linux/arch/parisc/mm/init.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>     /* for node_online_map */
  25#include <linux/pagemap.h>      /* for release_pages and page_cache_release */
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30#include <asm/pdc_chassis.h>
  31#include <asm/mmzone.h>
  32#include <asm/sections.h>
  33
  34extern int  data_start;
  35
  36#if PT_NLEVELS == 3
  37/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  38 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  39 * guarantee that global objects will be laid out in memory in the same order
  40 * as the order of declaration, so put these in different sections and use
  41 * the linker script to order them. */
  42pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  43#endif
  44
  45pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  46pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  47
  48#ifdef CONFIG_DISCONTIGMEM
  49struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  50signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  51#endif
  52
  53static struct resource data_resource = {
  54        .name   = "Kernel data",
  55        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  56};
  57
  58static struct resource code_resource = {
  59        .name   = "Kernel code",
  60        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  61};
  62
  63static struct resource pdcdata_resource = {
  64        .name   = "PDC data (Page Zero)",
  65        .start  = 0,
  66        .end    = 0x9ff,
  67        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  68};
  69
  70static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  71
  72/* The following array is initialized from the firmware specific
  73 * information retrieved in kernel/inventory.c.
  74 */
  75
  76physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  77int npmem_ranges __read_mostly;
  78
  79#ifdef CONFIG_64BIT
  80#define MAX_MEM         (~0UL)
  81#else /* !CONFIG_64BIT */
  82#define MAX_MEM         (3584U*1024U*1024U)
  83#endif /* !CONFIG_64BIT */
  84
  85static unsigned long mem_limit __read_mostly = MAX_MEM;
  86
  87static void __init mem_limit_func(void)
  88{
  89        char *cp, *end;
  90        unsigned long limit;
  91
  92        /* We need this before __setup() functions are called */
  93
  94        limit = MAX_MEM;
  95        for (cp = boot_command_line; *cp; ) {
  96                if (memcmp(cp, "mem=", 4) == 0) {
  97                        cp += 4;
  98                        limit = memparse(cp, &end);
  99                        if (end != cp)
 100                                break;
 101                        cp = end;
 102                } else {
 103                        while (*cp != ' ' && *cp)
 104                                ++cp;
 105                        while (*cp == ' ')
 106                                ++cp;
 107                }
 108        }
 109
 110        if (limit < mem_limit)
 111                mem_limit = limit;
 112}
 113
 114#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 115
 116static void __init setup_bootmem(void)
 117{
 118        unsigned long bootmap_size;
 119        unsigned long mem_max;
 120        unsigned long bootmap_pages;
 121        unsigned long bootmap_start_pfn;
 122        unsigned long bootmap_pfn;
 123#ifndef CONFIG_DISCONTIGMEM
 124        physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 125        int npmem_holes;
 126#endif
 127        int i, sysram_resource_count;
 128
 129        disable_sr_hashing(); /* Turn off space register hashing */
 130
 131        /*
 132         * Sort the ranges. Since the number of ranges is typically
 133         * small, and performance is not an issue here, just do
 134         * a simple insertion sort.
 135         */
 136
 137        for (i = 1; i < npmem_ranges; i++) {
 138                int j;
 139
 140                for (j = i; j > 0; j--) {
 141                        unsigned long tmp;
 142
 143                        if (pmem_ranges[j-1].start_pfn <
 144                            pmem_ranges[j].start_pfn) {
 145
 146                                break;
 147                        }
 148                        tmp = pmem_ranges[j-1].start_pfn;
 149                        pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 150                        pmem_ranges[j].start_pfn = tmp;
 151                        tmp = pmem_ranges[j-1].pages;
 152                        pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 153                        pmem_ranges[j].pages = tmp;
 154                }
 155        }
 156
 157#ifndef CONFIG_DISCONTIGMEM
 158        /*
 159         * Throw out ranges that are too far apart (controlled by
 160         * MAX_GAP).
