linux/sound/core/pcm_lib.c
<<
>>
Prefs
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
  29#include <sound/tlv.h>
  30#include <sound/info.h>
  31#include <sound/pcm.h>
  32#include <sound/pcm_params.h>
  33#include <sound/timer.h>
  34
  35/*
  36 * fill ring buffer with silence
  37 * runtime->silence_start: starting pointer to silence area
  38 * runtime->silence_filled: size filled with silence
  39 * runtime->silence_threshold: threshold from application
  40 * runtime->silence_size: maximal size from application
  41 *
  42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  43 */
  44void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  45{
  46        struct snd_pcm_runtime *runtime = substream->runtime;
  47        snd_pcm_uframes_t frames, ofs, transfer;
  48
  49        if (runtime->silence_size < runtime->boundary) {
  50                snd_pcm_sframes_t noise_dist, n;
  51                if (runtime->silence_start != runtime->control->appl_ptr) {
  52                        n = runtime->control->appl_ptr - runtime->silence_start;
  53                        if (n < 0)
  54                                n += runtime->boundary;
  55                        if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  56                                runtime->silence_filled -= n;
  57                        else
  58                                runtime->silence_filled = 0;
  59                        runtime->silence_start = runtime->control->appl_ptr;
  60                }
  61                if (runtime->silence_filled >= runtime->buffer_size)
  62                        return;
  63                noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  64                if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  65                        return;
  66                frames = runtime->silence_threshold - noise_dist;
  67                if (frames > runtime->silence_size)
  68                        frames = runtime->silence_size;
  69        } else {
  70                if (new_hw_ptr == ULONG_MAX) {  /* initialization */
  71                        snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  72                        if (avail > runtime->buffer_size)
  73                                avail = runtime->buffer_size;
  74                        runtime->silence_filled = avail > 0 ? avail : 0;
  75                        runtime->silence_start = (runtime->status->hw_ptr +
  76                                                  runtime->silence_filled) %
  77                                                 runtime->boundary;
  78                } else {
  79                        ofs = runtime->status->hw_ptr;
  80                        frames = new_hw_ptr - ofs;
  81                        if ((snd_pcm_sframes_t)frames < 0)
  82                                frames += runtime->boundary;
  83                        runtime->silence_filled -= frames;
  84                        if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  85                                runtime->silence_filled = 0;
  86                                runtime->silence_start = new_hw_ptr;
  87                        } else {
  88                                runtime->silence_start = ofs;
  89                        }
  90                }
  91                frames = runtime->buffer_size - runtime->silence_filled;
  92        }
  93        if (snd_BUG_ON(frames > runtime->buffer_size))
  94                return;
  95        if (frames == 0)
  96                return;
  97        ofs = runtime->silence_start % runtime->buffer_size;
  98        while (frames > 0) {
  99                transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 100                if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 101                    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 102                        if (substream->ops->silence) {
 103                                int err;
 104                                err = substream->ops->silence(substream, -1, ofs, transfer);
 105                                snd_BUG_ON(err < 0);
 106                        } else {
 107                                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 108                                snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 109                        }
 110                } else {
 111                        unsigned int c;
 112                        unsigned int channels = runtime->channels;
 113                        if (substream->ops->silence) {
 114                                for (c = 0; c < channels; ++c) {
 115                                        int err;
 116                                        err = substream->ops->silence(substream, c, ofs, transfer);
 117                                        snd_BUG_ON(err < 0);
 118                                }
 119                        } else {
 120                                size_t dma_csize = runtime->dma_bytes / channels;
 121                                for (c = 0; c < channels; ++c) {
 122                                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 123                                        snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 124                                }
 125                        }
 126                }
 127                runtime->silence_filled += transfer;
 128                frames -= transfer;
 129                ofs = 0;
 130        }
 131}
 132
 133#ifdef CONFIG_SND_DEBUG
 134void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 135                           char *name, size_t len)
 136{
 137        snprintf(name, len, "pcmC%dD%d%c:%d",
 138                 substream->pcm->card->number,
 139                 substream->pcm->device,
 140                 substream->stream ? 'c' : 'p',
 141                 substream->number);
 142}
 143EXPORT_SYMBOL(snd_pcm_debug_name);
 144#endif
 145
 146#define XRUN_DEBUG_BASIC        (1<<0)
 147#define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
 148#define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
 149#define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
 150#define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
 151#define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
 152#define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
 153
 154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 155
 156#define xrun_debug(substream, mask) \
 157                        ((substream)->pstr->xrun_debug & (mask))
 158#else
 159#define xrun_debug(substream, mask)     0
 160#endif
 161
 162#define dump_stack_on_xrun(substream) do {                      \
 163                if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
 164                        dump_stack();                           \
 165        } while (0)
 166
 167static void xrun(struct snd_pcm_substream *substream)
 168{
 169        struct snd_pcm_runtime *runtime = substream->runtime;
 170
 171        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 172                snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 173        snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 174        if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 175                char name[16];
 176                snd_pcm_debug_name(substream, name, sizeof(name));
 177                snd_printd(KERN_DEBUG "XRUN: %s\n", name);
 178                dump_stack_on_xrun(substream);
 179        }
 180}
 181
 182#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 183#define hw_ptr_error(substream, fmt, args...)                           \
 184        do {                                                            \
 185                if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
 186                        xrun_log_show(substream);                       \
 187                        if (printk_ratelimit()) {                       \
 188                                snd_printd("PCM: " fmt, ##args);        \
 189                        }                                               \
 190                        dump_stack_on_xrun(substream);                  \
 191                }                                                       \
 192        } while (0)
 193
 194#define XRUN_LOG_CNT    10
 195
 196struct hwptr_log_entry {
 197        unsigned int in_interrupt;
 198        unsigned long jiffies;
 199        snd_pcm_uframes_t pos;
 200        snd_pcm_uframes_t period_size;
 201        snd_pcm_uframes_t buffer_size;
 202        snd_pcm_uframes_t old_hw_ptr;
 203        snd_pcm_uframes_t hw_ptr_base;
 204};
 205
 206struct snd_pcm_hwptr_log {
 207        unsigned int idx;
 208        unsigned int hit: 1;
 209        struct hwptr_log_entry entries[XRUN_LOG_CNT];
 210};
 211
 212static void xrun_log(struct snd_pcm_substream *substream,
 213                     snd_pcm_uframes_t pos, int in_interrupt)
 214{
 215        struct snd_pcm_runtime *runtime = substream->runtime;
 216        struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 217        struct hwptr_log_entry *entry;
 218
 219        if (log == NULL) {
 220                log = kzalloc(sizeof(*log), GFP_ATOMIC);
 221                if (log == NULL)
 222                        return;
 223                runtime->hwptr_log = log;
 224        } else {
 225                if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 226                        return;
 227        }
 228        entry = &log->entries[log->idx];
 229        entry->in_interrupt = in_interrupt;
 230        entry->jiffies = jiffies;
 231        entry->pos = pos;
 232        entry->period_size = runtime->period_size;
 233        entry->buffer_size = runtime->buffer_size;
 234        entry->old_hw_ptr = runtime->status->hw_ptr;
 235        entry->hw_ptr_base = runtime->hw_ptr_base;
 236        log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 237}
 238
 239static void xrun_log_show(struct snd_pcm_substream *substream)
 240{
 241        struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 242        struct hwptr_log_entry *entry;
 243        char name[16];
 244        unsigned int idx;
 245        int cnt;
 246
 247        if (log == NULL)
 248                return;
 249        if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 250                return;
 251        snd_pcm_debug_name(substream, name, sizeof(name));
 252        for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 253                entry = &log->entries[idx];
 254                if (entry->period_size == 0)
 255                        break;
 256                snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
 257                           "hwptr=%ld/%ld\n",
 258                           name, entry->in_interrupt ? "[Q] " : "",
 259                           entry->jiffies,
 260                           (unsigned long)entry->pos,
 261                           (unsigned long)entry->period_size,
 262                           (unsigned long)entry->buffer_size,
 263                           (unsigned long)entry->old_hw_ptr,
 264                           (unsigned long)entry->hw_ptr_base);
 265                idx++;
 266                idx %= XRUN_LOG_CNT;
 267        }
 268        log->hit = 1;
 269}
 270
 271#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 272
 273#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 274#define xrun_log(substream, pos, in_interrupt)  do { } while (0)
 275#define xrun_log_show(substream)        do { } while (0)
 276
 277#endif
 278
 279int snd_pcm_update_state(struct snd_pcm_substream *substream,
 280                         struct snd_pcm_runtime *runtime)
 281{
 282        snd_pcm_uframes_t avail;
 283
 284        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 285                avail = snd_pcm_playback_avail(runtime);
 286        else
 287                avail = snd_pcm_capture_avail(runtime);
 288        if (avail > runtime->avail_max)
 289                runtime->avail_max = avail;
 290        if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 291                if (avail >= runtime->buffer_size) {
 292                        snd_pcm_drain_done(substream);
 293                        return -EPIPE;
 294                }
 295        } else {
 296                if (avail >= runtime->stop_threshold) {
 297                        xrun(substream);
 298                        return -EPIPE;
 299                }
 300        }
 301        if (runtime->twake) {
 302                if (avail >= runtime->twake)
 303                        wake_up(&runtime->tsleep);
 304        } else if (avail >= runtime->control->avail_min)
 305                wake_up(&runtime->sleep);
 306        return 0;
 307}
 308
 309static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 310                                  unsigned int in_interrupt)
 311{
 312        struct snd_pcm_runtime *runtime = substream->runtime;
 313        snd_pcm_uframes_t pos;
 314        snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 315        snd_pcm_sframes_t hdelta, delta;
 316        unsigned long jdelta;
 317        unsigned long curr_jiffies;
 318        struct timespec curr_tstamp;
 319        struct timespec audio_tstamp;
 320        int crossed_boundary = 0;
 321
 322        old_hw_ptr = runtime->status->hw_ptr;
 323
 324        /*
 325         * group pointer, time and jiffies reads to allow for more
 326         * accurate correlations/corrections.
