linux/arch/mips/cavium-octeon/setup.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2004-2007 Cavium Networks
   7 * Copyright (C) 2008, 2009 Wind River Systems
   8 *   written by Ralf Baechle <ralf@linux-mips.org>
   9 */
  10#include <linux/compiler.h>
  11#include <linux/vmalloc.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/console.h>
  15#include <linux/delay.h>
  16#include <linux/export.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/serial.h>
  20#include <linux/smp.h>
  21#include <linux/types.h>
  22#include <linux/string.h>       /* for memset */
  23#include <linux/tty.h>
  24#include <linux/time.h>
  25#include <linux/platform_device.h>
  26#include <linux/serial_core.h>
  27#include <linux/serial_8250.h>
  28#include <linux/of_fdt.h>
  29#include <linux/libfdt.h>
  30#include <linux/kexec.h>
  31
  32#include <asm/processor.h>
  33#include <asm/reboot.h>
  34#include <asm/smp-ops.h>
  35#include <asm/irq_cpu.h>
  36#include <asm/mipsregs.h>
  37#include <asm/bootinfo.h>
  38#include <asm/sections.h>
  39#include <asm/time.h>
  40
  41#include <asm/octeon/octeon.h>
  42#include <asm/octeon/pci-octeon.h>
  43#include <asm/octeon/cvmx-mio-defs.h>
  44
  45extern struct plat_smp_ops octeon_smp_ops;
  46
  47#ifdef CONFIG_PCI
  48extern void pci_console_init(const char *arg);
  49#endif
  50
  51static unsigned long long MAX_MEMORY = 512ull << 20;
  52
  53struct octeon_boot_descriptor *octeon_boot_desc_ptr;
  54
  55struct cvmx_bootinfo *octeon_bootinfo;
  56EXPORT_SYMBOL(octeon_bootinfo);
  57
  58static unsigned long long RESERVE_LOW_MEM = 0ull;
  59#ifdef CONFIG_KEXEC
  60#ifdef CONFIG_SMP
  61/*
  62 * Wait for relocation code is prepared and send
  63 * secondary CPUs to spin until kernel is relocated.
  64 */
  65static void octeon_kexec_smp_down(void *ignored)
  66{
  67        int cpu = smp_processor_id();
  68
  69        local_irq_disable();
  70        set_cpu_online(cpu, false);
  71        while (!atomic_read(&kexec_ready_to_reboot))
  72                cpu_relax();
  73
  74        asm volatile (
  75        "       sync                                            \n"
  76        "       synci   ($0)                                    \n");
  77
  78        relocated_kexec_smp_wait(NULL);
  79}
  80#endif
  81
  82#define OCTEON_DDR0_BASE    (0x0ULL)
  83#define OCTEON_DDR0_SIZE    (0x010000000ULL)
  84#define OCTEON_DDR1_BASE    (0x410000000ULL)
  85#define OCTEON_DDR1_SIZE    (0x010000000ULL)
  86#define OCTEON_DDR2_BASE    (0x020000000ULL)
  87#define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
  88#define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
  89
  90static struct kimage *kimage_ptr;
  91
  92static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
  93{
  94        int64_t addr;
  95        struct cvmx_bootmem_desc *bootmem_desc;
  96
  97        bootmem_desc = cvmx_bootmem_get_desc();
  98
  99        if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
 100                mem_size = OCTEON_MAX_PHY_MEM_SIZE;
 101                pr_err("Error: requested memory too large,"
 102                       "truncating to maximum size\n");
 103        }
 104
 105        bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
 106        bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
 107
 108        addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
 109        bootmem_desc->head_addr = 0;
 110
 111        if (mem_size <= OCTEON_DDR0_SIZE) {
 112                __cvmx_bootmem_phy_free(addr,
 113                                mem_size - RESERVE_LOW_MEM -
 114                                low_reserved_bytes, 0);
 115                return;
 116        }
 117
 118        __cvmx_bootmem_phy_free(addr,
 119                        OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
 120                        low_reserved_bytes, 0);
 121
 122        mem_size -= OCTEON_DDR0_SIZE;
 123
 124        if (mem_size > OCTEON_DDR1_SIZE) {
 125                __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
 126                __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
 127                                mem_size - OCTEON_DDR1_SIZE, 0);
 128        } else
 129                __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
 130}
 131
 132static int octeon_kexec_prepare(struct kimage *image)
 133{
 134        int i;
 135        char *bootloader = "kexec";
 136
 137        octeon_boot_desc_ptr->argc = 0;
 138        for (i = 0; i < image->nr_segments; i++) {
 139                if (!strncmp(bootloader, (char *)image->segment[i].buf,
 140                                strlen(bootloader))) {
 141                        /*
 142                         * convert command line string to array
 143                         * of parameters (as bootloader does).
