data length>
 169 *     <encrypted iv + data>
 170 * update <new-master-key name>
 171 *
 172 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
 173 * which is null terminated.
 174 *
 175 * On success returns 0, otherwise -EINVAL.
 176 */
 177static int datablob_parse(char *datablob, const char **format,
 178                          char **master_desc, char **decrypted_datalen,
 179                          char **hex_encoded_iv)
 180{
 181        substring_t args[MAX_OPT_ARGS];
 182        int ret = -EINVAL;
 183        int key_cmd;
 184        int key_format;
 185        char *p, *keyword;
 186
 187        keyword = strsep(&datablob, " \t");
 188        if (!keyword) {
 189                pr_info("encrypted_key: insufficient parameters specified\n");
 190                return ret;
 191        }
 192        key_cmd = match_token(keyword, key_tokens, args);
 193
 194        /* Get optional format: default | ecryptfs */
 195        p = strsep(&datablob, " \t");
 196        if (!p) {
 197                pr_err("encrypted_key: insufficient parameters specified\n");
 198                return ret;
 199        }
 200
 201        key_format = match_token(p, key_format_tokens, args);
 202        switch (key_format) {
 203        case Opt_ecryptfs:
 204        case Opt_default:
 205                *format = p;
 206                *master_desc = strsep(&datablob, " \t");
 207                break;
 208        case Opt_error:
 209                *master_desc = p;
 210                break;
 211        }
 212
 213        if (!*master_desc) {
 214                pr_info("encrypted_key: master key parameter is missing\n");
 215                goto out;
 216        }
 217
 218        if (valid_master_desc(*master_desc, NULL) < 0) {
 219                pr_info("encrypted_key: master key parameter \'%s\' "
 220                        "is invalid\n", *master_desc);
 221                goto out;
 222        }
 223
 224        if (decrypted_datalen) {
 225                *decrypted_datalen = strsep(&datablob, " \t");
 226                if (!*decrypted_datalen) {
 227                        pr_info("encrypted_key: keylen parameter is missing\n");
 228                        goto out;
 229                }
 230        }
 231
 232        switch (key_cmd) {
 233        case Opt_new:
 234                if (!decrypted_datalen) {
 235                        pr_info("encrypted_key: keyword \'%s\' not allowed "
 236                                "when called from .update method\n", keyword);
 237                        break;
 238                }
 239                ret = 0;
 240                break;
 241        case Opt_load:
 242                if (!decrypted_datalen) {
 243                        pr_info("encrypted_key: keyword \'%s\' not allowed "
 244                                "when called from .update method\n", keyword);
 245                        break;
 246                }
 247                *hex_encoded_iv = strsep(&datablob, " \t");
 248                if (!*hex_encoded_iv) {
 249                        pr_info("encrypted_key: hex blob is missing\n");
 250                        break;
 251                }
 252                ret = 0;
 253                break;
 254        case Opt_update:
 255                if (decrypted_datalen) {
 256                        pr_info("encrypted_key: keyword \'%s\' not allowed "
 257                                "when called from .instantiate method\n",
 258                                keyword);
 259                        break;
 260                }
 261                ret = 0;
 262                break;
 263        case Opt_err:
 264                pr_info("encrypted_key: keyword \'%s\' not recognized\n",
 265                        keyword);
 266                break;
 267        }
 268out:
 269        return ret;
 270}
 271
 272/*
 273 * datablob_format - format as an ascii string, before copying to userspace
 274 */
 275static char *datablob_format(struct encrypted_key_payload *epayload,
 276                             size_t asciiblob_len)
 277{
 278        char *ascii_buf, *bufp;
 279        u8 *iv = epayload->iv;
 280        int len;
 281        int i;
 282
 283        ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
 284        if (!ascii_buf)
 285                goto out;
 286
 287        ascii_buf[asciiblob_len] = '\0';
 288
 289        /* copy datablob master_desc and datalen strings */
 290        len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
 291                      epayload->master_desc, epayload->datalen);
 292
 293        /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
 294        bufp = &ascii_buf[len];
 295        for (i = 0; i < (asciiblob_len - len) / 2; i++)
 296                bufp = hex_byte_pack(bufp, iv[i]);
 297out:
 298        return ascii_buf;
 299}
 300
 301/*
 302 * request_user_key - request the user key
 303 *
 304 * Use a user provided key to encrypt/decrypt an encrypted-key.
