linux/arch/arm/kernel/kprobes-test.c
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/kprobes-test.c
   3 *
   4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11/*
  12 * This file contains test code for ARM kprobes.
  13 *
  14 * The top level function run_all_tests() executes tests for all of the
  15 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
  16 * fall into two categories; run_api_tests() checks basic functionality of the
  17 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
  18 * instruction decoding and simulation.
  19 *
  20 * run_test_cases() first checks the kprobes decoding table for self consistency
  21 * (using table_test()) then executes a series of test cases for each of the CPU
  22 * instruction forms. coverage_start() and coverage_end() are used to verify
  23 * that these test cases cover all of the possible combinations of instructions
  24 * described by the kprobes decoding tables.
  25 *
  26 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
  27 * which use the macros defined in kprobes-test.h. The rest of this
  28 * documentation will describe the operation of the framework used by these
  29 * test cases.
  30 */
  31
  32/*
  33 * TESTING METHODOLOGY
  34 * -------------------
  35 *
  36 * The methodology used to test an ARM instruction 'test_insn' is to use
  37 * inline assembler like:
  38 *
  39 * test_before: nop
  40 * test_case:   test_insn
  41 * test_after:  nop
  42 *
  43 * When the test case is run a kprobe is placed of each nop. The
  44 * post-handler of the test_before probe is used to modify the saved CPU
  45 * register context to that which we require for the test case. The
  46 * pre-handler of the of the test_after probe saves a copy of the CPU
  47 * register context. In this way we can execute test_insn with a specific
  48 * register context and see the results afterwards.
  49 *
  50 * To actually test the kprobes instruction emulation we perform the above
  51 * step a second time but with an additional kprobe on the test_case
  52 * instruction itself. If the emulation is accurate then the results seen
  53 * by the test_after probe will be identical to the first run which didn't
  54 * have a probe on test_case.
  55 *
  56 * Each test case is run several times with a variety of variations in the
  57 * flags value of stored in CPSR, and for Thumb code, different ITState.
  58 *
  59 * For instructions which can modify PC, a second test_after probe is used
  60 * like this:
  61 *
  62 * test_before: nop
  63 * test_case:   test_insn
  64 * test_after:  nop
  65 *              b test_done
  66 * test_after2: nop
  67 * test_done:
  68 *
  69 * The test case is constructed such that test_insn branches to
  70 * test_after2, or, if testing a conditional instruction, it may just
  71 * continue to test_after. The probes inserted at both locations let us
  72 * determine which happened. A similar approach is used for testing
  73 * backwards branches...
  74 *
  75 *              b test_before
  76 *              b test_done  @ helps to cope with off by 1 branches
  77 * test_after2: nop
  78 *              b test_done
  79 * test_before: nop
  80 * test_case:   test_insn
  81 * test_after:  nop
  82 * test_done:
  83 *
  84 * The macros used to generate the assembler instructions describe above
  85 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
  86 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
  87 * 99 represent: test_before, test_case, test_after2 and test_done.
  88 *
  89 * FRAMEWORK
  90 * ---------
  91 *
  92 * Each test case is wrapped between the pair of macros TESTCASE_START and
  93 * TESTCASE_END. As well as performing the inline assembler boilerplate,
  94 * these call out to the kprobes_test_case_start() and
  95 * kprobes_test_case_end() functions which drive the execution of the test
  96 * case. The specific arguments to use for each test case are stored as
  97 * inline data constructed using the various TEST_ARG_* macros. Putting
  98 * this all together, a simple test case may look like:
  99 *
 100 *      TESTCASE_START("Testing mov r0, r7")
 101 *      TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
 102 *      TEST_ARG_END("")
 103 *      TEST_INSTRUCTION("mov r0, r7")
 104 *      TESTCASE_END
 105 *
 106 * Note, in practice the single convenience macro TEST_R would be used for this
 107 * instead.
 108 *
 109 * The above would expand to assembler looking something like:
 110 *
 111 *      @ TESTCASE_START
 112 *      bl      __kprobes_test_case_start
 113 *      @ start of inline data...
 114 *      .ascii "mov r0, r7"     @ text title for test case
 115 *      .byte   0
 116 *      .align  2
 117 *
 118 *      @ TEST_ARG_REG
 119 *      .byte   ARG_TYPE_REG
 120 *      .byte   7
 121 *      .short  0
 122 *      .word   0x1234567
 123 *
 124 *      @ TEST_ARG_END
 125 *      .byte   ARG_TYPE_END
 126 *      .byte   TEST_ISA        @ flags, including ISA being tested
 127 *      .short  50f-0f          @ offset of 'test_before'
 128 *      .short  2f-0f           @ offset of 'test_after2' (if relevent)
 129 *      .short  99f-0f          @ offset of 'test_done'
 130 *      @ start of test case code...
 131 *      0:
 132 *      .code   TEST_ISA        @ switch to ISA being tested
 133 *
 134 *      @ TEST_INSTRUCTION
 135 *      50:     nop             @ location for 'test_before' probe
 136 *      1:      mov r0, r7      @ the test case instruction 'test_insn'
 137 *              nop             @ location for 'test_after' probe
 138 *
 139 *      // TESTCASE_END
 140 *      2:
 141 *      99:     bl __kprobes_test_case_end_##TEST_ISA
 142 *      .code   NONMAL_ISA
 143 *
 144 * When the above is execute the following happens...
 145 *
 146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
 147 * for a stack buffer and calls the C function kprobes_test_case_start().
 148 * This C function will do some initial processing of the inline data and
 149 * setup some global state. It then inserts the test_before and test_after
 150 * kprobes and returns a value which causes the assembler wrapper to jump
 151 * to the start of the test case code, (local label '0').
 152 *
 153 * When the test case code executes, the test_before probe will be hit and
 154 * test_before_post_handler will call setup_test_context(). This fills the
 155 * stack buffer and CPU registers with a test pattern and then processes
 156 * the test case arguments. In our example there is one TEST_ARG_REG which
 157 * indicates that R7 should be loaded with the value 0x12345678.
 158 *
 159 * When the test_before probe ends, the test case continues and executes
 160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
 161 * pre-handler for this (test_after_pre_handler) will save a copy of the
 162 * CPU register context. This should now have R0 holding the same value as
 163 * R7.
 164 *
 165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
 166 * an assembler wrapper which switches back to the ISA used by the test
 167 * code and calls the C function kprobes_test_case_end().
 168 *
 169 * For each run through the test case, test_case_run_count is incremented
 170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
 171 * register and stack buffer contents from the test case just run. It then
 172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
 173 * value to cause the test case code to be re-run.