 144                         */
 145                        int argc = 0, offt;
 146                        char *str = (char *)image->segment[i].buf;
 147                        char *ptr = strchr(str, ' ');
 148                        while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
 149                                *ptr = '\0';
 150                                if (ptr[1] != ' ') {
 151                                        offt = (int)(ptr - str + 1);
 152                                        octeon_boot_desc_ptr->argv[argc] =
 153                                                image->segment[i].mem + offt;
 154                                        argc++;
 155                                }
 156                                ptr = strchr(ptr + 1, ' ');
 157                        }
 158                        octeon_boot_desc_ptr->argc = argc;
 159                        break;
 160                }
 161        }
 162
 163        /*
 164         * Information about segments will be needed during pre-boot memory
 165         * initialization.
 166         */
 167        kimage_ptr = image;
 168        return 0;
 169}
 170
 171static void octeon_generic_shutdown(void)
 172{
 173        int i;
 174#ifdef CONFIG_SMP
 175        int cpu;
 176#endif
 177        struct cvmx_bootmem_desc *bootmem_desc;
 178        void *named_block_array_ptr;
 179
 180        bootmem_desc = cvmx_bootmem_get_desc();
 181        named_block_array_ptr =
 182                cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
 183
 184#ifdef CONFIG_SMP
 185        /* disable watchdogs */
 186        for_each_online_cpu(cpu)
 187                cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
 188#else
 189        cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
 190#endif
 191        if (kimage_ptr != kexec_crash_image) {
 192                memset(named_block_array_ptr,
 193                        0x0,
 194                        CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
 195                        sizeof(struct cvmx_bootmem_named_block_desc));
 196                /*
 197                 * Mark all memory (except low 0x100000 bytes) as free.
 198                 * It is the same thing that bootloader does.
 199                 */
 200                kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
 201                                0x100000);
 202                /*
 203                 * Allocate all segments to avoid their corruption during boot.
 204                 */
 205                for (i = 0; i < kimage_ptr->nr_segments; i++)
 206                        cvmx_bootmem_alloc_address(
 207                                kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
 208                                kimage_ptr->segment[i].mem - PAGE_SIZE,
 209                                PAGE_SIZE);
 210        } else {
 211                /*
 212                 * Do not mark all memory as free. Free only named sections
 213                 * leaving the rest of memory unchanged.
 214                 */
 215                struct cvmx_bootmem_named_block_desc *ptr =
 216                        (struct cvmx_bootmem_named_block_desc *)
 217                        named_block_array_ptr;
 218
 219                for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
 220                        if (ptr[i].size)
 221                                cvmx_bootmem_free_named(ptr[i].name);
 222        }
 223        kexec_args[2] = 1UL; /* running on octeon_main_processor */
 224        kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
 225#ifdef CONFIG_SMP
 226        secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
 227        secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
 228#endif
 229}
 230
 231static void octeon_shutdown(void)
 232{
 233        octeon_generic_shutdown();
 234#ifdef CONFIG_SMP
 235        smp_call_function(octeon_kexec_smp_down, NULL, 0);
 236        smp_wmb();
 237        while (num_online_cpus() > 1) {
 238                cpu_relax();
 239                mdelay(1);
 240        }
 241#endif
 242}
 243
 244static void octeon_crash_shutdown(struct pt_regs *regs)
 245{
 246        octeon_generic_shutdown();
 247        default_machine_crash_shutdown(regs);
 248}
 249
 250#endif /* CONFIG_KEXEC */
 251
 252#ifdef CONFIG_CAVIUM_RESERVE32
 253uint64_t octeon_reserve32_memory;
 254EXPORT_SYMBOL(octeon_reserve32_memory);
 255#endif
 256
 257#ifdef CONFIG_KEXEC
 258/* crashkernel cmdline parameter is parsed _after_ memory setup
 259 * we also parse it here (workaround for EHB5200) */
 260static uint64_t crashk_size, crashk_base;
 261#endif
 262
 263static int octeon_uart;
 264
 265extern asmlinkage void handle_int(void);
 266extern asmlinkage void plat_irq_dispatch(void);
 267
 268/**
 269 * Return non zero if we are currently running in the Octeon simulator
 270 *
 271 * Returns
 272 */
 273int octeon_is_simulation(void)
 274{
 275        return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
 276}
 277EXPORT_SYMBOL(octeon_is_simulation);
 278
 279/**
 280 * Return true if Octeon is in PCI Host mode. This means
 281 * Linux can control the PCI bus.
 282 *
 283 * Returns Non zero if Octeon in host mode.
 284 */
 285int octeon_is_pci_host(void)
 286{
 287#ifdef CONFIG_PCI
 288        return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
 289#else
 290        return 0;
 291#endif
 292}
 293
 294/**
 295 * Get the clock rate of Octeon
 296 *
 297 * Returns Clock rate in HZ
 298 */
 299uint64_t octeon_get_clock_rate(void)
 300{
 301        struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
 302
 303        return sysinfo->cpu_clock_hz;
 304}
 305EXPORT_SYMBOL(octeon_get_clock_rate);
 306
 307static u64 octeon_io_clock_rate;
 308
 309u64 octeon_get_io_clock_rate(void)
 310{
 311        return octeon_io_clock_rate;
 312}
 313EXPORT_SYMBOL(octeon_get_io_clock_rate);
 314
 315
 316/**
 317 * Write to the LCD display connected to the bootbus. This display
 318 * exists on most Cavium evaluation boards. If it doesn't exist, then
 319 * this function doesn't do anything.