 327         * The values are stored at the end of this routine after
 328         * corrections for hw_ptr position
 329         */
 330        pos = substream->ops->pointer(substream);
 331        curr_jiffies = jiffies;
 332        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 333                snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 334
 335                if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
 336                        (substream->ops->wall_clock))
 337                        substream->ops->wall_clock(substream, &audio_tstamp);
 338        }
 339
 340        if (pos == SNDRV_PCM_POS_XRUN) {
 341                xrun(substream);
 342                return -EPIPE;
 343        }
 344        if (pos >= runtime->buffer_size) {
 345                if (printk_ratelimit()) {
 346                        char name[16];
 347                        snd_pcm_debug_name(substream, name, sizeof(name));
 348                        xrun_log_show(substream);
 349                        snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
 350                                   "buffer size = %ld, period size = %ld\n",
 351                                   name, pos, runtime->buffer_size,
 352                                   runtime->period_size);
 353                }
 354                pos = 0;
 355        }
 356        pos -= pos % runtime->min_align;
 357        if (xrun_debug(substream, XRUN_DEBUG_LOG))
 358                xrun_log(substream, pos, in_interrupt);
 359        hw_base = runtime->hw_ptr_base;
 360        new_hw_ptr = hw_base + pos;
 361        if (in_interrupt) {
 362                /* we know that one period was processed */
 363                /* delta = "expected next hw_ptr" for in_interrupt != 0 */
 364                delta = runtime->hw_ptr_interrupt + runtime->period_size;
 365                if (delta > new_hw_ptr) {
 366                        /* check for double acknowledged interrupts */
 367                        hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 368                        if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 369                                hw_base += runtime->buffer_size;
 370                                if (hw_base >= runtime->boundary) {
 371                                        hw_base = 0;
 372                                        crossed_boundary++;
 373                                }
 374                                new_hw_ptr = hw_base + pos;
 375                                goto __delta;
 376                        }
 377                }
 378        }
 379        /* new_hw_ptr might be lower than old_hw_ptr in case when */
 380        /* pointer crosses the end of the ring buffer */
 381        if (new_hw_ptr < old_hw_ptr) {
 382                hw_base += runtime->buffer_size;
 383                if (hw_base >= runtime->boundary) {
 384                        hw_base = 0;
 385                        crossed_boundary++;
 386                }
 387                new_hw_ptr = hw_base + pos;
 388        }
 389      __delta:
 390        delta = new_hw_ptr - old_hw_ptr;
 391        if (delta < 0)
 392                delta += runtime->boundary;
 393        if (xrun_debug(substream, in_interrupt ?
 394                        XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 395                char name[16];
 396                snd_pcm_debug_name(substream, name, sizeof(name));
 397                snd_printd("%s_update: %s: pos=%u/%u/%u, "
 398                           "hwptr=%ld/%ld/%ld/%ld\n",
 399                           in_interrupt ? "period" : "hwptr",
 400                           name,
 401                           (unsigned int)pos,
 402                           (unsigned int)runtime->period_size,
 403                           (unsigned int)runtime->buffer_size,
 404                           (unsigned long)delta,
 405                           (unsigned long)old_hw_ptr,
 406                           (unsigned long)new_hw_ptr,
 407                           (unsigned long)runtime->hw_ptr_base);
 408        }
 409
 410        if (runtime->no_period_wakeup) {
 411                snd_pcm_sframes_t xrun_threshold;
 412                /*
 413                 * Without regular period interrupts, we have to check
 414                 * the elapsed time to detect xruns.
 415                 */
 416                jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 417                if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 418                        goto no_delta_check;
 419                hdelta = jdelta - delta * HZ / runtime->rate;
 420                xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 421                while (hdelta > xrun_threshold) {
 422                        delta += runtime->buffer_size;
 423                        hw_base += runtime->buffer_size;
 424                        if (hw_base >= runtime->boundary) {
 425                                hw_base = 0;
 426                                crossed_boundary++;
 427                        }
 428                        new_hw_ptr = hw_base + pos;
 429                        hdelta -= runtime->hw_ptr_buffer_jiffies;
 430                }
 431                goto no_delta_check;
 432        }
 433
 434        /* something must be really wrong */
 435        if (delta >= runtime->buffer_size + runtime->period_size) {
 436                hw_ptr_error(substream,
 437                               "Unexpected hw_pointer value %s"
 438                               "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 439                               "old_hw_ptr=%ld)\n",
 440                                     in_interrupt ? "[Q] " : "[P]",
 441                                     substream->stream, (long)pos,
 442                                     (long)new_hw_ptr, (long)old_hw_ptr);
 443                return 0;
 444        }
 445
 446        /* Do jiffies check only in xrun_debug mode */
 447        if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 448                goto no_jiffies_check;
 449
 450        /* Skip the jiffies check for hardwares with BATCH flag.
 451         * Such hardware usually just increases the position at each IRQ,
 452         * thus it can't give any strange position.
 453         */
 454        if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 455                goto no_jiffies_check;
 456        hdelta = delta;
 457        if (hdelta < runtime->delay)
 458                goto no_jiffies_check;
 459        hdelta -= runtime->delay;
 460        jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 461        if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 462                delta = jdelta /
 463                        (((runtime->period_size * HZ) / runtime->rate)
 464                                                                + HZ/100);
 465                /* move new_hw_ptr according jiffies not pos variable */
 466                new_hw_ptr = old_hw_ptr;
 467                hw_base = delta;
 468                /* use loop to avoid checks for delta overflows */
 469                /* the delta value is small or zero in most cases */
 470                while (delta > 0) {
 471                        new_hw_ptr += runtime->period_size;
 472                        if (new_hw_ptr >= runtime->boundary) {
 473                                new_hw_ptr -= runtime->boundary;
 474                                crossed_boundary--;
 475                        }
 476                        delta--;
 477                }
 478                /* align hw_base to buffer_size */
 479                hw_ptr_error(substream,
 480                             "hw_ptr skipping! %s"
 481                             "(pos=%ld, delta=%ld, period=%ld, "
 482                             "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 483                             in_interrupt ? "[Q] " : "",
 484                             (long)pos, (long)hdelta,
 485                             (long)runtime->period_size, jdelta,
 486                             ((hdelta * HZ) / runtime->rate), hw_base,
 487                             (unsigned long)old_hw_ptr,
 488                             (unsigned long)new_hw_ptr);
 489                /* reset values to proper state */
 490                delta = 0;
 491                hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 492        }
 493 no_jiffies_check:
 494        if (delta > runtime->period_size + runtime->period_size / 2) {
 495                hw_ptr_error(substream,
 496                             "Lost interrupts? %s"
 497                             "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 498                             "old_hw_ptr=%ld)\n",
 499                             in_interrupt ? "[Q] " : "",
 500                             substream->stream, (long)delta,
 501                             (long)new_hw_ptr,
 502                             (long)old_hw_ptr);
 503        }
 504
 505 no_delta_check:
 506        if (runtime->status->hw_ptr == new_hw_ptr)
 507                return 0;
 508
 509        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 510            runtime->silence_size > 0)
 511                snd_pcm_playback_silence(substream, new_hw_ptr);
 512
 513        if (in_interrupt) {
 514                delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 515                if (delta < 0)
 516                        delta += runtime->boundary;
 517                delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 518                runtime->hw_ptr_interrupt += delta;
 519                if (runtime->hw_ptr_interrupt >= runtime->boundary)
 520                        runtime->hw_ptr_interrupt -= runtime->boundary;
 521        }
 522        runtime->hw_ptr_base = hw_base;
 523        runtime->status->hw_ptr = new_hw_ptr;
 524        runtime->hw_ptr_jiffies = curr_jiffies;
 525        if (crossed_boundary) {
 526                snd_BUG_ON(crossed_boundary != 1);
 527                runtime->hw_ptr_wrap += runtime->boundary;
 528        }
 529        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 530                runtime->status->tstamp = curr_tstamp;
 531
 532                if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
 533                        /*
 534                         * no wall clock available, provide audio timestamp
 535                         * derived from pointer position+delay
 536                         */
 537                        u64 audio_frames, audio_nsecs;
 538
 539                        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 540                                audio_frames = runtime->hw_ptr_wrap
 541                                        + runtime->status->hw_ptr
 542                                        - runtime->delay;
 543                        else
 544                                audio_frames = runtime->hw_ptr_wrap
 545                                        + runtime->status->hw_ptr
 546                                        + runtime->delay;
 547                        audio_nsecs = div_u64(audio_frames * 1000000000LL,
 548                                        runtime->rate);
 549                        audio_tstamp = ns_to_timespec(audio_nsecs);
 550                }
 551                runtime->status->audio_tstamp = audio_tstamp;
 552        }
 553
 554        return snd_pcm_update_state(substream, runtime);
 555}
 556
 557/* CAUTION: call it with irq disabled */
 558int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 559{
 560        return snd_pcm_update_hw_ptr0(substream, 0);
 561}
 562
 563/**
 564 * snd_pcm_set_ops - set the PCM operators
 565 * @pcm: the pcm instance
 566 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 567 * @ops: the operator table
 568 *
 569 * Sets the given PCM operators to the pcm instance.
 570 */
 571void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 572                     const struct snd_pcm_ops *ops)
 573{
 574        struct snd_pcm_str *stream = &pcm->streams[direction];
 575        struct snd_pcm_substream *substream;
 576        
 577        for (substream = stream->substream; substream != NULL; substream = substream->next)
 578                substream->ops = ops;
 579}
 580
 581EXPORT_SYMBOL(snd_pcm_set_ops);
 582
 583/**
 584 * snd_pcm_sync - set the PCM sync id
 585 * @substream: the pcm substream
 586 *
 587 * Sets the PCM sync identifier for the card.
