linux/arch/arm/mm/dma-mapping.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/gfp.h>
  15#include <linux/errno.h>
  16#include <linux/list.h>
  17#include <linux/init.h>
  18#include <linux/device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
  25#include <linux/io.h>
  26#include <linux/vmalloc.h>
  27#include <linux/sizes.h>
  28
  29#include <asm/memory.h>
  30#include <asm/highmem.h>
  31#include <asm/cacheflush.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mach/arch.h>
  34#include <asm/dma-iommu.h>
  35#include <asm/mach/map.h>
  36#include <asm/system_info.h>
  37#include <asm/dma-contiguous.h>
  38
  39#include "mm.h"
  40
  41/*
  42 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  43 * is either exclusively owned by the CPU (and therefore may be accessed
  44 * by it) or exclusively owned by the DMA device.  These helper functions
  45 * represent the transitions between these two ownership states.
  46 *
  47 * Note, however, that on later ARMs, this notion does not work due to
  48 * speculative prefetches.  We model our approach on the assumption that
  49 * the CPU does do speculative prefetches, which means we clean caches
  50 * before transfers and delay cache invalidation until transfer completion.
  51 *
  52 */
  53static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  54                size_t, enum dma_data_direction);
  55static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  56                size_t, enum dma_data_direction);
  57
  58/**
  59 * arm_dma_map_page - map a portion of a page for streaming DMA
  60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  61 * @page: page that buffer resides in
  62 * @offset: offset into page for start of buffer
  63 * @size: size of buffer to map
  64 * @dir: DMA transfer direction
  65 *
  66 * Ensure that any data held in the cache is appropriately discarded
  67 * or written back.
  68 *
  69 * The device owns this memory once this call has completed.  The CPU
  70 * can regain ownership by calling dma_unmap_page().
  71 */
  72static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  73             unsigned long offset, size_t size, enum dma_data_direction dir,
  74             struct dma_attrs *attrs)
  75{
  76        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  77                __dma_page_cpu_to_dev(page, offset, size, dir);
  78        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  79}
  80
  81static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
  82             unsigned long offset, size_t size, enum dma_data_direction dir,
  83             struct dma_attrs *attrs)
  84{
  85        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  86}
  87
  88/**
  89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  91 * @handle: DMA address of buffer
  92 * @size: size of buffer (same as passed to dma_map_page)
  93 * @dir: DMA transfer direction (same as passed to dma_map_page)
  94 *
  95 * Unmap a page streaming mode DMA translation.  The handle and size
  96 * must match what was provided in the previous dma_map_page() call.
  97 * All other usages are undefined.
  98 *
  99 * After this call, reads by the CPU to the buffer are guaranteed to see
 100 * whatever the device wrote there.
 101 */
 102static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 103                size_t size, enum dma_data_direction dir,
 104                struct dma_attrs *attrs)
 105{
 106        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 107                __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 108                                      handle & ~PAGE_MASK, size, dir);
 109}
 110
 111static void arm_dma_sync_single_for_cpu(struct device *dev,
 112                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 113{
 114        unsigned int offset = handle & (PAGE_SIZE - 1);
 115        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 116        __dma_page_dev_to_cpu(page, offset, size, dir);
 117}
 118
 119static void arm_dma_sync_single_for_device(struct device *dev,
 120                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 121{
 122        unsigned int offset = handle & (PAGE_SIZE - 1);
 123        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 124        __dma_page_cpu_to_dev(page, offset, size, dir);
 125}
 126
 127struct dma_map_ops arm_dma_ops = {
 128        .alloc                  = arm_dma_alloc,
 129        .free                   = arm_dma_free,
 130        .mmap                   = arm_dma_mmap,
 131        .get_sgtable            = arm_dma_get_sgtable,
 132        .map_page               = arm_dma_map_page,
 133        .unmap_page             = arm_dma_unmap_page,
 134        .map_sg                 = arm_dma_map_sg,
 135        .unmap_sg               = arm_dma_unmap_sg,
 136        .sync_single_for_cpu    = arm_dma_sync_single_for_cpu,
 137        .sync_single_for_device = arm_dma_sync_single_for_device,
 138        .sync_sg_for_cpu        = arm_dma_sync_sg_for_cpu,
 139        .sync_sg_for_device     = arm_dma_sync_sg_for_device,
 140        .set_dma_mask           = arm_dma_set_mask,
 141};
 142EXPORT_SYMBOL(arm_dma_ops);
 143
 144static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 145        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 146static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 147                                  dma_addr_t handle, struct dma_attrs *attrs);
 148
 149struct dma_map_ops arm_coherent_dma_ops = {
 150        .alloc                  = arm_coherent_dma_alloc,
 151        .free                   = arm_coherent_dma_free,
 152        .mmap                   = arm_dma_mmap,
 153        .get_sgtable            = arm_dma_get_sgtable,
 154        .map_page               = arm_coherent_dma_map_page,
 155        .map_sg                 = arm_dma_map_sg,
 156        .set_dma_mask           = arm_dma_set_mask,
 157};
 158EXPORT_SYMBOL(arm_coherent_dma_ops);
 159
 160static u64 get_coherent_dma_mask(struct device *dev)
 161{
 162        u64 mask = (u64)arm_dma_limit;
 163
 164        if (dev) {
 165                mask = dev->coherent_dma_mask;
 166
 167                /*
 168                 * Sanity check the DMA mask - it must be non-zero, and
 169                 * must be able to be satisfied by a DMA allocation.
 170                 */
 171                if (mask == 0) {
 172                        dev_warn(dev, "coherent DMA mask is unset\n");
 173                        return 0;
 174                }
 175
 176                if ((~mask) & (u64)arm_dma_limit) {
 177                        dev_warn(dev, "coherent DMA mask %#llx is smaller "
 178                                 "than system GFP_DMA mask %#llx\n",
 179                                 mask, (u64)arm_dma_limit);
 180                        return 0;
 181                }
 182        }
 183
 184        return mask;
 185}
 186
 187static void __dma_clear_buffer(struct page *page, size_t size)
 188{
 189        /*
 190         * Ensure that the allocated pages are zeroed, and that any data
 191         * lurking in the kernel direct-mapped region is invalidated.
 192         */
 193        if (PageHighMem(page)) {
 194                phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 195                phys_addr_t end = base + size;
 196                while (size > 0) {
 197                        void *ptr = kmap_atomic(page);
 198                        memset(ptr, 0, PAGE_SIZE);
 199                        dmac_flush_range(ptr, ptr + PAGE_SIZE);
 200                        kunmap_atomic(ptr);
 201                        page++;
 202                        size -= PAGE_SIZE;
 203                }
 204                outer_flush_range(base, end);
 205        } else {
 206                void *ptr = page_address(page);
 207                memset(ptr, 0, size);
 208                dmac_flush_range(ptr, ptr + size);
 209                outer_flush_range(__pa(ptr), __pa(ptr) + size);
 210        }
 211}
 212
 213/*
 214 * Allocate a DMA buffer for 'dev' of size 'size' using the
 215 * specified gfp mask.  Note that 'size' must be page aligned.
