linux/arch/powerpc/kernel/eeh.c
<<
>>
Prefs
   1/*
   2 * Copyright IBM Corporation 2001, 2005, 2006
   3 * Copyright Dave Engebretsen & Todd Inglett 2001
   4 * Copyright Linas Vepstas 2005, 2006
   5 * Copyright 2001-2012 IBM Corporation.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/sched.h>
  26#include <linux/init.h>
  27#include <linux/list.h>
  28#include <linux/pci.h>
  29#include <linux/proc_fs.h>
  30#include <linux/rbtree.h>
  31#include <linux/seq_file.h>
  32#include <linux/spinlock.h>
  33#include <linux/export.h>
  34#include <linux/of.h>
  35
  36#include <linux/atomic.h>
  37#include <asm/eeh.h>
  38#include <asm/eeh_event.h>
  39#include <asm/io.h>
  40#include <asm/machdep.h>
  41#include <asm/ppc-pci.h>
  42#include <asm/rtas.h>
  43
  44
  45/** Overview:
  46 *  EEH, or "Extended Error Handling" is a PCI bridge technology for
  47 *  dealing with PCI bus errors that can't be dealt with within the
  48 *  usual PCI framework, except by check-stopping the CPU.  Systems
  49 *  that are designed for high-availability/reliability cannot afford
  50 *  to crash due to a "mere" PCI error, thus the need for EEH.
  51 *  An EEH-capable bridge operates by converting a detected error
  52 *  into a "slot freeze", taking the PCI adapter off-line, making
  53 *  the slot behave, from the OS'es point of view, as if the slot
  54 *  were "empty": all reads return 0xff's and all writes are silently
  55 *  ignored.  EEH slot isolation events can be triggered by parity
  56 *  errors on the address or data busses (e.g. during posted writes),
  57 *  which in turn might be caused by low voltage on the bus, dust,
  58 *  vibration, humidity, radioactivity or plain-old failed hardware.
  59 *
  60 *  Note, however, that one of the leading causes of EEH slot
  61 *  freeze events are buggy device drivers, buggy device microcode,
  62 *  or buggy device hardware.  This is because any attempt by the
  63 *  device to bus-master data to a memory address that is not
  64 *  assigned to the device will trigger a slot freeze.   (The idea
  65 *  is to prevent devices-gone-wild from corrupting system memory).
  66 *  Buggy hardware/drivers will have a miserable time co-existing
  67 *  with EEH.
  68 *
  69 *  Ideally, a PCI device driver, when suspecting that an isolation
  70 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
  71 *  whether this is the case, and then take appropriate steps to
  72 *  reset the PCI slot, the PCI device, and then resume operations.
  73 *  However, until that day,  the checking is done here, with the
  74 *  eeh_check_failure() routine embedded in the MMIO macros.  If
  75 *  the slot is found to be isolated, an "EEH Event" is synthesized
  76 *  and sent out for processing.
  77 */
  78
  79/* If a device driver keeps reading an MMIO register in an interrupt
  80 * handler after a slot isolation event, it might be broken.
  81 * This sets the threshold for how many read attempts we allow
  82 * before printing an error message.
  83 */
  84#define EEH_MAX_FAILS   2100000
  85
  86/* Time to wait for a PCI slot to report status, in milliseconds */
  87#define PCI_BUS_RESET_WAIT_MSEC (60*1000)
  88
  89/* Platform dependent EEH operations */
  90struct eeh_ops *eeh_ops = NULL;
  91
  92int eeh_subsystem_enabled;
  93EXPORT_SYMBOL(eeh_subsystem_enabled);
  94
  95/*
  96 * EEH probe mode support. The intention is to support multiple
  97 * platforms for EEH. Some platforms like pSeries do PCI emunation
  98 * based on device tree. However, other platforms like powernv probe
  99 * PCI devices from hardware. The flag is used to distinguish that.
 100 * In addition, struct eeh_ops::probe would be invoked for particular
 101 * OF node or PCI device so that the corresponding PE would be created
 102 * there.
 103 */
 104int eeh_probe_mode;
 105
 106/* Lock to avoid races due to multiple reports of an error */
 107DEFINE_RAW_SPINLOCK(confirm_error_lock);
 108
 109/* Buffer for reporting pci register dumps. Its here in BSS, and
 110 * not dynamically alloced, so that it ends up in RMO where RTAS
 111 * can access it.