 161         */
 162
 163        for (i = 1; i < npmem_ranges; i++) {
 164                if (pmem_ranges[i].start_pfn -
 165                        (pmem_ranges[i-1].start_pfn +
 166                         pmem_ranges[i-1].pages) > MAX_GAP) {
 167                        npmem_ranges = i;
 168                        printk("Large gap in memory detected (%ld pages). "
 169                               "Consider turning on CONFIG_DISCONTIGMEM\n",
 170                               pmem_ranges[i].start_pfn -
 171                               (pmem_ranges[i-1].start_pfn +
 172                                pmem_ranges[i-1].pages));
 173                        break;
 174                }
 175        }
 176#endif
 177
 178        if (npmem_ranges > 1) {
 179
 180                /* Print the memory ranges */
 181
 182                printk(KERN_INFO "Memory Ranges:\n");
 183
 184                for (i = 0; i < npmem_ranges; i++) {
 185                        unsigned long start;
 186                        unsigned long size;
 187
 188                        size = (pmem_ranges[i].pages << PAGE_SHIFT);
 189                        start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 190                        printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 191                                i,start, start + (size - 1), size >> 20);
 192                }
 193        }
 194
 195        sysram_resource_count = npmem_ranges;
 196        for (i = 0; i < sysram_resource_count; i++) {
 197                struct resource *res = &sysram_resources[i];
 198                res->name = "System RAM";
 199                res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 200                res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 201                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 202                request_resource(&iomem_resource, res);
 203        }
 204
 205        /*
 206         * For 32 bit kernels we limit the amount of memory we can
 207         * support, in order to preserve enough kernel address space
 208         * for other purposes. For 64 bit kernels we don't normally
 209         * limit the memory, but this mechanism can be used to
 210         * artificially limit the amount of memory (and it is written
 211         * to work with multiple memory ranges).
 212         */
 213
 214        mem_limit_func();       /* check for "mem=" argument */
 215
 216        mem_max = 0;
 217        for (i = 0; i < npmem_ranges; i++) {
 218                unsigned long rsize;
 219
 220                rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 221                if ((mem_max + rsize) > mem_limit) {
 222                        printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 223                        if (mem_max == mem_limit)
 224                                npmem_ranges = i;
 225                        else {
 226                                pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 227                                                       - (mem_max >> PAGE_SHIFT);
 228                                npmem_ranges = i + 1;
 229                                mem_max = mem_limit;
 230                        }
 231                        break;
 232                }
 233                mem_max += rsize;
 234        }
 235
 236        printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 237
 238#ifndef CONFIG_DISCONTIGMEM
 239        /* Merge the ranges, keeping track of the holes */
 240
 241        {
 242                unsigned long end_pfn;
 243                unsigned long hole_pages;
 244
 245                npmem_holes = 0;
 246                end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 247                for (i = 1; i < npmem_ranges; i++) {
 248
 249                        hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 250                        if (hole_pages) {
 251                                pmem_holes[npmem_holes].start_pfn = end_pfn;
 252                                pmem_holes[npmem_holes++].pages = hole_pages;
 253                                end_pfn += hole_pages;
 254                        }
 255                        end_pfn += pmem_ranges[i].pages;
 256                }
 257
 258                pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 259                npmem_ranges = 1;
 260        }
 261#endif
 262
 263        bootmap_pages = 0;
 264        for (i = 0; i < npmem_ranges; i++)
 265                bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 266
 267        bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 268
 269#ifdef CONFIG_DISCONTIGMEM
 270        for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 271                memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 272                NODE_DATA(i)->bdata = &bootmem_node_data[i];
 273        }
 274        memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 275
 276        for (i = 0; i < npmem_ranges; i++) {
 277                node_set_state(i, N_NORMAL_MEMORY);
 278                node_set_online(i);
 279        }
 280#endif
 281
 282        /*
 283         * Initialize and free the full range of memory in each range.