 588 */
 589void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 590{
 591        struct snd_pcm_runtime *runtime = substream->runtime;
 592        
 593        runtime->sync.id32[0] = substream->pcm->card->number;
 594        runtime->sync.id32[1] = -1;
 595        runtime->sync.id32[2] = -1;
 596        runtime->sync.id32[3] = -1;
 597}
 598
 599EXPORT_SYMBOL(snd_pcm_set_sync);
 600
 601/*
 602 *  Standard ioctl routine
 603 */
 604
 605static inline unsigned int div32(unsigned int a, unsigned int b, 
 606                                 unsigned int *r)
 607{
 608        if (b == 0) {
 609                *r = 0;
 610                return UINT_MAX;
 611        }
 612        *r = a % b;
 613        return a / b;
 614}
 615
 616static inline unsigned int div_down(unsigned int a, unsigned int b)
 617{
 618        if (b == 0)
 619                return UINT_MAX;
 620        return a / b;
 621}
 622
 623static inline unsigned int div_up(unsigned int a, unsigned int b)
 624{
 625        unsigned int r;
 626        unsigned int q;
 627        if (b == 0)
 628                return UINT_MAX;
 629        q = div32(a, b, &r);
 630        if (r)
 631                ++q;
 632        return q;
 633}
 634
 635static inline unsigned int mul(unsigned int a, unsigned int b)
 636{
 637        if (a == 0)
 638                return 0;
 639        if (div_down(UINT_MAX, a) < b)
 640                return UINT_MAX;
 641        return a * b;
 642}
 643
 644static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 645                                    unsigned int c, unsigned int *r)
 646{
 647        u_int64_t n = (u_int64_t) a * b;
 648        if (c == 0) {
 649                snd_BUG_ON(!n);
 650                *r = 0;
 651                return UINT_MAX;
 652        }
 653        n = div_u64_rem(n, c, r);
 654        if (n >= UINT_MAX) {
 655                *r = 0;
 656                return UINT_MAX;
 657        }
 658        return n;
 659}
 660
 661/**
 662 * snd_interval_refine - refine the interval value of configurator
 663 * @i: the interval value to refine
 664 * @v: the interval value to refer to
 665 *
 666 * Refines the interval value with the reference value.
 667 * The interval is changed to the range satisfying both intervals.
 668 * The interval status (min, max, integer, etc.) are evaluated.
 669 *
 670 * Return: Positive if the value is changed, zero if it's not changed, or a
 671 * negative error code.
 672 */
 673int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 674{
 675        int changed = 0;
 676        if (snd_BUG_ON(snd_interval_empty(i)))
 677                return -EINVAL;
 678        if (i->min < v->min) {
 679                i->min = v->min;
 680                i->openmin = v->openmin;
 681                changed = 1;
 682        } else if (i->min == v->min && !i->openmin && v->openmin) {
 683                i->openmin = 1;
 684                changed = 1;
 685        }
 686        if (i->max > v->max) {
 687                i->max = v->max;
 688                i->openmax = v->openmax;
 689                changed = 1;
 690        } else if (i->max == v->max && !i->openmax && v->openmax) {
 691                i->openmax = 1;
 692                changed = 1;
 693        }
 694        if (!i->integer && v->integer) {
 695                i->integer = 1;
 696                changed = 1;
 697        }
 698        if (i->integer) {
 699                if (i->openmin) {
 700                        i->min++;
 701                        i->openmin = 0;
 702                }
 703                if (i->openmax) {
 704                        i->max--;
 705                        i->openmax = 0;
 706                }
 707        } else if (!i->openmin && !i->openmax && i->min == i->max)
 708                i->integer = 1;
 709        if (snd_interval_checkempty(i)) {
 710                snd_interval_none(i);
 711                return -EINVAL;
 712        }
 713        return changed;
 714}
 715
 716EXPORT_SYMBOL(snd_interval_refine);
 717
 718static int snd_interval_refine_first(struct snd_interval *i)
 719{
 720        if (snd_BUG_ON(snd_interval_empty(i)))
 721                return -EINVAL;
 722        if (snd_interval_single(i))
 723                return 0;
 724        i->max = i->min;
 725        i->openmax = i->openmin;
 726        if (i->openmax)
 727                i->max++;
 728        return 1;
 729}
 730
 731static int snd_interval_refine_last(struct snd_interval *i)
 732{
 733        if (snd_BUG_ON(snd_interval_empty(i)))
 734                return -EINVAL;
 735        if (snd_interval_single(i))
 736                return 0;
 737        i->min = i->max;
 738        i->openmin = i->openmax;
 739        if (i->openmin)
 740                i->min--;
 741        return 1;
 742}
 743
 744void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 745{
 746        if (a->empty || b->empty) {
 747                snd_interval_none(c);
 748                return;
 749        }
 750        c->empty = 0;
 751        c->min = mul(a->min, b->min);
 752        c->openmin = (a->openmin || b->openmin);
 753        c->max = mul(a->max,  b->max);
 754        c->openmax = (a->openmax || b->openmax);
 755        c->integer = (a->integer && b->integer);
 756}
 757
 758/**
 759 * snd_interval_div - refine the interval value with division
 760 * @a: dividend
 761 * @b: divisor
 762 * @c: quotient
 763 *
 764 * c = a / b
 765 *
 766 * Returns non-zero if the value is changed, zero if not changed.
 767 */
 768void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 769{
 770        unsigned int r;
 771        if (a->empty || b->empty) {
 772                snd_interval_none(c);
 773                return;
 774        }
 775        c->empty = 0;
 776        c->min = div32(a->min, b->max, &r);
 777        c->openmin = (r || a->openmin || b->openmax);
 778        if (b->min > 0) {
 779                c->max = div32(a->max, b->min, &r);
 780                if (r) {
 781                        c->max++;
 782                        c->openmax = 1;
 783                } else
 784                        c->openmax = (a->openmax || b->openmin);
 785        } else {
 786                c->max = UINT_MAX;
 787                c->openmax = 0;
 788        }
 789        c->integer = 0;
 790}
 791
 792/**
 793 * snd_interval_muldivk - refine the interval value
 794 * @a: dividend 1
 795 * @b: dividend 2
 796 * @k: divisor (as integer)
 797 * @c: result
 798  *
 799 * c = a * b / k
 800 *
 801 * Returns non-zero if the value is changed, zero if not changed.
 802 */
 803void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 804                      unsigned int k, struct snd_interval *c)
 805{
 806        unsigned int r;
 807        if (a->empty || b->empty) {
 808                snd_interval_none(c);
 809                return;
 810        }
 811        c->empty = 0;
 812        c->min = muldiv32(a->min, b->min, k, &r);
 813        c->openmin = (r || a->openmin || b->openmin);
 814        c->max = muldiv32(a->max, b->max, k, &r);
 815        if (r) {
 816                c->max++;
 817                c->openmax = 1;
 818        } else
 819                c->openmax = (a->openmax || b->openmax);
 820        c->integer = 0;
 821}
 822
 823/**
 824 * snd_interval_mulkdiv - refine the interval value
 825 * @a: dividend 1
 826 * @k: dividend 2 (as integer)
 827 * @b: divisor
 828 * @c: result
 829 *
 830 * c = a * k / b
 831 *
 832 * Returns non-zero if the value is changed, zero if not changed.
 833 */
 834void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 835                      const struct snd_interval *b, struct snd_interval *c)
 836{
 837        unsigned int r;
 838        if (a->empty || b->empty) {
 839                snd_interval_none(c);
 840                return;
 841        }
 842        c->empty = 0;
 843        c->min = muldiv32(a->min, k, b->max, &r);
 844        c->openmin = (r || a->openmin || b->openmax);
 845        if (b->min > 0) {
 846                c->max = muldiv32(a->max, k, b->min, &r);
 847                if (r) {
 848                        c->max++;
 849                        c->openmax = 1;
 850                } else
 851                        c->openmax = (a->openmax || b->openmin);
 852        } else {
 853                c->max = UINT_MAX;
 854                c->openmax = 0;
 855        }
 856        c->integer = 0;
 857}
 858
 859/* ---- */
 860
 861
 862/**
 863 * snd_interval_ratnum - refine the interval value
 864 * @i: interval to refine
 865 * @rats_count: number of ratnum_t 
 866 * @rats: ratnum_t array
 867 * @nump: pointer to store the resultant numerator
 868 * @denp: pointer to store the resultant denominator
 869 *
 870 * Return: Positive if the value is changed, zero if it's not changed, or a
 871 * negative error code.
 872 */
 873int snd_interval_ratnum(struct snd_interval *i,
 874                        unsigned int rats_count, struct snd_ratnum *rats,
 875                        unsigned int *nump, unsigned int *denp)
 876{
 877        unsigned int best_num, best_den;
 878        int best_diff;
 879        unsigned int k;
 880        struct snd_interval t;
 881        int err;
 882        unsigned int result_num, result_den;
 883        int result_diff;
 884
 885        best_num = best_den = best_diff = 0;
 886        for (k = 0; k < rats_count; ++k) {
 887                unsigned int num = rats[k].num;
 888                unsigned int den;
 889                unsigned int q = i->min;
 890                int diff;
 891                if (q == 0)
 892                        q = 1;
 893                den = div_up(num, q);
 894                if (den < rats[k].den_min)
 895                        continue;
 896                if (den > rats[k].den_max)
 897                        den = rats[k].den_max;
 898                else {
 899                        unsigned int r;
 900                        r = (den - rats[k].den_min) % rats[k].den_step;
 901                        if (r != 0)
 902                                den -= r;
 903                }
 904                diff = num - q * den;
 905                if (diff < 0)
 906                        diff = -diff;
 907                if (best_num == 0 ||
 908                    diff * best_den < best_diff * den) {
 909                        best_diff = diff;
 910                        best_den = den;
 911                        best_num = num;
 912                }
 913        }
 914        if (best_den == 0) {
 915                i->empty = 1;
 916                return -EINVAL;
 917        }
 918        t.min = div_down(best_num, best_den);
 919        t.openmin = !!(best_num % best_den);
 920        
 921        result_num = best_num;
 922        result_diff = best_diff;
 923        result_den = best_den;
 924        best_num = best_den = best_diff = 0;
 925        for (k = 0; k < rats_count; ++k) {
 926                unsigned int num = rats[k].num;
 927                unsigned int den;
 928                unsigned int q = i->max;
 929                int diff;
 930                if (q == 0) {
 931                        i->empty = 1;
 932                        return -EINVAL;
 933                }
 934                den = div_down(num, q);
 935                if (den > rats[k].den_max)
 936                        continue;
 937                if (den < rats[k].den_min)
 938                        den = rats[k].den_min;
 939                else {
 940                        unsigned int r;
 941                        r = (den - rats[k].den_min) % rats[k].den_step;
 942                        if (r != 0)
 943                                den += rats[k].den_step - r;
 944                }
 945                diff = q * den - num;
 946                if (diff < 0)
 947                        diff = -diff;
 948                if (best_num == 0 ||
 949                    diff * best_den < best_diff * den) {
 950                        best_diff = diff;
 951                        best_den = den;
 952                        best_num = num;
 953                }
 954        }
 955        if (best_den == 0) {
 956                i->empty = 1;
 957                return -EINVAL;
 958        }
 959        t.max = div_up(best_num, best_den);
 960        t.openmax = !!(best_num % best_den);
 961        t.integer = 0;
 962        err = snd_interval_refine(i, &t);
 963        if (err < 0)
 964                return err;
 965
 966        if (snd_interval_single(i)) {
 967                if (best_diff * result_den < result_diff * best_den) {
 968                        result_num = best_num;
 969                        result_den = best_den;
 970                }
 971                if (nump)
 972                        *nump = result_num;
 973                if (denp)
 974                        *denp = result_den;
 975        }
 976        return err;
 977}
 978
 979EXPORT_SYMBOL(snd_interval_ratnum);
 980
 981/**
 982 * snd_interval_ratden - refine the interval value
 983 * @i: interval to refine
 984 * @rats_count: number of struct ratden
 985 * @rats: struct ratden array
 986 * @nump: pointer to store the resultant numerator
 987 * @denp: pointer to store the resultant denominator
 988 *
 989 * Return: Positive if the value is changed, zero if it's not changed, or a
 990 * negative error code.