 112 */
 113#define EEH_PCI_REGS_LOG_LEN 4096
 114static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
 115
 116/*
 117 * The struct is used to maintain the EEH global statistic
 118 * information. Besides, the EEH global statistics will be
 119 * exported to user space through procfs
 120 */
 121struct eeh_stats {
 122        u64 no_device;          /* PCI device not found         */
 123        u64 no_dn;              /* OF node not found            */
 124        u64 no_cfg_addr;        /* Config address not found     */
 125        u64 ignored_check;      /* EEH check skipped            */
 126        u64 total_mmio_ffs;     /* Total EEH checks             */
 127        u64 false_positives;    /* Unnecessary EEH checks       */
 128        u64 slot_resets;        /* PE reset                     */
 129};
 130
 131static struct eeh_stats eeh_stats;
 132
 133#define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
 134
 135/**
 136 * eeh_gather_pci_data - Copy assorted PCI config space registers to buff
 137 * @edev: device to report data for
 138 * @buf: point to buffer in which to log
 139 * @len: amount of room in buffer
 140 *
 141 * This routine captures assorted PCI configuration space data,
 142 * and puts them into a buffer for RTAS error logging.
 143 */
 144static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len)
 145{
 146        struct device_node *dn = eeh_dev_to_of_node(edev);
 147        struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
 148        u32 cfg;
 149        int cap, i;
 150        int n = 0;
 151
 152        n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
 153        printk(KERN_WARNING "EEH: of node=%s\n", dn->full_name);
 154
 155        eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
 156        n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
 157        printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
 158
 159        eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
 160        n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
 161        printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
 162
 163        if (!dev) {
 164                printk(KERN_WARNING "EEH: no PCI device for this of node\n");
 165                return n;
 166        }
 167
 168        /* Gather bridge-specific registers */
 169        if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
 170                eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
 171                n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
 172                printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
 173
 174                eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
 175                n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
 176                printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
 177        }
 178
 179        /* Dump out the PCI-X command and status regs */
 180        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 181        if (cap) {
 182                eeh_ops->read_config(dn, cap, 4, &cfg);
 183                n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
 184                printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
 185
 186                eeh_ops->read_config(dn, cap+4, 4, &cfg);
 187                n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
 188                printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
 189        }
 190
 191        /* If PCI-E capable, dump PCI-E cap 10, and the AER */
 192        cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
 193        if (cap) {
 194                n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
 195                printk(KERN_WARNING
 196                       "EEH: PCI-E capabilities and status follow:\n");
 197
 198                for (i=0; i<=8; i++) {
 199                        eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
 200                        n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 201                        printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
 202                }
 203
 204                cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
 205                if (cap) {
 206                        n += scnprintf(buf+n, len-n, "pci-e AER:\n");
 207                        printk(KERN_WARNING
 208                               "EEH: PCI-E AER capability register set follows:\n");
 209
 210                        for (i=0; i<14; i++) {
 211                                eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
 212                                n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 213                                printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
 214                        }
 215                }
 216        }
 217
 218        return n;
 219}
 220
 221/**
 222 * eeh_slot_error_detail - Generate combined log including driver log and error log
 223 * @pe: EEH PE
 224 * @severity: temporary or permanent error log
 225 *
 226 * This routine should be called to generate the combined log, which
 227 * is comprised of driver log and error log. The driver log is figured
 228 * out from the config space of the corresponding PCI device, while
 229 * the error log is fetched through platform dependent function call.
 230 */
 231void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
 232{
 233        size_t loglen = 0;
 234        struct eeh_dev *edev, *tmp;
 235        bool valid_cfg_log = true;
 236
 237        /*
 238         * When the PHB is fenced or dead, it's pointless to collect
 239         * the data from PCI config space because it should return
 240         * 0xFF's. For ER, we still retrieve the data from the PCI
 241         * config space.
 242         */
 243        if (eeh_probe_mode_dev() &&
 244            (pe->type & EEH_PE_PHB) &&
 245            (pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)))
 246                valid_cfg_log = false;
 247
 248        if (valid_cfg_log) {
 249                eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
 250                eeh_ops->configure_bridge(pe);
 251                eeh_pe_restore_bars(pe);
 252
 253                pci_regs_buf[0] = 0;
 254                eeh_pe_for_each_dev(pe, edev, tmp) {
 255                        loglen += eeh_gather_pci_data(edev, pci_regs_buf + loglen,
 256                                                      EEH_PCI_REGS_LOG_LEN - loglen);
 257                }
 258        }
 259
 260        eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
 261}
 262
 263/**
 264 * eeh_token_to_phys - Convert EEH address token to phys address
 265 * @token: I/O token, should be address in the form 0xA....
