linux/arch/powerpc/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * PPC Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2003 David Gibson, IBM Corporation.
   5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
   6 *
   7 * Based on the IA-32 version:
   8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/io.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/export.h>
  16#include <linux/of_fdt.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/moduleparam.h>
  20#include <asm/pgtable.h>
  21#include <asm/pgalloc.h>
  22#include <asm/tlb.h>
  23#include <asm/setup.h>
  24#include <asm/hugetlb.h>
  25
  26#ifdef CONFIG_HUGETLB_PAGE
  27
  28#define PAGE_SHIFT_64K  16
  29#define PAGE_SHIFT_16M  24
  30#define PAGE_SHIFT_16G  34
  31
  32unsigned int HPAGE_SHIFT;
  33
  34/*
  35 * Tracks gpages after the device tree is scanned and before the
  36 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
  37 * just used to track 16G pages and so is a single array.  FSL-based
  38 * implementations may have more than one gpage size, so we need multiple
  39 * arrays
  40 */
  41#ifdef CONFIG_PPC_FSL_BOOK3E
  42#define MAX_NUMBER_GPAGES       128
  43struct psize_gpages {
  44        u64 gpage_list[MAX_NUMBER_GPAGES];
  45        unsigned int nr_gpages;
  46};
  47static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
  48#else
  49#define MAX_NUMBER_GPAGES       1024
  50static u64 gpage_freearray[MAX_NUMBER_GPAGES];
  51static unsigned nr_gpages;
  52#endif
  53
  54#define hugepd_none(hpd)        ((hpd).pd == 0)
  55
  56#ifdef CONFIG_PPC_BOOK3S_64
  57/*
  58 * At this point we do the placement change only for BOOK3S 64. This would
  59 * possibly work on other subarchs.
  60 */
  61
  62/*
  63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
  64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
  65 */
  66int pmd_huge(pmd_t pmd)
  67{
  68        /*
  69         * leaf pte for huge page, bottom two bits != 00
  70         */
  71        return ((pmd_val(pmd) & 0x3) != 0x0);
  72}
  73
  74int pud_huge(pud_t pud)
  75{
  76        /*
  77         * leaf pte for huge page, bottom two bits != 00
  78         */
  79        return ((pud_val(pud) & 0x3) != 0x0);
  80}
  81
  82int pgd_huge(pgd_t pgd)
  83{
  84        /*
  85         * leaf pte for huge page, bottom two bits != 00
  86         */
  87        return ((pgd_val(pgd) & 0x3) != 0x0);
  88}
  89
  90int pmd_huge_support(void)
  91{
  92        return 1;
  93}
  94#else
  95int pmd_huge(pmd_t pmd)
  96{
  97        return 0;
  98}
  99
 100int pud_huge(pud_t pud)
 101{
 102        return 0;
 103}
 104
 105int pgd_huge(pgd_t pgd)
 106{
 107        return 0;
 108}
 109
 110int pmd_huge_support(void)
 111{
 112        return 0;
 113}
 114#endif
 115
 116pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 117{
 118        /* Only called for hugetlbfs pages, hence can ignore THP */
 119        return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
 120}
 121
 122static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 123                           unsigned long address, unsigned pdshift, unsigned pshift)
 124{
 125        struct kmem_cache *cachep;
 126        pte_t *new;
 127
 128#ifdef CONFIG_PPC_FSL_BOOK3E
 129        int i;
 130        int num_hugepd = 1 << (pshift - pdshift);
 131        cachep = hugepte_cache;
 132#else
 133        cachep = PGT_CACHE(pdshift - pshift);
 134#endif
 135
 136        new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
 137
 138        BUG_ON(pshift > HUGEPD_SHIFT_MASK);
 139        BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
 140
 141        if (! new)
 142                return -ENOMEM;
 143
 144        spin_lock(&mm->page_table_lock);
 145#ifdef CONFIG_PPC_FSL_BOOK3E
 146        /*
 147         * We have multiple higher-level entries that point to the same
 148         * actual pte location.  Fill in each as we go and backtrack on error.
 149         * We need all of these so the DTLB pgtable walk code can find the
 150         * right higher-level entry without knowing if it's a hugepage or not.