 284         * Note that the only writing these routines do are to the bootmap,
 285         * and we've made sure to locate the bootmap properly so that they
 286         * won't be writing over anything important.
 287         */
 288
 289        bootmap_pfn = bootmap_start_pfn;
 290        max_pfn = 0;
 291        for (i = 0; i < npmem_ranges; i++) {
 292                unsigned long start_pfn;
 293                unsigned long npages;
 294
 295                start_pfn = pmem_ranges[i].start_pfn;
 296                npages = pmem_ranges[i].pages;
 297
 298                bootmap_size = init_bootmem_node(NODE_DATA(i),
 299                                                bootmap_pfn,
 300                                                start_pfn,
 301                                                (start_pfn + npages) );
 302                free_bootmem_node(NODE_DATA(i),
 303                                  (start_pfn << PAGE_SHIFT),
 304                                  (npages << PAGE_SHIFT) );
 305                bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 306                if ((start_pfn + npages) > max_pfn)
 307                        max_pfn = start_pfn + npages;
 308        }
 309
 310        /* IOMMU is always used to access "high mem" on those boxes
 311         * that can support enough mem that a PCI device couldn't
 312         * directly DMA to any physical addresses.
 313         * ISA DMA support will need to revisit this.
 314         */
 315        max_low_pfn = max_pfn;
 316
 317        /* bootmap sizing messed up? */
 318        BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 319
 320        /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 321
 322#define PDC_CONSOLE_IO_IODC_SIZE 32768
 323
 324        reserve_bootmem_node(NODE_DATA(0), 0UL,
 325                        (unsigned long)(PAGE0->mem_free +
 326                                PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 327        reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
 328                        (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
 329        reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 330                        ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 331                        BOOTMEM_DEFAULT);
 332
 333#ifndef CONFIG_DISCONTIGMEM
 334
 335        /* reserve the holes */
 336
 337        for (i = 0; i < npmem_holes; i++) {
 338                reserve_bootmem_node(NODE_DATA(0),
 339                                (pmem_holes[i].start_pfn << PAGE_SHIFT),
 340                                (pmem_holes[i].pages << PAGE_SHIFT),
 341                                BOOTMEM_DEFAULT);
 342        }
 343#endif
 344
 345#ifdef CONFIG_BLK_DEV_INITRD
 346        if (initrd_start) {
 347                printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 348                if (__pa(initrd_start) < mem_max) {
 349                        unsigned long initrd_reserve;
 350
 351                        if (__pa(initrd_end) > mem_max) {
 352                                initrd_reserve = mem_max - __pa(initrd_start);
 353                        } else {
 354                                initrd_reserve = initrd_end - initrd_start;
 355                        }
 356                        initrd_below_start_ok = 1;
 357                        printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 358
 359                        reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 360                                        initrd_reserve, BOOTMEM_DEFAULT);
 361                }
 362        }
 363#endif
 364
 365        data_resource.start =  virt_to_phys(&data_start);
 366        data_resource.end = virt_to_phys(_end) - 1;
 367        code_resource.start = virt_to_phys(_text);
 368        code_resource.end = virt_to_phys(&data_start)-1;
 369
 370        /* We don't know which region the kernel will be in, so try
 371         * all of them.