 216 */
 217static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 218{
 219        unsigned long order = get_order(size);
 220        struct page *page, *p, *e;
 221
 222        page = alloc_pages(gfp, order);
 223        if (!page)
 224                return NULL;
 225
 226        /*
 227         * Now split the huge page and free the excess pages
 228         */
 229        split_page(page, order);
 230        for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 231                __free_page(p);
 232
 233        __dma_clear_buffer(page, size);
 234
 235        return page;
 236}
 237
 238/*
 239 * Free a DMA buffer.  'size' must be page aligned.
 240 */
 241static void __dma_free_buffer(struct page *page, size_t size)
 242{
 243        struct page *e = page + (size >> PAGE_SHIFT);
 244
 245        while (page < e) {
 246                __free_page(page);
 247                page++;
 248        }
 249}
 250
 251#ifdef CONFIG_MMU
 252#ifdef CONFIG_HUGETLB_PAGE
 253#warning ARM Coherent DMA allocator does not (yet) support huge TLB
 254#endif
 255
 256static void *__alloc_from_contiguous(struct device *dev, size_t size,
 257                                     pgprot_t prot, struct page **ret_page,
 258                                     const void *caller);
 259
 260static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 261                                 pgprot_t prot, struct page **ret_page,
 262                                 const void *caller);
 263
 264static void *
 265__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 266        const void *caller)
 267{
 268        struct vm_struct *area;
 269        unsigned long addr;
 270
 271        /*
 272         * DMA allocation can be mapped to user space, so lets
 273         * set VM_USERMAP flags too.
 274         */
 275        area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 276                                  caller);
 277        if (!area)
 278                return NULL;
 279        addr = (unsigned long)area->addr;
 280        area->phys_addr = __pfn_to_phys(page_to_pfn(page));
 281
 282        if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
 283                vunmap((void *)addr);
 284                return NULL;
 285        }
 286        return (void *)addr;
 287}
 288
 289static void __dma_free_remap(void *cpu_addr, size_t size)
 290{
 291        unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
 292        struct vm_struct *area = find_vm_area(cpu_addr);
 293        if (!area || (area->flags & flags) != flags) {
 294                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
 295                return;
 296        }
 297        unmap_kernel_range((unsigned long)cpu_addr, size);
 298        vunmap(cpu_addr);
 299}
 300
 301#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 302
 303struct dma_pool {
 304        size_t size;
 305        spinlock_t lock;
 306        unsigned long *bitmap;
 307        unsigned long nr_pages;
 308        void *vaddr;
 309        struct page **pages;
 310};
 311
 312static struct dma_pool atomic_pool = {
 313        .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
 314};
 315
 316static int __init early_coherent_pool(char *p)
 317{
 318        atomic_pool.size = memparse(p, &p);
 319        return 0;
 320}
 321early_param("coherent_pool", early_coherent_pool);
 322
 323void __init init_dma_coherent_pool_size(unsigned long size)
 324{
 325        /*
 326         * Catch any attempt to set the pool size too late.
 327         */
 328        BUG_ON(atomic_pool.vaddr);
 329
 330        /*
 331         * Set architecture specific coherent pool size only if
 332         * it has not been changed by kernel command line parameter.
 333         */
 334        if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 335                atomic_pool.size = size;
 336}
 337
 338/*
 339 * Initialise the coherent pool for atomic allocations.
 340 */
 341static int __init atomic_pool_init(void)
 342{
 343        struct dma_pool *pool = &atomic_pool;
 344        pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
 345        gfp_t gfp = GFP_KERNEL | GFP_DMA;
 346        unsigned long nr_pages = pool->size >> PAGE_SHIFT;
 347        unsigned long *bitmap;
 348        struct page *page;
 349        struct page **pages;
 350        void *ptr;
 351        int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
 352
 353        bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 354        if (!bitmap)
 355                goto no_bitmap;
 356
 357        pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
 358        if (!pages)
 359                goto no_pages;
 360
 361        if (IS_ENABLED(CONFIG_DMA_CMA))
 362                ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
 363                                              atomic_pool_init);
 364        else
 365                ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
 366                                           atomic_pool_init);
 367        if (ptr) {
 368                int i;
 369
 370                for (i = 0; i < nr_pages; i++)
 371                        pages[i] = page + i;
 372
 373                spin_lock_init(&pool->lock);
 374                pool->vaddr = ptr;
 375                pool->pages = pages;
 376                pool->bitmap = bitmap;
 377                pool->nr_pages = nr_pages;
 378                pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
 379                       (unsigned)pool->size / 1024);
 380                return 0;
 381        }
 382
 383        kfree(pages);
 384no_pages:
 385        kfree(bitmap);
 386no_bitmap:
 387        pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
 388               (unsigned)pool->size / 1024);
 389        return -ENOMEM;
 390}
 391/*
 392 * CMA is activated by core_initcall, so we must be called after it.
 393 */
 394postcore_initcall(atomic_pool_init);
 395
 396struct dma_contig_early_reserve {
 397        phys_addr_t base;
 398        unsigned long size;
 399};
 400
 401static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 402
 403static int dma_mmu_remap_num __initdata;
 404
 405void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 406{
 407        dma_mmu_remap[dma_mmu_remap_num].base = base;
 408        dma_mmu_remap[dma_mmu_remap_num].size = size;
 409        dma_mmu_remap_num++;
 410}
 411
 412void __init dma_contiguous_remap(void)
 413{
 414        int i;
 415        for (i = 0; i < dma_mmu_remap_num; i++) {
 416                phys_addr_t start = dma_mmu_remap[i].base;
 417                phys_addr_t end = start + dma_mmu_remap[i].size;
 418                struct map_desc map;
 419                unsigned long addr;
 420
 421                if (end > arm_lowmem_limit)
 422                        end = arm_lowmem_limit;
 423                if (start >= end)
 424                        continue;
 425
 426                map.pfn = __phys_to_pfn(start);
 427                map.virtual = __phys_to_virt(start);
 428                map.length = end - start;
 429                map.type = MT_MEMORY_DMA_READY;
 430
 431                /*
 432                 * Clear previous low-memory mapping
 433                 */
 434                for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 435                     addr += PMD_SIZE)
 436                        pmd_clear(pmd_off_k(addr));
 437
 438                iotable_init(&map, 1);
 439        }
 440}
 441
 442static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 443                            void *data)
 444{
 445        struct page *page = virt_to_page(addr);
 446        pgprot_t prot = *(pgprot_t *)data;
 447
 448        set_pte_ext(pte, mk_pte(page, prot), 0);
 449        return 0;
 450}
 451
 452static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 453{
 454        unsigned long start = (unsigned long) page_address(page);
 455        unsigned end = start + size;
 456
 457        apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 458        flush_tlb_kernel_range(start, end);
 459}
 460
 461static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 462                                 pgprot_t prot, struct page **ret_page,
 463                                 const void *caller)
 464{
 465        struct page *page;
 466        void *ptr;
 467        page = __dma_alloc_buffer(dev, size, gfp);
 468        if (!page)
 469                return NULL;
 470
 471        ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 472        if (!ptr) {
 473                __dma_free_buffer(page, size);
 474                return NULL;
 475        }
 476
 477        *ret_page = page;
 478        return ptr;
 479}
 480
 481static void *__alloc_from_pool(size_t size, struct page **ret_page)
 482{
 483        struct dma_pool *pool = &atomic_pool;
 484        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 485        unsigned int pageno;
 486        unsigned long flags;
 487        void *ptr = NULL;
 488        unsigned long align_mask;
 489
 490        if (!pool->vaddr) {
 491                WARN(1, "coherent pool not initialised!\n");
 492                return NULL;
 493        }
 494
 495        /*
 496         * Align the region allocation - allocations from pool are rather
 497         * small, so align them to their order in pages, minimum is a page
 498         * size. This helps reduce fragmentation of the DMA space.