 151         */
 152        for (i = 0; i < num_hugepd; i++, hpdp++) {
 153                if (unlikely(!hugepd_none(*hpdp)))
 154                        break;
 155                else
 156                        /* We use the old format for PPC_FSL_BOOK3E */
 157                        hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 158        }
 159        /* If we bailed from the for loop early, an error occurred, clean up */
 160        if (i < num_hugepd) {
 161                for (i = i - 1 ; i >= 0; i--, hpdp--)
 162                        hpdp->pd = 0;
 163                kmem_cache_free(cachep, new);
 164        }
 165#else
 166        if (!hugepd_none(*hpdp))
 167                kmem_cache_free(cachep, new);
 168        else {
 169#ifdef CONFIG_PPC_BOOK3S_64
 170                hpdp->pd = (unsigned long)new |
 171                            (shift_to_mmu_psize(pshift) << 2);
 172#else
 173                hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 174#endif
 175        }
 176#endif
 177        spin_unlock(&mm->page_table_lock);
 178        return 0;
 179}
 180
 181/*
 182 * These macros define how to determine which level of the page table holds
 183 * the hpdp.
 184 */
 185#ifdef CONFIG_PPC_FSL_BOOK3E
 186#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
 187#define HUGEPD_PUD_SHIFT PUD_SHIFT
 188#else
 189#define HUGEPD_PGD_SHIFT PUD_SHIFT
 190#define HUGEPD_PUD_SHIFT PMD_SHIFT
 191#endif
 192
 193#ifdef CONFIG_PPC_BOOK3S_64
 194/*
 195 * At this point we do the placement change only for BOOK3S 64. This would
 196 * possibly work on other subarchs.
 197 */
 198pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 199{
 200        pgd_t *pg;
 201        pud_t *pu;
 202        pmd_t *pm;
 203        hugepd_t *hpdp = NULL;
 204        unsigned pshift = __ffs(sz);
 205        unsigned pdshift = PGDIR_SHIFT;
 206
 207        addr &= ~(sz-1);
 208        pg = pgd_offset(mm, addr);
 209
 210        if (pshift == PGDIR_SHIFT)
 211                /* 16GB huge page */
 212                return (pte_t *) pg;
 213        else if (pshift > PUD_SHIFT)
 214                /*
 215                 * We need to use hugepd table
 216                 */
 217                hpdp = (hugepd_t *)pg;
 218        else {
 219                pdshift = PUD_SHIFT;
 220                pu = pud_alloc(mm, pg, addr);
 221                if (pshift == PUD_SHIFT)
 222                        return (pte_t *)pu;
 223                else if (pshift > PMD_SHIFT)
 224                        hpdp = (hugepd_t *)pu;
 225                else {
 226                        pdshift = PMD_SHIFT;
 227                        pm = pmd_alloc(mm, pu, addr);
 228                        if (pshift == PMD_SHIFT)
 229                                /* 16MB hugepage */
 230                                return (pte_t *)pm;
 231                        else
 232                                hpdp = (hugepd_t *)pm;
 233                }
 234        }
 235        if (!hpdp)
 236                return NULL;
 237
 238        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 239
 240        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 241                return NULL;
 242
 243        return hugepte_offset(hpdp, addr, pdshift);
 244}
 245
 246#else
 247
 248pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 249{
 250        pgd_t *pg;
 251        pud_t *pu;
 252        pmd_t *pm;
 253        hugepd_t *hpdp = NULL;
 254        unsigned pshift = __ffs(sz);
 255        unsigned pdshift = PGDIR_SHIFT;
 256
 257        addr &= ~(sz-1);
 258
 259        pg = pgd_offset(mm, addr);
 260
 261        if (pshift >= HUGEPD_PGD_SHIFT) {
 262                hpdp = (hugepd_t *)pg;
 263        } else {
 264                pdshift = PUD_SHIFT;
 265                pu = pud_alloc(mm, pg, addr);
 266                if (pshift >= HUGEPD_PUD_SHIFT) {
 267                        hpdp = (hugepd_t *)pu;
 268                } else {
 269                        pdshift = PMD_SHIFT;
 270                        pm = pmd_alloc(mm, pu, addr);
 271                        hpdp = (hugepd_t *)pm;
 272                }
 273        }
 274
 275        if (!hpdp)
 276                return NULL;
 277
 278        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 279
 280        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 281                return NULL;
 282
 283        return hugepte_offset(hpdp, addr, pdshift);
 284}
 285#endif
 286
 287#ifdef CONFIG_PPC_FSL_BOOK3E
 288/* Build list of addresses of gigantic pages.  This function is used in early
 289 * boot before the buddy or bootmem allocator is setup.