 174 *
 175 * For odd numbered runs, kprobes_test_case_end() compares the register and
 176 * stack buffer contents to those that were saved on the previous even
 177 * numbered run (the one without the kprobe on test_insn). These should be
 178 * the same if the kprobe instruction simulation routine is correct.
 179 *
 180 * The pair of test case runs is repeated with different combinations of
 181 * flag values in CPSR and, for Thumb, different ITState. This is
 182 * controlled by test_context_cpsr().
 183 *
 184 * BUILDING TEST CASES
 185 * -------------------
 186 *
 187 *
 188 * As an aid to building test cases, the stack buffer is initialised with
 189 * some special values:
 190 *
 191 *   [SP+13*4]  Contains SP+120. This can be used to test instructions
 192 *              which load a value into SP.
 193 *
 194 *   [SP+15*4]  When testing branching instructions using TEST_BRANCH_{F,B},
 195 *              this holds the target address of the branch, 'test_after2'.
 196 *              This can be used to test instructions which load a PC value
 197 *              from memory.
 198 */
 199
 200#include <linux/kernel.h>
 201#include <linux/module.h>
 202#include <linux/slab.h>
 203#include <linux/kprobes.h>
 204
 205#include <asm/opcodes.h>
 206
 207#include "kprobes.h"
 208#include "kprobes-test.h"
 209
 210
 211#define BENCHMARKING    1
 212
 213
 214/*
 215 * Test basic API
 216 */
 217
 218static bool test_regs_ok;
 219static int test_func_instance;
 220static int pre_handler_called;
 221static int post_handler_called;
 222static int jprobe_func_called;
 223static int kretprobe_handler_called;
 224
 225#define FUNC_ARG1 0x12345678
 226#define FUNC_ARG2 0xabcdef
 227
 228
 229#ifndef CONFIG_THUMB2_KERNEL
 230
 231long arm_func(long r0, long r1);
 232
 233static void __used __naked __arm_kprobes_test_func(void)
 234{
 235        __asm__ __volatile__ (
 236                ".arm                                   \n\t"
 237                ".type arm_func, %%function             \n\t"
 238                "arm_func:                              \n\t"
 239                "adds   r0, r0, r1                      \n\t"
 240                "bx     lr                              \n\t"
 241                ".code "NORMAL_ISA       /* Back to Thumb if necessary */
 242                : : : "r0", "r1", "cc"
 243        );
 244}
 245
 246#else /* CONFIG_THUMB2_KERNEL */
 247
 248long thumb16_func(long r0, long r1);
 249long thumb32even_func(long r0, long r1);
 250long thumb32odd_func(long r0, long r1);
 251
 252static void __used __naked __thumb_kprobes_test_funcs(void)
 253{
 254        __asm__ __volatile__ (
 255                ".type thumb16_func, %%function         \n\t"
 256                "thumb16_func:                          \n\t"
 257                "adds.n r0, r0, r1                      \n\t"
 258                "bx     lr                              \n\t"
 259
 260                ".align                                 \n\t"
 261                ".type thumb32even_func, %%function     \n\t"
 262                "thumb32even_func:                      \n\t"
 263                "adds.w r0, r0, r1                      \n\t"
 264                "bx     lr                              \n\t"
 265
 266                ".align                                 \n\t"
 267                "nop.n                                  \n\t"
 268                ".type thumb32odd_func, %%function      \n\t"
 269                "thumb32odd_func:                       \n\t"
 270                "adds.w r0, r0, r1                      \n\t"
 271                "bx     lr                              \n\t"
 272
 273                : : : "r0", "r1", "cc"
 274        );
 275}
 276
 277#endif /* CONFIG_THUMB2_KERNEL */
 278
 279
 280static int call_test_func(long (*func)(long, long), bool check_test_regs)
 281{
 282        long ret;
 283
 284        ++test_func_instance;
 285        test_regs_ok = false;
 286
 287        ret = (*func)(FUNC_ARG1, FUNC_ARG2);
 288        if (ret != FUNC_ARG1 + FUNC_ARG2) {
 289                pr_err("FAIL: call_test_func: func returned %lx\n", ret);
 290                return false;
 291        }
 292
 293        if (check_test_regs && !test_regs_ok) {
 294                pr_err("FAIL: test regs not OK\n");
 295                return false;
 296        }
 297
 298        return true;
 299}
 300
 301static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
 302{
 303        pre_handler_called = test_func_instance;
 304        if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
 305                test_regs_ok = true;
 306        return 0;
 307}
 308
 309static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
 310                                unsigned long flags)
 311{
 312        post_handler_called = test_func_instance;
 313        if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
 314                test_regs_ok = false;
 315}
 316
 317static struct kprobe the_kprobe = {
 318        .addr           = 0,
 319        .pre_handler    = pre_handler,
 320        .post_handler   = post_handler
 321};
 322
 323static int test_kprobe(long (*func)(long, long))
 324{
 325        int ret;
 326
 327        the_kprobe.addr = (kprobe_opcode_t *)func;
 328        ret = register_kprobe(&the_kprobe);
 329        if (ret < 0) {
 330                pr_err("FAIL: register_kprobe failed with %d\n", ret);
 331                return ret;
 332        }
 333
 334        ret = call_test_func(func, true);
 335
 336        unregister_kprobe(&the_kprobe);
 337        the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
 338
 339        if (!ret)
 340                return -EINVAL;
 341        if (pre_handler_called != test_func_instance) {
 342                pr_err("FAIL: kprobe pre_handler not called\n");
 343                return -EINVAL;
 344        }
 345        if (post_handler_called != test_func_instance) {
 346                pr_err("FAIL: kprobe post_handler not called\n");
 347                return -EINVAL;
 348        }
 349        if (!call_test_func(func, false))
 350                return -EINVAL;
 351        if (pre_handler_called == test_func_instance ||
 352                                post_handler_called == test_func_instance) {
 353                pr_err("FAIL: probe called after unregistering\n");
 354                return -EINVAL;
 355        }
 356
 357        return 0;
 358}
 359
 360static void __kprobes jprobe_func(long r0, long r1)
 361{
 362        jprobe_func_called = test_func_instance;