 499         */
 500        align_mask = (1 << get_order(size)) - 1;
 501
 502        spin_lock_irqsave(&pool->lock, flags);
 503        pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
 504                                            0, count, align_mask);
 505        if (pageno < pool->nr_pages) {
 506                bitmap_set(pool->bitmap, pageno, count);
 507                ptr = pool->vaddr + PAGE_SIZE * pageno;
 508                *ret_page = pool->pages[pageno];
 509        } else {
 510                pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
 511                            "Please increase it with coherent_pool= kernel parameter!\n",
 512                            (unsigned)pool->size / 1024);
 513        }
 514        spin_unlock_irqrestore(&pool->lock, flags);
 515
 516        return ptr;
 517}
 518
 519static bool __in_atomic_pool(void *start, size_t size)
 520{
 521        struct dma_pool *pool = &atomic_pool;
 522        void *end = start + size;
 523        void *pool_start = pool->vaddr;
 524        void *pool_end = pool->vaddr + pool->size;
 525
 526        if (start < pool_start || start >= pool_end)
 527                return false;
 528
 529        if (end <= pool_end)
 530                return true;
 531
 532        WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
 533             start, end - 1, pool_start, pool_end - 1);
 534
 535        return false;
 536}
 537
 538static int __free_from_pool(void *start, size_t size)
 539{
 540        struct dma_pool *pool = &atomic_pool;
 541        unsigned long pageno, count;
 542        unsigned long flags;
 543
 544        if (!__in_atomic_pool(start, size))
 545                return 0;
 546
 547        pageno = (start - pool->vaddr) >> PAGE_SHIFT;
 548        count = size >> PAGE_SHIFT;
 549
 550        spin_lock_irqsave(&pool->lock, flags);
 551        bitmap_clear(pool->bitmap, pageno, count);
 552        spin_unlock_irqrestore(&pool->lock, flags);
 553
 554        return 1;
 555}
 556
 557static void *__alloc_from_contiguous(struct device *dev, size_t size,
 558                                     pgprot_t prot, struct page **ret_page,
 559                                     const void *caller)
 560{
 561        unsigned long order = get_order(size);
 562        size_t count = size >> PAGE_SHIFT;
 563        struct page *page;
 564        void *ptr;
 565
 566        page = dma_alloc_from_contiguous(dev, count, order);
 567        if (!page)
 568                return NULL;
 569
 570        __dma_clear_buffer(page, size);
 571
 572        if (PageHighMem(page)) {
 573                ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 574                if (!ptr) {
 575                        dma_release_from_contiguous(dev, page, count);
 576                        return NULL;
 577                }
 578        } else {
 579                __dma_remap(page, size, prot);
 580                ptr = page_address(page);
 581        }
 582        *ret_page = page;
 583        return ptr;
 584}
 585
 586static void __free_from_contiguous(struct device *dev, struct page *page,
 587                                   void *cpu_addr, size_t size)
 588{
 589        if (PageHighMem(page))
 590                __dma_free_remap(cpu_addr, size);
 591        else
 592                __dma_remap(page, size, pgprot_kernel);
 593        dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 594}
 595
 596static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 597{
 598        prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 599                            pgprot_writecombine(prot) :
 600                            pgprot_dmacoherent(prot);
 601        return prot;
 602}
 603
 604#define nommu() 0
 605
 606#else   /* !CONFIG_MMU */
 607
 608#define nommu() 1
 609
 610#define __get_dma_pgprot(attrs, prot)   __pgprot(0)
 611#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)      NULL
 612#define __alloc_from_pool(size, ret_page)                       NULL
 613#define __alloc_from_contiguous(dev, size, prot, ret, c)        NULL
 614#define __free_from_pool(cpu_addr, size)                        0
 615#define __free_from_contiguous(dev, page, cpu_addr, size)       do { } while (0)
 616#define __dma_free_remap(cpu_addr, size)                        do { } while (0)
 617
 618#endif  /* CONFIG_MMU */
 619
 620static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 621                                   struct page **ret_page)
 622{
 623        struct page *page;
 624        page = __dma_alloc_buffer(dev, size, gfp);
 625        if (!page)
 626                return NULL;
 627
 628        *ret_page = page;
 629        return page_address(page);
 630}
 631
 632
 633
 634static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 635                         gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
 636{
 637        u64 mask = get_coherent_dma_mask(dev);
 638        struct page *page = NULL;
 639        void *addr;
 640
 641#ifdef CONFIG_DMA_API_DEBUG
 642        u64 limit = (mask + 1) & ~mask;
 643        if (limit && size >= limit) {
 644                dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 645                        size, mask);
 646                return NULL;
 647        }
 648#endif
 649
 650        if (!mask)
 651                return NULL;
 652
 653        if (mask < 0xffffffffULL)
 654                gfp |= GFP_DMA;
 655
 656        /*
 657         * Following is a work-around (a.k.a. hack) to prevent pages
 658         * with __GFP_COMP being passed to split_page() which cannot
 659         * handle them.  The real problem is that this flag probably
 660         * should be 0 on ARM as it is not supported on this
 661         * platform; see CONFIG_HUGETLBFS.
 662         */
 663        gfp &= ~(__GFP_COMP);
 664
 665        *handle = DMA_ERROR_CODE;
 666        size = PAGE_ALIGN(size);
 667
 668        if (is_coherent || nommu())
 669                addr = __alloc_simple_buffer(dev, size, gfp, &page);
 670        else if (!(gfp & __GFP_WAIT))
 671                addr = __alloc_from_pool(size, &page);
 672        else if (!IS_ENABLED(CONFIG_DMA_CMA))
 673                addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
 674        else
 675                addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
 676
 677        if (addr)
 678                *handle = pfn_to_dma(dev, page_to_pfn(page));
 679
 680        return addr;
 681}
 682
 683/*
 684 * Allocate DMA-coherent memory space and return both the kernel remapped
 685 * virtual and bus address for that space.
 686 */
 687void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 688                    gfp_t gfp, struct dma_attrs *attrs)
 689{
 690        pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 691        void *memory;
 692
 693        if (dma_alloc_from_coherent(dev, size, handle, &memory))
 694                return memory;
 695
 696        return __dma_alloc(dev, size, handle, gfp, prot, false,
 697                           __builtin_return_address(0));
 698}
 699
 700static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 701        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 702{
 703        pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 704        void *memory;
 705
 706        if (dma_alloc_from_coherent(dev, size, handle, &memory))
 707                return memory;
 708
 709        return __dma_alloc(dev, size, handle, gfp, prot, true,
 710                           __builtin_return_address(0));
 711}
 712
 713/*
 714 * Create userspace mapping for the DMA-coherent memory.