 290 */
 291void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 292{
 293        unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
 294        int i;
 295
 296        if (addr == 0)
 297                return;
 298
 299        gpage_freearray[idx].nr_gpages = number_of_pages;
 300
 301        for (i = 0; i < number_of_pages; i++) {
 302                gpage_freearray[idx].gpage_list[i] = addr;
 303                addr += page_size;
 304        }
 305}
 306
 307/*
 308 * Moves the gigantic page addresses from the temporary list to the
 309 * huge_boot_pages list.
 310 */
 311int alloc_bootmem_huge_page(struct hstate *hstate)
 312{
 313        struct huge_bootmem_page *m;
 314        int idx = shift_to_mmu_psize(huge_page_shift(hstate));
 315        int nr_gpages = gpage_freearray[idx].nr_gpages;
 316
 317        if (nr_gpages == 0)
 318                return 0;
 319
 320#ifdef CONFIG_HIGHMEM
 321        /*
 322         * If gpages can be in highmem we can't use the trick of storing the
 323         * data structure in the page; allocate space for this
 324         */
 325        m = alloc_bootmem(sizeof(struct huge_bootmem_page));
 326        m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
 327#else
 328        m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
 329#endif
 330
 331        list_add(&m->list, &huge_boot_pages);
 332        gpage_freearray[idx].nr_gpages = nr_gpages;
 333        gpage_freearray[idx].gpage_list[nr_gpages] = 0;
 334        m->hstate = hstate;
 335
 336        return 1;
 337}
 338/*
 339 * Scan the command line hugepagesz= options for gigantic pages; store those in
 340 * a list that we use to allocate the memory once all options are parsed.
 341 */
 342
 343unsigned long gpage_npages[MMU_PAGE_COUNT];
 344
 345static int __init do_gpage_early_setup(char *param, char *val,
 346                                       const char *unused)
 347{
 348        static phys_addr_t size;
 349        unsigned long npages;
 350
 351        /*
 352         * The hugepagesz and hugepages cmdline options are interleaved.  We
 353         * use the size variable to keep track of whether or not this was done
 354         * properly and skip over instances where it is incorrect.  Other
 355         * command-line parsing code will issue warnings, so we don't need to.
 356         *
 357         */
 358        if ((strcmp(param, "default_hugepagesz") == 0) ||
 359            (strcmp(param, "hugepagesz") == 0)) {
 360                size = memparse(val, NULL);
 361        } else if (strcmp(param, "hugepages") == 0) {
 362                if (size != 0) {
 363                        if (sscanf(val, "%lu", &npages) <= 0)
 364                                npages = 0;
 365                        gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
 366                        size = 0;
 367                }
 368        }
 369        return 0;
 370}
 371
 372
 373/*
 374 * This function allocates physical space for pages that are larger than the
 375 * buddy allocator can handle.  We want to allocate these in highmem because
 376 * the amount of lowmem is limited.  This means that this function MUST be
 377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 378 * allocate to grab highmem.
 379 */
 380void __init reserve_hugetlb_gpages(void)
 381{
 382        static __initdata char cmdline[COMMAND_LINE_SIZE];
 383        phys_addr_t size, base;
 384        int i;
 385
 386        strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
 387        parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
 388                        &do_gpage_early_setup);
 389
 390        /*
 391         * Walk gpage list in reverse, allocating larger page sizes first.
 392         * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
 393         * When we reach the point in the list where pages are no longer
 394         * considered gpages, we're done.
 395         */
 396        for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
 397                if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
 398                        continue;
 399                else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
 400                        break;
 401
 402                size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
 403                base = memblock_alloc_base(size * gpage_npages[i], size,
 404                                           MEMBLOCK_ALLOC_ANYWHERE);
 405                add_gpage(base, size, gpage_npages[i]);
 406        }
 407}
 408
 409#else /* !PPC_FSL_BOOK3E */
 410
 411/* Build list of addresses of gigantic pages.  This function is used in early
 412 * boot before the buddy or bootmem allocator is setup.
