linux/arch/parisc/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/parisc/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
   5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
   6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
   7 *
   8 * 1994-07-02  Alan Modra
   9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
  11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 */
  13#include <linux/errno.h>
  14#include <linux/module.h>
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/param.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/interrupt.h>
  21#include <linux/time.h>
  22#include <linux/init.h>
  23#include <linux/smp.h>
  24#include <linux/profile.h>
  25#include <linux/clocksource.h>
  26#include <linux/platform_device.h>
  27#include <linux/ftrace.h>
  28
  29#include <asm/uaccess.h>
  30#include <asm/io.h>
  31#include <asm/irq.h>
  32#include <asm/page.h>
  33#include <asm/param.h>
  34#include <asm/pdc.h>
  35#include <asm/led.h>
  36
  37#include <linux/timex.h>
  38
  39static unsigned long clocktick __read_mostly;   /* timer cycles per tick */
  40
  41/*
  42 * We keep time on PA-RISC Linux by using the Interval Timer which is
  43 * a pair of registers; one is read-only and one is write-only; both
  44 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
  45 * and increments by 1 every CPU clock tick.  The architecture only
  46 * guarantees us a rate between 0.5 and 2, but all implementations use a
  47 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
  48 * 32 bits of the read-only register compare equal to the write-only
  49 * register, it raises a maskable external interrupt.  Each processor has
  50 * an Interval Timer of its own and they are not synchronised.  
  51 *
  52 * We want to generate an interrupt every 1/HZ seconds.  So we program
  53 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
  54 * is programmed with the intended time of the next tick.  We can be
  55 * held off for an arbitrarily long period of time by interrupts being
  56 * disabled, so we may miss one or more ticks.
  57 */
  58irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  59{
  60        unsigned long now, now2;
  61        unsigned long next_tick;
  62        unsigned long cycles_elapsed, ticks_elapsed = 1;
  63        unsigned long cycles_remainder;
  64        unsigned int cpu = smp_processor_id();
  65        struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  66
  67        /* gcc can optimize for "read-only" case with a local clocktick */
  68        unsigned long cpt = clocktick;
  69
  70        profile_tick(CPU_PROFILING);
  71
  72        /* Initialize next_tick to the expected tick time. */
  73        next_tick = cpuinfo->it_value;
  74
  75        /* Get current cycle counter (Control Register 16). */
  76        now = mfctl(16);
  77
  78        cycles_elapsed = now - next_tick;
  79
  80        if ((cycles_elapsed >> 6) < cpt) {
  81                /* use "cheap" math (add/subtract) instead
  82                 * of the more expensive div/mul method
  83                 */
  84                cycles_remainder = cycles_elapsed;
  85                while (cycles_remainder > cpt) {
  86                        cycles_remainder -= cpt;
  87                        ticks_elapsed++;
  88                }
  89        } else {
  90                /* TODO: Reduce this to one fdiv op */
  91                cycles_remainder = cycles_elapsed % cpt;
  92                ticks_elapsed += cycles_elapsed / cpt;
  93        }
  94
  95        /* convert from "division remainder" to "remainder of clock tick" */
  96        cycles_remainder = cpt - cycles_remainder;
  97
  98        /* Determine when (in CR16 cycles) next IT interrupt will fire.
  99         * We want IT to fire modulo clocktick even if we miss/skip some.
 100         * But those interrupts don't in fact get delivered that regularly.
 101         */
 102        next_tick = now + cycles_remainder;
 103
 104        cpuinfo->it_value = next_tick;
 105
 106        /* Program the IT when to deliver the next interrupt.
 107         * Only bottom 32-bits of next_tick are writable in CR16!
 108         */
 109        mtctl(next_tick, 16);
 110
 111        /* Skip one clocktick on purpose if we missed next_tick.
 112         * The new CR16 must be "later" than current CR16 otherwise
 113         * itimer would not fire until CR16 wrapped - e.g 4 seconds
 114         * later on a 1Ghz processor. We'll account for the missed
 115         * tick on the next timer interrupt.
 116         *
 117         * "next_tick - now" will always give the difference regardless
 118         * if one or the other wrapped. If "now" is "bigger" we'll end up
 119         * with a very large unsigned number.
 120         */
 121        now2 = mfctl(16);
 122        if (next_tick - now2 > cpt)
 123                mtctl(next_tick+cpt, 16);
 124
 125#if 1
 126/*
 127 * GGG: DEBUG code for how many cycles programming CR16 used.