 305 */
 306static struct key *request_user_key(const char *master_desc, u8 **master_key,
 307                                    size_t *master_keylen)
 308{
 309        struct user_key_payload *upayload;
 310        struct key *ukey;
 311
 312        ukey = request_key(&key_type_user, master_desc, NULL);
 313        if (IS_ERR(ukey))
 314                goto error;
 315
 316        down_read(&ukey->sem);
 317        upayload = ukey->payload.data;
 318        *master_key = upayload->data;
 319        *master_keylen = upayload->datalen;
 320error:
 321        return ukey;
 322}
 323
 324static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
 325{
 326        struct sdesc *sdesc;
 327        int size;
 328
 329        size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
 330        sdesc = kmalloc(size, GFP_KERNEL);
 331        if (!sdesc)
 332                return ERR_PTR(-ENOMEM);
 333        sdesc->shash.tfm = alg;
 334        sdesc->shash.flags = 0x0;
 335        return sdesc;
 336}
 337
 338static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
 339                     const u8 *buf, unsigned int buflen)
 340{
 341        struct sdesc *sdesc;
 342        int ret;
 343
 344        sdesc = alloc_sdesc(hmacalg);
 345        if (IS_ERR(sdesc)) {
 346                pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
 347                return PTR_ERR(sdesc);
 348        }
 349
 350        ret = crypto_shash_setkey(hmacalg, key, keylen);
 351        if (!ret)
 352                ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
 353        kfree(sdesc);
 354        return ret;
 355}
 356
 357static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
 358{
 359        struct sdesc *sdesc;
 360        int ret;
 361
 362        sdesc = alloc_sdesc(hashalg);
 363        if (IS_ERR(sdesc)) {
 364                pr_info("encrypted_key: can't alloc %s\n", hash_alg);
 365                return PTR_ERR(sdesc);
 366        }
 367
 368        ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
 369        kfree(sdesc);
 370        return ret;
 371}
 372
 373enum derived_key_type { ENC_KEY, AUTH_KEY };
 374
 375/* Derive authentication/encryption key from trusted key */
 376static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
 377                           const u8 *master_key, size_t master_keylen)
 378{
 379        u8 *derived_buf;
 380        unsigned int derived_buf_len;
 381        int ret;
 382
 383        derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
 384        if (derived_buf_len < HASH_SIZE)
 385                derived_buf_len = HASH_SIZE;
 386
 387        derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
 388        if (!derived_buf) {
 389                pr_err("encrypted_key: out of memory\n");
 390                return -ENOMEM;
 391        }
 392        if (key_type)
 393                strcpy(derived_buf, "AUTH_KEY");
 394        else
 395                strcpy(derived_buf, "ENC_KEY");
 396
 397        memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
 398               master_keylen);
 399        ret = calc_hash(derived_key, derived_buf, derived_buf_len);
 400        kfree(derived_buf);
 401        return ret;
 402}
 403
 404static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
 405                               unsigned int key_len, const u8 *iv,
 406                               unsigned int ivsize)
 407{
 408        int ret;
 409
 410        desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
 411        if (IS_ERR(desc->tfm)) {
 412                pr_err("encrypted_key: failed to load %s transform (%ld)\n",
 413                       blkcipher_alg, PTR_ERR(desc->tfm));
 414                return PTR_ERR(desc->tfm);
 415        }
 416        desc->flags = 0;
 417
 418        ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
 419        if (ret < 0) {
 420                pr_err("encrypted_key: failed to setkey (%d)\n", ret);
 421                crypto_free_blkcipher(desc->tfm);
 422                return ret;
 423        }
 424        crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
 425        return 0;
 426}
 427
 428static struct key *request_master_key(struct encrypted_key_payload *epayload,
 429                                      u8 **master_key, size_t *master_keylen)
 430{
 431        struct key *mkey = NULL;
 432
 433        if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
 434                     KEY_TRUSTED_PREFIX_LEN)) {