 363        if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
 364                test_regs_ok = true;
 365        jprobe_return();
 366}
 367
 368static struct jprobe the_jprobe = {
 369        .entry          = jprobe_func,
 370};
 371
 372static int test_jprobe(long (*func)(long, long))
 373{
 374        int ret;
 375
 376        the_jprobe.kp.addr = (kprobe_opcode_t *)func;
 377        ret = register_jprobe(&the_jprobe);
 378        if (ret < 0) {
 379                pr_err("FAIL: register_jprobe failed with %d\n", ret);
 380                return ret;
 381        }
 382
 383        ret = call_test_func(func, true);
 384
 385        unregister_jprobe(&the_jprobe);
 386        the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 387
 388        if (!ret)
 389                return -EINVAL;
 390        if (jprobe_func_called != test_func_instance) {
 391                pr_err("FAIL: jprobe handler function not called\n");
 392                return -EINVAL;
 393        }
 394        if (!call_test_func(func, false))
 395                return -EINVAL;
 396        if (jprobe_func_called == test_func_instance) {
 397                pr_err("FAIL: probe called after unregistering\n");
 398                return -EINVAL;
 399        }
 400
 401        return 0;
 402}
 403
 404static int __kprobes
 405kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
 406{
 407        kretprobe_handler_called = test_func_instance;
 408        if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
 409                test_regs_ok = true;
 410        return 0;
 411}
 412
 413static struct kretprobe the_kretprobe = {
 414        .handler        = kretprobe_handler,
 415};
 416
 417static int test_kretprobe(long (*func)(long, long))
 418{
 419        int ret;
 420
 421        the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
 422        ret = register_kretprobe(&the_kretprobe);
 423        if (ret < 0) {
 424                pr_err("FAIL: register_kretprobe failed with %d\n", ret);
 425                return ret;
 426        }
 427
 428        ret = call_test_func(func, true);
 429
 430        unregister_kretprobe(&the_kretprobe);
 431        the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 432
 433        if (!ret)
 434                return -EINVAL;
 435        if (kretprobe_handler_called != test_func_instance) {
 436                pr_err("FAIL: kretprobe handler not called\n");
 437                return -EINVAL;
 438        }
 439        if (!call_test_func(func, false))
 440                return -EINVAL;
 441        if (jprobe_func_called == test_func_instance) {
 442                pr_err("FAIL: kretprobe called after unregistering\n");
 443                return -EINVAL;
 444        }
 445
 446        return 0;
 447}
 448
 449static int run_api_tests(long (*func)(long, long))
 450{
 451        int ret;
 452
 453        pr_info("    kprobe\n");
 454        ret = test_kprobe(func);
 455        if (ret < 0)
 456                return ret;
 457
 458        pr_info("    jprobe\n");
 459        ret = test_jprobe(func);
 460        if (ret < 0)
 461                return ret;
 462
 463        pr_info("    kretprobe\n");
 464        ret = test_kretprobe(func);
 465        if (ret < 0)
 466                return ret;
 467
 468        return 0;
 469}
 470
 471
 472/*
 473 * Benchmarking
 474 */
 475
 476#if BENCHMARKING
 477
 478static void __naked benchmark_nop(void)
 479{
 480        __asm__ __volatile__ (
 481                "nop            \n\t"
 482                "bx     lr"
 483        );
 484}
 485
 486#ifdef CONFIG_THUMB2_KERNEL
 487#define wide ".w"
 488#else
 489#define wide
 490#endif
 491
 492static void __naked benchmark_pushpop1(void)
 493{
 494        __asm__ __volatile__ (
 495                "stmdb"wide"    sp!, {r3-r11,lr}  \n\t"
 496                "ldmia"wide"    sp!, {r3-r11,pc}"
 497        );
 498}
 499
 500static void __naked benchmark_pushpop2(void)
 501{
 502        __asm__ __volatile__ (
 503                "stmdb"wide"    sp!, {r0-r8,lr}  \n\t"
 504                "ldmia"wide"    sp!, {r0-r8,pc}"
 505        );
 506}
 507
 508static void __naked benchmark_pushpop3(void)
 509{
 510        __asm__ __volatile__ (
 511                "stmdb"wide"    sp!, {r4,lr}  \n\t"
 512                "ldmia"wide"    sp!, {r4,pc}"
 513        );
 514}
 515
 516static void __naked benchmark_pushpop4(void)
 517{
 518        __asm__ __volatile__ (
 519                "stmdb"wide"    sp!, {r0,lr}  \n\t"
 520                "ldmia"wide"    sp!, {r0,pc}"
 521        );
 522}
 523
 524
 525#ifdef CONFIG_THUMB2_KERNEL
 526
 527static void __naked benchmark_pushpop_thumb(void)
 528{
 529        __asm__ __volatile__ (
 530                "push.n {r0-r7,lr}  \n\t"
 531                "pop.n  {r0-r7,pc}"
 532        );
 533}
 534
 535#endif
 536
 537static int __kprobes
 538benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
 539{
 540        return 0;
 541}
 542
 543static int benchmark(void(*fn)(void))
 544{
 545        unsigned n, i, t, t0;
 546
 547        for (n = 1000; ; n *= 2) {
 548                t0 = sched_clock();
 549                for (i = n; i > 0; --i)
 550                        fn();
 551                t = sched_clock() - t0;
 552                if (t >= 250000000)
 553                        break; /* Stop once we took more than 0.25 seconds */
 554        }
 555        return t / n; /* Time for one iteration in nanoseconds */
 556};
 557
 558static int kprobe_benchmark(void(*fn)(void), unsigned offset)
 559{
 560        struct kprobe k = {
 561                .addr           = (kprobe_opcode_t *)((uintptr_t)fn + offset),
 562                .pre_handler    = benchmark_pre_handler,
 563        };
 564
 565        int ret = register_kprobe(&k);
 566        if (ret < 0) {
 567                pr_err("FAIL: register_kprobe failed with %d\n", ret);
 568                return ret;
 569        }
 570
 571        ret = benchmark(fn);
 572
 573        unregister_kprobe(&k);
 574        return ret;
 575};
 576
 577struct benchmarks {
 578        void            (*fn)(void);
 579        unsigned        offset;
 580        const char      *title;
 581};
 582
 583static int run_benchmarks(void)
 584{
 585        int ret;
 586        struct benchmarks list[] = {
 587                {&benchmark_nop, 0, "nop"},
 588                /*
 589                 * benchmark_pushpop{1,3} will have the optimised
 590                 * instruction emulation, whilst benchmark_pushpop{2,4} will
 591                 * be the equivalent unoptimised instructions.
