linux/arch/powerpc/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   3 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   4 *
   5 *  This program is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU General Public License
   7 *  as published by the Free Software Foundation; either version
   8 *  2 of the License, or (at your option) any later version.
   9 *
  10 *  Modified by Cort Dougan (cort@cs.nmt.edu)
  11 *  and Paul Mackerras (paulus@samba.org)
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of hardware exceptions
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/user.h>
  26#include <linux/interrupt.h>
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/prctl.h>
  30#include <linux/delay.h>
  31#include <linux/kprobes.h>
  32#include <linux/kexec.h>
  33#include <linux/backlight.h>
  34#include <linux/bug.h>
  35#include <linux/kdebug.h>
  36#include <linux/debugfs.h>
  37#include <linux/ratelimit.h>
  38#include <linux/context_tracking.h>
  39
  40#include <asm/emulated_ops.h>
  41#include <asm/pgtable.h>
  42#include <asm/uaccess.h>
  43#include <asm/io.h>
  44#include <asm/machdep.h>
  45#include <asm/rtas.h>
  46#include <asm/pmc.h>
  47#include <asm/reg.h>
  48#ifdef CONFIG_PMAC_BACKLIGHT
  49#include <asm/backlight.h>
  50#endif
  51#ifdef CONFIG_PPC64
  52#include <asm/firmware.h>
  53#include <asm/processor.h>
  54#include <asm/tm.h>
  55#endif
  56#include <asm/kexec.h>
  57#include <asm/ppc-opcode.h>
  58#include <asm/rio.h>
  59#include <asm/fadump.h>
  60#include <asm/switch_to.h>
  61#include <asm/tm.h>
  62#include <asm/debug.h>
  63#include <sysdev/fsl_pci.h>
  64
  65#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
  66int (*__debugger)(struct pt_regs *regs) __read_mostly;
  67int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  68int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  69int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  70int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  71int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  72int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  73
  74EXPORT_SYMBOL(__debugger);
  75EXPORT_SYMBOL(__debugger_ipi);
  76EXPORT_SYMBOL(__debugger_bpt);
  77EXPORT_SYMBOL(__debugger_sstep);
  78EXPORT_SYMBOL(__debugger_iabr_match);
  79EXPORT_SYMBOL(__debugger_break_match);
  80EXPORT_SYMBOL(__debugger_fault_handler);
  81#endif
  82
  83/* Transactional Memory trap debug */
  84#ifdef TM_DEBUG_SW
  85#define TM_DEBUG(x...) printk(KERN_INFO x)
  86#else
  87#define TM_DEBUG(x...) do { } while(0)
  88#endif
  89
  90/*
  91 * Trap & Exception support
  92 */
  93
  94#ifdef CONFIG_PMAC_BACKLIGHT
  95static void pmac_backlight_unblank(void)
  96{
  97        mutex_lock(&pmac_backlight_mutex);
  98        if (pmac_backlight) {
  99                struct backlight_properties *props;
 100
 101                props = &pmac_backlight->props;
 102                props->brightness = props->max_brightness;
 103                props->power = FB_BLANK_UNBLANK;
 104                backlight_update_status(pmac_backlight);
 105        }
 106        mutex_unlock(&pmac_backlight_mutex);
 107}
 108#else
 109static inline void pmac_backlight_unblank(void) { }
 110#endif
 111
 112static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 113static int die_owner = -1;
 114static unsigned int die_nest_count;
 115static int die_counter;
 116
 117static unsigned __kprobes long oops_begin(struct pt_regs *regs)
 118{
 119        int cpu;
 120        unsigned long flags;
 121
 122        if (debugger(regs))
 123                return 1;
 124
 125        oops_enter();
 126
 127        /* racy, but better than risking deadlock. */
 128        raw_local_irq_save(flags);
 129        cpu = smp_processor_id();
 130        if (!arch_spin_trylock(&die_lock)) {
 131                if (cpu == die_owner)
 132                        /* nested oops. should stop eventually */;
 133                else
 134                        arch_spin_lock(&die_lock);
 135        }
 136        die_nest_count++;
 137        die_owner = cpu;
 138        console_verbose();
 139        bust_spinlocks(1);
 140        if (machine_is(powermac))
 141                pmac_backlight_unblank();
 142        return flags;
 143}
 144
 145static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
 146                               int signr)
 147{
 148        bust_spinlocks(0);
 149        die_owner = -1;
 150        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 151        die_nest_count--;
 152        oops_exit();
 153        printk("\n");
 154        if (!die_nest_count)
 155                /* Nest count reaches zero, release the lock. */
 156                arch_spin_unlock(&die_lock);
 157        raw_local_irq_restore(flags);
 158
 159        crash_fadump(regs, "die oops");
 160
 161        /*
 162         * A system reset (0x100) is a request to dump, so we always send
 163         * it through the crashdump code.
 164         */
 165        if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
 166                crash_kexec(regs);
 167
 168                /*
 169                 * We aren't the primary crash CPU. We need to send it
 170                 * to a holding pattern to avoid it ending up in the panic
 171                 * code.
 172                 */
 173                crash_kexec_secondary(regs);
 174        }
 175
 176        if (!signr)
 177                return;
 178
 179        /*
 180         * While our oops output is serialised by a spinlock, output
 181         * from panic() called below can race and corrupt it. If we
 182         * know we are going to panic, delay for 1 second so we have a
 183         * chance to get clean backtraces from all CPUs that are oopsing.
 184         */
 185        if (in_interrupt() || panic_on_oops || !current->pid ||
 186            is_global_init(current)) {
 187                mdelay(MSEC_PER_SEC);
 188        }
 189
 190        if (in_interrupt())
 191                panic("Fatal exception in interrupt");
 192        if (panic_on_oops)
 193                panic("Fatal exception");
 194        do_exit(signr);
 195}
 196
 197static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
 198{
 199        printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 200#ifdef CONFIG_PREEMPT
 201        printk("PREEMPT ");
 202#endif
 203#ifdef CONFIG_SMP
 204        printk("SMP NR_CPUS=%d ", NR_CPUS);
 205#endif
 206#ifdef CONFIG_DEBUG_PAGEALLOC
 207        printk("DEBUG_PAGEALLOC ");
 208#endif
 209#ifdef CONFIG_NUMA
 210        printk("NUMA ");
 211#endif
 212        printk("%s\n", ppc_md.name ? ppc_md.name : "");
 213
 214        if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 215                return 1;
 216
 217        print_modules();
 218        show_regs(regs);
 219
 220        return 0;
 221}
 222
 223void die(const char *str, struct pt_regs *regs, long err)
 224{
 225        unsigned long flags = oops_begin(regs);
 226
 227        if (__die(str, regs, err))
 228                err = 0;
 229        oops_end(flags, regs, err);
 230}
 231
 232void user_single_step_siginfo(struct task_struct *tsk,
 233                                struct pt_regs *regs, siginfo_t *info)
 234{
 235        memset(info, 0, sizeof(*info));
 236        info->si_signo = SIGTRAP;
 237        info->si_code = TRAP_TRACE;
 238        info->si_addr = (void __user *)regs->nip;
 239}
 240
 241void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 242{
 243        siginfo_t info;
 244        const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 245                        "at %08lx nip %08lx lr %08lx code %x\n";
 246        const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 247                        "at %016lx nip %016lx lr %016lx code %x\n";
 248
 249        if (!user_mode(regs)) {
 250                die("Exception in kernel mode", regs, signr);
 251                return;
 252        }
 253
 254        if (show_unhandled_signals && unhandled_signal(current, signr)) {
 255                printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
 256                                   current->comm, current->pid, signr,
 257                                   addr, regs->nip, regs->link, code);
 258        }
 259
 260        if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 261                local_irq_enable();
 262
 263        current->thread.trap_nr = code;
 264        memset(&info, 0, sizeof(info));
 265        info.si_signo = signr;
 266        info.si_code = code;
 267        info.si_addr = (void __user *) addr;
 268        force_sig_info(signr, &info, current);
 269}
 270
 271#ifdef CONFIG_PPC64
 272void system_reset_exception(struct pt_regs *regs)
 273{
 274        /* See if any machine dependent calls */
 275        if (ppc_md.system_reset_exception) {
 276                if (ppc_md.system_reset_exception(regs))
 277                        return;
 278        }
 279
 280        die("System Reset", regs, SIGABRT);
 281
 282        /* Must die if the interrupt is not recoverable */
 283        if (!(regs->msr & MSR_RI))
 284                panic("Unrecoverable System Reset");
 285
 286        /* What should we do here? We could issue a shutdown or hard reset. */
 287}
 288#endif
 289
 290/*
 291 * I/O accesses can cause machine checks on powermacs.