 435                mkey = request_trusted_key(epayload->master_desc +
 436                                           KEY_TRUSTED_PREFIX_LEN,
 437                                           master_key, master_keylen);
 438        } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
 439                            KEY_USER_PREFIX_LEN)) {
 440                mkey = request_user_key(epayload->master_desc +
 441                                        KEY_USER_PREFIX_LEN,
 442                                        master_key, master_keylen);
 443        } else
 444                goto out;
 445
 446        if (IS_ERR(mkey)) {
 447                int ret = PTR_ERR(mkey);
 448
 449                if (ret == -ENOTSUPP)
 450                        pr_info("encrypted_key: key %s not supported",
 451                                epayload->master_desc);
 452                else
 453                        pr_info("encrypted_key: key %s not found",
 454                                epayload->master_desc);
 455                goto out;
 456        }
 457
 458        dump_master_key(*master_key, *master_keylen);
 459out:
 460        return mkey;
 461}
 462
 463/* Before returning data to userspace, encrypt decrypted data. */
 464static int derived_key_encrypt(struct encrypted_key_payload *epayload,
 465                               const u8 *derived_key,
 466                               unsigned int derived_keylen)
 467{
 468        struct scatterlist sg_in[2];
 469        struct scatterlist sg_out[1];
 470        struct blkcipher_desc desc;
 471        unsigned int encrypted_datalen;
 472        unsigned int padlen;
 473        char pad[16];
 474        int ret;
 475
 476        encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 477        padlen = encrypted_datalen - epayload->decrypted_datalen;
 478
 479        ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
 480                                  epayload->iv, ivsize);
 481        if (ret < 0)
 482                goto out;
 483        dump_decrypted_data(epayload);
 484
 485        memset(pad, 0, sizeof pad);
 486        sg_init_table(sg_in, 2);
 487        sg_set_buf(&sg_in[0], epayload->decrypted_data,
 488                   epayload->decrypted_datalen);
 489        sg_set_buf(&sg_in[1], pad, padlen);
 490
 491        sg_init_table(sg_out, 1);
 492        sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
 493
 494        ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
 495        crypto_free_blkcipher(desc.tfm);
 496        if (ret < 0)
 497                pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
 498        else
 499                dump_encrypted_data(epayload, encrypted_datalen);
 500out:
 501        return ret;
 502}
 503
 504static int datablob_hmac_append(struct encrypted_key_payload *epayload,
 505                                const u8 *master_key, size_t master_keylen)
 506{
 507        u8 derived_key[HASH_SIZE];
 508        u8 *digest;
 509        int ret;
 510
 511        ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 512        if (ret < 0)
 513                goto out;
 514
 515        digest = epayload->format + epayload->datablob_len;
 516        ret = calc_hmac(digest, derived_key, sizeof derived_key,
 517                        epayload->format, epayload->datablob_len);
 518        if (!ret)
 519                dump_hmac(NULL, digest, HASH_SIZE);
 520out:
 521        return ret;
 522}
 523
 524/* verify HMAC before decrypting encrypted key */
 525static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
 526                                const u8 *format, const u8 *master_key,
 527                                size_t master_keylen)
 528{
 529        u8 derived_key[HASH_SIZE];
 530        u8 digest[HASH_SIZE];
 531        int ret;
 532        char *p;
 533        unsigned short len;
 534
 535        ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 536        if (ret < 0)
 537                goto out;
 538
 539        len = epayload->datablob_len;
 540        if (!format) {
 541                p = epayload->master_desc;
 542                len -= strlen(epayload->format) + 1;
 543        } else
 544                p = epayload->format;
 545
 546        ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
 547        if (ret < 0)
 548                goto out;
 549        ret = memcmp(digest, epayload->format + epayload->datablob_len,
 550                     sizeof digest);
 551        if (ret) {