 592                 */
 593                {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
 594                {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
 595                {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
 596                {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
 597                {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
 598                {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
 599                {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
 600                {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
 601#ifdef CONFIG_THUMB2_KERNEL
 602                {&benchmark_pushpop_thumb, 0, "push.n   {r0-r7,lr}"},
 603                {&benchmark_pushpop_thumb, 2, "pop.n    {r0-r7,pc}"},
 604#endif
 605                {0}
 606        };
 607
 608        struct benchmarks *b;
 609        for (b = list; b->fn; ++b) {
 610                ret = kprobe_benchmark(b->fn, b->offset);
 611                if (ret < 0)
 612                        return ret;
 613                pr_info("    %dns for kprobe %s\n", ret, b->title);
 614        }
 615
 616        pr_info("\n");
 617        return 0;
 618}
 619
 620#endif /* BENCHMARKING */
 621
 622
 623/*
 624 * Decoding table self-consistency tests
 625 */
 626
 627static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
 628        [DECODE_TYPE_TABLE]     = sizeof(struct decode_table),
 629        [DECODE_TYPE_CUSTOM]    = sizeof(struct decode_custom),
 630        [DECODE_TYPE_SIMULATE]  = sizeof(struct decode_simulate),
 631        [DECODE_TYPE_EMULATE]   = sizeof(struct decode_emulate),
 632        [DECODE_TYPE_OR]        = sizeof(struct decode_or),
 633        [DECODE_TYPE_REJECT]    = sizeof(struct decode_reject)
 634};
 635
 636static int table_iter(const union decode_item *table,
 637                        int (*fn)(const struct decode_header *, void *),
 638                        void *args)
 639{
 640        const struct decode_header *h = (struct decode_header *)table;
 641        int result;
 642
 643        for (;;) {
 644                enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 645
 646                if (type == DECODE_TYPE_END)
 647                        return 0;
 648
 649                result = fn(h, args);
 650                if (result)
 651                        return result;
 652
 653                h = (struct decode_header *)
 654                        ((uintptr_t)h + decode_struct_sizes[type]);
 655
 656        }
 657}
 658
 659static int table_test_fail(const struct decode_header *h, const char* message)
 660{
 661
 662        pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
 663                                        message, h->mask.bits, h->value.bits);
 664        return -EINVAL;
 665}
 666
 667struct table_test_args {
 668        const union decode_item *root_table;
 669        u32                     parent_mask;
 670        u32                     parent_value;
 671};
 672
 673static int table_test_fn(const struct decode_header *h, void *args)
 674{
 675        struct table_test_args *a = (struct table_test_args *)args;
 676        enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 677
 678        if (h->value.bits & ~h->mask.bits)
 679                return table_test_fail(h, "Match value has bits not in mask");
 680
 681        if ((h->mask.bits & a->parent_mask) != a->parent_mask)
 682                return table_test_fail(h, "Mask has bits not in parent mask");
 683
 684        if ((h->value.bits ^ a->parent_value) & a->parent_mask)
 685                return table_test_fail(h, "Value is inconsistent with parent");
 686
 687        if (type == DECODE_TYPE_TABLE) {
 688                struct decode_table *d = (struct decode_table *)h;
 689                struct table_test_args args2 = *a;
 690                args2.parent_mask = h->mask.bits;
 691                args2.parent_value = h->value.bits;
 692                return table_iter(d->table.table, table_test_fn, &args2);
 693        }
 694
 695        return 0;
 696}
 697
 698static int table_test(const union decode_item *table)
 699{
 700        struct table_test_args args = {
 701                .root_table     = table,
 702                .parent_mask    = 0,
 703                .parent_value   = 0
 704        };
 705        return table_iter(args.root_table, table_test_fn, &args);
 706}
 707
 708
 709/*
 710 * Decoding table test coverage analysis
 711 *
 712 * coverage_start() builds a coverage_table which contains a list of
 713 * coverage_entry's to match each entry in the specified kprobes instruction
 714 * decoding table.
 715 *
 716 * When test cases are run, coverage_add() is called to process each case.
 717 * This looks up the corresponding entry in the coverage_table and sets it as
 718 * being matched, as well as clearing the regs flag appropriate for the test.
 719 *
 720 * After all test cases have been run, coverage_end() is called to check that
 721 * all entries in coverage_table have been matched and that all regs flags are
 722 * cleared. I.e. that all possible combinations of instructions described by
 723 * the kprobes decoding tables have had a test case executed for them.
 724 */
 725
 726bool coverage_fail;
 727
 728#define MAX_COVERAGE_ENTRIES 256
 729
 730struct coverage_entry {
 731        const struct decode_header      *header;
 732        unsigned                        regs;
 733        unsigned                        nesting;
 734        char                            matched;
 735};
 736
 737struct coverage_table {
 738        struct coverage_entry   *base;
 739        unsigned                num_entries;
 740        unsigned                nesting;
 741};
 742
 743struct coverage_table coverage;
 744
 745#define COVERAGE_ANY_REG        (1<<0)
 746#define COVERAGE_SP             (1<<1)
 747#define COVERAGE_PC             (1<<2)
 748#define COVERAGE_PCWB           (1<<3)
 749
 750static const char coverage_register_lookup[16] = {
 751        [REG_TYPE_ANY]          = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 752        [REG_TYPE_SAMEAS16]     = COVERAGE_ANY_REG,
 753        [REG_TYPE_SP]           = COVERAGE_SP,
 754        [REG_TYPE_PC]           = COVERAGE_PC,
 755        [REG_TYPE_NOSP]         = COVERAGE_ANY_REG | COVERAGE_SP,
 756        [REG_TYPE_NOSPPC]       = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 757        [REG_TYPE_NOPC]         = COVERAGE_ANY_REG | COVERAGE_PC,
 758        [REG_TYPE_NOPCWB]       = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
 759        [REG_TYPE_NOPCX]        = COVERAGE_ANY_REG,
 760        [REG_TYPE_NOSPPCX]      = COVERAGE_ANY_REG | COVERAGE_SP,
 761};
 762
 763unsigned coverage_start_registers(const struct decode_header *h)
 764{
 765        unsigned regs = 0;
 766        int i;
 767        for (i = 0; i < 20; i += 4) {
 768                int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
 769                regs |= coverage_register_lookup[r] << i;
 770        }
 771        return regs;
 772}
 773
 774static int coverage_start_fn(const struct decode_header *h, void *args)
 775{
 776        struct coverage_table *coverage = (struct coverage_table *)args;
 777        enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 778        struct coverage_entry *entry = coverage->base + coverage->num_entries;
 779
 780        if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
 781                pr_err("FAIL: Out of space for test coverage data");
 782                return -ENOMEM;
 783        }
 784
 785        ++coverage->num_entries;
 786
 787        entry->header = h;
 788        entry->regs = coverage_start_registers(h);
 789        entry->nesting = coverage->nesting;
 790        entry->matched = false;
 791
 792        if (type == DECODE_TYPE_TABLE) {
 793                struct decode_table *d = (struct decode_table *)h;
 794                int ret;
 795                ++coverage->nesting;
 796                ret = table_iter(d->table.table, coverage_start_fn, coverage);
 797                --coverage->nesting;
 798                return ret;
 799        }
 800
 801        return 0;
 802}
 803
 804static int coverage_start(const union decode_item *table)
 805{
 806        coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
 807                                sizeof(struct coverage_entry), GFP_KERNEL);
 808        coverage.num_entries = 0;
 809        coverage.nesting = 0;
 810        return table_iter(table, coverage_start_fn, &coverage);
 811}
 812
 813static void
 814coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