 715 */
 716int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 717                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 718                 struct dma_attrs *attrs)
 719{
 720        int ret = -ENXIO;
 721#ifdef CONFIG_MMU
 722        unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 723        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 724        unsigned long pfn = dma_to_pfn(dev, dma_addr);
 725        unsigned long off = vma->vm_pgoff;
 726
 727        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 728
 729        if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 730                return ret;
 731
 732        if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 733                ret = remap_pfn_range(vma, vma->vm_start,
 734                                      pfn + off,
 735                                      vma->vm_end - vma->vm_start,
 736                                      vma->vm_page_prot);
 737        }
 738#endif  /* CONFIG_MMU */
 739
 740        return ret;
 741}
 742
 743/*
 744 * Free a buffer as defined by the above mapping.
 745 */
 746static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 747                           dma_addr_t handle, struct dma_attrs *attrs,
 748                           bool is_coherent)
 749{
 750        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 751
 752        if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 753                return;
 754
 755        size = PAGE_ALIGN(size);
 756
 757        if (is_coherent || nommu()) {
 758                __dma_free_buffer(page, size);
 759        } else if (__free_from_pool(cpu_addr, size)) {
 760                return;
 761        } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
 762                __dma_free_remap(cpu_addr, size);
 763                __dma_free_buffer(page, size);
 764        } else {
 765                /*
 766                 * Non-atomic allocations cannot be freed with IRQs disabled
 767                 */
 768                WARN_ON(irqs_disabled());
 769                __free_from_contiguous(dev, page, cpu_addr, size);
 770        }
 771}
 772
 773void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 774                  dma_addr_t handle, struct dma_attrs *attrs)
 775{
 776        __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 777}
 778
 779static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 780                                  dma_addr_t handle, struct dma_attrs *attrs)
 781{
 782        __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 783}
 784
 785int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 786                 void *cpu_addr, dma_addr_t handle, size_t size,
 787                 struct dma_attrs *attrs)
 788{
 789        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 790        int ret;
 791
 792        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 793        if (unlikely(ret))
 794                return ret;
 795
 796        sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 797        return 0;
 798}
 799
 800static void dma_cache_maint_page(struct page *page, unsigned long offset,
 801        size_t size, enum dma_data_direction dir,
 802        void (*op)(const void *, size_t, int))
 803{
 804        unsigned long pfn;
 805        size_t left = size;
 806
 807        pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 808        offset %= PAGE_SIZE;
 809
 810        /*
 811         * A single sg entry may refer to multiple physically contiguous
 812         * pages.  But we still need to process highmem pages individually.
 813         * If highmem is not configured then the bulk of this loop gets
 814         * optimized out.
 815         */
 816        do {
 817                size_t len = left;
 818                void *vaddr;
 819
 820                page = pfn_to_page(pfn);
 821
 822                if (PageHighMem(page)) {
 823                        if (len + offset > PAGE_SIZE)
 824                                len = PAGE_SIZE - offset;
 825
 826                        if (cache_is_vipt_nonaliasing()) {
 827                                vaddr = kmap_atomic(page);
 828                                op(vaddr + offset, len, dir);
 829                                kunmap_atomic(vaddr);
 830                        } else {
 831                                vaddr = kmap_high_get(page);
 832                                if (vaddr) {
 833                                        op(vaddr + offset, len, dir);
 834                                        kunmap_high(page);
 835                                }
 836                        }
 837                } else {
 838                        vaddr = page_address(page) + offset;
 839                        op(vaddr, len, dir);
 840                }
 841                offset = 0;
 842                pfn++;
 843                left -= len;
 844        } while (left);
 845}
 846
 847/*
 848 * Make an area consistent for devices.
 849 * Note: Drivers should NOT use this function directly, as it will break
 850 * platforms with CONFIG_DMABOUNCE.
 851 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 852 */
 853static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 854        size_t size, enum dma_data_direction dir)
 855{
 856        unsigned long paddr;
 857
 858        dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 859
 860        paddr = page_to_phys(page) + off;
 861        if (dir == DMA_FROM_DEVICE) {
 862                outer_inv_range(paddr, paddr + size);
 863        } else {
 864                outer_clean_range(paddr, paddr + size);
 865        }
 866        /* FIXME: non-speculating: flush on bidirectional mappings? */
 867}
 868
 869static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 870        size_t size, enum dma_data_direction dir)
 871{
 872        unsigned long paddr = page_to_phys(page) + off;
 873
 874        /* FIXME: non-speculating: not required */
 875        /* don't bother invalidating if DMA to device */
 876        if (dir != DMA_TO_DEVICE)
 877                outer_inv_range(paddr, paddr + size);
 878
 879        dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 880
 881        /*
 882         * Mark the D-cache clean for these pages to avoid extra flushing.
 883         */
 884        if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 885                unsigned long pfn;
 886                size_t left = size;
 887
 888                pfn = page_to_pfn(page) + off / PAGE_SIZE;
 889                off %= PAGE_SIZE;
 890                if (off) {
 891                        pfn++;
 892                        left -= PAGE_SIZE - off;
 893                }
 894                while (left >= PAGE_SIZE) {
 895                        page = pfn_to_page(pfn++);
 896                        set_bit(PG_dcache_clean, &page->flags);
 897                        left -= PAGE_SIZE;
 898                }
 899        }
 900}
 901
 902/**
 903 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 904 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 905 * @sg: list of buffers
 906 * @nents: number of buffers to map
 907 * @dir: DMA transfer direction
 908 *
 909 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 910 * This is the scatter-gather version of the dma_map_single interface.
 911 * Here the scatter gather list elements are each tagged with the
 912 * appropriate dma address and length.  They are obtained via
 913 * sg_dma_{address,length}.
 914 *
 915 * Device ownership issues as mentioned for dma_map_single are the same
 916 * here.
 917 */
 918int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 919                enum dma_data_direction dir, struct dma_attrs *attrs)
 920{
 921        struct dma_map_ops *ops = get_dma_ops(dev);
 922        struct scatterlist *s;
 923        int i, j;
 924
 925        for_each_sg(sg, s, nents, i) {
 926#ifdef CONFIG_NEED_SG_DMA_LENGTH
 927                s->dma_length = s->length;
 928#endif
 929                s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 930                                                s->length, dir, attrs);
 931                if (dma_mapping_error(dev, s->dma_address))
 932                        goto bad_mapping;
 933        }
 934        return nents;
 935
 936 bad_mapping:
 937        for_each_sg(sg, s, i, j)
 938                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 939        return 0;
 940}
 941
 942/**
 943 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 944 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 945 * @sg: list of buffers
 946 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 947 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 948 *
 949 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 950 * rules concerning calls here are the same as for dma_unmap_single().