 991 */
 992static int snd_interval_ratden(struct snd_interval *i,
 993                               unsigned int rats_count, struct snd_ratden *rats,
 994                               unsigned int *nump, unsigned int *denp)
 995{
 996        unsigned int best_num, best_diff, best_den;
 997        unsigned int k;
 998        struct snd_interval t;
 999        int err;
1000
1001        best_num = best_den = best_diff = 0;
1002        for (k = 0; k < rats_count; ++k) {
1003                unsigned int num;
1004                unsigned int den = rats[k].den;
1005                unsigned int q = i->min;
1006                int diff;
1007                num = mul(q, den);
1008                if (num > rats[k].num_max)
1009                        continue;
1010                if (num < rats[k].num_min)
1011                        num = rats[k].num_max;
1012                else {
1013                        unsigned int r;
1014                        r = (num - rats[k].num_min) % rats[k].num_step;
1015                        if (r != 0)
1016                                num += rats[k].num_step - r;
1017                }
1018                diff = num - q * den;
1019                if (best_num == 0 ||
1020                    diff * best_den < best_diff * den) {
1021                        best_diff = diff;
1022                        best_den = den;
1023                        best_num = num;
1024                }
1025        }
1026        if (best_den == 0) {
1027                i->empty = 1;
1028                return -EINVAL;
1029        }
1030        t.min = div_down(best_num, best_den);
1031        t.openmin = !!(best_num % best_den);
1032        
1033        best_num = best_den = best_diff = 0;
1034        for (k = 0; k < rats_count; ++k) {
1035                unsigned int num;
1036                unsigned int den = rats[k].den;
1037                unsigned int q = i->max;
1038                int diff;
1039                num = mul(q, den);
1040                if (num < rats[k].num_min)
1041                        continue;
1042                if (num > rats[k].num_max)
1043                        num = rats[k].num_max;
1044                else {
1045                        unsigned int r;
1046                        r = (num - rats[k].num_min) % rats[k].num_step;
1047                        if (r != 0)
1048                                num -= r;
1049                }
1050                diff = q * den - num;
1051                if (best_num == 0 ||
1052                    diff * best_den < best_diff * den) {
1053                        best_diff = diff;
1054                        best_den = den;
1055                        best_num = num;
1056                }
1057        }
1058        if (best_den == 0) {
1059                i->empty = 1;
1060                return -EINVAL;
1061        }
1062        t.max = div_up(best_num, best_den);
1063        t.openmax = !!(best_num % best_den);
1064        t.integer = 0;
1065        err = snd_interval_refine(i, &t);
1066        if (err < 0)
1067                return err;
1068
1069        if (snd_interval_single(i)) {
1070                if (nump)
1071                        *nump = best_num;
1072                if (denp)
1073                        *denp = best_den;
1074        }
1075        return err;
1076}
1077
1078/**
1079 * snd_interval_list - refine the interval value from the list
1080 * @i: the interval value to refine
1081 * @count: the number of elements in the list
1082 * @list: the value list
1083 * @mask: the bit-mask to evaluate
1084 *
1085 * Refines the interval value from the list.
1086 * When mask is non-zero, only the elements corresponding to bit 1 are
1087 * evaluated.
1088 *
1089 * Return: Positive if the value is changed, zero if it's not changed, or a
1090 * negative error code.
1091 */
1092int snd_interval_list(struct snd_interval *i, unsigned int count,
1093                      const unsigned int *list, unsigned int mask)
1094{
1095        unsigned int k;
1096        struct snd_interval list_range;
1097
1098        if (!count) {
1099                i->empty = 1;
1100                return -EINVAL;
1101        }
1102        snd_interval_any(&list_range);
1103        list_range.min = UINT_MAX;
1104        list_range.max = 0;
1105        for (k = 0; k < count; k++) {
1106                if (mask && !(mask & (1 << k)))
1107                        continue;
1108                if (!snd_interval_test(i, list[k]))
1109                        continue;
1110                list_range.min = min(list_range.min, list[k]);
1111                list_range.max = max(list_range.max, list[k]);
1112        }
1113        return snd_interval_refine(i, &list_range);
1114}
1115
1116EXPORT_SYMBOL(snd_interval_list);
1117
1118static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1119{
1120        unsigned int n;
1121        int changed = 0;
1122        n = (i->min - min) % step;
1123        if (n != 0 || i->openmin) {
1124                i->min += step - n;
1125                changed = 1;
1126        }
1127        n = (i->max - min) % step;
1128        if (n != 0 || i->openmax) {
1129                i->max -= n;
1130                changed = 1;
1131        }
1132        if (snd_interval_checkempty(i)) {
1133                i->empty = 1;
1134                return -EINVAL;
1135        }
1136        return changed;
1137}
1138
1139/* Info constraints helpers */
1140
1141/**
1142 * snd_pcm_hw_rule_add - add the hw-constraint rule
1143 * @runtime: the pcm runtime instance
1144 * @cond: condition bits
1145 * @var: the variable to evaluate
1146 * @func: the evaluation function
1147 * @private: the private data pointer passed to function
1148 * @dep: the dependent variables
1149 *
1150 * Return: Zero if successful, or a negative error code on failure.
1151 */
1152int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1153                        int var,
1154                        snd_pcm_hw_rule_func_t func, void *private,
1155                        int dep, ...)
1156{
1157        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1158        struct snd_pcm_hw_rule *c;
1159        unsigned int k;
1160        va_list args;
1161        va_start(args, dep);
1162        if (constrs->rules_num >= constrs->rules_all) {
1163                struct snd_pcm_hw_rule *new;
1164                unsigned int new_rules = constrs->rules_all + 16;
1165                new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1166                if (!new) {
1167                        va_end(args);
1168                        return -ENOMEM;
1169                }
1170                if (constrs->rules) {
1171                        memcpy(new, constrs->rules,
1172                               constrs->rules_num * sizeof(*c));
1173                        kfree(constrs->rules);
1174                }
1175                constrs->rules = new;
1176                constrs->rules_all = new_rules;
1177        }
1178        c = &constrs->rules[constrs->rules_num];
1179        c->cond = cond;
1180        c->func = func;
1181        c->var = var;
1182        c->private = private;
1183        k = 0;
1184        while (1) {
1185                if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1186                        va_end(args);
1187                        return -EINVAL;
1188                }
1189                c->deps[k++] = dep;
1190                if (dep < 0)
1191                        break;
1192                dep = va_arg(args, int);
1193        }
1194        constrs->rules_num++;
1195        va_end(args);
1196        return 0;
1197}
1198
1199EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1200
1201/**
1202 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1203 * @runtime: PCM runtime instance
1204 * @var: hw_params variable to apply the mask
1205 * @mask: the bitmap mask
1206 *
1207 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1208 *
1209 * Return: Zero if successful, or a negative error code on failure.
1210 */
1211int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1212                               u_int32_t mask)
1213{
1214        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1215        struct snd_mask *maskp = constrs_mask(constrs, var);
1216        *maskp->bits &= mask;
1217        memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1218        if (*maskp->bits == 0)
1219                return -EINVAL;
1220        return 0;
1221}
1222
1223/**
1224 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1225 * @runtime: PCM runtime instance
1226 * @var: hw_params variable to apply the mask
1227 * @mask: the 64bit bitmap mask
1228 *
1229 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1230 *
1231 * Return: Zero if successful, or a negative error code on failure.
1232 */
1233int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1234                                 u_int64_t mask)
1235{
1236        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1237        struct snd_mask *maskp = constrs_mask(constrs, var);
1238        maskp->bits[0] &= (u_int32_t)mask;
1239        maskp->bits[1] &= (u_int32_t)(mask >> 32);
1240        memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1241        if (! maskp->bits[0] && ! maskp->bits[1])
1242                return -EINVAL;
1243        return 0;
1244}
1245
1246/**
1247 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1248 * @runtime: PCM runtime instance
1249 * @var: hw_params variable to apply the integer constraint
1250 *
1251 * Apply the constraint of integer to an interval parameter.
1252 *
1253 * Return: Positive if the value is changed, zero if it's not changed, or a
1254 * negative error code.
1255 */
1256int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1257{
1258        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1259        return snd_interval_setinteger(constrs_interval(constrs, var));
1260}
1261
1262EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1263
1264/**
1265 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1266 * @runtime: PCM runtime instance
1267 * @var: hw_params variable to apply the range
1268 * @min: the minimal value
1269 * @max: the maximal value
1270 * 
1271 * Apply the min/max range constraint to an interval parameter.
1272 *
1273 * Return: Positive if the value is changed, zero if it's not changed, or a
1274 * negative error code.