 128 */
 129        if (unlikely(now2 - now > 0x3000))      /* 12K cycles */
 130                printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
 131                        " cyc %lX rem %lX "
 132                        " next/now %lX/%lX\n",
 133                        cpu, now2 - now, cycles_elapsed, cycles_remainder,
 134                        next_tick, now );
 135#endif
 136
 137        /* Can we differentiate between "early CR16" (aka Scenario 1) and
 138         * "long delay" (aka Scenario 3)? I don't think so.
 139         *
 140         * Timer_interrupt will be delivered at least a few hundred cycles
 141         * after the IT fires. But it's arbitrary how much time passes
 142         * before we call it "late". I've picked one second.
 143         *
 144         * It's important NO printk's are between reading CR16 and
 145         * setting up the next value. May introduce huge variance.
 146         */
 147        if (unlikely(ticks_elapsed > HZ)) {
 148                /* Scenario 3: very long delay?  bad in any case */
 149                printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
 150                        " cycles %lX rem %lX "
 151                        " next/now %lX/%lX\n",
 152                        cpu,
 153                        cycles_elapsed, cycles_remainder,
 154                        next_tick, now );
 155        }
 156
 157        /* Done mucking with unreliable delivery of interrupts.
 158         * Go do system house keeping.
 159         */
 160
 161        if (!--cpuinfo->prof_counter) {
 162                cpuinfo->prof_counter = cpuinfo->prof_multiplier;
 163                update_process_times(user_mode(get_irq_regs()));
 164        }
 165
 166        if (cpu == 0)
 167                xtime_update(ticks_elapsed);
 168
 169        return IRQ_HANDLED;
 170}
 171
 172
 173unsigned long profile_pc(struct pt_regs *regs)
 174{
 175        unsigned long pc = instruction_pointer(regs);
 176
 177        if (regs->gr[0] & PSW_N)
 178                pc -= 4;
 179
 180#ifdef CONFIG_SMP
 181        if (in_lock_functions(pc))
 182                pc = regs->gr[2];
 183#endif
 184
 185        return pc;
 186}
 187EXPORT_SYMBOL(profile_pc);
 188
 189
 190/* clock source code */
 191
 192static cycle_t read_cr16(struct clocksource *cs)
 193{
 194        return get_cycles();
 195}
 196
 197static struct clocksource clocksource_cr16 = {
 198        .name                   = "cr16",
 199        .rating                 = 300,
 200        .read                   = read_cr16,
 201        .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
 202        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
 203};
 204
 205#ifdef CONFIG_SMP
 206int update_cr16_clocksource(void)
 207{
 208        /* since the cr16 cycle counters are not synchronized across CPUs,
 209           we'll check if we should switch to a safe clocksource: */
 210        if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
 211                clocksource_change_rating(&clocksource_cr16, 0);
 212                return 1;
 213        }
 214
 215        return 0;
 216}
 217#else
 218int update_cr16_clocksource(void)
 219{
 220        return 0; /* no change */
 221}
 222#endif /*CONFIG_SMP*/
 223
 224void __init start_cpu_itimer(void)
 225{
 226        unsigned int cpu = smp_processor_id();
 227        unsigned long next_tick = mfctl(16) + clocktick;
 228
 229        mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
 230
 231        per_cpu(cpu_data, cpu).it_value = next_tick;
 232}
 233
 234static struct platform_device rtc_generic_dev = {
 235        .name = "rtc-generic",
 236        .id = -1,
 237};
 238
 239static int __init rtc_init(void)
 240{
 241        if (platform_device_register(&rtc_generic_dev) < 0)
 242                printk(KERN_ERR "unable to register rtc device...\n");
 243
 244        /* not necessarily an error */
 245        return 0;
 246}
 247module_init(rtc_init);
 248
 249void read_persistent_clock(struct timespec *ts)
 250{
 251        static struct pdc_tod tod_data;
 252        if (pdc_tod_read(&tod_data) == 0) {
 253                ts->tv_sec = tod_data.tod_sec;
 254                ts->tv_nsec = tod_data.tod_usec * 1000;
 255        } else {
 256                printk(KERN_ERR "Error reading tod clock\n");
 257                ts->tv_sec = 0;
 258                ts->tv_nsec = 0;
 259        }
 260}
 261
 262void __init time_init(void)
 263{
 264        unsigned long current_cr16_khz;
 265
 266        clocktick = (100 * PAGE0->mem_10msec) / HZ;
 267
 268        start_cpu_itimer();     /* get CPU 0 started */
 269
 270        /* register at clocksource framework */
 271        current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
 272        clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
 273}
 274