 292 * Check if the NIP corresponds to the address of a sync
 293 * instruction for which there is an entry in the exception
 294 * table.
 295 * Note that the 601 only takes a machine check on TEA
 296 * (transfer error ack) signal assertion, and does not
 297 * set any of the top 16 bits of SRR1.
 298 *  -- paulus.
 299 */
 300static inline int check_io_access(struct pt_regs *regs)
 301{
 302#ifdef CONFIG_PPC32
 303        unsigned long msr = regs->msr;
 304        const struct exception_table_entry *entry;
 305        unsigned int *nip = (unsigned int *)regs->nip;
 306
 307        if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 308            && (entry = search_exception_tables(regs->nip)) != NULL) {
 309                /*
 310                 * Check that it's a sync instruction, or somewhere
 311                 * in the twi; isync; nop sequence that inb/inw/inl uses.
 312                 * As the address is in the exception table
 313                 * we should be able to read the instr there.
 314                 * For the debug message, we look at the preceding
 315                 * load or store.
 316                 */
 317                if (*nip == 0x60000000)         /* nop */
 318                        nip -= 2;
 319                else if (*nip == 0x4c00012c)    /* isync */
 320                        --nip;
 321                if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
 322                        /* sync or twi */
 323                        unsigned int rb;
 324
 325                        --nip;
 326                        rb = (*nip >> 11) & 0x1f;
 327                        printk(KERN_DEBUG "%s bad port %lx at %p\n",
 328                               (*nip & 0x100)? "OUT to": "IN from",
 329                               regs->gpr[rb] - _IO_BASE, nip);
 330                        regs->msr |= MSR_RI;
 331                        regs->nip = entry->fixup;
 332                        return 1;
 333                }
 334        }
 335#endif /* CONFIG_PPC32 */
 336        return 0;
 337}
 338
 339#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 340/* On 4xx, the reason for the machine check or program exception
 341   is in the ESR. */
 342#define get_reason(regs)        ((regs)->dsisr)
 343#ifndef CONFIG_FSL_BOOKE
 344#define get_mc_reason(regs)     ((regs)->dsisr)
 345#else
 346#define get_mc_reason(regs)     (mfspr(SPRN_MCSR))
 347#endif
 348#define REASON_FP               ESR_FP
 349#define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
 350#define REASON_PRIVILEGED       ESR_PPR
 351#define REASON_TRAP             ESR_PTR
 352
 353/* single-step stuff */
 354#define single_stepping(regs)   (current->thread.dbcr0 & DBCR0_IC)
 355#define clear_single_step(regs) (current->thread.dbcr0 &= ~DBCR0_IC)
 356
 357#else
 358/* On non-4xx, the reason for the machine check or program
 359   exception is in the MSR. */
 360#define get_reason(regs)        ((regs)->msr)
 361#define get_mc_reason(regs)     ((regs)->msr)
 362#define REASON_TM               0x200000
 363#define REASON_FP               0x100000
 364#define REASON_ILLEGAL          0x80000
 365#define REASON_PRIVILEGED       0x40000
 366#define REASON_TRAP             0x20000
 367
 368#define single_stepping(regs)   ((regs)->msr & MSR_SE)
 369#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
 370#endif
 371
 372#if defined(CONFIG_4xx)
 373int machine_check_4xx(struct pt_regs *regs)
 374{
 375        unsigned long reason = get_mc_reason(regs);
 376
 377        if (reason & ESR_IMCP) {
 378                printk("Instruction");
 379                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 380        } else
 381                printk("Data");
 382        printk(" machine check in kernel mode.\n");
 383
 384        return 0;
 385}
 386
 387int machine_check_440A(struct pt_regs *regs)
 388{
 389        unsigned long reason = get_mc_reason(regs);
 390
 391        printk("Machine check in kernel mode.\n");
 392        if (reason & ESR_IMCP){
 393                printk("Instruction Synchronous Machine Check exception\n");
 394                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 395        }
 396        else {
 397                u32 mcsr = mfspr(SPRN_MCSR);
 398                if (mcsr & MCSR_IB)
 399                        printk("Instruction Read PLB Error\n");
 400                if (mcsr & MCSR_DRB)
 401                        printk("Data Read PLB Error\n");
 402                if (mcsr & MCSR_DWB)
 403                        printk("Data Write PLB Error\n");
 404                if (mcsr & MCSR_TLBP)
 405                        printk("TLB Parity Error\n");
 406                if (mcsr & MCSR_ICP){
 407                        flush_instruction_cache();
 408                        printk("I-Cache Parity Error\n");
 409                }
 410                if (mcsr & MCSR_DCSP)
 411                        printk("D-Cache Search Parity Error\n");
 412                if (mcsr & MCSR_DCFP)
 413                        printk("D-Cache Flush Parity Error\n");
 414                if (mcsr & MCSR_IMPE)
 415                        printk("Machine Check exception is imprecise\n");
 416
 417                /* Clear MCSR */
 418                mtspr(SPRN_MCSR, mcsr);
 419        }
 420        return 0;
 421}
 422
 423int machine_check_47x(struct pt_regs *regs)
 424{
 425        unsigned long reason = get_mc_reason(regs);
 426        u32 mcsr;
 427
 428        printk(KERN_ERR "Machine check in kernel mode.\n");
 429        if (reason & ESR_IMCP) {
 430                printk(KERN_ERR
 431                       "Instruction Synchronous Machine Check exception\n");
 432                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 433                return 0;
 434        }
 435        mcsr = mfspr(SPRN_MCSR);
 436        if (mcsr & MCSR_IB)
 437                printk(KERN_ERR "Instruction Read PLB Error\n");
 438        if (mcsr & MCSR_DRB)
 439                printk(KERN_ERR "Data Read PLB Error\n");
 440        if (mcsr & MCSR_DWB)
 441                printk(KERN_ERR "Data Write PLB Error\n");
 442        if (mcsr & MCSR_TLBP)
 443                printk(KERN_ERR "TLB Parity Error\n");
 444        if (mcsr & MCSR_ICP) {
 445                flush_instruction_cache();
 446                printk(KERN_ERR "I-Cache Parity Error\n");
 447        }
 448        if (mcsr & MCSR_DCSP)
 449                printk(KERN_ERR "D-Cache Search Parity Error\n");
 450        if (mcsr & PPC47x_MCSR_GPR)
 451                printk(KERN_ERR "GPR Parity Error\n");
 452        if (mcsr & PPC47x_MCSR_FPR)
 453                printk(KERN_ERR "FPR Parity Error\n");
 454        if (mcsr & PPC47x_MCSR_IPR)
 455                printk(KERN_ERR "Machine Check exception is imprecise\n");
 456
 457        /* Clear MCSR */
 458        mtspr(SPRN_MCSR, mcsr);
 459
 460        return 0;
 461}
 462#elif defined(CONFIG_E500)
 463int machine_check_e500mc(struct pt_regs *regs)
 464{
 465        unsigned long mcsr = mfspr(SPRN_MCSR);
 466        unsigned long reason = mcsr;
 467        int recoverable = 1;
 468
 469        if (reason & MCSR_LD) {
 470                recoverable = fsl_rio_mcheck_exception(regs);
 471                if (recoverable == 1)
 472                        goto silent_out;
 473        }
 474
 475        printk("Machine check in kernel mode.\n");
 476        printk("Caused by (from MCSR=%lx): ", reason);
 477
 478        if (reason & MCSR_MCP)
 479                printk("Machine Check Signal\n");
 480
 481        if (reason & MCSR_ICPERR) {
 482                printk("Instruction Cache Parity Error\n");
 483
 484                /*
 485                 * This is recoverable by invalidating the i-cache.