 320 *
 321 * @s:      String to write
 322 */
 323void octeon_write_lcd(const char *s)
 324{
 325        if (octeon_bootinfo->led_display_base_addr) {
 326                void __iomem *lcd_address =
 327                        ioremap_nocache(octeon_bootinfo->led_display_base_addr,
 328                                        8);
 329                int i;
 330                for (i = 0; i < 8; i++, s++) {
 331                        if (*s)
 332                                iowrite8(*s, lcd_address + i);
 333                        else
 334                                iowrite8(' ', lcd_address + i);
 335                }
 336                iounmap(lcd_address);
 337        }
 338}
 339
 340/**
 341 * Return the console uart passed by the bootloader
 342 *
 343 * Returns uart   (0 or 1)
 344 */
 345int octeon_get_boot_uart(void)
 346{
 347        int uart;
 348#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
 349        uart = 1;
 350#else
 351        uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
 352                1 : 0;
 353#endif
 354        return uart;
 355}
 356
 357/**
 358 * Get the coremask Linux was booted on.
 359 *
 360 * Returns Core mask
 361 */
 362int octeon_get_boot_coremask(void)
 363{
 364        return octeon_boot_desc_ptr->core_mask;
 365}
 366
 367/**
 368 * Check the hardware BIST results for a CPU
 369 */
 370void octeon_check_cpu_bist(void)
 371{
 372        const int coreid = cvmx_get_core_num();
 373        unsigned long long mask;
 374        unsigned long long bist_val;
 375
 376        /* Check BIST results for COP0 registers */
 377        mask = 0x1f00000000ull;
 378        bist_val = read_octeon_c0_icacheerr();
 379        if (bist_val & mask)
 380                pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
 381                       coreid, bist_val);
 382
 383        bist_val = read_octeon_c0_dcacheerr();
 384        if (bist_val & 1)
 385                pr_err("Core%d L1 Dcache parity error: "
 386                       "CacheErr(dcache) = 0x%llx\n",
 387                       coreid, bist_val);
 388
 389        mask = 0xfc00000000000000ull;
 390        bist_val = read_c0_cvmmemctl();
 391        if (bist_val & mask)
 392                pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
 393                       coreid, bist_val);
 394
 395        write_octeon_c0_dcacheerr(0);
 396}
 397
 398/**
 399 * Reboot Octeon
 400 *
 401 * @command: Command to pass to the bootloader. Currently ignored.
 402 */
 403static void octeon_restart(char *command)
 404{
 405        /* Disable all watchdogs before soft reset. They don't get cleared */
 406#ifdef CONFIG_SMP
 407        int cpu;
 408        for_each_online_cpu(cpu)
 409                cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
 410#else
 411        cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
 412#endif
 413
 414        mb();
 415        while (1)
 416                cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
 417}
 418
 419
 420/**
 421 * Permanently stop a core.
 422 *
 423 * @arg: Ignored.
 424 */
 425static void octeon_kill_core(void *arg)
 426{
 427        if (octeon_is_simulation())
 428                /* A break instruction causes the simulator stop a core */
 429                asm volatile ("break" ::: "memory");
 430
 431        local_irq_disable();
 432        /* Disable watchdog on this core. */
 433        cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
 434        /* Spin in a low power mode. */
 435        while (true)
 436                asm volatile ("wait" ::: "memory");
 437}
 438
 439
 440/**
 441 * Halt the system
 442 */
 443static void octeon_halt(void)
 444{
 445        smp_call_function(octeon_kill_core, NULL, 0);
 446
 447        switch (octeon_bootinfo->board_type) {
 448        case CVMX_BOARD_TYPE_NAO38:
 449                /* Driving a 1 to GPIO 12 shuts off this board */
 450                cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
 451                cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
 452                break;
 453        default:
 454                octeon_write_lcd("PowerOff");
 455                break;
 456        }
 457
 458        octeon_kill_core(NULL);
 459}
 460
 461/**
 462 * Return a string representing the system type
 463 *
 464 * Returns
 465 */
 466const char *octeon_board_type_string(void)
 467{
 468        static char name[80];
 469        sprintf(name, "%s (%s)",
 470                cvmx_board_type_to_string(octeon_bootinfo->board_type),
 471                octeon_model_get_string(read_c0_prid()));
 472        return name;
 473}
 474
 475const char *get_system_type(void)
 476        __attribute__ ((alias("octeon_board_type_string")));
 477
 478void octeon_user_io_init(void)
 479{
 480        union octeon_cvmemctl cvmmemctl;
 481        union cvmx_iob_fau_timeout fau_timeout;
 482        union cvmx_pow_nw_tim nm_tim;
 483
 484        /* Get the current settings for CP0_CVMMEMCTL_REG */
 485        cvmmemctl.u64 = read_c0_cvmmemctl();
 486        /* R/W If set, marked write-buffer entries time out the same
 487         * as as other entries; if clear, marked write-buffer entries
 488         * use the maximum timeout. */
 489        cvmmemctl.s.dismarkwblongto = 1;
 490        /* R/W If set, a merged store does not clear the write-buffer
 491         * entry timeout state. */
 492        cvmmemctl.s.dismrgclrwbto = 0;