 552                ret = -EINVAL;
 553                dump_hmac("datablob",
 554                          epayload->format + epayload->datablob_len,
 555                          HASH_SIZE);
 556                dump_hmac("calc", digest, HASH_SIZE);
 557        }
 558out:
 559        return ret;
 560}
 561
 562static int derived_key_decrypt(struct encrypted_key_payload *epayload,
 563                               const u8 *derived_key,
 564                               unsigned int derived_keylen)
 565{
 566        struct scatterlist sg_in[1];
 567        struct scatterlist sg_out[2];
 568        struct blkcipher_desc desc;
 569        unsigned int encrypted_datalen;
 570        char pad[16];
 571        int ret;
 572
 573        encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 574        ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
 575                                  epayload->iv, ivsize);
 576        if (ret < 0)
 577                goto out;
 578        dump_encrypted_data(epayload, encrypted_datalen);
 579
 580        memset(pad, 0, sizeof pad);
 581        sg_init_table(sg_in, 1);
 582        sg_init_table(sg_out, 2);
 583        sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
 584        sg_set_buf(&sg_out[0], epayload->decrypted_data,
 585                   epayload->decrypted_datalen);
 586        sg_set_buf(&sg_out[1], pad, sizeof pad);
 587
 588        ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
 589        crypto_free_blkcipher(desc.tfm);
 590        if (ret < 0)
 591                goto out;
 592        dump_decrypted_data(epayload);
 593out:
 594        return ret;
 595}
 596
 597/* Allocate memory for decrypted key and datablob. */
 598static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
 599                                                         const char *format,
 600                                                         const char *master_desc,
 601                                                         const char *datalen)
 602{
 603        struct encrypted_key_payload *epayload = NULL;
 604        unsigned short datablob_len;
 605        unsigned short decrypted_datalen;
 606        unsigned short payload_datalen;
 607        unsigned int encrypted_datalen;
 608        unsigned int format_len;
 609        long dlen;
 610        int ret;
 611
 612        ret = strict_strtol(datalen, 10, &dlen);
 613        if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
 614                return ERR_PTR(-EINVAL);
 615
 616        format_len = (!format) ? strlen(key_format_default) : strlen(format);
 617        decrypted_datalen = dlen;
 618        payload_datalen = decrypted_datalen;
 619        if (format && !strcmp(format, key_format_ecryptfs)) {
 620                if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
 621                        pr_err("encrypted_key: keylen for the ecryptfs format "
 622                               "must be equal to %d bytes\n",
 623                               ECRYPTFS_MAX_KEY_BYTES);
 624                        return ERR_PTR(-EINVAL);
 625                }
 626                decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
 627                payload_datalen = sizeof(struct ecryptfs_auth_tok);
 628        }
 629
 630        encrypted_datalen = roundup(decrypted_datalen, blksize);
 631
 632        datablob_len = format_len + 1 + strlen(master_desc) + 1
 633            + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
 634
 635        ret = key_payload_reserve(key, payload_datalen + datablob_len
 636                                  + HASH_SIZE + 1);
 637        if (ret < 0)
 638                return ERR_PTR(ret);
 639
 640        epayload = kzalloc(sizeof(*epayload) + payload_datalen +
 641                           datablob_len + HASH_SIZE + 1, GFP_KERNEL);
 642        if (!epayload)
 643                return ERR_PTR(-ENOMEM);
 644
 645        epayload->payload_datalen = payload_datalen;
 646        epayload->decrypted_datalen = decrypted_datalen;
 647        epayload->datablob_len = datablob_len;
 648        return epayload;
 649}
 650
 651static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
 652                                 const char *format, const char *hex_encoded_iv)
 653{
 654        struct key *mkey;
 655        u8 derived_key[HASH_SIZE];
 656        u8 *master_key;
 657        u8 *hmac;
 658        const char *hex_encoded_data;
 659        unsigned int encrypted_datalen;
 660        size_t master_keylen;