 815{
 816        int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
 817        int i;
 818        for (i = 0; i < 20; i += 4) {
 819                enum decode_reg_type reg_type = (regs >> i) & 0xf;
 820                int reg = (insn >> i) & 0xf;
 821                int flag;
 822
 823                if (!reg_type)
 824                        continue;
 825
 826                if (reg == 13)
 827                        flag = COVERAGE_SP;
 828                else if (reg == 15)
 829                        flag = COVERAGE_PC;
 830                else
 831                        flag = COVERAGE_ANY_REG;
 832                entry->regs &= ~(flag << i);
 833
 834                switch (reg_type) {
 835
 836                case REG_TYPE_NONE:
 837                case REG_TYPE_ANY:
 838                case REG_TYPE_SAMEAS16:
 839                        break;
 840
 841                case REG_TYPE_SP:
 842                        if (reg != 13)
 843                                return;
 844                        break;
 845
 846                case REG_TYPE_PC:
 847                        if (reg != 15)
 848                                return;
 849                        break;
 850
 851                case REG_TYPE_NOSP:
 852                        if (reg == 13)
 853                                return;
 854                        break;
 855
 856                case REG_TYPE_NOSPPC:
 857                case REG_TYPE_NOSPPCX:
 858                        if (reg == 13 || reg == 15)
 859                                return;
 860                        break;
 861
 862                case REG_TYPE_NOPCWB:
 863                        if (!is_writeback(insn))
 864                                break;
 865                        if (reg == 15) {
 866                                entry->regs &= ~(COVERAGE_PCWB << i);
 867                                return;
 868                        }
 869                        break;
 870
 871                case REG_TYPE_NOPC:
 872                case REG_TYPE_NOPCX:
 873                        if (reg == 15)
 874                                return;
 875                        break;
 876                }
 877
 878        }
 879}
 880
 881static void coverage_add(kprobe_opcode_t insn)
 882{
 883        struct coverage_entry *entry = coverage.base;
 884        struct coverage_entry *end = coverage.base + coverage.num_entries;
 885        bool matched = false;
 886        unsigned nesting = 0;
 887
 888        for (; entry < end; ++entry) {
 889                const struct decode_header *h = entry->header;
 890                enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 891
 892                if (entry->nesting > nesting)
 893                        continue; /* Skip sub-table we didn't match */
 894
 895                if (entry->nesting < nesting)
 896                        break; /* End of sub-table we were scanning */
 897
 898                if (!matched) {
 899                        if ((insn & h->mask.bits) != h->value.bits)
 900                                continue;
 901                        entry->matched = true;
 902                }
 903
 904                switch (type) {
 905
 906                case DECODE_TYPE_TABLE:
 907                        ++nesting;
 908                        break;
 909
 910                case DECODE_TYPE_CUSTOM:
 911                case DECODE_TYPE_SIMULATE:
 912                case DECODE_TYPE_EMULATE:
 913                        coverage_add_registers(entry, insn);
 914                        return;
 915
 916                case DECODE_TYPE_OR:
 917                        matched = true;
 918                        break;
 919
 920                case DECODE_TYPE_REJECT:
 921                default:
 922                        return;
 923                }
 924
 925        }
 926}
 927
 928static void coverage_end(void)
 929{
 930        struct coverage_entry *entry = coverage.base;
 931        struct coverage_entry *end = coverage.base + coverage.num_entries;
 932
 933        for (; entry < end; ++entry) {
 934                u32 mask = entry->header->mask.bits;
 935                u32 value = entry->header->value.bits;
 936
 937                if (entry->regs) {
 938                        pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
 939                                mask, value, entry->regs);
 940                        coverage_fail = true;
 941                }
 942                if (!entry->matched) {
 943                        pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
 944                                mask, value);
 945                        coverage_fail = true;
 946                }
 947        }
 948
 949        kfree(coverage.base);
 950}
 951
 952
 953/*
 954 * Framework for instruction set test cases
 955 */
 956
 957void __naked __kprobes_test_case_start(void)
 958{
 959        __asm__ __volatile__ (
 960                "stmdb  sp!, {r4-r11}                           \n\t"
 961                "sub    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 962                "bic    r0, lr, #1  @ r0 = inline title string  \n\t"
 963                "mov    r1, sp                                  \n\t"
 964                "bl     kprobes_test_case_start                 \n\t"
 965                "bx     r0                                      \n\t"
 966        );
 967}
 968
 969#ifndef CONFIG_THUMB2_KERNEL
 970
 971void __naked __kprobes_test_case_end_32(void)
 972{
 973        __asm__ __volatile__ (
 974                "mov    r4, lr                                  \n\t"
 975                "bl     kprobes_test_case_end                   \n\t"
 976                "cmp    r0, #0                                  \n\t"
 977                "movne  pc, r0                                  \n\t"
 978                "mov    r0, r4                                  \n\t"
 979                "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 980                "ldmia  sp!, {r4-r11}                           \n\t"
 981                "mov    pc, r0                                  \n\t"
 982        );
 983}
 984
 985#else /* CONFIG_THUMB2_KERNEL */
 986
 987void __naked __kprobes_test_case_end_16(void)
 988{
 989        __asm__ __volatile__ (
 990                "mov    r4, lr                                  \n\t"
 991                "bl     kprobes_test_case_end                   \n\t"
 992                "cmp    r0, #0                                  \n\t"
 993                "bxne   r0                                      \n\t"
 994                "mov    r0, r4                                  \n\t"
 995                "add    sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 996                "ldmia  sp!, {r4-r11}                           \n\t"
 997                "bx     r0                                      \n\t"
 998        );
 999}
1000
1001void __naked __kprobes_test_case_end_32(void)
1002{
1003        __asm__ __volatile__ (
1004                ".arm                                           \n\t"
1005                "orr    lr, lr, #1  @ will return to Thumb code \n\t"
1006                "ldr    pc, 1f                                  \n\t"
1007                "1:                                             \n\t"
1008                ".word  __kprobes_test_case_end_16              \n\t"
1009        );
1010}
1011
1012#endif
1013
1014
1015int kprobe_test_flags;
1016int kprobe_test_cc_position;
1017
1018static int test_try_count;
1019static int test_pass_count;
1020static int test_fail_count;
1021
1022static struct pt_regs initial_regs;
1023static struct pt_regs expected_regs;
1024static struct pt_regs result_regs;
1025
1026static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1027
1028static const char *current_title;
1029static struct test_arg *current_args;
1030static u32 *current_stack;
1031static uintptr_t current_branch_target;
1032
1033static uintptr_t current_code_start;
1034static kprobe_opcode_t current_instruction;
1035
1036
1037#define TEST_CASE_PASSED -1
1038#define TEST_CASE_FAILED -2
1039
1040static int test_case_run_count;
1041static bool test_case_is_thumb;
1042static int test_instance;
1043
1044/*
1045 * We ignore the state of the imprecise abort disable flag (CPSR.A) because this
1046 * can change randomly as the kernel doesn't take care to preserve or initialise
1047 * this across context switches. Also, with Security Extentions, the flag may
1048 * not be under control of the kernel; for this reason we ignore the state of
1049 * the FIQ disable flag CPSR.F as well.