 493        /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
 494         * word location for an IOBDMA. The other 8 bits come from the
 495         * SCRADDR field of the IOBDMA. */
 496        cvmmemctl.s.iobdmascrmsb = 0;
 497        /* R/W If set, SYNCWS and SYNCS only order marked stores; if
 498         * clear, SYNCWS and SYNCS only order unmarked
 499         * stores. SYNCWSMARKED has no effect when DISSYNCWS is
 500         * set. */
 501        cvmmemctl.s.syncwsmarked = 0;
 502        /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
 503        cvmmemctl.s.dissyncws = 0;
 504        /* R/W If set, no stall happens on write buffer full. */
 505        if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
 506                cvmmemctl.s.diswbfst = 1;
 507        else
 508                cvmmemctl.s.diswbfst = 0;
 509        /* R/W If set (and SX set), supervisor-level loads/stores can
 510         * use XKPHYS addresses with <48>==0 */
 511        cvmmemctl.s.xkmemenas = 0;
 512
 513        /* R/W If set (and UX set), user-level loads/stores can use
 514         * XKPHYS addresses with VA<48>==0 */
 515        cvmmemctl.s.xkmemenau = 0;
 516
 517        /* R/W If set (and SX set), supervisor-level loads/stores can
 518         * use XKPHYS addresses with VA<48>==1 */
 519        cvmmemctl.s.xkioenas = 0;
 520
 521        /* R/W If set (and UX set), user-level loads/stores can use
 522         * XKPHYS addresses with VA<48>==1 */
 523        cvmmemctl.s.xkioenau = 0;
 524
 525        /* R/W If set, all stores act as SYNCW (NOMERGE must be set
 526         * when this is set) RW, reset to 0. */
 527        cvmmemctl.s.allsyncw = 0;
 528
 529        /* R/W If set, no stores merge, and all stores reach the
 530         * coherent bus in order. */
 531        cvmmemctl.s.nomerge = 0;
 532        /* R/W Selects the bit in the counter used for DID time-outs 0
 533         * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
 534         * between 1x and 2x this interval. For example, with
 535         * DIDTTO=3, expiration interval is between 16K and 32K. */
 536        cvmmemctl.s.didtto = 0;
 537        /* R/W If set, the (mem) CSR clock never turns off. */
 538        cvmmemctl.s.csrckalwys = 0;
 539        /* R/W If set, mclk never turns off. */
 540        cvmmemctl.s.mclkalwys = 0;
 541        /* R/W Selects the bit in the counter used for write buffer
 542         * flush time-outs (WBFLT+11) is the bit position in an
 543         * internal counter used to determine expiration. The write
 544         * buffer expires between 1x and 2x this interval. For
 545         * example, with WBFLT = 0, a write buffer expires between 2K
 546         * and 4K cycles after the write buffer entry is allocated. */
 547        cvmmemctl.s.wbfltime = 0;
 548        /* R/W If set, do not put Istream in the L2 cache. */
 549        cvmmemctl.s.istrnol2 = 0;
 550
 551        /*
 552         * R/W The write buffer threshold. As per erratum Core-14752
 553         * for CN63XX, a sc/scd might fail if the write buffer is
 554         * full.  Lowering WBTHRESH greatly lowers the chances of the
 555         * write buffer ever being full and triggering the erratum.
 556         */
 557        if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
 558                cvmmemctl.s.wbthresh = 4;
 559        else
 560                cvmmemctl.s.wbthresh = 10;
 561
 562        /* R/W If set, CVMSEG is available for loads/stores in
 563         * kernel/debug mode. */
 564#if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
 565        cvmmemctl.s.cvmsegenak = 1;
 566#else
 567        cvmmemctl.s.cvmsegenak = 0;
 568#endif
 569        /* R/W If set, CVMSEG is available for loads/stores in
 570         * supervisor mode. */
 571        cvmmemctl.s.cvmsegenas = 0;
 572        /* R/W If set, CVMSEG is available for loads/stores in user
 573         * mode. */
 574        cvmmemctl.s.cvmsegenau = 0;
 575        /* R/W Size of local memory in cache blocks, 54 (6912 bytes)
 576         * is max legal value. */
 577        cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
 578
 579        write_c0_cvmmemctl(cvmmemctl.u64);
 580
 581        if (smp_processor_id() == 0)
 582                pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
 583                          CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
 584                          CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
 585
 586        /* Set a default for the hardware timeouts */
 587        fau_timeout.u64 = 0;
 588        fau_timeout.s.tout_val = 0xfff;
 589        /* Disable tagwait FAU timeout */
 590        fau_timeout.s.tout_enb = 0;
 591        cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
 592
 593        nm_tim.u64 = 0;
 594        /* 4096 cycles */
 595        nm_tim.s.nw_tim = 3;
 596        cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
 597
 598        write_octeon_c0_icacheerr(0);
 599        write_c0_derraddr1(0);
 600}
 601
 602/**
 603 * Early entry point for arch setup
 604 */
 605void __init prom_init(void)
 606{
 607        struct cvmx_sysinfo *sysinfo;
 608        const char *arg;
 609        char *p;
 610        int i;
 611        int argc;
 612#ifdef CONFIG_CAVIUM_RESERVE32
 613        int64_t addr = -1;
 614#endif
 615        /*
 616         * The bootloader passes a pointer to the boot descriptor in
 617         * $a3, this is available as fw_arg3.