1275 */
1276int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1277                                 unsigned int min, unsigned int max)
1278{
1279        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1280        struct snd_interval t;
1281        t.min = min;
1282        t.max = max;
1283        t.openmin = t.openmax = 0;
1284        t.integer = 0;
1285        return snd_interval_refine(constrs_interval(constrs, var), &t);
1286}
1287
1288EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1289
1290static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1291                                struct snd_pcm_hw_rule *rule)
1292{
1293        struct snd_pcm_hw_constraint_list *list = rule->private;
1294        return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1295}               
1296
1297
1298/**
1299 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1300 * @runtime: PCM runtime instance
1301 * @cond: condition bits
1302 * @var: hw_params variable to apply the list constraint
1303 * @l: list
1304 * 
1305 * Apply the list of constraints to an interval parameter.
1306 *
1307 * Return: Zero if successful, or a negative error code on failure.
1308 */
1309int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1310                               unsigned int cond,
1311                               snd_pcm_hw_param_t var,
1312                               const struct snd_pcm_hw_constraint_list *l)
1313{
1314        return snd_pcm_hw_rule_add(runtime, cond, var,
1315                                   snd_pcm_hw_rule_list, (void *)l,
1316                                   var, -1);
1317}
1318
1319EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1320
1321static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1322                                   struct snd_pcm_hw_rule *rule)
1323{
1324        struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1325        unsigned int num = 0, den = 0;
1326        int err;
1327        err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1328                                  r->nrats, r->rats, &num, &den);
1329        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1330                params->rate_num = num;
1331                params->rate_den = den;
1332        }
1333        return err;
1334}
1335
1336/**
1337 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1338 * @runtime: PCM runtime instance
1339 * @cond: condition bits
1340 * @var: hw_params variable to apply the ratnums constraint
1341 * @r: struct snd_ratnums constriants
1342 *
1343 * Return: Zero if successful, or a negative error code on failure.
1344 */
1345int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1346                                  unsigned int cond,
1347                                  snd_pcm_hw_param_t var,
1348                                  struct snd_pcm_hw_constraint_ratnums *r)
1349{
1350        return snd_pcm_hw_rule_add(runtime, cond, var,
1351                                   snd_pcm_hw_rule_ratnums, r,
1352                                   var, -1);
1353}
1354
1355EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1356
1357static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1358                                   struct snd_pcm_hw_rule *rule)
1359{
1360        struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1361        unsigned int num = 0, den = 0;
1362        int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1363                                  r->nrats, r->rats, &num, &den);
1364        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1365                params->rate_num = num;
1366                params->rate_den = den;
1367        }
1368        return err;
1369}
1370
1371/**
1372 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1373 * @runtime: PCM runtime instance
1374 * @cond: condition bits
1375 * @var: hw_params variable to apply the ratdens constraint
1376 * @r: struct snd_ratdens constriants
1377 *
1378 * Return: Zero if successful, or a negative error code on failure.
1379 */
1380int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1381                                  unsigned int cond,
1382                                  snd_pcm_hw_param_t var,
1383                                  struct snd_pcm_hw_constraint_ratdens *r)
1384{
1385        return snd_pcm_hw_rule_add(runtime, cond, var,
1386                                   snd_pcm_hw_rule_ratdens, r,
1387                                   var, -1);
1388}
1389
1390EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1391
1392static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1393                                  struct snd_pcm_hw_rule *rule)
1394{
1395        unsigned int l = (unsigned long) rule->private;
1396        int width = l & 0xffff;
1397        unsigned int msbits = l >> 16;
1398        struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1399        if (snd_interval_single(i) && snd_interval_value(i) == width)
1400                params->msbits = msbits;
1401        return 0;
1402}
1403
1404/**
1405 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1406 * @runtime: PCM runtime instance
1407 * @cond: condition bits
1408 * @width: sample bits width
1409 * @msbits: msbits width
1410 *
1411 * Return: Zero if successful, or a negative error code on failure.
1412 */
1413int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1414                                 unsigned int cond,
1415                                 unsigned int width,
1416                                 unsigned int msbits)
1417{
1418        unsigned long l = (msbits << 16) | width;
1419        return snd_pcm_hw_rule_add(runtime, cond, -1,
1420                                    snd_pcm_hw_rule_msbits,
1421                                    (void*) l,
1422                                    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1423}
1424
1425EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1426
1427static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1428                                struct snd_pcm_hw_rule *rule)
1429{
1430        unsigned long step = (unsigned long) rule->private;
1431        return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1432}
1433
1434/**
1435 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436 * @runtime: PCM runtime instance
1437 * @cond: condition bits
1438 * @var: hw_params variable to apply the step constraint
1439 * @step: step size
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1444                               unsigned int cond,
1445                               snd_pcm_hw_param_t var,
1446                               unsigned long step)
1447{
1448        return snd_pcm_hw_rule_add(runtime, cond, var, 
1449                                   snd_pcm_hw_rule_step, (void *) step,
1450                                   var, -1);
1451}
1452
1453EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454
1455static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456{
1457        static unsigned int pow2_sizes[] = {
1458                1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459                1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460                1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461                1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462        };
1463        return snd_interval_list(hw_param_interval(params, rule->var),
1464                                 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465}               
1466
1467/**
1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469 * @runtime: PCM runtime instance
1470 * @cond: condition bits
1471 * @var: hw_params variable to apply the power-of-2 constraint
1472 *
1473 * Return: Zero if successful, or a negative error code on failure.
1474 */
1475int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476                               unsigned int cond,
1477                               snd_pcm_hw_param_t var)
1478{
1479        return snd_pcm_hw_rule_add(runtime, cond, var, 
1480                                   snd_pcm_hw_rule_pow2, NULL,
1481                                   var, -1);
1482}
1483
1484EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1485
1486static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1487                                           struct snd_pcm_hw_rule *rule)
1488{
1489        unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1490        struct snd_interval *rate;
1491
1492        rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1493        return snd_interval_list(rate, 1, &base_rate, 0);
1494}
1495
1496/**
1497 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1498 * @runtime: PCM runtime instance
1499 * @base_rate: the rate at which the hardware does not resample
1500 *
1501 * Return: Zero if successful, or a negative error code on failure.
1502 */
1503int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1504                               unsigned int base_rate)
1505{
1506        return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1507                                   SNDRV_PCM_HW_PARAM_RATE,
1508                                   snd_pcm_hw_rule_noresample_func,
1509                                   (void *)(uintptr_t)base_rate,
1510                                   SNDRV_PCM_HW_PARAM_RATE, -1);
1511}
1512EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1513
1514static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1515                                  snd_pcm_hw_param_t var)
1516{
1517        if (hw_is_mask(var)) {
1518                snd_mask_any(hw_param_mask(params, var));
1519                params->cmask |= 1 << var;
1520                params->rmask |= 1 << var;
1521                return;
1522        }
1523        if (hw_is_interval(var)) {
1524                snd_interval_any(hw_param_interval(params, var));
1525                params->cmask |= 1 << var;
1526                params->rmask |= 1 << var;
1527                return;
1528        }
1529        snd_BUG();
1530}
1531
1532void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1533{
1534        unsigned int k;
1535        memset(params, 0, sizeof(*params));
1536        for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1537                _snd_pcm_hw_param_any(params, k);
1538        for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1539                _snd_pcm_hw_param_any(params, k);
1540        params->info = ~0U;
1541}
1542
1543EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1544
1545/**
1546 * snd_pcm_hw_param_value - return @params field @var value
1547 * @params: the hw_params instance
1548 * @var: parameter to retrieve
1549 * @dir: pointer to the direction (-1,0,1) or %NULL
1550 *
1551 * Return: The value for field @var if it's fixed in configuration space
1552 * defined by @params. -%EINVAL otherwise.
1553 */
1554int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1555                           snd_pcm_hw_param_t var, int *dir)
1556{
1557        if (hw_is_mask(var)) {
1558                const struct snd_mask *mask = hw_param_mask_c(params, var);
1559                if (!snd_mask_single(mask))
1560                        return -EINVAL;
1561                if (dir)
1562                        *dir = 0;
1563                return snd_mask_value(mask);
1564        }
1565        if (hw_is_interval(var)) {
1566                const struct snd_interval *i = hw_param_interval_c(params, var);
1567                if (!snd_interval_single(i))
1568                        return -EINVAL;
1569                if (dir)
1570                        *dir = i->openmin;
1571                return snd_interval_value(i);
1572        }
1573        return -EINVAL;
1574}
1575
1576EXPORT_SYMBOL(snd_pcm_hw_param_value);
1577
1578void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1579                                snd_pcm_hw_param_t var)
1580{
1581        if (hw_is_mask(var)) {
1582                snd_mask_none(hw_param_mask(params, var));
1583                params->cmask |= 1 << var;
1584                params->rmask |= 1 << var;
1585        } else if (hw_is_interval(var)) {
1586                snd_interval_none(hw_param_interval(params, var));
1587                params->cmask |= 1 << var;
1588                params->rmask |= 1 << var;
1589        } else {
1590                snd_BUG();
1591        }
1592}
1593
1594EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1595
1596static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1597                                   snd_pcm_hw_param_t var)
1598{
1599        int changed;
1600        if (hw_is_mask(var))
1601                changed = snd_mask_refine_first(hw_param_mask(params, var));
1602        else if (hw_is_interval(var))
1603                changed = snd_interval_refine_first(hw_param_interval(params, var));
1604        else
1605                return -EINVAL;
1606        if (changed) {
1607                params->cmask |= 1 << var;
1608                params->rmask |= 1 << var;
1609        }
1610        return changed;
1611}
1612
1613
1614/**
1615 * snd_pcm_hw_param_first - refine config space and return minimum value
1616 * @pcm: PCM instance
1617 * @params: the hw_params instance
1618 * @var: parameter to retrieve
1619 * @dir: pointer to the direction (-1,0,1) or %NULL
1620 *
1621 * Inside configuration space defined by @params remove from @var all
1622 * values > minimum. Reduce configuration space accordingly.
1623 *
1624 * Return: The minimum, or a negative error code on failure.