 486                 */
 487                mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 488                while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 489                        ;
 490
 491                /*
 492                 * This will generally be accompanied by an instruction
 493                 * fetch error report -- only treat MCSR_IF as fatal
 494                 * if it wasn't due to an L1 parity error.
 495                 */
 496                reason &= ~MCSR_IF;
 497        }
 498
 499        if (reason & MCSR_DCPERR_MC) {
 500                printk("Data Cache Parity Error\n");
 501
 502                /*
 503                 * In write shadow mode we auto-recover from the error, but it
 504                 * may still get logged and cause a machine check.  We should
 505                 * only treat the non-write shadow case as non-recoverable.
 506                 */
 507                if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 508                        recoverable = 0;
 509        }
 510
 511        if (reason & MCSR_L2MMU_MHIT) {
 512                printk("Hit on multiple TLB entries\n");
 513                recoverable = 0;
 514        }
 515
 516        if (reason & MCSR_NMI)
 517                printk("Non-maskable interrupt\n");
 518
 519        if (reason & MCSR_IF) {
 520                printk("Instruction Fetch Error Report\n");
 521                recoverable = 0;
 522        }
 523
 524        if (reason & MCSR_LD) {
 525                printk("Load Error Report\n");
 526                recoverable = 0;
 527        }
 528
 529        if (reason & MCSR_ST) {
 530                printk("Store Error Report\n");
 531                recoverable = 0;
 532        }
 533
 534        if (reason & MCSR_LDG) {
 535                printk("Guarded Load Error Report\n");
 536                recoverable = 0;
 537        }
 538
 539        if (reason & MCSR_TLBSYNC)
 540                printk("Simultaneous tlbsync operations\n");
 541
 542        if (reason & MCSR_BSL2_ERR) {
 543                printk("Level 2 Cache Error\n");
 544                recoverable = 0;
 545        }
 546
 547        if (reason & MCSR_MAV) {
 548                u64 addr;
 549
 550                addr = mfspr(SPRN_MCAR);
 551                addr |= (u64)mfspr(SPRN_MCARU) << 32;
 552
 553                printk("Machine Check %s Address: %#llx\n",
 554                       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 555        }
 556
 557silent_out:
 558        mtspr(SPRN_MCSR, mcsr);
 559        return mfspr(SPRN_MCSR) == 0 && recoverable;
 560}
 561
 562int machine_check_e500(struct pt_regs *regs)
 563{
 564        unsigned long reason = get_mc_reason(regs);
 565
 566        if (reason & MCSR_BUS_RBERR) {
 567                if (fsl_rio_mcheck_exception(regs))
 568                        return 1;
 569                if (fsl_pci_mcheck_exception(regs))
 570                        return 1;
 571        }
 572
 573        printk("Machine check in kernel mode.\n");
 574        printk("Caused by (from MCSR=%lx): ", reason);
 575
 576        if (reason & MCSR_MCP)
 577                printk("Machine Check Signal\n");
 578        if (reason & MCSR_ICPERR)
 579                printk("Instruction Cache Parity Error\n");
 580        if (reason & MCSR_DCP_PERR)
 581                printk("Data Cache Push Parity Error\n");
 582        if (reason & MCSR_DCPERR)
 583                printk("Data Cache Parity Error\n");
 584        if (reason & MCSR_BUS_IAERR)
 585                printk("Bus - Instruction Address Error\n");
 586        if (reason & MCSR_BUS_RAERR)
 587                printk("Bus - Read Address Error\n");
 588        if (reason & MCSR_BUS_WAERR)
 589                printk("Bus - Write Address Error\n");
 590        if (reason & MCSR_BUS_IBERR)
 591                printk("Bus - Instruction Data Error\n");
 592        if (reason & MCSR_BUS_RBERR)
 593                printk("Bus - Read Data Bus Error\n");
 594        if (reason & MCSR_BUS_WBERR)
 595                printk("Bus - Read Data Bus Error\n");
 596        if (reason & MCSR_BUS_IPERR)
 597                printk("Bus - Instruction Parity Error\n");
 598        if (reason & MCSR_BUS_RPERR)
 599                printk("Bus - Read Parity Error\n");
 600
 601        return 0;
 602}
 603
 604int machine_check_generic(struct pt_regs *regs)
 605{
 606        return 0;
 607}
 608#elif defined(CONFIG_E200)
 609int machine_check_e200(struct pt_regs *regs)
 610{
 611        unsigned long reason = get_mc_reason(regs);
 612
 613        printk("Machine check in kernel mode.\n");
 614        printk("Caused by (from MCSR=%lx): ", reason);
 615
 616        if (reason & MCSR_MCP)
 617                printk("Machine Check Signal\n");
 618        if (reason & MCSR_CP_PERR)
 619                printk("Cache Push Parity Error\n");
 620        if (reason & MCSR_CPERR)
 621                printk("Cache Parity Error\n");
 622        if (reason & MCSR_EXCP_ERR)
 623                printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 624        if (reason & MCSR_BUS_IRERR)
 625                printk("Bus - Read Bus Error on instruction fetch\n");
 626        if (reason & MCSR_BUS_DRERR)
 627                printk("Bus - Read Bus Error on data load\n");
 628        if (reason & MCSR_BUS_WRERR)
 629                printk("Bus - Write Bus Error on buffered store or cache line push\n");
 630
 631        return 0;
 632}
 633#else
 634int machine_check_generic(struct pt_regs *regs)
 635{
 636        unsigned long reason = get_mc_reason(regs);
 637
 638        printk("Machine check in kernel mode.\n");
 639        printk("Caused by (from SRR1=%lx): ", reason);
 640        switch (reason & 0x601F0000) {
 641        case 0x80000:
 642                printk("Machine check signal\n");
 643                break;
 644        case 0:         /* for 601 */
 645        case 0x40000:
 646        case 0x140000:  /* 7450 MSS error and TEA */
 647                printk("Transfer error ack signal\n");
 648                break;
 649        case 0x20000:
 650                printk("Data parity error signal\n");
 651                break;
 652        case 0x10000:
 653                printk("Address parity error signal\n");
 654                break;
 655        case 0x20000000:
 656                printk("L1 Data Cache error\n");
 657                break;
 658        case 0x40000000:
 659                printk("L1 Instruction Cache error\n");
 660                break;
 661        case 0x00100000:
 662                printk("L2 data cache parity error\n");
 663                break;
 664        default:
 665                printk("Unknown values in msr\n");
 666        }
 667        return 0;
 668}
 669#endif /* everything else */
 670
 671void machine_check_exception(struct pt_regs *regs)
 672{
 673        enum ctx_state prev_state = exception_enter();
 674        int recover = 0;
 675
 676        __get_cpu_var(irq_stat).mce_exceptions++;
 677
 678        /* See if any machine dependent calls. In theory, we would want
 679         * to call the CPU first, and call the ppc_md. one if the CPU
 680         * one returns a positive number. However there is existing code
 681         * that assumes the board gets a first chance, so let's keep it
 682         * that way for now and fix things later. --BenH.