 266 *
 267 * This routine should be called to convert virtual I/O address
 268 * to physical one.
 269 */
 270static inline unsigned long eeh_token_to_phys(unsigned long token)
 271{
 272        pte_t *ptep;
 273        unsigned long pa;
 274        int hugepage_shift;
 275
 276        /*
 277         * We won't find hugepages here, iomem
 278         */
 279        ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
 280        if (!ptep)
 281                return token;
 282        WARN_ON(hugepage_shift);
 283        pa = pte_pfn(*ptep) << PAGE_SHIFT;
 284
 285        return pa | (token & (PAGE_SIZE-1));
 286}
 287
 288/*
 289 * On PowerNV platform, we might already have fenced PHB there.
 290 * For that case, it's meaningless to recover frozen PE. Intead,
 291 * We have to handle fenced PHB firstly.
 292 */
 293static int eeh_phb_check_failure(struct eeh_pe *pe)
 294{
 295        struct eeh_pe *phb_pe;
 296        unsigned long flags;
 297        int ret;
 298
 299        if (!eeh_probe_mode_dev())
 300                return -EPERM;
 301
 302        /* Find the PHB PE */
 303        phb_pe = eeh_phb_pe_get(pe->phb);
 304        if (!phb_pe) {
 305                pr_warning("%s Can't find PE for PHB#%d\n",
 306                           __func__, pe->phb->global_number);
 307                return -EEXIST;
 308        }
 309
 310        /* If the PHB has been in problematic state */
 311        eeh_serialize_lock(&flags);
 312        if (phb_pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)) {
 313                ret = 0;
 314                goto out;
 315        }
 316
 317        /* Check PHB state */
 318        ret = eeh_ops->get_state(phb_pe, NULL);
 319        if ((ret < 0) ||
 320            (ret == EEH_STATE_NOT_SUPPORT) ||
 321            (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
 322            (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
 323                ret = 0;
 324                goto out;
 325        }
 326
 327        /* Isolate the PHB and send event */
 328        eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
 329        eeh_serialize_unlock(flags);
 330        eeh_send_failure_event(phb_pe);
 331
 332        pr_err("EEH: PHB#%x failure detected\n",
 333                phb_pe->phb->global_number);
 334        dump_stack();
 335
 336        return 1;
 337out:
 338        eeh_serialize_unlock(flags);
 339        return ret;
 340}
 341
 342/**
 343 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
 344 * @edev: eeh device
 345 *
 346 * Check for an EEH failure for the given device node.  Call this
 347 * routine if the result of a read was all 0xff's and you want to
 348 * find out if this is due to an EEH slot freeze.  This routine
 349 * will query firmware for the EEH status.
 350 *
 351 * Returns 0 if there has not been an EEH error; otherwise returns
 352 * a non-zero value and queues up a slot isolation event notification.
 353 *
 354 * It is safe to call this routine in an interrupt context.
 355 */
 356int eeh_dev_check_failure(struct eeh_dev *edev)
 357{
 358        int ret;
 359        unsigned long flags;
 360        struct device_node *dn;
 361        struct pci_dev *dev;
 362        struct eeh_pe *pe;
 363        int rc = 0;
 364        const char *location;
 365
 366        eeh_stats.total_mmio_ffs++;
 367
 368        if (!eeh_subsystem_enabled)
 369                return 0;
 370
 371        if (!edev) {
 372                eeh_stats.no_dn++;
 373                return 0;
 374        }
 375        dn = eeh_dev_to_of_node(edev);
 376        dev = eeh_dev_to_pci_dev(edev);
 377        pe = edev->pe;
 378
 379        /* Access to IO BARs might get this far and still not want checking. */
 380        if (!pe) {
 381                eeh_stats.ignored_check++;
 382                pr_debug("EEH: Ignored check for %s %s\n",
 383                        eeh_pci_name(dev), dn->full_name);
 384                return 0;
 385        }
 386
 387        if (!pe->addr && !pe->config_addr) {
 388                eeh_stats.no_cfg_addr++;
 389                return 0;
 390        }
 391
 392        /*
 393         * On PowerNV platform, we might already have fenced PHB
 394         * there and we need take care of that firstly.
 395         */
 396        ret = eeh_phb_check_failure(pe);
 397        if (ret > 0)
 398                return ret;
 399
 400        /* If we already have a pending isolation event for this
 401         * slot, we know it's bad already, we don't need to check.