 413 */
 414void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 415{
 416        if (!addr)
 417                return;
 418        while (number_of_pages > 0) {
 419                gpage_freearray[nr_gpages] = addr;
 420                nr_gpages++;
 421                number_of_pages--;
 422                addr += page_size;
 423        }
 424}
 425
 426/* Moves the gigantic page addresses from the temporary list to the
 427 * huge_boot_pages list.
 428 */
 429int alloc_bootmem_huge_page(struct hstate *hstate)
 430{
 431        struct huge_bootmem_page *m;
 432        if (nr_gpages == 0)
 433                return 0;
 434        m = phys_to_virt(gpage_freearray[--nr_gpages]);
 435        gpage_freearray[nr_gpages] = 0;
 436        list_add(&m->list, &huge_boot_pages);
 437        m->hstate = hstate;
 438        return 1;
 439}
 440#endif
 441
 442int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 443{
 444        return 0;
 445}
 446
 447#ifdef CONFIG_PPC_FSL_BOOK3E
 448#define HUGEPD_FREELIST_SIZE \
 449        ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 450
 451struct hugepd_freelist {
 452        struct rcu_head rcu;
 453        unsigned int index;
 454        void *ptes[0];
 455};
 456
 457static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 458
 459static void hugepd_free_rcu_callback(struct rcu_head *head)
 460{
 461        struct hugepd_freelist *batch =
 462                container_of(head, struct hugepd_freelist, rcu);
 463        unsigned int i;
 464
 465        for (i = 0; i < batch->index; i++)
 466                kmem_cache_free(hugepte_cache, batch->ptes[i]);
 467
 468        free_page((unsigned long)batch);
 469}
 470
 471static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 472{
 473        struct hugepd_freelist **batchp;
 474
 475        batchp = &__get_cpu_var(hugepd_freelist_cur);
 476
 477        if (atomic_read(&tlb->mm->mm_users) < 2 ||
 478            cpumask_equal(mm_cpumask(tlb->mm),
 479                          cpumask_of(smp_processor_id()))) {
 480                kmem_cache_free(hugepte_cache, hugepte);
 481                return;
 482        }
 483
 484        if (*batchp == NULL) {
 485                *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 486                (*batchp)->index = 0;
 487        }
 488
 489        (*batchp)->ptes[(*batchp)->index++] = hugepte;
 490        if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 491                call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
 492                *batchp = NULL;
 493        }
 494}
 495#endif
 496
 497static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 498                              unsigned long start, unsigned long end,
 499                              unsigned long floor, unsigned long ceiling)
 500{
 501        pte_t *hugepte = hugepd_page(*hpdp);
 502        int i;
 503
 504        unsigned long pdmask = ~((1UL << pdshift) - 1);
 505        unsigned int num_hugepd = 1;
 506
 507#ifdef CONFIG_PPC_FSL_BOOK3E
 508        /* Note: On fsl the hpdp may be the first of several */
 509        num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
 510#else
 511        unsigned int shift = hugepd_shift(*hpdp);
 512#endif
 513
 514        start &= pdmask;
 515        if (start < floor)
 516                return;
 517        if (ceiling) {
 518                ceiling &= pdmask;
 519                if (! ceiling)
 520                        return;
 521        }
 522        if (end - 1 > ceiling - 1)
 523                return;
 524
 525        for (i = 0; i < num_hugepd; i++, hpdp++)
 526                hpdp->pd = 0;
 527
 528        tlb->need_flush = 1;
 529
 530#ifdef CONFIG_PPC_FSL_BOOK3E
 531        hugepd_free(tlb, hugepte);
 532#else
 533        pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 534#endif
 535}
 536
 537static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 538                                   unsigned long addr, unsigned long end,
 539                                   unsigned long floor, unsigned long ceiling)
 540{
 541        pmd_t *pmd;
 542        unsigned long next;
 543        unsigned long start;
 544
 545        start = addr;
 546        do {
 547                pmd = pmd_offset(pud, addr);
 548                next = pmd_addr_end(addr, end);
 549                if (!is_hugepd(pmd)) {
 550                        /*
 551                         * if it is not hugepd pointer, we should already find
 552                         * it cleared.
