linux/arch/cris/arch-v10/drivers/axisflashmap.c
<<
>>
Prefs
   1/*
   2 * Physical mapping layer for MTD using the Axis partitiontable format
   3 *
   4 * Copyright (c) 2001, 2002 Axis Communications AB
   5 *
   6 * This file is under the GPL.
   7 *
   8 * First partition is always sector 0 regardless of if we find a partitiontable
   9 * or not. In the start of the next sector, there can be a partitiontable that
  10 * tells us what other partitions to define. If there isn't, we use a default
  11 * partition split defined below.
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/types.h>
  17#include <linux/kernel.h>
  18#include <linux/init.h>
  19#include <linux/slab.h>
  20
  21#include <linux/mtd/concat.h>
  22#include <linux/mtd/map.h>
  23#include <linux/mtd/mtd.h>
  24#include <linux/mtd/mtdram.h>
  25#include <linux/mtd/partitions.h>
  26
  27#include <asm/axisflashmap.h>
  28#include <asm/mmu.h>
  29#include <arch/sv_addr_ag.h>
  30
  31#ifdef CONFIG_CRIS_LOW_MAP
  32#define FLASH_UNCACHED_ADDR  KSEG_8
  33#define FLASH_CACHED_ADDR    KSEG_5
  34#else
  35#define FLASH_UNCACHED_ADDR  KSEG_E
  36#define FLASH_CACHED_ADDR    KSEG_F
  37#endif
  38
  39#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
  40#define flash_data __u8
  41#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
  42#define flash_data __u16
  43#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
  44#define flash_data __u32
  45#endif
  46
  47/* From head.S */
  48extern unsigned long romfs_start, romfs_length, romfs_in_flash;
  49
  50/* The master mtd for the entire flash. */
  51struct mtd_info* axisflash_mtd = NULL;
  52
  53/* Map driver functions. */
  54
  55static map_word flash_read(struct map_info *map, unsigned long ofs)
  56{
  57        map_word tmp;
  58        tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
  59        return tmp;
  60}
  61
  62static void flash_copy_from(struct map_info *map, void *to,
  63                            unsigned long from, ssize_t len)
  64{
  65        memcpy(to, (void *)(map->map_priv_1 + from), len);
  66}
  67
  68static void flash_write(struct map_info *map, map_word d, unsigned long adr)
  69{
  70        *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
  71}
  72
  73/*
  74 * The map for chip select e0.
  75 *
  76 * We run into tricky coherence situations if we mix cached with uncached
  77 * accesses to we only use the uncached version here.
  78 *
  79 * The size field is the total size where the flash chips may be mapped on the
  80 * chip select. MTD probes should find all devices there and it does not matter
  81 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
  82 * probes will ignore them.
  83 *
  84 * The start address in map_priv_1 is in virtual memory so we cannot use
  85 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
  86 * address of cse0.
  87 */
  88static struct map_info map_cse0 = {
  89        .name = "cse0",
  90        .size = MEM_CSE0_SIZE,
  91        .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
  92        .read = flash_read,
  93        .copy_from = flash_copy_from,
  94        .write = flash_write,
  95        .map_priv_1 = FLASH_UNCACHED_ADDR
  96};
  97
  98/*
  99 * The map for chip select e1.
 100 *
 101 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
 102 * address, but there isn't.
 103 */
 104static struct map_info map_cse1 = {
 105        .name = "cse1",
 106        .size = MEM_CSE1_SIZE,
 107        .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
 108        .read = flash_read,
 109        .copy_from = flash_copy_from,
 110        .write = flash_write,
 111        .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
 112};
 113
 114/* If no partition-table was found, we use this default-set. */
 115#define MAX_PARTITIONS         7
 116#define NUM_DEFAULT_PARTITIONS 3
 117
 118/*
 119 * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
 120 * size of one flash block and "filesystem"-partition needs 5 blocks to be able
 121 * to use JFFS.
 122 */
 123static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
 124        {
 125                .name = "boot firmware",
 126                .size = CONFIG_ETRAX_PTABLE_SECTOR,
 127                .offset = 0
 128        },
 129        {
 130                .name = "kernel",
 131                .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
 132                .offset = CONFIG_ETRAX_PTABLE_SECTOR
 133        },
 134        {
 135                .name = "filesystem",
 136                .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
 137                .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
 138        }
 139};
 140
 141/* Initialize the ones normally used. */
 142static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
 143        {
 144                .name = "part0",
 145                .size = CONFIG_ETRAX_PTABLE_SECTOR,
 146                .offset = 0
 147        },
 148        {
 149                .name = "part1",
 150                .size = 0,
 151                .offset = 0
 152        },
 153        {
 154                .name = "part2",
 155                .size = 0,
 156                .offset = 0
 157        },
 158        {
 159                .name = "part3",
 160                .size = 0,
 161                .offset = 0
 162        },
 163        {
 164                .name = "part4",
 165                .size = 0,
 166                .offset = 0
 167        },
 168        {
 169                .name = "part5",
 170                .size = 0,
 171                .offset = 0
 172        },
 173        {
 174                .name = "part6",
 175                .size = 0,
 176                .offset = 0
 177        },
 178};
 179
 180#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 181/* Main flash device */
 182static struct mtd_partition main_partition = {
 183        .name = "main",
 184        .size = 0,
 185        .offset = 0
 186};
 187#endif
 188
 189/*
 190 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
 191 * chips in that order (because the amd_flash-driver is faster).