 402         * Do this checking under a lock; as multiple PCI devices
 403         * in one slot might report errors simultaneously, and we
 404         * only want one error recovery routine running.
 405         */
 406        eeh_serialize_lock(&flags);
 407        rc = 1;
 408        if (pe->state & EEH_PE_ISOLATED) {
 409                pe->check_count++;
 410                if (pe->check_count % EEH_MAX_FAILS == 0) {
 411                        location = of_get_property(dn, "ibm,loc-code", NULL);
 412                        printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
 413                                "location=%s driver=%s pci addr=%s\n",
 414                                pe->check_count, location,
 415                                eeh_driver_name(dev), eeh_pci_name(dev));
 416                        printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
 417                                eeh_driver_name(dev));
 418                        dump_stack();
 419                }
 420                goto dn_unlock;
 421        }
 422
 423        /*
 424         * Now test for an EEH failure.  This is VERY expensive.
 425         * Note that the eeh_config_addr may be a parent device
 426         * in the case of a device behind a bridge, or it may be
 427         * function zero of a multi-function device.
 428         * In any case they must share a common PHB.
 429         */
 430        ret = eeh_ops->get_state(pe, NULL);
 431
 432        /* Note that config-io to empty slots may fail;
 433         * they are empty when they don't have children.
 434         * We will punt with the following conditions: Failure to get
 435         * PE's state, EEH not support and Permanently unavailable
 436         * state, PE is in good state.
 437         */
 438        if ((ret < 0) ||
 439            (ret == EEH_STATE_NOT_SUPPORT) ||
 440            (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
 441            (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
 442                eeh_stats.false_positives++;
 443                pe->false_positives++;
 444                rc = 0;
 445                goto dn_unlock;
 446        }
 447
 448        eeh_stats.slot_resets++;
 449
 450        /* Avoid repeated reports of this failure, including problems
 451         * with other functions on this device, and functions under
 452         * bridges.
 453         */
 454        eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
 455        eeh_serialize_unlock(flags);
 456
 457        eeh_send_failure_event(pe);
 458
 459        /* Most EEH events are due to device driver bugs.  Having
 460         * a stack trace will help the device-driver authors figure
 461         * out what happened.  So print that out.
 462         */
 463        pr_err("EEH: Frozen PE#%x detected on PHB#%x\n",
 464                pe->addr, pe->phb->global_number);
 465        dump_stack();
 466
 467        return 1;
 468
 469dn_unlock:
 470        eeh_serialize_unlock(flags);
 471        return rc;
 472}
 473
 474EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
 475
 476/**
 477 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
 478 * @token: I/O token, should be address in the form 0xA....
 479 * @val: value, should be all 1's (XXX why do we need this arg??)
 480 *
 481 * Check for an EEH failure at the given token address.  Call this
 482 * routine if the result of a read was all 0xff's and you want to
 483 * find out if this is due to an EEH slot freeze event.  This routine
 484 * will query firmware for the EEH status.
 485 *
 486 * Note this routine is safe to call in an interrupt context.
 487 */
 488unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
 489{
 490        unsigned long addr;
 491        struct eeh_dev *edev;
 492
 493        /* Finding the phys addr + pci device; this is pretty quick. */
 494        addr = eeh_token_to_phys((unsigned long __force) token);
 495        edev = eeh_addr_cache_get_dev(addr);
 496        if (!edev) {
 497                eeh_stats.no_device++;
 498                return val;
 499        }
 500
 501        eeh_dev_check_failure(edev);
 502        return val;
 503}
 504
 505EXPORT_SYMBOL(eeh_check_failure);
 506
 507
 508/**
 509 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
 510 * @pe: EEH PE
 511 *
 512 * This routine should be called to reenable frozen MMIO or DMA
 513 * so that it would work correctly again. It's useful while doing
 514 * recovery or log collection on the indicated device.