1625 */
1626int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1627                           struct snd_pcm_hw_params *params, 
1628                           snd_pcm_hw_param_t var, int *dir)
1629{
1630        int changed = _snd_pcm_hw_param_first(params, var);
1631        if (changed < 0)
1632                return changed;
1633        if (params->rmask) {
1634                int err = snd_pcm_hw_refine(pcm, params);
1635                if (snd_BUG_ON(err < 0))
1636                        return err;
1637        }
1638        return snd_pcm_hw_param_value(params, var, dir);
1639}
1640
1641EXPORT_SYMBOL(snd_pcm_hw_param_first);
1642
1643static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1644                                  snd_pcm_hw_param_t var)
1645{
1646        int changed;
1647        if (hw_is_mask(var))
1648                changed = snd_mask_refine_last(hw_param_mask(params, var));
1649        else if (hw_is_interval(var))
1650                changed = snd_interval_refine_last(hw_param_interval(params, var));
1651        else
1652                return -EINVAL;
1653        if (changed) {
1654                params->cmask |= 1 << var;
1655                params->rmask |= 1 << var;
1656        }
1657        return changed;
1658}
1659
1660
1661/**
1662 * snd_pcm_hw_param_last - refine config space and return maximum value
1663 * @pcm: PCM instance
1664 * @params: the hw_params instance
1665 * @var: parameter to retrieve
1666 * @dir: pointer to the direction (-1,0,1) or %NULL
1667 *
1668 * Inside configuration space defined by @params remove from @var all
1669 * values < maximum. Reduce configuration space accordingly.
1670 *
1671 * Return: The maximum, or a negative error code on failure.
1672 */
1673int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1674                          struct snd_pcm_hw_params *params,
1675                          snd_pcm_hw_param_t var, int *dir)
1676{
1677        int changed = _snd_pcm_hw_param_last(params, var);
1678        if (changed < 0)
1679                return changed;
1680        if (params->rmask) {
1681                int err = snd_pcm_hw_refine(pcm, params);
1682                if (snd_BUG_ON(err < 0))
1683                        return err;
1684        }
1685        return snd_pcm_hw_param_value(params, var, dir);
1686}
1687
1688EXPORT_SYMBOL(snd_pcm_hw_param_last);
1689
1690/**
1691 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1692 * @pcm: PCM instance
1693 * @params: the hw_params instance
1694 *
1695 * Choose one configuration from configuration space defined by @params.
1696 * The configuration chosen is that obtained fixing in this order:
1697 * first access, first format, first subformat, min channels,
1698 * min rate, min period time, max buffer size, min tick time
1699 *
1700 * Return: Zero if successful, or a negative error code on failure.
1701 */
1702int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1703                             struct snd_pcm_hw_params *params)
1704{
1705        static int vars[] = {
1706                SNDRV_PCM_HW_PARAM_ACCESS,
1707                SNDRV_PCM_HW_PARAM_FORMAT,
1708                SNDRV_PCM_HW_PARAM_SUBFORMAT,
1709                SNDRV_PCM_HW_PARAM_CHANNELS,
1710                SNDRV_PCM_HW_PARAM_RATE,
1711                SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1712                SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1713                SNDRV_PCM_HW_PARAM_TICK_TIME,
1714                -1
1715        };
1716        int err, *v;
1717
1718        for (v = vars; *v != -1; v++) {
1719                if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1720                        err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1721                else
1722                        err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1723                if (snd_BUG_ON(err < 0))
1724                        return err;
1725        }
1726        return 0;
1727}
1728
1729static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1730                                   void *arg)
1731{
1732        struct snd_pcm_runtime *runtime = substream->runtime;
1733        unsigned long flags;
1734        snd_pcm_stream_lock_irqsave(substream, flags);
1735        if (snd_pcm_running(substream) &&
1736            snd_pcm_update_hw_ptr(substream) >= 0)
1737                runtime->status->hw_ptr %= runtime->buffer_size;
1738        else {
1739                runtime->status->hw_ptr = 0;
1740                runtime->hw_ptr_wrap = 0;
1741        }
1742        snd_pcm_stream_unlock_irqrestore(substream, flags);
1743        return 0;
1744}
1745
1746static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1747                                          void *arg)
1748{
1749        struct snd_pcm_channel_info *info = arg;
1750        struct snd_pcm_runtime *runtime = substream->runtime;
1751        int width;
1752        if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1753                info->offset = -1;
1754                return 0;
1755        }
1756        width = snd_pcm_format_physical_width(runtime->format);
1757        if (width < 0)
1758                return width;
1759        info->offset = 0;
1760        switch (runtime->access) {
1761        case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1762        case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1763                info->first = info->channel * width;
1764                info->step = runtime->channels * width;
1765                break;
1766        case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1767        case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1768        {
1769                size_t size = runtime->dma_bytes / runtime->channels;
1770                info->first = info->channel * size * 8;
1771                info->step = width;
1772                break;
1773        }
1774        default:
1775                snd_BUG();
1776                break;
1777        }
1778        return 0;
1779}
1780
1781static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1782                                       void *arg)
1783{
1784        struct snd_pcm_hw_params *params = arg;
1785        snd_pcm_format_t format;
1786        int channels, width;
1787
1788        params->fifo_size = substream->runtime->hw.fifo_size;
1789        if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1790                format = params_format(params);
1791                channels = params_channels(params);
1792                width = snd_pcm_format_physical_width(format);
1793                params->fifo_size /= width * channels;
1794        }
1795        return 0;
1796}
1797
1798/**
1799 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1800 * @substream: the pcm substream instance
1801 * @cmd: ioctl command
1802 * @arg: ioctl argument
1803 *
1804 * Processes the generic ioctl commands for PCM.
1805 * Can be passed as the ioctl callback for PCM ops.
1806 *
1807 * Return: Zero if successful, or a negative error code on failure.
1808 */
1809int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1810                      unsigned int cmd, void *arg)
1811{
1812        switch (cmd) {
1813        case SNDRV_PCM_IOCTL1_INFO:
1814                return 0;
1815        case SNDRV_PCM_IOCTL1_RESET:
1816                return snd_pcm_lib_ioctl_reset(substream, arg);
1817        case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1818                return snd_pcm_lib_ioctl_channel_info(substream, arg);
1819        case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1820                return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1821        }
1822        return -ENXIO;
1823}
1824
1825EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1826
1827/**
1828 * snd_pcm_period_elapsed - update the pcm status for the next period
1829 * @substream: the pcm substream instance
1830 *
1831 * This function is called from the interrupt handler when the
1832 * PCM has processed the period size.  It will update the current
1833 * pointer, wake up sleepers, etc.
1834 *
1835 * Even if more than one periods have elapsed since the last call, you
1836 * have to call this only once.
1837 */
1838void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1839{
1840        struct snd_pcm_runtime *runtime;
1841        unsigned long flags;
1842
1843        if (PCM_RUNTIME_CHECK(substream))
1844                return;
1845        runtime = substream->runtime;
1846
1847        if (runtime->transfer_ack_begin)
1848                runtime->transfer_ack_begin(substream);
1849
1850        snd_pcm_stream_lock_irqsave(substream, flags);
1851        if (!snd_pcm_running(substream) ||
1852            snd_pcm_update_hw_ptr0(substream, 1) < 0)
1853                goto _end;
1854
1855        if (substream->timer_running)
1856                snd_timer_interrupt(substream->timer, 1);
1857 _end:
1858        snd_pcm_stream_unlock_irqrestore(substream, flags);
1859        if (runtime->transfer_ack_end)
1860                runtime->transfer_ack_end(substream);
1861        kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1862}
1863
1864EXPORT_SYMBOL(snd_pcm_period_elapsed);
1865
1866/*
1867 * Wait until avail_min data becomes available
1868 * Returns a negative error code if any error occurs during operation.
1869 * The available space is stored on availp.  When err = 0 and avail = 0
1870 * on the capture stream, it indicates the stream is in DRAINING state.
1871 */
1872static int wait_for_avail(struct snd_pcm_substream *substream,
1873                              snd_pcm_uframes_t *availp)
1874{
1875        struct snd_pcm_runtime *runtime = substream->runtime;
1876        int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1877        wait_queue_t wait;
1878        int err = 0;
1879        snd_pcm_uframes_t avail = 0;
1880        long wait_time, tout;
1881
1882        init_waitqueue_entry(&wait, current);
1883        set_current_state(TASK_INTERRUPTIBLE);
1884        add_wait_queue(&runtime->tsleep, &wait);
1885
1886        if (runtime->no_period_wakeup)
1887                wait_time = MAX_SCHEDULE_TIMEOUT;
1888        else {
1889                wait_time = 10;
1890                if (runtime->rate) {
1891                        long t = runtime->period_size * 2 / runtime->rate;
1892                        wait_time = max(t, wait_time);
1893                }
1894                wait_time = msecs_to_jiffies(wait_time * 1000);
1895        }
1896
1897        for (;;) {
1898                if (signal_pending(current)) {
1899                        err = -ERESTARTSYS;
1900                        break;
1901                }
1902
1903                /*
1904                 * We need to check if space became available already
1905                 * (and thus the wakeup happened already) first to close
1906                 * the race of space already having become available.
1907                 * This check must happen after been added to the waitqueue
1908                 * and having current state be INTERRUPTIBLE.