 192 */
 193static struct mtd_info *probe_cs(struct map_info *map_cs)
 194{
 195        struct mtd_info *mtd_cs = NULL;
 196
 197        printk(KERN_INFO
 198               "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
 199               map_cs->name, map_cs->size, map_cs->map_priv_1);
 200
 201#ifdef CONFIG_MTD_CFI
 202        mtd_cs = do_map_probe("cfi_probe", map_cs);
 203#endif
 204#ifdef CONFIG_MTD_JEDECPROBE
 205        if (!mtd_cs)
 206                mtd_cs = do_map_probe("jedec_probe", map_cs);
 207#endif
 208
 209        return mtd_cs;
 210}
 211
 212/*
 213 * Probe each chip select individually for flash chips. If there are chips on
 214 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
 215 * so that MTD partitions can cross chip boundries.
 216 *
 217 * The only known restriction to how you can mount your chips is that each
 218 * chip select must hold similar flash chips. But you need external hardware
 219 * to do that anyway and you can put totally different chips on cse0 and cse1
 220 * so it isn't really much of a restriction.
 221 */
 222static struct mtd_info *flash_probe(void)
 223{
 224        struct mtd_info *mtd_cse0;
 225        struct mtd_info *mtd_cse1;
 226        struct mtd_info *mtd_cse;
 227
 228        mtd_cse0 = probe_cs(&map_cse0);
 229        mtd_cse1 = probe_cs(&map_cse1);
 230
 231        if (!mtd_cse0 && !mtd_cse1) {
 232                /* No chip found. */
 233                return NULL;
 234        }
 235
 236        if (mtd_cse0 && mtd_cse1) {
 237                struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
 238
 239                /* Since the concatenation layer adds a small overhead we
 240                 * could try to figure out if the chips in cse0 and cse1 are
 241                 * identical and reprobe the whole cse0+cse1 window. But since
 242                 * flash chips are slow, the overhead is relatively small.
 243                 * So we use the MTD concatenation layer instead of further
 244                 * complicating the probing procedure.
 245                 */
 246                mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
 247                                            "cse0+cse1");
 248                if (!mtd_cse) {
 249                        printk(KERN_ERR "%s and %s: Concatenation failed!\n",
 250                               map_cse0.name, map_cse1.name);
 251
 252                        /* The best we can do now is to only use what we found
 253                         * at cse0.
 254                         */
 255                        mtd_cse = mtd_cse0;
 256                        map_destroy(mtd_cse1);
 257                }
 258        } else {
 259                mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
 260        }
 261
 262        return mtd_cse;
 263}
 264
 265/*
 266 * Probe the flash chip(s) and, if it succeeds, read the partition-table
 267 * and register the partitions with MTD.
 268 */
 269static int __init init_axis_flash(void)
 270{
 271        struct mtd_info *mymtd;
 272        int err = 0;
 273        int pidx = 0;
 274        struct partitiontable_head *ptable_head = NULL;
 275        struct partitiontable_entry *ptable;
 276        int use_default_ptable = 1; /* Until proven otherwise. */
 277        const char pmsg[] = "  /dev/flash%d at 0x%08x, size 0x%08x\n";
 278
 279        if (!(mymtd = flash_probe())) {
 280                /* There's no reason to use this module if no flash chip can
 281                 * be identified. Make sure that's understood.
 282                 */
 283                printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
 284        } else {
 285                printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
 286                       mymtd->name, mymtd->size);
 287                axisflash_mtd = mymtd;
 288        }
 289
 290        if (mymtd) {
 291                mymtd->owner = THIS_MODULE;
 292                ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
 293                              CONFIG_ETRAX_PTABLE_SECTOR +
 294                              PARTITION_TABLE_OFFSET);
 295        }
 296        pidx++;  /* First partition is always set to the default. */
 297
 298        if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
 299            && (ptable_head->size <
 300                (MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
 301                PARTITIONTABLE_END_MARKER_SIZE))
 302            && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
 303                                  ptable_head->size -
 304                                  PARTITIONTABLE_END_MARKER_SIZE)
 305                == PARTITIONTABLE_END_MARKER)) {
 306                /* Looks like a start, sane length and end of a
 307                 * partition table, lets check csum etc.