 618         */
 619        octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
 620        octeon_bootinfo =
 621                cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
 622        cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
 623
 624        sysinfo = cvmx_sysinfo_get();
 625        memset(sysinfo, 0, sizeof(*sysinfo));
 626        sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
 627        sysinfo->phy_mem_desc_ptr =
 628                cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
 629        sysinfo->core_mask = octeon_bootinfo->core_mask;
 630        sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
 631        sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
 632        sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
 633        sysinfo->board_type = octeon_bootinfo->board_type;
 634        sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
 635        sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
 636        memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
 637               sizeof(sysinfo->mac_addr_base));
 638        sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
 639        memcpy(sysinfo->board_serial_number,
 640               octeon_bootinfo->board_serial_number,
 641               sizeof(sysinfo->board_serial_number));
 642        sysinfo->compact_flash_common_base_addr =
 643                octeon_bootinfo->compact_flash_common_base_addr;
 644        sysinfo->compact_flash_attribute_base_addr =
 645                octeon_bootinfo->compact_flash_attribute_base_addr;
 646        sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
 647        sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
 648        sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
 649
 650        if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
 651                /* I/O clock runs at a different rate than the CPU. */
 652                union cvmx_mio_rst_boot rst_boot;
 653                rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
 654                octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
 655        } else {
 656                octeon_io_clock_rate = sysinfo->cpu_clock_hz;
 657        }
 658
 659        /*
 660         * Only enable the LED controller if we're running on a CN38XX, CN58XX,
 661         * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
 662         */
 663        if (!octeon_is_simulation() &&
 664            octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
 665                cvmx_write_csr(CVMX_LED_EN, 0);
 666                cvmx_write_csr(CVMX_LED_PRT, 0);
 667                cvmx_write_csr(CVMX_LED_DBG, 0);
 668                cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
 669                cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
 670                cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
 671                cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
 672                cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
 673                cvmx_write_csr(CVMX_LED_EN, 1);
 674        }
 675#ifdef CONFIG_CAVIUM_RESERVE32
 676        /*
 677         * We need to temporarily allocate all memory in the reserve32
 678         * region. This makes sure the kernel doesn't allocate this
 679         * memory when it is getting memory from the
 680         * bootloader. Later, after the memory allocations are
 681         * complete, the reserve32 will be freed.
 682         *
 683         * Allocate memory for RESERVED32 aligned on 2MB boundary. This
 684         * is in case we later use hugetlb entries with it.
 685         */
 686        addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
 687                                                0, 0, 2 << 20,
 688                                                "CAVIUM_RESERVE32", 0);
 689        if (addr < 0)
 690                pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
 691        else
 692                octeon_reserve32_memory = addr;
 693#endif
 694
 695#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
 696        if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
 697                pr_info("Skipping L2 locking due to reduced L2 cache size\n");
 698        } else {
 699                uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
 700#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
 701                /* TLB refill */
 702                cvmx_l2c_lock_mem_region(ebase, 0x100);
 703#endif
 704#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
 705                /* General exception */
 706                cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
 707#endif
 708#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
 709                /* Interrupt handler */
 710                cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
 711#endif
 712#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
 713                cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
 714                cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
 715#endif
 716#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
 717                cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
 718#endif
 719        }
 720#endif
 721
 722        octeon_check_cpu_bist();
 723
 724        octeon_uart = octeon_get_boot_uart();
 725
 726#ifdef CONFIG_SMP
 727        octeon_write_lcd("LinuxSMP");
 728#else
 729        octeon_write_lcd("Linux");
 730#endif
 731
 732#ifdef CONFIG_CAVIUM_GDB
 733        /*
 734         * When debugging the linux kernel, force the cores to enter
 735         * the debug exception handler to break in.
 736         */
 737        if (octeon_get_boot_debug_flag()) {
 738                cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
 739                cvmx_read_csr(CVMX_CIU_DINT);
 740        }
 741#endif
 742
 743        octeon_setup_delays();
 744
 745        /*
 746         * BIST should always be enabled when doing a soft reset. L2
 747         * Cache locking for instance is not cleared unless BIST is
 748         * enabled.  Unfortunately due to a chip errata G-200 for
 749         * Cn38XX and CN31XX, BIST msut be disabled on these parts.