1909                 */
1910                if (is_playback)
1911                        avail = snd_pcm_playback_avail(runtime);
1912                else
1913                        avail = snd_pcm_capture_avail(runtime);
1914                if (avail >= runtime->twake)
1915                        break;
1916                snd_pcm_stream_unlock_irq(substream);
1917
1918                tout = schedule_timeout(wait_time);
1919
1920                snd_pcm_stream_lock_irq(substream);
1921                set_current_state(TASK_INTERRUPTIBLE);
1922                switch (runtime->status->state) {
1923                case SNDRV_PCM_STATE_SUSPENDED:
1924                        err = -ESTRPIPE;
1925                        goto _endloop;
1926                case SNDRV_PCM_STATE_XRUN:
1927                        err = -EPIPE;
1928                        goto _endloop;
1929                case SNDRV_PCM_STATE_DRAINING:
1930                        if (is_playback)
1931                                err = -EPIPE;
1932                        else 
1933                                avail = 0; /* indicate draining */
1934                        goto _endloop;
1935                case SNDRV_PCM_STATE_OPEN:
1936                case SNDRV_PCM_STATE_SETUP:
1937                case SNDRV_PCM_STATE_DISCONNECTED:
1938                        err = -EBADFD;
1939                        goto _endloop;
1940                }
1941                if (!tout) {
1942                        snd_printd("%s write error (DMA or IRQ trouble?)\n",
1943                                   is_playback ? "playback" : "capture");
1944                        err = -EIO;
1945                        break;
1946                }
1947        }
1948 _endloop:
1949        set_current_state(TASK_RUNNING);
1950        remove_wait_queue(&runtime->tsleep, &wait);
1951        *availp = avail;
1952        return err;
1953}
1954        
1955static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1956                                      unsigned int hwoff,
1957                                      unsigned long data, unsigned int off,
1958                                      snd_pcm_uframes_t frames)
1959{
1960        struct snd_pcm_runtime *runtime = substream->runtime;
1961        int err;
1962        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1963        if (substream->ops->copy) {
1964                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1965                        return err;
1966        } else {
1967                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1968                if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1969                        return -EFAULT;
1970        }
1971        return 0;
1972}
1973 
1974typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1975                          unsigned long data, unsigned int off,
1976                          snd_pcm_uframes_t size);
1977
1978static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1979                                            unsigned long data,
1980                                            snd_pcm_uframes_t size,
1981                                            int nonblock,
1982                                            transfer_f transfer)
1983{
1984        struct snd_pcm_runtime *runtime = substream->runtime;
1985        snd_pcm_uframes_t xfer = 0;
1986        snd_pcm_uframes_t offset = 0;
1987        snd_pcm_uframes_t avail;
1988        int err = 0;
1989
1990        if (size == 0)
1991                return 0;
1992
1993        snd_pcm_stream_lock_irq(substream);
1994        switch (runtime->status->state) {
1995        case SNDRV_PCM_STATE_PREPARED:
1996        case SNDRV_PCM_STATE_RUNNING:
1997        case SNDRV_PCM_STATE_PAUSED:
1998                break;
1999        case SNDRV_PCM_STATE_XRUN:
2000                err = -EPIPE;
2001                goto _end_unlock;
2002        case SNDRV_PCM_STATE_SUSPENDED:
2003                err = -ESTRPIPE;
2004                goto _end_unlock;
2005        default:
2006                err = -EBADFD;
2007                goto _end_unlock;
2008        }
2009
2010        runtime->twake = runtime->control->avail_min ? : 1;
2011        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2012                snd_pcm_update_hw_ptr(substream);
2013        avail = snd_pcm_playback_avail(runtime);
2014        while (size > 0) {
2015                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2016                snd_pcm_uframes_t cont;
2017                if (!avail) {
2018                        if (nonblock) {
2019                                err = -EAGAIN;
2020                                goto _end_unlock;
2021                        }
2022                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2023                                        runtime->control->avail_min ? : 1);
2024                        err = wait_for_avail(substream, &avail);
2025                        if (err < 0)
2026                                goto _end_unlock;
2027                }
2028                frames = size > avail ? avail : size;
2029                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2030                if (frames > cont)
2031                        frames = cont;
2032                if (snd_BUG_ON(!frames)) {
2033                        runtime->twake = 0;
2034                        snd_pcm_stream_unlock_irq(substream);
2035                        return -EINVAL;
2036                }
2037                appl_ptr = runtime->control->appl_ptr;
2038                appl_ofs = appl_ptr % runtime->buffer_size;
2039                snd_pcm_stream_unlock_irq(substream);
2040                err = transfer(substream, appl_ofs, data, offset, frames);
2041                snd_pcm_stream_lock_irq(substream);
2042                if (err < 0)
2043                        goto _end_unlock;
2044                switch (runtime->status->state) {
2045                case SNDRV_PCM_STATE_XRUN:
2046                        err = -EPIPE;
2047                        goto _end_unlock;
2048                case SNDRV_PCM_STATE_SUSPENDED:
2049                        err = -ESTRPIPE;
2050                        goto _end_unlock;
2051                default:
2052                        break;
2053                }
2054                appl_ptr += frames;
2055                if (appl_ptr >= runtime->boundary)
2056                        appl_ptr -= runtime->boundary;
2057                runtime->control->appl_ptr = appl_ptr;
2058                if (substream->ops->ack)
2059                        substream->ops->ack(substream);
2060
2061                offset += frames;
2062                size -= frames;
2063                xfer += frames;
2064                avail -= frames;
2065                if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2066                    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2067                        err = snd_pcm_start(substream);
2068                        if (err < 0)
2069                                goto _end_unlock;
2070                }
2071        }
2072 _end_unlock:
2073        runtime->twake = 0;
2074        if (xfer > 0 && err >= 0)
2075                snd_pcm_update_state(substream, runtime);
2076        snd_pcm_stream_unlock_irq(substream);
2077        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2078}
2079
2080/* sanity-check for read/write methods */
2081static int pcm_sanity_check(struct snd_pcm_substream *substream)
2082{
2083        struct snd_pcm_runtime *runtime;
2084        if (PCM_RUNTIME_CHECK(substream))
2085                return -ENXIO;
2086        runtime = substream->runtime;
2087        if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2088                return -EINVAL;
2089        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2090                return -EBADFD;
2091        return 0;
2092}
2093
2094snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2095{
2096        struct snd_pcm_runtime *runtime;
2097        int nonblock;
2098        int err;
2099
2100        err = pcm_sanity_check(substream);
2101        if (err < 0)
2102                return err;
2103        runtime = substream->runtime;
2104        nonblock = !!(substream->f_flags & O_NONBLOCK);
2105
2106        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2107            runtime->channels > 1)
2108                return -EINVAL;
2109        return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2110                                  snd_pcm_lib_write_transfer);
2111}
2112
2113EXPORT_SYMBOL(snd_pcm_lib_write);
2114
2115static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2116                                       unsigned int hwoff,
2117                                       unsigned long data, unsigned int off,
2118                                       snd_pcm_uframes_t frames)
2119{
2120        struct snd_pcm_runtime *runtime = substream->runtime;
2121        int err;
2122        void __user **bufs = (void __user **)data;
2123        int channels = runtime->channels;
2124        int c;
2125        if (substream->ops->copy) {
2126                if (snd_BUG_ON(!substream->ops->silence))
2127                        return -EINVAL;
2128                for (c = 0; c < channels; ++c, ++bufs) {
2129                        if (*bufs == NULL) {
2130                                if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2131                                        return err;
2132                        } else {
2133                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2134                                if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2135                                        return err;
2136                        }
2137                }
2138        } else {
2139                /* default transfer behaviour */
2140                size_t dma_csize = runtime->dma_bytes / channels;
2141                for (c = 0; c < channels; ++c, ++bufs) {
2142                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2143                        if (*bufs == NULL) {
2144                                snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2145                        } else {
2146                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
2147                                if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2148                                        return -EFAULT;
2149                        }
2150                }
2151        }
2152        return 0;
2153}
2154 
2155snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2156                                     void __user **bufs,
2157                                     snd_pcm_uframes_t frames)
2158{
2159        struct snd_pcm_runtime *runtime;
2160        int nonblock;
2161        int err;
2162
2163        err = pcm_sanity_check(substream);
2164        if (err < 0)
2165                return err;
2166        runtime = substream->runtime;
2167        nonblock = !!(substream->f_flags & O_NONBLOCK);
2168
2169        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2170                return -EINVAL;
2171        return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2172                                  nonblock, snd_pcm_lib_writev_transfer);
2173}
2174
2175EXPORT_SYMBOL(snd_pcm_lib_writev);
2176
2177static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2178                                     unsigned int hwoff,
2179                                     unsigned long data, unsigned int off,
2180                                     snd_pcm_uframes_t frames)
2181{
2182        struct snd_pcm_runtime *runtime = substream->runtime;
2183        int err;
2184        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2185        if (substream->ops->copy) {
2186                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2187                        return err;
2188        } else {
2189                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2190                if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2191                        return -EFAULT;
2192        }
2193        return 0;
2194}
2195
2196static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2197                                           unsigned long data,
2198                                           snd_pcm_uframes_t size,
2199                                           int nonblock,
2200                                           transfer_f transfer)
2201{
2202        struct snd_pcm_runtime *runtime = substream->runtime;
2203        snd_pcm_uframes_t xfer = 0;
2204        snd_pcm_uframes_t offset = 0;
2205        snd_pcm_uframes_t avail;
2206        int err = 0;
2207
2208        if (size == 0)
2209                return 0;
2210
2211        snd_pcm_stream_lock_irq(substream);
2212        switch (runtime->status->state) {
2213        case SNDRV_PCM_STATE_PREPARED:
2214                if (size >= runtime->start_threshold) {
2215                        err = snd_pcm_start(substream);
2216                        if (err < 0)
2217                                goto _end_unlock;
2218                }
2219                break;
2220        case SNDRV_PCM_STATE_DRAINING:
2221        case SNDRV_PCM_STATE_RUNNING:
2222        case SNDRV_PCM_STATE_PAUSED:
2223                break;
2224        case SNDRV_PCM_STATE_XRUN:
2225                err = -EPIPE;
2226                goto _end_unlock;
2227        case SNDRV_PCM_STATE_SUSPENDED:
2228                err = -ESTRPIPE;
2229                goto _end_unlock;
2230        default:
2231                err = -EBADFD;
2232                goto _end_unlock;
2233        }
2234
2235        runtime->twake = runtime->control->avail_min ? : 1;
2236        if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2237                snd_pcm_update_hw_ptr(substream);
2238        avail = snd_pcm_capture_avail(runtime);
2239        while (size > 0) {
2240                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2241                snd_pcm_uframes_t cont;
2242                if (!avail) {
2243                        if (runtime->status->state ==
2244                            SNDRV_PCM_STATE_DRAINING) {
2245                                snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2246                                goto _end_unlock;
2247                        }
2248                        if (nonblock) {
2249                                err = -EAGAIN;
2250                                goto _end_unlock;