 661        size_t asciilen;
 662        int ret;
 663
 664        encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 665        asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
 666        if (strlen(hex_encoded_iv) != asciilen)
 667                return -EINVAL;
 668
 669        hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
 670        ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
 671        if (ret < 0)
 672                return -EINVAL;
 673        ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
 674                      encrypted_datalen);
 675        if (ret < 0)
 676                return -EINVAL;
 677
 678        hmac = epayload->format + epayload->datablob_len;
 679        ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
 680                      HASH_SIZE);
 681        if (ret < 0)
 682                return -EINVAL;
 683
 684        mkey = request_master_key(epayload, &master_key, &master_keylen);
 685        if (IS_ERR(mkey))
 686                return PTR_ERR(mkey);
 687
 688        ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
 689        if (ret < 0) {
 690                pr_err("encrypted_key: bad hmac (%d)\n", ret);
 691                goto out;
 692        }
 693
 694        ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 695        if (ret < 0)
 696                goto out;
 697
 698        ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
 699        if (ret < 0)
 700                pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
 701out:
 702        up_read(&mkey->sem);
 703        key_put(mkey);
 704        return ret;
 705}
 706
 707static void __ekey_init(struct encrypted_key_payload *epayload,
 708                        const char *format, const char *master_desc,
 709                        const char *datalen)
 710{
 711        unsigned int format_len;
 712
 713        format_len = (!format) ? strlen(key_format_default) : strlen(format);
 714        epayload->format = epayload->payload_data + epayload->payload_datalen;
 715        epayload->master_desc = epayload->format + format_len + 1;
 716        epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
 717        epayload->iv = epayload->datalen + strlen(datalen) + 1;
 718        epayload->encrypted_data = epayload->iv + ivsize + 1;
 719        epayload->decrypted_data = epayload->payload_data;
 720
 721        if (!format)
 722                memcpy(epayload->format, key_format_default, format_len);
 723        else {
 724                if (!strcmp(format, key_format_ecryptfs))
 725                        epayload->decrypted_data =
 726                                ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
 727
 728                memcpy(epayload->format, format, format_len);
 729        }
 730
 731        memcpy(epayload->master_desc, master_desc, strlen(master_desc));
 732        memcpy(epayload->datalen, datalen, strlen(datalen));
 733}
 734
 735/*
 736 * encrypted_init - initialize an encrypted key
 737 *
 738 * For a new key, use a random number for both the iv and data
 739 * itself.  For an old key, decrypt the hex encoded data.
 740 */
 741static int encrypted_init(struct encrypted_key_payload *epayload,
 742                          const char *key_desc, const char *format,
 743                          const char *master_desc, const char *datalen,
 744                          const char *hex_encoded_iv)
 745{
 746        int ret = 0;
 747
 748        if (format && !strcmp(format, key_format_ecryptfs)) {
 749                ret = valid_ecryptfs_desc(key_desc);
 750                if (ret < 0)
 751                        return ret;
 752
 753                ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
 754                                       key_desc);
 755        }
 756
 757        __ekey_init(epayload, format, master_desc, datalen);
 758        if (!hex_encoded_iv) {
 759                get_random_bytes(epayload->iv, ivsize);
 760
 761                get_random_bytes(epayload->decrypted_data,
 762                                 epayload->decrypted_datalen);
 763        } else
 764                ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
 765        return ret;
 766}
 767
 768/*
 769 * encrypted_instantiate - instantiate an encrypted key
 770 *
 771 * Decrypt an existing encrypted datablob or create a new encrypted key
 772 * based on a kernel random number.
 773 *
 774 * On success, return 0. Otherwise return errno.