 750         */
 751        if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
 752            OCTEON_IS_MODEL(OCTEON_CN31XX))
 753                cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
 754        else
 755                cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
 756
 757        /* Default to 64MB in the simulator to speed things up */
 758        if (octeon_is_simulation())
 759                MAX_MEMORY = 64ull << 20;
 760
 761        arg = strstr(arcs_cmdline, "mem=");
 762        if (arg) {
 763                MAX_MEMORY = memparse(arg + 4, &p);
 764                if (MAX_MEMORY == 0)
 765                        MAX_MEMORY = 32ull << 30;
 766                if (*p == '@')
 767                        RESERVE_LOW_MEM = memparse(p + 1, &p);
 768        }
 769
 770        arcs_cmdline[0] = 0;
 771        argc = octeon_boot_desc_ptr->argc;
 772        for (i = 0; i < argc; i++) {
 773                const char *arg =
 774                        cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
 775                if ((strncmp(arg, "MEM=", 4) == 0) ||
 776                    (strncmp(arg, "mem=", 4) == 0)) {
 777                        MAX_MEMORY = memparse(arg + 4, &p);
 778                        if (MAX_MEMORY == 0)
 779                                MAX_MEMORY = 32ull << 30;
 780                        if (*p == '@')
 781                                RESERVE_LOW_MEM = memparse(p + 1, &p);
 782                } else if (strcmp(arg, "ecc_verbose") == 0) {
 783#ifdef CONFIG_CAVIUM_REPORT_SINGLE_BIT_ECC
 784                        __cvmx_interrupt_ecc_report_single_bit_errors = 1;
 785                        pr_notice("Reporting of single bit ECC errors is "
 786                                  "turned on\n");
 787#endif
 788#ifdef CONFIG_KEXEC
 789                } else if (strncmp(arg, "crashkernel=", 12) == 0) {
 790                        crashk_size = memparse(arg+12, &p);
 791                        if (*p == '@')
 792                                crashk_base = memparse(p+1, &p);
 793                        strcat(arcs_cmdline, " ");
 794                        strcat(arcs_cmdline, arg);
 795                        /*
 796                         * To do: switch parsing to new style, something like:
 797                         * parse_crashkernel(arg, sysinfo->system_dram_size,
 798                         *                &crashk_size, &crashk_base);
 799                         */
 800#endif
 801                } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
 802                           sizeof(arcs_cmdline) - 1) {
 803                        strcat(arcs_cmdline, " ");
 804                        strcat(arcs_cmdline, arg);
 805                }
 806        }
 807
 808        if (strstr(arcs_cmdline, "console=") == NULL) {
 809#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
 810                strcat(arcs_cmdline, " console=ttyS0,115200");
 811#else
 812                if (octeon_uart == 1)
 813                        strcat(arcs_cmdline, " console=ttyS1,115200");
 814                else
 815                        strcat(arcs_cmdline, " console=ttyS0,115200");
 816#endif
 817        }
 818
 819        if (octeon_is_simulation()) {
 820                /*
 821                 * The simulator uses a mtdram device pre filled with
 822                 * the filesystem. Also specify the calibration delay
 823                 * to avoid calculating it every time.
 824                 */
 825                strcat(arcs_cmdline, " rw root=1f00 slram=root,0x40000000,+1073741824");
 826        }
 827
 828        mips_hpt_frequency = octeon_get_clock_rate();
 829
 830        octeon_init_cvmcount();
 831
 832        _machine_restart = octeon_restart;
 833        _machine_halt = octeon_halt;
 834
 835#ifdef CONFIG_KEXEC
 836        _machine_kexec_shutdown = octeon_shutdown;
 837        _machine_crash_shutdown = octeon_crash_shutdown;
 838        _machine_kexec_prepare = octeon_kexec_prepare;
 839#endif
 840
 841        octeon_user_io_init();
 842        register_smp_ops(&octeon_smp_ops);
 843}
 844
 845/* Exclude a single page from the regions obtained in plat_mem_setup. */
 846#ifndef CONFIG_CRASH_DUMP
 847static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
 848{
 849        if (addr > *mem && addr < *mem + *size) {
 850                u64 inc = addr - *mem;
 851                add_memory_region(*mem, inc, BOOT_MEM_RAM);
 852                *mem += inc;
 853                *size -= inc;
 854        }
 855
 856        if (addr == *mem && *size > PAGE_SIZE) {
 857                *mem += PAGE_SIZE;
 858                *size -= PAGE_SIZE;
 859        }
 860}
 861#endif /* CONFIG_CRASH_DUMP */
 862
 863void __init plat_mem_setup(void)
 864{
 865        uint64_t mem_alloc_size;
 866        uint64_t total;
 867        uint64_t crashk_end;
 868#ifndef CONFIG_CRASH_DUMP
 869        int64_t memory;
 870        uint64_t kernel_start;
 871        uint64_t kernel_size;
 872#endif
 873
 874        total = 0;
 875        crashk_end = 0;
 876
 877        /*
 878         * The Mips memory init uses the first memory location for
 879         * some memory vectors. When SPARSEMEM is in use, it doesn't
 880         * verify that the size is big enough for the final
 881         * vectors. Making the smallest chuck 4MB seems to be enough
 882         * to consistently work.