1050 */
1051#define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)
1052
1053static unsigned long test_check_cc(int cc, unsigned long cpsr)
1054{
1055        int ret = arm_check_condition(cc << 28, cpsr);
1056
1057        return (ret != ARM_OPCODE_CONDTEST_FAIL);
1058}
1059
1060static int is_last_scenario;
1061static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1062static int memory_needs_checking;
1063
1064static unsigned long test_context_cpsr(int scenario)
1065{
1066        unsigned long cpsr;
1067
1068        probe_should_run = 1;
1069
1070        /* Default case is that we cycle through 16 combinations of flags */
1071        cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1072        cpsr |= (scenario & 0xf) << 16; /* GE flags */
1073        cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1074
1075        if (!test_case_is_thumb) {
1076                /* Testing ARM code */
1077                int cc = current_instruction >> 28;
1078
1079                probe_should_run = test_check_cc(cc, cpsr) != 0;
1080                if (scenario == 15)
1081                        is_last_scenario = true;
1082
1083        } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1084                /* Testing Thumb code without setting ITSTATE */
1085                if (kprobe_test_cc_position) {
1086                        int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1087                        probe_should_run = test_check_cc(cc, cpsr) != 0;
1088                }
1089
1090                if (scenario == 15)
1091                        is_last_scenario = true;
1092
1093        } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1094                /* Testing Thumb code with all combinations of ITSTATE */
1095                unsigned x = (scenario >> 4);
1096                unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1097                unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1098
1099                if (mask > 0x1f) {
1100                        /* Finish by testing state from instruction 'itt al' */
1101                        cond_base = 7;
1102                        mask = 0x4;
1103                        if ((scenario & 0xf) == 0xf)
1104                                is_last_scenario = true;
1105                }
1106
1107                cpsr |= cond_base << 13;        /* ITSTATE<7:5> */
1108                cpsr |= (mask & 0x1) << 12;     /* ITSTATE<4> */
1109                cpsr |= (mask & 0x2) << 10;     /* ITSTATE<3> */
1110                cpsr |= (mask & 0x4) << 8;      /* ITSTATE<2> */
1111                cpsr |= (mask & 0x8) << 23;     /* ITSTATE<1> */
1112                cpsr |= (mask & 0x10) << 21;    /* ITSTATE<0> */
1113
1114                probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1115
1116        } else {
1117                /* Testing Thumb code with several combinations of ITSTATE */
1118                switch (scenario) {
1119                case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1120                        cpsr = 0x00000800;
1121                        probe_should_run = 0;
1122                        break;
1123                case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1124                        cpsr = 0xf0007800;
1125                        probe_should_run = 0;
1126                        break;
1127                case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1128                        cpsr = 0x00009800;
1129                        break;
1130                case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1131                        cpsr = 0xf0002800;
1132                        is_last_scenario = true;
1133                        break;
1134                }
1135        }
1136
1137        return cpsr;
1138}
1139
1140static void setup_test_context(struct pt_regs *regs)
1141{
1142        int scenario = test_case_run_count>>1;
1143        unsigned long val;
1144        struct test_arg *args;
1145        int i;
1146
1147        is_last_scenario = false;
1148        memory_needs_checking = false;
1149
1150        /* Initialise test memory on stack */
1151        val = (scenario & 1) ? VALM : ~VALM;
1152        for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1153                current_stack[i] = val + (i << 8);
1154        /* Put target of branch on stack for tests which load PC from memory */
1155        if (current_branch_target)
1156                current_stack[15] = current_branch_target;
1157        /* Put a value for SP on stack for tests which load SP from memory */
1158        current_stack[13] = (u32)current_stack + 120;
1159
1160        /* Initialise register values to their default state */
1161        val = (scenario & 2) ? VALR : ~VALR;
1162        for (i = 0; i < 13; ++i)
1163                regs->uregs[i] = val ^ (i << 8);
1164        regs->ARM_lr = val ^ (14 << 8);
1165        regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1166        regs->ARM_cpsr |= test_context_cpsr(scenario);
1167
1168        /* Perform testcase specific register setup  */
1169        args = current_args;
1170        for (; args[0].type != ARG_TYPE_END; ++args)
1171                switch (args[0].type) {
1172                case ARG_TYPE_REG: {
1173                        struct test_arg_regptr *arg =
1174                                (struct test_arg_regptr *)args;
1175                        regs->uregs[arg->reg] = arg->val;
1176                        break;
1177                }
1178                case ARG_TYPE_PTR: {
1179                        struct test_arg_regptr *arg =
1180                                (struct test_arg_regptr *)args;
1181                        regs->uregs[arg->reg] =
1182                                (unsigned long)current_stack + arg->val;
1183                        memory_needs_checking = true;
1184                        break;
1185                }
1186                case ARG_TYPE_MEM: {
1187                        struct test_arg_mem *arg = (struct test_arg_mem *)args;
1188                        current_stack[arg->index] = arg->val;
1189                        break;
1190                }
1191                default:
1192                        break;
1193                }
1194}
1195
1196struct test_probe {
1197        struct kprobe   kprobe;
1198        bool            registered;
1199        int             hit;
1200};
1201
1202static void unregister_test_probe(struct test_probe *probe)
1203{
1204        if (probe->registered) {
1205                unregister_kprobe(&probe->kprobe);
1206                probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1207        }
1208        probe->registered = false;
1209}
1210
1211static int register_test_probe(struct test_probe *probe)
1212{
1213        int ret;
1214
1215        if (probe->registered)
1216                BUG();
1217
1218        ret = register_kprobe(&probe->kprobe);
1219        if (ret >= 0) {
1220                probe->registered = true;
1221                probe->hit = -1;
1222        }
1223        return ret;
1224}
1225
1226static int __kprobes
1227test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1228{
1229        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1230        return 0;
1231}
1232
1233static void __kprobes
1234test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1235                                                        unsigned long flags)
1236{
1237        setup_test_context(regs);
1238        initial_regs = *regs;
1239        initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1240}
1241
1242static int __kprobes
1243test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1244{
1245        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1246        return 0;
1247}
1248
1249static int __kprobes
1250test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1251{
1252        if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1253                return 0; /* Already run for this test instance */
1254
1255        result_regs = *regs;
1256        result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1257
1258        /* Undo any changes done to SP by the test case */
1259        regs->ARM_sp = (unsigned long)current_stack;
1260
1261        container_of(p, struct test_probe, kprobe)->hit = test_instance;
1262        return 0;
1263}
1264
1265static struct test_probe test_before_probe = {
1266        .kprobe.pre_handler     = test_before_pre_handler,
1267        .kprobe.post_handler    = test_before_post_handler,
1268};
1269
1270static struct test_probe test_case_probe = {
1271        .kprobe.pre_handler     = test_case_pre_handler,
1272};
1273
1274static struct test_probe test_after_probe = {
1275        .kprobe.pre_handler     = test_after_pre_handler,
1276};
1277
1278static struct test_probe test_after2_probe = {
1279        .kprobe.pre_handler     = test_after_pre_handler,
1280};
1281
1282static void test_case_cleanup(void)
1283{
1284        unregister_test_probe(&test_before_probe);