 775 */
 776static int encrypted_instantiate(struct key *key,
 777                                 struct key_preparsed_payload *prep)
 778{
 779        struct encrypted_key_payload *epayload = NULL;
 780        char *datablob = NULL;
 781        const char *format = NULL;
 782        char *master_desc = NULL;
 783        char *decrypted_datalen = NULL;
 784        char *hex_encoded_iv = NULL;
 785        size_t datalen = prep->datalen;
 786        int ret;
 787
 788        if (datalen <= 0 || datalen > 32767 || !prep->data)
 789                return -EINVAL;
 790
 791        datablob = kmalloc(datalen + 1, GFP_KERNEL);
 792        if (!datablob)
 793                return -ENOMEM;
 794        datablob[datalen] = 0;
 795        memcpy(datablob, prep->data, datalen);
 796        ret = datablob_parse(datablob, &format, &master_desc,
 797                             &decrypted_datalen, &hex_encoded_iv);
 798        if (ret < 0)
 799                goto out;
 800
 801        epayload = encrypted_key_alloc(key, format, master_desc,
 802                                       decrypted_datalen);
 803        if (IS_ERR(epayload)) {
 804                ret = PTR_ERR(epayload);
 805                goto out;
 806        }
 807        ret = encrypted_init(epayload, key->description, format, master_desc,
 808                             decrypted_datalen, hex_encoded_iv);
 809        if (ret < 0) {
 810                kfree(epayload);
 811                goto out;
 812        }
 813
 814        rcu_assign_keypointer(key, epayload);
 815out:
 816        kfree(datablob);
 817        return ret;
 818}
 819
 820static void encrypted_rcu_free(struct rcu_head *rcu)
 821{
 822        struct encrypted_key_payload *epayload;
 823
 824        epayload = container_of(rcu, struct encrypted_key_payload, rcu);
 825        memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
 826        kfree(epayload);
 827}
 828
 829/*
 830 * encrypted_update - update the master key description
 831 *
 832 * Change the master key description for an existing encrypted key.
 833 * The next read will return an encrypted datablob using the new
 834 * master key description.
 835 *
 836 * On success, return 0. Otherwise return errno.
 837 */
 838static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
 839{
 840        struct encrypted_key_payload *epayload = key->payload.data;
 841        struct encrypted_key_payload *new_epayload;
 842        char *buf;
 843        char *new_master_desc = NULL;
 844        const char *format = NULL;
 845        size_t datalen = prep->datalen;
 846        int ret = 0;
 847
 848        if (datalen <= 0 || datalen > 32767 || !prep->data)
 849                return -EINVAL;
 850
 851        buf = kmalloc(datalen + 1, GFP_KERNEL);
 852        if (!buf)
 853                return -ENOMEM;
 854
 855        buf[datalen] = 0;
 856        memcpy(buf, prep->data, datalen);
 857        ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
 858        if (ret < 0)
 859                goto out;
 860
 861        ret = valid_master_desc(new_master_desc, epayload->master_desc);
 862        if (ret < 0)
 863                goto out;
 864
 865        new_epayload = encrypted_key_alloc(key, epayload->format,
 866                                           new_master_desc, epayload->datalen);
 867        if (IS_ERR(new_epayload)) {
 868                ret = PTR_ERR(new_epayload);
 869                goto out;
 870        }
 871
 872        __ekey_init(new_epayload, epayload->format, new_master_desc,
 873                    epayload->datalen);
 874
 875        memcpy(new_epayload->iv, epayload->iv, ivsize);
 876        memcpy(new_epayload->payload_data, epayload->payload_data,
 877               epayload->payload_datalen);
 878
 879        rcu_assign_keypointer(key, new_epayload);
 880        call_rcu(&epayload->rcu, encrypted_rcu_free);
 881out:
 882        kfree(buf);
 883        return ret;
 884}
 885
 886/*
 887 * encrypted_read - format and copy the encrypted data to userspace
 888 *
 889 * The resulting datablob format is:
 890 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
 891 *
 892 * On success, return to userspace the encrypted key datablob size.