 553                         */
 554                        WARN_ON(!pmd_none_or_clear_bad(pmd));
 555                        continue;
 556                }
 557#ifdef CONFIG_PPC_FSL_BOOK3E
 558                /*
 559                 * Increment next by the size of the huge mapping since
 560                 * there may be more than one entry at this level for a
 561                 * single hugepage, but all of them point to
 562                 * the same kmem cache that holds the hugepte.
 563                 */
 564                next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 565#endif
 566                free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 567                                  addr, next, floor, ceiling);
 568        } while (addr = next, addr != end);
 569
 570        start &= PUD_MASK;
 571        if (start < floor)
 572                return;
 573        if (ceiling) {
 574                ceiling &= PUD_MASK;
 575                if (!ceiling)
 576                        return;
 577        }
 578        if (end - 1 > ceiling - 1)
 579                return;
 580
 581        pmd = pmd_offset(pud, start);
 582        pud_clear(pud);
 583        pmd_free_tlb(tlb, pmd, start);
 584}
 585
 586static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 587                                   unsigned long addr, unsigned long end,
 588                                   unsigned long floor, unsigned long ceiling)
 589{
 590        pud_t *pud;
 591        unsigned long next;
 592        unsigned long start;
 593
 594        start = addr;
 595        do {
 596                pud = pud_offset(pgd, addr);
 597                next = pud_addr_end(addr, end);
 598                if (!is_hugepd(pud)) {
 599                        if (pud_none_or_clear_bad(pud))
 600                                continue;
 601                        hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 602                                               ceiling);
 603                } else {
 604#ifdef CONFIG_PPC_FSL_BOOK3E
 605                        /*
 606                         * Increment next by the size of the huge mapping since
 607                         * there may be more than one entry at this level for a
 608                         * single hugepage, but all of them point to
 609                         * the same kmem cache that holds the hugepte.
 610                         */
 611                        next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 612#endif
 613                        free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 614                                          addr, next, floor, ceiling);
 615                }
 616        } while (addr = next, addr != end);
 617
 618        start &= PGDIR_MASK;
 619        if (start < floor)
 620                return;
 621        if (ceiling) {
 622                ceiling &= PGDIR_MASK;
 623                if (!ceiling)
 624                        return;
 625        }
 626        if (end - 1 > ceiling - 1)
 627                return;
 628
 629        pud = pud_offset(pgd, start);
 630        pgd_clear(pgd);
 631        pud_free_tlb(tlb, pud, start);
 632}
 633
 634/*
 635 * This function frees user-level page tables of a process.
 636 *
 637 * Must be called with pagetable lock held.
 638 */
 639void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 640                            unsigned long addr, unsigned long end,
 641                            unsigned long floor, unsigned long ceiling)
 642{
 643        pgd_t *pgd;
 644        unsigned long next;
 645
 646        /*
 647         * Because there are a number of different possible pagetable
 648         * layouts for hugepage ranges, we limit knowledge of how
 649         * things should be laid out to the allocation path
 650         * (huge_pte_alloc(), above).  Everything else works out the
 651         * structure as it goes from information in the hugepd
 652         * pointers.  That means that we can't here use the
 653         * optimization used in the normal page free_pgd_range(), of
 654         * checking whether we're actually covering a large enough
 655         * range to have to do anything at the top level of the walk
 656         * instead of at the bottom.
 657         *
 658         * To make sense of this, you should probably go read the big
 659         * block comment at the top of the normal free_pgd_range(),
 660         * too.
 661         */
 662
 663        do {
 664                next = pgd_addr_end(addr, end);
 665                pgd = pgd_offset(tlb->mm, addr);
 666                if (!is_hugepd(pgd)) {
 667                        if (pgd_none_or_clear_bad(pgd))
 668                                continue;
 669                        hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 670                } else {
 671#ifdef CONFIG_PPC_FSL_BOOK3E
 672                        /*
 673                         * Increment next by the size of the huge mapping since
 674                         * there may be more than one entry at the pgd level
 675                         * for a single hugepage, but all of them point to the
 676                         * same kmem cache that holds the hugepte.