 372         */
 373        for (i = 0; i < sysram_resource_count; i++) {
 374                struct resource *res = &sysram_resources[i];
 375                request_resource(res, &code_resource);
 376                request_resource(res, &data_resource);
 377        }
 378        request_resource(&sysram_resources[0], &pdcdata_resource);
 379}
 380
 381static void __init map_pages(unsigned long start_vaddr,
 382                             unsigned long start_paddr, unsigned long size,
 383                             pgprot_t pgprot, int force)
 384{
 385        pgd_t *pg_dir;
 386        pmd_t *pmd;
 387        pte_t *pg_table;
 388        unsigned long end_paddr;
 389        unsigned long start_pmd;
 390        unsigned long start_pte;
 391        unsigned long tmp1;
 392        unsigned long tmp2;
 393        unsigned long address;
 394        unsigned long vaddr;
 395        unsigned long ro_start;
 396        unsigned long ro_end;
 397        unsigned long fv_addr;
 398        unsigned long gw_addr;
 399        extern const unsigned long fault_vector_20;
 400        extern void * const linux_gateway_page;
 401
 402        ro_start = __pa((unsigned long)_text);
 403        ro_end   = __pa((unsigned long)&data_start);
 404        fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
 405        gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 406
 407        end_paddr = start_paddr + size;
 408
 409        pg_dir = pgd_offset_k(start_vaddr);
 410
 411#if PTRS_PER_PMD == 1
 412        start_pmd = 0;
 413#else
 414        start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 415#endif
 416        start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 417
 418        address = start_paddr;
 419        vaddr = start_vaddr;
 420        while (address < end_paddr) {
 421#if PTRS_PER_PMD == 1
 422                pmd = (pmd_t *)__pa(pg_dir);
 423#else
 424                pmd = (pmd_t *)pgd_address(*pg_dir);
 425
 426                /*
 427                 * pmd is physical at this point
 428                 */
 429
 430                if (!pmd) {
 431                        pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 432                        pmd = (pmd_t *) __pa(pmd);
 433                }
 434
 435                pgd_populate(NULL, pg_dir, __va(pmd));
 436#endif
 437                pg_dir++;
 438
 439                /* now change pmd to kernel virtual addresses */
 440
 441                pmd = (pmd_t *)__va(pmd) + start_pmd;
 442                for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 443
 444                        /*
 445                         * pg_table is physical at this point
 446                         */
 447
 448                        pg_table = (pte_t *)pmd_address(*pmd);
 449                        if (!pg_table) {
 450                                pg_table = (pte_t *)
 451                                        alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 452                                pg_table = (pte_t *) __pa(pg_table);
 453                        }
 454
 455                        pmd_populate_kernel(NULL, pmd, __va(pg_table));
 456
 457                        /* now change pg_table to kernel virtual addresses */
 458
 459                        pg_table = (pte_t *) __va(pg_table) + start_pte;
 460                        for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 461                                pte_t pte;
 462
 463                                /*
 464                                 * Map the fault vector writable so we can
 465                                 * write the HPMC checksum.
 466                                 */
 467                                if (force)
 468                                        pte =  __mk_pte(address, pgprot);
 469                                else if (core_kernel_text(vaddr) &&
 470                                         address != fv_addr)
 471                                        pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 472                                else
 473#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 474                                if (address >= ro_start && address < ro_end
 475                                                        && address != fv_addr
 476                                                        && address != gw_addr)
 477                                        pte = __mk_pte(address, PAGE_KERNEL_RO);
 478                                else
 479#endif
 480                                        pte = __mk_pte(address, pgprot);
 481
 482                                if (address >= end_paddr) {
 483                                        if (force)
 484                                                break;
 485                                        else
 486                                                pte_val(pte) = 0;
 487                                }
 488
 489                                set_pte(pg_table, pte);
 490
 491                                address += PAGE_SIZE;
 492                                vaddr += PAGE_SIZE;
 493                        }
 494                        start_pte = 0;
 495
 496                        if (address >= end_paddr)
 497                            break;
 498                }
 499                start_pmd = 0;
 500        }
 501}
 502
 503void free_initmem(void)
 504{
 505        unsigned long init_begin = (unsigned long)__init_begin;
 506        unsigned long init_end = (unsigned long)__init_end;
 507
 508        /* The init text pages are marked R-X.  We have to
 509         * flush the icache and mark them RW-
 510         *
 511         * This is tricky, because map_pages is in the init section.
 512         * Do a dummy remap of the data section first (the data
 513         * section is already PAGE_KERNEL) to pull in the TLB entries
 514         * for map_kernel */
 515        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 516                  PAGE_KERNEL_RWX, 1);
 517        /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 518         * map_pages */
 519        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 520                  PAGE_KERNEL, 1);
 521
 522        /* force the kernel to see the new TLB entries */
 523        __flush_tlb_range(0, init_begin, init_end);
 524        /* Attempt to catch anyone trying to execute code here
 525         * by filling the page with BRK insns.
