linux/arch/cris/arch-v32/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/cris/arch-v32/kernel/time.c
   3 *
   4 *  Copyright (C) 2003-2010 Axis Communications AB
   5 *
   6 */
   7
   8#include <linux/timex.h>
   9#include <linux/time.h>
  10#include <linux/clocksource.h>
  11#include <linux/interrupt.h>
  12#include <linux/swap.h>
  13#include <linux/sched.h>
  14#include <linux/init.h>
  15#include <linux/threads.h>
  16#include <linux/cpufreq.h>
  17#include <asm/types.h>
  18#include <asm/signal.h>
  19#include <asm/io.h>
  20#include <asm/delay.h>
  21#include <asm/irq.h>
  22#include <asm/irq_regs.h>
  23
  24#include <hwregs/reg_map.h>
  25#include <hwregs/reg_rdwr.h>
  26#include <hwregs/timer_defs.h>
  27#include <hwregs/intr_vect_defs.h>
  28#ifdef CONFIG_CRIS_MACH_ARTPEC3
  29#include <hwregs/clkgen_defs.h>
  30#endif
  31
  32/* Watchdog defines */
  33#define ETRAX_WD_KEY_MASK       0x7F /* key is 7 bit */
  34#define ETRAX_WD_HZ             763 /* watchdog counts at 763 Hz */
  35/* Number of 763 counts before watchdog bites */
  36#define ETRAX_WD_CNT            ((2*ETRAX_WD_HZ)/HZ + 1)
  37
  38/* Register the continuos readonly timer available in FS and ARTPEC-3.  */
  39static cycle_t read_cont_rotime(struct clocksource *cs)
  40{
  41        return (u32)REG_RD(timer, regi_timer0, r_time);
  42}
  43
  44static struct clocksource cont_rotime = {
  45        .name   = "crisv32_rotime",
  46        .rating = 300,
  47        .read   = read_cont_rotime,
  48        .mask   = CLOCKSOURCE_MASK(32),
  49        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
  50};
  51
  52static int __init etrax_init_cont_rotime(void)
  53{
  54        clocksource_register_khz(&cont_rotime, 100000);
  55        return 0;
  56}
  57arch_initcall(etrax_init_cont_rotime);
  58
  59
  60unsigned long timer_regs[NR_CPUS] =
  61{
  62        regi_timer0,
  63#ifdef CONFIG_SMP
  64        regi_timer2
  65#endif
  66};
  67
  68extern int set_rtc_mmss(unsigned long nowtime);
  69
  70#ifdef CONFIG_CPU_FREQ
  71static int
  72cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
  73                        void *data);
  74
  75static struct notifier_block cris_time_freq_notifier_block = {
  76        .notifier_call = cris_time_freq_notifier,
  77};
  78#endif
  79
  80unsigned long get_ns_in_jiffie(void)
  81{
  82        reg_timer_r_tmr0_data data;
  83        unsigned long ns;
  84
  85        data = REG_RD(timer, regi_timer0, r_tmr0_data);
  86        ns = (TIMER0_DIV - data) * 10;
  87        return ns;
  88}
  89
  90
  91/* From timer MDS describing the hardware watchdog:
  92 * 4.3.1 Watchdog Operation
  93 * The watchdog timer is an 8-bit timer with a configurable start value.
  94 * Once started the watchdog counts downwards with a frequency of 763 Hz
  95 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
  96 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
  97 * chip.
  98 */
  99/* This gives us 1.3 ms to do something useful when the NMI comes */
 100
 101/* Right now, starting the watchdog is the same as resetting it */
 102#define start_watchdog reset_watchdog
 103
 104#if defined(CONFIG_ETRAX_WATCHDOG)
 105static short int watchdog_key = 42;  /* arbitrary 7 bit number */
 106#endif
 107
 108/* Number of pages to consider "out of memory". It is normal that the memory
 109 * is used though, so set this really low. */
 110#define WATCHDOG_MIN_FREE_PAGES 8
 111
 112void reset_watchdog(void)
 113{
 114#if defined(CONFIG_ETRAX_WATCHDOG)
 115        reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
 116
 117        /* Only keep watchdog happy as long as we have memory left! */
 118        if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
 119                /* Reset the watchdog with the inverse of the old key */
 120                /* Invert key, which is 7 bits */
 121                watchdog_key ^= ETRAX_WD_KEY_MASK;
 122                wd_ctrl.cnt = ETRAX_WD_CNT;
 123                wd_ctrl.cmd = regk_timer_start;
 124                wd_ctrl.key = watchdog_key;
 125                REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
 126        }
 127#endif
 128}
 129
 130/* stop the watchdog - we still need the correct key */
 131
 132void stop_watchdog(void)
 133{
 134#if defined(CONFIG_ETRAX_WATCHDOG)
 135        reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
 136        watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
 137        wd_ctrl.cnt = ETRAX_WD_CNT;
 138        wd_ctrl.cmd = regk_timer_stop;
 139        wd_ctrl.key = watchdog_key;
 140        REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
 141#endif
 142}
 143
 144extern void show_registers(struct pt_regs *regs);
 145
 146void handle_watchdog_bite(struct pt_regs *regs)
 147{
 148#if defined(CONFIG_ETRAX_WATCHDOG)
 149        extern int cause_of_death;
 150
 151        oops_in_progress = 1;
 152        printk(KERN_WARNING "Watchdog bite\n");
 153
 154        /* Check if forced restart or unexpected watchdog */
 155        if (cause_of_death == 0xbedead) {
 156#ifdef CONFIG_CRIS_MACH_ARTPEC3
 157                /* There is a bug in Artpec-3 (voodoo TR 78) that requires
 158                 * us to go to lower frequency for the reset to be reliable
 159                 */
 160                reg_clkgen_rw_clk_ctrl ctrl =
 161                        REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
 162                ctrl.pll = 0;
 163                REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
 164#endif
 165                while(1);
 166        }
 167
 168        /* Unexpected watchdog, stop the watchdog and dump registers. */
 169        stop_watchdog();
 170        printk(KERN_WARNING "Oops: bitten by watchdog\n");
 171        show_registers(regs);
 172        oops_in_progress = 0;
 173#ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
 174        reset_watchdog();
 175#endif
 176        while(1) /* nothing */;
 177#endif
 178}
 179
 180/*
 181 * timer_interrupt() needs to keep up the real-time clock,
 182 * as well as call the "xtime_update()" routine every clocktick.