 677                         */
 678                        next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 679#endif
 680                        free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
 681                                          addr, next, floor, ceiling);
 682                }
 683        } while (addr = next, addr != end);
 684}
 685
 686struct page *
 687follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 688{
 689        pte_t *ptep;
 690        struct page *page;
 691        unsigned shift;
 692        unsigned long mask;
 693        /*
 694         * Transparent hugepages are handled by generic code. We can skip them
 695         * here.
 696         */
 697        ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
 698
 699        /* Verify it is a huge page else bail. */
 700        if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
 701                return ERR_PTR(-EINVAL);
 702
 703        mask = (1UL << shift) - 1;
 704        page = pte_page(*ptep);
 705        if (page)
 706                page += (address & mask) / PAGE_SIZE;
 707
 708        return page;
 709}
 710
 711struct page *
 712follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 713                pmd_t *pmd, int write)
 714{
 715        BUG();
 716        return NULL;
 717}
 718
 719static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
 720                                      unsigned long sz)
 721{
 722        unsigned long __boundary = (addr + sz) & ~(sz-1);
 723        return (__boundary - 1 < end - 1) ? __boundary : end;
 724}
 725
 726int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
 727               unsigned long addr, unsigned long end,
 728               int write, struct page **pages, int *nr)
 729{
 730        pte_t *ptep;
 731        unsigned long sz = 1UL << hugepd_shift(*hugepd);
 732        unsigned long next;
 733
 734        ptep = hugepte_offset(hugepd, addr, pdshift);
 735        do {
 736                next = hugepte_addr_end(addr, end, sz);
 737                if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
 738                        return 0;
 739        } while (ptep++, addr = next, addr != end);
 740
 741        return 1;
 742}
 743
 744#ifdef CONFIG_PPC_MM_SLICES
 745unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 746                                        unsigned long len, unsigned long pgoff,
 747                                        unsigned long flags)
 748{
 749        struct hstate *hstate = hstate_file(file);
 750        int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 751
 752        return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 753}
 754#endif
 755
 756unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 757{
 758#ifdef CONFIG_PPC_MM_SLICES
 759        unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 760
 761        return 1UL << mmu_psize_to_shift(psize);
 762#else
 763        if (!is_vm_hugetlb_page(vma))
 764                return PAGE_SIZE;
 765
 766        return huge_page_size(hstate_vma(vma));
 767#endif
 768}
 769
 770static inline bool is_power_of_4(unsigned long x)
 771{
 772        if (is_power_of_2(x))
 773                return (__ilog2(x) % 2) ? false : true;
 774        return false;
 775}
 776
 777static int __init add_huge_page_size(unsigned long long size)
 778{
 779        int shift = __ffs(size);
 780        int mmu_psize;
 781
 782        /* Check that it is a page size supported by the hardware and
 783         * that it fits within pagetable and slice limits. */
 784#ifdef CONFIG_PPC_FSL_BOOK3E
 785        if ((size < PAGE_SIZE) || !is_power_of_4(size))
 786                return -EINVAL;
 787#else
 788        if (!is_power_of_2(size)
 789            || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
 790                return -EINVAL;
 791#endif
 792
 793        if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 794                return -EINVAL;
 795
 796#ifdef CONFIG_SPU_FS_64K_LS
 797        /* Disable support for 64K huge pages when 64K SPU local store
 798         * support is enabled as the current implementation conflicts.