 683         */
 684        if (ppc_md.machine_check_exception)
 685                recover = ppc_md.machine_check_exception(regs);
 686        else if (cur_cpu_spec->machine_check)
 687                recover = cur_cpu_spec->machine_check(regs);
 688
 689        if (recover > 0)
 690                goto bail;
 691
 692#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
 693        /* the qspan pci read routines can cause machine checks -- Cort
 694         *
 695         * yuck !!! that totally needs to go away ! There are better ways
 696         * to deal with that than having a wart in the mcheck handler.
 697         * -- BenH
 698         */
 699        bad_page_fault(regs, regs->dar, SIGBUS);
 700        goto bail;
 701#endif
 702
 703        if (debugger_fault_handler(regs))
 704                goto bail;
 705
 706        if (check_io_access(regs))
 707                goto bail;
 708
 709        die("Machine check", regs, SIGBUS);
 710
 711        /* Must die if the interrupt is not recoverable */
 712        if (!(regs->msr & MSR_RI))
 713                panic("Unrecoverable Machine check");
 714
 715bail:
 716        exception_exit(prev_state);
 717}
 718
 719void SMIException(struct pt_regs *regs)
 720{
 721        die("System Management Interrupt", regs, SIGABRT);
 722}
 723
 724void unknown_exception(struct pt_regs *regs)
 725{
 726        enum ctx_state prev_state = exception_enter();
 727
 728        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
 729               regs->nip, regs->msr, regs->trap);
 730
 731        _exception(SIGTRAP, regs, 0, 0);
 732
 733        exception_exit(prev_state);
 734}
 735
 736void instruction_breakpoint_exception(struct pt_regs *regs)
 737{
 738        enum ctx_state prev_state = exception_enter();
 739
 740        if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
 741                                        5, SIGTRAP) == NOTIFY_STOP)
 742                goto bail;
 743        if (debugger_iabr_match(regs))
 744                goto bail;
 745        _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 746
 747bail:
 748        exception_exit(prev_state);
 749}
 750
 751void RunModeException(struct pt_regs *regs)
 752{
 753        _exception(SIGTRAP, regs, 0, 0);
 754}
 755
 756void __kprobes single_step_exception(struct pt_regs *regs)
 757{
 758        enum ctx_state prev_state = exception_enter();
 759
 760        clear_single_step(regs);
 761
 762        if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 763                                        5, SIGTRAP) == NOTIFY_STOP)
 764                goto bail;
 765        if (debugger_sstep(regs))
 766                goto bail;
 767
 768        _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 769
 770bail:
 771        exception_exit(prev_state);
 772}
 773
 774/*
 775 * After we have successfully emulated an instruction, we have to
 776 * check if the instruction was being single-stepped, and if so,
 777 * pretend we got a single-step exception.  This was pointed out
 778 * by Kumar Gala.  -- paulus
 779 */
 780static void emulate_single_step(struct pt_regs *regs)
 781{
 782        if (single_stepping(regs))
 783                single_step_exception(regs);
 784}
 785
 786static inline int __parse_fpscr(unsigned long fpscr)
 787{
 788        int ret = 0;
 789
 790        /* Invalid operation */
 791        if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
 792                ret = FPE_FLTINV;
 793
 794        /* Overflow */
 795        else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
 796                ret = FPE_FLTOVF;
 797
 798        /* Underflow */
 799        else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
 800                ret = FPE_FLTUND;
 801
 802        /* Divide by zero */
 803        else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
 804                ret = FPE_FLTDIV;
 805
 806        /* Inexact result */
 807        else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
 808                ret = FPE_FLTRES;
 809
 810        return ret;
 811}
 812
 813static void parse_fpe(struct pt_regs *regs)
 814{
 815        int code = 0;
 816
 817        flush_fp_to_thread(current);
 818
 819        code = __parse_fpscr(current->thread.fpscr.val);
 820
 821        _exception(SIGFPE, regs, code, regs->nip);
 822}
 823
 824/*
 825 * Illegal instruction emulation support.  Originally written to
 826 * provide the PVR to user applications using the mfspr rd, PVR.
 827 * Return non-zero if we can't emulate, or -EFAULT if the associated
 828 * memory access caused an access fault.  Return zero on success.
 829 *
 830 * There are a couple of ways to do this, either "decode" the instruction
 831 * or directly match lots of bits.  In this case, matching lots of
 832 * bits is faster and easier.
 833 *
 834 */
 835static int emulate_string_inst(struct pt_regs *regs, u32 instword)
 836{
 837        u8 rT = (instword >> 21) & 0x1f;
 838        u8 rA = (instword >> 16) & 0x1f;
 839        u8 NB_RB = (instword >> 11) & 0x1f;
 840        u32 num_bytes;
 841        unsigned long EA;
 842        int pos = 0;
 843
 844        /* Early out if we are an invalid form of lswx */
 845        if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
 846                if ((rT == rA) || (rT == NB_RB))
 847                        return -EINVAL;
 848
 849        EA = (rA == 0) ? 0 : regs->gpr[rA];
 850
 851        switch (instword & PPC_INST_STRING_MASK) {
 852                case PPC_INST_LSWX:
 853                case PPC_INST_STSWX:
 854                        EA += NB_RB;
 855                        num_bytes = regs->xer & 0x7f;
 856                        break;
 857                case PPC_INST_LSWI:
 858                case PPC_INST_STSWI:
 859                        num_bytes = (NB_RB == 0) ? 32 : NB_RB;
 860                        break;
 861                default:
 862                        return -EINVAL;
 863        }
 864
 865        while (num_bytes != 0)
 866        {
 867                u8 val;
 868                u32 shift = 8 * (3 - (pos & 0x3));
 869
 870                /* if process is 32-bit, clear upper 32 bits of EA */
 871                if ((regs->msr & MSR_64BIT) == 0)
 872                        EA &= 0xFFFFFFFF;
 873
 874                switch ((instword & PPC_INST_STRING_MASK)) {
 875                        case PPC_INST_LSWX:
 876                        case PPC_INST_LSWI:
 877                                if (get_user(val, (u8 __user *)EA))
 878                                        return -EFAULT;
 879                                /* first time updating this reg,
 880                                 * zero it out */
 881                                if (pos == 0)
 882                                        regs->gpr[rT] = 0;
 883                                regs->gpr[rT] |= val << shift;
 884                                break;
 885                        case PPC_INST_STSWI:
 886                        case PPC_INST_STSWX:
 887                                val = regs->gpr[rT] >> shift;
 888                                if (put_user(val, (u8 __user *)EA))
 889                                        return -EFAULT;
 890                                break;
 891                }
 892                /* move EA to next address */
 893                EA += 1;
 894                num_bytes--;
 895
 896                /* manage our position within the register */
 897                if (++pos == 4) {
 898                        pos = 0;
 899                        if (++rT == 32)
 900                                rT = 0;
 901                }
 902        }
 903
 904        return 0;
 905}
 906
 907static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
 908{
 909        u32 ra,rs;
 910        unsigned long tmp;
 911
 912        ra = (instword >> 16) & 0x1f;
 913        rs = (instword >> 21) & 0x1f;
 914
 915        tmp = regs->gpr[rs];
 916        tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
 917        tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
 918        tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 919        regs->gpr[ra] = tmp;
 920
 921        return 0;
 922}
 923
 924static int emulate_isel(struct pt_regs *regs, u32 instword)
 925{
 926        u8 rT = (instword >> 21) & 0x1f;
 927        u8 rA = (instword >> 16) & 0x1f;
 928        u8 rB = (instword >> 11) & 0x1f;
 929        u8 BC = (instword >> 6) & 0x1f;
 930        u8 bit;
 931        unsigned long tmp;
 932
 933        tmp = (rA == 0) ? 0 : regs->gpr[rA];
 934        bit = (regs->ccr >> (31 - BC)) & 0x1;
 935
 936        regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
 937
 938        return 0;
 939}
 940
 941#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 942static inline bool tm_abort_check(struct pt_regs *regs, int cause)
 943{
 944        /* If we're emulating a load/store in an active transaction, we cannot
 945         * emulate it as the kernel operates in transaction suspended context.