 883         */
 884        mem_alloc_size = 4 << 20;
 885        if (mem_alloc_size > MAX_MEMORY)
 886                mem_alloc_size = MAX_MEMORY;
 887
 888/* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
 889#ifdef CONFIG_CRASH_DUMP
 890        add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
 891        total += MAX_MEMORY;
 892#else
 893#ifdef CONFIG_KEXEC
 894        if (crashk_size > 0) {
 895                add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
 896                crashk_end = crashk_base + crashk_size;
 897        }
 898#endif
 899        /*
 900         * When allocating memory, we want incrementing addresses from
 901         * bootmem_alloc so the code in add_memory_region can merge
 902         * regions next to each other.
 903         */
 904        cvmx_bootmem_lock();
 905        while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
 906                && (total < MAX_MEMORY)) {
 907                memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
 908                                                __pa_symbol(&__init_end), -1,
 909                                                0x100000,
 910                                                CVMX_BOOTMEM_FLAG_NO_LOCKING);
 911                if (memory >= 0) {
 912                        u64 size = mem_alloc_size;
 913#ifdef CONFIG_KEXEC
 914                        uint64_t end;
 915#endif
 916
 917                        /*
 918                         * exclude a page at the beginning and end of
 919                         * the 256MB PCIe 'hole' so the kernel will not
 920                         * try to allocate multi-page buffers that
 921                         * span the discontinuity.
 922                         */
 923                        memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
 924                                            &memory, &size);
 925                        memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
 926                                            CVMX_PCIE_BAR1_PHYS_SIZE,
 927                                            &memory, &size);
 928#ifdef CONFIG_KEXEC
 929                        end = memory + mem_alloc_size;
 930
 931                        /*
 932                         * This function automatically merges address regions
 933                         * next to each other if they are received in
 934                         * incrementing order
 935                         */
 936                        if (memory < crashk_base && end >  crashk_end) {
 937                                /* region is fully in */
 938                                add_memory_region(memory,
 939                                                  crashk_base - memory,
 940                                                  BOOT_MEM_RAM);
 941                                total += crashk_base - memory;
 942                                add_memory_region(crashk_end,
 943                                                  end - crashk_end,
 944                                                  BOOT_MEM_RAM);
 945                                total += end - crashk_end;
 946                                continue;
 947                        }
 948
 949                        if (memory >= crashk_base && end <= crashk_end)
 950                                /*
 951                                 * Entire memory region is within the new
 952                                 *  kernel's memory, ignore it.
 953                                 */
 954                                continue;
 955
 956                        if (memory > crashk_base && memory < crashk_end &&
 957                            end > crashk_end) {
 958                                /*
 959                                 * Overlap with the beginning of the region,
 960                                 * reserve the beginning.
 961                                  */
 962                                mem_alloc_size -= crashk_end - memory;
 963                                memory = crashk_end;
 964                        } else if (memory < crashk_base && end > crashk_base &&
 965                                   end < crashk_end)
 966                                /*
 967                                 * Overlap with the beginning of the region,
 968                                 * chop of end.
 969                                 */
 970                                mem_alloc_size -= end - crashk_base;
 971#endif
 972                        add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
 973                        total += mem_alloc_size;
 974                        /* Recovering mem_alloc_size */
 975                        mem_alloc_size = 4 << 20;
 976                } else {
 977                        break;
 978                }
 979        }
 980        cvmx_bootmem_unlock();
 981        /* Add the memory region for the kernel. */
 982        kernel_start = (unsigned long) _text;
 983        kernel_size = _end - _text;
 984
 985        /* Adjust for physical offset. */
 986        kernel_start &= ~0xffffffff80000000ULL;
 987        add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
 988#endif /* CONFIG_CRASH_DUMP */
 989
 990#ifdef CONFIG_CAVIUM_RESERVE32
 991        /*
 992         * Now that we've allocated the kernel memory it is safe to
 993         * free the reserved region. We free it here so that builtin
 994         * drivers can use the memory.
 995         */
 996        if (octeon_reserve32_memory)
 997                cvmx_bootmem_free_named("CAVIUM_RESERVE32");
 998#endif /* CONFIG_CAVIUM_RESERVE32 */
 999
1000        if (total == 0)
1001                panic("Unable to allocate memory from "
1002                      "cvmx_bootmem_phy_alloc\n");
1003}
1004
1005/*
1006 * Emit one character to the boot UART.  Exported for use by the
1007 * watchdog timer.