 515 */
 516int eeh_pci_enable(struct eeh_pe *pe, int function)
 517{
 518        int rc;
 519
 520        rc = eeh_ops->set_option(pe, function);
 521        if (rc)
 522                pr_warning("%s: Unexpected state change %d on PHB#%d-PE#%x, err=%d\n",
 523                        __func__, function, pe->phb->global_number, pe->addr, rc);
 524
 525        rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 526        if (rc > 0 && (rc & EEH_STATE_MMIO_ENABLED) &&
 527           (function == EEH_OPT_THAW_MMIO))
 528                return 0;
 529
 530        return rc;
 531}
 532
 533/**
 534 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
 535 * @dev: pci device struct
 536 * @state: reset state to enter
 537 *
 538 * Return value:
 539 *      0 if success
 540 */
 541int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
 542{
 543        struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
 544        struct eeh_pe *pe = edev->pe;
 545
 546        if (!pe) {
 547                pr_err("%s: No PE found on PCI device %s\n",
 548                        __func__, pci_name(dev));
 549                return -EINVAL;
 550        }
 551
 552        switch (state) {
 553        case pcie_deassert_reset:
 554                eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 555                break;
 556        case pcie_hot_reset:
 557                eeh_ops->reset(pe, EEH_RESET_HOT);
 558                break;
 559        case pcie_warm_reset:
 560                eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 561                break;
 562        default:
 563                return -EINVAL;
 564        };
 565
 566        return 0;
 567}
 568
 569/**
 570 * eeh_set_pe_freset - Check the required reset for the indicated device
 571 * @data: EEH device
 572 * @flag: return value
 573 *
 574 * Each device might have its preferred reset type: fundamental or
 575 * hot reset. The routine is used to collected the information for
 576 * the indicated device and its children so that the bunch of the
 577 * devices could be reset properly.
 578 */
 579static void *eeh_set_dev_freset(void *data, void *flag)
 580{
 581        struct pci_dev *dev;
 582        unsigned int *freset = (unsigned int *)flag;
 583        struct eeh_dev *edev = (struct eeh_dev *)data;
 584
 585        dev = eeh_dev_to_pci_dev(edev);
 586        if (dev)
 587                *freset |= dev->needs_freset;
 588
 589        return NULL;
 590}
 591
 592/**
 593 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
 594 * @pe: EEH PE
 595 *
 596 * Assert the PCI #RST line for 1/4 second.
 597 */
 598static void eeh_reset_pe_once(struct eeh_pe *pe)
 599{
 600        unsigned int freset = 0;
 601
 602        /* Determine type of EEH reset required for
 603         * Partitionable Endpoint, a hot-reset (1)
 604         * or a fundamental reset (3).
 605         * A fundamental reset required by any device under
 606         * Partitionable Endpoint trumps hot-reset.
 607         */
 608        eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
 609
 610        if (freset)
 611                eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 612        else
 613                eeh_ops->reset(pe, EEH_RESET_HOT);
 614
 615        /* The PCI bus requires that the reset be held high for at least
 616         * a 100 milliseconds. We wait a bit longer 'just in case'.
 617         */
 618#define PCI_BUS_RST_HOLD_TIME_MSEC 250
 619        msleep(PCI_BUS_RST_HOLD_TIME_MSEC);
 620
 621        /* We might get hit with another EEH freeze as soon as the
 622         * pci slot reset line is dropped. Make sure we don't miss
 623         * these, and clear the flag now.
 624         */
 625        eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
 626
 627        eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 628
 629        /* After a PCI slot has been reset, the PCI Express spec requires
 630         * a 1.5 second idle time for the bus to stabilize, before starting
 631         * up traffic.
 632         */
 633#define PCI_BUS_SETTLE_TIME_MSEC 1800
 634        msleep(PCI_BUS_SETTLE_TIME_MSEC);
 635}
 636
 637/**
 638 * eeh_reset_pe - Reset the indicated PE
 639 * @pe: EEH PE
 640 *
 641 * This routine should be called to reset indicated device, including
 642 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
 643 * might be involved as well.
 644 */
 645int eeh_reset_pe(struct eeh_pe *pe)
 646{
 647        int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
 648        int i, rc;
 649
 650        /* Take three shots at resetting the bus */
 651        for (i=0; i<3; i++) {
 652                eeh_reset_pe_once(pe);
 653
 654                rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 655                if ((rc & flags) == flags)
 656                        return 0;
 657
 658                if (rc < 0) {
 659                        pr_err("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
 660                                __func__, pe->phb->global_number, pe->addr);
 661                        return -1;
 662                }
 663                pr_err("EEH: bus reset %d failed on PHB#%d-PE#%x, rc=%d\n",
 664                        i+1, pe->phb->global_number, pe->addr, rc);
 665        }
 666
 667        return -1;
 668}
 669
 670/**
 671 * eeh_save_bars - Save device bars
 672 * @edev: PCI device associated EEH device
 673 *
 674 * Save the values of the device bars. Unlike the restore
 675 * routine, this routine is *not* recursive. This is because
 676 * PCI devices are added individually; but, for the restore,
 677 * an entire slot is reset at a time.