2251                        }
2252                        runtime->twake = min_t(snd_pcm_uframes_t, size,
2253                                        runtime->control->avail_min ? : 1);
2254                        err = wait_for_avail(substream, &avail);
2255                        if (err < 0)
2256                                goto _end_unlock;
2257                        if (!avail)
2258                                continue; /* draining */
2259                }
2260                frames = size > avail ? avail : size;
2261                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2262                if (frames > cont)
2263                        frames = cont;
2264                if (snd_BUG_ON(!frames)) {
2265                        runtime->twake = 0;
2266                        snd_pcm_stream_unlock_irq(substream);
2267                        return -EINVAL;
2268                }
2269                appl_ptr = runtime->control->appl_ptr;
2270                appl_ofs = appl_ptr % runtime->buffer_size;
2271                snd_pcm_stream_unlock_irq(substream);
2272                err = transfer(substream, appl_ofs, data, offset, frames);
2273                snd_pcm_stream_lock_irq(substream);
2274                if (err < 0)
2275                        goto _end_unlock;
2276                switch (runtime->status->state) {
2277                case SNDRV_PCM_STATE_XRUN:
2278                        err = -EPIPE;
2279                        goto _end_unlock;
2280                case SNDRV_PCM_STATE_SUSPENDED:
2281                        err = -ESTRPIPE;
2282                        goto _end_unlock;
2283                default:
2284                        break;
2285                }
2286                appl_ptr += frames;
2287                if (appl_ptr >= runtime->boundary)
2288                        appl_ptr -= runtime->boundary;
2289                runtime->control->appl_ptr = appl_ptr;
2290                if (substream->ops->ack)
2291                        substream->ops->ack(substream);
2292
2293                offset += frames;
2294                size -= frames;
2295                xfer += frames;
2296                avail -= frames;
2297        }
2298 _end_unlock:
2299        runtime->twake = 0;
2300        if (xfer > 0 && err >= 0)
2301                snd_pcm_update_state(substream, runtime);
2302        snd_pcm_stream_unlock_irq(substream);
2303        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2304}
2305
2306snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2307{
2308        struct snd_pcm_runtime *runtime;
2309        int nonblock;
2310        int err;
2311        
2312        err = pcm_sanity_check(substream);
2313        if (err < 0)
2314                return err;
2315        runtime = substream->runtime;
2316        nonblock = !!(substream->f_flags & O_NONBLOCK);
2317        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2318                return -EINVAL;
2319        return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2320}
2321
2322EXPORT_SYMBOL(snd_pcm_lib_read);
2323
2324static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2325                                      unsigned int hwoff,
2326                                      unsigned long data, unsigned int off,
2327                                      snd_pcm_uframes_t frames)
2328{
2329        struct snd_pcm_runtime *runtime = substream->runtime;
2330        int err;
2331        void __user **bufs = (void __user **)data;
2332        int channels = runtime->channels;
2333        int c;
2334        if (substream->ops->copy) {
2335                for (c = 0; c < channels; ++c, ++bufs) {
2336                        char __user *buf;
2337                        if (*bufs == NULL)
2338                                continue;
2339                        buf = *bufs + samples_to_bytes(runtime, off);
2340                        if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2341                                return err;
2342                }
2343        } else {
2344                snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2345                for (c = 0; c < channels; ++c, ++bufs) {
2346                        char *hwbuf;
2347                        char __user *buf;
2348                        if (*bufs == NULL)
2349                                continue;
2350
2351                        hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2352                        buf = *bufs + samples_to_bytes(runtime, off);
2353                        if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2354                                return -EFAULT;
2355                }
2356        }
2357        return 0;
2358}
2359 
2360snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2361                                    void __user **bufs,
2362                                    snd_pcm_uframes_t frames)
2363{
2364        struct snd_pcm_runtime *runtime;
2365        int nonblock;
2366        int err;
2367
2368        err = pcm_sanity_check(substream);
2369        if (err < 0)
2370                return err;
2371        runtime = substream->runtime;
2372        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2373                return -EBADFD;
2374
2375        nonblock = !!(substream->f_flags & O_NONBLOCK);
2376        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2377                return -EINVAL;
2378        return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2379}
2380
2381EXPORT_SYMBOL(snd_pcm_lib_readv);
2382
2383/*
2384 * standard channel mapping helpers
2385 */
2386
2387/* default channel maps for multi-channel playbacks, up to 8 channels */
2388const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2389        { .channels = 1,
2390          .map = { SNDRV_CHMAP_MONO } },
2391        { .channels = 2,
2392          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2393        { .channels = 4,
2394          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2395                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2396        { .channels = 6,
2397          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2398                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2399                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2400        { .channels = 8,
2401          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2402                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2403                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2404                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2405        { }
2406};
2407EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2408
2409/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2410const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2411        { .channels = 1,
2412          .map = { SNDRV_CHMAP_MONO } },
2413        { .channels = 2,
2414          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2415        { .channels = 4,
2416          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2417                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2418        { .channels = 6,
2419          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2420                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2421                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2422        { .channels = 8,
2423          .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2424                   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2425                   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2426                   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2427        { }
2428};
2429EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2430
2431static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2432{
2433        if (ch > info->max_channels)
2434                return false;
2435        return !info->channel_mask || (info->channel_mask & (1U << ch));
2436}
2437
2438static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2439                              struct snd_ctl_elem_info *uinfo)
2440{
2441        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2442
2443        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2444        uinfo->count = 0;
2445        uinfo->count = info->max_channels;
2446        uinfo->value.integer.min = 0;
2447        uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2448        return 0;
2449}
2450
2451/* get callback for channel map ctl element
2452 * stores the channel position firstly matching with the current channels
2453 */
2454static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2455                             struct snd_ctl_elem_value *ucontrol)
2456{
2457        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2458        unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2459        struct snd_pcm_substream *substream;
2460        const struct snd_pcm_chmap_elem *map;
2461
2462        if (snd_BUG_ON(!info->chmap))
2463                return -EINVAL;
2464        substream = snd_pcm_chmap_substream(info, idx);
2465        if (!substream)
2466                return -ENODEV;
2467        memset(ucontrol->value.integer.value, 0,
2468               sizeof(ucontrol->value.integer.value));
2469        if (!substream->runtime)
2470                return 0; /* no channels set */
2471        for (map = info->chmap; map->channels; map++) {
2472                int i;
2473                if (map->channels == substream->runtime->channels &&
2474                    valid_chmap_channels(info, map->channels)) {
2475                        for (i = 0; i < map->channels; i++)
2476                                ucontrol->value.integer.value[i] = map->map[i];
2477                        return 0;
2478                }
2479        }
2480        return -EINVAL;
2481}
2482
2483/* tlv callback for channel map ctl element
2484 * expands the pre-defined channel maps in a form of TLV
2485 */
2486static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2487                             unsigned int size, unsigned int __user *tlv)
2488{
2489        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2490        const struct snd_pcm_chmap_elem *map;
2491        unsigned int __user *dst;
2492        int c, count = 0;
2493
2494        if (snd_BUG_ON(!info->chmap))
2495                return -EINVAL;
2496        if (size < 8)
2497                return -ENOMEM;
2498        if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2499                return -EFAULT;
2500        size -= 8;
2501        dst = tlv + 2;
2502        for (map = info->chmap; map->channels; map++) {
2503                int chs_bytes = map->channels * 4;
2504                if (!valid_chmap_channels(info, map->channels))
2505                        continue;
2506                if (size < 8)
2507                        return -ENOMEM;
2508                if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2509                    put_user(chs_bytes, dst + 1))
2510                        return -EFAULT;
2511                dst += 2;
2512                size -= 8;
2513                count += 8;
2514                if (size < chs_bytes)
2515                        return -ENOMEM;
2516                size -= chs_bytes;
2517                count += chs_bytes;
2518                for (c = 0; c < map->channels; c++) {
2519                        if (put_user(map->map[c], dst))
2520                                return -EFAULT;
2521                        dst++;
2522                }
2523        }
2524        if (put_user(count, tlv + 1))
2525                return -EFAULT;
2526        return 0;
2527}
2528
2529static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2530{
2531        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2532        info->pcm->streams[info->stream].chmap_kctl = NULL;
2533        kfree(info);
2534}
2535
2536/**
2537 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2538 * @pcm: the assigned PCM instance
2539 * @stream: stream direction
2540 * @chmap: channel map elements (for query)
2541 * @max_channels: the max number of channels for the stream
2542 * @private_value: the value passed to each kcontrol's private_value field
2543 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2544 *
2545 * Create channel-mapping control elements assigned to the given PCM stream(s).
2546 * Return: Zero if successful, or a negative error value.
2547 */
2548int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2549                           const struct snd_pcm_chmap_elem *chmap,
2550                           int max_channels,
2551                           unsigned long private_value,
2552                           struct snd_pcm_chmap **info_ret)
2553{
2554        struct snd_pcm_chmap *info;
2555        struct snd_kcontrol_new knew = {
2556                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2557                .access = SNDRV_CTL_ELEM_ACCESS_READ |
2558                        SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2559                        SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2560                .info = pcm_chmap_ctl_info,
2561                .get = pcm_chmap_ctl_get,
2562                .tlv.c = pcm_chmap_ctl_tlv,
2563        };
2564        int err;
2565
2566        info = kzalloc(sizeof(*info), GFP_KERNEL);
2567        if (!info)
2568                return -ENOMEM;
2569        info->pcm = pcm;
2570        info->stream = stream;
2571        info->chmap = chmap;
2572        info->max_channels = max_channels;
2573        if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2574                knew.name = "Playback Channel Map";
2575        else
2576                knew.name = "Capture Channel Map";
2577        knew.device = pcm->device;
2578        knew.count = pcm->streams[stream].substream_count;
2579        knew.private_value = private_value;
2580        info->kctl = snd_ctl_new1(&knew, info);
2581        if (!info->kctl) {
2582                kfree(info);
2583                return -ENOMEM;
2584        }
2585        info->kctl->private_free = pcm_chmap_ctl_private_free;
2586        err = snd_ctl_add(pcm->card, info->kctl);
2587        if (err < 0)
2588                return err;
2589        pcm->streams[stream].chmap_kctl = info->kctl;
2590        if (info_ret)
2591                *info_ret = info;
2592        return 0;
2593}
2594EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2595