1008 */
1009int prom_putchar(char c)
1010{
1011        uint64_t lsrval;
1012
1013        /* Spin until there is room */
1014        do {
1015                lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1016        } while ((lsrval & 0x20) == 0);
1017
1018        /* Write the byte */
1019        cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1020        return 1;
1021}
1022EXPORT_SYMBOL(prom_putchar);
1023
1024void prom_free_prom_memory(void)
1025{
1026        if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
1027                /* Check for presence of Core-14449 fix.  */
1028                u32 insn;
1029                u32 *foo;
1030
1031                foo = &insn;
1032
1033                asm volatile("# before" : : : "memory");
1034                prefetch(foo);
1035                asm volatile(
1036                        ".set push\n\t"
1037                        ".set noreorder\n\t"
1038                        "bal 1f\n\t"
1039                        "nop\n"
1040                        "1:\tlw %0,-12($31)\n\t"
1041                        ".set pop\n\t"
1042                        : "=r" (insn) : : "$31", "memory");
1043
1044                if ((insn >> 26) != 0x33)
1045                        panic("No PREF instruction at Core-14449 probe point.");
1046
1047                if (((insn >> 16) & 0x1f) != 28)
1048                        panic("Core-14449 WAR not in place (%04x).\n"
1049                              "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn);
1050        }
1051}
1052
1053int octeon_prune_device_tree(void);
1054
1055extern const char __dtb_octeon_3xxx_begin;
1056extern const char __dtb_octeon_3xxx_end;
1057extern const char __dtb_octeon_68xx_begin;
1058extern const char __dtb_octeon_68xx_end;
1059void __init device_tree_init(void)
1060{
1061        int dt_size;
1062        struct boot_param_header *fdt;
1063        bool do_prune;
1064
1065        if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1066                fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1067                if (fdt_check_header(fdt))
1068                        panic("Corrupt Device Tree passed to kernel.");
1069                dt_size = be32_to_cpu(fdt->totalsize);
1070                do_prune = false;
1071        } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1072                fdt = (struct boot_param_header *)&__dtb_octeon_68xx_begin;
1073                dt_size = &__dtb_octeon_68xx_end - &__dtb_octeon_68xx_begin;
1074                do_prune = true;
1075        } else {
1076                fdt = (struct boot_param_header *)&__dtb_octeon_3xxx_begin;
1077                dt_size = &__dtb_octeon_3xxx_end - &__dtb_octeon_3xxx_begin;
1078                do_prune = true;
1079        }
1080
1081        /* Copy the default tree from init memory. */
1082        initial_boot_params = early_init_dt_alloc_memory_arch(dt_size, 8);
1083        if (initial_boot_params == NULL)
1084                panic("Could not allocate initial_boot_params\n");
1085        memcpy(initial_boot_params, fdt, dt_size);
1086
1087        if (do_prune) {
1088                octeon_prune_device_tree();
1089                pr_info("Using internal Device Tree.\n");
1090        } else {
1091                pr_info("Using passed Device Tree.\n");
1092        }
1093        unflatten_device_tree();
1094}
1095
1096static int __initdata disable_octeon_edac_p;
1097
1098static int __init disable_octeon_edac(char *str)
1099{
1100        disable_octeon_edac_p = 1;
1101        return 0;
1102}
1103early_param("disable_octeon_edac", disable_octeon_edac);
1104
1105static char *edac_device_names[] = {
1106        "octeon_l2c_edac",
1107        "octeon_pc_edac",
1108};
1109
1110static int __init edac_devinit(void)
1111{
1112        struct platform_device *dev;
1113        int i, err = 0;
1114        int num_lmc;
1115        char *name;
1116
1117        if (disable_octeon_edac_p)
1118                return 0;
1119
1120        for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1121                name = edac_device_names[i];
1122                dev = platform_device_register_simple(name, -1, NULL, 0);
1123                if (IS_ERR(dev)) {
1124                        pr_err("Registation of %s failed!\n", name);
1125                        err = PTR_ERR(dev);
1126                }
1127        }
1128
1129        num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1130                (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1131        for (i = 0; i < num_lmc; i++) {
1132                dev = platform_device_register_simple("octeon_lmc_edac",
1133                                                      i, NULL, 0);
1134                if (IS_ERR(dev)) {
1135                        pr_err("Registation of octeon_lmc_edac %d failed!\n", i);
1136                        err = PTR_ERR(dev);
1137                }
1138        }
1139
1140        return err;
1141}
1142device_initcall(edac_devinit);
1143
1144static void __initdata *octeon_dummy_iospace;
1145
1146static int __init octeon_no_pci_init(void)
1147{
1148        /*
1149         * Initially assume there is no PCI. The PCI/PCIe platform code will
1150         * later re-initialize these to correct values if they are present.
1151         */
1152        octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1153        set_io_port_base((unsigned long)octeon_dummy_iospace);
1154        ioport_resource.start = MAX_RESOURCE;
1155        ioport_resource.end = 0;
1156        return 0;
1157}
1158core_initcall(octeon_no_pci_init);
1159
1160static int __init octeon_no_pci_release(void)
1161{
1162        /*
1163         * Release the allocated memory if a real IO space is there.
1164         */
1165        if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1166                vfree(octeon_dummy_iospace);
1167        return 0;
1168}
1169late_initcall(octeon_no_pci_release);
1170