 678 */
 679void eeh_save_bars(struct eeh_dev *edev)
 680{
 681        int i;
 682        struct device_node *dn;
 683
 684        if (!edev)
 685                return;
 686        dn = eeh_dev_to_of_node(edev);
 687
 688        for (i = 0; i < 16; i++)
 689                eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
 690}
 691
 692/**
 693 * eeh_ops_register - Register platform dependent EEH operations
 694 * @ops: platform dependent EEH operations
 695 *
 696 * Register the platform dependent EEH operation callback
 697 * functions. The platform should call this function before
 698 * any other EEH operations.
 699 */
 700int __init eeh_ops_register(struct eeh_ops *ops)
 701{
 702        if (!ops->name) {
 703                pr_warning("%s: Invalid EEH ops name for %p\n",
 704                        __func__, ops);
 705                return -EINVAL;
 706        }
 707
 708        if (eeh_ops && eeh_ops != ops) {
 709                pr_warning("%s: EEH ops of platform %s already existing (%s)\n",
 710                        __func__, eeh_ops->name, ops->name);
 711                return -EEXIST;
 712        }
 713
 714        eeh_ops = ops;
 715
 716        return 0;
 717}
 718
 719/**
 720 * eeh_ops_unregister - Unreigster platform dependent EEH operations
 721 * @name: name of EEH platform operations
 722 *
 723 * Unregister the platform dependent EEH operation callback
 724 * functions.
 725 */
 726int __exit eeh_ops_unregister(const char *name)
 727{
 728        if (!name || !strlen(name)) {
 729                pr_warning("%s: Invalid EEH ops name\n",
 730                        __func__);
 731                return -EINVAL;
 732        }
 733
 734        if (eeh_ops && !strcmp(eeh_ops->name, name)) {
 735                eeh_ops = NULL;
 736                return 0;
 737        }
 738
 739        return -EEXIST;
 740}
 741
 742/**
 743 * eeh_init - EEH initialization
 744 *
 745 * Initialize EEH by trying to enable it for all of the adapters in the system.
 746 * As a side effect we can determine here if eeh is supported at all.
 747 * Note that we leave EEH on so failed config cycles won't cause a machine
 748 * check.  If a user turns off EEH for a particular adapter they are really
 749 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 750 * grant access to a slot if EEH isn't enabled, and so we always enable
 751 * EEH for all slots/all devices.
 752 *
 753 * The eeh-force-off option disables EEH checking globally, for all slots.
 754 * Even if force-off is set, the EEH hardware is still enabled, so that
 755 * newer systems can boot.
 756 */
 757int eeh_init(void)
 758{
 759        struct pci_controller *hose, *tmp;
 760        struct device_node *phb;
 761        static int cnt = 0;
 762        int ret = 0;
 763
 764        /*
 765         * We have to delay the initialization on PowerNV after
 766         * the PCI hierarchy tree has been built because the PEs
 767         * are figured out based on PCI devices instead of device
 768         * tree nodes
 769         */
 770        if (machine_is(powernv) && cnt++ <= 0)
 771                return ret;
 772
 773        /* call platform initialization function */
 774        if (!eeh_ops) {
 775                pr_warning("%s: Platform EEH operation not found\n",
 776                        __func__);
 777                return -EEXIST;
 778        } else if ((ret = eeh_ops->init())) {
 779                pr_warning("%s: Failed to call platform init function (%d)\n",
 780                        __func__, ret);
 781                return ret;
 782        }
 783
 784        /* Initialize EEH event */
 785        ret = eeh_event_init();
 786        if (ret)
 787                return ret;
 788
 789        /* Enable EEH for all adapters */
 790        if (eeh_probe_mode_devtree()) {
 791                list_for_each_entry_safe(hose, tmp,
 792                        &hose_list, list_node) {
 793                        phb = hose->dn;
 794                        traverse_pci_devices(phb, eeh_ops->of_probe, NULL);
 795                }
 796        } else if (eeh_probe_mode_dev()) {
 797                list_for_each_entry_safe(hose, tmp,
 798                        &hose_list, list_node)
 799                        pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL);
 800        } else {
 801                pr_warning("%s: Invalid probe mode %d\n",
 802                           __func__, eeh_probe_mode);
 803                return -EINVAL;
 804        }
 805
 806        /*
 807         * Call platform post-initialization. Actually, It's good chance
 808         * to inform platform that EEH is ready to supply service if the
 809         * I/O cache stuff has been built up.