 526         */
 527        memset((void *)init_begin, 0x00, init_end - init_begin);
 528        /* finally dump all the instructions which were cached, since the
 529         * pages are no-longer executable */
 530        flush_icache_range(init_begin, init_end);
 531        
 532        free_initmem_default(-1);
 533
 534        /* set up a new led state on systems shipped LED State panel */
 535        pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 536}
 537
 538
 539#ifdef CONFIG_DEBUG_RODATA
 540void mark_rodata_ro(void)
 541{
 542        /* rodata memory was already mapped with KERNEL_RO access rights by
 543           pagetable_init() and map_pages(). No need to do additional stuff here */
 544        printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 545                (unsigned long)(__end_rodata - __start_rodata) >> 10);
 546}
 547#endif
 548
 549
 550/*
 551 * Just an arbitrary offset to serve as a "hole" between mapping areas
 552 * (between top of physical memory and a potential pcxl dma mapping
 553 * area, and below the vmalloc mapping area).
 554 *
 555 * The current 32K value just means that there will be a 32K "hole"
 556 * between mapping areas. That means that  any out-of-bounds memory
 557 * accesses will hopefully be caught. The vmalloc() routines leaves
 558 * a hole of 4kB between each vmalloced area for the same reason.
 559 */
 560
 561 /* Leave room for gateway page expansion */
 562#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 563#error KERNEL_MAP_START is in gateway reserved region
 564#endif
 565#define MAP_START (KERNEL_MAP_START)
 566
 567#define VM_MAP_OFFSET  (32*1024)
 568#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 569                                     & ~(VM_MAP_OFFSET-1)))
 570
 571void *parisc_vmalloc_start __read_mostly;
 572EXPORT_SYMBOL(parisc_vmalloc_start);
 573
 574#ifdef CONFIG_PA11
 575unsigned long pcxl_dma_start __read_mostly;
 576#endif
 577
 578void __init mem_init(void)
 579{
 580        /* Do sanity checks on page table constants */
 581        BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 582        BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 583        BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 584        BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 585                        > BITS_PER_LONG);
 586
 587        high_memory = __va((max_pfn << PAGE_SHIFT));
 588        set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
 589        free_all_bootmem();
 590
 591#ifdef CONFIG_PA11
 592        if (hppa_dma_ops == &pcxl_dma_ops) {
 593                pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 594                parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 595                                                + PCXL_DMA_MAP_SIZE);
 596        } else {
 597                pcxl_dma_start = 0;
 598                parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 599        }
 600#else
 601        parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 602#endif
 603
 604        mem_init_print_info(NULL);
 605#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 606        printk("virtual kernel memory layout:\n"
 607               "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 608               "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 609               "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 610               "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 611               "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 612
 613               (void*)VMALLOC_START, (void*)VMALLOC_END,
 614               (VMALLOC_END - VMALLOC_START) >> 20,
 615
 616               __va(0), high_memory,
 617               ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 618
 619               __init_begin, __init_end,
 620               ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 621
 622               _etext, _edata,
 623               ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 624
 625               _text, _etext,
 626               ((unsigned long)_etext - (unsigned long)_text) >> 10);
 627#endif
 628}
 629
 630unsigned long *empty_zero_page __read_mostly;
 631EXPORT_SYMBOL(empty_zero_page);
 632
 633void show_mem(unsigned int filter)
 634{
 635        int i,free = 0,total = 0,reserved = 0;
 636        int shared = 0, cached = 0;
 637
 638        printk(KERN_INFO "Mem-info:\n");
 639        show_free_areas(filter);
 640        if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
 641                return;
 642#ifndef CONFIG_DISCONTIGMEM