 799         */
 800        if (shift == PAGE_SHIFT_64K)
 801                return -EINVAL;
 802#endif /* CONFIG_SPU_FS_64K_LS */
 803
 804        BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 805
 806        /* Return if huge page size has already been setup */
 807        if (size_to_hstate(size))
 808                return 0;
 809
 810        hugetlb_add_hstate(shift - PAGE_SHIFT);
 811
 812        return 0;
 813}
 814
 815static int __init hugepage_setup_sz(char *str)
 816{
 817        unsigned long long size;
 818
 819        size = memparse(str, &str);
 820
 821        if (add_huge_page_size(size) != 0)
 822                printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
 823
 824        return 1;
 825}
 826__setup("hugepagesz=", hugepage_setup_sz);
 827
 828#ifdef CONFIG_PPC_FSL_BOOK3E
 829struct kmem_cache *hugepte_cache;
 830static int __init hugetlbpage_init(void)
 831{
 832        int psize;
 833
 834        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 835                unsigned shift;
 836
 837                if (!mmu_psize_defs[psize].shift)
 838                        continue;
 839
 840                shift = mmu_psize_to_shift(psize);
 841
 842                /* Don't treat normal page sizes as huge... */
 843                if (shift != PAGE_SHIFT)
 844                        if (add_huge_page_size(1ULL << shift) < 0)
 845                                continue;
 846        }
 847
 848        /*
 849         * Create a kmem cache for hugeptes.  The bottom bits in the pte have
 850         * size information encoded in them, so align them to allow this
 851         */
 852        hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
 853                                           HUGEPD_SHIFT_MASK + 1, 0, NULL);
 854        if (hugepte_cache == NULL)
 855                panic("%s: Unable to create kmem cache for hugeptes\n",
 856                      __func__);
 857
 858        /* Default hpage size = 4M */
 859        if (mmu_psize_defs[MMU_PAGE_4M].shift)
 860                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
 861        else
 862                panic("%s: Unable to set default huge page size\n", __func__);
 863
 864
 865        return 0;
 866}
 867#else
 868static int __init hugetlbpage_init(void)
 869{
 870        int psize;
 871
 872        if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 873                return -ENODEV;
 874
 875        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 876                unsigned shift;
 877                unsigned pdshift;
 878
 879                if (!mmu_psize_defs[psize].shift)
 880                        continue;
 881
 882                shift = mmu_psize_to_shift(psize);
 883
 884                if (add_huge_page_size(1ULL << shift) < 0)
 885                        continue;
 886
 887                if (shift < PMD_SHIFT)
 888                        pdshift = PMD_SHIFT;
 889                else if (shift < PUD_SHIFT)
 890                        pdshift = PUD_SHIFT;
 891                else
 892                        pdshift = PGDIR_SHIFT;
 893                /*
 894                 * if we have pdshift and shift value same, we don't
 895                 * use pgt cache for hugepd.
 896                 */
 897                if (pdshift != shift) {
 898                        pgtable_cache_add(pdshift - shift, NULL);
 899                        if (!PGT_CACHE(pdshift - shift))
 900                                panic("hugetlbpage_init(): could not create "
 901                                      "pgtable cache for %d bit pagesize\n", shift);
 902                }
 903        }
 904
 905        /* Set default large page size. Currently, we pick 16M or 1M
 906         * depending on what is available
 907         */
 908        if (mmu_psize_defs[MMU_PAGE_16M].shift)
 909                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
 910        else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 911                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 912
 913        return 0;
 914}
 915#endif
 916module_init(hugetlbpage_init);
 917
 918void flush_dcache_icache_hugepage(struct page *page)
 919{
 920        int i;
 921        void *start;
 922
 923        BUG_ON(!PageCompound(page));
 924
 925        for (i = 0; i < (1UL << compound_order(page)); i++) {
 926                if (!PageHighMem(page)) {
 927                        __flush_dcache_icache(page_address(page+i));
 928                } else {
 929                        start = kmap_atomic(page+i);
 930                        __flush_dcache_icache(start);
 931                        kunmap_atomic(start);
 932                }
 933        }
 934}
 935
 936#endif /* CONFIG_HUGETLB_PAGE */
 937
 938/*
 939 * We have 4 cases for pgds and pmds:
 940 * (1) invalid (all zeroes)
 941 * (2) pointer to next table, as normal; bottom 6 bits == 0
 942 * (3) leaf pte for huge page, bottom two bits != 00
 943 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
 944 *
 945 * So long as we atomically load page table pointers we are safe against teardown,
 946 * we can follow the address down to the the page and take a ref on it.
 947 */
 948
 949pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
 950{
 951        pgd_t pgd, *pgdp;
 952        pud_t pud, *pudp;
 953        pmd_t pmd, *pmdp;
 954        pte_t *ret_pte;
 955        hugepd_t *hpdp = NULL;
 956        unsigned pdshift = PGDIR_SHIFT;
 957
 958        if (shift)
 959                *shift = 0;
 960
 961        pgdp = pgdir + pgd_index(ea);
 962        pgd  = ACCESS_ONCE(*pgdp);
 963        /*
 964         * Always operate on the local stack value. This make sure the
 965         * value don't get updated by a parallel THP split/collapse,
 966         * page fault or a page unmap. The return pte_t * is still not
 967         * stable. So should be checked there for above conditions.