 183 */
 184extern void cris_do_profile(struct pt_regs *regs);
 185
 186static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
 187{
 188        struct pt_regs *regs = get_irq_regs();
 189        int cpu = smp_processor_id();
 190        reg_timer_r_masked_intr masked_intr;
 191        reg_timer_rw_ack_intr ack_intr = { 0 };
 192
 193        /* Check if the timer interrupt is for us (a tmr0 int) */
 194        masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
 195        if (!masked_intr.tmr0)
 196                return IRQ_NONE;
 197
 198        /* Acknowledge the timer irq. */
 199        ack_intr.tmr0 = 1;
 200        REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
 201
 202        /* Reset watchdog otherwise it resets us! */
 203        reset_watchdog();
 204
 205        /* Update statistics. */
 206        update_process_times(user_mode(regs));
 207
 208        cris_do_profile(regs); /* Save profiling information */
 209
 210        /* The master CPU is responsible for the time keeping. */
 211        if (cpu != 0)
 212                return IRQ_HANDLED;
 213
 214        /* Call the real timer interrupt handler */
 215        xtime_update(1);
 216        return IRQ_HANDLED;
 217}
 218
 219/* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
 220 * It needs to be IRQF_DISABLED to make the jiffies update work properly.
 221 */
 222static struct irqaction irq_timer = {
 223        .handler = timer_interrupt,
 224        .flags = IRQF_SHARED | IRQF_DISABLED,
 225        .name = "timer"
 226};
 227
 228void __init cris_timer_init(void)
 229{
 230        int cpu = smp_processor_id();
 231        reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
 232        reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
 233        reg_timer_rw_intr_mask timer_intr_mask;
 234
 235        /* Setup the etrax timers.
 236         * Base frequency is 100MHz, divider 1000000 -> 100 HZ
 237         * We use timer0, so timer1 is free.
 238         * The trig timer is used by the fasttimer API if enabled.
 239         */
 240
 241        tmr0_ctrl.op = regk_timer_ld;
 242        tmr0_ctrl.freq = regk_timer_f100;
 243        REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
 244        REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
 245        tmr0_ctrl.op = regk_timer_run;
 246        REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
 247
 248        /* Enable the timer irq. */
 249        timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
 250        timer_intr_mask.tmr0 = 1;
 251        REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
 252}
 253
 254void __init time_init(void)
 255{
 256        reg_intr_vect_rw_mask intr_mask;
 257
 258        /* Probe for the RTC and read it if it exists.
 259         * Before the RTC can be probed the loops_per_usec variable needs
 260         * to be initialized to make usleep work. A better value for
 261         * loops_per_usec is calculated by the kernel later once the
 262         * clock has started.
 263         */
 264        loops_per_usec = 50;
 265
 266        /* Start CPU local timer. */
 267        cris_timer_init();
 268
 269        /* Enable the timer irq in global config. */
 270        intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
 271        intr_mask.timer0 = 1;
 272        REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
 273
 274        /* Now actually register the timer irq handler that calls
 275         * timer_interrupt(). */
 276        setup_irq(TIMER0_INTR_VECT, &irq_timer);
 277
 278        /* Enable watchdog if we should use one. */
 279
 280#if defined(CONFIG_ETRAX_WATCHDOG)
 281        printk(KERN_INFO "Enabling watchdog...\n");
 282        start_watchdog();
 283
 284        /* If we use the hardware watchdog, we want to trap it as an NMI
 285         * and dump registers before it resets us.  For this to happen, we
 286         * must set the "m" NMI enable flag (which once set, is unset only
 287         * when an NMI is taken). */
 288        {
 289                unsigned long flags;
 290                local_save_flags(flags);
 291                flags |= (1<<30); /* NMI M flag is at bit 30 */
 292                local_irq_restore(flags);
 293        }
 294#endif
 295
 296#ifdef CONFIG_CPU_FREQ
 297        cpufreq_register_notifier(&cris_time_freq_notifier_block,
 298                CPUFREQ_TRANSITION_NOTIFIER);
 299#endif
 300}
 301
 302#ifdef CONFIG_CPU_FREQ
 303static int
 304cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
 305                        void *data)
 306{
 307        struct cpufreq_freqs *freqs = data;
 308        if (val == CPUFREQ_POSTCHANGE) {
 309                reg_timer_r_tmr0_data data;
 310                reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
 311                do {
 312                        data = REG_RD(timer, timer_regs[freqs->cpu],
 313                                r_tmr0_data);
 314                } while (data > 20);
 315                REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
 316        }
 317        return 0;
 318}
 319#endif
 320