 951 */
 952void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 953                enum dma_data_direction dir, struct dma_attrs *attrs)
 954{
 955        struct dma_map_ops *ops = get_dma_ops(dev);
 956        struct scatterlist *s;
 957
 958        int i;
 959
 960        for_each_sg(sg, s, nents, i)
 961                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 962}
 963
 964/**
 965 * arm_dma_sync_sg_for_cpu
 966 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 967 * @sg: list of buffers
 968 * @nents: number of buffers to map (returned from dma_map_sg)
 969 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 970 */
 971void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 972                        int nents, enum dma_data_direction dir)
 973{
 974        struct dma_map_ops *ops = get_dma_ops(dev);
 975        struct scatterlist *s;
 976        int i;
 977
 978        for_each_sg(sg, s, nents, i)
 979                ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
 980                                         dir);
 981}
 982
 983/**
 984 * arm_dma_sync_sg_for_device
 985 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 986 * @sg: list of buffers
 987 * @nents: number of buffers to map (returned from dma_map_sg)
 988 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 989 */
 990void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 991                        int nents, enum dma_data_direction dir)
 992{
 993        struct dma_map_ops *ops = get_dma_ops(dev);
 994        struct scatterlist *s;
 995        int i;
 996
 997        for_each_sg(sg, s, nents, i)
 998                ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
 999                                            dir);
1000}
1001
1002/*
1003 * Return whether the given device DMA address mask can be supported
1004 * properly.  For example, if your device can only drive the low 24-bits
1005 * during bus mastering, then you would pass 0x00ffffff as the mask
1006 * to this function.
1007 */
1008int dma_supported(struct device *dev, u64 mask)
1009{
1010        if (mask < (u64)arm_dma_limit)
1011                return 0;
1012        return 1;
1013}
1014EXPORT_SYMBOL(dma_supported);
1015
1016int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1017{
1018        if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1019                return -EIO;
1020
1021        *dev->dma_mask = dma_mask;
1022
1023        return 0;
1024}
1025
1026#define PREALLOC_DMA_DEBUG_ENTRIES      4096
1027
1028static int __init dma_debug_do_init(void)
1029{
1030        dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1031        return 0;
1032}
1033fs_initcall(dma_debug_do_init);
1034
1035#ifdef CONFIG_ARM_DMA_USE_IOMMU
1036
1037/* IOMMU */
1038
1039static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1040                                      size_t size)
1041{
1042        unsigned int order = get_order(size);
1043        unsigned int align = 0;
1044        unsigned int count, start;
1045        unsigned long flags;
1046
1047        if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1048                order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1049
1050        count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1051                 (1 << mapping->order) - 1) >> mapping->order;
1052
1053        if (order > mapping->order)
1054                align = (1 << (order - mapping->order)) - 1;
1055
1056        spin_lock_irqsave(&mapping->lock, flags);
1057        start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1058                                           count, align);
1059        if (start > mapping->bits) {
1060                spin_unlock_irqrestore(&mapping->lock, flags);
1061                return DMA_ERROR_CODE;
1062        }
1063
1064        bitmap_set(mapping->bitmap, start, count);
1065        spin_unlock_irqrestore(&mapping->lock, flags);
1066
1067        return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1068}
1069
1070static inline void __free_iova(struct dma_iommu_mapping *mapping,
1071                               dma_addr_t addr, size_t size)
1072{
1073        unsigned int start = (addr - mapping->base) >>
1074                             (mapping->order + PAGE_SHIFT);
1075        unsigned int count = ((size >> PAGE_SHIFT) +
1076                              (1 << mapping->order) - 1) >> mapping->order;
1077        unsigned long flags;
1078
1079        spin_lock_irqsave(&mapping->lock, flags);
1080        bitmap_clear(mapping->bitmap, start, count);
1081        spin_unlock_irqrestore(&mapping->lock, flags);
1082}
1083
1084static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1085                                          gfp_t gfp, struct dma_attrs *attrs)
1086{
1087        struct page **pages;
1088        int count = size >> PAGE_SHIFT;
1089        int array_size = count * sizeof(struct page *);
1090        int i = 0;
1091
1092        if (array_size <= PAGE_SIZE)
1093                pages = kzalloc(array_size, gfp);
1094        else
1095                pages = vzalloc(array_size);
1096        if (!pages)
1097                return NULL;
1098
1099        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1100        {
1101                unsigned long order = get_order(size);
1102                struct page *page;
1103
1104                page = dma_alloc_from_contiguous(dev, count, order);
1105                if (!page)
1106                        goto error;
1107
1108                __dma_clear_buffer(page, size);
1109
1110                for (i = 0; i < count; i++)
1111                        pages[i] = page + i;
1112
1113                return pages;
1114        }
1115
1116        /*
1117         * IOMMU can map any pages, so himem can also be used here
1118         */
1119        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1120
1121        while (count) {
1122                int j, order = __fls(count);
1123
1124                pages[i] = alloc_pages(gfp, order);
1125                while (!pages[i] && order)
1126                        pages[i] = alloc_pages(gfp, --order);
1127                if (!pages[i])
1128                        goto error;
1129
1130                if (order) {
1131                        split_page(pages[i], order);
1132                        j = 1 << order;
1133                        while (--j)
1134                                pages[i + j] = pages[i] + j;
1135                }
1136
1137                __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1138                i += 1 << order;
1139                count -= 1 << order;
1140        }
1141
1142        return pages;
1143error:
1144        while (i--)
1145                if (pages[i])
1146                        __free_pages(pages[i], 0);
1147        if (array_size <= PAGE_SIZE)
1148                kfree(pages);
1149        else
1150                vfree(pages);
1151        return NULL;
1152}
1153
1154static int __iommu_free_buffer(struct device *dev, struct page **pages,
1155                               size_t size, struct dma_attrs *attrs)
1156{
1157        int count = size >> PAGE_SHIFT;
1158        int array_size = count * sizeof(struct page *);
1159        int i;
1160
1161        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1162                dma_release_from_contiguous(dev, pages[0], count);
1163        } else {
1164                for (i = 0; i < count; i++)
1165                        if (pages[i])
1166                                __free_pages(pages[i], 0);
1167        }
1168
1169        if (array_size <= PAGE_SIZE)
1170                kfree(pages);
1171        else
1172                vfree(pages);
1173        return 0;
1174}
1175
1176/*
1177 * Create a CPU mapping for a specified pages
1178 */
1179static void *
1180__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1181                    const void *caller)
1182{
1183        unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1184        struct vm_struct *area;
1185        unsigned long p;
1186
1187        area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1188                                  caller);
1189        if (!area)
1190                return NULL;
1191
1192        area->pages = pages;
1193        area->nr_pages = nr_pages;
1194        p = (unsigned long)area->addr;
1195
1196        for (i = 0; i < nr_pages; i++) {
1197                phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1198                if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1199                        goto err;
1200                p += PAGE_SIZE;
1201        }
1202        return area->addr;
1203err:
1204        unmap_kernel_range((unsigned long)area->addr, size);
1205        vunmap(area->addr);
1206        return NULL;
1207}
1208
1209/*
1210 * Create a mapping in device IO address space for specified pages
1211 */