1285        unregister_test_probe(&test_case_probe);
1286        unregister_test_probe(&test_after_probe);
1287        unregister_test_probe(&test_after2_probe);
1288}
1289
1290static void print_registers(struct pt_regs *regs)
1291{
1292        pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1293                regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1294        pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1295                regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1296        pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1297                regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1298        pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1299                regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1300        pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1301}
1302
1303static void print_memory(u32 *mem, size_t size)
1304{
1305        int i;
1306        for (i = 0; i < size / sizeof(u32); i += 4)
1307                pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1308                                                mem[i+2], mem[i+3]);
1309}
1310
1311static size_t expected_memory_size(u32 *sp)
1312{
1313        size_t size = sizeof(expected_memory);
1314        int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1315        if (offset > 0)
1316                size -= offset;
1317        return size;
1318}
1319
1320static void test_case_failed(const char *message)
1321{
1322        test_case_cleanup();
1323
1324        pr_err("FAIL: %s\n", message);
1325        pr_err("FAIL: Test %s\n", current_title);
1326        pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1327}
1328
1329static unsigned long next_instruction(unsigned long pc)
1330{
1331#ifdef CONFIG_THUMB2_KERNEL
1332        if ((pc & 1) && !is_wide_instruction(*(u16 *)(pc - 1)))
1333                return pc + 2;
1334        else
1335#endif
1336        return pc + 4;
1337}
1338
1339static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
1340{
1341        struct test_arg *args;
1342        struct test_arg_end *end_arg;
1343        unsigned long test_code;
1344
1345        args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);
1346
1347        current_title = title;
1348        current_args = args;
1349        current_stack = stack;
1350
1351        ++test_try_count;
1352
1353        while (args->type != ARG_TYPE_END)
1354                ++args;
1355        end_arg = (struct test_arg_end *)args;
1356
1357        test_code = (unsigned long)(args + 1); /* Code starts after args */
1358
1359        test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1360        if (test_case_is_thumb)
1361                test_code |= 1;
1362
1363        current_code_start = test_code;
1364
1365        current_branch_target = 0;
1366        if (end_arg->branch_offset != end_arg->end_offset)
1367                current_branch_target = test_code + end_arg->branch_offset;
1368
1369        test_code += end_arg->code_offset;
1370        test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1371
1372        test_code = next_instruction(test_code);
1373        test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1374
1375        if (test_case_is_thumb) {
1376                u16 *p = (u16 *)(test_code & ~1);
1377                current_instruction = p[0];
1378                if (is_wide_instruction(current_instruction)) {
1379                        current_instruction <<= 16;
1380                        current_instruction |= p[1];
1381                }
1382        } else {
1383                current_instruction = *(u32 *)test_code;
1384        }
1385
1386        if (current_title[0] == '.')
1387                verbose("%s\n", current_title);
1388        else
1389                verbose("%s\t@ %0*x\n", current_title,
1390                                        test_case_is_thumb ? 4 : 8,
1391                                        current_instruction);
1392
1393        test_code = next_instruction(test_code);
1394        test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1395
1396        if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1397                if (!test_case_is_thumb ||
1398                        is_wide_instruction(current_instruction)) {
1399                                test_case_failed("expected 16-bit instruction");
1400                                goto fail;
1401                }
1402        } else {
1403                if (test_case_is_thumb &&
1404                        !is_wide_instruction(current_instruction)) {
1405                                test_case_failed("expected 32-bit instruction");
1406                                goto fail;
1407                }
1408        }
1409
1410        coverage_add(current_instruction);
1411
1412        if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1413                if (register_test_probe(&test_case_probe) < 0)
1414                        goto pass;
1415                test_case_failed("registered probe for unsupported instruction");
1416                goto fail;
1417        }
1418
1419        if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1420                if (register_test_probe(&test_case_probe) >= 0)
1421                        goto pass;
1422                test_case_failed("couldn't register probe for supported instruction");
1423                goto fail;
1424        }
1425
1426        if (register_test_probe(&test_before_probe) < 0) {
1427                test_case_failed("register test_before_probe failed");
1428                goto fail;
1429        }
1430        if (register_test_probe(&test_after_probe) < 0) {
1431                test_case_failed("register test_after_probe failed");
1432                goto fail;
1433        }
1434        if (current_branch_target) {
1435                test_after2_probe.kprobe.addr =
1436                                (kprobe_opcode_t *)current_branch_target;
1437                if (register_test_probe(&test_after2_probe) < 0) {
1438                        test_case_failed("register test_after2_probe failed");
1439                        goto fail;
1440                }
1441        }
1442
1443        /* Start first run of test case */
1444        test_case_run_count = 0;
1445        ++test_instance;
1446        return current_code_start;
1447pass:
1448        test_case_run_count = TEST_CASE_PASSED;
1449        return (uintptr_t)test_after_probe.kprobe.addr;
1450fail:
1451        test_case_run_count = TEST_CASE_FAILED;
1452        return (uintptr_t)test_after_probe.kprobe.addr;
1453}
1454
1455static bool check_test_results(void)
1456{
1457        size_t mem_size = 0;
1458        u32 *mem = 0;
1459
1460        if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1461                test_case_failed("registers differ");
1462                goto fail;
1463        }
1464
1465        if (memory_needs_checking) {
1466                mem = (u32 *)result_regs.ARM_sp;
1467                mem_size = expected_memory_size(mem);
1468                if (memcmp(expected_memory, mem, mem_size)) {
1469                        test_case_failed("test memory differs");
1470                        goto fail;
1471                }
1472        }
1473
1474        return true;
1475
1476fail:
1477        pr_err("initial_regs:\n");
1478        print_registers(&initial_regs);
1479        pr_err("expected_regs:\n");
1480        print_registers(&expected_regs);
1481        pr_err("result_regs:\n");
1482        print_registers(&result_regs);
1483
1484        if (mem) {
1485                pr_err("current_stack=%p\n", current_stack);
1486                pr_err("expected_memory:\n");
1487                print_memory(expected_memory, mem_size);
1488                pr_err("result_memory:\n");
1489                print_memory(mem, mem_size);
1490        }
1491
1492        return false;
1493}
1494
1495static uintptr_t __used kprobes_test_case_end(void)
1496{
1497        if (test_case_run_count < 0) {
1498                if (test_case_run_count == TEST_CASE_PASSED)
1499                        /* kprobes_test_case_start did all the needed testing */
1500                        goto pass;
1501                else
1502                        /* kprobes_test_case_start failed */
1503                        goto fail;
1504        }
1505
1506        if (test_before_probe.hit != test_instance) {
1507                test_case_failed("test_before_handler not run");
1508                goto fail;
1509        }
1510
1511        if (test_after_probe.hit != test_instance &&
1512                                test_after2_probe.hit != test_instance) {
1513                test_case_failed("test_after_handler not run");
1514                goto fail;
1515        }
1516
1517        /*
1518         * Even numbered test runs ran without a probe on the test case so
1519         * we can gather reference results. The subsequent odd numbered run
1520         * will have the probe inserted.