 946         * We need to abort the transaction.  This creates a persistent TM
 947         * abort so tell the user what caused it with a new code.
 948         */
 949        if (MSR_TM_TRANSACTIONAL(regs->msr)) {
 950                tm_enable();
 951                tm_abort(cause);
 952                return true;
 953        }
 954        return false;
 955}
 956#else
 957static inline bool tm_abort_check(struct pt_regs *regs, int reason)
 958{
 959        return false;
 960}
 961#endif
 962
 963static int emulate_instruction(struct pt_regs *regs)
 964{
 965        u32 instword;
 966        u32 rd;
 967
 968        if (!user_mode(regs))
 969                return -EINVAL;
 970        CHECK_FULL_REGS(regs);
 971
 972        if (get_user(instword, (u32 __user *)(regs->nip)))
 973                return -EFAULT;
 974
 975        /* Emulate the mfspr rD, PVR. */
 976        if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
 977                PPC_WARN_EMULATED(mfpvr, regs);
 978                rd = (instword >> 21) & 0x1f;
 979                regs->gpr[rd] = mfspr(SPRN_PVR);
 980                return 0;
 981        }
 982
 983        /* Emulating the dcba insn is just a no-op.  */
 984        if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
 985                PPC_WARN_EMULATED(dcba, regs);
 986                return 0;
 987        }
 988
 989        /* Emulate the mcrxr insn.  */
 990        if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
 991                int shift = (instword >> 21) & 0x1c;
 992                unsigned long msk = 0xf0000000UL >> shift;
 993
 994                PPC_WARN_EMULATED(mcrxr, regs);
 995                regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
 996                regs->xer &= ~0xf0000000UL;
 997                return 0;
 998        }
 999
1000        /* Emulate load/store string insn. */
1001        if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1002                if (tm_abort_check(regs,
1003                                   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1004                        return -EINVAL;
1005                PPC_WARN_EMULATED(string, regs);
1006                return emulate_string_inst(regs, instword);
1007        }
1008
1009        /* Emulate the popcntb (Population Count Bytes) instruction. */
1010        if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1011                PPC_WARN_EMULATED(popcntb, regs);
1012                return emulate_popcntb_inst(regs, instword);
1013        }
1014
1015        /* Emulate isel (Integer Select) instruction */
1016        if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1017                PPC_WARN_EMULATED(isel, regs);
1018                return emulate_isel(regs, instword);
1019        }
1020
1021#ifdef CONFIG_PPC64
1022        /* Emulate the mfspr rD, DSCR. */
1023        if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1024                PPC_INST_MFSPR_DSCR_USER) ||
1025             ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1026                PPC_INST_MFSPR_DSCR)) &&
1027                        cpu_has_feature(CPU_FTR_DSCR)) {
1028                PPC_WARN_EMULATED(mfdscr, regs);
1029                rd = (instword >> 21) & 0x1f;
1030                regs->gpr[rd] = mfspr(SPRN_DSCR);
1031                return 0;
1032        }
1033        /* Emulate the mtspr DSCR, rD. */
1034        if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1035                PPC_INST_MTSPR_DSCR_USER) ||
1036             ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1037                PPC_INST_MTSPR_DSCR)) &&
1038                        cpu_has_feature(CPU_FTR_DSCR)) {
1039                PPC_WARN_EMULATED(mtdscr, regs);
1040                rd = (instword >> 21) & 0x1f;
1041                current->thread.dscr = regs->gpr[rd];
1042                current->thread.dscr_inherit = 1;
1043                mtspr(SPRN_DSCR, current->thread.dscr);
1044                return 0;
1045        }
1046#endif
1047
1048        return -EINVAL;
1049}
1050
1051int is_valid_bugaddr(unsigned long addr)
1052{
1053        return is_kernel_addr(addr);
1054}
1055
1056#ifdef CONFIG_MATH_EMULATION
1057static int emulate_math(struct pt_regs *regs)
1058{
1059        int ret;
1060        extern int do_mathemu(struct pt_regs *regs);
1061
1062        ret = do_mathemu(regs);
1063        if (ret >= 0)
1064                PPC_WARN_EMULATED(math, regs);
1065
1066        switch (ret) {
1067        case 0:
1068                emulate_single_step(regs);
1069                return 0;
1070        case 1: {
1071                        int code = 0;
1072                        code = __parse_fpscr(current->thread.fpscr.val);
1073                        _exception(SIGFPE, regs, code, regs->nip);
1074                        return 0;
1075                }
1076        case -EFAULT:
1077                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1078                return 0;
1079        }
1080
1081        return -1;
1082}
1083#else
1084static inline int emulate_math(struct pt_regs *regs) { return -1; }
1085#endif
1086
1087void __kprobes program_check_exception(struct pt_regs *regs)
1088{
1089        enum ctx_state prev_state = exception_enter();
1090        unsigned int reason = get_reason(regs);
1091
1092        /* We can now get here via a FP Unavailable exception if the core
1093         * has no FPU, in that case the reason flags will be 0 */
1094
1095        if (reason & REASON_FP) {
1096                /* IEEE FP exception */
1097                parse_fpe(regs);
1098                goto bail;
1099        }
1100        if (reason & REASON_TRAP) {
1101                /* Debugger is first in line to stop recursive faults in
1102                 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1103                if (debugger_bpt(regs))
1104                        goto bail;
1105
1106                /* trap exception */
1107                if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1108                                == NOTIFY_STOP)
1109                        goto bail;
1110
1111                if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1112                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1113                        regs->nip += 4;
1114                        goto bail;
1115                }
1116                _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1117                goto bail;
1118        }
1119#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1120        if (reason & REASON_TM) {
1121                /* This is a TM "Bad Thing Exception" program check.
1122                 * This occurs when:
1123                 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1124                 *    transition in TM states.
1125                 * -  A trechkpt is attempted when transactional.
1126                 * -  A treclaim is attempted when non transactional.
1127                 * -  A tend is illegally attempted.
1128                 * -  writing a TM SPR when transactional.
1129                 */
1130                if (!user_mode(regs) &&
1131                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1132                        regs->nip += 4;
1133                        goto bail;
1134                }
1135                /* If usermode caused this, it's done something illegal and
1136                 * gets a SIGILL slap on the wrist.  We call it an illegal
1137                 * operand to distinguish from the instruction just being bad
1138                 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1139                 * illegal /placement/ of a valid instruction.