1212static dma_addr_t
1213__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1214{
1215        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1216        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1217        dma_addr_t dma_addr, iova;
1218        int i, ret = DMA_ERROR_CODE;
1219
1220        dma_addr = __alloc_iova(mapping, size);
1221        if (dma_addr == DMA_ERROR_CODE)
1222                return dma_addr;
1223
1224        iova = dma_addr;
1225        for (i = 0; i < count; ) {
1226                unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1227                phys_addr_t phys = page_to_phys(pages[i]);
1228                unsigned int len, j;
1229
1230                for (j = i + 1; j < count; j++, next_pfn++)
1231                        if (page_to_pfn(pages[j]) != next_pfn)
1232                                break;
1233
1234                len = (j - i) << PAGE_SHIFT;
1235                ret = iommu_map(mapping->domain, iova, phys, len,
1236                                IOMMU_READ|IOMMU_WRITE);
1237                if (ret < 0)
1238                        goto fail;
1239                iova += len;
1240                i = j;
1241        }
1242        return dma_addr;
1243fail:
1244        iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1245        __free_iova(mapping, dma_addr, size);
1246        return DMA_ERROR_CODE;
1247}
1248
1249static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1250{
1251        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1252
1253        /*
1254         * add optional in-page offset from iova to size and align
1255         * result to page size
1256         */
1257        size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1258        iova &= PAGE_MASK;
1259
1260        iommu_unmap(mapping->domain, iova, size);
1261        __free_iova(mapping, iova, size);
1262        return 0;
1263}
1264
1265static struct page **__atomic_get_pages(void *addr)
1266{
1267        struct dma_pool *pool = &atomic_pool;
1268        struct page **pages = pool->pages;
1269        int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1270
1271        return pages + offs;
1272}
1273
1274static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1275{
1276        struct vm_struct *area;
1277
1278        if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1279                return __atomic_get_pages(cpu_addr);
1280
1281        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1282                return cpu_addr;
1283
1284        area = find_vm_area(cpu_addr);
1285        if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1286                return area->pages;
1287        return NULL;
1288}
1289
1290static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1291                                  dma_addr_t *handle)
1292{
1293        struct page *page;
1294        void *addr;
1295
1296        addr = __alloc_from_pool(size, &page);
1297        if (!addr)
1298                return NULL;
1299
1300        *handle = __iommu_create_mapping(dev, &page, size);
1301        if (*handle == DMA_ERROR_CODE)
1302                goto err_mapping;
1303
1304        return addr;
1305
1306err_mapping:
1307        __free_from_pool(addr, size);
1308        return NULL;
1309}
1310
1311static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1312                                dma_addr_t handle, size_t size)
1313{
1314        __iommu_remove_mapping(dev, handle, size);
1315        __free_from_pool(cpu_addr, size);
1316}
1317
1318static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1319            dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1320{
1321        pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1322        struct page **pages;
1323        void *addr = NULL;
1324
1325        *handle = DMA_ERROR_CODE;
1326        size = PAGE_ALIGN(size);
1327
1328        if (gfp & GFP_ATOMIC)
1329                return __iommu_alloc_atomic(dev, size, handle);
1330
1331        /*
1332         * Following is a work-around (a.k.a. hack) to prevent pages
1333         * with __GFP_COMP being passed to split_page() which cannot
1334         * handle them.  The real problem is that this flag probably
1335         * should be 0 on ARM as it is not supported on this
1336         * platform; see CONFIG_HUGETLBFS.
1337         */
1338        gfp &= ~(__GFP_COMP);
1339
1340        pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1341        if (!pages)
1342                return NULL;
1343
1344        *handle = __iommu_create_mapping(dev, pages, size);
1345        if (*handle == DMA_ERROR_CODE)
1346                goto err_buffer;
1347
1348        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1349                return pages;
1350
1351        addr = __iommu_alloc_remap(pages, size, gfp, prot,
1352                                   __builtin_return_address(0));
1353        if (!addr)
1354                goto err_mapping;
1355
1356        return addr;
1357
1358err_mapping:
1359        __iommu_remove_mapping(dev, *handle, size);
1360err_buffer:
1361        __iommu_free_buffer(dev, pages, size, attrs);
1362        return NULL;
1363}
1364
1365static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1366                    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1367                    struct dma_attrs *attrs)
1368{
1369        unsigned long uaddr = vma->vm_start;
1370        unsigned long usize = vma->vm_end - vma->vm_start;
1371        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1372
1373        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1374
1375        if (!pages)
1376                return -ENXIO;
1377
1378        do {
1379                int ret = vm_insert_page(vma, uaddr, *pages++);
1380                if (ret) {
1381                        pr_err("Remapping memory failed: %d\n", ret);
1382                        return ret;
1383                }
1384                uaddr += PAGE_SIZE;
1385                usize -= PAGE_SIZE;
1386        } while (usize > 0);
1387
1388        return 0;
1389}
1390
1391/*
1392 * free a page as defined by the above mapping.
1393 * Must not be called with IRQs disabled.
1394 */
1395void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1396                          dma_addr_t handle, struct dma_attrs *attrs)
1397{
1398        struct page **pages;
1399        size = PAGE_ALIGN(size);
1400
1401        if (__in_atomic_pool(cpu_addr, size)) {
1402                __iommu_free_atomic(dev, cpu_addr, handle, size);
1403                return;
1404        }
1405
1406        pages = __iommu_get_pages(cpu_addr, attrs);
1407        if (!pages) {
1408                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1409                return;
1410        }
1411
1412        if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1413                unmap_kernel_range((unsigned long)cpu_addr, size);
1414                vunmap(cpu_addr);
1415        }
1416
1417        __iommu_remove_mapping(dev, handle, size);
1418        __iommu_free_buffer(dev, pages, size, attrs);
1419}
1420
1421static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1422                                 void *cpu_addr, dma_addr_t dma_addr,
1423                                 size_t size, struct dma_attrs *attrs)
1424{
1425        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1426        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1427
1428        if (!pages)
1429                return -ENXIO;
1430
1431        return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1432                                         GFP_KERNEL);
1433}
1434
1435static int __dma_direction_to_prot(enum dma_data_direction dir)
1436{
1437        int prot;
1438
1439        switch (dir) {
1440        case DMA_BIDIRECTIONAL:
1441                prot = IOMMU_READ | IOMMU_WRITE;
1442                break;
1443        case DMA_TO_DEVICE:
1444                prot = IOMMU_READ;
1445                break;
1446        case DMA_FROM_DEVICE:
1447                prot = IOMMU_WRITE;
1448                break;
1449        default:
1450                prot = 0;
1451        }
1452
1453        return prot;
1454}
1455
1456/*
1457 * Map a part of the scatter-gather list into contiguous io address space
1458 */
1459static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1460                          size_t size, dma_addr_t *handle,
1461                          enum dma_data_direction dir, struct dma_attrs *attrs,
1462                          bool is_coherent)
1463{
1464        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1465        dma_addr_t iova, iova_base;
1466        int ret = 0;
1467        unsigned int count;
1468        struct scatterlist *s;
1469        int prot;
1470
1471        size = PAGE_ALIGN(size);
1472        *handle = DMA_ERROR_CODE;
1473