 643        i = max_mapnr;
 644        while (i-- > 0) {
 645                total++;
 646                if (PageReserved(mem_map+i))
 647                        reserved++;
 648                else if (PageSwapCache(mem_map+i))
 649                        cached++;
 650                else if (!page_count(&mem_map[i]))
 651                        free++;
 652                else
 653                        shared += page_count(&mem_map[i]) - 1;
 654        }
 655#else
 656        for (i = 0; i < npmem_ranges; i++) {
 657                int j;
 658
 659                for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
 660                        struct page *p;
 661                        unsigned long flags;
 662
 663                        pgdat_resize_lock(NODE_DATA(i), &flags);
 664                        p = nid_page_nr(i, j) - node_start_pfn(i);
 665
 666                        total++;
 667                        if (PageReserved(p))
 668                                reserved++;
 669                        else if (PageSwapCache(p))
 670                                cached++;
 671                        else if (!page_count(p))
 672                                free++;
 673                        else
 674                                shared += page_count(p) - 1;
 675                        pgdat_resize_unlock(NODE_DATA(i), &flags);
 676                }
 677        }
 678#endif
 679        printk(KERN_INFO "%d pages of RAM\n", total);
 680        printk(KERN_INFO "%d reserved pages\n", reserved);
 681        printk(KERN_INFO "%d pages shared\n", shared);
 682        printk(KERN_INFO "%d pages swap cached\n", cached);
 683
 684
 685#ifdef CONFIG_DISCONTIGMEM
 686        {
 687                struct zonelist *zl;
 688                int i, j;
 689
 690                for (i = 0; i < npmem_ranges; i++) {
 691                        zl = node_zonelist(i, 0);
 692                        for (j = 0; j < MAX_NR_ZONES; j++) {
 693                                struct zoneref *z;
 694                                struct zone *zone;
 695
 696                                printk("Zone list for zone %d on node %d: ", j, i);
 697                                for_each_zone_zonelist(zone, z, zl, j)
 698                                        printk("[%d/%s] ", zone_to_nid(zone),
 699                                                                zone->name);
 700                                printk("\n");
 701                        }
 702                }
 703        }
 704#endif
 705}
 706
 707/*
 708 * pagetable_init() sets up the page tables
 709 *
 710 * Note that gateway_init() places the Linux gateway page at page 0.
 711 * Since gateway pages cannot be dereferenced this has the desirable
 712 * side effect of trapping those pesky NULL-reference errors in the
 713 * kernel.
 714 */
 715static void __init pagetable_init(void)
 716{
 717        int range;
 718
 719        /* Map each physical memory range to its kernel vaddr */
 720
 721        for (range = 0; range < npmem_ranges; range++) {
 722                unsigned long start_paddr;
 723                unsigned long end_paddr;
 724                unsigned long size;
 725
 726                start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 727                end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
 728                size = pmem_ranges[range].pages << PAGE_SHIFT;
 729
 730                map_pages((unsigned long)__va(start_paddr), start_paddr,
 731                          size, PAGE_KERNEL, 0);
 732        }
 733
 734#ifdef CONFIG_BLK_DEV_INITRD
 735        if (initrd_end && initrd_end > mem_limit) {
 736                printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 737                map_pages(initrd_start, __pa(initrd_start),
 738                          initrd_end - initrd_start, PAGE_KERNEL, 0);
 739        }
 740#endif
 741
 742        empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 743        memset(empty_zero_page, 0, PAGE_SIZE);
 744}
 745
 746static void __init gateway_init(void)
 747{
 748        unsigned long linux_gateway_page_addr;
 749        /* FIXME: This is 'const' in order to trick the compiler
 750           into not treating it as DP-relative data. */
 751        extern void * const linux_gateway_page;
 752
 753        linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 754
 755        /*
 756         * Setup Linux Gateway page.
 757         *
 758         * The Linux gateway page will reside in kernel space (on virtual
 759         * page 0), so it doesn't need to be aliased into user space.