1140                 */
1141                if (user_mode(regs)) {
1142                        _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1143                        goto bail;
1144                } else {
1145                        printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1146                               "at %lx (msr 0x%x)\n", regs->nip, reason);
1147                        die("Unrecoverable exception", regs, SIGABRT);
1148                }
1149        }
1150#endif
1151
1152        /*
1153         * If we took the program check in the kernel skip down to sending a
1154         * SIGILL. The subsequent cases all relate to emulating instructions
1155         * which we should only do for userspace. We also do not want to enable
1156         * interrupts for kernel faults because that might lead to further
1157         * faults, and loose the context of the original exception.
1158         */
1159        if (!user_mode(regs))
1160                goto sigill;
1161
1162        /* We restore the interrupt state now */
1163        if (!arch_irq_disabled_regs(regs))
1164                local_irq_enable();
1165
1166        /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1167         * but there seems to be a hardware bug on the 405GP (RevD)
1168         * that means ESR is sometimes set incorrectly - either to
1169         * ESR_DST (!?) or 0.  In the process of chasing this with the
1170         * hardware people - not sure if it can happen on any illegal
1171         * instruction or only on FP instructions, whether there is a
1172         * pattern to occurrences etc. -dgibson 31/Mar/2003
1173         */
1174        if (!emulate_math(regs))
1175                goto bail;
1176
1177        /* Try to emulate it if we should. */
1178        if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1179                switch (emulate_instruction(regs)) {
1180                case 0:
1181                        regs->nip += 4;
1182                        emulate_single_step(regs);
1183                        goto bail;
1184                case -EFAULT:
1185                        _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1186                        goto bail;
1187                }
1188        }
1189
1190sigill:
1191        if (reason & REASON_PRIVILEGED)
1192                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1193        else
1194                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1195
1196bail:
1197        exception_exit(prev_state);
1198}
1199
1200/*
1201 * This occurs when running in hypervisor mode on POWER6 or later
1202 * and an illegal instruction is encountered.
1203 */
1204void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1205{
1206        regs->msr |= REASON_ILLEGAL;
1207        program_check_exception(regs);
1208}
1209
1210void alignment_exception(struct pt_regs *regs)
1211{
1212        enum ctx_state prev_state = exception_enter();
1213        int sig, code, fixed = 0;
1214
1215        /* We restore the interrupt state now */
1216        if (!arch_irq_disabled_regs(regs))
1217                local_irq_enable();
1218
1219        if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1220                goto bail;
1221
1222        /* we don't implement logging of alignment exceptions */
1223        if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1224                fixed = fix_alignment(regs);
1225
1226        if (fixed == 1) {
1227                regs->nip += 4; /* skip over emulated instruction */
1228                emulate_single_step(regs);
1229                goto bail;
1230        }
1231
1232        /* Operand address was bad */
1233        if (fixed == -EFAULT) {
1234                sig = SIGSEGV;
1235                code = SEGV_ACCERR;
1236        } else {
1237                sig = SIGBUS;
1238                code = BUS_ADRALN;
1239        }
1240        if (user_mode(regs))
1241                _exception(sig, regs, code, regs->dar);
1242        else
1243                bad_page_fault(regs, regs->dar, sig);
1244
1245bail:
1246        exception_exit(prev_state);
1247}
1248
1249void StackOverflow(struct pt_regs *regs)
1250{
1251        printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1252               current, regs->gpr[1]);
1253        debugger(regs);
1254        show_regs(regs);
1255        panic("kernel stack overflow");
1256}
1257
1258void nonrecoverable_exception(struct pt_regs *regs)
1259{
1260        printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1261               regs->nip, regs->msr);
1262        debugger(regs);
1263        die("nonrecoverable exception", regs, SIGKILL);
1264}
1265
1266void trace_syscall(struct pt_regs *regs)
1267{
1268        printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1269               current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1270               regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1271}
1272
1273void kernel_fp_unavailable_exception(struct pt_regs *regs)
1274{
1275        enum ctx_state prev_state = exception_enter();
1276
1277        printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1278                          "%lx at %lx\n", regs->trap, regs->nip);
1279        die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1280
1281        exception_exit(prev_state);
1282}
1283
1284void altivec_unavailable_exception(struct pt_regs *regs)
1285{
1286        enum ctx_state prev_state = exception_enter();
1287
1288        if (user_mode(regs)) {
1289                /* A user program has executed an altivec instruction,
1290                   but this kernel doesn't support altivec. */
1291                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1292                goto bail;
1293        }
1294
1295        printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1296                        "%lx at %lx\n", regs->trap, regs->nip);
1297        die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1298
1299bail:
1300        exception_exit(prev_state);
1301}
1302
1303void vsx_unavailable_exception(struct pt_regs *regs)
1304{
1305        if (user_mode(regs)) {
1306                /* A user program has executed an vsx instruction,
1307                   but this kernel doesn't support vsx. */
1308                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1309                return;
1310        }
1311
1312        printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1313                        "%lx at %lx\n", regs->trap, regs->nip);
1314        die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1315}
1316
1317#ifdef CONFIG_PPC64
1318void facility_unavailable_exception(struct pt_regs *regs)
1319{
1320        static char *facility_strings[] = {
1321                [FSCR_FP_LG] = "FPU",
1322                [FSCR_VECVSX_LG] = "VMX/VSX",
1323                [FSCR_DSCR_LG] = "DSCR",
1324                [FSCR_PM_LG] = "PMU SPRs",
1325                [FSCR_BHRB_LG] = "BHRB",
1326                [FSCR_TM_LG] = "TM",
1327                [FSCR_EBB_LG] = "EBB",
1328                [FSCR_TAR_LG] = "TAR",
1329        };
1330        char *facility = "unknown";
1331        u64 value;
1332        u8 status;
1333        bool hv;
1334
1335        hv = (regs->trap == 0xf80);
1336        if (hv)
1337                value = mfspr(SPRN_HFSCR);
1338        else
1339                value = mfspr(SPRN_FSCR);
1340
1341        status = value >> 56;
1342        if (status == FSCR_DSCR_LG) {
1343                /* User is acessing the DSCR.  Set the inherit bit and allow
1344                 * the user to set it directly in future by setting via the
1345                 * FSCR DSCR bit.  We always leave HFSCR DSCR set.
1346                 */
1347                current->thread.dscr_inherit = 1;
1348                mtspr(SPRN_FSCR, value | FSCR_DSCR);
1349                return;
1350        }
1351
1352        if ((status < ARRAY_SIZE(facility_strings)) &&
1353            facility_strings[status])
1354                facility = facility_strings[status];
1355
1356        /* We restore the interrupt state now */
1357        if (!arch_irq_disabled_regs(regs))
1358                local_irq_enable();
1359
1360        pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1361               hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1362
1363        if (user_mode(regs)) {
1364                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1365                return;
1366        }
1367
1368        die("Unexpected facility unavailable exception", regs, SIGABRT);
1369}
1370#endif
1371
1372#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1373
1374extern void do_load_up_fpu(struct pt_regs *regs);
1375
1376void fp_unavailable_tm(struct pt_regs *regs)
1377{
1378        /* Note:  This does not handle any kind of FP laziness. */
1379
1380        TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1381                 regs->nip, regs->msr);
1382        tm_enable();
1383
1384        /* We can only have got here if the task started using FP after
1385         * beginning the transaction.  So, the transactional regs are just a
1386         * copy of the checkpointed ones.  But, we still need to recheckpoint
1387         * as we're enabling FP for the process; it will return, abort the
1388         * transaction, and probably retry but now with FP enabled.  So the
1389         * checkpointed FP registers need to be loaded.