1521        */
1522        if ((test_case_run_count & 1) == 0) {
1523                /* Save results from run without probe */
1524                u32 *mem = (u32 *)result_regs.ARM_sp;
1525                expected_regs = result_regs;
1526                memcpy(expected_memory, mem, expected_memory_size(mem));
1527
1528                /* Insert probe onto test case instruction */
1529                if (register_test_probe(&test_case_probe) < 0) {
1530                        test_case_failed("register test_case_probe failed");
1531                        goto fail;
1532                }
1533        } else {
1534                /* Check probe ran as expected */
1535                if (probe_should_run == 1) {
1536                        if (test_case_probe.hit != test_instance) {
1537                                test_case_failed("test_case_handler not run");
1538                                goto fail;
1539                        }
1540                } else if (probe_should_run == 0) {
1541                        if (test_case_probe.hit == test_instance) {
1542                                test_case_failed("test_case_handler ran");
1543                                goto fail;
1544                        }
1545                }
1546
1547                /* Remove probe for any subsequent reference run */
1548                unregister_test_probe(&test_case_probe);
1549
1550                if (!check_test_results())
1551                        goto fail;
1552
1553                if (is_last_scenario)
1554                        goto pass;
1555        }
1556
1557        /* Do next test run */
1558        ++test_case_run_count;
1559        ++test_instance;
1560        return current_code_start;
1561fail:
1562        ++test_fail_count;
1563        goto end;
1564pass:
1565        ++test_pass_count;
1566end:
1567        test_case_cleanup();
1568        return 0;
1569}
1570
1571
1572/*
1573 * Top level test functions
1574 */
1575
1576static int run_test_cases(void (*tests)(void), const union decode_item *table)
1577{
1578        int ret;
1579
1580        pr_info("    Check decoding tables\n");
1581        ret = table_test(table);
1582        if (ret)
1583                return ret;
1584
1585        pr_info("    Run test cases\n");
1586        ret = coverage_start(table);
1587        if (ret)
1588                return ret;
1589
1590        tests();
1591
1592        coverage_end();
1593        return 0;
1594}
1595
1596
1597static int __init run_all_tests(void)
1598{
1599        int ret = 0;
1600
1601        pr_info("Beginning kprobe tests...\n");
1602
1603#ifndef CONFIG_THUMB2_KERNEL
1604
1605        pr_info("Probe ARM code\n");
1606        ret = run_api_tests(arm_func);
1607        if (ret)
1608                goto out;
1609
1610        pr_info("ARM instruction simulation\n");
1611        ret = run_test_cases(kprobe_arm_test_cases, kprobe_decode_arm_table);
1612        if (ret)
1613                goto out;
1614
1615#else /* CONFIG_THUMB2_KERNEL */
1616
1617        pr_info("Probe 16-bit Thumb code\n");
1618        ret = run_api_tests(thumb16_func);
1619        if (ret)
1620                goto out;
1621
1622        pr_info("Probe 32-bit Thumb code, even halfword\n");
1623        ret = run_api_tests(thumb32even_func);
1624        if (ret)
1625                goto out;
1626
1627        pr_info("Probe 32-bit Thumb code, odd halfword\n");
1628        ret = run_api_tests(thumb32odd_func);
1629        if (ret)
1630                goto out;
1631
1632        pr_info("16-bit Thumb instruction simulation\n");
1633        ret = run_test_cases(kprobe_thumb16_test_cases,
1634                                kprobe_decode_thumb16_table);
1635        if (ret)
1636                goto out;
1637
1638        pr_info("32-bit Thumb instruction simulation\n");
1639        ret = run_test_cases(kprobe_thumb32_test_cases,
1640                                kprobe_decode_thumb32_table);
1641        if (ret)
1642                goto out;
1643#endif
1644
1645        pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1646                test_try_count, test_pass_count, test_fail_count);
1647        if (test_fail_count) {
1648                ret = -EINVAL;
1649                goto out;
1650        }
1651
1652#if BENCHMARKING
1653        pr_info("Benchmarks\n");
1654        ret = run_benchmarks();
1655        if (ret)
1656                goto out;
1657#endif
1658
1659#if __LINUX_ARM_ARCH__ >= 7
1660        /* We are able to run all test cases so coverage should be complete */
1661        if (coverage_fail) {
1662                pr_err("FAIL: Test coverage checks failed\n");
1663                ret = -EINVAL;
1664                goto out;
1665        }
1666#endif
1667
1668out:
1669        if (ret == 0)
1670                pr_info("Finished kprobe tests OK\n");
1671        else
1672                pr_err("kprobe tests failed\n");
1673
1674        return ret;
1675}
1676
1677
1678/*
1679 * Module setup
1680 */
1681
1682#ifdef MODULE
1683
1684static void __exit kprobe_test_exit(void)
1685{
1686}
1687
1688module_init(run_all_tests)
1689module_exit(kprobe_test_exit)
1690MODULE_LICENSE("GPL");
1691
1692#else /* !MODULE */
1693
1694late_initcall(run_all_tests);
1695
1696#endif
1697