 760         */
 761
 762        map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 763                  PAGE_SIZE, PAGE_GATEWAY, 1);
 764}
 765
 766#ifdef CONFIG_HPUX
 767void
 768map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
 769{
 770        pgd_t *pg_dir;
 771        pmd_t *pmd;
 772        pte_t *pg_table;
 773        unsigned long start_pmd;
 774        unsigned long start_pte;
 775        unsigned long address;
 776        unsigned long hpux_gw_page_addr;
 777        /* FIXME: This is 'const' in order to trick the compiler
 778           into not treating it as DP-relative data. */
 779        extern void * const hpux_gateway_page;
 780
 781        hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 782
 783        /*
 784         * Setup HP-UX Gateway page.
 785         *
 786         * The HP-UX gateway page resides in the user address space,
 787         * so it needs to be aliased into each process.
 788         */
 789
 790        pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 791
 792#if PTRS_PER_PMD == 1
 793        start_pmd = 0;
 794#else
 795        start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 796#endif
 797        start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 798
 799        address = __pa(&hpux_gateway_page);
 800#if PTRS_PER_PMD == 1
 801        pmd = (pmd_t *)__pa(pg_dir);
 802#else
 803        pmd = (pmd_t *) pgd_address(*pg_dir);
 804
 805        /*
 806         * pmd is physical at this point
 807         */
 808
 809        if (!pmd) {
 810                pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
 811                pmd = (pmd_t *) __pa(pmd);
 812        }
 813
 814        __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
 815#endif
 816        /* now change pmd to kernel virtual addresses */
 817
 818        pmd = (pmd_t *)__va(pmd) + start_pmd;
 819
 820        /*
 821         * pg_table is physical at this point
 822         */
 823
 824        pg_table = (pte_t *) pmd_address(*pmd);
 825        if (!pg_table)
 826                pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 827
 828        __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
 829
 830        /* now change pg_table to kernel virtual addresses */
 831
 832        pg_table = (pte_t *) __va(pg_table) + start_pte;
 833        set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
 834}
 835EXPORT_SYMBOL(map_hpux_gateway_page);
 836#endif
 837
 838void __init paging_init(void)
 839{
 840        int i;
 841
 842        setup_bootmem();
 843        pagetable_init();
 844        gateway_init();
 845        flush_cache_all_local(); /* start with known state */
 846        flush_tlb_all_local(NULL);
 847
 848        for (i = 0; i < npmem_ranges; i++) {
 849                unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 850
 851                zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 852
 853#ifdef CONFIG_DISCONTIGMEM
 854                /* Need to initialize the pfnnid_map before we can initialize
 855                   the zone */
 856                {
 857                    int j;
 858                    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 859                         j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 860                         j++) {
 861                        pfnnid_map[j] = i;
 862                    }
 863                }
 864#endif
 865
 866                free_area_init_node(i, zones_size,
 867                                pmem_ranges[i].start_pfn, NULL);
 868        }
 869}
 870
 871#ifdef CONFIG_PA20
 872
 873/*
 874 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 875 * limiting factor (space ids are 32 bits).
 876 */
 877
 878#define NR_SPACE_IDS 262144
 879
 880#else
 881
 882/*
 883 * Currently we have a one-to-one relationship between space IDs and
 884 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 885 * support 15 bit protection IDs, so that is the limiting factor.
 886 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 887 * probably not worth the effort for a special case here.