 893 */
 894static long encrypted_read(const struct key *key, char __user *buffer,
 895                           size_t buflen)
 896{
 897        struct encrypted_key_payload *epayload;
 898        struct key *mkey;
 899        u8 *master_key;
 900        size_t master_keylen;
 901        char derived_key[HASH_SIZE];
 902        char *ascii_buf;
 903        size_t asciiblob_len;
 904        int ret;
 905
 906        epayload = rcu_dereference_key(key);
 907
 908        /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
 909        asciiblob_len = epayload->datablob_len + ivsize + 1
 910            + roundup(epayload->decrypted_datalen, blksize)
 911            + (HASH_SIZE * 2);
 912
 913        if (!buffer || buflen < asciiblob_len)
 914                return asciiblob_len;
 915
 916        mkey = request_master_key(epayload, &master_key, &master_keylen);
 917        if (IS_ERR(mkey))
 918                return PTR_ERR(mkey);
 919
 920        ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 921        if (ret < 0)
 922                goto out;
 923
 924        ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
 925        if (ret < 0)
 926                goto out;
 927
 928        ret = datablob_hmac_append(epayload, master_key, master_keylen);
 929        if (ret < 0)
 930                goto out;
 931
 932        ascii_buf = datablob_format(epayload, asciiblob_len);
 933        if (!ascii_buf) {
 934                ret = -ENOMEM;
 935                goto out;
 936        }
 937
 938        up_read(&mkey->sem);
 939        key_put(mkey);
 940
 941        if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
 942                ret = -EFAULT;
 943        kfree(ascii_buf);
 944
 945        return asciiblob_len;
 946out:
 947        up_read(&mkey->sem);
 948        key_put(mkey);
 949        return ret;
 950}
 951
 952/*
 953 * encrypted_destroy - before freeing the key, clear the decrypted data
 954 *
 955 * Before freeing the key, clear the memory containing the decrypted
 956 * key data.
 957 */
 958static void encrypted_destroy(struct key *key)
 959{
 960        struct encrypted_key_payload *epayload = key->payload.data;
 961
 962        if (!epayload)
 963                return;
 964
 965        memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
 966        kfree(key->payload.data);
 967}
 968
 969struct key_type key_type_encrypted = {
 970        .name = "encrypted",
 971        .instantiate = encrypted_instantiate,
 972        .update = encrypted_update,
 973        .match = user_match,
 974        .destroy = encrypted_destroy,
 975        .describe = user_describe,
 976        .read = encrypted_read,
 977};
 978EXPORT_SYMBOL_GPL(key_type_encrypted);
 979
 980static void encrypted_shash_release(void)
 981{
 982        if (hashalg)
 983                crypto_free_shash(hashalg);
 984        if (hmacalg)
 985                crypto_free_shash(hmacalg);
 986}
 987
 988static int __init encrypted_shash_alloc(void)
 989{
 990        int ret;
 991
 992        hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
 993        if (IS_ERR(hmacalg)) {
 994                pr_info("encrypted_key: could not allocate crypto %s\n",
 995                        hmac_alg);
 996                return PTR_ERR(hmacalg);
 997        }
 998
 999        hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1000        if (IS_ERR(hashalg)) {
1001                pr_info("encrypted_key: could not allocate crypto %s\n",
1002                        hash_alg);
1003                ret = PTR_ERR(hashalg);
1004                goto hashalg_fail;
1005        }
1006
1007        return 0;
1008
1009hashalg_fail:
1010        crypto_free_shash(hmacalg);
1011        return ret;
1012}
1013
1014static int __init init_encrypted(void)
1015{
1016        int ret;
1017
1018        ret = encrypted_shash_alloc();
1019        if (ret < 0)
1020                return ret;
1021        ret = register_key_type(&key_type_encrypted);
1022        if (ret < 0)
1023                goto out;
1024        return aes_get_sizes();
1025out:
1026        encrypted_shash_release();
1027        return ret;
1028
1029}
1030
1031static void __exit cleanup_encrypted(void)
1032{
1033        encrypted_shash_release();
1034        unregister_key_type(&key_type_encrypted);
1035}
1036
1037late_initcall(init_encrypted);
1038module_exit(cleanup_encrypted);
1039
1040MODULE_LICENSE("GPL");
1041