1390         */
1391        tm_reclaim(&current->thread, current->thread.regs->msr,
1392                   TM_CAUSE_FAC_UNAV);
1393        /* Reclaim didn't save out any FPRs to transact_fprs. */
1394
1395        /* Enable FP for the task: */
1396        regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1397
1398        /* This loads and recheckpoints the FP registers from
1399         * thread.fpr[].  They will remain in registers after the
1400         * checkpoint so we don't need to reload them after.
1401         */
1402        tm_recheckpoint(&current->thread, regs->msr);
1403}
1404
1405#ifdef CONFIG_ALTIVEC
1406extern void do_load_up_altivec(struct pt_regs *regs);
1407
1408void altivec_unavailable_tm(struct pt_regs *regs)
1409{
1410        /* See the comments in fp_unavailable_tm().  This function operates
1411         * the same way.
1412         */
1413
1414        TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1415                 "MSR=%lx\n",
1416                 regs->nip, regs->msr);
1417        tm_enable();
1418        tm_reclaim(&current->thread, current->thread.regs->msr,
1419                   TM_CAUSE_FAC_UNAV);
1420        regs->msr |= MSR_VEC;
1421        tm_recheckpoint(&current->thread, regs->msr);
1422        current->thread.used_vr = 1;
1423}
1424#endif
1425
1426#ifdef CONFIG_VSX
1427void vsx_unavailable_tm(struct pt_regs *regs)
1428{
1429        /* See the comments in fp_unavailable_tm().  This works similarly,
1430         * though we're loading both FP and VEC registers in here.
1431         *
1432         * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1433         * regs.  Either way, set MSR_VSX.
1434         */
1435
1436        TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1437                 "MSR=%lx\n",
1438                 regs->nip, regs->msr);
1439
1440        tm_enable();
1441        /* This reclaims FP and/or VR regs if they're already enabled */
1442        tm_reclaim(&current->thread, current->thread.regs->msr,
1443                   TM_CAUSE_FAC_UNAV);
1444
1445        regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1446                MSR_VSX;
1447        /* This loads & recheckpoints FP and VRs. */
1448        tm_recheckpoint(&current->thread, regs->msr);
1449        current->thread.used_vsr = 1;
1450}
1451#endif
1452#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1453
1454void performance_monitor_exception(struct pt_regs *regs)
1455{
1456        __get_cpu_var(irq_stat).pmu_irqs++;
1457
1458        perf_irq(regs);
1459}
1460
1461#ifdef CONFIG_8xx
1462void SoftwareEmulation(struct pt_regs *regs)
1463{
1464        CHECK_FULL_REGS(regs);
1465
1466        if (!user_mode(regs)) {
1467                debugger(regs);
1468                die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1469        }
1470
1471        if (!emulate_math(regs))
1472                return;
1473
1474        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1475}
1476#endif /* CONFIG_8xx */
1477
1478#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1479static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1480{
1481        int changed = 0;
1482        /*
1483         * Determine the cause of the debug event, clear the
1484         * event flags and send a trap to the handler. Torez
1485         */
1486        if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1487                dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1488#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1489                current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1490#endif
1491                do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1492                             5);
1493                changed |= 0x01;
1494        }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1495                dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1496                do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1497                             6);
1498                changed |= 0x01;
1499        }  else if (debug_status & DBSR_IAC1) {
1500                current->thread.dbcr0 &= ~DBCR0_IAC1;
1501                dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1502                do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1503                             1);
1504                changed |= 0x01;
1505        }  else if (debug_status & DBSR_IAC2) {
1506                current->thread.dbcr0 &= ~DBCR0_IAC2;
1507                do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1508                             2);
1509                changed |= 0x01;
1510        }  else if (debug_status & DBSR_IAC3) {
1511                current->thread.dbcr0 &= ~DBCR0_IAC3;
1512                dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1513                do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1514                             3);
1515                changed |= 0x01;
1516        }  else if (debug_status & DBSR_IAC4) {
1517                current->thread.dbcr0 &= ~DBCR0_IAC4;
1518                do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1519                             4);
1520                changed |= 0x01;
1521        }
1522        /*
1523         * At the point this routine was called, the MSR(DE) was turned off.
1524         * Check all other debug flags and see if that bit needs to be turned
1525         * back on or not.
1526         */
1527        if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1528                regs->msr |= MSR_DE;
1529        else
1530                /* Make sure the IDM flag is off */
1531                current->thread.dbcr0 &= ~DBCR0_IDM;
1532
1533        if (changed & 0x01)
1534                mtspr(SPRN_DBCR0, current->thread.dbcr0);
1535}
1536
1537void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1538{
1539        current->thread.dbsr = debug_status;
1540
1541        /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1542         * on server, it stops on the target of the branch. In order to simulate
1543         * the server behaviour, we thus restart right away with a single step
1544         * instead of stopping here when hitting a BT
1545         */
1546        if (debug_status & DBSR_BT) {
1547                regs->msr &= ~MSR_DE;
1548
1549                /* Disable BT */
1550                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1551                /* Clear the BT event */
1552                mtspr(SPRN_DBSR, DBSR_BT);
1553
1554                /* Do the single step trick only when coming from userspace */
1555                if (user_mode(regs)) {
1556                        current->thread.dbcr0 &= ~DBCR0_BT;
1557                        current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1558                        regs->msr |= MSR_DE;
1559                        return;
1560                }
1561
1562                if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1563                               5, SIGTRAP) == NOTIFY_STOP) {
1564                        return;
1565                }
1566                if (debugger_sstep(regs))
1567                        return;
1568        } else if (debug_status & DBSR_IC) {    /* Instruction complete */
1569                regs->msr &= ~MSR_DE;
1570
1571                /* Disable instruction completion */
1572                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1573                /* Clear the instruction completion event */
1574                mtspr(SPRN_DBSR, DBSR_IC);
1575
1576                if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1577                               5, SIGTRAP) == NOTIFY_STOP) {
1578                        return;
1579                }
1580
1581                if (debugger_sstep(regs))
1582                        return;
1583
1584                if (user_mode(regs)) {
1585                        current->thread.dbcr0 &= ~DBCR0_IC;
1586                        if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1587                                               current->thread.dbcr1))
1588                                regs->msr |= MSR_DE;
1589                        else
1590                                /* Make sure the IDM bit is off */
1591                                current->thread.dbcr0 &= ~DBCR0_IDM;
1592                }
1593
1594                _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1595        } else
1596                handle_debug(regs, debug_status);
1597}
1598#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1599
1600#if !defined(CONFIG_TAU_INT)
1601void TAUException(struct pt_regs *regs)
1602{
1603        printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1604               regs->nip, regs->msr, regs->trap, print_tainted());
1605}
1606#endif /* CONFIG_INT_TAU */
1607
1608#ifdef CONFIG_ALTIVEC
1609void altivec_assist_exception(struct pt_regs *regs)
1610{
1611        int err;
1612
1613        if (!user_mode(regs)) {