1474        iova_base = iova = __alloc_iova(mapping, size);
1475        if (iova == DMA_ERROR_CODE)
1476                return -ENOMEM;
1477
1478        for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1479                phys_addr_t phys = page_to_phys(sg_page(s));
1480                unsigned int len = PAGE_ALIGN(s->offset + s->length);
1481
1482                if (!is_coherent &&
1483                        !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1484                        __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1485
1486                prot = __dma_direction_to_prot(dir);
1487
1488                ret = iommu_map(mapping->domain, iova, phys, len, prot);
1489                if (ret < 0)
1490                        goto fail;
1491                count += len >> PAGE_SHIFT;
1492                iova += len;
1493        }
1494        *handle = iova_base;
1495
1496        return 0;
1497fail:
1498        iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1499        __free_iova(mapping, iova_base, size);
1500        return ret;
1501}
1502
1503static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1504                     enum dma_data_direction dir, struct dma_attrs *attrs,
1505                     bool is_coherent)
1506{
1507        struct scatterlist *s = sg, *dma = sg, *start = sg;
1508        int i, count = 0;
1509        unsigned int offset = s->offset;
1510        unsigned int size = s->offset + s->length;
1511        unsigned int max = dma_get_max_seg_size(dev);
1512
1513        for (i = 1; i < nents; i++) {
1514                s = sg_next(s);
1515
1516                s->dma_address = DMA_ERROR_CODE;
1517                s->dma_length = 0;
1518
1519                if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1520                        if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1521                            dir, attrs, is_coherent) < 0)
1522                                goto bad_mapping;
1523
1524                        dma->dma_address += offset;
1525                        dma->dma_length = size - offset;
1526
1527                        size = offset = s->offset;
1528                        start = s;
1529                        dma = sg_next(dma);
1530                        count += 1;
1531                }
1532                size += s->length;
1533        }
1534        if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1535                is_coherent) < 0)
1536                goto bad_mapping;
1537
1538        dma->dma_address += offset;
1539        dma->dma_length = size - offset;
1540
1541        return count+1;
1542
1543bad_mapping:
1544        for_each_sg(sg, s, count, i)
1545                __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1546        return 0;
1547}
1548
1549/**
1550 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1551 * @dev: valid struct device pointer
1552 * @sg: list of buffers
1553 * @nents: number of buffers to map
1554 * @dir: DMA transfer direction
1555 *
1556 * Map a set of i/o coherent buffers described by scatterlist in streaming
1557 * mode for DMA. The scatter gather list elements are merged together (if
1558 * possible) and tagged with the appropriate dma address and length. They are
1559 * obtained via sg_dma_{address,length}.
1560 */
1561int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1562                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1563{
1564        return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1565}
1566
1567/**
1568 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1569 * @dev: valid struct device pointer
1570 * @sg: list of buffers
1571 * @nents: number of buffers to map
1572 * @dir: DMA transfer direction
1573 *
1574 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1575 * The scatter gather list elements are merged together (if possible) and
1576 * tagged with the appropriate dma address and length. They are obtained via
1577 * sg_dma_{address,length}.
1578 */
1579int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1580                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1581{
1582        return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1583}
1584
1585static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1586                int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1587                bool is_coherent)
1588{
1589        struct scatterlist *s;
1590        int i;
1591
1592        for_each_sg(sg, s, nents, i) {
1593                if (sg_dma_len(s))
1594                        __iommu_remove_mapping(dev, sg_dma_address(s),
1595                                               sg_dma_len(s));
1596                if (!is_coherent &&
1597                    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1598                        __dma_page_dev_to_cpu(sg_page(s), s->offset,
1599                                              s->length, dir);
1600        }
1601}
1602
1603/**
1604 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1605 * @dev: valid struct device pointer
1606 * @sg: list of buffers
1607 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1608 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1609 *
1610 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1611 * rules concerning calls here are the same as for dma_unmap_single().
1612 */
1613void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1614                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1615{
1616        __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1617}
1618
1619/**
1620 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1621 * @dev: valid struct device pointer
1622 * @sg: list of buffers
1623 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1624 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1625 *
1626 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1627 * rules concerning calls here are the same as for dma_unmap_single().
1628 */
1629void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1630                        enum dma_data_direction dir, struct dma_attrs *attrs)
1631{
1632        __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1633}
1634
1635/**
1636 * arm_iommu_sync_sg_for_cpu
1637 * @dev: valid struct device pointer
1638 * @sg: list of buffers
1639 * @nents: number of buffers to map (returned from dma_map_sg)
1640 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1641 */
1642void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1643                        int nents, enum dma_data_direction dir)
1644{
1645        struct scatterlist *s;
1646        int i;
1647
1648        for_each_sg(sg, s, nents, i)
1649                __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1650
1651}
1652
1653/**
1654 * arm_iommu_sync_sg_for_device
1655 * @dev: valid struct device pointer
1656 * @sg: list of buffers
1657 * @nents: number of buffers to map (returned from dma_map_sg)
1658 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1659 */
1660void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1661                        int nents, enum dma_data_direction dir)
1662{
1663        struct scatterlist *s;
1664        int i;
1665
1666        for_each_sg(sg, s, nents, i)
1667                __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1668}
1669
1670
1671/**
1672 * arm_coherent_iommu_map_page
1673 * @dev: valid struct device pointer
1674 * @page: page that buffer resides in
1675 * @offset: offset into page for start of buffer
1676 * @size: size of buffer to map
1677 * @dir: DMA transfer direction
1678 *
1679 * Coherent IOMMU aware version of arm_dma_map_page()
1680 */
1681static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1682             unsigned long offset, size_t size, enum dma_data_direction dir,
1683             struct dma_attrs *attrs)
1684{
1685        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1686        dma_addr_t dma_addr;
1687        int ret, prot, len = PAGE_ALIGN(size + offset);
1688
1689        dma_addr = __alloc_iova(mapping, len);
1690        if (dma_addr == DMA_ERROR_CODE)
1691                return dma_addr;
1692
1693        prot = __dma_direction_to_prot(dir);
1694
1695        ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1696        if (ret < 0)
1697                goto fail;
1698
1699        return dma_addr + offset;
1700fail:
1701        __free_iova(mapping, dma_addr, len);
1702        return DMA_ERROR_CODE;
1703}
1704
1705/**
1706 * arm_iommu_map_page
1707 * @dev: valid struct device pointer
1708 * @page: page that buffer resides in
1709 * @offset: offset into page for start of buffer
1710 * @size: size of buffer to map
1711 * @dir: DMA transfer direction
1712 *
1713 * IOMMU aware version of arm_dma_map_page()
1714 */
1715static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1716             unsigned long offset, size_t size, enum dma_data_direction dir,