 810         */
 811        if (eeh_ops->post_init) {
 812                ret = eeh_ops->post_init();
 813                if (ret)
 814                        return ret;
 815        }
 816
 817        if (eeh_subsystem_enabled)
 818                pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
 819        else
 820                pr_warning("EEH: No capable adapters found\n");
 821
 822        return ret;
 823}
 824
 825core_initcall_sync(eeh_init);
 826
 827/**
 828 * eeh_add_device_early - Enable EEH for the indicated device_node
 829 * @dn: device node for which to set up EEH
 830 *
 831 * This routine must be used to perform EEH initialization for PCI
 832 * devices that were added after system boot (e.g. hotplug, dlpar).
 833 * This routine must be called before any i/o is performed to the
 834 * adapter (inluding any config-space i/o).
 835 * Whether this actually enables EEH or not for this device depends
 836 * on the CEC architecture, type of the device, on earlier boot
 837 * command-line arguments & etc.
 838 */
 839void eeh_add_device_early(struct device_node *dn)
 840{
 841        struct pci_controller *phb;
 842
 843        /*
 844         * If we're doing EEH probe based on PCI device, we
 845         * would delay the probe until late stage because
 846         * the PCI device isn't available this moment.
 847         */
 848        if (!eeh_probe_mode_devtree())
 849                return;
 850
 851        if (!of_node_to_eeh_dev(dn))
 852                return;
 853        phb = of_node_to_eeh_dev(dn)->phb;
 854
 855        /* USB Bus children of PCI devices will not have BUID's */
 856        if (NULL == phb || 0 == phb->buid)
 857                return;
 858
 859        eeh_ops->of_probe(dn, NULL);
 860}
 861
 862/**
 863 * eeh_add_device_tree_early - Enable EEH for the indicated device
 864 * @dn: device node
 865 *
 866 * This routine must be used to perform EEH initialization for the
 867 * indicated PCI device that was added after system boot (e.g.
 868 * hotplug, dlpar).
 869 */
 870void eeh_add_device_tree_early(struct device_node *dn)
 871{
 872        struct device_node *sib;
 873
 874        for_each_child_of_node(dn, sib)
 875                eeh_add_device_tree_early(sib);
 876        eeh_add_device_early(dn);
 877}
 878EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
 879
 880/**
 881 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
 882 * @dev: pci device for which to set up EEH
 883 *
 884 * This routine must be used to complete EEH initialization for PCI
 885 * devices that were added after system boot (e.g. hotplug, dlpar).
 886 */
 887void eeh_add_device_late(struct pci_dev *dev)
 888{
 889        struct device_node *dn;
 890        struct eeh_dev *edev;
 891
 892        if (!dev || !eeh_subsystem_enabled)
 893                return;
 894
 895        pr_debug("EEH: Adding device %s\n", pci_name(dev));
 896
 897        dn = pci_device_to_OF_node(dev);
 898        edev = of_node_to_eeh_dev(dn);
 899        if (edev->pdev == dev) {
 900                pr_debug("EEH: Already referenced !\n");
 901                return;
 902        }
 903
 904        /*
 905         * The EEH cache might not be removed correctly because of
 906         * unbalanced kref to the device during unplug time, which
 907         * relies on pcibios_release_device(). So we have to remove
 908         * that here explicitly.
 909         */
 910        if (edev->pdev) {
 911                eeh_rmv_from_parent_pe(edev);
 912                eeh_addr_cache_rmv_dev(edev->pdev);
 913                eeh_sysfs_remove_device(edev->pdev);
 914                edev->mode &= ~EEH_DEV_SYSFS;
 915
 916                edev->pdev = NULL;
 917                dev->dev.archdata.edev = NULL;
 918        }
 919
 920        edev->pdev = dev;
 921        dev->dev.archdata.edev = edev;
 922
 923        /*
 924         * We have to do the EEH probe here because the PCI device
 925         * hasn't been created yet in the early stage.
 926         */
 927        if (eeh_probe_mode_dev())
 928                eeh_ops->dev_probe(dev, NULL);
 929
 930        eeh_addr_cache_insert_dev(dev);
 931}
 932
 933/**
 934 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
 935 * @bus: PCI bus
 936 *
 937 * This routine must be used to perform EEH initialization for PCI
 938 * devices which are attached to the indicated PCI bus. The PCI bus
 939 * is added after system boot through hotplug or dlpar.