 888 */
 889
 890#define NR_SPACE_IDS 32768
 891
 892#endif  /* !CONFIG_PA20 */
 893
 894#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 895#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 896
 897static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 898static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 899static unsigned long space_id_index;
 900static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 901static unsigned long dirty_space_ids = 0;
 902
 903static DEFINE_SPINLOCK(sid_lock);
 904
 905unsigned long alloc_sid(void)
 906{
 907        unsigned long index;
 908
 909        spin_lock(&sid_lock);
 910
 911        if (free_space_ids == 0) {
 912                if (dirty_space_ids != 0) {
 913                        spin_unlock(&sid_lock);
 914                        flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 915                        spin_lock(&sid_lock);
 916                }
 917                BUG_ON(free_space_ids == 0);
 918        }
 919
 920        free_space_ids--;
 921
 922        index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 923        space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 924        space_id_index = index;
 925
 926        spin_unlock(&sid_lock);
 927
 928        return index << SPACEID_SHIFT;
 929}
 930
 931void free_sid(unsigned long spaceid)
 932{
 933        unsigned long index = spaceid >> SPACEID_SHIFT;
 934        unsigned long *dirty_space_offset;
 935
 936        dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 937        index &= (BITS_PER_LONG - 1);
 938
 939        spin_lock(&sid_lock);
 940
 941        BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
 942
 943        *dirty_space_offset |= (1L << index);
 944        dirty_space_ids++;
 945
 946        spin_unlock(&sid_lock);
 947}
 948
 949
 950#ifdef CONFIG_SMP
 951static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 952{
 953        int i;
 954
 955        /* NOTE: sid_lock must be held upon entry */
 956
 957        *ndirtyptr = dirty_space_ids;
 958        if (dirty_space_ids != 0) {
 959            for (i = 0; i < SID_ARRAY_SIZE; i++) {
 960                dirty_array[i] = dirty_space_id[i];
 961                dirty_space_id[i] = 0;
 962            }
 963            dirty_space_ids = 0;
 964        }
 965
 966        return;
 967}
 968
 969static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
 970{
 971        int i;
 972
 973        /* NOTE: sid_lock must be held upon entry */
 974
 975        if (ndirty != 0) {
 976                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 977                        space_id[i] ^= dirty_array[i];
 978                }
 979
 980                free_space_ids += ndirty;
 981                space_id_index = 0;
 982        }
 983}
 984
 985#else /* CONFIG_SMP */
 986
 987static void recycle_sids(void)
 988{
 989        int i;
 990
 991        /* NOTE: sid_lock must be held upon entry */
 992
 993        if (dirty_space_ids != 0) {
 994                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 995                        space_id[i] ^= dirty_space_id[i];
 996                        dirty_space_id[i] = 0;
 997                }
 998
 999                free_space_ids += dirty_space_ids;
1000                dirty_space_ids = 0;
1001                space_id_index = 0;
1002        }
1003}
1004#endif
1005
1006/*
1007 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1008 * purged, we can safely reuse the space ids that were released but
1009 * not flushed from the tlb.
1010 */
1011
1012#ifdef CONFIG_SMP
1013
1014static unsigned long recycle_ndirty;
1015static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1016static unsigned int recycle_inuse;
1017
1018void flush_tlb_all(void)
1019{
1020        int do_recycle;
1021
1022        __inc_irq_stat(irq_tlb_count);
1023        do_recycle = 0;
1024        spin_lock(&sid_lock);
1025        if (dirty_space_ids > RECYCLE_THRESHOLD) {
1026            BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1027            get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1028            recycle_inuse++;
1029            do_recycle++;
1030        }
1031        spin_unlock(&sid_lock);
1032        on_each_cpu(flush_tlb_all_local, NULL, 1);
1033        if (do_recycle) {
1034            spin_lock(&sid_lock);
1035            recycle_sids(recycle_ndirty,recycle_dirty_array);
1036            recycle_inuse = 0;
1037            spin_unlock(&sid_lock);
1038        }
1039}
1040#else
1041void flush_tlb_all(void)
1042{
1043        __inc_irq_stat(irq_tlb_count);
1044        spin_lock(&sid_lock);
1045        flush_tlb_all_local(NULL);
1046        recycle_sids();
1047        spin_unlock(&sid_lock);
1048}
1049#endif
1050
1051#ifdef CONFIG_BLK_DEV_INITRD
1052void free_initrd_mem(unsigned long start, unsigned long end)
1053{
1054        free_reserved_area((void *)start, (void *)end, -1, "initrd");
1055}
1056#endif
1057