 968         */
 969        if (pgd_none(pgd))
 970                return NULL;
 971        else if (pgd_huge(pgd)) {
 972                ret_pte = (pte_t *) pgdp;
 973                goto out;
 974        } else if (is_hugepd(&pgd))
 975                hpdp = (hugepd_t *)&pgd;
 976        else {
 977                /*
 978                 * Even if we end up with an unmap, the pgtable will not
 979                 * be freed, because we do an rcu free and here we are
 980                 * irq disabled
 981                 */
 982                pdshift = PUD_SHIFT;
 983                pudp = pud_offset(&pgd, ea);
 984                pud  = ACCESS_ONCE(*pudp);
 985
 986                if (pud_none(pud))
 987                        return NULL;
 988                else if (pud_huge(pud)) {
 989                        ret_pte = (pte_t *) pudp;
 990                        goto out;
 991                } else if (is_hugepd(&pud))
 992                        hpdp = (hugepd_t *)&pud;
 993                else {
 994                        pdshift = PMD_SHIFT;
 995                        pmdp = pmd_offset(&pud, ea);
 996                        pmd  = ACCESS_ONCE(*pmdp);
 997                        /*
 998                         * A hugepage collapse is captured by pmd_none, because
 999                         * it mark the pmd none and do a hpte invalidate.
1000                         *
1001                         * A hugepage split is captured by pmd_trans_splitting
1002                         * because we mark the pmd trans splitting and do a
1003                         * hpte invalidate
1004                         *
1005                         */
1006                        if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1007                                return NULL;
1008
1009                        if (pmd_huge(pmd) || pmd_large(pmd)) {
1010                                ret_pte = (pte_t *) pmdp;
1011                                goto out;
1012                        } else if (is_hugepd(&pmd))
1013                                hpdp = (hugepd_t *)&pmd;
1014                        else
1015                                return pte_offset_kernel(&pmd, ea);
1016                }
1017        }
1018        if (!hpdp)
1019                return NULL;
1020
1021        ret_pte = hugepte_offset(hpdp, ea, pdshift);
1022        pdshift = hugepd_shift(*hpdp);
1023out:
1024        if (shift)
1025                *shift = pdshift;
1026        return ret_pte;
1027}
1028EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1029
1030int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1031                unsigned long end, int write, struct page **pages, int *nr)
1032{
1033        unsigned long mask;
1034        unsigned long pte_end;
1035        struct page *head, *page, *tail;
1036        pte_t pte;
1037        int refs;
1038
1039        pte_end = (addr + sz) & ~(sz-1);
1040        if (pte_end < end)
1041                end = pte_end;
1042
1043        pte = ACCESS_ONCE(*ptep);
1044        mask = _PAGE_PRESENT | _PAGE_USER;
1045        if (write)
1046                mask |= _PAGE_RW;
1047
1048        if ((pte_val(pte) & mask) != mask)
1049                return 0;
1050
1051#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1052        /*
1053         * check for splitting here
1054         */
1055        if (pmd_trans_splitting(pte_pmd(pte)))
1056                return 0;
1057#endif
1058
1059        /* hugepages are never "special" */
1060        VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1061
1062        refs = 0;
1063        head = pte_page(pte);
1064
1065        page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1066        tail = page;
1067        do {
1068                VM_BUG_ON(compound_head(page) != head);
1069                pages[*nr] = page;
1070                (*nr)++;
1071                page++;
1072                refs++;
1073        } while (addr += PAGE_SIZE, addr != end);
1074
1075        if (!page_cache_add_speculative(head, refs)) {
1076                *nr -= refs;
1077                return 0;
1078        }
1079
1080        if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1081                /* Could be optimized better */
1082                *nr -= refs;
1083                while (refs--)
1084                        put_page(head);
1085                return 0;
1086        }
1087
1088        /*
1089         * Any tail page need their mapcount reference taken before we
1090         * return.
1091         */
1092        while (refs--) {
1093                if (PageTail(tail))
1094                        get_huge_page_tail(tail);
1095                tail++;
1096        }
1097
1098        return 1;
1099}
1100