 940 */
 941void eeh_add_device_tree_late(struct pci_bus *bus)
 942{
 943        struct pci_dev *dev;
 944
 945        list_for_each_entry(dev, &bus->devices, bus_list) {
 946                eeh_add_device_late(dev);
 947                if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 948                        struct pci_bus *subbus = dev->subordinate;
 949                        if (subbus)
 950                                eeh_add_device_tree_late(subbus);
 951                }
 952        }
 953}
 954EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
 955
 956/**
 957 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
 958 * @bus: PCI bus
 959 *
 960 * This routine must be used to add EEH sysfs files for PCI
 961 * devices which are attached to the indicated PCI bus. The PCI bus
 962 * is added after system boot through hotplug or dlpar.
 963 */
 964void eeh_add_sysfs_files(struct pci_bus *bus)
 965{
 966        struct pci_dev *dev;
 967
 968        list_for_each_entry(dev, &bus->devices, bus_list) {
 969                eeh_sysfs_add_device(dev);
 970                if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 971                        struct pci_bus *subbus = dev->subordinate;
 972                        if (subbus)
 973                                eeh_add_sysfs_files(subbus);
 974                }
 975        }
 976}
 977EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
 978
 979/**
 980 * eeh_remove_device - Undo EEH setup for the indicated pci device
 981 * @dev: pci device to be removed
 982 *
 983 * This routine should be called when a device is removed from
 984 * a running system (e.g. by hotplug or dlpar).  It unregisters
 985 * the PCI device from the EEH subsystem.  I/O errors affecting
 986 * this device will no longer be detected after this call; thus,
 987 * i/o errors affecting this slot may leave this device unusable.
 988 */
 989void eeh_remove_device(struct pci_dev *dev)
 990{
 991        struct eeh_dev *edev;
 992
 993        if (!dev || !eeh_subsystem_enabled)
 994                return;
 995        edev = pci_dev_to_eeh_dev(dev);
 996
 997        /* Unregister the device with the EEH/PCI address search system */
 998        pr_debug("EEH: Removing device %s\n", pci_name(dev));
 999
1000        if (!edev || !edev->pdev || !edev->pe) {
1001                pr_debug("EEH: Not referenced !\n");
1002                return;
1003        }
1004
1005        /*
1006         * During the hotplug for EEH error recovery, we need the EEH
1007         * device attached to the parent PE in order for BAR restore
1008         * a bit later. So we keep it for BAR restore and remove it
1009         * from the parent PE during the BAR resotre.
1010         */
1011        edev->pdev = NULL;
1012        dev->dev.archdata.edev = NULL;
1013        if (!(edev->pe->state & EEH_PE_KEEP))
1014                eeh_rmv_from_parent_pe(edev);
1015        else
1016                edev->mode |= EEH_DEV_DISCONNECTED;
1017
1018        eeh_addr_cache_rmv_dev(dev);
1019        eeh_sysfs_remove_device(dev);
1020        edev->mode &= ~EEH_DEV_SYSFS;
1021}
1022
1023static int proc_eeh_show(struct seq_file *m, void *v)
1024{
1025        if (0 == eeh_subsystem_enabled) {
1026                seq_printf(m, "EEH Subsystem is globally disabled\n");
1027                seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1028        } else {
1029                seq_printf(m, "EEH Subsystem is enabled\n");
1030                seq_printf(m,
1031                                "no device=%llu\n"
1032                                "no device node=%llu\n"
1033                                "no config address=%llu\n"
1034                                "check not wanted=%llu\n"
1035                                "eeh_total_mmio_ffs=%llu\n"
1036                                "eeh_false_positives=%llu\n"
1037                                "eeh_slot_resets=%llu\n",
1038                                eeh_stats.no_device,
1039                                eeh_stats.no_dn,
1040                                eeh_stats.no_cfg_addr,
1041                                eeh_stats.ignored_check,
1042                                eeh_stats.total_mmio_ffs,
1043                                eeh_stats.false_positives,
1044                                eeh_stats.slot_resets);
1045        }
1046
1047        return 0;
1048}
1049
1050static int proc_eeh_open(struct inode *inode, struct file *file)
1051{
1052        return single_open(file, proc_eeh_show, NULL);
1053}
1054
1055static const struct file_operations proc_eeh_operations = {
1056        .open      = proc_eeh_open,
1057        .read      = seq_read,
1058        .llseek    = seq_lseek,
1059        .release   = single_release,
1060};
1061
1062static int __init eeh_init_proc(void)
1063{
1064        if (machine_is(pseries) || machine_is(powernv))
1065                proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1066        return 0;
1067}
1068__initcall(eeh_init_proc);
1069