1614                printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1615                       " at %lx\n", regs->nip);
1616                die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1617        }
1618
1619        flush_altivec_to_thread(current);
1620
1621        PPC_WARN_EMULATED(altivec, regs);
1622        err = emulate_altivec(regs);
1623        if (err == 0) {
1624                regs->nip += 4;         /* skip emulated instruction */
1625                emulate_single_step(regs);
1626                return;
1627        }
1628
1629        if (err == -EFAULT) {
1630                /* got an error reading the instruction */
1631                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1632        } else {
1633                /* didn't recognize the instruction */
1634                /* XXX quick hack for now: set the non-Java bit in the VSCR */
1635                printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1636                                   "in %s at %lx\n", current->comm, regs->nip);
1637                current->thread.vscr.u[3] |= 0x10000;
1638        }
1639}
1640#endif /* CONFIG_ALTIVEC */
1641
1642#ifdef CONFIG_VSX
1643void vsx_assist_exception(struct pt_regs *regs)
1644{
1645        if (!user_mode(regs)) {
1646                printk(KERN_EMERG "VSX assist exception in kernel mode"
1647                       " at %lx\n", regs->nip);
1648                die("Kernel VSX assist exception", regs, SIGILL);
1649        }
1650
1651        flush_vsx_to_thread(current);
1652        printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1653        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1654}
1655#endif /* CONFIG_VSX */
1656
1657#ifdef CONFIG_FSL_BOOKE
1658void CacheLockingException(struct pt_regs *regs, unsigned long address,
1659                           unsigned long error_code)
1660{
1661        /* We treat cache locking instructions from the user
1662         * as priv ops, in the future we could try to do
1663         * something smarter
1664         */
1665        if (error_code & (ESR_DLK|ESR_ILK))
1666                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1667        return;
1668}
1669#endif /* CONFIG_FSL_BOOKE */
1670
1671#ifdef CONFIG_SPE
1672void SPEFloatingPointException(struct pt_regs *regs)
1673{
1674        extern int do_spe_mathemu(struct pt_regs *regs);
1675        unsigned long spefscr;
1676        int fpexc_mode;
1677        int code = 0;
1678        int err;
1679
1680        flush_spe_to_thread(current);
1681
1682        spefscr = current->thread.spefscr;
1683        fpexc_mode = current->thread.fpexc_mode;
1684
1685        if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1686                code = FPE_FLTOVF;
1687        }
1688        else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1689                code = FPE_FLTUND;
1690        }
1691        else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1692                code = FPE_FLTDIV;
1693        else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1694                code = FPE_FLTINV;
1695        }
1696        else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1697                code = FPE_FLTRES;
1698
1699        err = do_spe_mathemu(regs);
1700        if (err == 0) {
1701                regs->nip += 4;         /* skip emulated instruction */
1702                emulate_single_step(regs);
1703                return;
1704        }
1705
1706        if (err == -EFAULT) {
1707                /* got an error reading the instruction */
1708                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1709        } else if (err == -EINVAL) {
1710                /* didn't recognize the instruction */
1711                printk(KERN_ERR "unrecognized spe instruction "
1712                       "in %s at %lx\n", current->comm, regs->nip);
1713        } else {
1714                _exception(SIGFPE, regs, code, regs->nip);
1715        }
1716
1717        return;
1718}
1719
1720void SPEFloatingPointRoundException(struct pt_regs *regs)
1721{
1722        extern int speround_handler(struct pt_regs *regs);
1723        int err;
1724
1725        preempt_disable();
1726        if (regs->msr & MSR_SPE)
1727                giveup_spe(current);
1728        preempt_enable();
1729
1730        regs->nip -= 4;
1731        err = speround_handler(regs);
1732        if (err == 0) {
1733                regs->nip += 4;         /* skip emulated instruction */
1734                emulate_single_step(regs);
1735                return;
1736        }
1737
1738        if (err == -EFAULT) {
1739                /* got an error reading the instruction */
1740                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1741        } else if (err == -EINVAL) {
1742                /* didn't recognize the instruction */
1743                printk(KERN_ERR "unrecognized spe instruction "
1744                       "in %s at %lx\n", current->comm, regs->nip);
1745        } else {
1746                _exception(SIGFPE, regs, 0, regs->nip);
1747                return;
1748        }
1749}
1750#endif
1751
1752/*
1753 * We enter here if we get an unrecoverable exception, that is, one
1754 * that happened at a point where the RI (recoverable interrupt) bit
1755 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1756 * we therefore lost state by taking this exception.
1757 */
1758void unrecoverable_exception(struct pt_regs *regs)
1759{
1760        printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1761               regs->trap, regs->nip);
1762        die("Unrecoverable exception", regs, SIGABRT);
1763}
1764
1765#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1766/*
1767 * Default handler for a Watchdog exception,
1768 * spins until a reboot occurs
1769 */
1770void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1771{
1772        /* Generic WatchdogHandler, implement your own */
1773        mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1774        return;
1775}
1776
1777void WatchdogException(struct pt_regs *regs)
1778{
1779        printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1780        WatchdogHandler(regs);
1781}
1782#endif
1783
1784/*
1785 * We enter here if we discover during exception entry that we are
1786 * running in supervisor mode with a userspace value in the stack pointer.
1787 */
1788void kernel_bad_stack(struct pt_regs *regs)
1789{
1790        printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1791               regs->gpr[1], regs->nip);
1792        die("Bad kernel stack pointer", regs, SIGABRT);
1793}
1794
1795void __init trap_init(void)
1796{
1797}
1798
1799
1800#ifdef CONFIG_PPC_EMULATED_STATS
1801
1802#define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
1803
1804struct ppc_emulated ppc_emulated = {
1805#ifdef CONFIG_ALTIVEC
1806        WARN_EMULATED_SETUP(altivec),
1807#endif
1808        WARN_EMULATED_SETUP(dcba),
1809        WARN_EMULATED_SETUP(dcbz),
1810        WARN_EMULATED_SETUP(fp_pair),
1811        WARN_EMULATED_SETUP(isel),
1812        WARN_EMULATED_SETUP(mcrxr),
1813        WARN_EMULATED_SETUP(mfpvr),
1814        WARN_EMULATED_SETUP(multiple),
1815        WARN_EMULATED_SETUP(popcntb),
1816        WARN_EMULATED_SETUP(spe),
1817        WARN_EMULATED_SETUP(string),
1818        WARN_EMULATED_SETUP(unaligned),
1819#ifdef CONFIG_MATH_EMULATION
1820        WARN_EMULATED_SETUP(math),
1821#endif
1822#ifdef CONFIG_VSX
1823        WARN_EMULATED_SETUP(vsx),
1824#endif
1825#ifdef CONFIG_PPC64
1826        WARN_EMULATED_SETUP(mfdscr),
1827        WARN_EMULATED_SETUP(mtdscr),
1828#endif
1829};
1830
1831u32 ppc_warn_emulated;
1832
1833void ppc_warn_emulated_print(const char *type)
1834{
1835        pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1836                            type);
1837}
1838
1839static int __init ppc_warn_emulated_init(void)
1840{
1841        struct dentry *dir, *d;
1842        unsigned int i;
1843        struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1844
1845        if (!powerpc_debugfs_root)
1846                return -ENODEV;
1847
1848        dir = debugfs_create_dir("emulated_instructions",
1849                                 powerpc_debugfs_root);
1850        if (!dir)
1851                return -ENOMEM;
1852
1853        d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1854                               &ppc_warn_emulated);
1855        if (!d)
1856                goto fail;
1857
1858        for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1859                d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1860                                       (u32 *)&entries[i].val.counter);
1861                if (!d)
1862                        goto fail;
1863        }
1864
1865        return 0;
1866
1867fail:
1868        debugfs_remove_recursive(dir);
1869        return -ENOMEM;
1870}
1871
1872device_initcall(ppc_warn_emulated_init);
1873
1874#endif /* CONFIG_PPC_EMULATED_STATS */
1875