 308                 */
 309                int ptable_ok = 0;
 310                struct partitiontable_entry *max_addr =
 311                        (struct partitiontable_entry *)
 312                        ((unsigned long)ptable_head + sizeof(*ptable_head) +
 313                         ptable_head->size);
 314                unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
 315                unsigned char *p;
 316                unsigned long csum = 0;
 317
 318                ptable = (struct partitiontable_entry *)
 319                        ((unsigned long)ptable_head + sizeof(*ptable_head));
 320
 321                /* Lets be PARANOID, and check the checksum. */
 322                p = (unsigned char*) ptable;
 323
 324                while (p <= (unsigned char*)max_addr) {
 325                        csum += *p++;
 326                        csum += *p++;
 327                        csum += *p++;
 328                        csum += *p++;
 329                }
 330                ptable_ok = (csum == ptable_head->checksum);
 331
 332                /* Read the entries and use/show the info.  */
 333                printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
 334                       (ptable_ok ? " valid" : "n invalid"), ptable_head,
 335                       max_addr);
 336
 337                /* We have found a working bootblock.  Now read the
 338                 * partition table.  Scan the table.  It ends when
 339                 * there is 0xffffffff, that is, empty flash.
 340                 */
 341                while (ptable_ok
 342                       && ptable->offset != 0xffffffff
 343                       && ptable < max_addr
 344                       && pidx < MAX_PARTITIONS) {
 345
 346                        axis_partitions[pidx].offset = offset + ptable->offset;
 347                        axis_partitions[pidx].size = ptable->size;
 348
 349                        printk(pmsg, pidx, axis_partitions[pidx].offset,
 350                               axis_partitions[pidx].size);
 351                        pidx++;
 352                        ptable++;
 353                }
 354                use_default_ptable = !ptable_ok;
 355        }
 356
 357        if (romfs_in_flash) {
 358                /* Add an overlapping device for the root partition (romfs). */
 359
 360                axis_partitions[pidx].name = "romfs";
 361                axis_partitions[pidx].size = romfs_length;
 362                axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
 363                axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
 364
 365                printk(KERN_INFO
 366                       " Adding readonly flash partition for romfs image:\n");
 367                printk(pmsg, pidx, axis_partitions[pidx].offset,
 368                       axis_partitions[pidx].size);
 369                pidx++;
 370        }
 371
 372#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
 373        if (mymtd) {
 374                main_partition.size = mymtd->size;
 375                err = mtd_device_register(mymtd, &main_partition, 1);
 376                if (err)
 377                        panic("axisflashmap: Could not initialize "
 378                              "partition for whole main mtd device!\n");
 379        }
 380#endif
 381
 382        if (mymtd) {
 383                if (use_default_ptable) {
 384                        printk(KERN_INFO " Using default partition table.\n");
 385                        err = mtd_device_register(mymtd,
 386                                                  axis_default_partitions,
 387                                                  NUM_DEFAULT_PARTITIONS);
 388                } else {
 389                        err = mtd_device_register(mymtd, axis_partitions,
 390                                                  pidx);
 391                }
 392
 393                if (err)
 394                        panic("axisflashmap could not add MTD partitions!\n");
 395        }
 396
 397        if (!romfs_in_flash) {
 398                /* Create an RAM device for the root partition (romfs). */
 399
 400#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
 401                /* No use trying to boot this kernel from RAM. Panic! */
 402                printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
 403                       "device due to kernel (mis)configuration!\n");
 404                panic("This kernel cannot boot from RAM!\n");
 405#else
 406                struct mtd_info *mtd_ram;
 407
 408                mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
 409                if (!mtd_ram)
 410                        panic("axisflashmap couldn't allocate memory for "
 411                              "mtd_info!\n");
 412
 413                printk(KERN_INFO " Adding RAM partition for romfs image:\n");
 414                printk(pmsg, pidx, (unsigned)romfs_start,
 415                        (unsigned)romfs_length);
 416
 417                err = mtdram_init_device(mtd_ram,
 418                        (void *)romfs_start,
 419                        romfs_length,
 420                        "romfs");
 421                if (err)
 422                        panic("axisflashmap could not initialize MTD RAM "
 423                              "device!\n");
 424#endif
 425        }
 426        return err;
 427}
 428
 429/* This adds the above to the kernels init-call chain. */
 430module_init(init_axis_flash);
 431
 432EXPORT_SYMBOL(axisflash_mtd);
 433