1717             struct dma_attrs *attrs)
1718{
1719        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1720                __dma_page_cpu_to_dev(page, offset, size, dir);
1721
1722        return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1723}
1724
1725/**
1726 * arm_coherent_iommu_unmap_page
1727 * @dev: valid struct device pointer
1728 * @handle: DMA address of buffer
1729 * @size: size of buffer (same as passed to dma_map_page)
1730 * @dir: DMA transfer direction (same as passed to dma_map_page)
1731 *
1732 * Coherent IOMMU aware version of arm_dma_unmap_page()
1733 */
1734static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1735                size_t size, enum dma_data_direction dir,
1736                struct dma_attrs *attrs)
1737{
1738        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1739        dma_addr_t iova = handle & PAGE_MASK;
1740        int offset = handle & ~PAGE_MASK;
1741        int len = PAGE_ALIGN(size + offset);
1742
1743        if (!iova)
1744                return;
1745
1746        iommu_unmap(mapping->domain, iova, len);
1747        __free_iova(mapping, iova, len);
1748}
1749
1750/**
1751 * arm_iommu_unmap_page
1752 * @dev: valid struct device pointer
1753 * @handle: DMA address of buffer
1754 * @size: size of buffer (same as passed to dma_map_page)
1755 * @dir: DMA transfer direction (same as passed to dma_map_page)
1756 *
1757 * IOMMU aware version of arm_dma_unmap_page()
1758 */
1759static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1760                size_t size, enum dma_data_direction dir,
1761                struct dma_attrs *attrs)
1762{
1763        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764        dma_addr_t iova = handle & PAGE_MASK;
1765        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1766        int offset = handle & ~PAGE_MASK;
1767        int len = PAGE_ALIGN(size + offset);
1768
1769        if (!iova)
1770                return;
1771
1772        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1773                __dma_page_dev_to_cpu(page, offset, size, dir);
1774
1775        iommu_unmap(mapping->domain, iova, len);
1776        __free_iova(mapping, iova, len);
1777}
1778
1779static void arm_iommu_sync_single_for_cpu(struct device *dev,
1780                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1781{
1782        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1783        dma_addr_t iova = handle & PAGE_MASK;
1784        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1785        unsigned int offset = handle & ~PAGE_MASK;
1786
1787        if (!iova)
1788                return;
1789
1790        __dma_page_dev_to_cpu(page, offset, size, dir);
1791}
1792
1793static void arm_iommu_sync_single_for_device(struct device *dev,
1794                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1795{
1796        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1797        dma_addr_t iova = handle & PAGE_MASK;
1798        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1799        unsigned int offset = handle & ~PAGE_MASK;
1800
1801        if (!iova)
1802                return;
1803
1804        __dma_page_cpu_to_dev(page, offset, size, dir);
1805}
1806
1807struct dma_map_ops iommu_ops = {
1808        .alloc          = arm_iommu_alloc_attrs,
1809        .free           = arm_iommu_free_attrs,
1810        .mmap           = arm_iommu_mmap_attrs,
1811        .get_sgtable    = arm_iommu_get_sgtable,
1812
1813        .map_page               = arm_iommu_map_page,
1814        .unmap_page             = arm_iommu_unmap_page,
1815        .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
1816        .sync_single_for_device = arm_iommu_sync_single_for_device,
1817
1818        .map_sg                 = arm_iommu_map_sg,
1819        .unmap_sg               = arm_iommu_unmap_sg,
1820        .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
1821        .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
1822
1823        .set_dma_mask           = arm_dma_set_mask,
1824};
1825
1826struct dma_map_ops iommu_coherent_ops = {
1827        .alloc          = arm_iommu_alloc_attrs,
1828        .free           = arm_iommu_free_attrs,
1829        .mmap           = arm_iommu_mmap_attrs,
1830        .get_sgtable    = arm_iommu_get_sgtable,
1831
1832        .map_page       = arm_coherent_iommu_map_page,
1833        .unmap_page     = arm_coherent_iommu_unmap_page,
1834
1835        .map_sg         = arm_coherent_iommu_map_sg,
1836        .unmap_sg       = arm_coherent_iommu_unmap_sg,
1837
1838        .set_dma_mask   = arm_dma_set_mask,
1839};
1840
1841/**
1842 * arm_iommu_create_mapping
1843 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1844 * @base: start address of the valid IO address space
1845 * @size: size of the valid IO address space
1846 * @order: accuracy of the IO addresses allocations
1847 *
1848 * Creates a mapping structure which holds information about used/unused
1849 * IO address ranges, which is required to perform memory allocation and
1850 * mapping with IOMMU aware functions.
1851 *
1852 * The client device need to be attached to the mapping with
1853 * arm_iommu_attach_device function.
1854 */
1855struct dma_iommu_mapping *
1856arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1857                         int order)
1858{
1859        unsigned int count = size >> (PAGE_SHIFT + order);
1860        unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1861        struct dma_iommu_mapping *mapping;
1862        int err = -ENOMEM;
1863
1864        if (!count)
1865                return ERR_PTR(-EINVAL);
1866
1867        mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1868        if (!mapping)
1869                goto err;
1870
1871        mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1872        if (!mapping->bitmap)
1873                goto err2;
1874
1875        mapping->base = base;
1876        mapping->bits = BITS_PER_BYTE * bitmap_size;
1877        mapping->order = order;
1878        spin_lock_init(&mapping->lock);
1879
1880        mapping->domain = iommu_domain_alloc(bus);
1881        if (!mapping->domain)
1882                goto err3;
1883
1884        kref_init(&mapping->kref);
1885        return mapping;
1886err3:
1887        kfree(mapping->bitmap);
1888err2:
1889        kfree(mapping);
1890err:
1891        return ERR_PTR(err);
1892}
1893EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1894
1895static void release_iommu_mapping(struct kref *kref)
1896{
1897        struct dma_iommu_mapping *mapping =
1898                container_of(kref, struct dma_iommu_mapping, kref);
1899
1900        iommu_domain_free(mapping->domain);
1901        kfree(mapping->bitmap);
1902        kfree(mapping);
1903}
1904
1905void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1906{
1907        if (mapping)
1908                kref_put(&mapping->kref, release_iommu_mapping);
1909}
1910EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1911
1912/**
1913 * arm_iommu_attach_device
1914 * @dev: valid struct device pointer
1915 * @mapping: io address space mapping structure (returned from
1916 *      arm_iommu_create_mapping)
1917 *
1918 * Attaches specified io address space mapping to the provided device,
1919 * this replaces the dma operations (dma_map_ops pointer) with the
1920 * IOMMU aware version. More than one client might be attached to
1921 * the same io address space mapping.
1922 */
1923int arm_iommu_attach_device(struct device *dev,
1924                            struct dma_iommu_mapping *mapping)
1925{
1926        int err;
1927
1928        err = iommu_attach_device(mapping->domain, dev);
1929        if (err)
1930                return err;
1931
1932        kref_get(&mapping->kref);
1933        dev->archdata.mapping = mapping;
1934        set_dma_ops(dev, &iommu_ops);
1935
1936        pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1937        return 0;
1938}
1939EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1940
1941/**
1942 * arm_iommu_detach_device
1943 * @dev: valid struct device pointer
1944 *
1945 * Detaches the provided device from a previously attached map.
1946 * This voids the dma operations (dma_map_ops pointer)
1947 */
1948void arm_iommu_detach_device(struct device *dev)
1949{
1950        struct dma_iommu_mapping *mapping;
1951
1952        mapping = to_dma_iommu_mapping(dev);
1953        if (!mapping) {
1954                dev_warn(dev, "Not attached\n");
1955                return;
1956        }
1957
1958        iommu_detach_device(mapping->domain, dev);
1959        kref_put(&mapping->kref, release_iommu_mapping);
1960        dev->archdata.mapping = NULL;
1961        set_dma_ops(dev, NULL);
1962
1963        pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1964}
1965EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1966
1967#endif
1968